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Abstract: Apoptosis is an important physiological process for maintaining homeostasis,
remodeling and eliminating abnormal cells in normal tissues. Development of 
human cancer is a multistage process involving various genetic alternations
and cellular abnormalities. Cellular changes should lead to activation of the 
apoptotic pathway and induction of cell death, which prevents tumor growth
and progression. However, during tumorigenesis, some tumor cells develop 
apoptosis-resistant mechanisms that allow the cancer cells to avoid apoptotic
cell death, resulting in the initiation and progression of human cancers. 
Defects in the apoptotic signaling pathway have been detected in many cancer
cells and cancer tissues.  A deregulated apoptotic signal pathway confers a 
high survivability and resistance of the tumor cells to therapeutic reagents. 
Understanding the alterations in apoptotic signaling in human cancer cells 
should provide important information for the development of novel cancer
therapies directly targeting the apoptotic signal pathway in cancer cells. 
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1. INTRODUCTION 

Programmed cell death (apoptosis) is an important cellular process that 
allows proper development and remodeling of normal tissues, generating 
immune responses and destroying abnormal cells. A regulated apoptotic 
pathway ensures homeostasis and integrity of the normal tissues 1,2. It is well
known that malignant transformation of human cancer cells is a multi-stage
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process involving mutations or deletions of various tumor suppressor genes, 
activation of oncogenes and alterations in the levels of expression of key 
regulatory genes, providing growth advantages and metastatic potential for 
tumor cells 3. Those genetic alterations result in abnormalities in cellular and 
nuclear morphology and signal transduction pathways which would
normally activate a suicidal pathway and induce apoptosis in the cells 2,4.
Increasing evidence shows that impairments in apoptotic signaling enable
tumor cells to avoid apoptotic cell death and grow into tumor masses that are
resistant to apoptosis 5-8. Defects in regulation of apoptosis have been
detected in both upstream and downstream of the apoptotic signal pathway
in many types of human tumor cells 6-9. Recent studies have also revealed
molecular targets in the apoptotic pathway that play important roles in the
apoptosis resistance of cancer cells. The feasibility of targeting the apoptotic
pathway as a novel cancer therapy has also been examined.

Apoptosis is the most common type of cell death, characterized as
chromatin condensation, nuclear fragmentation, cell shrinkage and 
membrane blebbing. Apoptotic cells then break into small membrane-
surrounded apoptotic bodies that are removed by phagocytosis 1. In normal
cells, apoptosis is induced under some physiological conditions such as
tissue and organ development in fetus, menstrual cycle, and involution of 
breast ducts after lactation 10-13.  Apoptotic cell death is also induced in the
cells with viral infection, DNA damage or other genomic alterations and 
regulation of cell-mediated immune responses 2,14,15. Regulated apoptosis 
therefore maintains tissue integrity as well as a balance between cell 
proliferation and death in normal tissues.

During the last decade, the identification and characterization of cellular
factors in the apoptotic signal pathway have been an intensive research area.
Many cellular factors involved in apoptotic signaling were discovered and 
their roles in the regulation of the apoptotic pathway have been elucidated.
Apoptosis is initiated when the cells receive negative signaling, such as 
growth factor withdrawal, DNA damage by oxidants, ultraviolet light andt
x-rays, and chemotherapy drug treatment 2,16-18. Activation of apoptotic
signaling is achieved by either an extrinsic or an intrinsic pathway 19. The
extrinsic pathway is triggered by ligation of cell surface death receptors with 
their specific ligands, such as Fas Ligand, tumor necrosis factor α (TNF-α)
and tumor necrosis factor-related apoptosis inducing ligand (TRAIL).
Binding of apoptosis inducing ligands to their corresponding receptors 
activates an intracellular domain (the death domain) of the receptor to attract 
an adaptor protein, Fas-associated death domain protein (FADD).  FADD 
then recruits inactive caspase 8 to form a death-inducing signaling complex
(DISC), resulting in the activation of caspase-8. Active caspase 8 then
cleaves and activates caspase-3 and -7 19. The intrinsic pathway is activated 
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when the cells are under severe stresses such as growth factor deprivation,
oxidants and DNA-damaging agents by leakage of cytochrome c from
mitochondria. This results in the activation of caspase-9 and then caspase-3,
-6, and -7 19-21.  The crosstalk between cell death receptors and mitochondrial
pathways is also present in some conditions. Death receptor activated 
caspase-8 cleaves Bid, which then translocates to the mitochondria to
amplify the apoptosis signal by activating the mitochondrial pathway 22.

Caspases can be divided into two groups based on the length of their
prodomain and substrate specificity. Caspase-2, -8, -9 and -10 are initiator
caspases using their long N-terminal prodomains to interact with adapter
molecules and form a death inducing signal complex (DISC). Downstream 
caspases, including caspase-3, -6, and -7, are executioner caspases that
remain dormant until the initiator caspases activate them by proteolysis 22.
Activated executioner caspase-3, -6 and -7 recognize specific substrate
sequences in targeting cellular proteins and cleave a number of structural and 
regulatory proteins such as Poly (ADP-ribose) polymerase (PARP), lamins, 
DNA fragmentation factor-45 (DFF45/ICA) and cytokeratins, leading to 
apoptotic cell death 23.

Examination of the levels and activity of apoptotic effectors, inhibitors
and regulators in human cancer cells and tissues has demonstrated that 
deregulation of apoptotic signal pathway is present in most human cancer
cells.  Human tumor cells escape apoptotic cell death by avoiding the
activation of upstream apoptotic signals and/or by upregulation of inhibitory 
factors in the apoptotic signal pathway 6-9.

2. CELL DEATH RECEPTOR-MEDIATED 

APOPTOSIS  

2.1 Fas and Fas ligand (Fas L) 

Fas (APO-1 or CD 95) is a widely expressed transmembrane protein in
the tumor necrosis receptor family.  Interaction of Fas with its legend, FasL,
initiates the death receptor-mediated cell death pathway 22,24.  However,
dysfunction of the Fas-mediated apoptotic signal has been found in several 
tumor types.  It has been shown that many tumor cells are resistant to FasL 
or Fas antibody induced apoptosis 25,26.  Further studies indicate that human
cancer cells have developed resistant mechanisms to avoid Fas-mediated 
apoptosis. Somatic deletions and mutations of Fas receptor were first
discovered in human lymphoid-lineage malignancies 26,27. Later, Fas 
mutations were detected in small percentage of solid tumors, such as in 



4 Chapter 1

gastric (11.6%), non-small cell lung (7.7-20%), and malignant melanomas 
(6.8%)28,29.  Although Fas mutation is not a common phenomenon in solid
tumors, a reduced level of expression of cell surface Fas receptor is found in
many tumor types either by downregulating Fas gene expression or by
decreasing cell surface transportation 30-33. In addition, some tumor cells also 
produce a high level of soluble Fas to block interactions between cell surface 
Fas receptor and FasL 34,35.

Although downregulation of Fas levels or function could explain the
insensitivity to Fas-mediated apoptosis in some tumor cells, many tumor
cells do not have Fas mutations and an adequate level of Fas expression is 
detected in tumor cells that are resistant to Fas-mediated apoptosis 36-40.
Interestedly, those tumor cells also co-express a high level of FasL, an
activating ligand for Fas receptor.  In normal tissues, FasL is only expressed 
at a low level in cytotoxic T lymphocyte, natural killer cells, sertoli cells of
testis, ocular cells and normal breast ductal epithelial cells 41-43. However,
upregulation of FasL has been found in many tumor cells as well as tumor
tissues 44-47. Co-expression of Fas and FasL in tumor cells resistant to Fas-
mediated apoptosis suggests the presence of intrinsic anti-apoptotic factors 
downstream of the death receptor that block the apoptotic signal pathway
and prevent apoptosis 31.  Consistent with this notion, it has been shown that 
tumor cells resistant to Fas-induced cell death also showed a low sensitivity
to chemotherapy drugs or to TRAIL induced apoptosis 48-50. Moreover,
upregulation of cell surface FasL provides a growth advantage to the cells by
counteracting tumor-infiltration immune cells and/or facilitating the
destruction of surrounding tissues to increase the invasiveness of the tumor
cells 25,44.

2.2 TRAIL and TRAIL receptors 

TRAIL is a member of the tumor necrosis factor (TNF) family of 
cytokines that binds to its death receptors, DR4 and DR5, and activates the 
apoptotic pathway 51. Although TRAIL is constitutively expressed in many
tissue types, apoptotic cell death is selectively induced in cancer cells but not 
in normal cells 52-54. This selectivity may be due to a higher level of TRAIL
receptors in cancer cells than in normal cells. In addition, TRAIL also 
interacts with "decoy" receptors DcR1 and DcR2, which lack functional 
death domains and do not induce apoptosis 55. The role of the decoy 
receptors in protecting normal cells from TRAIL-induced apoptosis has yet 
to be determined.

Although activation of TRAIL-mediated apoptotic pathway has great 
potential for developing tumor-specific therapy, further studies of the ant-
tumor effects of TRAIL in different tumor cell lines indicate that human 
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tumor cells have a wide range of sensitivity to TRAIL-induced apoptosis 56.
A large fraction of tumor cells display a low level of TRAIL expression or
activity. Some tumor cells have completely lost the expression of TRAIL
receptor 57,58. Additionally, several studies demonstrate that high levels of
both TRAIL receptor and ligand are found in some TRAIL-resistant tumor
cells, suggesting other downstream anti-apoptotic factors may contribute to
lack of TRAIL-induced apoptosis in those cells. However, it has been shown
that treatment of TRAIL resistant tumor cell lines with subtoxic
concentrations of chemotherapy drugs sensitizes TRAIL-induced apoptosis
57,59,60.

2.3 TNF-α and receptors 

TNF- , a cytokine produced by macrophages/monocytes during acute 
inflammation, regulates inflammation, survival, proliferation and apoptosis
of cells. TNF-α binds to cell surface receptor TNFR-1 or TNFR-2 and
trimerizes the receptors 61. The activated receptors further recruit adaptor 
proteins TRADD and TRAF2, and death effect domain protein FADD to 
form DISC and then cleaves procaspase 8 to active caspase 8 62,63. Unlike 
other TNF-α family receptors, recruiting TRAF2 to TNF-R1 triggers the 
activation of cell survival factor NF-κB resulting in the activation of anti-
apoptosis factors such as c-FLIP or cIAPs, which are inhibitors for caspase 8
62,64.  Since the level of TRAF2 is elevated in various human tumors, this
may cause the formation of the TNF-R, TRADD and TRAF2 complex and 
activate the cell survival pathway, resulting in resistance of the tumor cells to 
TNF-α mediated apoptosis 65,66.

3. CASPASE ACTIVATION 

3.1 Downregulation of caspases in tumor cells 

Caspases are synthesized as inactive zymogenes with a prodomain 
followed by a large (p20) and a small (p17) subunit. Activation of the 
procaspases by a series of cleavage events is a critical process for execution
of apoptosis. Deficiency in the levels of expression of procaspase genes is
detected in some tumor cell lines and tissues. For example, deletion or
silencing of the caspase 8 gene was discovered in neuroblastoma and non-
small lung carcinomas 67-69. Deficiency in caspase 3 was also found in some 
human tumor cell lines and tissues such as human breast cancer cells, drug
resistant human cervical cancer cells, human neuroblastoma, hepatocellular



6 Chapter 1

and renal cell carcinomas tissues 68,70,71.  Results from examination of levels
of caspase expression using immunohistochemistry staining further showed 
that 46% to 85% of human colon cancer tissues have low levels of caspase-7 
and -9  72.

3.2 Apoptotic protease activating factor 1 

Apoptotic protease activating factor 1 (APAF-1) is a cytoplasm protein
that binds to cytochrome C after its release from mitochondria and forms an 
apoptosome with cytochrome C and procaspase 9. At the apoptosome, 
procaspase 9 is activated, resulting in the cleavage and activation of caspase
3. Functional of APAF-1 is required for activation of caspase 9 in the
intrinsic pathway 73. However, tumor cells, such as metastatic melanomas 
have developed a way to avoid the mitochondrial-mediated apoptosis by
downregualting expression of the APAF-1 gene through allelic loss or gene
methylation 74. Those APAF 1-negative cells are highly resistant to 
chemotherapy 4.

3.3 Upregulation of levels of gene expression and caspase 

activity in human tumor cells 

Although impairments in the levels of caspases greatly affect the
apoptotic response in human tumor cells, recent studies have demonstrated 
the presence of higher levels of expression of procaspase genes and/or active
caspases in some tumor cells and tissues as compared to normal cells 75,76,77

#143,78,79. Examination of levels of procaspases and active caspases in breast
carcinoma tissues from 440 breast cancer patients at different stages of the
disease in five independent studies yielded surprising results demonstrating a 
high level of procaspases and/or active forms of caspases in most human
breast cancer tissues 75-79. A high level of procaspase-3 expression is found 
in 58% of ductal carcinoma in situ (DCIS) and ~90% of invasive breast 
cancer tissues but is not found in normal breast ductal cells. A strong
expression of procaspase-3, -6 and -8 is significantly associated with the
extent of apoptosis and high grade of DCIS lesions 76.  It has also been
shown that over 80% of breast cancer tissues display high levels of active
caspase-3 and -6 detected by immunohistochemical staining using antibodies 
specific for active forms of caspase -3 and -6. In these patient samples, 
apoptosis is highly correlated with the level of proliferation but not with the 
level of active caspases 77.

Overexpression of caspase-3 gene is also detected in pancreatic cancer
but not in normal pancreas tissues80.  High levels of caspase-8, -3 and -6 
activity are found in pancreatic and colon cancer cells that are not 
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undergoing apoptotic cell death 79.  Analysis of the expression of caspase-3, -
8, -9 and -10 in 60 advanced gastric adenocarcinomas by
immunohistochemistry using a tissue microarray approach showed that over
90% of the gastric cancer tissues express high levels of  caspase-3, -8, -9 and 
-10.  However, normal gastric mucosal cells show no or weak expression of
caspases. A high level of active caspase-3 in gastric cancer tissues is
significantly correlated with lymph node metastasis and a worse prognosis of 
the patient but not with the extent of apoptosis 81. At present, the significance
of caspase activation in human tumor tissues is still under investigation.
Activation of the caspase cascade, especially caspase 3, has been considered 
as an irreversible process that leads to “point of no-return” apoptotic death in 
the cells.  An important question to be answered is that how those tumor 
cells with active caspases are still alive and maintaining proliferative ability. 
Recent studies showed that in addition to their function in apoptosis, limited 
activation of caspases is required for some normal cell functions such as 
proliferation of T and B lymphocytes and differentiation of several cell types
82-84. In tumor cells, activation of caspases may result from the activation of
the apoptotic pathway due to the presence of abnormalities in cancer cells. In
addition to a high level of caspase and/or active caspase, upregulation of 
FasL, an important activator for death receptor-mediated apoptosis, is seen
in many tumor cells and tissues. Expression of FasL has been associated 
with counteracting the cytotoxic T cell immune response and the
invasiveness of the tumor cells 85.  It seems that those FasL-mediated effects
are the results of activation of apoptotic signal in tumor cells. Development 
of anti-apoptosis mechanisms, especially factors inhibiting caspase activity,
allows survival and progression of human tumor cells.

4. ANTI-APOPTOTIC FACTORS IN TUMOR CELLS 

4.1 Upstream inhibitors for cell death receptor-mediated 

apoptotic pathway 

Death receptor activated apoptosis is negatively regulated by FADD-like
interleukin-1 β-converting enzyme-like protease (cFLIP) 86.  cFLIP protein
has homology with procaspase 8 but lacks the catalytic domain of the 
enzyme. Binding of cFLIPs to the DISC interferes with the processing and
activation of caspase 8, which inhibits initiation of death receptor-mediated 
apoptosis. It has been shown that cFLIP, potently inhibits death signaling
mediated by all known death receptors, including Fas, TNF-R, and TRAIL-
Rs. cFLIP is constitutively expressed at a high level in many human tumor



8 Chapter 1

types including heptocellular carcinomas, malignant melanomas, gastric,
ovary and prostate cancers 87-89.  The anti-apoptosis function of cFLIP is
further demonstrated by the attenuating cisplatin-induced cleavage of 
caspase-8 and -3 and apoptosis in chemosensitive ovary cells after
overexpression of cFLIP, and by increased apoptosis after downregulating
cFLIP in chemoresistant cells 90.

4.2 Bcl-2 family proteins 

The mitochondria-dependent apoptosis pathway is regulated by anti- and 
pro-apoptotic proteins of the Bcl-2 family. About twenty proteins have been
identified as members of the Bcl-2 family 91.  The anti-apoptotic Bcl-2
family includes proteins such as Bcl-2, Bcl-XL, Bcl-w, Mcl-1, A1/BFL1,
which contain Bcl-2 homology (BH) domains 1, 2 and 4. The Bcl-2 family
proteins with a proapoptotic function can be further divided into Bax 
subfamily (Bax, Bak and Bok), and BH3 subfamily with such members as
Bik, Bim, Bad, HRK/DP5, NOX, Puma, NIP3, Bid and BMF 92.

Overexpression of anti-apoptotic Bcl-2 proteins inhibits apoptosis
induced by various apoptosis stimuli including chemotherapy drugs, γ-γγ
radiation, FasL and TNF-α 93. In normal tissues, maintaining homeostasis
requires a balance between the anti-apoptotic and proapoptotic Bcl-2 family
proteins.  When cells are under stress, Bax and Bak translocate from the
cytoplasm to the outer mitochondria membrane and undergo oligomeriztion.
Oligomerized Bax or Bak then inserts into the membrane to induce
cytochrome c release.  Bcl-2 selectively binds to Bax and prevents insertion 
of Bax into the mitochondrial membrane. Therefore, the interaction of pro-
and anti-apoptotic Bcl-2 family proteins determines mitochondrial 
membrane permeability suppression or promotion, which controls the release 
of cytochrome C and other apoptosis activating proteins from the
mitochondria 19,92. Anti-apoptotic proteins Bcl-2 and Bcl-XL are
overexpressed in many tumor types 6,94.  Upregulation of Bcl-2 or Bcl-XL has
been demonstrated to block the apoptotic response and to be a key factor in 
tumorigenesis and apoptosis resistance in several tumor types 95,96.
Downrgulation of Bcl-2 function or expression by anti-sense or synthetic
BH3 peptides has been shown to induce apoptosis and sensitize tumor cells 
to chemotherapy 97-99.

Although the role of Bcl-2 in apoptosis resistance has been demonstrated 
in several tumor types, especially in lymphomas, whether Bcl-2 protein 
plays an important role in breast cancer has yet to be determined. It is clear
that over 80% of breast cancer tissues express a high level of Bcl-2 94,100.
Overexpression of the BCL-2 protein enhanced resistance to apoptosis in
human breast cancer cell lines 96,101. However, expression of Bcl-2 in human
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breast cancer tissues correlates with a favorable prognosis and an overall 
better survival rate 100,102-104. This intriguing observation may be interpreted 
in part by the effect of Bcl-2 prolonging the transition from G0 or G1 to S
phase of the cycle 92. However, further studies are needed to determine the
significance of Bcl-2 expression in the apoptosis or survival of breast 
cancers.    

Increasing evidence demonstrates that apoptosis resistance in cancer cells
is as a result of impairment of the mitochondria-mediated apoptotic pathway 
by downregulating the function or levels of proapoptotic Bcl-2 family
proteins in cancer cells 105.  It has been shown that transgenic mice deficient
in Bax have accelerated onset of tumor growth 106.  Bax frameshift mutations
are found in over 50% of colon and gastric cancers of the microsatellite
mutator phenotype 107. Bax deficiency has been shown to promote drug
resistant and oncogenic transformation of cells. Results from analysis of the 
level of Bax expression in breast cancer tissues show that most breast cancer
tissues weakly express Bax gene and about one-third of the cancer tissues 
have lost this gene expression. Moreover, a reduced Bax level is associated 
with a poor response to therapy, faster tumor progression, and an overall 
poorer prognosis for the patient 108-110. On the other hand, overexpression of 
the BAX gene induces apoptotic cell death and enhances the effect of
chemotherapy drugs on cancer cell lines 108.   

4.3 Inhibitor of apoptosis protein family 

In addition to upstream apoptotic inhibitory factors that control the
activation of cell death receptor or mitochondria pathway, the apoptotic
signal is also regulated by the inhibitor of apoptosis protein (IAP) family.
IAPs are a family of proteins containing one or more conserved, cysteine and 
histidine-rich baculoviral IAP repeat (BIR)  N-terminal domains and a C-
terminal RING domain. About seven IAP proteins, including NAIP, XIAP,
c-IAP1, c-IAP2, survivin, Livin and Ts-IAP, have been identified and their 
roles in inhibiting caspase activity have been elucidated 7,9,111-113.  The BIR 
domains of the IAPs form the zinc-figure-like structures that bind to the 
surface of caspases to block caspase activity. The RING domain acts as an
ubiquitin ligase to facilitate the proteasomal degradation of caspases 114.
Specific interactions of BIR domains with different caspases have been 
determined by studying the structures of caspases and IAPs.  The results
from crystallography and mutagenesis studies of XIAP show that the
proximal link region of BIR2 binds and blocks the active site of caspase-3 
and -7. The interaction of the BIR2 domain with the amino-terminal of the
small subunit of caspase 7 further stabilizes the binding. The BIR3 domains
of XIAP, c-IAP1 and C-IAP2 are able to bind and inhibit active caspase-9.
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Single BIR domain IAP proteins such as livin and Ts-IAP have been
demonstrated to bind and inhibit caspase-9.  However, the role of another
single BIR domain protein, survivin, in the inhibition of caspase-3 and -7 is
still controversial. Although physical interactions between survivin and 
caspases, and inhibition of caspase-3 and -7 activities have been reported, a
structural basis for a direct interaction between survivin and caspase-3 has 
not been defined 115. Increasing evidence suggests that survivin is closely
associated with mitochondria-dependent apoptosis. Downregulation of
survivin expression or function results in the activation of caspase-9.  A 
recent study shows that survivin is able to associate with XIAP through the 
BIR domain and form a survivin-XIAP complex that promotes increased
XIAP stability and synergistic inhibition of apoptosis 116.

It has been shown that Smac/DIABLO (second mitochondria activator of
caspases), a proapoptotic protein released together with cytochrome C from
mitochondria into the cytosol, interacts with all mammalian IAP proteins on
both BIR 2 and BIR 3 domains. Binding of Smac to IAPs inactivates the 
function of IAPs and enhances the apoptotic response by releasing caspases
from the IAP-inhibition 117,118.

Upregulation of IAPs is found in many tumor cell lines as well as in 
primary tumor tissues. Although XIAP is expressed at a low level in normal 
cells and tissues, a high level of XIAP is detected in many human tumor
cells. Increases in XIAP expression have been associated with apoptosis
resistance and low sensitivity to chemotherapy drugs in several tumor types. 
Downregulation of XIAP releases its inhibition on caspase-3 and induces 
apoptotic cell death in tumor cell lines as well as in vivo in a mouse tumor
model. In addition to increasing the XIAP level, tumor cells also 
downregulate cellular factors that inhibit XIAP function. In normal cells,
expression of XIAP associated factor 1 (XAF1) counteracts the anti-
apoptotic function of XIAP by competing with active caspases for XIAP
binding sites and releasing caspases from XIAP inhibition 119.  However, the 
level of XAF 1 is decreased or lost in many tumor cell types 7,119-121.   

Unlike other IAPs, survivin is expressed broadly in embryonic and fetal
tissues but is undetectable in most differentiated normal adult tissues, except 
thymocytes, CD 34+ stem cells and basal colonic epithelial cells 122,123.
However, survivin is expressed in most common tumor types including 
brain, lung, breast, liver, pancreas, gastric, colon, uterus, ovary, lymphoma,t
leukemia, melanoma and soft tissue sarcomas 123-125.  For example, survivin
is found in over 70% of human breast or pancreatic cancer tissues and in 
64% of human colon tissues 80,126,127.  Expression of the survivin gene in 
human tumor cells is regulated at a transcriptional level through increasing 
survivin promoter activity, amplification of the survivin locus on 17q25,
demethylation of survivin exon 1, and releasing transcriptional repression by
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p53 mutation 123,128-131. Recent studies also demonstrate that survivin is a 
reliable marker for aggressive disease, resistant to chemo- or radio-therapy
and indicative of a poor prognosis for human cancers 132-134. Overexpression
of survivin in human tumor cells reduces the apoptotic response induced by
various apoptosis stimuli 115. Transgenic expression of survivin in the skin
inhibits UVB-induced apoptosis in skin epidermal cells in the mice whereas
it does not affect Fas-induced cell death 135. On the other hand,
downregulation of survivin function with anti-sense, siRNA, dominant
negative mutant or the ribozyme for survivin induces apoptotic cell death
and sensitizes cancer cells to chemotherapy drugs 79,135-137.

In addition to its anti-apoptotic function, survivin is also linked to mitotic
progression and cell division. Expression of survivin is increased in cells
undergoing mitosis. Disrupting survivin function results in cells with 
centrosome deregulation, multipolar mitotic spindles and multinucleated 
nuclei 138. Therefore, survivin has a dual function in regulating the cell cycle
progression and blocking apoptotic signaling.

5. REGULATION OF APOPTOSIS SIGNAL BY 

OTHER CELL SIGNAL TRANSDUCTION 

PATHWAYS 

5.1 Tumor suppressor gene p53  

Mutation of tumor suppressor gene p53 is one of the most common types 
of genetic alterations in human tumors. p53 suppresses tumor growth 
through multiple pathways that involve gene transcription, DNA synthesis
and repair, cell cycle arrest, senescence and apoptosis. Mutations of p53
gene or loss of p53 function results in tumor progression, genetic instability 
and apoptosis resistance 139-141.  It has been shown that p53 regulates both
extrinsic and intrinsic apoptotic pathways through the transactivating
transcription of proapoptotic factors and suppressing expression of anti-
apoptotic genes. For example, upregulation of cell death receptors such as
Fas and TRAIL-Rs is detected in tumor cells following DNA-damaging or
chemotherapy drug-induced p53 expression 142. Induction of transcription of 
proapoptotic Bcl-2 family genes including Bid, Bax, and Puma, and APAF-1 
by p53 further enhances the mitochondria-mediated apoptosis 4,143,144.
Importantly, p53 also acts as a transrepressor for anti-apoptosis factors. It 
binds to survivin promoter and inhibits survivin gene transcription 131. In 
addition, p53 itself can activate apoptosis without utilization of its
transcription function. For example, p53 protein directly localizes to



12 Chapter 1

mitochondria following DNA damage and interacts with anti-apoptotic
protein Bcl-2 and Bcl-XL to promote apoptosis 145,146. Mutations in p53 have 
been found in more than half of human tumors 139.  p53 mutations in human 
cancer cells confer apoptosis resistance and promote survival and 
progression of the tumors.

5.2 PI3 kinase/AKT pathway 

The Phosphatidylinositol 3-kinase (PI3K) pathway is a major cell 
survival pathway activated by growth factors, cytokins, and hormones 147.
PI3K is a heterodimer composed of a p85 regulatory and a p110 catalytic 
subunit. Active PI3K phosphorylates 3-phosphorylated lipid 
phosphatidylinositol-3,4,5-trisphophosphate (PtdIns(3,4,5,)P3), which then
recruits the phosphoinositide-dependent protein kinases (PDK 1 and PDK 2) 
and protein kinase B (AKT) to the cellular membrane 148.  In the complex, 
PDKs activate AKT by phosphorylation 149.  Activation of AKT mediates a 
series of downstream effects to promote cell survival, such as
phosphorylation and inhibition of proapoptotic Bad and caspase 9 and
decreasing p53-mediated transcription of proapoptotic genes 150,151.
Phosphorylation of XIAP by Akt protects XIAP from ubiquitination and
degradation in response to apoptosis stimuli 152. Moreover, activation of the 
PI3K/AKT pathway after VEGF treatment increases the level of IAP protein 
survivin in endothelial cells 153 .    

The role of the PI3K/AKT pathway in the survival, growth and 
metastasis of tumor cells has been extensively studied. It has been shown 
that the PI3K/AKT pathway is highly activated in many tumor types 154,155.
The presence of an activated PI3K/AKT signal confers tumor cell resistance
to apoptosis induction by growth factor withdrawal or chemotherapy drugs.
Further, inhibition of PI3K/AKT activity greatly increases apoptotic cell 
death and drug sensitivity 156.   

PI3K activity is negatively regulated by a tumor suppressor gene PTEN. 
PTEN antagonizes PI3K function by removing the 3-phosphate from
(PtdIns(3,4,5,)P3). PTEN gene is frequently mutated or lost in several 
human tumor types 157. Loss of PTEN function releases the inhibition on the
PI3K/AKT pathway and increases the cell survival.

5.3 NFκB pathway 

Nuclear factor κB (NFκB) is a transcriptional factor regulating apoptosis 
and cell survival. NFκB is present in cytoplasm in an inactive state by
binding with its inhibitor protein, IκB. Upon receiving external stimuli, such
as stress, cytokines, DNA damaging reagents or pathogens, IκB is
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phosphorylated and  then degraded by ubiquitinylation, resulting in
migration of DNA-bound subunit NFκB into the nucleus and activation of
transcription of target genes 158. It has been shown that NFκB functions as
either an anti-apoptotic or a proapoptotic factor 159-162. Recent findings have
provided important insights into the role of the NFκB in regulating life and
death decision. In the TNF-α activated cell death pathway, recruiting 
TRAF2 into TNFR, TRADD and RIP1 complex activates NFκB resulting in
transcriptional activation of the caspase 8 inhibitor cFLIP. However, binding
of the same complex to FADD activates caspase-8 and -10 and induces
apoptosis 163. NFκB-dependent transcription of anti-apoptotic Bcl-2 family 
proteins such as Bcl-2 and Bcl-XL confers protection against hypoxia and
nitric oxide-induced apoptosis 114,164,165. Upregualtion of the expression of 
the IAP genes such as c-IAP1, c-IAP2 and XIAP further enhances the anti-
apoptotic effect of the NFκB 114,166,167. Although it is clear that NFκB is a
critical cell survival factor, there are a number of reports showing that under
certain circumstances, activation of NFκB promotes apoptosis.  NFκB
induces expression of proapoptotic factor genes such as p53, FasL, TRAIL, 
cell death receptors and proapoptotic Bcl-Xs protein 168.

The anti-apoptotic activity of NFκB has been shown to be an important 
factor for tumorigenesis 161. A high level of constitutive nuclear NFκB
activity has been found in many human leukemias, lymphomas and solid 
tumors 169-171.  Suppression of the NFκB function results in apoptosis and/or 
sensitization of tumor cells to TNF-α or chemotherapy drug-induced
apoptosis 166,172.

6. TUMOR ENVIRONMENT AND APOPTOSIS 

RESISTANCE 

6.1 Hypoxia  

It is well known that human tumors contain regions that are deficient in 
oxygen due to a rapid growth rate of the tumor cells and the presence of an 
abnormal vasculature 173. Studies have shown that there are significant 
associations between intratumoral hypoxia and tumor metastasis, response to
chemotherapy or radiotherapy, and prognosis of cancer patients 174-177.
Hypoxia induces upregulation of a key transcription factor, HIF-1 α, which 
mediates transcription of hypoxia-inducible genes in the cells 173.  It has been
shown that hypoxia upregulates either anti-apoptotic or proapoptotic factors
in cancer cells depending on the cell types and experimental conditions
178,179.
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Evidence indicates that hypoxia suppresses the apoptosis induced by
chemotherapy drugs or γ-irradiation. A recent study demonstrates that γγ
hypoxia-induced HIF-1 α expression protects HepG2 cells from apoptosis 
induction 180. Resistance to staurosporine-induced apoptosis in hypoxic cells 
is mediated by an HIF-1 α independent upregulation of c-IAP2 181.
Treatment of cancer cells with chronic hypoxia results in selective growth of 
apoptosis resistant cells that express a high level of anti-apoptotic Bcl-2
family protein BCL-XL

182. It has also been shown that hypoxia activates the 
PI3K/Akt/NFκB and the MAPK(Erk) signaling pathways, resulting in the
resistance of pancreatic cancer cells to gemcitabine treatment 183. Hypoxia 
also increases the level of survivin expression in human tumor cells through
HIF-1 α− dependent transcription.  However, survivin is not expressed in
normal cells either under normoxic or hypoxic conditions 184; unpublished 
results, Lily Yang).

Despite its anti-apoptotic effects, hypoxia also activates proapoptotic
factors and induces apoptosis in cancer cells.  It has been demonstrated that
hypoxia-induced apoptosis mainly relies on mitochondrial pathways. In
human tumors, hypoxia may lead to the selection of hypoxia-resistant cells 
with defects in mitochondrial apoptosis signaling pathways 179.  Expression
of a proapoptotic Bcl-2 family protein, BNIP3, is increased in hypoxia  
through transcriptional activation of BNIP 3 by HIF-1 α.  The presence of a
hypoxia-responsive element in the BNip3 promoter  that activates the level
of BNIP 3 gene transcription by HIF-1 α has been demonstrated in many
types of human cancer cell lines 185. In pancreatic cancer tissues, methylation
of BNIP 3 promoter inhibits the expression of the BNIP 3 gene despite the
upregulation of other hypoxia-inducible genes, resulting in resistance to
hypoxia-induced apoptosis. Restoration of BNIP 3 expression increases the
sensitivity of the pancreatic cancer cells to hypoxia-induced cell death 186.

Moreover, hypoxia also induces the stabilization of p53 protein, which is 
a key transcription factor for promoting apoptosis 187.  It is possible that the 
dual effects of hypoxia on apoptosis are influenced by the severity of
hypoxia in the cells. The proapoptotic function of HIF-1 α is activated in the
cells under extreme hypoxia when the cellular protective function is not 
sufficient to protect cells from hypoxia damage 178.

6.2 Extracellular matrix 

It is well established that extracellar matrix (ECM) is a critical regulator
for signal transduction pathways. Interactions between cancer cells and ECM
also contribute to the survival and apoptosis resistance in the cells 188,189.
Loss of contact between ECM and cells has been associated with apoptosis
induction and lumen formation during normal tissue development 12. A
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special form of apoptotic cell death, anoikis, is induced in the cells that have
lost contact with ECM and surrounding cells 190. A recent study further
demonstrates that ECM increases expression of antiapoptotic proteins Bcl-2 
and Bcl-XL and reduced drug-induced apoptosis in small lung cancer cells,
myelomas and gliomas 188,189,191. Additionally, upregulation of matrix 
metalloproteinase (MMP) is a common phenomenon in human tumors and 
has been associated with tumor progression, metastasis and angiogenesis
191,192. It has been shown that MMP-7, which is produced by tumor cells,
specifically cleaves Fas and FasL, resulting in inhibition of Fas-mediated 
apoptosis 188,193,194. Overexpression of the MMP-7 gene in the mouse
mammary gland promotes mammary hyperplasia and accelerates the onset of
oncogene-induced mammary tumors 195. Cell-ECM interactions are 
mediated by adhesion receptors such as integrins on the cell surface. Studies
have shown that integrins are expressed in some human tumor cells as well
as in angiogenic tumor endothelial cells.  Interaction of   β1 integrin with 
ECM in breast cancer cells significantly inhibits apoptosis induced by
chemotherapy drugs paclitaxel and vincristine 196. A recent study reports that 
loss of cell attachment to ECM induces caspase independent apoptosis
through releasing a mitochondria protein Bit-1 into the cytosol and inducing 
apoptosis in the cell. Tumor cells expressing the αvβ5 integrin initiates
signals capable of blocking Bit-induced apoptosis 197.

7. MOLECULAR TARGETS IN APOPTOSIS 

SIGNAL PATHWAY FOR CANCER THERAPY 

Understanding molecular alterations in apoptosis signal pathway     helps
to identify novel therapeutic targets. Results from the examination of
apoptotic effectors and regulators in the apoptotic signal pathway in various
tumor types demonstrate the presence of a deregulated apoptosis signal 
pathway in human cancer cells.  Those defects confer apoptosis resistance 
and provide growth advantage for the tumor cells.

Strategies for targeting upstream defects in apoptosis pathways are
developed and the feasibility of those approaches has been evaluated in
human tumor cell lines and animal tumor models. For example, it has been
shown that overexpression of death receptor-ligands, such as Fas L and
TRAIL, with adenoviral vectors or delivery of recombinant FasL and TRAIL 
induces apoptotic cell death and sensitizes the response to chemotherapy
drugs in some tumor cells 198. However, extensive investigations of this
approach on various human tumor cells reveals that many human tumor cells
are resistant to FasL or TRAIL-induced apoptosis despite the expression of 
cell-death receptors on the cells 25,26,56.
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 Since activation of caspases is a hallmark for apoptosis induction,   a
logical approach for activating apoptosis is to express procaspase or active 
caspase genes in tumor cell. The feasibility of apoptosis induction by
overexpression of procaspase-3, -7, -8 and -9, and an engineered
autocatalytic caspase-3 have been examined in several laboratories using
various tumor cells 199-201. The results of those studies have shown that
expression of procaspase or active caspase gene is able to induce apoptotic
cell death in many human tumor cell lines. However, as compared to
apoptosis induction in normal cells, tumor cell lines are less sensitive to
caspase-induced apoptosis than normal cells79.   

Deregulation of Bcl-2 family proteins is found in many cancer types. 
Strategies downregulating anti-apoptotic or increasing the levels of 
proapoptotic Bcl-2 family proteins have been developed and some of them
are already in clinical trails to determine the toxicity and efficiency. It has
been shown that a decrease in Bcl-2 expression using Bcl-2 antisense
induces apoptosis and sensitizing the cells to chemotherapy drugs 98.
Expression of Bax or Bak genes from adenoviral vectors shows anti-tumor
effects both in vitro and in animal tumor models 202,203.  Small peptides 
targeting Bcl-2 and Bcl-XL are capable of inhibiting activity of Bcl-2 and 
Bcl-XL and have shown therapeutic potential as anticancer drugs for treating 
cancers overexpressing Bcl-2 and/or Bcl-X(L) proteins 97.

Results from dissecting deregulated apoptotic signals in human tumor
cells further show that although different upstream deficiencies, such as Fas 
mutation and defects in caspase expression, are found in tumor cell lines and 
tissues, they are limited to small percentage of tumor cells in several cancer
types 29,67,68,204. On the other hand, upregulation of IAPs is a common feature 
for the majority tumor types 7,123. Novel approaches targeting the IAP 
proteins should provide new ways to treat most human cancers.   

 A recent study has shown that inhibition of XIAP with small molecular
antagonists stimulates an increase in the level of caspase activity and induces
apoptotic cell death both in tumor cell lines and in established animal tumor
models. Interestedly, apoptosis induction through inhibition of XIAP is 
tumor specific and there is very litter toxicity in normal cell lines as well as 
in normal tissues 205.  Inhibition of XIAP function could also be achieved
through expression of a XIAP-counteracting protein gene, XAF1. 
Overexpression of XAF1 using an adenoviral vector selectively increases
caspase 3 activity and induces apoptotic cell death in human breast and 
pancreatic cancer cells but not in normal cells 79.

Survivin is not expressed in normal cells but it is highly expressed in 
most tumor cells. Direct inhibition of survivin expression or function may 
have greater impact on the survival of tumor cells than for normal cells. 
Several reports have shown that inhibition of survivin function with 
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expression of a dominant negative mutant survivin (T34A), survivin anti-
sense or siRNA increases caspase 9 activity and results in apoptotic cell
death in human tumor cells and xenografted tumor models 123,136,206.
Importantly, downregulation of survivin specifically induces apoptotic cell 
death in tumor cells without obvious toxic effects on various normal cell 
lines 79,136. Downregulation of survivin function also enhances the effects of 
chemotherapy drugs on the tumor cells 136,137. Therefore targeting IAP 
proteins is a promising approach for the development of cancer-cell specific
therapy. 

At present, the mechanisms for tumor-specific induction of apoptosis by
inhibiting IAP function are still under investigation.  As discussed above,
apoptosis is the physiological cell death process for the removal of abnormal 
cells. Human tumor cells are generated from multiple genetic alterations and 
have enormous abnormalities. These should cause activation of the apoptotic 
signal and induction of apoptosis. Evaluation of the process of tumor 
development suggests that this is the case for most transformed pre-
neoplastic cells. Induction of apoptotic cell death in pre-neoplastic lesions
has been found in early stage of human cancers such as breast ductal 
carcinoma in situ (DCIS) 207. It has been shown that many DCIS lesions keep 
a balance between cell proliferation and apoptosis for many years without 
developing into invasive breast cancers.  It is well established that treating
rats with chemical carcinogens initiates many pre-neoplastic nodules in the 
liver but only a few of these develop into hepatocellular carcinomas 208. It is
possible that most pre-neoplastic cells are destroyed by apoptosis and only a 
small fraction of transformed cells that have upregulated their anti-apoptotic
mechanisms, such as IAPs and Bcl-2, are able to survive and develop into a
tumor mass. The selective growth of tumor cells with a high level of anti-
apoptotic factors confers apoptosis resistance and a poor response to 
therapeutic reagents (Figure). Co-existence of high levels of active caspase 3
and IAP proteins, survivin and XIAP, has been demonstrated in human
pancreas, colon and breast cancer cell lines that are not apoptotic 79. The
results from analysis of human breast cancer tissues further supported the 
presence of activated apoptotic signals and upregulated anti-apoptotic factors
in cancer tissues. A positive correlation between the levels of active caspase-
3 and -6, and the IAP proteins survivin and XIAP has been established using 
either immunostaining or Western blots with antibodies specific for active
caspase-3, caspase 6, XIAP and survivin 77,79.

It has been shown that overexpression of procaspase 3 gene in ovary
cancer cells increases survivin gene expression.  It is possible that one of the 
cellular responses to a high level of caspase or caspase activity is to 
upregulate cell survival factors such as survivin and XIAP (Figure). The
presence of a high balance between pro- and anti-apoptotic factors in human
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tumor cells but not in normal cells suggests that targeting IAP proteins 
provides a selective advantage, inducing apoptotic cell death in human tumor
cells while minimizing the effects on normal cells (Figure 1).   

Figure 1. Targeting IAP proteins for cancer specific therapy. In normal cells, the absence of 
an apoptotic signal keeps a low balance between pro- and anti-apoptotic factors. However,
molecular changes associated with malignant transformation of human tumor cells lead to 
activation of the apoptotic signals such as expression of FasL and activation of caspases. The
tumor cells are able to block apoptosis by upregulating IAPs that inhibit active caspases.  
Therefore, cancer cells have high levels of both pro- and anti-apoptosis factors. The apoptotic
process could be restored selectively in tumor cells by inhibiting IAP functions such as the 
expression of dominant negative survivinT34A gene and survivin siRNA, XIAP 
counteracting protein XAF1 and active Smac protein or peptides.  
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