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4.1 Introduction 

The ability to reliably predict the hydraulic properties of subsurface formations is one 

of the most important and challenging goals in hydrogeophysics. In water-saturated 

environments, estimation of subsurface porosity and hydraulic conductivity is often the 

primary objective. In partially saturated environments, characterization of the water 

content and the hydraulic conductivity as a function of saturation is also often required. 

Because the hydraulic conductivity of geologic formations varies by orders of 

magnitude over relatively small spatial scales, it is difficult to accurately characterize 

subsurface aquifer properties using just the information obtained from networks of 

widely spaced boreholes. A more complete and accurate characterization of the 

subsurface can be achieved by using an integrated exploration approach in which 

borehole and geophysical data sets are jointly interpreted. A key step in quantitative 

hydrogeophysical interpretations is the transformation of the measured geophysical 

properties into the desired hydrogeological parameters. This transformation typically 

relies on petrophysical relationships; these relationships can be developed at the field-

scale using co-located hydrogeological-geophysical data, through laboratory 

experimentation on rock and soil samples, or by using theoretically based models. The 

objective of this chapter is to review the petrophysical models used to derive electrical-

hydrogeological predictive relationships and to evaluate the theoretical and practical 

limitations of these relationships. 

Electrical methods are widely used in hydrogeophysical investigations to obtain high-

resolution information about subsurface conditions. These methods include electrical 

resistivity (ER), induced polarization (IP), electromagnetic induction (EMI), ground-

penetrating radar (GPR), and time-domain reflectometery (TDR) surveys. These 

electrical methods, which operate at frequencies ranging from direct current (DC) to 

>1GHz, can be used individually or in combination to obtain information about the 

subsurface structure and composition. Both the structural information and the electrical 

property information provide important constraints for hydrogeological modeling. The 

structural information can be used to define hydrostratigraphic units as well as the 

locations of faults and fractures. The electrical property information can be used to 

qualitatively characterize the rock/soil type as well as the pore fluid properties. 

Petrophysical models can often be used to make more quantitative predictions about the 
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rock/soil properties, such as the water content, water conductivity, porosity, clay 

content, and hydraulic conductivity. 

Petrophysical models of the electrical and hydrogeological properties of rocks and soils 

are formulated in terms of the intrinsic properties of the rock/soil system (i.e., the 

pore/grain topology and the physical and chemical properties of the pore fluids). 

Although the electrical and hydrogeological properties of rocks and soils depend on 

some common controlling factors, these relationships are often non-unique. As will be 

discussed in Chapter 17 of this volume, non-uniqueness can often be reduced by using 

multiple types of geophysical data or by applying other constraints based on a-priori 

information (e.g., pore fluid conductivity, porosity, and geological information). In 

practice, however, it is often difficult to constrain all of the model parameters required 

to make quantitative predictions. Therefore, theoretical models must either be 

simplified to reduce the number of free parameters, or empirical relationships can be 

established between the hydrogeological and electrical properties. These empirical 

relations are typically based on correlations made between electrical and 

hydrogeological measurements obtained from a specific site. These empirically 

established electrical-hydraulic relationships often work reasonably well; however, they 

are usually only applicable to the specific study site or to sites with similar 

characteristics (e.g., Huntley, 1986; Purvance and Andricevic, 2000). 

We are therefore faced with the problem of the theoretically established electrical-

hydrogeological petrophysical relationships being typically too complex (too many 

unconstrained parameters) to be applied in practice, and the empirically established 

relationships being valid only for specific sites. What we seek are theoretically based 

models that capture the intrinsic connections between the electrical and hydrogeolgoical 

properties, while being simple enough to be applied in the field. In this chapter, we 

review theoretically and empirically based models for the electrical prediction of 

hydrogeologic properties, and try to establish connections between these two 

approaches.

4.2 Hydrogeological and Electrical Properties 

4.2.1 HYDROGEOLOGICAL PROPERTIES 

Rocks and soils are composed of solid mineral grains and pore space. The porosity (n)

is defined as the ratio of pore volume (Vp t

t
V

p
V

n .    (4.1) 

Some materials contain isolated pores. In these cases, the effective porosity of the 

connected pore space is less than the total porosity.

) to the total volume of the sample (V ):
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4.2.1.1 Saturated Flow 

The rate at which fluids flow through saturated porous materials is controlled by the 

saturated hydraulic conductivity (Ks). For homogeneous and isotropic materials, Ks is 

given by (e.g., Fetter, 2001) 

g
ws

k

s
K

where ks is the hydraulic permeability, is the fluid dynamic viscosity w is the fluid 

density, and g is the acceleration of gravity. The hydraulic permeability is primarily a 

function of the pore size distribution, connectivity, and tortuosity of the pore network. 

In granular materials, the topology of the pore space is determined by the grain size 

distribution, the packing, and the cementation. Permeability models can either be 

formulated in terms of the characteristics of the pore space or in terms of the 

characteristics of the solid mineral grains (e.g., Nelson, 1994)

The equivalent channel model of Kozeny and Carman, or K-C (Carman, 1939), 

assumes that flow through a porous medium can be represented by flow through a 

bundle of capillaries. Each capillary is assumed to represent an independent flow path 

through the sample, where the effective path length (La) is greater than or equal to the 

macroscopic length of the sample (L). The tortuosity is defined as T= (La/L)
2
. From 

considerations of laminar viscous flow through tubes, the following permeability 

equation is obtained (e.g., Scheidegger, 1974): 

aT

nr
k

h

s

2

, (4.3) 

where a is a tube shape factor (a dimensionless number between 1.7 and 3) and rh is the 

hydraulic radius.

A common measure of the hydraulic radius is the reciprocal of the specific surface area 

(Sp), which is the ratio of pore surface area to pore volume.  Furthermore, the tortuosity 

can be related to the electrical formation factor F (defined in Equation (4.26)) through 

the following relationship (e.g., Nelson, 1994) 

nF
L

L
T

a

2

. (4.4) 

Equation (4.3) can then be expressed as

2

1

p

s

aFS
k . (4.5) 

This form of the K-C equation is more practical than Equation (4.3) because F and Sp

are well-defined physical properties that can be measured, whereas T and rh are 

theoretical constructs that cannot be directly measured. 

Grain-based permeability models predict ks to be dependent on the square of an 

effective grain size. In the Hazen model, the hydraulic conductivity is given by (e.g., 

Fetter, 2001) 
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2

10
CdK

s
,  (4.6) 

where the effective grain size d10 (in cm) corresponds to the grain size for which 10% 

of the sample is finer, and the coefficient C depends upon the grain sorting. The Hazen 

model is applicable to sediments where d10 ranges between 0.1 and 3.0 mm. More 

elaborate grain-based permeability models explicitly account for the effects of grain 

sorting and porosity (e.g., Nelson, 1994). 

4.2.1.2 Unsaturated Flow

In the unsaturated zone, the pore space is filled with water and air, and the water is held 

in tension (negative pressure). The water saturation (S) is the ratio of the volume of 

water (Vw) to the total pore volume: 

p

w

V

V
S  .  (4.7) 

The water content ( ) is defined as the ratio of the volume of water to the total volume 

of the sample: 

t

w

V

V
. (4.8) 

The hydraulic conductivity of partially saturated rocks and soils (K) is a function of Ks

as well as the saturation level and the soil-moisture-retention properties of the material. 

The soil-moisture-retention function ( ) describes the relationship between the water 

content and the capillary head ( ). For a capillary tube of radius r, the capillary head is 

given by 

gr
w

/cos2   (4.9) 

where  is the surface tension between water and air, and  is the contact angle. The 

shape of the soil-moisture-retention function is primarily controlled by the pore size 

distribution, as large pores tend to drain at low pressures and increasingly smaller pores 

drain at higher pressures (e.g., Fetter, 2001). Many empirical and theoretical models 

have been developed to fit soil-moisture-retention measurements. The most widely used 

function is that developed by van Genuchten (1980). The effective saturation (Se) for 

the van Genuchten function is given by 

m
n

rs

r

e
S

1

1
 (4.10) 

where s and r are the saturated and residual water contents, respectively, and , m,

and n are fitting parameters, which can be related to the statistics of the pore size 

distribution function (e.g., Kosugi, 1994). 
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The relative hydraulic conductivity (Kr = K/Ks) decreases with decreasing saturation, as 

under these conditions, pore water is held more tightly, and the fluid must take a more 

tortuous flow path as the larger pores drain. The dependence of Kr on  is determined 

by the soil-moisture-retention function (e.g., Fetter, 2001). Mualem’s (1976) model for 

predicting Kr from the soil-water-retention function is 

2
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/

e
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ee

esr

dSdS
SKKK . (4.11) 

To predict Kr using Equation (4.11), one must specify Se( ). As described above, Ks can 

be predicted from measurements of F, and an effective pore or grain size. Se( ) can be 

predicted from the pore size distribution of the sample (e.g., Kosugi, 1994). Therefore, 

if the formation factor and the pore-size distribution of a rock or soil sample are known, 

it should be possible to make relatively accurate estimates of the saturated and 

unsaturated hydraulic properties of the sample (i.e., Ks, Se( ) and Kr). In the rest of this 

chapter, we address the feasibility of electrically estimating the key rock and soil 

properties required to predict flow in subsurface formations. 

4.2.2  ELECTRICAL PROPERTIES 

The conductive and capacitive properties of a material can be represented by a complex 

conductivity ( *), a complex resistivity ( *), or a complex permittivity ( *), where

*

*

1*
i  (4.12) 

and is the angular frequency ( f2 ) and 1i (e.g., Schön, 1996). The 

complex electrical parameters can be expressed either in polar or rectangular form. For 

example, the complex conductivity can be expressed in terms of a magnitude (| |) and 
phase ( ), or by real ( ’) and imaginary ( ’’) components: 

'''*
i

i
e . (4.13) 

The complex conductivity response of Berea sandstone saturated with 0.01M KCl and 

measured over the frequency range of 10
-3

 Hz to 10
6
 Hz is plotted in Figure 4.1. Also 

plotted in Figure 4.1 is the real part of the relative permittivity or dielectric constant. 

The dielectric constant ( ’) is the ratio of the permittivity of the sample ( ’) to the

permittivity of vacuum ( 0), and it is proportional to the imaginary component of the 

complex conductivity 

0

''

0

'
'

.  (4.14) 

As the dielectric response approaches the low-frequency limit ( ’static), the imaginary 

conductivity goes to zero. As the dielectric response approaches the high-frequency 

limit ( ’  the imaginary conductivity becomes large. 
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Figure 4.1.  Complex responses of Berea sandstone saturated with 0.01 M NaCl (Lesmes and Frye, 2001): 

(top) real component of complex conductivity, (middle) imaginary component of complex conductivity, 

(bottom) dielectric constant or permittivity 

In the laboratory, three different measurement systems are needed to measure the 

broadband electrical impedance response from 10
-3

 Hz to 10
9
 Hz. Four electrode 

systems are used to measure the impedance response from 10
-3

 Hz to 10
3
 Hz; two-

electrode systems are used to measure the impedance response from 10
2
 Hz to 10

7
 Hz; 

and transmission line systems (e.g., TDR) are used to measure the impedance response 

from 10
6
 Hz to 10

10
 Hz (Olhoeft, 1985, 1986). The effective frequency range of each of 

these measurement systems is limited by systematic errors intrinsic to the measurement 

configuration. For each measurement system, it is possible to have large systematic 

errors that are stable and repeatable but give erroneous results. It is important, therefore, 

to test and calibrate these systems with known standards (e.g., standard resistors and 

standard brines) to determine the overall accuracy and precision of the measurements 

(Olhoeft, 1985; VanHalla and Soinenen, 1995; Lesmes and Frye, 2001). It is not 
possible to measure the complete broadband impedance response in the field with 
currently available instrumentation. As with laboratory measurement systems, 
theoretical and practical considerations limit the effective frequency ranges of the 
various electrical geophysical instruments and methods. The most commonly measured 
electrical parameters in the field are the high-frequency permittivity or dielectric 
constant ( ’ , the low-frequency conductivity ( ’dc  and a low-frequency capacitance, 

commonly referred to as the induced polarization (IP) or complex resistivity (CR) 

response  These electrical parameters can be directly measured with point sensors or 

indirectly estimated by inverting noninvasive geophysical measurements for the 

subsurface electrical properties. Dielectric measurements are typically made using TDR 

(refer to Chapter 15 of this volume) or GPR methods (Chapter 7), and conductivity 

measurements are typically made using electrical resistivity (Chapter 5) or 

electromagnetic induction methods (Chapter 6). The IP and CR methods are similar to 

the electrical resistivity method, but they measure both the low-frequency conductive 

and capacitive properties of a material (see Chapter 5). 
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The three electrical parameters— ’ , ’dc, and an IP parameter (there are several 

different but equivalent measures of the IP response)—contain complementary 

information about a material. Petrophysical models can be used to interpret these 

electrical measurements in terms of the physical and chemical properties of a material. 

Models for the high-frequency dielectric response ( ’ ) and the low-frequency 

conductivity response ( ’dc  of rocks and soils are reviewed below in Sections 4.3 and 

4.4, respectively. Models for the induced polarization response and the frequency-

dependent complex conductivity response of rocks and soils are reviewed below in 

Sections 4.5 and 4.6, respectively. 

4.3 Permittivity Models 

In this section, we review models for the frequency-independent permittivity responses 

of rocks and soils. These models are generally applicable to permittivity measurements 

made in the frequency range of 100 MHz to 10 GHz. At lower frequencies, polarization 

mechanisms cause the permittivity responses of rocks and soils to increase with 

decreasing frequency (see Figure 4.1). At very high frequencies (f >10 GHz), the 

permittivity begins to decrease as the relaxation frequency of water molecules is 

approached. The high-frequency limit of the permittivity response, indicated as ’  in 

Figure 4.1, is referred to as eff in the models presented in this section. The high-

frequency permittivity response of rocks and soils is primarily sensitive to the water 

content, as the relative permittivity of water, 80
w

, is much higher than the relative 

permittivity of dry mineral grains, s = 4 to 8, or air, a = 1 (e.g., Olhoeft, 1981). 

Secondary factors affecting the permittivity responses of rocks and soils include the 

effective shapes of the pores and grains, fine-scale laminations, temperature, and to a 

lesser degree the salinity of the saturating solution (e.g., Olhoeft, 1981; Schön, 1996). 

Models of the high-frequency permittivity responses of rocks and soils are generally not 

dependent upon the pore or grain size. As discussed at the end of this section, some 

attempts have been made to predict the hydraulic conductivity of earth materials from 

high-frequency permittivity measurements. However, it is not possible to theoretically 

derive a predictive relationship between permittivity and hydraulic conductivity, so the 

empirically obtained relationships are quite site specific. 

WATER-SATURATED MEDIA

The refractive index (RI) model (Birchak et al., 1974) is the most widely used 

relationship to predict the relative volume fractions of two-phase mixtures. For water-

saturated porous materials, the RI model is given by 

)1(
s

n
w

n
eff

. (4.15) 

By specifying W and S,, the RI model can be used to predict the porosity of water -

saturated materials from their measured permittivity. The physical assumption behind  
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the RI model is that the time for an EM wave to travel through a porous material is 

equal to the sum of the travel times for it to pass through the separate phases of the 

material (solid grains and pore water) as if they were arranged in series. Equation (4.15) 

is also referred to as the CRIM equation or the time propagation equation (Wharton et 

al., 1980). The slight decrease in w with increasing temperature and salinity can be 

computed using Equations 4.68 and 4.69, respectively, given in the Appendix. 

The dielectric constant s of common rock and soil-forming minerals is much smaller 

that the dielectric constant of water—for example: quartz 4.5, calcite 9, and 

clay 5.5 (Robinson and Friedman, 2003; Robinson, 2004). For mixtures of different 

types of mineral grains, the dielectric constant of the solid matrix can be estimated as 

the weighted arithmetic mean of the dielectric constants for the different mineral 

constituents (Robinson and Friedman, 2002). 

Theoretically based models can be used to predict the dielectric properties of 

heterogeneous materials in terms of the permittivities and volume fractions of the 

individual phases and their microgeometrical configurations. Continuum mean field 

theories are widely used to predict the dielectric and conductive properties of rocks and 

soils. The following “universal” mixing formula can be used to represent several 

dielectric mixing models derived using different mean-field theory approaches (Sihvola 

and Kong, 1988, 1989): 

 (4.16) 

Equation (4.16) expresses the effective dielectric constant as a function of a background 

phase of the pore solution (with relative permittivity w and volume fraction n), with 

spherical inclusions of the mineral grains (relative permittivity S and volume fraction 

1-n). The heuristic parameter a in Equation (4.16), which ranges from 0 to 1, accounts 

for the effect of neighboring particles on the internal electrical field of a reference 

particle. The term w+ a( eff - w)) in this equation represents the apparent permittivity 

of the background as felt by a reference particle. When there are no interactions 

between the embedded particles, the heuristic parameter a = 0 and the universal mixing 

formula reduces to the Maxwell-Garnett (MG) model (Maxwell and Garnett, 1904), 

which can be expressed as 

))(1(2
)1(3

ws
n

ws

ws

w
n

weff
. (4.17) 

The MG model results in an upper bound for the permittivity response of a water-

saturated sample. When a = 2/3, the universal mixing formula results in the symmetric  

.
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effective-medium approximation (Polder and van Santen, 1946) (PVS model); and 

when a=1, it results in the coherent potential (CP) mixing formula (Tsang et al., 1985). 

The PVS and CP mixing formulas account for interactions between the embedded 

particles; they usually underpredict the permittivity responses of high-porosity granular 

materials such as soils (Jones and Friedman, 2000). To account for modest interactions 

between the embedded particles Friedman and Robinson (2002) set a = 0.2 in Equation 

(4.16) and obtained good fits to permittivity measurements made on water-saturated 

packings of glass beads, quartz sand, and tuff grains. 

The mean-field theories expressed in Equations (4.16) and (4.17) are for spherical 

porous materials. In effective media theories, the particle shape is typically represented 

by an ellipsoid of revolution (spheroid) for which analytical expressions can be derived 

(e.g., Sihvola and Kong, 1988; Jones and Friedman, 2000). By extending or contracting 

the b and c axes while keeping a constant, a sphere can be transformed into either disk-

like (oblate) particles or needle-shaped (prolate) particles. The effect of particle shape 

and orientation on the permittivity response is characterized by the depolarization 

factors: N
a
, N

b
, and N

c
. For ellipsoids of revolution, where a b = c, Jones and 

Friedman (2000) found that N
a
(a/b) is well approximated by a single empirical 

expression (r
2
 = 0.9999):

2
)(4.0)(6.11

1

baba

a
N    ; )1(

2

1 a
N

c
N

b
N .  (4.18) 

The depolarization factors for a sphere (a/b=1) are N
a,b,c

 = 1/3, 1/3, 1/3; for a thin disk 

(a/b<<1) N
a,b,c

 =1,0,0; and for a long needle (a/b>>1) N
a,b,c

=0, 1/2, 1/2.

Nonspherical particles can form either anisotropic or isotropic packings, depending on 

whether the particles are aligned or randomly oriented. The effective permittivity of a 

material composed of nonspherical particles, aligned to make a uniaxial-anisotropic 

medium, is described by a second-order tensor with diagonal components given by eff

a

eff

b
= eff

c

.  The effective permittivity in the i
th

 direction takes the form (Sihvola and 

Kong, 1988):

)()(
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1

)()(

))](()[1(

ws

i
N

w

i

eff
a

w

ws

i
Nn

ws

i
N

w

i

eff
a

w

wsw

i
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a

w
n

w

i

eff
  (4.19) 

where the depolarization factors (N
i
) are defined by the particle aspect ratio according 

to Equation (4.18). Nonspherical particles that are randomly oriented form an isotropic 

medium with a scalar effective permittivity given by (Sihvola and Kong,1988): 

inclusions; however, pore/grain shape significantly affects the permittivity response of  
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The MG model formed the basis of a self-similar (SS) model derived by Bruggeman 

(1935) for spheres and generalized to ellipsoids by Sen et al. (1981), in which the solid-

phase inclusions were sequentially added to the host water phase, while the background 

pore system remained intact to low values of porosity. The resulting formula is 

impressively simple (Sen et al., 1981): 

n

i
N

i

eff

w

ws

i

eff
s

,  (4.21) 

where the depolarization factors can again be computed using Equation (4.18). This 

model applies, in principle, to a fractal medium of infinitely wide particle size 

distribution and therefore forms a lower bound for the estimate of i

eff
 of water-

saturated porous media (Robinson and Friedman, 2001). An isotropic form of the SS 

model can be obtained by averaging the depolarization factors (N
i
) over all possible 

particle orientations (Mendelson and Cohen, 1982). The isotropic form of the SS model 

can be expressed as 

m

effs

wsm

weff
n

/1

/1
,  (4.22) 

where the effective cementation exponent m is a function of the particle shape 

(Mendelson and Cohen, 1982), with an arithmatic correction by Sen (1984): 

2
13

35

N

N
m .   (4.23) 

As will be described in Section 4.4, this cementation exponent m can also be used to 

describe the effects of cementation and grain shape on the conductivity response of 

rocks and soils (e.g., Equations (4.26) and (4.35)). For high-porosity granular materials 

such as soils, we typically set m=1.5, and for consolidated rocks with lower porosity, 

we typically use a cementation exponent of m=2.0 (Sen et al., 1981; Mendelson and 

Cohen, 1982; Sen, 1984; Robinson and Friedman, 2001). 

The relative permittivity responses of isotropic materials computed using the RI, MG, 

and SS models with W =80 and S = 5 are plotted as a function of porosity in Figure 

4.2. The MG and SS model  responses  are  computed for  both spherical  particles  (a/b=  
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1.0, N
a
=1/3, m=1.5) and oblate particles with random orientations (a/b= 0.22, N

a
=0.73,

m=2.0). As shown in Figure 4.2, the permittivity responses of all the models increase 

with increasing porosity. As previously discussed, the MG and SS models give realistic 

upper and lower bounds, respectively, for the permittivity responses of earth materials. 

The MG and SS models with randomly oriented oblate grains give smaller permittivity 

responses than the spherical grain models. The response of the RI model is similar to 

the responses predicted by the SS model with spherical grains and the MG model with 

oblate grains. Porosity predictions made using these three models differ by less than 

0.03 porosity units over the porosity range of 0 to 0.5, thus illustrating the practicality 

of the RI model.
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Figure 4.2.  Relative permittivity responses of a water-saturated media ( 80
w

; 5
s

) predicted by 

the refractive index (RI) model, the Maxwell-Garnett (MG) model, and the self-similar (SS) model. The 

aspect ratios of the spherical (a/b=1) and oblate (a/b=0.22) particle inclusions used in the MG and SS model 

calculations are indicated in the figure legend. An aspect ratio of a/b=0.22 corresponds to a cementation 

exponent of m=2.0. Note that the MG (a/b=0.22) curve is not visible because it is very similar to, and overlaid 

by, the SS (a/b=1) and the RI responses. 

The effects of particle shape on the relative permittivity responses of the MG and SS 

models are further illustrated in Figure 4.3. In this plot, the relative permittivity is 

computed for n=0.3 and plotted as a function of the aspect ratio (a/b) for the MG and 

SS models. The solid lines refer to the MG model computations and the dashed lines 

refer to the SS model computations for eff

a
, eff

b
, and the isotropic mixture of randomly 

oriented particles
eff

. The eff

a
 and eff

b
 responses for the anisotropic MG and SS 

models approach the same limiting values for very oblate and very prolate particle 

shapes. The eff

a
 responses are maximum for long needle-like particles (a/b=10

3
), and 

the eff

b
 responses are maximum for thin disk-like particles (a/b=10

-3
). The MG and SS 

model responses for randomly oriented particles have similar dependencies upon the 

particle shape, except that the SS model response, which takes into account particle 

interactions, is shifted approximately 3 permittivity units lower than the response of the 

MG model. 
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Figure 4.3.  Relative permittivity of water saturated media ( 80
w

; 5
s

; n= 0.3) computed using 

the MG model (solid lines) and the SS model (dashed lines). The orientations of the particles relative to the 

applied fields (
a

eff
and

b

eff
) are indicated on the plot. The bold solid and bold dashed lines are the MG 

and SS model responses, respectively, for randomly oriented particles
eff

.

UNSATURATED MEDIA 

The refractive index model (Equation 4.15) can be extended to model the effective 

permittivity of three-phase mixtures (e.g., Alharthi and Lange, 1987) 

)1()(
saweff

nn .      (4.24) 

Several further modifications of Equation (4.24) have been proposed, such as splitting 

the solid phase into sand and clay phases of different permittivities (Wharton et al., 

1980; Knoll et al., 1995), or replacing the ½ exponent with different powers (Loyenga, 

1965; Roth et al., 1990). However, to predict water content from permittivity 

measurements using Equation (4.24), the porosity of the material must be specified in 

addition to the permittivities of the individual phases. Since the porosity of soil and 

rock formations is variable and often unknown, several empirical equations have been 

developed to directly predict the relationship between eff and  (Topp et al., 1980; 

Wang and Schmugge, 1980; Roth et al., 1992). Most of these empirical relationships 

use polynomial functions, which in some cases account for soil textural parameters 

such as the clay and sand percentage (Dobson et al., 1984) or the bulk density and clay 

and organic matter contents (Jacobsen and Schjonning, 1993). The most reliable and 

widely used eff (  relationship for soils is the empirical formula of Topp et al. (1980):

32

e
76.71469.33.03

ff
,   (4.25) 

which was best-fitted to careful measurements made on four soil types and was 

suggested to hold approximately for all types of mineral soils. This relationship was 

found to give good predictions for coarse and medium-textured soils (Dirksen and 
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Dasberg, 1993; Friedman, 1998a), and gives similar predictions for several theoretically 

derived models (Friedman, 1997, 1998a). 

The permittivity responses of the Topp model and the three-phase RI model with n=0.5

are plotted in Figure 4.4. The Topp and R.I. equations work well for coarse and 

medium-textured soils (Dirksen and Dasberg, 1993; Friedman, 1998a). However, they 

do not work as well for fine textured soils. The presence of soil minerals affects the 

dielectric properties of the water molecules adjacent to their surfaces by restricting their 

rotational movements, thus reducing their polarizability and permittivity (e.g., Dobson 

et al., 1985; Dirksen and Dasberg, 1993; Heimovaara et al., 1994; Or and Wraith, 

1999). In these cases, the Topp and RI equations underpredict the water content of fine-

textured soils. This effect can be accounted for in eff( ) models by adding a fourth, 

bound water phase with a  permittivity similar to that of ice bw=3.5 (Dobson et al., 

1985; Dirksen and Dasberg, 1993), or by varying continuously w as a function of the 

mean thickness of the water films surrounding the soil particles (Friedman, 1998a). 
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Figure 4.4.  Relative permittivity of an unsaturated medium (n=0.5) computed using the the three-phase 

refractive index model ( 80
w

; 5
s

) and the Topp  et al (1980) equation 

For permittivity measurements made at frequencies <100 MHz, the surface polarization 

of fine-textured soils can cause large enhancements in the permittivity response. In 

these cases, the Topp and RI equations overpredict the water content of fine-textured 

polarization effects (Knoll et al., 1995); however, the permittivity responses of clay can 

be much larger than the permittivity response of water, and the clay response varies 

with clay type, water conductivity, and temperature. Therefore, it is difficult to 

accurately account for the clay polarization effects in lower-frequency permittivity 

estimates of water content. 

Theoretically based effective medium models can be used to better understand the 

geometric factors controlling the permittivity responses of partially saturated rocks and 

soils. For example, Friedman (1998a) developed a MG-type three-phase mixing model 

consisting of concentric spheres of grains, water, and air. There are six possible 

rocks and soils. Four-phase mixing formulae can also be used to account for clay 
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concentric arrangements of the three phases, and because the permittivity of water is 

much higher than that of the other phases, it is primarily the location of the water phase 

that dictates the resulting eff. In order to use theoretically derived models to predict 

water content from permittivity measurements, the model parameters must be measured 

or their values assumed to be known. For this reason, most practical applications use 

models calibrated with site-specific data or (more commonly) empirical formulae such 

as the Topp equation, which are based on fits to laboratory measurements.

 PERMEABILITY PREDICTION 

Both ks and eff depend on porosity and the effective pore/grain shapes of earth 

materials. Therefore, permittivity measurements could possibly be used to constrain 

these parameters in a permeability prediction formula (e.g., Equation 4.3). However, ks

is also strongly dependent upon the pore/grain size, which cannot be determined from 

high-frequency permittivity measurements. Therefore, it is not possible to derive a 

general predictive relationship between eff and ks. Lower-frequency permittivity 

measurements (f<100 MHz), which are sensitive to surface polarization effects, can be 

used to predict the sample surface area, and therefore an effective pore size (e.g., 

Knight and Nur, 1987a; Knoll et al., 1995). However, as explained in Sections 4.5 and 

4.6, it is more practical to measure these polarization effects and parameters using 

induced polarization methods. 

In some cases, site-specific predictive relationships between eff and ks can be 

empirically developed. For example, at sites where porosity is well correlated with 

formation permeability, eff can potentially be used to estimate the formation 

permeability (e.g., Hubbard et al., 1997). Alternatively, in partially saturated 

environments where the water content is often controlled by soil water-retention 

properties, the net water content as measured by eff  could also be a predictive measure 

of the formation’s hydraulic properties. However, whenever possible, we recommend 

using eff information in conjunction with other geophysical data such as electrical 

conductivity and induced polarization measurements, and advanced geostatistical 

interpretation tools. The site-specific empirical relationships should be based on 

collocated, core-scale geophysical and hydrogeologic measurements, e.g., the linear eff

(log(ks)) relationship used by Hubbard et al. (1999). These relationships, depending on 

their statistical significances, will probably contribute to evaluating the absolute 

permeabilities; if not, they will at least provide relative ks information on an aquifer’s 

structural heterogeneity and anisotropy at larger scales (e.g., Chen et al., 2001). 

4.4 Electrical Conductivity Models 

In this section, we review models for the frequency-independent conductivity response 

of rocks and soils. Strictly speaking, these models are applicable to low-frequency 

conductivity measurements where 
'

 approaches 
'

dc
 (e.g., Figure 4.1). However, 

because the dispersion in the conductivity response is generally much smaller than 

'

dc
, the dispersion effects can be neglected when f < 1 MHz. The frequency 
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dependence in the conductivity (and permittivity) response is discussed below in 

Section 4.6. 

The conductivity response of rocks and soils (f < 1 MHz) is primarily a function of the 

water content, the conductivity of the saturating solution, and the sample lithology. The 

conductivity of aqueous solutions generally increases with the concentration, mobility, 

and electronic charge of the ions in the solution, as well as the temperature of the 

solution (see Appendix). The effective shape of the grains/pores also affects the 

conductivity response. Surface conductivity at the grain/solution interface can also be 

significant in fine-grained materials, especially if the solution conductivity is low. 

Surface conductivity models are dependent on the amount of surface area and the 

surface chemical properties of the solid/liquid interface. If the solution conductivity is 

known, electrical conductivity measurements can be used to estimate the effective 

porosity of water-saturated formations or the water content of partially saturated 

formations. Alternatively, soil scientists often use electrical conductivity measurements 

to estimate soil water salinity. In some cases, electrical conductivity measurements can 

be used to estimate the permeability of subsurface formations. However, as described at 

the end of this section, these empirical correlations are quite site specific. 

4.4.1 WATER-SATURATED MEDIA 

Archie’s empirical law (Archie, 1942) is the most widely used relationship to predict 

the effective electrical conductivity responses of water-saturated geological materials: 

m

w

w

eff
n

F
. (4.26) 

The electrical formation factor F is an intrinsic measure of material microgeometry

m
nF , (4.27) 

and it is often assumed to be an indicator of the hydraulic tortuosity (Equation 4.4). 

Archie found that the exponent m ranged from 1.3 for unconsolidated sands to 

approximately 2.0 for consolidated sandstones (see Table 4.1 and Figure 4.5). As m

increases with cementation, Archie termed it the cementation index. Theoretically 

derived petrophysical models, which are discussed later in this section, relate the 

cementation index to the effective grain shape. Jackson et al. (1978) made electrical 

conductivity measurements on natural and artificial sand samples. They determined that 

the cementation index increased as the grains became less spherical (see Figure 4.5) 

while variations in grain size and sorting had little effect on m. Archie’s law implicitly 

assumes that the effective porosity (ne) is equal to the total porosity (n) of the sample, 

and that all electrical conduction in a water-saturated rock or soil results from the 

migration of ions in the bulk pore-solution. If there are isolated pores through which 

ions cannot migrate, then ne<n, and Archie’s law will overpredict sample conductivity.
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Table 4.1.  Archie’s law exponents (m) of different consolidated and nonconsolidated media

I.   MEDIUM Porosity Range m, Archie’s 

Exponent

Reference

clean sand 

consolidated sandstones 

0.12-0.40

0.12-0.35

1.3

1.8-2.0

Archie (1942) 

glass spheres 

binary sphere mixtures 

cylinders

disks

cubes

prisms

0.37-0.40

0.147-0.29

0.33-0.43

0.34-0.45

0.19-0.43

0.36-0.52

1.38

1.31

1.47

1.46

1.47

1.63

Wyllie and Gregory (1955) 

8 marine sands 

glass beads (spheres) 

quartz sand 

rounded quartz sand 

shaley sand 

shell fragments 

0.35-0.50

0.33-0.37

0.32-0.44

0.36-0.44

0.41-0.48

0.62-0.72

1.39-1.58

1.20

1.43

1.40

1.52

1.85

Jackson et al. (1978) 

fused glass beads 0.02-0.38 1.50 Sen et al. (1981) 

fused glass beads 0.10-0.40 1.7 Schwartz and Kimminau 

(1987)

sandstone 0.05-0.22 1.9-3.7 Doyen (1988)

polydisperse glass beads 0.13-0.40 1.28-1.40 de Kuijper et al. (1996) 

fused glass beads 

sandstones

limestones

0.10-0.30

0.07-0.22

0.15-0.29

1.6-1.8

1.6-2.0

1.9-2.3

Pengra and Wong (1999) 

Syporex
®

0.80 3.8 Revil and Cathles III 

(1999)

Bulgarian altered tuff 

Mexican altered tuff 

0.15-0.39*

0.50*

2.4-3.3

4.4

Revil et al. (2002) 

glass beads 

quartz sand 

tuff particles 

0.38-0.40

0.40-0.44

0.60-0.64

1.35

1.45

1.66

Friedman and Robinson 

(2002)

*connected (inter-granular) porosity 

Figure 4.5.  A log-log plot of formation factor versus porosity for granular mixtures consisting of rounded 

quartz grains and platey shell fragments (after Jackson et al., 1978, Figure 8). The dashed lines are Archie’s 

law predictions for cementation indicies of 1.0, 1.5, and 2.0. 
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In fine-grained materials or in materials saturated with resistive pore solutions, surface 

conduction can be significant, causing Archie’s law to underpredict the electrical 

conductivity of the sample. The conductivities of two sandstone cores measured as a 

function of solution conductivity are plotted in Figure 4.6 (Waxman and Smits, 1968). 

For the clean sandstone sample C1, the surface conductivity effects are negligible, and 

Archie’s law is valid. The formation factor can simply be computed as the ratio of 

effw
/ , and if the sample porosity is known, the cementation index can be computed  

using Equation (4.27). For the shaly sandstone sample C26, however, significant 

surface conductivity effects occur that result in a nonlinear relationship between 

eff
and

w
. Archie’s law can be modified to include a surface conduction term in 

parallel with the bulk conduction term, which results from the migration of ions through 

the bulk pore solution (e.g., Schön, 1996): 

surface

w

eff
F

.  (4.28) 

Although the bulk and surface conduction mechanisms do not strictly act in parallel 

(e.g., Friedman, 1998b), this simple parallel-conduction model has several practical 

advantages. One major advantage is that F and 
surface

 can be easily estimated by 

plotting on a linear scale 
eff

versus
w

. The formation factor can be estimated from 

the slope of the linear portion of the
eff

versus
w

 plot at high solution conductivity, 

and
surface

 can be estimated from the extrapolated y-intercept at 0
w

 (e.g., 

Waxman and Smits, 1968; Nadler, 1982).
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Figure 4.6.  Conductivity of two sandstone cores measured as a function of the NaCl solution conductivity 

(Waxman and Smits, 1968). Surface conductivity effects are negligible in core C1 (n=0.239, Qv=0.017

meq/cm
3
) and significant in core C2 (n=0.229, Qv=1.47meq/cm

3
), which has a much higher cation exchange 

capacity.
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The effects of lithology and solution chemistry on the surface conductivity term in 

Equation (4.28) were accounted for by Waxman and Smits (1968) in the following 

model:

F

BQ
v

surface
.  (4.29) 

The cation exchange capacity per unit pore volume, Qv, is a measure of the effective 

clay content, and B is the equivalent ionic conductance of the clay exchange cations. 

Waxman and Smits empirically obtained the following formula for the dependence of B

on the solution conductivity: 

w
B exp1 , (4.30) 

where the fitting parameters and depend upon the solution type. Sen et al. 

(1988) developed a modified version of the Waxman and Smits model, in which the 

empirical parameter B is a function of the solution conductivity (
w

 in S/m) as well as 

the cementation index m

w

m
B

/7.01

93.1
. (4.31) 

The advantage of the Sen et al. model is that it accounts for lithologic effects on the 

surface conductivity response; however, the empirical parameters in the equation are 

still dependent upon the solution type. This equation provided a good fit to conductivity 

measurements made on a suite of 140 shaly sandstone cores (Sen et al., 1988).

More sophisticated surface conductivity models have been developed in terms of the 

electrical double layer (EDL) that forms between the mineral grains and the bulk pore 

solution (e.g., Rink and Schopper, 1974; Johnson, et al., 1986; Schwartz et al., 1989; 

Revil and Glover, 1997). These models can also be represented by a bulk conduction 

term in parallel with a surface conduction term (Equation 4.28), where 

f

S
ps

surface
, (4.32) 

with s the specific surface conductance, Sp the specific surface area, and f a parameter 

characterizing the “tortuosity” of the surface, which is similar to, but not necessarily 

equal to, the formation factor (e.g., Johnson, et al.; 1986). The specific surface 

conductance ( s) represents the conduction in the fixed and diffuse parts of the electric 

double-layer (EDL). In general, s can be expressed as a function of the mineral surface 

charge density ( 0) and the surface ionic mobility ( S), such that 

f

Se
ps

surface

0

, (4.33) 

where e is the electronic charge. The charge within the EDL (
0

) is partitioned 

between the fixed layer ( f) and the diffuse layer ( d). The specific mobility of each 

ion within the EDL is a function of the ionic radius, valence, and the ion’s distance 

from the mineral surface. Therefore, S is an effective or average surface ionic mobility 

for the ensemble of counter-ions within the fixed and diffuse parts of the EDL (Revil  



Electrical and Hydrogeological Properties 105

and Glover, 1997). Surface complexation models can be used to predict the surface 

conductivity response as a function of the geochemical parameters 0 and S, which 

vary with solution type, concentration, and mineralogy. In practical applications, 

however, it is usually impossible to constrain all of these parameters for a formation. 

Therefore, semi-empirical equations such as those developed by Waxman and Smits 

(1968) and Sen et al. (1988) are typically used to interpret electrical conductivity 

measurements of shaly sand formations or clay rich soils. For simplicity, it is assumed 

in Equation 4.28 that the bulk and surface conduction mechanisms are independent of 

each other, and that they act in parallel. Three-dimensional networks of conductors can 

be used to more accurately model the interactions between the bulk and surface 

conduction mechanisms (e.g., Bernabe and Revil, 1995; Friedman, 1998b). However, 

these network models are not very applicable in practical applications.

The mean field theories introduced in Section 4.3 above can also be used to model the 

effective conductivities of two- and three-phase mixtures. For example, the “universal” 

mixing formula for conductivity is obtained by replacing the relative permittivity 

parameters in Equation (4.19) (
i

eff
, w, s) with the corresponding conductivity 

parameters (
i

eff
, w, s). If the solid-phase conductivity is negligible, then s=0 and 

the Maxwell-Garnet formula for electrical conductivity (a=0) is given by

iw

i

eff

Nn

n

11

1
1 .   (4.34) 

The conductivity of an isotropic mixture of spheroids with random orientations can 

similarly be obtained from Equation (4.20). This model assumes that there are no 

interactions between the embedded particles; therefore, this Maxwell-Garnet formula

results in a maximum estimate for the conductivity of a mixture, and it is most 

appropriate for high-porosity soils and granular materials. 

The self-similar model (Equation 4.22) for the effective conductivity of a mixture of 

randomly oriented spheroidal grains is given by 

m

effs

wsm

weff
n

/1

/1
.   (4.35) 

The self-similar model accounts for strong interactions between the embedded particles 

and can be used to predict the conductivity of rocks and lower porosity soils. The 

cementation exponent m is determined by the effective grain shape as expressed by 

Equation (4.23). If 0
s

, which is true for most nonmetallic minerals, the self-similar 

with a non-zero 
s
 term to model the shaly sandstone conductivity measurements of 

Waxman and Smits (1968). In this approach, the 
s
 term represents both the 

conductivity of the dry mineral grain (essentially zero) and the surface conduction 

effects. As the surface conductivity increases with increasing specific surface area (e.g., 

Equation 4.33), 
surface

 will increase with decreasing grain size. It will also be 

model reduces to Archie’s law (Sen et al., 1981). Bussian (1983) used Equation (4.35) 
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dependent upon the surface charge density and surface ionic mobility, which vary with 

the solution conductivity. Although the surface conductivity mechanisms are not 

explicitly accounted for in Bussian’s model, the interaction between the surface and 

bulk conduction mechanisms is treated more realistically than in the parallel conduction 

model (Equation 4.28). Furthermore, as is discussed in Section 4.6 below, a similar 

approach can be used to explicitly account for the surface conductivity mechanisms and 

to simultaneously predict the conductive and dielectric properties of rocks and soils. 

4.4.2 UNSATURATED MEDIA 

In his seminal paper, Archie (1942) also addressed the effects of saturation on the 

conductivity responses of consolidated and unconsolidated geological materials. Archie 

observed that the formation conductivity increased with saturation (S) according to the 

following power law: 

d

sateff
SS ,   (4.36) 

where
sat

 is the conductivity of the fully saturated sample. The saturation index d was 

observed to be about 2 for consolidated rocks and to range from 1.3 to 2 for 

unconsolidated sands (e.g., Schön, 1996). This power law was observed to hold down 

to saturations of about 0.15 to 0.20. At lower saturations, the power law breaks down, 

especially in fine-textured materials, as surface effects become dominant. In the 

absence of surface conductivity, the extended form of Archie’s law can be used to 

predict the conductivity of partially saturated rocks and soils: 

dm

weff
Sn .    (4.37) 

The saturation index is usually larger than the cementation index (d>m), because as 

saturation decreases, the water films surrounding the grains become thinner and the 

conducting paths become more tortuous. For coarse-textured sands, for example, the 

semi-empirical model of Mualem and Friedman (1991) predicts that m=1+ and d=2+ ,

where the tortuosity exponent  can be taken as 0.5 (Equation 4.11), making m=1.5 and

d=2.5. Waxman and Smits (1968) also studied the effects of saturation on the electrical 

conductivity of oil-bearing shaly sandstones. They proposed the equation 

SBQ
F

S

vw

d

eff
/ . (4.38) 

The surface conductivity term (BQv/S) increases with decreasing saturation, which 

Waxman and Smits attributed to an increase in the volume concentration of clay 

exchange cations at low saturation. 

Soil scientists often express the electrical conductivity in terms of water saturation 

(Mualem and Friedman, 1991; Weerts et al., 1999). If we assume for simplicity that 

m=d in Archie’s model, then the conductivity is given by

m

weff
. (4.39) 

This approach was used by Amente et al. (2000), who obtained an average exponent of 

m=1.58 by fitting Equation (4.39) to conductivity measurements of sandy loam soils. If  
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the water content is independently determined, for example by using TDR 

measurements of permittivity and a model such as that given by (4.25), then the soil 

water conductivity can be estimated using Equation (4.39), with an average m

determined for the field site. The most commonly used empirical equation to predict the 

electrical conductivity of soils in terms of the water content is that of Rhoades et al. 

(1976), who assumed that the surface conductivity term ( surface) is independent of and

w:

surfacecweff
T ; baT

c
.  (4.40) 

The transmission coefficient Tc( ) is assumed to be a linear function of , and the 

empirical coefficients a and b are a function of the soil type. For clay soils, a=2.1 and 

b=-0.25; for loam soils, 4.13.1 a  and 06.011.0 b  (Rhoades et al., 1976). 

Effective media theories and network models can also be used to model the effects of 

partial saturation on the electrical conductivity responses of rocks and soils (e.g., Feng 

and Sen, 1985; Man and Jing, 2001). These models can be used to better understand the 

various structural factors controlling the conductivity responses of rocks and soils, and 

to investigate important phenomena such as hysteresis. In practical applications, 

however, there is usually never enough information to constrain all of the parameters in 

the theoretically based models. Therefore, more empirically based approaches are 

typically used to interpret field measurements.

4.4.3 PERMEABILITY ESTIMATION 

The Kozeny-Carman (K-C) permeability model (Equation 4.3) forms the basis of many 

permeability prediction equations (e.g., Nelson, 1994). In Equation (4.5), obtained from 

the K-C model, the formation factor (F) and the specific surface area (Sp) are the two 

key parameters needed to predict permeability. Because the formation factor can be 

estimated from electrical conductivity measurements, it is not surprising that many 

investigators have tried to use this approach for in situ permeability estimation (e.g., 

Nelson, 1994). In fact, in his seminal paper, Archie (1942) showed good correlations 

between ks and 1/F for his suite of consolidated sandstone cores. Anisotropy 

measurements for the electrical conductivity of cores can also be used to estimate 

anisotropy in the permeability of the samples (Friedman and Jones, 2001). These 

approaches are limited, however, because Sp, which is a measure of the effective pore 

size, is much more variable than F for rock and soil formations. Therefore, in practice, 

F is of secondary importance in predicting the permeability of rock and soil formations. 

Electrical estimation of the effective pore/grain size using induced polarization methods 

is the focus of Sections 4.5 and 4.6 below. 

Several empirically based equations have been proposed to electrically predict the 

permeability (or hydraulic conductivity) of rock and soil formations (e.g., Heigold et 

al., 1979; Huntley, 1986; Kosinski and Kelly, 1981; and Purvance and Andricevic, 

2000). These equations, which are site specific, can be categorized into two groups. For 

clay-free formations and coarse-textured soils, the permeability and conductivity tend 

to be positively correlated, because they both increase with increasing porosity (or 

decreasing F), as is predicted by the K-C model (e.g., Heigold et al., 1979). For shaly 
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sand formations and fine-textured soils, where surface conductivity effects are 

significant, the permeability and electrical conductivity tend to be inversely correlated 

(e.g., Kosinski and Kelly, 1981). Increasing clay content causes the permeability to 

decrease as the effective size of the pores is decreased, but it causes the electrical 

conductivity to increase because of increasing surface conductivity effects. This inverse 

correlation between ks and 
eff

 is often enhanced in partially saturated formations, 

where high-permeability materials tend to drain faster and have lower water-retention 

properties (i.e., lower field capacity) than low-permeability materials. Since the 

electrical conductivity is also a function of water content, high permeability soils tend 

to be drier and have lower conductivities than lower permeability soils. 

4.5 Induced Polarization Models 

Historically, IP methods have been used mostly to explore for metallic ore deposits. 

Recently, however, they are increasingly being used in a wide variety of environmental 

and engineering applications (e.g., Slater and Lesmes, 2002a; Chapter 5 of this 

by the effective clay content or internal surface area of the sample (e.g., Vinegar and 

Waxman, 1984; Börner and Schön, 1991). Because the permeability of rocks and soils 

is also strongly dependent upon these “lithologic” parameters it is possible to develop 

permeability prediction equations in terms of the measured IP response of the sample 

(e.g., Börner et al., 1996; Slater and Lesmes, 2002b). The effectiveness of IP-

permeability prediction formulae is complicated by the dependence of the IP response 

on secondary factors, such as the type of clay and its distribution, the solution 

conductivity and composition, the organic matter content, and water saturation. 

Because of these complicating factors, IP-permeability prediction formulae must be 

calibrated for the conditions at specific sites. However, the IP-permeability predictions 

are generally more accurate and robust than those made using high-frequency 

permittivity measurements or low-frequency conductivity measurements, as discussed 

in Sections 4.3 and 4.4 above. The IP (or complex conductivity) response is also a 

function of frequency; but over the frequency range of typical field instruments (10
-2

 Hz 

to 10
2
 Hz) the IP responses of many earth materials are relatively constant. In this 

section, we review models for the frequency-independent IP parameters typically 

measured in the field. In the next section, we review more comprehensive models for 

the broadband complex-conductivity responses of rocks and soils as measured in the 

laboratory. In the remainder of this chapter, we will refer to the effective complex 

conductivity
*

eff
as simply 

*
and to the effective complex permittivity as 

*

eff
as

*
.

The relationship between these complex electrical parameters is defined by Equation 

(4.12).

4.5.1 INDUCED POLARIZATION PARAMETERS 

Field IP surveys can be conducted using complex resistivity (CR), frequency-domain 

IP, or time-domain IP measurement systems (e.g., Ward, 1990). All of these systems 

are operationally similar to the DC resistivity method. However, in addition to  

volume). The IP response of non-metal-bearing earth materials is primarily controlled 
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measuring the conductive properties of the media, IP systems also measure, either 

directly or indirectly, the low-frequency capacitive properties of the media. The 

proportionality between the CR phase ( ), percent frequency effect (PFE), and 

chargeability (M) is both theoretically and experimentally well established (e.g., 

Marshall and Madden, 1959; Vinegar and Waxman, 1984). These field IP parameters, 

defined in Table 4.2, effectively measure the ratio of the capacitive to conductive 

properties of the material at low frequencies. The low-frequency capacitive component 

( ’’) is primarily controlled by electrochemical polarization mechanisms, whereas the 

low-frequency conductive component ( ’) is primarily controlled by electrolytic 

conduction in the bulk pore solution and can be modeled using all the relationships 

presented in the previous section. Therefore, the field IP parameters are sensitive to the 

ratio of surface conductivity to bulk conductivity effects (e.g., Lesmes and Frye, 2001; 

Slater and Lesmes, 2002a). 

Dividing the field IP parameters by the formation resistivity, or multiplication by the 

formation conductivity, yields the following normalized IP parameters: quadrature 

conductivity or imaginary conductivity ( ’’), metal factor (MF), and a normalized 

chargeability (MN). These normalized IP parameters, defined in Table 4.2, are more 

directly related to the surface chemical properties of the material. Normalized IP 

parameters are therefore useful for characterizing lithological and geochemical 

variability (e.g., Lesmes and Frye, 2001; Slater and Lesmes, 2002a). In the rest of this 

section, the IP data and models are expressed in terms of the real and imaginary 

components of the complex conductivity, where the imaginary conductivity is directly 

proportional to the other normalized IP parameters, MN and MF.

Table 4.2.  Commonly measured field IP parameters ( , PFE*, and M) are equivalent measures of the IP 

response. The normalized IP parameters ( ’’, MF, and MN) are more directly related to the surface properties 

of the rock/soil sample.
*

Field IP Parameters    Normalized IP Parameters 
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*PFE is the relative dispersion in the conductivity response measured between a low frequency ( 0) and a 

higher frequency ( 1); a is a dimensionless constant; V(t) is the potential difference measured at a time t after 

the current is shut off, Vmax is the maximum potential difference measured during current transmission, and t0

and t1 define the time window over which the voltage decay curve is integrated. 
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4.5.2  WATER-SATURATED MEDIA 

In a classic study, Vinegar and Waxman (1984) measured the complex conductivity 

response of a suite of 21 shaly sandstone cores as a function of pore water conductivity. 

They used this data set to develop the following complex form of the Waxman and 

Smits (1968) surface conductivity model

Fn

Q
iBQ

F

v

vw

1*
.   (4.41) 

The real part of Equation (4.41) is Waxman and Smits (1968) model, in which the bulk 

and surface conduction terms are assumed to add in parallel. The imaginary (or 

quadrature) conductivity results from displacement currents that are 90 degrees out-of-

phase with the applied field. Vinegar and Waxman assumed that the displacement 

currents were caused by the following two polarization mechanisms: (1) the blockage 

of ions by clay minerals at pore throats (membrane polarization) and (2) the 

accumulation of counter-ions migrating along grain/pore surfaces. Although these 

polarization mechanisms are intrinsically frequency dependent, Vinegar and Waxman 

showed that over the low frequency range of their measurements (3 Hz to 1 kHz), the 

quadrature conductivity response was essentially independent of frequency. Vinegar 

and Waxman assumed that both the membrane and the counter-ion polarization 

mechanisms were proportional to the effective clay content or specific surface area, 

represented by the cation exchange capacity of the rock per unit pore volume (Qv). The 

parameter  in Equation (4.41) represents an effective quadrature conductance for these 

surface polarization mechanisms, and it is analogous to the specific surface 

conductance term (
s

) in Equation (4.32). Vinegar and Waxman empirically 

determined  to be slightly dependent on salinity. The polarization was also assumed to 

increase with decreasing porosity, as more pores become blocked. 

4.5.3 UNSATURATED MEDIA 

Vinegar and Waxman also measured the complex conductivity responses of their 

samples as a function of the water/oil saturation. Following the approach of Waxman 

and Smits (1968), they assumed that the effective cation exchange capacity would 

increase with decreasing saturation, such that S
v

Q
v

Q /
'

. The imaginary conductivity 

therefore had the following dependence upon saturation: 
q

sat
SS

''''
)( , where 

''

sat

is the imaginary conductivity of the fully saturated sample. They observed that 

1dq  where d is the saturation index for the real conductivity (Equation 4.36). 

Their measurements confirmed the validity of this expression for their samples. Ulrich 

and Slater (2004) measured the complex conductivity responses of unconsolidated 

sediments as a function of the water/air saturation. They observed a similar power-law 

dependence of the imaginary conductivity on water saturation, with the saturation 

exponent of the imaginary conductivity being less than the saturation index for the real 

conductivity (q<d). They also observed that the imaginary conductivity was a function 

of the saturation history (i.e., hysteretic effects). Effective media theories, discussed in  
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more detail in Section 4.6 below, can be used to model the effects of saturation on the 

complex conductivity response (e.g., Endres and Knight, 1992; Samstag, 1992).

4.5.4 PERMEABILITY ESTIMATION 

Börner and Schön (1991) established the following linear relationship between Sp and 

''
, based on complex conductivity measurements made on unconsolidated sediments 

at a frequency of 1 Hz (see Figure 4.7): 

)(
''

1][ Hzelp
bS ,    (4.42) 

where
elp

S  is in m
-1

,
''

1Hz
 is in S/m, and 

11
10b S

-1
. Using this relationship in a 

KC-type model, they obtained the following expression for the hydraulic conductivity: 

c

Hz

c

elp

s

F

a

FS

a
K

''

1

5
][ 10

   (4.43) 

where
s

K  is in m/s, a=10
-5

 and c ranged between 2.8 and 4.6, depending upon the 

material type and the method used to measure Ks.

Figure 4.7.  Börner and Schön (1991) observed a linear correlation between the imaginary conductivity of 

their saturated sandstone samples and the specific surface area. The samples were saturated with 0.01 M NaCl 

and measured at a frequency of 1 Hz.

Slater and Lesmes (2002b) measured the complex conductivity response and hydraulic 

properties of sand-clay mixtures and glacial tills. They observed a power law 

relationship between 
p

S  and 
''

1Hz
:

p

Hzelp
S

''

1][
2000 , (4.44) 

where p=0.5±0.2 (R
2
=0.53, CI=95%). This relationship also appeared to be a function 

of the material type. They found for their samples, however, that 
''
 was better 

correlated with the effective grain size d10 (see Figure 4.8): 
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where d10 is in m, ’’ is in S/m, and b=1.0±0.1 (R
2
=0.83, CI=95%). Using a Hazen 

type of grain permeability model (Equation 4.6), they obtained the following expression 

for the hydraulic conductivity in terms of ’’:

b

Hzs
aK

''

1
,    (4.46) 

where a=800±1200 and b=1.1±0.2 ( ’’ is in S/m, Ks in m/s, R
2
=0.7).
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Figure 4.8.  Imaginary conductivity of unconsolidated sand samples plotted as a function of the effective 

grain size d10 (Slater and Lesmes, 2002b). The complex conductivity was measured at 1 Hz, and the samples 

were saturated with 0.01 M NaCl. 

A cross plot of the predicted-versus-measured hydraulic conductivity measurements is 

shown in Figure 4.9. The samples indicated by the + symbol in Figure 4.9 were not part 

of the data set used to establish the relationship between ’’and d10 in Equation (4.45), 

so they serve as an independent check on the robustness of this predictive equation.
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Figure 4.9.  Cross plot of the predicted and measured hydraulic conductivity of the unconsolidated samples 

plotted in Figure 4.8. The hydraulic conductivity was predicted from the measured imaginary conductivity 

using Equation (4.46). The samples indicated by the + symbol were not used to establish the relationship in 

Equation (4.46), and they therefore are an independent check on the robustness of this permeability 

predication equation (Slater and Lesmes, 2000b). 
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The model consistently overpredicts the Ks values for the glacial till samples, indicated 

by the triangles in Figure 4.9. These samples are highly heterogeneous and have broad 

grain-size distributions. More accurate permeability predictions could perhaps be 

achieved by taking into account additional factors such as the grain sorting. As is 

discussed in Section 4.6, this additional information may possibly be obtained by 

measuring the frequency dependence in the imaginary conductivity response. 

The development of permeability prediction equations using normalized IP parameters 

such as ’’ seems promising. However, the normalized IP parameters can also vary 

with solution chemistry, which can complicate the predictive relationships between the 

IP parameters and the desired lithologic variables. For example, the imaginary 

conductivity response of three shaly sandstone samples measured by Vinegar and 

Waxman (1984) are plotted versus solution conductivity in Figure 4.10. This plot shows 

that ’’ increases with increasing clay content, as expected, but there is a non-

monotonic dependence upon solution conductivity, which increases with increasing 

clay content. Using a more sophisticated shaly sand model, de Lima and Niwas (2000) 

were able to account for the salinity dependence of ’’ and obtained a good prediction 

of the permeabilities of the Vinegar and Waxman samples. However, the model was 

significantly more complicated than, for example, Equation (4.46), and it would be 

difficult to constrain all of the model parameters without having complex conductivity 

measurements of the core samples made as a function of salinity. Therefore, this 

approach is difficult to apply in the practical interpretation of field data sets. 

Figure 4.10.  Imaginary conductivity of shaly sandstone samples plotted as a function of the solution 

conductivity (Vinegar and Waxman, 1984). Although the imaginary conductivity generally increases with 

increasing clay content, it has a nonmonotonic dependence upon the solution conductivity.
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4.6 Complex Conductivity Models 

The dispersion in the conductivity and dielectric responses of rocks and soils is 

controlled by physical and chemical polarization mechanisms that result in a broad 

distribution of relaxation times. To characterize the electrical properties of a sample 

fully requires that the impedance response be measured over a very wide range of 

frequencies (e.g., 10
-3

 Hz to 10
9
 Hz), so that the entire distribution of relaxation times 

can be captured (e.g., Olhoeft, 1985, 1986; Lesmes and Morgan, 2001). To span this 

frequency range requires using three different measurement systems with different 

sample configurations, which is both costly and time consuming. In most laboratory 

investigations, a single type of measurement system is used to characterize the 

impedance response over a limited range of frequencies while varying the sample 

lithology, solution chemistry, and water saturation. These data can be used to partially 

test models for the frequency-dependent complex conductivity responses of rocks and 

soils, but broadband data, collected from the low- to high- frequency limits, are 

required to fully constrain all of the model parameters. In this section, we review both 

empirical and theoretical models for the broadband complex conductivity responses of 

rocks and soils, and try to establish connections between the empirical and theoretical 

model parameters. We also discuss how broadband complex conductivity 

measurements and models can perhaps be used to more accurately predict the hydraulic 

properties of rocks and soils in the laboratory and in the field. 

4.6.1 EMPIRICAL MODELS 

Relatively simple empirical models can be used to fit the frequency-dependent 

permittivity and conductivity responses of rocks and soils. Havriliak and Negami 

(1967) introduced the following empirical dielectric response function, which is a 

generalized form of the widely used Cole-Cole (1941) and Cole-Davidson (1950) 

dielectric models: 

))(1(
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1

*

o

HN

i

.   (4.47) 

Equation (4.47) only predicts the frequency dependence in the permittivity and 

conductivity responses. It does not account for the high-frequency permittivity response 

( ) or the low-frequency conductivity response (
dc

) of the sample. Specific models 

for  and 
dc

 were discussed above in Sections 4.3 and 4.4, respectively. One 

approach to modeling the “complete” response (the frequency-dependent and 

independent properties of a sample) is to assume that the  and 
dc

terms act in 

parallel with the dispersive term )(
*

HN
 in Equation (4.47), such that the “complete” 

complex permittivity response is given by: 

))(1(
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1

*

o

dc

ii
. (4.48) 

The Havriliak-Negami (HN) equation simplifies to the Cole-Cole (CC) expression 

when  = 1, it reduces to the Cole-Davidson (CD) expression when  = 0, and it  
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simplifies to the Debye expression when  = 0 and  = 1. The dielectric increment 

= static- determines the amount of dispersion in the dielectric and conductivity 

responses, the central relaxation time 0 determines the characteristic angular frequency 

(
000

/12 f ) of the relaxation, and the exponents  and  determine the shape 

of the relaxation (e.g., Bottcher and Bordewijk, 1978). To accurately estimate the 

model parameters, the dielectric response must be measured from the low- to high-

frequency limits. These broadband measurements are difficult to make in the laboratory 

and essentially impossible to make in the field. Therefore, models such as the Cole-

Cole response are often not fully constrained by the available data, and the model 

parameters obtained by inversion are non-unique. 

If the relaxation in the permittivity and conductivity responses cannot be fully captured, 

then it is better to use models with fewer parameters to more uniquely fit the available 

data. For this reason, the constant phase-angle (CPA) model is widely used to model the 

dispersion in the complex conductivity responses of rocks and soils:

2

0000

*
//

ippp

CPA
ei . (4.49) 

In the CPA model, 
0

is the magnitude of the complex conductivity response measured 

at an arbitrary angular frequency of 
0

. The dispersion parameter p determines both 

the phase angle 2/p  and the rate of change for the conductivity amplitude with 

increasing frequency. Adding the frequency-independent terms and
dc

in parallel

with the dispersive CPA response gives: 

2

00

*
/

ipp

dc
ei . (4.50) 

To fit Equation (4.50) to complex conductivity measurements, the reference frequency 

0
 must be arbitrarily defined (e.g., 

0
f =1Hz or 2

0
radians/sec). Furthermore, 

unless very broadband data are used, the estimates of dc  and  will change with the 

frequency range of the measurement, such that: 
min

'

dc
 and 

max

'
.

Although these parameters are not uniquely defined, it is important to include them in 

the inversion to obtain a good fit to the data and to accurately estimate 
0

and p.

It is instructive to compare the CPA model to the high-frequency limit 
0

/1  of 

the Cole-Cole model, for which the complex conductivity response is given by 

2

0

0

0

0

* i

CC
ei .  (4.51) 

The relationships between the CPA and Cole-Cole model parameters is as follows: 

00
/ ,

00
/1 , and p . This comparison illustrates the utility of the 

CPA model when fitting narrow band data. In the rest of this chapter, we use 

theoretically based models and published data to try to establish the physical and 

chemical significance of the empirical model parameters from the Cole-Cole and CPA 

models.
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4.6.2 THEORETICAL MODELS 

Theoretically based effective medium theories can be used to simultaneously model the 

conductivity and permittivity responses of rocks and soils. The Bruggeman-Hanai-Sen 

(BHS) effective medium model (Bruggeman, 1935; Hanai, 1960; Sen et al., 1981) is a 

complex form of the self-similar, asymmetric, effective media theories used to model 

the high-frequency permittivity (Equation 4.22) and the low-frequency conductivity 

(Equation 4.35) responses of rocks and soils: 
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The cementation index m is a function of the grain shape, and for isotropic mixtures it 

is defined by Equation (4.23). The complex permittivity of the pore water is a function 

of frequency:

www
i

0

*
. (4.53) 

If surface conductivity and polarization effects are neglected, then the complex 

permittivity of the mineral grains is purely real and frequency independent:
'*

ss
.

The conductivity and permittivity responses predicted by the BHS model have 

relaxations at relatively high frequencies (MHz range), and the relaxation frequency 

increases with increasing solution conductivity (e.g., Kenyon, 1984). The magnitude of 

the dispersions in the permittivity and conductivity responses increases slightly with 

increasing m, but the predicted dispersions are much smaller than observed permittivity 

and conductivity responses of rocks and soils (e.g., Lesmes and Morgan, 2001).

The BHS model represents the bulk properties of the rock/soil system. However, the 

surface phase that forms between the mineral grains and the pore solution can 

significantly affect both the conductive and capacitive properties of rocks and soils. 

Excess conduction and polarization at the solid/liquid interface leads to enhanced 

conductivity and permittivity responses that are frequency dependent. When ions 

migrate through water-bearing rocks and soils, they can accumulate at pore throat 

constrictions, at blockages caused by clay minerals, or on rough grain/pore surfaces. 

The re-equilibration of these charge accumulations is a diffusion-controlled process. 

Therefore, the time that it takes the charges to re-equilibrate is dependent upon the 

distances over which they are polarized. Complex conductivity measurements (such as 

those for Berea sandstone shown in Figure 4.1) can be inverted for a distribution of 

diffusive relaxation times, which can be transformed into a distribution of diffusion 

lengths. The diffusion-length distribution can then be equated to an effective 

distribution of grain or pore sizes, depending upon the specific geometries used to 

model the diffusive polarization mechanisms (e.g., Morgan and Lesmes, 1994; Chelidze 

and Guegen, 1999; Chelidze et al, 1999; Lesmes and Morgan, 2001). 

Theoretical models have been derived for a variety of diffusive polarization 

mechanisms that can contribute to the permittivity and conductivity responses of 

water-bearing rocks and soils (Marshall and Madden, 1959; Schwarz, 1962; Wong,  
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1979; Chew and Sen, 1982, de Lima and Sharma, 1992). All of these models are 

similar in that the relaxation time distribution, which controls the dispersions in the 

conductivity and permittivity responses, is determined by the distribution of diffusion 

lengths. The characteristic lengths in the models can be grain size, pore size, the 

spacing between clay blockages of pore throats, or surface roughness. For simplicity, 

we consider just the EDL polarization model of Schwarz (1962) for a fixed-layer of 

charge surrounding a spherical grain. In this model, the “fixed” charge in the EDL 

(
f

) is allowed to migrate tangentially to the grain surface, but is restricted from 

migrating radially away from the grain. This model results in a single Debye response, 

where the relaxation time is a function of the particle radius (R) and the surface ionic 

mobility (
s

) (or the surface diffusion coefficient: kTD
ss

):

kT

R

s
2

2

0
,    (4.54) 

where k is Boltzman’s constant and T is absolute temperature. The dielectric increment 

is given by

kT

eR
f

.    (4.55) 

The polarization of a grain-size distribution, which can represent the water-wet rock 

matrix, will result in a distribution of relaxation times. If we use the Cole-Cole model to 

*

m
), then the 

Cole-Cole parameters can be defined in terms of the microgeometrical and surface 

chemical properties of the granular mixture (Lesmes et al., 2000). In this case, the

central relaxation time 
0

 is approximately proportional to the grain radius (
0

R )

corresponding to the peak in the grain volume distribution: 

kT

R

s
2

2

0

0
.    (4.56) 

The dispersion parameter  is related to the width of the grain-size distribution. For 

fractal grain-size distributions,  can be related to the fractal dimension (d) of the grain-

size distribution (e.g., Lesmes et al., 2000; Lesmes and Morgan, 2001):

2

2d
.  (4.57) 

The conductivity increment (
00

/ ) is given by: 

f

Se
pff

,  (4.58) 

where f=3/2; and the dielectric increment is given by 

kT

RSe
pf

3

2

0

.   (4.59) 

represent the complex permittivity response of the water-wet rock matrix (
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The total response of the water-wet rock matrix will be the combination of all of the 

polarization mechanisms (e.g., fixed layer polarization, diffuse layer polarization, 

membrane polarization, etc.) and their interactions. The details of the physical and 

chemical interactions in the polarization models may be very complex, but laboratory 

experiments indicate that the net response of all of these interactions will result in a 

distribution of relaxation times that has a rather simple Cole-Cole type of response. 

The complex electrical response of the complete sample is obtained by incorporating 

the response of the water-wet rock matrix into an effective media model for the entire 

rock or soil sample (Knight and Endres, 1990; Samstag, 1992; de Lima and Sharma, 

1992). In terms of the BHS model, the complex permittivity response is given by

m
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, (4.60) 

and the complex conductivity response is given by

m
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The model for 
*

m
 (or 

*

m
) will depend upon the specific polarization mechanisms that 

are assumed to control the complex electrical response of the water-wet rock matrix. If 

we assume for simplicity that 
*

m
 results from fixed-layer polarization of the EDL as 

described above, then 

1

0

*

1 i
m

, (4.62) 

where
0

, , and  are given by Equations (4.56), (4.57), and (4.59), respectively. 

Equation (4.62) accounts for the frequency dependence in the EDL polarization as 

described by the Schwartz model. This model assumes that no interaction occurs 

between the grains, and therefore counterions in the EDL cannot migrate across 

multiple grain lengths. Therefore, the conductivity of the surface phase is predicted to 

go to zero in the low-frequency limit of Equation (4.62). To account for surface 

conductivity effects, Lesmes and Morgan (2001) added a surface conductivity term to 

the EDL polarization response. Since  in Equation (4.58) has the same functional 

form as 
surface

 in Equation (4.32), we can use  to represent the surface 

conductivity. The complex permittivity response of the water-wet matrix is then given 

by

ii
m

0

1

0

*
/

1

, (4.63) 

where
0

/ . This model can also be expressed as a complex conductivity and 

written in term of :
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1

0

0*

1 i

i

m
. (4.64) 

This model can be used to invert complex permittivity data for an effective grain-size 

distribution (Lesmes et al., 2000; Lesmes and Morgan, 2001). If the porosity, 

cementation index, and solution conductivity are known then Equation (4.60) can be 

explicitly solved for the complex permittivity of the water-wet rock matrix. Equation 

(4.63) can then be fit to 
*

m
 in order to estimate the Cole-Cole model parameters, 

which can in turn be used to estimate the effective grain-size distribution of the sample 

(Lesmes and Morgan, 2001). For samples with significant surface polarization effects, 

the measured response of the sample
*

 is dominated by 
*

m
, especially at lower 

frequencies (f<1 MHz). Therefore, fits of the Cole-Cole model to 
*

 and 
*

m

will yield essentially the same estimates for 
0

 and  (Lesmes and Morgan, 2001). 

This may not be true, however, at higher frequencies, where the interfacial polarization 

mechanisms can be comparable to or greater than the electrochemical polarization 

mechanisms.

4.6.3 WATER-SATURATED MEDIA 

In this section, we briefly review published experimental studies on the complex 

electrical properties of rocks and soils to illustrate how the Cole-Cole parameters 
0

and  depend upon the sample lithology and pore solution chemistry. (For a more 

complete review of experimental studies, refer to Chelidze et al., 1999; and Schön, 

1996.) Diffusive polarization models predict that 
2

00
R . Complex conductivity 

measurements of samples with metallic grains are generally observed to follow this 

trend (e.g., Olhoeft, 1985); however, Pelton et al. (1978) showed that 
0

 was also a 

function of the particle concentration. Titov et al. (2002) measured the differential 

polarizability (a form of spectral induced polarization) of sieved sand samples 

saturated with tap water. They observed 
7.1

00
R , where 

0
R  is the radius of the sand 

grains. They interpreted their results using a short-narrow-pore model, which is similar 

to the membrane polarization mechanism of Marshall and Madden (1959). Scott and 

Barker (2003) measured the complex impedance response (10
-3

 Hz to 10
3
 Hz) of 18 

sandstone cores and showed that there was a good correlation between the peak in the 

phase spectrum, which is often taken to be a measure of 
0

, and the characteristic size 

of the pore-throats determined by mercury injection measurements. Their data indicate 

that the relaxation frequency (
00

/1 ) varied by five orders of magnitude for 

approximately one order of magnitude change in characteristic pore size. This would 

roughly correspond to a power-law relationship of 
5

00
R . They did not, however, 

provide a physical or chemical model to explain this interesting observation.

Klein and Sill (1982) measured the electrical-impedance response (10
-3

 Hz to 10
3
 Hz) 

of glass-bead and clay mixtures, with varying pore solution chemistries. They used a 

form of the Cole-Cole model to invert their data for a central relaxation time and a 
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chargeability parameter. They showed that the relaxation time generally increased with 

the size of the glass beads: 
a

R
00

 where 1.15.0 a . The power law exponent a

was less than 2 and dependent upon the solution conductivity and the amount of clay in 

the mixture. These experiments indicate that the simple model in Equation (4.56) may 

work relatively well for a mixture of single-sized particles (e.g., Titov et al., 2002), but 

it seems to break down for more complicated sand-clay mixtures and lithified rocks. 

One of the biggest limitations of the model expressed by Equation (4.56) is that it does 

not take into account the interactions between the grains; it simply assumes that all of 

the grain polarizations are superimposed (Lesmes and Morgan, 2001). 

In the Cole-Cole model, the dispersion parameter  determines the width of the 

relaxation time distribution (e.g., Bottcher and Bordewijk, 1978). Several investigators 

have derived relationships between  and the fractal dimension d (e.g., Ruffet et al., 

1991). Nearly all of these models are similar to Equation (4.57) in that they predict 

to increase with increasing d. Dielectric measurements of sandstone cores by Ruffet et 

al. (1991) and Knight and Nur (1987a) showed  to increase with the specific surface 

area of the sample, which is consistent with the idea that  is related to the surface 

roughness or fractal dimension. Glover et al. (1994) measured the dielectric response 

of Berea and Darley Dale sandstone cores as a function of the solution conductivity. 

They showed in their study that  increases with increasing solution conductivity, 

which is not explicitly predicted by the fractal models. One possible explanation for 

this observation is that the effective surface roughness increases as the EDL 

compresses with increasing solution concentration. This may imply that the diffuse 

part of the EDL is indeed contributing to the net electrochemical polarization response. 

4.6.4 UNSATURATED MEDIA 

Three-phase effective medium models can be used to predict the conductivity and 

permittivity responses of partially saturated samples (Feng and Sen, 1985; Endres and 

Knight, 1992; Samstag, 1992). The BHS model can be used to simulate the effects of 

partial saturation (e.g., water and air mixtures) by replacing 
*

w
 in Equation (4.53) with 

the effective complex permittivity response of the water/air mixture. In this case, the 

BHS equation can be used to first compute the complex permittivity of the water/air 

mixture. Then, a second embedding is performed to mix the water-wet mineral grains 

into the water/air background (e.g., Samstag, 1992). In this double-embedding 

procedure, it is assumed that the response of the surface phase 
*

m
 does not change 

with saturation. Knight and Nur (1987a) demonstrated that this is generally true as long 

as the saturation is greater than the critical saturation, which roughly corresponds to 

one monolayer coverage of water molecules on the pore/grain surface. They also 

showed that the critical saturation increased linearly with the internal surface area of 

the sample, and that the dispersion parameter  is relatively independent of saturation 

for saturations greater than the critical saturation. Below the critical saturation, the 

permittivity response and the dispersion parameter  rapidly decrease. The 

permittivity and conductivity responses are also dependent upon the saturation history: 

the permittivity and conductivity responses measured during imbibition are  
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consistently greater than the responses measured during drainage (Knight and Nur, 

1987b; Knight, 1991; Roberts and Lin, 1997). Roberts and Lin (1997) showed that the 

hysteretic effects increased with the surface area of the sample and the solution 

resistivity (i.e., increasing thickness of the EDL), indicating that these effects are at 

least partially affected by the surface properties of the sample. 

4.6.5 PERMEABILITY PREDICTION 

Petrophysical models predict the permeability of rocks and soils to be proportional to 

the square of a characteristic pore or grain size (Friedman and Seaton, 1998): 
2

0
Rk

(e.g., Equations 4.3 and 4.5). Diffusion polarization mechanisms for the complex 

conductivity response predict that 
2

00
R  (e.g., Olhoeft, 1985; Chelidze and 

Gueguen, 1999). The K-C equation (4.3) can then be expressed in terms of the 

electrical parameters 
0

 and F, such that (e.g., Kemna, 2000)

F
k

0
 (4.65) 

Complex conductivity or spectral IP measurements (made in the time or frequency 

domains) can be used to estimate 
0

 if there is sufficient bandwidth (e.g., Pelton et al., 

1978; Johnson, 1984). If the pore solution conductivity is known, then the formation 

factor (F) can be estimated from the measured formation conductivity. Furthermore, 

the dispersion parameter  can be related to the width of the pore or grain-size 

distribution. As the permeability increases with increased sorting (e.g., Nelson, 1994), 

Equation (4.65) can be modified to include  as a sorting parameter (e.g., Kemna, 

2000):

a

b
e

F

k
0

, (4.66) 

where a and b are fitting parameters. Sturrock et al (1999) tried to use this approach to 

predict the permeability of eight sandstone cores with permeability ranging over three 

orders of magnitude. They found that 
0

 was not very sensitive to the mean pore/grain 

size for these samples, and that the permeability prediction was mainly controlled by 

the variations in F and . More experiments on well-characterized samples are 

required to better test this approach to permeability prediction.

It is interesting to note the mathematical similarity between the Havriliak-Negami 

dielectric model (Equation 4.47) and the van Genuchten model for soil-moisture-

retention curves (Equation 4.10). Both of these empirically derived functions can be 

theoretically related to the statistics of the grain- or pore-size distributions of the 

sample. It is possible that broadband dielectric measurements could eventually be used 

to predict the van Genuchten parameters for at least some types of materials. However, 

the dielectric response is also dependent upon the surface chemical properties of the 

sample (e.g., clay type and solution chemistry), so any predictive relationships that are 

established will have to account for these effects. Even if it is not possible to predict 

van Genuchten parameters from dielectric spectra, IP estimates of the effective pore or 
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grain size, as discussed in Section 4.5, could be helpful for characterizing the water-

retention properties of rock and soil formations, especially if some core measurements 

are available to establish site-specific relationships. 

4.7 Conclusions 

Electrical methods are commonly used in hydrogeophysical investigations to 

characterize the lithologic properties of subsurface formations and to characterize and 

monitor the pore fluid saturation and salinity. The most commonly measured electrical 

parameters are the high-frequency permittivity and the low-frequency conductivity. 

Permittivity measurements can be used to estimate the porosity of fully saturated 

formations and the water content of partially saturated formations. Electrical 

conductivity measurements are sensitive to the water content, the water conductivity, 

and the lithology. Petrophysical relationships can be used to predict the electrical 

conductivity responses of rocks and soils in terms of these controlling parameters. The 

hydrological properties of subsurface formations can be estimated by performing 

dynamic experiments, such as permittivity monitoring of water infiltration tests in the 

vadose zone or conductivity monitoring of saline tracer tests in the saturated zone. 

However, direct estimates of the subsurface permeability structure from permittivity 

and conductivity measurements are generally not possible. The correlations used in the 

literature are very site specific, and there is a wide degree of scatter in the permeability 

predictions. The IP response, however, is strongly correlated with the effective clay 

content and the specific surface area of rocks and soils. Because the permeability is 

largely controlled by these lithologic parameters, IP measurements can be used in many 

cases to estimate subsurface permeability variations to within an order of magnitude. 

More accurate and robust IP-permeability prediction equations will need to account for 

the dependence of the IP response on the solution conductivity and saturation degree. 

This will require jointly measuring the IP, permittivity, and conductivity responses of 

subsurface formations and developing the appropriate petrophysical models. 

The permittivity and conductivity responses of water-bearing rocks and soils also vary 

with frequency. The empirical Cole-Cole model can be used to fit the frequency-

dependent permittivity and conductivity responses of rocks and soils with only five 

model parameters. Theoretically based effective media models can be used to interpret 

the Cole-Cole model parameters in terms of fundamental physical and chemical 

properties of the porous media. These models and laboratory data illustrate the 

important affect that the surface phase has on the frequency-dependent permittivity and 

conductivity responses of rocks and soils. More laboratory experiments are needed on 

well-characterized samples made as a function of frequency, solution chemistry, and 

saturation to better understand the polarization mechanisms operating within rocks and 

soils. These laboratory experiments and theoretical analyses should lead to a better 

understanding of the Cole-Cole type of empirical functions widely used to interpret and 

model electrical field surveys. 

Lastly, the electrical methods and petrophysical models discussed in this chapter will be 

most effective when combined with other geophysical, geological, and hydrological 
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measurements and integrated using appropriate geostatistical and geological models, as 

is illustrated by other chapters in this volume. 

4.8 Appendix: Electrical Properties of Aqueous Solutions

This appendix contains equations for computing the dielectric constant and electrical 

conductivity of aqueous solutions as a function of temperature and ionic concentration. 

The dielectric constant of aqueous solutions decreases with increasing temperature and 

to a lesser degree with increasing ionic concentration. The temperature dependence of 

pure water is given by (Weast, 1983): 

38253
25108.2251019.12510759.4154.78 tttt

w
, (4.67) 

where t is in °C.  The concentration dependence for mono valent aqueous solutions 

32
03006.0065.100.13 ccctc

ww
,   (4.68) 

where c  is the effective salt concentration in moles per liter of solution. 

Pure water has a very low electrical conductivity of ~
6

104 S/m (Weast, 1983). The 

conductivity of natural waters containing dissolved salts and other ionic components is 

much larger with pore water conductivities ranging from ~0.01 S/m for freshwater 

aquifers to 20 S/m for oil field brines (e.g., Schön, 1996). The conductivity of an 

aqueous solution containing n ionic components is given by:

n

i

iiiiw
zc

1

,   (4.69) 

where the parameters are ionic concentration (ci), valence (zi),ionic mobility ( i), and 

the degree of dissociation ( i) (e.g., Schön, 1996; Weast, 1983). Empirical relationships 

can be used to relate the electrical conductivity of aqueous solutions to the total 

dissolved solids, or TDS (Fishman and Friedman, 1989): 

LmgTDSamS
w

// ,     (4.70) 

where, depending upon the ionic composition and temperature of the solution, the 

constant a can range from ~1.2x10
-4

 to ~2.0x10
-4

. An average value of a=1.5x10
-4

 is 

typically used to predict the conductivity of natural waters at 25 degrees C (Fishman 

and Friedman, 1989)). The solution conductivity also increases with increasing 

temperature as the ionic mobility and the degree of dissociation are temperature 

dependent. The solution conductivity increases by ~2% per degree C increase in 

temperature for temperatures ranging between 20 and 30 degrees C. The temperature 

dependence of NaCl solutions is described by the following empirical equation (Arps, 

1953):

(e.g., LiCl and NaCl) is approximately given by Olhoeft (1981): 
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5.21

5.21

1

2

12
t

t
tt

ww
,   (4.71) 

where the temperature is in °C. A comprehensive set of equations for the electrical 

conductivity of NaCl solutions as a function of concentration and temperature was 

published by Worthington et al. (1990).
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