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PTOLEMY’S THEORIES OF THE LATITUDE OF THE PLANETS IN
THE ALMAGEST,TT HANDY TABLES, AND PLANETARY HYPOTHESES

The theory of planetary latitude in Book 13 of the Almagest is known, if at all, for
its complexity. This has the pleasant result that there is only a small literature on
it and that literature is on a high level of technical competence. The same, by the
way,aa is true of latitude theory in general. There are recent expositions by Pedersen
and Neugebauer, earlier ones by Delambre and Herz, and a few briefer treatments.
Paradoxically, the complexity of Ptolemy’s theory is both its strength and its weakness,
its strength because he reached it by doing everything right, at least in principle, its
weakness because it is ultimately wrong, as was later recognized by Ptolemy himself,
who went on to remedy its deficiencies. It is, as we may say, wrong for the right
reasons. And since being wrong for the right reasons is more or less the subject of this
collection – for is not most interesting older science wrong for the right reasons? –
Ptolemy’s latitude theory seems quite appropriate. Our object here is to explain the
latitude theory, first its original form in the Almagest, then its later modifications in
the Handy Tables and Planetary Hypotheses, each of which shows improvements,
and to investigate its observational foundation, for it is the observations that are the
cause of both its strength and its weakness. It is unusual to find any revisions in the
work of an ancient scientist, but in the case of Ptolemy’s latitude theory three distinct
stages are known, which may be unique, showing that he himself knew something
was wrong and twice set out to correct it.

The latitude theory of the Almagest is complex because it is so strictly empirical,
which is true of all of Ptolemy’s mathematical astronomy, and empiricism, we all agree,ww
is a good thing. Every hypothesish , a technical term meaning ‘model’, is either derived
or confirmed by observation, and every numerical parameter is derived directly and
uniquely from observation. There is, however, a large range of precision in Ptolemy’s
observations, from positions and times measured to within a few minutes for the
derivation of parameters, although their accuracy is more variable, to rough, qualitative
observations for demonstrating the applicability of models. The observations upon
which Ptolemy founds the theory of latitude fall somewhere in between these, and heww
uses them to derive both the model and its parameters. As crucial as these observations
are, he gives no information about how they were made – he never mentions using an
armillary, which could measure latitude – and many could be conventional estimates
rather than his own measurements. It is this strict adherence to the requirements
of the observations that makes the latitude theory complex, so complex that even
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Ptolemy remarks on it in a famous passage (13.2) on complexity and simplicity
in astronomical hypotheses. He says, in essence, that we should seek the simpler
hypotheses for the motions in the heavens, but failing that, any hypotheses that fithh
the phenomena. We must do the best we can with observation as our foundation
and confirmation. And we must remember that our own ideas of complexity and
simplicity may not be applicable to the heavens, which are eternal and unchanging
in their motions, something not merely difficult, but impossible to us, meaning that
nature is not necessarily simple according to our way of thinking, a lesson taught
again and again by the science of every age including, or especially, our own. Further,
the phenomena of latitude are distinctly different for the superior and inferior planets,
and thus they require distinctly different models, another kind of complexity. We shall
therefore consider the superior and inferior planets separately.

SUPERIOR PLANETS

The apparent motion in latitude of the superior planets (13.1) is as follows: (1) When
the planet is near the apogee of the eccentric, it reaches its greatest northern latitude,
and when near the perigee its greatest southern latitude, indicating that the eccentric
is inclined to the north in the direction of the apogee and to the south in the direction
of the perigee. (2) In the northern and southern limits, the latitudes are greater at
opposition when the planet is at the perigee of the epicycle than near conjunction
near the apogee – true conjunction itself is invisible – indicating that the epicycle is
inclined with its perigee in the same direction, north or south, as the eccentric. In the
case of Mars, the planet cannot be seen near conjunction because of its long period
of invisibility, but the same conditions are assumed to hold. (3) When the center of
the epicycle is a quadrant from the limits and the planet a quadrant from the apogee
of the epicycle, it has no latitude, indicating that the epicycle then lies in the plane of
the ecliptic. It is this condition that allows the direction of the nodal line, and thus
of the limits, to be found from the computed longitude of the center of the epicycle
when the planet has no latitude.ww

The model to account for these three conditions (13.2) is shown in Figure 1.
(1) The earth is at O , through which passes the nodal line of the eccentric, which
is inclined to the plane of the ecliptic at an angle i1; N is the northern limit, near apogee,
S is the southern limit, near perigee, and the midpoint of NS is M ′ at an eccentricity
e′ from O . M ′ and e′ are the center of the eccentric and eccentricity projected into the
line joining the limits. (2) When the center of the epicycle is at N or S, it is inclined
to the plane of the eccentric in the line of sight, with the perigee to the north at N and
to the south at S, so that the latitude βo at opposition PoPP is greater than the latitude
βc at conjunction PcPP . It is found from observation that the difference between βo and
βc is so large that the epicycle is also inclined to the plane of the ecliptic by i2 and
thus to the plane of the eccentric by i1 + i2. (3) When the center of the epicycle is
at the ascending node or descending node , it lies in the plane of the ecliptic so
the planet has no latitude wherever it is located. Hence as the epicycle moves from
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Figure 1. Superior planets.

the limit to the node, i2 decreases from its maximum to zero, and as it moves to
the next limit i2 again increases to its maximum. Ptolemy treats i1 + i2 as a single
inclination of the epicycle to the plane of the eccentric. But since i1 may be taken as
a fixed inclination, holding the epicycle parallel to the plane of the ecliptic, leaving i2

alone variable, which we believe a clearer way of showing the variable inclination, we
have divided the inclination of the epicycle into two components, the fixed i1 and the
variable i2.

The derivation of the parameters (13.3) is rigorously empirical. Ptolemy derives
i1 and i1 + i2 from βo and βc using an ingenious method of interpolation in the
correction tables for longitude, as though i1 + i2 were the anomaly on the epicycle
measured from apogee or perigee and βo − i1 and i1− βc the equation of the anomaly.
The derivation for Saturn and Jupiter is shown in Figure 2, in which the earth is at O ,
the center of the epicycle C is at either limit of latitude, as the eccentricity is neglected,
and the planet is at opposition PoPP with the larger latitude βo and at conjunction PcPP with
the smaller latitude βc where the differenceww βo − βc = δ. The plane of the eccentric
OC is inclined to the plane of the ecliptic by i1 and the plane of the epicycle PcPP CPo is
inclined to the plane of the eccentric by i1 + i2 and to a plane parallel to the ecliptic by
i2. WeWW are given by observation βo and βc, and we wish to find i1 and i2. Now imagine
the epicycle rotated into the plane perpendicular to the planes of the eccentric and
the ecliptic. We may thus regard i1 + i2 as the ‘anomaly’ measured from the apogee
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Figure 2. Inclinations i1 and i2 of Saturn and Jupiter.

or perigee of the epicycle – they are far smaller than they appear in the figure – and
ϑo = βo − i1 and ϑc = i1− βc as proportional to the equations of the anomaly co

and cc at some small arc from apogee and perigee respectively. We now have the
relations

ϑo + ϑc = βo − βc = δ,
ϑc

ϑo
= cc

co
,

from which,

co

cc
ϑc + ϑc = ϑc

(
co + cc

cc

)
= δ, ϑc =

(
cc

co + cc

)
δ,

ϑo = δ − ϑc, i1 = βo − ϑo = βc + ϑc.

And letting the ‘anomaly’ at opposition, angle OCPo = α′,

i1 + i2

α′ = ϑo

co
, i1 + i2 = ϑo

co
α′, i2 = (i1 + i2) − i1.

Since the extreme latitudes are the same at both limits, they are unaffected by the
eccentricity. Hence, Ptolemy finds the equations of the anomaly cc and co for mean
distance, c6 in the correction tables for longitude (11.11), which are described in the
Appendix, taking cc for 3◦ from apogee and co for 3◦ from perigee, and lets α′ = 3◦.
The latitudes βc near conjunction and βo at opposition, found by observation, simple
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integers, are obviously estimates. The computations of i1 and i2 are summarized as
follows:

±βc ±βo δ cc co ϑ c ϑo i1 i1 + i2 i2

Saturn 2◦ 3◦ 1◦ 0;18◦ 0;23◦ 0;26◦ 0;34◦ 2;26◦ ≈ 2 1
2

◦ 4;26◦ ≈ 4 1
2

◦ 2◦

Jupiter 1 2 1 0;29 0;43 0;24 0;36 1; 24 ≈ 1 1
2 2; 31 ≈ 2 1

2 1

In the case of Mars, the period of invisibility near conjunction is so long, from 90
to more than 200 days, that a nearby latitude cannot be observed, so Ptolemy uses
latitudes at opposition at the northern and southern limits, which differ greatly because
the limits are exactly at apogee and perigee of the eccentric, which is very nearly true,
and because of the large eccentricity, an effect not noticeable for Saturn and Jupiter.
The principle of the derivation is nevertheless the same. In Figure 3 the earth is at
O , the center of Mars’s eccentric is M , the planet in the epicycle is at opposition in
the perigee of the epicycle, PnPP with latitude βn at the apogee of the eccentric and
northern limit N , PsPP with latitude βs at the perigee of the eccentric and southern limit
S, and considering absolute values βs − βn = δ. The plane of the eccentric is inclined
to the plane of the ecliptic by i1, and the plane of the epicycle is inclined to the plane
of the eccentric by i1 + i2 and to a plane parallel to the ecliptic by i2. Considering
i1 + i2 as the ‘anomaly’ measured from the perigee of the epicycle, ϑn = βn − i1 and
ϑs = βs − i1 are proportional to the equations of the anomaly cn and cs at a small arc
from perigee. Consequently,

ϑs − ϑn = βs − βn = δ,
ϑn

ϑs
= cn

cs
,

Figure 3. Inclinations i1 and i2 of Mars.
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so that

cs

cn
ϑn − ϑn = ϑn

(
cs − cn

cn

)
= δ, ϑn =

(
cn

cs − cn

)
δ,

ϑs = ϑn + δ, i1 = βn − ϑn = βs − ϑs.

Again letting the ‘anomaly’ at opposition at the northern limit, angle ONPnPP = α′,

i1 + i2

α′ = ϑn

cn
, i1 + i2 = ϑn

cn
α′, i2 = (i1 + i2) − i1.

For the computation Ptolemy takes the equation of the anomaly cn at the apogee
of the eccentric and cs at the perigee, that is, from the equation tables for longitude,
cn = c6 − c5 and cs = c6 + c7, each at 3◦ from the perigee of the epicycle, and likewise
α′ = 3◦. Hence, cn = 4;29◦ and cs = 8;5◦, from which he takes the ratio ϑn/ϑ s =
cn/cs ≈ 5/9, which is quite accurate, so that cn/(cs − cn) ≈ 5/4. The observed latitudes
at opposition, βn and βs, are again obviously estimates. The computation of i1 and
i2, in which the roundings are very close, is summarized as follows:ww

+βn −βs δ cn cs ϑn ϑs i1 i1 + i2 i2

Mars 4 1
3

◦
7◦ 2 2

3

◦
4;29◦ 8;5◦ 3 1

3

◦
6◦ 1◦ 2 1

4

◦
1 1

4

◦

With these inclinations, Ptolemy can compute the latitudes at conjunction at the limits,WW
which could not be estimated from nearby observations, as was done for Saturn andww
Jupiter, because of Mars’s long periods of invisibility on either side of conjunction.
He places in the table of latitude (13.5) for 6◦ from apogee of the epicycle βn = +0;8◦

and βs = −0;4◦, which also apply very nearly to conjunction itself at apogee. Theseww
are virtually in the plane of the ecliptic and are erroneous, for as we shall see, correctly
both latitudes are slightly over 1◦.

The problem in Ptolemy’s model is the variable inclination of the epicycles, which
should always be parallel to the plane of the ecliptic, that is, correctly i2 = 0◦, for
the epicycles of the superior planets are transformations of the heliocentric motion
of the earth, which is always in the plane of the ecliptic. The variable inclinations
in turn lead to yet more complications, as Ptolemy also describes (13.2) how they
may be produced by small vertical circles upon which the inclining diameters move,
with equant motion no less. These small circles, dismissed by Neugebauer with some
justice as ‘a feeble attempt’ – they are a curious cross between a mathematical and
mechanical model – have been described in detail for Venus and Mercury by Riddell.
It is after describing the operation of these devices that Ptolemy writes his remarks
on simplicity and complexity, and with good reason as the models for latitude are
kinematically the most complex in the Almagest. Ptolemy himself obviously real-
ized that there was something implausible about them. Our concern here, however,
is not the complexity or implausibility of the models, but only to inquire into the
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reason for the variable inclinations of the epicycles, which is what makes them so
complex.

It has been said that the reason is their equivalence to heliocentric models with
the nodal line passing through, not the true sun, but the mean sun, the center of
the earth’s orbit, which is the principle of Copernicus’s transformation of them to
a heliocentric form, in which the plane of the eccentric has a variable inclination.
However, the plane of the eccentric passing through the mean sun introduces a vari-
ation of inclination that is only a small fraction of that in Copernicus’s model and
takes place in different directions on either side of the ecliptic, as has been shown
by Swerdlow and Neugebauer, and the same is true of the equivalent small variation
of inclination of the epicyclic plane in Ptolemy’s model. Thus, it is not the cause
of the large variation of the inclination considered here. Rather, the cause is the
very strength of Ptolemy’s mathematical astronomy, its rigorous empiricism, for the
variable inclinations are directly determined, indeed dictated, by the very observed
extreme latitudes at opposition and near conjunction from which the inclinations are
derived. Likewise, the inclination of the eccentric in Copernicus’s model varies, not
because its plane passes through the mean sun, but because the model is a trans-
formation of Ptolemy’s based upon the same extreme latitudes, although for Mars
Copernicus was forced to make small adjustments because the models are not exactly
equivalent.

Ptolemy’s derivations require observations of the planet at opposition and as near
as possible to conjunction, with the center of the epicycle at each of the limits of
latitude, but these conditions occur simultaneously only rarely. There is an opposition
or conjunction near each limit once in 30 years for Saturn, once in 12 years for
Jupiter, once in 15 or 17 years for Mars, but the distance from the limit may be
quite large for Jupiter and Mars, and finding any of these at each limit is much
less frequent. And while observations at opposition may be made with the planet
well above the horizon, with clearly visible reference stars if such were used in any
way,aa observations near conjunction, thus shortly after first and before last visibility,
must be made low on the horizon, possibly without suitable reference stars, and
affected by refraction. As it turns out, none of the apparent latitudes Ptolemy cites,
without specific information, without any information, about how they were found,
is particularly accurate, and the latitudes at opposition are not really better than
near conjunction. They were surely not derived strictly from these conditions, but
were probably only conventional estimates in integer degrees, with a single simple
fraction for Mars, and are insufficiently accurate to find the correct inclinations, which
would show that always i2 = 0◦. Further, the method of deriving the inclinations, the
computation itself, is so sensitive to small imprecisions and roundings that even
with accurately observed latitudes, it would still be difficult to find the inclinations
exactly.

The clearest way to show this is to begin with correct apparent latitudes according
to modern theory and use them to compute the inclinations by Ptolemy’s method with
the rest of his parameters, the equations of the anomaly c at apogee and perigee of the
epicycle, the same. We have mentioned that the simultaneous conditions for extreme
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latitudes occur rarely; by inspection of Tuckerman’s tables for much of the second
century, a rather long period, we find the following values for latitudes at conjunction,
which strictly could not be observed, and opposition at the limits of latitude roundedww
to the nearest 0;3◦ = 0.05◦, which we compare with Ptolemy’s:ww

±βc P. ±βc ±βo P. ±βo

Saturn 2;18◦ 2◦ 2;51◦ 3◦

Jupiter 1;9 1 1;45 2
Mars +1;9 – +4;36 +4;20
Mars −1; 6 – −6;54 −7

There are differences in the tables of less than 0.05◦ in the positive and negative
latitudes of Saturn and Jupiter. But even 0.05 = 0;3◦ is far less than anything Ptolemy
could measure, which he seems to have believed was 1

6
◦ = 0;10◦, so these results

show that his assumption that βc and βo are the same on either side of the ecliptic was
correct even if the errors in his integer values of βc and βo reach 0.3◦ = 0;18◦. For
Mars, however, although the difference in ±βc is very small, the difference in ±βo is
very large, and thus for this reason as well as the invisibility of ±βc, it is also correct
that he based his derivations solely on observations at opposition. We can also clearly
see the error of the computation in his tables of βc for Mars as +0;8◦ and −0;4◦, for
correctly both exceed 1◦.

The recomputations have been done in two ways: (1) In keeping with a maximum
precision of Ptolemy’s observations of 1

6
◦
, which we note is very optimistic for lati-ww

tudes near conjunction, we round the modern computed values of ±β to the nearest
0;10◦. (2) To show the extreme sensitivity of the computation, we also take ±β to
the nearest 0;3◦, as given above, although this is far beyond the precision of any
observation possible to Ptolemy. We then repeat the computations carried out before,
using the same values of the equations of the anomaly c at apogee and perigee of the
epicycle.

±βc ±βo δ cc co ϑ c ϑo i1 i1 + i2 i2

Saturn (1) 2;20◦ 2;50◦ 0;30◦ 0;18◦ 0;23◦ 0;13◦ 0;17◦ 2;33◦ 2;13◦ −0; 20◦

Saturn (2) 2;18 2;51 0;33 0;18◦ 0;23◦ 0;14 0;19 2;32 2;29 −0; 3
Jupiter (1) 1;10 1;50 0;40 0;29 0;43 0;16 0;24 1;26 1;40 0;14
Jupiter (2) 1;9 1;45 0;36 0;29 0;43 0;15 0;21 1;24 1;28 0;4

+βn −βs δ cn cs ϑn ϑ s i1 i1 + i2 i2

Mars (1) 4;40◦ 6;50◦ 2;10◦ 4;29◦ 8;5◦ 2;42◦ 4;52◦ 1;58◦ 1;48◦ −0;10◦

Mars (2) 4;36 6;54 2;18 4;29 8;5 2;52 5;10 1;44 1;55 0;11
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Note that for Saturn and Jupiter i1 is nearly the same as found by Ptolemy, 2;30◦ and
1;30◦ – correctly Saturn is 2;33◦ and Jupiter 1;25◦, very close to these calculations –
but i2 is reduced by nearly 1◦ for Jupiter and more than 2◦ for Saturn, for which it
is here even slightly negative, meaning that the epicycle is inclined in the opposite
direction. Since correctly i2 = 0◦, what this shows is that, although the method ofww
derivation, including the use of the correction tables for longitude, is satisfactory for
finding i1, it is too sensitive to small errors in β and c to find i2 with great accuracy.
For Mars, i1 is increased from 1◦ to nearly its correct value 1;52◦ and i2 is reduced
from 1;15◦ nearly to 0◦ and is both positive and negative; correctly both i1 and i2

are about midway between (1) and (2). In fact, as uncertain as these results may
be for i2, for all three planets i1 is close to its correct value and i2 is at least close
to 0◦. Hence, the problem in Ptolemy’s latitude theory is not the model itself, in
which the inclination of the epicycle is an independently derived parameter, nor theww
method of deriving the parameters, as sensitive as it is for i2, but the observations,
rough estimates of latitude at opposition and near conjunction, which, by Ptolemy’s
rigorously empirical method, require the variable inclination of the epicycle. We
shall return to this subject in considering the revised latitude theory of the Planetary
Hypotheses.

There is one further parameter in Ptolemy’s latitude theory of the superior planets,
the distance of the northern limit of latitude from the apogee, which is used to find the
argument of latitude measured from the northern limit. He first locates the northern
limits rather roughly (13.1) as near the beginning of Libra for Saturn and Jupiter
and near the end of Cancer for Mars, almost exactly at the apogee. Then, taking the
longitudes of the apogees, with slight rounding, he gives distances from the apogee
to the northern limit ωA (13.6): −50◦ for Saturn, +20◦ for Jupiter, 0◦ for Mars.
(Correctly for A.D. 140 these are about: Saturn −42◦, Jupiter +28◦, Mars +11◦.
The distances from the aphelia, apsidal lines through the true sun, are about:
Saturn −49◦, Jupiter +7◦, Mars +3◦, two of which are, by coincidence, closer to
Ptolemy’s values.) This parameter is difficult to find with accuracy. At the limits the
latitude is highly variable and the maximum latitude at opposition, which could in
principle locate the limit, very seldom occurs exactly at a limit. Whenever the planet
crosses the ecliptic, the center of the epicycle is in the nodal line ±90◦ from the limits.
But this too is not easy to observe as the latitude of the planet changes most rapidly
when crossing the ecliptic and the chance of catching it exactly in the ecliptic is slight.ww
Still, some kind of interpolation between small latitudes on either side of the ecliptic
is probably the most reasonable way of finding the longitude of the nodes and thus,
by ±90◦, of the limits. Whether this explains the errors in Ptolemy’s locations of the
limits, I do not know. It does not help in finding this parameter that the period of
Saturn is nearly 30 years and of Jupiter nearly 12 years, so for long periods no useful
observations can be made for finding either limits or nodes; and although the period
of Mars is less than two years, its long periods of invisibility and rather large and ir-
regular synodic arcs also make it difficult to observe exactly at a limit or crossing the
ecliptic.
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The tables for latitude of the superior planets (13.5) are very easy to use although
at the cost of some precision. An example from the table for Mars is given here at
intervals of 6◦:

1 2 3 4 5
Argument +β(α) −β(α) Inter. (ωC)

6◦ 354◦ 0;8◦ 0;4◦ 0;59,36
12 348 0;9 0;4 0;58,36
18 342 0;11 0;5 0;57,0

. . . . . . . . . . . . . . .
84 276 0;46 0;42 0;6,24
90 270 0;52 0;49 0;0,0
96 264 0;55 0;52 0;6,24

. . . . . . . . . . . . . . .
168 192 4;0 5;53 0;58,36
174 186 4;14 6;36 0;59;36
180 180 4;21 7;7 1;0,0

Columns 1 and 2 are arguments of entry for 6◦–180◦ and 180◦–354◦ at intervals
of 6◦ for 270◦–90◦ and 3◦ for 90◦–270◦. Columns 3 and 4 are latitudes as a function
of true anomaly α on the epicycle computed for the maximum inclination i1 + i2

and the center of the epicycle at the limits of latitude, column 3 northern, column 4
southern. The differences in the two columns are due to the different distances of the
limits on the eccentric; these are large for Mars – at opposition 2;46◦, at conjunction
0;4◦, but note that +β is twice −β – since the eccentricity is large and the limits are
in the apsidal line, but small for Jupiter and Saturn at opposition and conjunction –
from 0;2◦ to 0;4◦, each a very small fraction of β – since their eccentricities are
smaller and their limits are removed from the apsidal line, for Jupiter by +20◦ and
for Saturn by −50◦. This is a rather crude way of handling the effect of distance,
and Ptolemy developed a more accurate method in the Handy Tables. Column 5 is a
coefficient of interpolation for locations of the center of the epicycle other than the
limits as a function of the distance of the center of the epicycle from the northern
limit, ωC = λC − λN = κ − ωA, whereww κ is the true eccentric anomaly. It is used as a
cosine since both the latitude on the eccentric and the inclination i2 of the epicycle vary
nearly as cos ωC, that is c5(ωC) = cos ωC; it is, however, computed by multiplying
the tabulated lunar latitude for each entry, with a maximum of 5◦, by 0;12. The
computation of the latitude from the table is simply

+β = c5(ωC) · c3(α), if 270◦ ≤ ωC ≤ 90◦,
− β = c5(ωC) · c4(α), if 90◦ ≤ ωC ≤ 270◦.

INFERIOR PLANETS

The apparent motion in latitude of the inferior planets is entirely different and even
more complex. Because their orbits are inside the heliocentric orbit of the earth, their
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motions in latitude can be seen in two ways, both in the line of sight and across the
line of sight, and these appear to behave quite differently. It happens that the nodal
lines of the inferior planets are rather close to the directions of the apsidal lines found
by Ptolemy – +5◦ to the ascending node for Venus, +16◦ to the descending node for
Mercury – and his description of the latitudes (13.1) follows from assuming that the
apsidal and nodal lines coincide. (1) When the center of the epicycle is a quadrant
from the apsidal line, the greatest differences in latitude occur, on the same side of the
ecliptic, near superior and inferior conjunction, the larger near inferior conjunction,
the smaller near superior conjunction, and when the planet is a quadrant from either
conjunction it has no latitude. (2) When the center of the epicycle is in the apsidal line,
the greatest differences in latitude occur, on opposite sides of the ecliptic, at opposite
greatest elongations, differing by approximately equal amounts from the latitudes at
apogee and perigee. (3) When the center of the epicycle is in the apsidal line and the
planet is near superior or inferior conjunction, it has a small latitude, to the north for
Venus and to the south for Mercury.VV

The model to account for these latitudes (13.2) is shown in Figure 4. The earth is at
O , the center of the eccentric at M , and the epicycle is shown at apogee at 0◦, and at 90◦,
180◦, and 270◦ from apogee. The eccentricity itself has a small effect on latitude for
Mercury and virtually none for Venus, and is shown here to distinguish the direction
of the apsidal line. Consider the configuration at 90◦ and 270◦. (1) The epicycle is
inclined in the line of sight at an angle i1 so the greatest differences in latitude are on
the same side of the ecliptic, βa at the apogee of the epicycle PaPP and βb at the
perigee PbPP , and because the distance OPbPP is less than OPa, βb is greater than βa. This
component of latitude, which we call β1, in the line of sight, is called the ‘inclination’
(enklisis), the same term used for the latitude of the superior planets, which is also

Figure 4. Inferior planets.
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in the line of sight, and i1 is the inclination of the epicycle. When the planet is in
the nodal line across the line of sight a quadrant from PaPP and PbPP , it is in the plane of
the ecliptic without latitude. As the epicycle moves from 270◦ to 0◦, the inclination
i1 decreases to zero and the epicycle takes on a second inclination i2 along a nodal
line in the line of sight. (2) At 0◦ the epicycle is inclined across the line of sight and
the greatest differences in latitude are on opposite sides of the ecliptic, βe at greatest
evening elongation PePP and βm at greatest morning elongation PmPP . This component of
latitude, which we call β2, across the line of sight, is called the ‘slant’ or ‘obliquity’
(loxosis), and i2 the slant or obliquity of the epicycle. As the epicycle continues to
90◦, i2 goes to zero and i1 increases to its maximum, and so on. (3) Finally, and this is
not illustrated, to account for the small latitude β3 near conjunction, when the center
of the epicycle is at 0◦ and 180◦, the plane of the eccentric has a small inclination
i3 on a nodal line perpendicular to the apsidal line, thus passing through 90◦ and
270◦, moving the epicycle and the planet to the north for Venus and to the south foroo
Mercury, an inclination that also goes to zero as the epicycle moves to 90◦ and 270◦.
Ptolemy’s calls this the ‘inclination of the eccentric’ as it is also in the line of sight.

The inclination i1 is found from β1 using the correction table for longitude, in
much the same way as for the superior planets (13.3). In Figure 5, the earth is at
O and the plane of the epicycle is inclined to the plane of the eccentric OC, whichww
lies in the plane of the ecliptic, by i1 such that the planet PaPP at superior conjunction
at apogee has latitude βa and PbPP at inferior conjunction at perigee has latitude βb.
Neither location can be directly observed since the center of the epicycle lies nearly
in the direction of the mean sun (S̄(( ), and thus the planet is too close to the true sun to
be visible, so β must be inferred from nearby observations, a difficulty to which we
shall return. Now imagine the epicycle rotated into a plane perpendicular to the plane
of the ecliptic; then i1 may be taken as proportional to the anomaly at a small arc αa

from apogee and αb from perigee, and βa and βb as proportional to equations of the
anomaly ca and cb corresponding to these arcs, that is, in each case i1/α = β/c. Since
the maximum effect of i1 takes place ±90◦ from the apsidal line, the equations for

Figure 5. ‘Inclination’ i1 of inferior planets.
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Venus are taken for mean distance,VV c = c6 in the correction tables, but for Mercury,
which is not at mean distance,ww c = c6 + c8 · c7 for 90◦ of mean eccentric anomaly
for which c8 ≈ 0; 40. From the tables (11.11), letting αa = 6◦ and αb = 3◦, we find
two values, i1a and i1b, from i1 = β(α/c), which we compare with Ptolemy’s i1 and
his βa and βb computed for confirmation from β = i1(c/α), three of which have
discrepancies of ±0;1◦ compared to an accurate calculation.

βa βb ca cb i1a i1b P.i1 P.βa P.βb

Venus 1VV ◦ 6 1
3

◦
2;31◦ 7;38 2;23◦ 2;29◦ 2 1

2

◦
1;2◦ 6;22◦

Mercury 1 3
4 4 1;41 1;57 6;14 6;9 6 1

4 1;46 4;5

Ptolemy’s i1 is very close to i1b for Venus and i1a for Mercury, and his recomputations
of β, which are also the extreme latitudes in his tables in 13.5, are sufficiently closeww
to the observed latitudes that the selection and rounding of i1 are reasonable. Still,
there are problems with β1 and i1 that we shall take up after considering β2 and i2.

The slant of the epicycle i2 is found (13.4) from the maximum apparent latitude β2,
which takes place at greatest elongation (from the mean sun) where Venus is alwaysww
visible and Mercury usually visible, although near apogee of the eccentric only its
morning elongation and opposite to apogee only its evening elongation are visible.
(In fact, the maximum latitudes β2 do not take place at greatest elongation from the
mean sun, but at maximum equation of the anomaly, when the line from the earth
to the planet is tangent to the epicycle. However, in the apsidal line the equation of
center is zero and these are the same.) In Figure 6 the planet PePP is shown at greatest
evening elongation, to the east of the mean sun S̄ , with latitude β2. Since CPe O and
CGPe are right angles, triangles CPe O and CGPe are similar so that a/ρ = r/R′

whereww R′ = OC. It follows that

d = ρ sin β2 = a sin i2 = ρ
r

R′ sin i2, sin i2 = R′

r
sin β2.

Ptolemy notes (13.1, 13.4) that the maximum opposite apparent latitudes, on either
side of the ecliptic, at greatest elongations at apogee and perigee of the eccentric
differ, for Venus by slightly under 5◦ at apogee and slightly over 5◦ at perigee, and for
Mercury by about 5◦ − 1

2
◦

at apogee and about 5◦ + 1
2

◦
at perigee, the differences from

5◦ due to the effect of the greater distance at apogee and lesser distance at perigee.
For the derivation of i2, he ignores the variation and takes a difference of about 5◦,
and for the latitudes on each side of the ecliptic he takes the arithmetic mean so that
β2 ≈ ±2 1

2
◦

for both planets. This, as we shall see, is a considerable simplification
although it leads to excellent results. The distance of the center of the epicycle of
Venus in the apsidal line isVV R + e at apogee and R − e at perigee, and since the effect
of change of distance is small, he takes R′ = R = 60. The distance of the center of the
epicycle of Mercury at apogee is R + 3e = 69 and at the opposite end of the apsidal
line R − e = 57, which is not its least distance, and for the derivation he takes the
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Figure 6. ‘Slant’ i2 of inferior planets.

mean R′ = R + e = 63. With these values, the computation, from sin i2 = (R′/r )
sin β2, is straightforward.

R′ r β2 i2

Venus 60 43;10 2;30VV ◦ 3;28◦ ≈ 3 1
2

◦

Mercury 63 22;30 2;30 7

In order to analyze empirically the ‘inclination’, latitude β1 and inclination i1, we
find the apparent latitudes as close as possible to superior and inferior conjunction
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at the limits of latitude according to modern theory, using inspection in Tuckerman’s
tables for the second century. Since these change in the course of the century, particu-
larly for Venus, as the conjunction points shift with respect to the limits, we cite them
only to tenths of a degree. The inclination i1 is found from βa at superior conjunction
and apogee of the epicycle or from βb at inferior conjunction and perigee. These occur
in the invisible arc and must be inferred from observations before last visibility and
after first visibility when the planet is near the horizon, affected by refraction, and
possibly with no reference stars. For Venus the period of invisibility around superior
conjunction is quite long, from 55 to 69 days at Ptolemy’s latitude, and around inferior
conjunction, entirely within the retrograde arc, from 1 to 18 days. Mercury’s period of
invisibility at superior conjunction is from about 27 days to an entire invisible evening
phase and at inferior conjunction, at least in part within the retrograde arc, from about
13 days to an invisible morning phase. The strictly invisible extreme values of βa and
βb to 0;6◦ = 0.1◦ are as follows along with the values cited by Ptolemy:

+βa −βa P. ± βa +βb −βb P. ± βb

Venus 1;30VV ◦ 1;30◦ 1◦ 8;36◦ 8;48◦ 6;20◦

Mercury 1;48 2;0 1;45 3;48 4;42 4

The more serious errors, more than ±2◦ for βb, with more serious consequences,
are for Venus. (I do not believe that modern computations and graphs of the motion
of the planet from before last to after first visibility give any idea of just how difficult
it is to measure these latitudes accurately.) We may use a selection of these values of
βa and βb to 0;6◦, more precise than Ptolemy could reach, to compute i1 by Ptolemy’s
method, in Figure 5, i1 = β(α/c), taking c from the correction tables (11.11) and
letting αa = 6◦ and αb = 3◦. In this way, we find i1a and i1b and compare them with
i1 from Ptolemy and modern theory.

βa βb ca cb i1a i1b P. i1 M. i1

Venus 1;30VV ◦ 8;36◦ 2;31◦ 7;38 3;34◦ 3;23◦ 2 1
2

◦
3;22◦

Mercury 1;48 4;42 1;41 1;57 6;25 7;14 6 1
4 6;58

Ptolemy’s i1 for Venus is erroneous, following from his erroneous value of βa and βb,
while for Mercury it is close toww i1a as his βa = 1;45◦ is close to βa = 1;48◦ here; the
modern i1 is close to i1b for both planets. A different selection of βa and βb would
produce different results – for example, for Mercury βa = 2◦ gives i1a = 7;8◦, close
to i1b – and more precise values would give better agreement with modern theory. So
again we see that the problem in Ptolemy’s derivation is the inadequate observations,
particularly for Venus, as it is difficult to estimate the invisible latitudes at superior
and inferior conjunction. The derivation itself of i1 by this method is about as sensitive
to inaccuracies as finding i1 for the superior planets, that is, moderately sensitive.



56 N. M. SWERDLOW

The difficulties of the ‘slant’, latitude β2 and inclination i2, are entirely different,
and there are difficulties even though Ptolemy’s results are excellent. Latitude β2 is
observed at greatest elongation, where Venus is always visible and Mercury usually
visible, as far above the horizon as they can be seen, which appears promising. But
for i2 to have its greatest effect, and be isolated from i1, the heliocentric orbit of the
planet must be seen across the line of sight, which occurs when the earth is in the
planet’s nodal line, meaning, in Ptolemy’s theory, when the center of the epicycle
is in the planet’s apsidal line, which happens to be close to the heliocentric orbit’s
nodal line. The difficulty here, for Venus above all, is that the planet is seldom at
greatest elongation when the center of the epicycle is in the apsidal line, and small
departures from these two conditions can noticeably affect the apparent latitude.
The same problem occurs in Ptolemy’s determination of the parameters for longitude,
the eccentricity and radius of the epicycle, which require the same strictly unobtainable
conditions, greatest elongation with the center of the epicycle in the apsidal line
and at other specified locations. For Mercury, as noted before, it happens that near
apogee only morning elongation and opposite to apogee only evening elongation are
visible.

Ptolemy was doubtless aware of these difficulties, although he does not mention
them, for they may explain the way he describes the behavior of the slant (13.1, 13.4).
He does not say directly that at greatest elongation in the apsidal line β2 = ±2 1

2
◦
,

even though he uses that value for finding i2 for both planets. Rather, he says that the
total variation in latitude, north and south of the ecliptic, for Venus is slightly under
5◦ at apogee of the eccentric and slightly over 5◦ at perigee, for Mercury is about
5◦ − 1

2
◦

at apogee and 5◦ + 1
2

◦
at perigee, and that he will use β2 ≈ ±2 1

2
◦

as a mean
value. There is good reason for his description, for if we use Tuckerman’s tables to
examine the apparent latitudes near greatest elongation with the earth or sun near
each planet’s nodal line, where the slant is isolated from the inclination, the apparent
latitude is almost never ±2 1

2
◦
, but varies quite widely. As close as we can come

to these conditions in the period A.D. 130–146, we find for Venus positive latitudes
restricted to about +2.1◦ and +3.1◦, the mean of which is +2.6◦, and a single negative
latitude of −2.4◦. For Mercury we find a positive range of about +2.4◦ to +2.7◦ with
a mean of +2.55◦ and a negative range of −2.5◦ to −3.2◦ with a mean of −2.85◦,
although I am not certain how many of these are actually visible. Hence, Ptolemy’s
mean latitudes for both planets, β2 ≈ ±2 1

2
◦
, even if theoretical, and his inclinations,

for Venus i2 = 3 1
2

◦
and for Mercury i2 = 7◦, are better than can be reached from

observations during this period. This is also true of some of his other parameters.
Ptolemy describes the third component of latitude β3 (13.1, 13.3) as an equal

latitude from the ecliptic, reaching + 1
6

◦
for Venus and − 3

4
◦

for Mercury, at both
apogee and perigee of the epicycle, thus at superior and inferior conjunction, as
inferred from nearby observations, when the center of the epicycle is in the apsidal
line. Since the latitude is the same at apogee and perigee of the epicycle, it is not
affected by distance on the epicycle. Ptolemy therefore attributes β3 to a variable
inclination i3 of the eccentric on a nodal line passing through the earth perpendicular
to the apsidal line, hence through 90◦ and 270◦ in Figure 4; i3 is maximum when the
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center of the epicycle is in the apsidal line, goes to zero at a quadrant from the apsidal
line, and then returns to maximum in the same direction, to the north for Venus, to
the south for Mercury.

It is not at all obvious how Ptolemy found β3, but it does seem to be his own
discovery rather than a conventional value. I know of no correct explanation of just
what it is that he observed, what accounts forww β3, and will not trouble the reader with
my own attempts. There are discussions by Pedersen and Neugebauer. In any case,
inferring a latitude of +0;10◦ for Venus or even −0;45◦ for Mercury at conjunction
when the planet can only be observed many days before or after, the latitude is changingww
the most rapidly across the line of sight, and is strongly affected by refraction near the
horizon, seems very insecure. And just as for observing greatest elongations with the
center of the epicycle in the apsidal line, the simultaneous conditions for observing
the planet near conjunction with the center of the epicycle in or near the apsidal line
occur rarely, especially for Venus. Since the effect of i3 is the same wherever the
planet is on the epicycle, β3 could be related to a variation in observed latitudes of β2

near greatest elongation when the center of the epicycle is near the apsidal line and
the effect of β2 is greatest. Ptolemy does describe effects of this sort, opposite for
Venus and Mercury, at greatest elongations (13.1), but he also describes the latitudesVV
near apogee and perigee, and I would not doubt his report of the kind of observations
by which he discovered it. As he changedww i3 to a fixed inclination in the Handy
Tables and the Planetary Hypotheses, he himself must have come to doubt these
observations.

The tables for latitude of the inferior planets (13.5) are more complex than those
for the superior planets, and the computation is considerably more complex since
three components, the inclination and slant of the epicycle and the inclination of
the eccentric, must be computed separately and added together. An example from the
table for Venus is given here at intervals of 6◦:

1 2 3 4 5
Argument ±β1(α) ±β2(α) Inter. (κ)

6◦ 354◦ 1;2◦ 0;8◦ 0;59,36
12 348 1;1 0;16 0;58,36
18 342 1;0 0;25 0;57,0

. . . . . . . . . . . . . . .
84 276 0;8 1;50 0;6,24
90 270 0;0 1;57 0;0,0
96 264 0;10 2;3 0;6,24

. . . . . . . . . . . . . . .
126 234 1;18 2;27 0;35,12
132 228 1;38 2;30 0;40,0
138 222 1;59 2;30 0;44,24
. . . . . . . . . . . . . . .
168 192 5;13 1;27 0;58,36
174 186 5;52 0;48 0;59;36
180 180 6;22 0;0 1;0,0
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Columns 1 and 2 are arguments of entry for 6◦–180◦ and 180◦–354◦ at intervals of
6◦ for 270◦–90◦ and 3◦ for 90◦–270◦. Column 3 is the inclination β1 computed from
i1 and column 4 the slant β2 computed from i2, both functions of the true anomaly
α on the epicycle. There is also a rather crude correction for distance in computing
β2 for Mercury, taking 9

10 c4(α) in the semicircle of the eccentric around apogee and
11
10 c4(α) in the semicircle around perigee. Since 1

10 · 2 1
2

◦ = 1
4

◦
, this gives a range of

β2 of 5 − 1
2

◦ at apogee and 5◦ + 1
2

◦
at perigee, as Ptolemy reported. Column 5 is the

same coefficient of interpolation tabulated for the superior planets, used as a cosine,
as a function of the true eccentric anomaly κ = λC − λA since the variations of i1 and
i2 are both functions of the distance κ of the center of the epicycle from the apogee
of the eccentric; hence c5(κ) = cos κ . There are rather complex rules (13.6) for how
c5(κ) is applied to β1 and β2 because the inclinations i1 and i2 are maximum and zero
90◦ apart, so that one uses both c5(κ) and c5(κ ± 90◦), and the rules are reversed for
Venus and Mercury since the inclinations of their epicycles are in opposite directions.VV
Column 5 is also used to compute the latitude β3 due to the inclination of the eccentric
i3, +0;10◦ for Venus and −0;45◦ for Mercury; it is applied as c5(κ)2 = cos2κ in order
to compute both the variation of i3 and the change of latitude on the eccentric, each
separately a function of cos κ . A complete statement of the rules for the application
of c5(κ) is given by Neugebauer. Here we note only that one forms, with the proper
signs and the correction in c4(α) for Mercury,

±β1 = c5(κ) · c3(α), ± β2 = c5(κ) · c4(α), ±β3 = c5(κ)2 · i3,

β = β1 + β2 + β3.

Because of the errors in i1 and β1 in particular, the computed latitudes of the inferior
planets are not at all accurate, with errors for Venus reaching over 2◦ near inferior
conjunction, as we have seen. Ptolemy must have become aware of these problems,
for the latitude theory of the inferior planets receives notable correction in the Handy
Tables, to which we now turn.ww

HANDY TABLES

It is possible that Ptolemy’s latitude theory differs from the Almagest in the Canobic
Inscription, which shows a still earlier stage of his work, but the numbers in theww
text appear so corrupt that no conclusions can be drawn. Hence, we can say nothing
about this earliest latitude theory if it did in fact differ. There is, however, no doubt
that the latitude theory later received important modifications, improvements, in the
Handy Tables, although with a curious error not present in the Almagest. The tables for
computing latitude, which are entirely different from those in the Almagest, are similar
in form to the correction tables for longitude, described briefly in the Appendix, and
the computation is now the same for superior and inferior planets although it is also
somewhat more laborious. There is a detailed examination by Neugebauer, in part
following an analysis by van der Waerden, showing how the tables are computed
from the underlying model, which is nowhere explained by Ptolemy. The latitude is
computed as the sum of two components, one due to the inclination of the eccentric,
the other due to the inclination of the epicycle, and the most notable result is a better
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control over the effect of the distance of the center of the epicycle. This is done in
the same way as in the correction tables for longitude, that is, there is a column for
latitude at mean distance of the center of the epicycle, two additional columns, a
subtraction for greatest distance and an addition for least distance, and a coefficient
of interpolation for intermediate distances. An example from the table for Mars is
given here at 6◦ intervals:

1 2 3 (κ) 4 (α) 5 (α) 6 (α) 7 (ω)

6◦ 354◦ −0; 60 0;3◦ 0;54◦ 0;3◦ 0;60
12 348 −0; 59 0;3 0;55 0;3 0;59
18 342 −0; 57 0;3 0;56 0;4 0;57

. . . . . . . . . . . . . . . . . . . . .
84 276 −0; 4 0;7 1;7 0;9 0;6
90 270 +0;3 0;8 1;11 0;11 0;0
96 264 +0;8 0;9 1;15 0;13 0;6

. . . . . . . . . . . . . . . . . . . . .
168 192 +0;58 0;51 3;46 1;29 0;59
174 186 +0;59 0;56 4;6 1;39 0;60
180 180 +0;60 0;59 4;20 1;46 0;60

Columns 1 and 2 are arguments for 3◦–180◦ and 180◦–357◦ at intervals of 3◦.
Column 7 is a coefficient of interpolation, a cosine, c7 = cos c1,2, rounded from c5 in
the Almagest, which is used in two ways. In the first, it is used to compute the latitudeww
β1 due to the inclination of the eccentric i1 by ±β1 = c7(ωp) · i1, whereww ωp is the
distance of the planet from the northern limit, ωp = λp− λN, which also determinesww
the sign of β1. For the superior planets, this is close to the heliocentric latitude of
the planet, which does not appear independently in the computation from the tables
in the Almagest. Column 5 is the latitude due to the epicycle, under the assumption
that the planet is always at greatest distance from the plane of the eccentric, as though
the epicycle is parallel to the eccentric and raised from the eccentric by i1 + i2, as
shown in Figure 7A, in which PoPP is the planet at opposition, P ′

cPP the projection of the
planet PcPP at conjunction, and P ′ the projection of an arbitrary position P . Column 5
is a function of the true anomaly α measured from the apogee of the epicycle when
the center of the epicycle is at mean distances. Column 4 is the subtraction for the
epicycle at apogee of the eccentric, column 6 is the addition for the epicycle at perigee
of the eccentric, both also functions of α. Column 3 is a coefficient of interpolation
for the distance OC of the center of the epicycle on the eccentric, a function of the
true eccentric anomaly κ = λC− λA. ToTT combine the effect of the two variables α and
κ , one computes either of

β ′
2 = c5(α) + c3(κ) · c4(α), if c3(κ) < 0,

β ′
2 = c5(α) + c3(κ) · c6(α), if c3(κ) > 0.

It is this calculation, the principal innovation of the latitude tables in the Handy Tables
and a great improvement over the treatment of the effect of distance in the Almagest,
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Figure 7. (A) Preliminary latitude β ′
2 in Handy Tables. (B) Inclination of epicycle and final

latitude β2 in Handy Tables.

that corresponds to the calculation of the second inequality in the correction tables
for longitude. Finally, column 7 is again used as a coefficient of interpolation for
the angular distance of the planet on the epicycle – now regarded as inclined to the
eccentric with a fixed inclination – from the northern limit of the epicycle, ω′

p = ω′
A +

κ +α, as shown in Figure 7B. ω′
A is an invariable distance from the northern limit of the

epicycle N ′, which holds a fixed direction, to a directionww CA on the epicycle parallel to
the direction OA of the apogee of the eccentric. Hence, one finds ±β2 = c7(ω′

p) · β ′
2,
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which also determines the sign ofww β2, and then the final latitude β = β1 + β2. (The
configuration and notation here differ slightly from Neugebauer’s.)

The inclinations of the planes of the eccentric and the epicycle of the superior
planets are the same as in the Almagest, and the latitudes at opposition and conjunction
at the limits differ by not more than ±0;1◦. But there is no doubt that the inclination
of the epicycle is now fixed, as has been noted by van der Waerden, and this seriously
affects latitudes when the center of the epicycle is near the nodes, a problem that seems
thus far to have gone unnoticed. Were the inclination variable as in the Almagest, for
the superior planets from i2 at its greatest value when the center of the epicycle is at the
limits to i2 = 0◦ at the nodes, one would have to multiply β ′

2 by a further coefficient
using c7 = cos c1,2, the distance of the center of the epicycle from the northern limit
of the eccentric ωC = λC − λN, that is, c7(ωC) = cos ωC, the same coefficient used in
the Almagest, so that β2 = c7(ωC) · c7(ω′

p) · β ′
2. But nothing of the kind is mentioned

in Ptolemy’s instructions, nor in Theon’s instructions, in which β2 is determined only
by β2 = c7(ω′

p) · β ′
2 for a fixed inclination of the epicycle. Although this is correct

for the inferior planets, for which the epicycle is always inclined to the ecliptic, it is
an error for the superior planets, for it means that when the center of the epicycle is
in the nodal line, the epicycle is still inclined to the ecliptic and the planet may have
latitude. One may say that the superior planets now behave like the inferior planets,
showing (1) an ‘inclination’ in the line of sight when the center of the epicycle is
at the limits, ±90◦ from the nodal line, and the epicycle is inclined in the line of
sight, and (2) a ‘slant’ across the line of sight when the center of the epicycle is in the
nodal line and the epicycle is inclined across the line of sight. This is wrong because
heliocentrically the center of the epicycle is the planet and the epicycle is the orbit of
the earth, which is in the plane of the ecliptic; when the planet is in the nodal line,
it can have no latitude no matter where the earth is in its orbit. Thus, geocentrically
when the center of the epicycle is in the nodal line, the planet should have no latitudeww
no matter where it is on the epicycle, which must therefore lie in the plane of the
ecliptic. Ptolemy himself had stated this condition in the Almagest, and it is hard to
know why he would wish to change it in the Handy Tables. Perhaps he meant to write
also to use c7(ωC) for the superior planets in computing β2, and just nodded – as we
should prefer to believe – but there is no way of confirming this, and that Theon’s
instructions are the same as Ptolemy’s probably rules out a textual error. Hence, as the
tables and instructions have been transmitted, the inclination of the epicycle is fixed.

For the inferior planets, with the inclination of the epicycle fixed, the nodal line
of the epicycle is always parallel to the apsidal line. Hence, (1) when the center of
the epicycle is in the apsidal line, the nodal line of the epicycle coincides with the
apsidal line in the line of sight, the fixed inclination of the epicycle is observed across
the line of sight and one sees the ‘slant’; (2) when the center of the epicycle is ±90◦

from the apsidal line, the nodal line of the epicycle is across the line of sight, the fixed
inclination of the epicycle is observed in the line of sight and one sees the ‘inclination’.
Thus, both components are now a single latitude resulting from one fixed inclination
seen in two ways. So the fixed inclination of the epicycle, which is incorrect for the
superior planets, is correct for the inferior planets.
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We may investigate the consequences of fixed inclinations by computing from
the tables the maximum latitude when the center of the epicycle is at the ascending
and descending node of the eccentric for the superior planets, and at apogee and the
point opposite apogee, which for Mercury is not perigee, for the inferior planets.
Distances from the apogee to the northern limit ωA are now −40◦ for Saturn, which
in the Almagest was −50◦, +20◦ for Jupiter, and 0◦ for Mars, which are unchanged;
hence the eccentric anomaly κ of the ascending node κ = ωA − 90◦ and of the
descending node κ = ωA + 90◦. For the inferior planets κ = (0◦, 180). The following
table gives κ , the approximate range of β ′

2, of distances ω′
p from the northern limit of

the epicycle at which the maximum latitude occurs – the true anomaly α = ω′
p + 90◦

– of the coefficient c7(ω′
p), and the resulting latitude β2 computed from the tables

by the procedure just explained. For the superior planets, the first computation is for
the descending node and the second for the ascending node of the eccentric; for the
inferior planets, the eccentric is taken to be in the plane of the ecliptic.

κ β ′
2 ω′

p c7(ω′
p) β2 κ β ′

2 ω′
p c7(ω′

p) β2

Saturn 50◦ 0;30◦ 0–3◦ 1;0 0;30◦ 230◦ 0;32◦ 3–6◦ 1;0 0;32◦

Jupiter 110 0;31 0–6 1;0 0;31 290 0;31 0–6 1;0 0;31
Mars 90 1;55–2;0 39–42 0;46–0;44 1;28 270 1;55–2;0 39–42 0;46–0;44 1;28
Venus 0 3;31–3;54 45–51 0;42–0;38 2;28 180 4;22 51 0;38 2;46VV
Mercury 0 2;7–2;9 12–15 0;59–0;58 2;5 180 2;52–2;56 24–27 0;55–0;54 2;38

In fact β2 may stay within 0;1◦ of these maximum values for a considerable range of
ω′

p, and roundings to minutes in the tables introduce small irregularities by which the
latitude can decrease and again increase. But the important point is that the superior
planets may have latitude, a notable latitude, when the center of the epicycle is at a
node, when the latitude should be zero. This is a significant error, an error not present
in the Almagest. For the inferior planets, the maximum latitude is no longer ±2;30◦,
but varies with distance as it should, something treated only roughly by the correction
to β2 for Mercury of ± 1

10 c4(α) in the Almagest, and the maximum latitudes do not
occur together with the maximum equations of the anomaly, as was true for the method
of computing β2 in the Almagest. (For this reason, one cannot compute the maximum
latitude here as one computes the maximum slant in the Almagest, from sin β2 = sin i2

(r/R′), as in Figure 6, which is close for the inferior planets, but much smaller for the
superior planets.) Neugebauer has computed 22 latitudes for Mars and 17 latitudes
for Venus at 10-day intervals to show a more general comparison between the Handy
Tables and the Almagest. The differences in these reach nearly 1◦ for Mars and are
greatest near the nodal line for reasons just explained. The differences for Venus reach
about 1;30◦, are greatest where the ‘inclination’ has its greatest effect, ±90◦ from the
apsidal line, and agree better with modern theory for reasons we shall now show.

For the inferior planets, as noted, the method of computation no longer distinguishes
the inclination and slant, which nevertheless occur where and as they should, but gives
a single latitude due to the inclination of the epicycle, which is added to the small
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latitude due to the inclination of the eccentric. The latitude just computed, when the
center of the epicycle is in the apsidal line, is the ‘slant’. The following table shows the
inclination of the epicycle i1 and the resulting latitude, the ‘inclination’, at superior
conjunction at apogee of the epicycle βa and at inferior conjunction at perigee βb

from the Almagest, Handy Tables, and a modern computation to tenths of a degree.

Almagest Handy Tables Modern

i1 ±βa ±βb i1 ±βa ±βb i1 +βa −βa +βb −βb

Venus 2;30VV ◦ 1;2◦ 6;22◦ 3;30◦ 1;29◦ 8;52◦ 3;22◦ 1;30◦ 1;30◦ 8;36◦ 8;48◦

Mercury 6;15 1;45 4;5 6;30 1;50 4;14 6;58 1;48 2;0 3;48 4;42

The inclination of the epicycle of Venus in the Handy Tables is that of i2 = 3;30◦ in
the Almagest, which is about correct and produces far better results forww βa and βb.
The inclination for Mercury, 6;30◦, is closer to i1 = 6;15◦, although i2 = 7;0◦ in the
Almagest is preferable; the resulting βa and βb differ only slightly from the Almagest.
(In the smaller commentary to the Handy Tables, Theon gives βb for Venus as 8;56◦

and for Mercury as 4;18◦.)
The inclination of the eccentric i3 is now a fixed inclination of 0;10◦ for both

planets, with the northern limit at the apogee for Venus and the southern limit at
the apogee for Mercury. Here too, as for the variable inclination in the Almagest, I
know of no correct explanation of what Ptolemy actually observed that could account
for i3. The remarks made earlier about the difficulty of observing these latitudes at
all still apply, and it is notable that each is at the limit of precision of Ptolemy’s
observations. They could perhaps have been derived from an effect seen near greatest
elongation, as Ptolemy also mentioned in the Almagest, rather than near inferior or
superior conjunction, but that too would be difficult and the Handy Tables contain no
explanation.

The latitude tables of the Handy Tables seem to have been of little influence, even
in tables otherwise based upon Ptolemy’s models and parameters, which is of some
interest. The correction tables for longitude of the planets in the Handy Tables are,
directly or indirectly, the basis of many, perhaps most, later tables following Ptolemy,
in Greek, Arabic, eventually Latin, differing for the most part only in textual errors
or adjustments of interpolation for the intervals of 1◦ and one commonly altered
parameter: Venus is given the equation of center of the sun, as is also found in
tables based upon Indian models and parameters, although without adjustment for
the effect of distance on the equation of the anomaly, which is so small as to be
of no consequence. (The Alfonsine Tables also have a different equation of center
for Jupiter, of unknown origin, likewise without adjustment of the equation of the
anomaly.) However, later Ptolemaic tables for latitude are overwhelmingly based
upon the tables in the Almagest, some with various modifications, mostly to facilitate
computation, that have been described by van Dalen. There are two known partial
and curious exceptions. Kennedy (2) lists maximum latitudes of the Mumtah. an ZījZZ
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(Az-Z(( īj al-Ma’m¯ZZ nī lī’l Mumtah. an) of the early ninth century, which agree with
those given by Theon in his smaller commentary to the Handy Tables, although the
latitude tables themselves are based upon nothing more than a sine function, which is
quite primitive. The latitudes listed by Kennedy, some of which differ slightly from
direct computation from the Handy Tables, are as follows:

+βo −βo ±βb

Saturn 3;1◦ 3;6◦ Venus 8;56VV ◦

Jupiter 2;3 2;9 Mercury 4;18
Mars 4;23 7;6

These are maximum latitudes at opposition for the superior planets – Theon gives
Saturn +βo = 3;2◦ – and at inferior conjunction for the inferior planets, although it is
not clear just how they are applied in these tables. The same maximum latitudes are
attributed by Ibn Hibintā of the mid-tenth century to either the Zīj as-SindhindZZ or the
Zīj ash-Sh¯ZZ ah¯ , with +βo = 5;23◦ for Mars, doubtless a textual error; since the former
is based on Indian models and parameters and the latter on a Pahlavi translation of an
Indian original, latitudes from the Handy Tables seem out of place. Nevertheless, the
tables and report do show that maximum latitudes from Theon’s commentary were
known and used, here it appears in rather crude adaptations.

The other example comes from a very different period and region, the Zīj al-ZZ
Muqtabis of Ibn al-Kammad, who lived in Andalusia in the twelfth century, which¯
survives in a Latin version made in Palermo in 1260 by one John of Dumpno, of
which there is a study by Chab´ww as and Goldstein. The latitude tables for the superior´
planets are those of the Almagest, but those for the inferior planets are from the Handy
Tables, at 6◦ intervals and with a maximum for Venus in c5(α) of 8;35◦ instead of
8;51◦, presumably a textual error. The same tables are found in the Tables of Barcelona
of the fourteenth century, published by Millás Vallicrosa and analyzed by Chab´´ as;
here the maximum for Venus in c5(α) is 8;55◦. These sources show that, in addition
to Theon’s commentary, the latitude tables themselves were known in Arabic, and it
was the choice of Ibn al-Kammad, or of his source whatever that may have been, to¯
use only those for the inferior planets. Why? Could someone have understood that
the tables are in error for the superior planets, but not for the inferior planets, because
the fixed inclination of the epicycle gives the planet latitude even when the center of the
epicycle is in the nodal line? One would not need observations to understand this, just
an understanding of the latitude theory in the Almagest and an ability to figure out that
the computation in the Handy Tables implies a fixed inclination of the epicycle, which
is not exactly obvious as the model is not explained. Still, the way astronomical tables
were often haphazardly and inconsistently thrown together for hundreds of years,
this is a higher level of understanding than one is accustomed to. It is obvious, for
example, that Theon did not recognize a problem. Another possible explanation is
that the latitude tables for the inferior planets in the Almagest were considered too
complicated, which is true enough with all the rules for applying the coefficient c5(κ),
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although those in the Handy Tables are also complicated. Perhaps it is safer to confess
that we have no idea why only the latitude tables for the inferior planets have been
found, and someday a source containing the tables for the superior planets may be
discovered. Benno van Dalen, who, in answer to my inquiry about latitude tables from
the Handy Tables in Arabic referred me to Ibn al-Kammad’s tables, informs me that¯
thus far he knows of none for the superior planets, so if they exist at all they must be
very uncommon.

PLANETARY HYPOTHESES

The Planetary Hypotheses may be considered Ptolemy’s last word on latitude the-
ory, in which he finally got nearly everything right. The models in the Planetary
Hypotheses have the same inclinations as the Handy Tables for the inferior planets,
but the superior planets differ from both the Almagest and the Handy Tables, and
are definitely improved, one reason for believing that the Hypotheses is later than the
Handy Tables. For the superior planets the epicycles now have fixed inclinations to the
eccentric parallel to the ecliptic, that is, the inclination of the epicycle to the eccentric
i1 + i2 = i1, and thus correctly i2 = 0◦. The inclinations of the eccentric, for Saturn
i1 = 2;30◦, for Jupiter i1 = 1;30◦, are unchanged, but for Mars i1 = 1;50◦, which isww
correct. It is easy to show that these inclinations produce quite accurate latitudes at
conjunction and opposition at the limits. We have only to reverse Ptolemy’s procedure
for finding the inclinations from the correction tables for longitude in Almagest 11.11.
Thus, in Figure 8, where i1 is proportional to the ‘anomaly’ α measured from apogee
or perigee of the epicycle, and ϑ is proportional to the equation of the anomaly c,
so that ϑ/c = i1/α, we have at both conjunction and opposition ϑ = (c/α)i1, from

Figure 8. Latitudes βc and βo from inclination i1 in Planetary Hypotheses.
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whichww βc = i1− ϑc and βo = i1 + ϑo. In the computation we take the distance of the
northern limit from apogee of the eccentric as: Saturn −40◦, Jupiter +20◦, Mars 0◦,
and we take c from the correction tables for α = 3◦. The results are shown along with
modern inclinations and latitudes to 0;3◦.

i1 +βc −βc M. ±βc +βo −βo M. ±βo M. i1

Saturn 2;30◦ 2;16◦ 2;14◦ 2;18◦ 2;48◦ 2;51◦ 2;51◦ 2;33◦

Jupiter 1;30 1;16 1;15 1;9 1;50 1;53 1;45 1;25
Mars 1;50 1;9 1;3 1;9–1;6 4;34 6;46 4;36–6;54 1;52

The most notable improvement over Ptolemy’s earlier theories is that βc for Mars is
now correctly just over 1◦ where before it was very close to 0ww ◦; every other value
is also improved, with no error exceeding 0;8◦, and of course when the center of
the epicycle is at the nodal line the latitudes are correctly zero. (Had Ptolemy not
rounded i1 for Jupiter from 1;24◦ to 1;30◦ in the Almagest, its latitudes would be
better, but the rounding of i1 for Saturn from 2;26◦ to 2;30◦ is an improvement.)
Intermediate latitudes, not at conjunction or opposition at the limits, or at the nodes
with zero latitude, may not be as accurate as these, but the problems are due to errors
in longitude theory and distance, not to the latitude theory itself. The latitudes of the
inferior planets are the same as those of the Handy Tables tabulated earlier. One may
now say that Ptolemy has corrected both the variable inclinations of the epicycles in
the Almagest and, for the superior planets, the fixed inclinations not parallel to the
ecliptic in the Handy Tables.

The subject of the first part Book I of the Hypotheses, where these parameters areww
given, is the construction of instruments, analogue computers consisting of graduated
circles, eccentric and epicyclic, within a concentric graduated zodiac, for finding
longitudes of the sun and longitudes and latitudes of the moon and planets without
correction tables. They are the earliest known examples of what were later called
‘equatoria’; later specimens, and there are many, generally do not include latitude.
Kennedy (1) has described an instrument of the early fifteenth century for computingKK
latitudes by the ingenious Jamshīd Ghiath ad-Dīn al-Kāsh¯ ī, based upon the latitude
theory of the Almagest, in which the latitudes are projected into a plane. Ptolemy’sww
instruments in the Hypotheses, however, actually have inclined rings. How one could
make these things, presumably of metal, with tiny inclinations of about 2◦ to 6◦, even
0;10◦ for the eccentrics of Venus and Mercury, is not a trivial question, and perhaps
their use for latitude was only theoretical. One might suggest that the fixed inclinations
of the epicycles in the Hypotheses were a simplification for making such instruments,
as who could possibly construct the variable inclinations of the Almagest with their
small vertical circles? But this cannot be so, first because the latitude theory of the
fixed inclinations, with the new and correct inclination for Mars, really is superior to
the variable inclinations in the Almagest, and to the fixed inclinations in the Handy
Tables, surely deliberately so, and second because the spherical models described in
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Book II, which are supposed to be the physical mechanisms in the heavens responsible
for the motions of the planets, have the same fixed inclinations, for the superior planets
parallel to the ecliptic. Of course historically the more important parts of the Planetary
Hypotheses are the distances and sizes of the planets and the spherical models, the
cosmology and physical astronomy, on which the principal studies are by Goldstein
and Murschel, and the latitude theory, for all its ingenuity, seems to have been without
influence, for it appears that no one made use of Ptolemy’s final, corrected latitude
theory.

How Ptolemy made these changes, he does not say except to remark that by con-
tinuous observations he has made corrections, compared to the Almagest, of the
hypotheses themselves or of their proportions or periodic times, and in fact thehh Plan-
etary Hypotheses contains various changes in the hypotheses and their parameters,
including periods, of which the changes in the hypotheses and inclinations for latitude
are the most significant. So one must conclude that he corrected the theory of latitude
of both superior and inferior planets from his own observations, improving upon the
rough values of extreme apparent latitudes, which we believe to have been conven-
tional estimates, used earlier in the Almagest when they were all he had. Since it wasww
not possible in the years of his observations to observe all the planets under the special
conditions used to derive the inclinations in the Almagest, for the superior planets at
opposition and near conjunction at the limits, he must have derived the inclinations
from other sorts of observations. One possibility is a series of oppositions over several
years with a large although not maximum latitude, showing by computation both the
inclination i1 and, from i1 + i2 ≈ i1, that i2 = 0◦, that the epicycle remains parallel
to the ecliptic, which would require two oppositions for each planet. In this way he
could correct both the Almagest and the Handy Tables. But on such things one can
only speculate, fully aware of the difficulty of finding these parameters even from
accurate observations. However Ptolemy did it, he got it right.

It is of interest that John Bainbridge, Henry Savile’s successor as professor of
astronomy at Oxford, who edited and translated the part of Book I of the Planetary
Hypotheses surviving in Greek in its first edition in 1620, specifically noticed the
changes in the theory of latitude, which otherwise remained unknown until our own
time. After stating that the three manuscripts of the Hypotheses he used were corrupt
and incomplete, requiring much emendation by comparing the text with the Almagest,
he remarks: ‘In the hypotheses of latitudes I desired to change nothing. For wise
(prudens(( ) Ptolemy, if I judge this matter, departed from the hypotheses established in
the Syntaxis and proposed other easy, convenient, and far truer (longeque veriores)
hypotheses.’ This observation is interesting, not only for noticing the differences in thehh
hypotheses, but in recognizing that those in thehh Planetary Hypotheses are ‘far truer’
than those in the Almagest. The only way he could know this in 1620 was by having
read, and approved, Kepler’s Astronomia nova (1609), in which it is shown (13–14)
using Tycho’s observations that the inclination of the plane of Mars’s eccentric to the
ecliptic is about 1;50◦ and fixed, implying in a geocentric model a fixed inclination of
the epicycle parallel to the ecliptic, just as Ptolemy found. And Kepler computes (65)
the extreme latitudes: northern limit, opposition +4;31,45◦, conjunction +1;8,30◦;
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southern limit, opposition −6;52,20◦, conjunction −1;4,20◦, all very close to the
extreme latitudes from Ptolemy’s theory. Remarkably, Ptolemy’s latitude theory in
the Planetary Hypotheses anticipates Kepler, as Bainbridge recognized. In a (lost)
letter of 24 February 1625 Bainbridge brought the revised latitude theory to Kepler’s
attention, and later that year Kepler received Bainbridge’s publication and noted the
fixed inclination of 1;50◦ for Mars.

We conclude with a table of the inclinations in the Almagest, Handy Tables, and
Planetary Hypotheses with modern values for A.D. 100 from P.V. Neugebauer, the
same ones quoted earlier, which are also given by O. Neugebauer. In the Almagest,
Ptolemy gives the inclination of the epicycle of the superior planets as i1 + i2, and
the same inclination applies in the Handy Tables although it is not explicitly given.
The inclination of the epicycle i2, to a plane parallel to the plane of the ecliptic, is
variable in the Almagest from its given value to 0◦ but fixed in the Handy Tables; in the
Planetary Hypotheses the epicycle for the superior planets is parallel to the ecliptic
so that i2 = 0◦. The two variable inclinations of the epicycle for the inferior planets
i1 and i2 in the Almagest are replaced with a single fixed inclination we call i1 in the
Handy Tables and Planetary Hypotheses. The inclination of the eccentric for Venus
and Mercury i3 is variable in the Almagest from its given value to 0◦ but fixed in the
Handy Tables and the Planetary Hypotheses. We hWW ave marked variable inclinations v;
all others are fixed. Aside from the component i3 for the inferior planets, it is obvious
that in the Planetary Hypotheses, Ptolemy has reached something close to modern
latitude theory, with a single defective inclination for Mercury, for which i2 from the
Almagest would have been correct. No one did better until Kepler in the Epitome of
Copernican Astronomy and the Rudolphine Tables.

Planetary
Almagest Handy Tables Hypotheses Modern

Planet i1 i2v i3v i1 i2 i3 i1 i3 i1

Saturn 2;30◦ 2◦ – 2;30◦ 2◦ – 2;30◦ – 2;33◦

Jupiter 1;30 1 – 1;30 1 – 1;30 – 1;25
Mars 1;0 1;15 – 1;0 1;15 – 1;50 – 1;52
Venus 2;30VV v 3;30 +0;10◦ 3;30 – 0;10◦ 3;30 0;10◦ 3;22
Mercury 6;15v 7;0 −0; 45 6;30 – 0;10 6;30 0;10 6;58

APPENDIX

CORRECTION TABLES FOR LONGITUDE IN THE
ALMAGEST AND HANDY TABLES

The correction tables for longitude in the Almagest are used to derive the inclinations
of the planes of the eccentric and epicycle in the theory of latitude, and the latitude
tables in the Handy Tables control the effect of distance of the center of the epicycle in
the same way as the correction tables for longitude. For these reasons, we include brief
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descriptions of the correction tables for longitude and of the formation of equations
between mean and true motions. The reader is referred to Pedersen or Neugebauer
for more detailed treatment of the tables in the Almagest, including the method of
computation, and to Neugebauer for the Handy Tables. WeWW show an excerpt from the
table for Mars from Almagest 11.11.

1 2 3 (κ̄) 4 (κ̄) 5 (ᾱ) 6 (ᾱ) 7 (ᾱ) 8 (κ̄)

6◦ 354◦ 1;0◦ +0;5◦ 0;8◦ 2;24◦ 0;9◦ −0; 59, 53
12 348 2;0 +0;10 0;16 4;46 0;18 −0;58,59
18 342 2;58 +0;15 0;24 7;8 0;28 −0; 57, 51

. . . . . . . . . . . . . . . . . . . . . . . .
96 264 11;29 −0; 4 2;42 35;6 3;6 −0; 3, 3
99 261 11;32 −0; 8 2;49 35;56 3;15 +0;0,5

102 258 11;32 −0; 12 2;56 36;43 3;25 +0;3,13
. . . . . . . . . . . . . . . . . . . . . . . .
174 186 1;30 −0; 10 2;27 11;15 4;26 +0;59,43
177 183 0;45 −0; 5 1;16 5;45 2;20 +0;59,52
180 180 0;0 −0; 0 0;0 0;0 0;0 +1;0,0

Columns 1 and 2 are arguments of entry for 6◦–180◦ and 180◦–354◦ at intervals of
6◦ for 270◦–90◦ and 3◦ for 90◦–270◦. Column 3, a function of the mean eccentric
anomaly κ̄ , the uniform motion of the center of the epicyle from apogee of the eccentric
measured at the equant point, is the equation of center for an eccentric circle of
ecentricity 2e, from the earth to the equant point. Column 4, also a function of κ̄ , is
a correction for the bisection of the eccentricity for an eccentric circle of eccentricity
e, from the earth to the center of the eccentric. Columns 3 and 4 are added to find
the equation of center c′

3 = c3 + c4. The true eccentric anomaly κ is computed from
κ̄ by κ = κ̄ + c′

3, whereww c′
3 < 0◦ for κ̄ < 180◦ and c′

3 > 0◦ for κ̄ > 180◦. The true
anomaly on the epicycle α is computed from the mean anomaly ᾱ by α = ᾱ + c′

3,
whereww c′

3 > 0◦ for κ̄ < 180◦ and c′
3 < 0◦ for κ̄ > 180◦.

Columns 5–7, all functions of the true anomaly α, are used to compute the equation
of the anomaly c due to motion of the planet on the epicycle: c6 is the equation for
the center of the epicycle at mean distance on the eccentric R, c5 a subtraction for
greatest distance R + e, and c7 an addition for least distance R − e. For Mercury the
distances are R + 3e and R− ∼ 3

2 e respectively. Finally, column 8, a function of κ̄ , is
a coefficient of interpolation for intermediate distances of the center of the epicycle,
extending from −1 at greatest distance to +1 at least distance. The equation of the
anomaly c is computed from either of

c = c6(α) + c8(κ̄) · c5(α), if c8(κ̄) < 0, c = c6(α) + c8(κ̄) · c7(α), if c8(κ̄) > 0.

In the Handy Tables, the entries in c1 and c2 are at intervals of 1◦; the equation
of center, c3 + c4 in the Almagest, is combined into a single c3; c4 is the coefficient of
interpolation for computing the equation of the anomaly, computed as a function of
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the true eccentric anomaly κ = κ̄ ± c3 and rounded to one fractional place; columns
c5, c6, c7 for the equation of the anomaly are the same as in the Almagest. The
contraction of intervals to 1◦, which facilitates the use of the tables, is done by linearww
interpolation in the tables in the Almagest although there are small discrepancies of
no consequence.

Department of Astronomy and Astrophysics, University of Chicago, USA
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