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MEMS/NEMS Devices

Two challenges are discussed that involve room-temperature, micro- and nanoscopic
semiconductor structures and utilize the thermally-sustained electric fields of p-n
junctions. Analytic calculations and numerical simulations support the feasibility
of these devices.

9.1 Introduction

This chapter is concerned with two experimentally-testable solid-state second
law challenges that can operate at room temperature and which could, in principle,
have commercial applications [1, 2, 3]. These are based on the cyclic electrome-
chanical discharging and thermal recharging of the electrostatic potential energy
inherent in the depletion region of a standard solid-state p-n junction. Essentially,
the depletion region can be considered a thermally-rechargable capacitor which, in
these incarnations, are used to power either a linear electrostatic motor (LEM) or a
high-frequency, MEMS/NEMS1, double-cantilever resonant oscillator. Numerical
results from a commercial semiconductor device simulator (Silvaco International
– Atlas) verify primary results from one dimensional analytic models. Present
day micro- and nanofabrication techniques appear adequate for laboratory tests
of principle. Experiments are currently being planned. The initial impetus to

1Micro-Electro-Mechanical Systems/ Nano-Electro-Mechanical Systems
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explore such devices was given in 1995 by J. Bowles, who noted that solid state
and plasma physics are kissing cousins; hence, there should be solid-state analogs
to the previously proposed plasma paradoxes (Chapter 8) [4, 5, 6].

As detailed in this monograph, a number of concrete, experimentally-testable
second law challenges have been proposed, some of which have been corroborated
by laboratory experiments. No experiment has yet demonstrated actual violation,
however, since in all cases the entropy generated by experimental apparatus (e.g.,
heaters/coolers, vacuum pumps) has always exceeded the theoretical maximum
reduction in entropy that could be achieved by the proposed negentropic process
itself. The present solid-state challenges appear different in this respect: whereas
other challenges purport the potential violability of the second law, they offer no
practical hope of actual violation under everyday terrestrial conditions. These solid
state challenges, on the other hand, make positive claims on both, for, whereas
previous challenges are viable only under extreme thermodynamic conditions (e.g.,
high temperatures (T ≥ 1000K), low temperatures (T ≤ 100K), or low pressure
(P ≤ 1 Torr)), the present systems should be viable at room temperature and
pressure and they do not require ancillary entropy-generating apparatus.

This chapter is organized as follows. In §9.2 the physics of p-n junctions and
thermally-charged capacitors — which undergird the solid-state challenges — is
introduced and developed via one-dimensional analytical models and numerical
simulations. In §9.3, a linear electrostatic motor (LEM) is discussed. It is substan-
tiated three ways: via a 1-D analytical model, by analogy with an R-C network,
and through 2-D numerical simulations. The device is shown to be viable within a
broad range of realistic physical parameters. In §9.4, a resonant double-cantilever
oscillator (hammer-anvil) is developed along similar lines as for the LEM. Finally,
in §5, prospects for laboratory experiments are briefly considered.

9.2 Thermal Capacitors

9.2.1 Theory
The present challenges are based on the physics of the standard p-n junction diode
[7, 8]. At equilibrium, the depletion region of a diode represents a minimum free
energy state in which bulk electrostatic and diffusive forces are balanced. It follows
that when individual n- and p- materials are joined, there is a transient current
(due to rapid charge carrier diffusion) and energy release as a depletion region
forms and equilibrium is attained. Space charge separation gives rise to a built-in
potential (typical values, Vbi ∼ 0.5−1V) and an internal electric field which arrests
further charge diffusion. Typical depletion regions are narrow, ranging from 10µm
for lightly-doped semiconductor to 0.01µm for heavily-doped ones. Although these
distances are small, the broadest depletion regions have scale lengths visible to the
naked eye and the narrowest are two orders of magnitude larger than atoms. They
are large enough to interact with some present-day and many envisioned micro- and
nano-scale devices [9, 10]. The thermally-generated electrostatic potential energy
of the depletion region fuels this challenge. Practically speaking, a semiconductor
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Figure 9.1: Standard device with Junctions I and II and physical dimensions and
standard coordinates indicated. Depletion region at Junction I is shaded.

depletion region constitutes a thermally-charged capacitor. Whereas standard
capacitors dissipate their electrostatic energy through internal parasitic resistance
(Ri) on a timescale τ ∼ RiC, thermal capacitors can remain energized indefinitely;
they can also recharge thermally under appropriate circumstances.

Consider a p-n device (Figure 9.1) consisting of two symmetric horseshoe-
shaped pieces of n- and p-semiconductor facing one another. At Junction I (J-I),
the n- and p-regions are physically connected, while at Junction II (J-II) there is
a vacuum gap whose width (xg) is small compared to the scale lengths of either
the depletion region (xdr) or the overall device (xdev); that is, xg � xdr ∼ xdev.
Let the n- and p-regions be uniformly doped and let the doping be below that
at which heavy-doping effects such as band gap narrowing are appreciable. The
p-n junction is taken to be a step junction; diffusion of donor (D) and acceptor
(A) impurities is negligible; the depletion approximation holds; impurities are
completely ionized; the semiconductor dielectric is linear; and the system operates
at room temperature. For a silicon device as in Figure 9.1, representative physical
parameters meeting the above conditions are: NA = ND = 1021 m−3, xdev = 10−6

m on a side, xdr = 1.2× 10−6 m, and xg = 3× 10−8m. This dopant concentration
results in a built-in potential of Vbi � 0.6 V. For the discussion to follow, the p-n
device (Figure 9.1) with these parameters will be called the standard device.

Standard one-dimensional formulae have been used to estimate Vbi and xdr

[7, 8]:
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Here kT is the thermal energy; q is an electronic charge; ni is the intrinsic carrier
concentration of silicon (ni � 1.2 × 1016 m−3 at 300K); εo is the permitivity of
free space; and κ = 11.8 is the dielectric constant for silicon.

That an electric field exists in the J-II gap at equilibrium can be established
either via Kirchhoff’s loop rule (conservation of energy) or via Faraday’s law. Con-
sider a vectorial loop threading the J-I depletion region, the bulk of the standard
device, and the J-II gap. Since the electric field in the J-I depletion region is uni-
directional, there must be a second electric field somewhere else along the loop to
satisfy Faraday’s law (

∮
E · dl = 0). An electric field elsewhere in the semiconduc-

tor bulk (other than in the depletion region), however, would generate a current,
which contradicts the assumption of equilibrium. Therefore, by exclusion, the
other electric field must exist in the J-II gap. Kirchhoff’s loop rule establishes the
same result. Conservation of energy demands that a test charge conveyed around
this closed path must undergo zero net potential drop; therefore, to balance Vbi

in the depletion region, there must be a counter-potential somewhere else in the
loop. Since, at equilibrium, away from the depletion region there cannot be a po-
tential drop (electric field) in the bulk semiconductor – otherwise there would be
a nonequilibrium current flow, contradicting the assumption of equilibrium – the
potential drop must occur outside the semiconductor; thus, it must be expressed
across the vacuum gap.

In Figure 9.2, the energy (E), space charge density (ρ), and electric field (E)
are depicted versus horizontal position (x) through J-I and J-II. There are several
important differences between the two junctions. The most noticable is that, while
physical properties vary continuously with position across the J-I region, there
are marked discontinuities for J-II. These are due to the inability of electrons to
jump the vacuum gap (xg). This restricts the diffusion of charge carriers that
would otherwise spatially smooth the physical properties. As a result, Junction II
suffers discontinuities in energies, voltages and space charge. Because the J-II gap
is narrow and the built-in potential is discontinuous, there can be large electric
fields there, more than an order of magnitude greater than in the J-I depletion
region. Treating the gap one-dimensionally, the J-II electric field is uniform, with
|EJ−II| � Vbi

xg
, while in the J-I bulk material it has a triangular profile, with average

magnitude |EJ−I| ∼ Vbi

xdr
. The ratio of the electric field strength in the J-II gap to

that in the middle of the J-I depletion region scales as EJ−II

EJ−I
∼ xdr

xg
� 1. For the

standard device, the average value of the field strength is |EI| ∼ 0.6V
1.2×10−6m � 5×105

V/m and |EII| ∼ 0.6V
3×10−8m ∼ 2 × 107 V/m, rendering EJ−II

EJ−I
∼ 40.

Let a switch bridge the J-II gap, physically connecting the entire facing surfaces
of the n- and p-regions. For the present discussion, let the switching element be
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Figure 9.2: Physical characteristics versus position x through Junctions I and II.
Left (x < 0) and right (x > 0) sides of each graph corresponds to n- and p-regions,
respectively. (a) Energy levels for vacuum (Evac), conduction band edge (Ec),
intrinsic Fermi level (EFi), Fermi level (EF ), valence band edge (Ev). (b) Charge
density (ρ). (c) Electric field magnitude (|E|) Note that vertical scales for E are
different for J-I and J-II (|EJ−II| � |EJ−I|).



272 Challenges to the Second Law

simply a slab of intrinsic semiconductor inserted into the J-II gap. If the current
transmission through the slab is good (that is, its effective resistance and junction
potentials are small), then when equilibrium is reached, the physical characteristics
of J-II will be approximately those of J-I, as depicted in Figure 9.2.

Theoretical limits to the energy released from J-II during its transition from an
open- to a closed-switch configuration can be estimated from the total electrostatic
energy Ees inherent to the J-II junction. Let ∆Ees(J − II) = [Ees(J − II, open)−
Ees(J − II, closed)] be the difference in electrostatic energy in J-II between its
closed- and opened-switch equilibrium configurations (Figure 9.2). Within the
1-D model constraints, this can be shown to be roughly:

∆Ees(J − II) � εo

2
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− 1
3

κ

xdr
], (9.3)

By eliminating Vbi and xdr with (9.1) and (9.2) and using NA = ND ≡ N , (9.3)
can be recast into:
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It is evident from (9.4) that the device’s energy varies strongly with temperature,
scaling as (T )3. This is not surprising since primary determinants of the energy
are Vbi and xdr, both of which originate from thermal processes.

Positive energy release (∆Ees > 0) is subject to limits in xg, N , and T . From
(9.3), an energy crossover (+∆Ees) to (−∆Ees) occurs at xg = 3

κxdr; for silicon,
this is xg � xdr

4 . That is, only for xg ≤ xdr

4 will net energy be released in
switching from open- to closed-gap configurations. Since xdr is normally restricted
to xdr ≤ 10−5m, this implies xg ≤ 2 × 10−6m, thus, thermal capacitors must
intrinsically be microscopic in the gap dimension; and, at least for the vacuum
case, mechanical considerations will probably also similarly limit the other two
dimensions. Equation (9.4) indicates that energy crossover for N occurs for the
standard device at N ∼ 1022m−3. Finally, ∆E −→ 0 when T falls below the
freeze-out temperature for charge carriers; for silicon, Tfreeze ≤ 100K.

For the standard device, (9.3) predicts the J-II region contains roughly three
times the electrostatic potential energy of the J-I region. Equivalently, the whole
p-n device contains twice the energy in its open-gap configuration as it does in
its closed-gap configuration and the majority of this excess energy resides in the
electric field of the open J-II vacuum gap.

The energy release in closing the J-II gap is equivalent to the discharge of a
capacitor. For the standard device, (9.3) gives the net energy release as ∆Ees(J −
II) ∼ 5.2×10−17J ∼ 320 eV. When J-II is open, there are about 330 free electronic
charges on each gap face (calculable from Gauss’ law); when it is switched closed,
most of these disperse through and recombine in the J-II bulk. This net flow
of charges is due to particle diffusion powered by concentration gradients and to
particle drift powered by the large capacitive electric field energy of the open J-II
vacuum gap. Thermodynamically, this energy release may be viewed as simply
the relaxation of the system from a higher to a lower energy equilibrium state.
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This thermal capacitor can remain charged indefinitely (until discharge) since the
open-gap configuration is an equilibrium state of the system.

The device output power Pdev scales as: Pdev ∼ ∆Ees(J−II)
τdis

, where τdis is the
characteristic discharging time for the charged open-gap J-II region as it is closed.
If τdis is short, say τdis � 10−7 − 10−8 sec – a value consistent with the size of
micron-sized p-n junctions or typical inverse slew rates of micron-sized transistors
– then the instantaneous power for a single, switched standard device should be
roughly Pdev � 0.5 − 5 × 10−9 W. Instantaneous power densities can be large; for
the standard device it is on the order of Pdev = Pdev

(10−6m)3 ∼ 0.5 − 5 × 109 Wm−3.

9.2.2 Numerical Simulations
Two-dimensional numerical simulations of this system were performed using Sil-
vaco International’s semiconductor Device Simulation Software [Atlas (S-Pisces,
Giga)]. Junctions were modeled as abrupt and the physical parameters for charge
carriers were generic. Output from the simulations were the two-dimensional,
steady-state, simultaneous solutions to the Poisson, continuity, and force equa-
tions, using the Shockley-Read-Hall recombination model. There is good agree-
ment between the results of the 2-D simulator and those of the 1-D analytic model.

Devices identical to and similar to the standard device were studied. Over a
wide range of experimental parameters (1017 ≤ NA,D ≤ 1026m−3; 10−8 ≤ xg ≤
3 × 10−7m), the two-dimensional numerical simulations showed good agreement
with the primary findings of the 1-D analytic model, most significantly that much
larger electric fields reside in the J-II vacuum gap than in the J-I junction, and
that significant electrostatic energy is both stored in the J-II region and is released
upon switching. Their differences can be traced primarily to the unrealistic dis-
continuities in physical parameters in the 1-D model, which were smoothed by the
more realistic 2-D simulator.

In Color Plate IV, the electric field magnitude is shown for three related vari-
ations of the standard device. Color Plate IVa (hereafter, Case 1) depicts the
electric field for the standard device, with the J-II gap closed. As expected, the
electric fields are modest (|E| ≤ 106 V/m) and are centered on the depletion re-
gions, which, as predicted in the 1-D model, extend over the length of the device.
The field structure demonstrates perfect symmetry with respect to its horizontal
mirror plane and rough mirror symmetry with respect to its vertical mirror plane.
The imperfect vertical mirror symmetry is due to the differences in the physical
properties of the charge carriers.

Color Plate IVb (Case 2) depicts the electric field magnitude for the standard
device. While the electric fields in the J-I depletion regions of Cases 1 and 2 are
similar, in the J-II regions they are significantly different. The J-II electric field
in Case 2 is E ∼ 7 × 106 V/m versus an average of E ∼ 5 × 105 V/m for Case
1. Numerical integration of the electrostatic field energy over the entire region
(vacuum and bulk) indicates the total electrostatic energy of Case 2 is roughly 1.5
times that of Case 1. Considering only the J-II region of each device, Case 2 stores
roughly twice the electrostatic energy of Case 1. These are within 50% of the the
energy estimates of the 1-D analytic model.
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Figure 9.3: Z-normalized electrostatic potential energy Ees versus gap width (xg)
for standard device in 1-D model (solid line) and 2-D model (open circles).

Color Plate IVc depicts Case 3, a configuration intermediate between Cases
1 and 2, and one in which the J-II gap of the standard device is 20% bridged at
its center by a slab of undoped silicon (lx = 300Å, ly = 600Å). As expected, the
bridge allows electron-hole transport between the n and p regions, thereby reducing
the large fields of Case 1 closer to values of Case 2. The field is attenuated most
across the bridge, but in fact, attenuation extends over the entire length of the
channel (Ly). The electrostatic energy of Case 3 is intermediate between Cases 1
and 2. This can be viewed as partial shorting out of the thermal capacitor. The
electric fields for all cases are primarily in the x-direction, and especially so for
Case 2.

Electrostatic potential energy is stored in the J-I and J-II regions of the device
in both the open- and closed-gap configurations. In Figure 9.3, Ees is plotted
versus xg for the standard device, comparing the 1-D and 2-D models. (Note
that the energy is normalized here with respect to the z-direction (J/m) so as to
conform with the output of the 2-D model.) The total electrostatic energy is the
sum of the contributions from the vacuum energy density ( εoE2

2 ) and n-p bulk
energy density (κεoE2

2 ), integrated over their respective regions. In the 1-D model,
we take the electric field in the J-II gap to be constant, while in the J-I region
it is taken to have a triangular profile as in Figure 9.2, with maximum electric
field strength of Emax = 2Vbi

xdr
. For both models, the device energy decreases
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Figure 9.4: Z-normalized electrostatic energy Ees versus dopant concentration (N)
for standard device for open- and closed-gap configurations. Comparison of 1-D
and 2-D models.

monotonically with increasing gap width, however their magnitudes and slopes
differ due to the differing model assumptions. At small gap widths (xg ≤ 10−7m),
the 1-D model predicts greater energy than the 2-D model, owing principally to
its vacuum energy, however, at larger gap widths (xg ≥ 10−7m) the energy in the
2-D model’s n-p bulk dominates, as will be shown later. The 1-D model explicitly
ignores contributions of energy to the open-gap configuration arising from the p-n
bulk semiconductor on either side of the gap. (See (9.3).) In the density vicinity
of the standard device the two models agree to within about 50%.

The stored electrostatic potential energy of the device strongly depends upon
the dopant concentration. In Figure 9.4, Ees is plotted for the standard device ver-
sus dopant concentration N , for both open- and closed-gap configurations, com-
paring 1-D and 2-D models. Above N = 1018m−3 the 1-D model shows roughly
constant logarithmic increase in Ees with increasing N , while the 2-D model shows
a roughly constant logarithmic increase up to about N � 1021m−3, at which point
Ees begins to flatten out and saturate for both open- and closed-gap configurations.

Both models display a crossover in energy between the open-gap and closed-gap
configuration (See Color Plate IV) above the dopant concentration of the standard
device (N = 1021m−3). The crossover density Ncross is where ∆Ees reverses sign.
In the 2-D model the energy crossover occurs at Ncross � 7 × 1022m−3, while in
the 1-D model it occurs at Ncross = 8 × 1021m−3. Above Ncross the closed-gap
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Figure 9.5: Z-normalized electrostatic energies Ees versus gap bridging fraction by
undoped silicon slab.

configuration is more energetic than the open-gap one. As a result, above Ncross

one cannot expect to extract energy by closing the J-II gap. The standard device
operates at N = 1021m−3, which is a factor of 8 below the 1-D crossover and a
factor of 70 below the 2-D crossover density.

Energy release due to gap closing can be made continuous. Let a tightly fitting
rectangular slab of silicon be inserted into the gap, thereby allowing the transport
of charge between the separated n- and p-regions and the relaxation of the J-
II region into an equilibrium state like J-I (Figure 9.2). Figure 9.5 displays the
electrostatic energy of the standard device (Ees) versus bridging fraction by a slab
of undoped silicon (xg = 300Å × 3000Å = Ly). Here, 0% bridging corresponds to
a completely open configuration and 100% bridging corresponds to a completely
closed configuration.

As expected, the total system, vacuum, and bulk energies decrease as the silicon
is inserted; the silicon bridge energy increases slightly with its insertion. At full
insertion, the system’s energy is partitioned between bulk, vacuum and piston
energy in a ratio of roughly 6 : 1 : 0.25. These data suggest that for minimal
investment in piston energy, roughly 10 times more energy is released in the device
as a whole. The 2-D simulations indicate a faster-than-linear decrease in system
energy with bridging fraction. This can be explained by diffusion of charge into
the bulk, ahead of the silicon slab.
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9.3 Linear Electrostatic Motor (LEM)

9.3.1 Theory
The 1-D analytic and the 2-D numerical models verify that significant electrostatic
potential energy resides in the J-II region of the standard device and that it can be
released when the device is switched from an open to a closed configuration. Both
configurations (Cases 1 and 2 in Color Plate IV) represent equilibrium states;
that is, these are states to which the device relaxes when left alone in a heat
bath. Their energies are different because of their differing boundary conditions,
specifically in the J-II gap, which frustrates the diffusive transport of electrons and
holes between the n- and p-regions. Since each configuration is a state to which
the system naturally thermally relaxes, the device may be made to cycle between
Cases 1 and 2 simply by opening and closing (bridging) the J-II gap with a piston
(as done in Figure 9.5). Many energy extraction schemes can be imagined; here we
consider one that can be rigorously analysed: a linear electrostatic motor (LEM).

The motor consists of a dielectric piston in the J-II gap which is propelled by a
self-generated, electrostatic potential energy minimum (pulse). This electrostatic
pulse propagates back and forth through the channel, carrying the piston with
it. The piston itself creates the potential energy minimum in which it rides by
electrically bridging the J-II gap locally. The free energy that drives the piston
resides in the gap electric field; its thermal origin was discussed earlier (See (9.4).).
In essence, the piston perpetually ‘surfs’ an electrostatic wave that it itself creates.
As will be shown, the piston can surf under load (thus performing work) in the
presence of realistic levels of friction and ohmic dissipation. In accord with the first
law of thermodynamics, the net work performed must come from the surrounding
heat bath; however, if the first law is satisfied, then the second law is compromised.

Consider a dielectric slab piston situated outside a charged parallel plate ca-
pacitor, as in Figure 9.6a. Let its motion be frictionless. It is well known that
the dielectric slab will experience a force drawing it between the capacitor plates;
this is indicated by the accompanying force diagram, which gives the force den-
sity experienced by the dielectric at a given horizontal position. The force can
be calculated either by integration of the (p · ∇)E force over the piston volume,
or equivalently, by invoking the principle of virtual work since the total energy
of the the piston-capacitor system is reduced as the slab enters the stronger field
region between the plates. As the force diagram indicates (Figure 9.6a), the piston
experiences a force only so long as it in the inhomogeneous field near the end of
the capacitor. Specifically, the y-force (Fy) requires gradients in the y-component
of the electric field; i.e., [(p · ∇)E]y = Fy = (px

∂
∂x + py

∂
∂y )Ey.

Now let the stationary dielectric piston be situated symmetrically between two
identical capacitors (Figure 9.6b). Here the net force on the piston is zero and
it rests at equilibrium. However, as the accompanying force diagram indicates,
this equilibrium is unstable since any infinitesimal y-displacement increases the
net force on the piston in the direction of its displacement, while simultaneously
reducing the net force in the opposite direction. As a result, the piston will accel-
erate in the direction of its initial displacement.

Next, consider Figure 9.6c, which depicts a semiconducting dielectric piston at
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Figure 9.6: Dielectric interacting with capacitors, with accompanying force ver-
sus displacement graphs. a) Dielectric piston is drawn into charged capacitor via
[(p · ∇)E]y force. b) Dielectric piston situated equidistantly between two equiv-
alent capacitors in an unstable equilibrium; unbalanced force in direction of dis-
placement. c) Linear electrostatic motor (rail gun): semiconducting dielectric
piston in unstable equilibrium between semiconducting capacitor plates.
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rest, situated between two semiconductor capacitor plates. (Compare this to Case
3 in Color Plate IV.) The semiconducting dielectric piston allows charge transport
between the plates, and so it locally reduces the electric field in and around the
piston; thus, the piston sees more intense fields to either side. Essentially, it is
in the same unstable equilibrium depicted in Figure 9.6b. If displaced, it will
accelerate in the direction of its displacement.

From the principle of virtual work, one can write the frictionless electrostatic
acceleration (aes) of the piston (mass density ρ; physical dimensions lx, ly, lz;
dielectric constant ε) inside a long parallel plate capacitor as

aes � ε − εo

2lyρ
(E2

1 − E2
2) =

ε − εo

2ρlyl2x
V 2

s (α2
1 − α2

2), (9.5)

where E1 and E2 are the electric field strengths at the ends of the piston and
α1,2 = E1,2

Eo
, where Eo = Vs

lx
is the strength of the undisturbed electric field far

from the piston.
If the piston is at rest, then by symmetry E1 = E2, and there is no accel-

eration, but if the piston is displaced, then E1 �= E2 and the piston accelerates
in the direction of motion. In the frictionless case, the piston is unstable to any
displacement. In essence, this motor is an electrostatic rail gun, the electrostatic
analog of the well-known magnetic rail gun.

We note that aes �= 0 only for the case of both a semiconductor capacitor and
a semiconductor piston; if either the piston or the capacitor plates are perfectly
conducting or perfectly insulating, then aes = 0. If the capacitor plates are perfect
conductors (approximated by metallic plates), then the plate surfaces must be
equipotentials, in which case there cannot be a net electric field difference between
the front and back ends of the piston (E1 − E2 = 0), therefore aes = 0. On
the other hand, if the plates are perfect insulators, then their surface charges are
immobile and the electric field remains the same throughout the capacitor despite
any displacement of the piston and again E1 − E2 = 0. Conversely, if the piston
is a perfect conductor, its surfaces must be equipotentials so the electric field at
the front and back must be the same (E1 − E2 = 0), or alternatively, one can say
that, as a conductor, electric fields cannot penetrate into the piston interior so as
to apply the [(p · ∇)E]y force, and again there can be no net force exerted on it.
Finally, if the piston is an insulator, then charge residing on the capacitor plates
cannot flow through it so as to diminish the electric field; again, E1−E2 = 0. Thus,
it is only when both the piston and the plates have finite, non-zero conductivities
that they can act as an electrostatic motor.

Assuming the piston to be a semiconducting (0 < σ < ∞) dielectric (ε), then
using Ohm’s law (J = σE), the continuity equation (∇ · J = −∂ρ

∂t ), and Gauss’
law (∇·E = ρ

εo
), one can describe the acceleration of the piston aes in terms of its

electromechanical properties as it locally shorts out the electric field in the channel
through which it passes:

aes =
ε − εo

2ρly
[
Vs

lx
]2 exp[−βη]{1 − exp[−η]} =

ε − εo

2ρly
E2

o exp[−βη]{1 − exp[−η]}
(9.6)



280 Challenges to the Second Law

Figure 9.7: Acceleration of piston aes versus η for standard device. Curve A:
No friction or load. Curve B: Non-zero friction or load (a = 5.6 × 107m/sec2);
minimum starting velocity and terminal velocity indicated.

Here η = 2σly
εvy

, vy is the velocity of the piston, and β is a phenomenological
constant that is a measure of how far ahead of the moving piston the electric field
is affected. β must be positive to avoid unphysical delta function charge densities.
Small β values are evidenced in later 2-D simulations (Plate V); here we take
β = 0.1.

Consider a rectangular slab of silicon (lx = 300Å;ly = 600Å; lz = 104Å,
σ = 4 × 10−3(Ωm)−1, κ = 11.8), hereafter called the standard piston). In Figure
9.7, the standard piston’s acceleration is plotted versus η for the standard device.
Curve A represents the frictionless case. In the limits of vy → 0 (η → ∞) and
v → ∞ (η → 0), one has aes → 0, as expected. The former case (vy = 0) has been
treated previously. For vy → ∞, the piston moves too quickly for the capacitor’s
charge to cross the piston and short out the field, so E1 − E2 = 0 and aes = 0.
Since σ and vy are reciprocals in η, this model also predicts, as before, that aes = 0
if the piston is perfectly conducting (σ = ∞) or perfectly insulating (σ = 0) and,
therefore, accelerates only for the semiconductor case.

The form of aes in (9.6) is handy for introducing friction on, and loading of, the
piston. This model considers loading to be constant over the range of velocities
of the piston, with the result that its acceleration curves are simply shifted down
by an amount equal to the magnitude of the loading. Thus a non-zero start-up
velocity and a bounded terminal velocity are imposed on the piston dynamics.
We point out that the negative portion of Curve B to the right of vs does not
signify negative acceleration, but simply indicates values of η for which motion is
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forbidden.
Numerical integration of (9.6), incorporating friction and load resistances, al-

lows investigation of the piston’s complex nonlinear dynamics. For example, in
Figure 9.8a, the standard piston’s velocity is plotted versus time for three values
of friction/loading for the standard device. Curve (i) corresponds to the unloaded,
frictionless piston case; it has no classically-defined terminal velocity. Curve (ii)
corresponds to the piston subject to a constant frictional/load acceleration of
5.6 × 107 m/sec2. In this case, the piston has a terminal velocity of roughly 8
m/sec. Finally, for Curve (iii) (a = 9.4× 107 m/sec2 friction/load), the piston has
only a narrow range of velocities for which it has positive acceleration; for greater
friction or loading the piston does not begin to move.

Figure 9.8c plots piston power versus vy for the previous three cases. In the
frictionless case (Curve (i)), power increases monotonically, but is bounded. Cases
(ii) and (iii) display local maxima. The power maximum for case (ii) occurs below
its terminal velocity, indicating that the most efficient power extraction schemes
should use velocity-governed loads, rather than constant loads. Also, notice that
case (ii) and (iii) show initially negative excursions, evidence that energy must be
supplied to kick-start the piston’s motion.

There are three characteristic times scales pertinent to the operation of the
standard device: (i) the plate discharge time along the piston (τdis � ly

vy
); (ii)

the recharging time for the plates (τrec); and (iii) the period of oscillation of the
piston in the channel (τosc � 2Ly

vy
), where vy is the average velocity of the piston.

The discharge time (τdis) must allow a sufficient difference in electric field to be
maintained between the leading and trailing edges of the piston so that it is pulled
through the channel.

Circuit theory shows that the recharge time (τrec) will be longer than the
discharge time and should not present an operational problem. Typically, τrec for
p-n diodes of physical dimensions comparable to the standard device are τrec �
10−7 − 10−8 sec. However, in order for the electric field in the gap to thermally
regenerate enough to maintain force on the piston, the period of oscillation of the
piston in the channel (τosc) must be longer than τrec, and ideally, much longer.
Therefore, for the smooth operation of the motor, the ordering for characteristic
time scales should be ly

vy
� τdis < τrec � τosc � 2Ly

vy
.

The electrostatic motor (Figure 9.9a) can be modeled as a network of discrete
resistors and capacitors (Figure 9.9b). The semiconductor capacitor plates are
modeled as a distributed network of resistors (R) and their interior surfaces as a
sequence of aligned parallel plate capacitors (C). The network is powered by a
battery (Vs).

The piston is represented by a resistor and by an accompanying switch. The
piston’s motion is modeled by the sequential closing and opening of the local
switches. As the piston leaves a capacitorn region, a closed switchn opens up,
while the next switchn+1 in line closes, signaling the arrival of the piston. The
trailing capacitor recharges while the leading capacitor discharges.

It can be shown from basic circuit theory – and has been confirmed by paramet-
ric studies of this system using PSpice network simulations – that the time constant
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Figure 9.8: Piston dynamics for standard device. a) Acceleration versus vy for
three cases: (i) frictionless; (ii) friction/load acceleration a = 5.6 × 107m/sec2;
and (iii) friction/load acceleration a = 9.4 × 107m/sec2. b) Velocity versus time
for cases (i) and (ii) above; case (iii) absent for lack of sufficient start-up velocity.
c) Piston power versus vy for cases (i) - (iii) above.
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Figure 9.9: Linear electrostatic motor modeled as a discrete resistor-capacitor
network. a) Piston in standard device. b) Analog resistor-capacitor network model.
c) Electrostatic energy versus time for sequential firing of two capacitors; traveling
negative potential energy pulse evident in (Cn + Cn+1) curve.
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for the discharging capacitor is less than the time constant for the recharging ca-
pacitor. As a result, the moving piston always finds itself moving in the direction
of more intense electric fields and field gradients. In other words, it perpetually
moves forward toward a lower local energy state, riding in a self-induced potential
energy trough. The traveling piston can also be viewed as the material equivalent
of an electrical pulse propagating through a resistive-capacitive transmission line.
This semiconducting piston acts analogously to the conducting piston in a mag-
netic rail gun which, by completing the circuit between the gun’s two electrified
rails, establishes a current and magnetic field by which the resultant Lorentz force
on the piston’s current drives the piston along the rails. In the present electrostatic
case, the piston is propelled forward by the greater (p · ∇)E force on its leading
edge.

When the piston reaches the end of the R-C network, where the field ahead
has dropped off, but where field behind has regenerated, the piston reverses its
motion. As a result, it will move cyclically through the network. It is remarkable
that this motion does not require any electronic timing circuitry; instead, the
timing is set by the piston itself. As long as it overcomes friction, the piston will
run perpetually for the life of the battery.

Via the substitution Vs → Vbi, the piston in Figures 9.9 and 9.10 may now be
identified as the semiconductor piston in Case 3 (Plate IVc). The same physics
applies, except that, whereas the free energy for the linear electrostatic motor (rail
gun) above is supplied by a battery, now it is supplied by the free energy of the
thermally-powered p-n depletion region.

9.3.2 Numerical Simulations
Essentials of the above 1-D dynamical nonequilibrium model of the linear electro-
static motor are corroborated by the equilibrium solutions of the 2-D model. Color
Plate V presents a sequence of 2-D equilibrium solutions simulating aspects of the
motion of the piston through the J-II region of the standard device. It is strongly
emphasized that this is not a dynamical simulation in which the piston is modeled
as moving; rather, these are quasi-static equilibrium configurations of the system
simulated by the Atlas program in which the piston is held at rest at different
locations in the J-II region, despite implicit force imbalances. Nevertheless, much
physics can be inferred by stepping the piston through the channel in this fashion.

In Plate Va, the leading edge of the piston is visible above the J-II channel. The
electric field is fairly uniform in the gap interior (E � 7× 106 V/m), decreasing in
strength at its ends, as expected. As the piston enters the gap, thereby initiating
the bridging of the separated n- and p-regions, the electric field strength falls
throughout the J-II vacuum and p-n bulk regions, but most strongly near the
piston. This substantiates the β term in (9.6). The field and field gradients
are stronger below the piston (in the direction of implied motion) than above it
(outside the channel); as a result, should the piston be free to move, it would be
drawn further into the channel. In Plate Vc, with the piston now squarely within
the channel, the electric fields in and near the piston have been reduced by a factor
of 3 below pre-insertion values, but they remain larger in the channel ahead of the
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Figure 9.10: Electrostatic potential energy of standard device versus piston position
in J-II gap: Total energy, p-n bulk energy, vacuum energy, and piston energy
indicated. Piston located at Step 7, corresponding to Plate Vd.

piston and, therefore, continue to draw it in.
In Plate Vd, as the piston approaches mid-channel, the field ahead of the piston

continues to be more intense than the one behind. At mid-channel, (Plate Ve),
the field is roughly balanced on both sides of the piston. Here, a resting piston
would experience roughly no net force, but it would be in the unstable equilibrium
position depicted in Figure 9.8b. Were it in motion, then it should continue to
see stronger fields and field gradients ahead of it than behind it and, thus, would
continue to move in the direction of motion. Furthermore, since presumably it has
already accelerated to mid-channel from the gap ends, its inertia should carry it
past this mid-channel equilibrium point.

Now compare the upper channel in Plates Vd and e. Notice the field has been
partially restored between Vd and Ve after the ‘passage’ of the piston. Finally, in
Plate Vf, the piston has reached the bottom of the channel. As before, the field
is locally reduced, but it has regenerated behind. Since the field is now stronger
behind the piston, it should exert a net force upward so as to reverse its motion.
It is instructive to view this ‘motion sequence’ in reverse, proceeding from Ve→Va
so as to appreciate how the piston’s motion can be cyclic. This is most evident
perhaps in the inversion symmetry seen between Plates Vc and Vf.

Figure 9.10 displays the equilibrium electrostatic potential energies of the stan-
dard device and piston for a sequence of steps through the channel, calculated with
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the Atlas 2-D simulator. Frames a, b, c, d, e, and f in Plate V correspond to Steps
1, 3, 5, 7, 9 and 13, respectively, in Figure 9.10. The total, vacuum, and p-n bulk
energies of the standard device decrease significantly and symmetrically as the pis-
ton enters the channel from either direction and reaches the mid-channel (Step
9). The fractional change in field energy in the vacuum is greater than for the
p-n bulk, but the greatest absolute change occurs in the bulk. The electrostatic
energy invested in the piston itself is small compared with the bulk and vacuum
contributions.

The data in Figure 9.10 are equilibrium solutions and assume the piston to
be at rest. The energy depression seen in Figure 9.10 would occur only locally
around the piston and would be spatially asymmetric, with its greatest strength
and gradient in the direction of the piston’s motion, both as suggested in individual
frames of Plate V, in Figure 9.9c, and in the 1-D analytic model. In summary, the
sequential 2-D numerical simulations (Plate V and Figure 9.10) support the 1-D
nonequilibrium analyses preceding it.

9.3.3 Practicalities and Scaling
The steady-state operation of this solid-state electrostatic motor constitutes a
perpetuum mobile of the second type. It pits the first law of thermodynamics
against the second. If the piston cycles perpetually while under load, performing
work, then this energy must come from somewhere. Assuming the first law is
absolute, the only possible source of this unlimited energy must be the [infinite]
heat bath surrounding the device. Since the device operates in a thermodynamic
cycle, heat is transformed solely into work, in violation of the second law.

This section addresses the practical details of this device, paying especial at-
tention to the operational limits imposed by physically realistic parametric values:
mass, physical dimensions, electric field, friction, electrical conductivity, charac-
teristic time scales (e.g., τdis, τrec, τosc), and statistical fluctuations. It is found
that there exists a broad parameter space at and below the micron-size scale for
which a semiconducting piston should be able to overcome realistic levels of fric-
tion and load so as to perform work indefinitely, while being driven solely by the
thermally-generated electric fields of a p-n junction. It is found that these devices
should be able to convert heat energy into work with high instantaneous power
densities, perhaps greater than 108 W/m3.

Consider the standard piston situated in the J-II gap of the standard device.
From Figure 9.10, the standard piston should reside in a potential well approxi-
mately 3 × 10−18 J deep. From Figures 9.8 and 9.9, in the frictionless case the
piston should experience a maximum acceleration of 108m/sec2 and be capable of
instantaneous power outputs of 2×10−9W. We will now consider a realistic model
for friction.

Let the J-II channel walls be tiled with a thin, low-friction surface such as
graphite. Let the outer surfaces of the piston be only partially tiled with a match-
ing low-friction surface such that the contact fraction between the piston and the
channel walls (fc) is small (0 < fc � 1). On the other hand, let fc be sufficiently
large that: (i) there are sufficient numbers of atoms projecting out from the piston
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surfaces in contact with the channel walls to hold and guide the piston; and (ii)
there is sufficiently good electrical conduction between the piston and the channel
walls that one can use standard Ohmic current rather than quantum mechanical
tunneling current to describe the system’s electrical behavior.

It is well known that, at micron and sub-micron size scales, atomic, ionic,
and electrostatic forces (e.g., van der Waals’ interactions, induced surface charge,
molecular and hydrogen bonding, surface tension) can play dominant roles in sys-
tem dynamics. In order to minimize friction between the piston and channel walls,
fc should be as small as possible. The smallest non-zero coefficients of static and
kinetic friction yet measured experimentally are found in nested multi-walled car-
bon nanotubes (MWNT) [11, 12]. Upper-limit values of coefficients of static (s)
and kinetic (k) friction have been experimentally measured to be: Fs < 2.3× 1014

N/atom = 6.6 × 105 N/m2, and Fk < 1.5 × 10−14 N/atom = 4.3 × 105 N/m2.
Theoretical arguments suggest true values could be much lower than these. This
friction is presumed to arise purely from van der Waals’ interactions between the
sliding carbon contact surfaces. The friction can be reduced by reducing the con-
tact fraction fc. Experimental observations suggest that MWNT operate as totally
wear-free bearings [13].

The static or kinetic friction Ff(s,k) between two surfaces of area A, where
normal forces are not imposed and asperities are absent, should scale as: Ff(s,k) =
fcAF(s,k). For the piston in the J-II channel, the acceleration is:

af(s,k) =
Ff(s,k)

m
=

fcAF(s,k)

ρSilxlylz
=

2fcF(s,k)

ρSilx
(9.7)

For the piston to begin moving in the channel the electrostatic acceleration
must exceed the static friction:

aes

af,s
=

(ε − εo)V 2
bi(α

2
1 − α2

2)
4lxlyfcFs

> 1 (9.8)

This inequality is the starting point for delimiting a viability regime for the oper-
ation of this device. For the standard piston in the standard device (letting Fs be
the upper-limit value for MWNT and taking ((α2

1 − α2
2) � 0.5), (9.8) reduces to:

aes

af,s
� (3.2 × a−18)

1
l2xfc

(9.9)

In Figure 9.11 is plotted Log10( aes

af,s
) versus lx for various contours of constant

fc. For Log10( aes

af,s
) < 0, the frictional acceleration exeeds the electrostatic accel-

eration, so the piston cannot move. This places a lower bound on the viability
regime of the standard device. Above this bound, the piston can experience siz-
able accelerations, on the order of 107 − 108m/sec2, but these accelerations are
still within mechanical strength limits for small structures.

A left-most viability bound for the standard device is found by requiring that
lx significantly exceed the size of individual atoms and, preferably, be large enough
that the system can be treated by classical, rather than quantum, theory. If the
piston thickness lx is greater than about 50-100 atoms, or about 10−8m, this
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Figure 9.11: Ratio of piston acceleration to frictional acceleration (Log10(aes

af
))

versus gap width (xg) with contours of constant fc indicated. Viability regime
delimited by labeled boundary lines. Star indicates location of standard device.

system should be essentially classical. This criterion sets the left-most bound of
the viability regime in Figure 9.11. The last bound is set by restricting fc such
that some reasonable minimum number of atoms act as guide surfaces between
the piston and the channel walls. Choosing 10 atoms/piston face as sufficient,
the sigmoidal right-top viability bound is determined. This bound can later be
modified to satisfy electrical conductivity constraints.

The viability regime has been delimited using realistic, but conservative, choices
for the system parameters. More liberal choices (e.g., letting Fs → Fk or (α2

1 −
α2

2) = 0.8) would expand the regime somewhat. Even as it stands, however, the
viability regime for the electrostatic motor spans two orders of magnitude in size
(10−8m ≤ lx ≤ 10−6m) and over three orders of magnitude in aes

af,s
.

Several observations can be made from Figure 9.11:

a) The spontaneous acceleration of the piston by self-generated fields
appears possible only for micron and sub-micron pistons. This is espe-
cially evident in (9.6) where aes ∼ 1

l3x
. Given the severe physical and

mechanical requirements for positive acceleration against friction (See
(9.8) and (9.9), it is not surprising that this phenomenon has not been
discovered accidentally.
b) aes can exceed af by more than 3 orders of magnitude, thus allowing
significant loading of the piston with which to perform work.
c) More frictional contact surfaces appear feasible (up to 103 times
more frictional than MWNT), without precluding piston motion or
loading.
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Figure 9.12: Physical dimensions of standard piston.

The magnitude of the piston’s acceleration (ap = aes − af ) can be calculated,
including friction, using (9.5-9.7). For the standard device, using graphitic surfaces
and assuming fc = 10−4 (corresponding to 1.7 × 106 atoms on each piston face),
one finds af = 1.9×106 m/sec2, aes = 6.7×107 m/sec2, and ap = 6.5×107 m/sec2.
The average velocity during a piston stroke is roughly vy �

√
2Lyap � 2m/s. The

oscillation period of the piston in the channel is τosc = (2Ly

vy
) � 2 × 10−7sec; the

oscillation frequency is fosc = τosc � 5 × 106Hz. τosc is significantly longer than
the typical inverse slew rates for p-n transistors of comparable physical dimensions
(τdis ≤ τrec ∼ τtrans ∼ 10−8 − 10−7sec<< τosc � 2 × 10−7sec); therefore, the
electric field in the wake of the piston traversing the channel can recharge before
the piston’s return. On the other hand, given a typical piston velocity and length
(vy � 2m/sec, ly � 6 × 10−8m), these field decay rates are sufficiently high for
the electric field in the channel walls to decay along the length of the piston
(τdis � ly

vy
∼ 3× 10−8sec) so as to admit significant difference in the magnitude of

the electric field between the leading and trailing edge of the piston; therefore, the
a priori estimate of ((α2

1−α2
2) = 0.5) is plausible. A similar conclusion is supported

by evaluation of the exponential decay model (in (9.6)). Overall, the time scale
ordering developed earlier (τdis ≤ τrec � τosc) is reasonably well satisfied.

The viability regime depicted in Figure 9.11 is favorable to ohmic treatment of
the piston and channel. The piston acts as a sliding electrical resistor – essentially
a motor brush – between the positive polarity n-region and the negative polarity p-
region, as depicted in Figure 9.12. The piston’s electrical resistance can be written
as

Rpiston = Rb + 2Rc =
1

lylz
[
xg − 2lc

σb
+

2lc
fcσc

] � 1
lylz

[
lx
σb

+
2lc

fcσc
] (9.10)

where Rb(c)[Ω] is the electrical resistance of the piston bulk (contacts); σb(c)[(Ωm)−1]
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is the electrical conductivity of the bulk (contact) material; and lc is the x-length of
the contacts. It is assumed that lc � lx � xg. The values of the lc and fc are both
small and offset one another, while σc can in principle be varied over many orders
of magnitude such that Rc can be made negligible compared with Rb. Consider,
for example, the standard device with a silicon piston lined with graphite, oper-
ating with the following parameters: lx = 300Å, ly = 600Å, lz = 104Å, lc = 5Å,
σb = 10σSi = 4× 10−3(Ωm)−1, σc = σgraphite = 7.1× 104(Ωm)−1, and fc = 10−4.
With these parameters, one has from (9.6-9.10): Rb � 108Ω � Rc = 2.5 × 103Ω
and (aes = 6.7×107m/sec2) > (ap = 6.5×107m/sec2) � (af,s = 1.9×106m/sec2)
> (af,k = 1.2 × 106m/sec2). Ohmic losses for this system, concentrated in the
piston region, can be engineered to be insignificant.

For objects in this size range, the effect of statistical fluctuations should be
considered, especially since they have been the foil of many past challenges. Earlier
analysis indicates the standard device can be modeled as an R-C network, so it is
appropriate to consider fluctuations in electronic charge. Charge is also naturally
salient since it is through charge-induced electric fields that the system is powered.
Spectral analysis in the spirit of the Nyquist and Wiener-Khintchine theorems [14]
allows one to write the rms charge fluctuation for a resistor capacitor system as√

< ∆Q2 > = ∆Qrms ∼
√

4RC2kT∆f , where C is capacitance of the J-II region
and ∆f is the spectral width of the fluctuations measured. Taking characteristic
values for the standard device (R = 109Ω, C = εoLylz

lx
= 10−16F, ∆f ∼ fosc �

5 × 106Hz, T = 300K), one obtains ∆Qrms � 2 electronic charges. Since the
total charge in the standard device’s J-II region is found to be Qtotal � 330q,
one expects less than one percent statistical fluctuation in electronic charge over
the entire J-II channel capacitor during a piston’s oscillation period. Since the
fractional statistical fluctuation is much less than the fractional change in charge
due to electrical operation of the piston itself (0.01 � ∆Qrms

∆Qtotal
� ∆Qop

∆Qtotal
� 0.4),

by this measure, statistical fluctuations should not play a primary role in the
operation of the standard device. A similar conclusion can be reached by equating
the thermal energy to the piston’s kinetic energy.

Assuming that aes is constant in magnitude and that aes � af , the average
power per cycle can be shown to be < Psd >= mpiston(2a3

pLy)1/2 � 2 × 10−9W,
where mpiston = ρSilxlylz is the mass of the piston. The average power densities
for the standard device are, therefore, Psd ∼ 2 × 109Wm−3. The standard device
appears capable of producing significant output power and power densities in the
presence of realistic levels of friction, while satisfying the conditions for classical
electrical conductivity, providing substantial numbers of guide/contact atoms, and
overcoming statistical fluctuations.

In Color Plates VIa,b power (W) and power density (Wm−3) are explored for
a range of device sizes, scaled in direct physical proportion to the standard device
(i.e., ly = 2lx, Ly = 5ly, lz = 33.3lx, etc.). The other physical specifications of
the standard device are retained (i.e., silicon matrix, NA = ND = 1021m−3, etc.).
The previously discussed viability bounds (Figure 9.11) are still enforced. In Plate
VIa, the maxima of the power curves (Figure 9.8c) are calculated over an extended
viability regime (as in Figure 9.11) and plotted versus lx and fc. Power contours
extend linearly in value from a maximum of 1.2× 10−8 W/device (yellow, center)
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down to 1× 10−9 W/device (red). The star indicates the location of the standard
device.

Perhaps a more meaningful figure of merit than maximum power per device
(Plate VIa) is maximum power density (Wm−3). It is a better indicator of how
rapidly thermal energy can be transformed into work by a given volume of working
substance; thus, it is a better measure of how significantly this device challenges
the second law. In Plate VIb, maximum power density (Wm−3) is presented for
a range of devices versus fc and xg, scaled as before in direct physical proportion
to the standard device. Whereas in Plate VI the contour values vary linearly with
adjacent contours, in Plate VIb they vary logarithmically in value from 1010Wm−3

(left-most, yellow) to 10 Wm−3 (right-most, red). Again, the standard device is
located by the star. The greatest power density obtains for small devices, while
the greatest unit power obtains for larger devices.

The parameter space available for this device (spanned by xg, xdev, NA, ND, T ,
etc.) is far greater than can be explored here, and only modest attempts have been
made to optimize the performance of the standard device. Nonetheless, it appears
the theoretical instantaneous power densities achievable by it are sizable. To put
this in perspective, one cubic meter of standard devices (amounting to 1018 in
number) could, in principle, convert thermal energy into work with instantaneous
power output on par with the output of a modern-day nuclear power plant; or,
in 1 second, produce the work equivalent of the explosive yield of 500 kg of high-
explosive. This, of course, is only instantaneous power density since, were the
device to convert thermal energy into work at this rate without compensatory
heat influx from the surroundings, the device would cool at an unsustainably fast
rate of about 100 K/sec.

More advanced designs for the motor can be envisioned. For example, the
linear standard device could be circularized. This rotary motor would consist of
concentric cylinders of n- and p-regions (the stator) joined at their base (to create
a depletion region) and having a gap between them in which a multi-piston rotor
runs. Multiple rotor pistons could be yoked together so as to balance radial forces
and torques. In the limit of large radius, the rotor pistons would move in what is
essentially a linear track, so the above discussion for linear motors should apply.
The rotor pistons would be driven by the local electric field energy in the cylindrical
gap. If they are spaced sufficiently far apart azimuthally, then the field in the wake
of a given piston could thermally regenerate in time to power the advancing piston.

9.4 Hammer and Anvil Model

9.4.1 Theory
A more immediate laboratory test of the thermal capacitor concept appears fea-
sible, one sidestepping the high-tolerance micromachining required of the LEM.
This will be called the hammer-anvil. It is a thermally-charged semiconductor
parallel-plate capacitor, with one plate fixed and the other mounted on a flexi-
ble double cantilever spring. For mechanical Q ≥ 103, and for matched electrical
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and mechanical time constants (τe ∼ τm), the system can execute steady-state,
resonant oscillation by which thermal energy is converted into mechanical energy.
An example based on Sandia National Laboratories’ SUMMiTTM process is ex-
amined, however, more advanced designs are possible. As for the standard device,
the hammer-anvil relies on the depletion region of a n-p junction to establish a po-
tential difference and electric field in the active, open-gap region at the middle of
the device. This device can be constructed within present-day NEMS and MEMS
fabrication art and so represents a more immediate and cogent challenge than the
LEM.

NEMS and MEMS cantilever oscillators have many proven and potential ap-
plications, including as accelerometers, motors, clocks, sensors (e.g., tempera-
ture, pressure, electronic charge, magnetic fields, environmental contaminants,
microbes), beam steerers, choppers, and modulators, computing elements, and
switches [15, 16, 17]. These are usually driven by AC electrical signals whose
frequencies are commensurate with their mechanical oscillation frequencies, but
under suitable circumstances, DC signals can also effectively drive them. Ow-
ing to their utility, the art of NEMS-MEMS cantilevers is relatively advanced.
DC-driven, resonant micro-cantilevers have been explored [18].

Consider the macroscopic electromechanical device pictured in Figure 9.13a,
consisting of a battery (Vo), resistor (R), and a variable capacitor in which the
bottom plate (the anvil) is fixed, while the top plate (the hammer, mass m) is
supended from a conducting spring with spring constant k. This will be called the
hammer-anvil. It is a hybrid of well-known mechanical and LRC oscillators. The
hammer is free to move with respect to the anvil and when they contact any accu-
mulated charge on the plates is assumed to flow between them without resistance.
The electrical capacitance of the device varies with the dynamic separation of the
plates according to

C(y) =
εoA

ygap − y
, (9.11)

where A is the area of the plates, y = 0 is the static mechanical equilibrium position
of the hammer, ygap is the equilibrium separation of the plates, and y = y(t) is
the instantaneous position of the hammer, with the positive direction downward.
For convenience, we denote by Co = εoA

ygap
the capacitance when the spring is in its

undeflected equilibrium state.
Two independent time constants characterize this system: one electrical (τe ∼

RCo) and one mechanical (τm = 2π
√

m
k ). The electromechanics of the hammer is

described by the coupled pair of equations:

F = Fdiss + F + Fes = mÿ = − 1
Q

ẏ − ky − q2

2εoA
, (9.12)

where the instantaneous charge on the plates q(t) satisfies:

q̇ = (Vo −
q(ygap − y)

εoA
)
1
R

; q < qsat, (9.13)

and q̇ = 0 for q ≥ qsat. Here the rhs of (9.12) gives of the dissipative, spring, and

s
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Figure 9.13: Hammer-anvil electromechanical oscillator. (a) macroscopic device

electrostatic forces, respectively. qsat is the maximum (saturated) charge on the
plates, set by geometry and composition of the plates.

This system is electromechanically unstable: if the charged capacitor plates
electrostatically draw together and electrically discharge, the attractive electric
field collapses, the spring retracts the plates, the plates recharge on time scale τe,
and the cycle can repeat. If the hammer’s mechanical oscillation time constant
(τm ∼ 2π

√
m/k) is comparable to the circuit’s electrical time constant (τe ∼ RC),

and if the mechanical quality factor, Qm, is sufficiently large, then the system can
execute resonant, sustained electromechanical oscillation, converting electrical into
mechanical energy.

A macroscopic laboratory model similar to Figure 9.13a was built and tested
(scale length ∼ 50 cm); it validated the operating principles of this device. The
model consisted of a 60 cm long tungsten spring (spring constant k = 0.8 N/m)
attached to a mobile, circular capacitor plate (hammer, dia = 10 cm, m = 4 gm,

schematic; (b) schematic of NEMS-MEMS device, with engineering dimensions.
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Figure 9.14: Operational status (OS) of macroscopic laboratory model hammer-
anvil versus ratio of electrical and mechanical time constants (τe/τm). Legend: (1)
no oscillation; (2) sub-harmonic or super-harmonic oscillation; (3) nearly harmonic
oscillation; (4) harmonic oscillation. [19]

metallic), suspended above a fixed metallic plate, in series with a variable resistor
(5× 104Ω ≤ R ≤ 2 × 107Ω) and power supply (500V ≤ 2000V ). (A booster
capacitor (Cboost = 2µ F) was placed in parallel with the hammer-anvil capacitor
to allow τ ∼ τe.) As the resistance R was varied and the resonance condition
was met (τe ∼ RC � 2π

√
m
k ∼ τm), the hammer-capacitor fell into steady-state

oscillation, while outside this regime, the oscillation either could not be started or,
if it was jump-started, the oscillation quickly died out.

status (OS)of the laboratory model at four
bias voltages (500V, 750V, 1000V, 1250V). Operational status levels 1-4 on the
ordinate correspond to: (1) no oscillation; (2) sub-harmonic or super-harmonic; (3)
nearly harmonic; (4) harmonic oscillation. The abscissa gives the ratio of electrical
to mechanical time constants (τe/τm), adjusted via the variable resistor R (Figure
9.13a). These are response curves comparable to those of typical forced resonant
oscillators. As expected, Figure 9.14 indicates harmonic response (OS-3,4) at
τe/τm ∼ 1; and non-harmonic response elsewhere. The best resonance shifts to
higher τe/τm values with increasing bias voltage. The OS-2 and OS-3 plateaus
broaden with increasing bias voltage; this is consistent with the oscillator being
driven harder and, thus, requiring less stringent (τe/τm) criterion to achieve gap
closure. Similar peak broadening is predicted for the MEMS and NEMS hammer-
anvil.
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9.4.2 Operational Criteria
This macroscopic oscillator should scale down to the micro- and nanoscopic realms.
Force equation (9.12) still applies, but with the addition of a van der Waals force
term:

FvdW =
HA

6π(ygap − y)3
, (9.14)

where H is the Hamaker constant (H = 0.4 − 4 × 10−19J for most non-polar
materials; for silicon HSi = 10−19J).

Consider the p-n device Figure 9.13b, a microscopic version of the hammer-
anvil, consisting of two p-n diodes (columns) on either side connected on top
to a block of n-type material suspended by two flexible cantilever springs over
the central p-type base. Comparing Figures 9.13a and 9.13b, the top-center n-
semiconductor mass in Fig 13b acts as the hammer in Figure 9.13a; likewise, the
lower stationary p-semiconductor in Figure 9.13b acts as the lower, fixed anvil.
The spring is replaced by a double cantilever. For long, thin cantilevers (tc � lc)
and for small vertical displacements (ygap � lc), a linear spring constant can be
defined: k = Y lz

2 [ tc

lc
]3 where lc, lz, and tc are length, width, and thickness, and Y

is Young’s modulus (Ysilicon = 1.1×1011N/m2). The entire device can be regarded
as a distributed network of resistors and capacitors; the long, thin cantilevers can
dominate device resistance. The column depletion regions impose the built-in
voltage across the central gap, similarly as for the p-n diode in Figure 9.1.

The electric field across its central gap provides negative electrostatic pressure
which drives and sustains the mechanical oscillations. For sustained oscillation,
three fundamental criteria must be met:

(i) The electrical and mechanical time constants must be comparable
(τe ∼ τm) to achieve electromechanical resonance.
(ii) The hammer’s mechanical energy gain per cycle (∆Ees) must equal
or exceed its mechanical dissipation (∆Ediss), otherwise the oscillation
will damp out; and
(iii) The cantilever spring force retracting the hammer after contact
with the anvil must exceed the maximum attractive forces (van der
Waals + electrostatic), otherwise the hammer will stick to the anvil.

We will address each criterion separately, then combine (ii) and (iii) into a more
general, combined criterion.

Criterion (i) (τe ∼ τm): The electrical time constant τe for the p-n hammer-
anvil junction (Figure 9.12b) should be on the order of the inverse-slew rate of a

This is typically 10−6 − 10−8s for micron-size silicon
diodes, corresponding to frequencies of f ∼ 1−100MHz. The approximate resonant
mechanical frequency of a double-cantilever is given by:

fm ∼ Bn

√
Y

ρ

tc
l2c

, (9.15)

comparably-sized p-n diode.
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where Bn is a constant of order unity, and ρ is the mass density of the cantilever
(ρSi = 2.3 × 103 kg/m3). For comparison, a silicon cantilever of dimensions tc =
10−6m and lc = 10−5m should have a resonant frequency of approximately fm ∼
108Hz. (The mass of the hammer could lower this frequency.)

Since fm can be made comparable to fe, the first criterion appears capable
of being met by NEMS or MEMS systems. Mechanical resonant frequencies for
cantilevers in excess of 109 Hz have been achieved, however, the quality factors
(Q) of these are significantly reduced, possibly due to dissipative surface states
which can dominate the physics at short distance scales [20, 21]. (For initial tests,
fe should be minimized so as to minimize fm since this would imply physically
larger devices, which are generally easier to fabricate and diagnose; also, larger
devices imply larger Qm, which should reduce power requirements.)

Criterion (ii) (Work versus dissipation): Criterion (ii) requires that the energy
gained through electrostatic work on the hammer per mechanical cycle (∆Ees)
exceed the mechanical dissipation per cycle (∆Ediss). The relatively small sizes
of the electrostatic and dissipative forces compared with the mechanical spring
forces allow use of the harmonic approximation, which yields a closed-form integral
solution to the coupled equations (9.12) and (9.13). Thus, we assume the hammer
executes lightly-damped (Q � 1) simple harmonic motion: y(t) � ygapcos(ωot),

with ωo =
√

k
m . Substituting this into (9.13) yields an uncoupled equation for the

evolution of the electric charge on the capacitor plates:

q̇ + q
(1 − cos(ωot))

RCo
− Vo

R
= 0 (9.16)

whose solution for homogeneous initial conditions is found to be

q(t) =

Vo

R
exp[κ sin(

2πt

τm
)− t

τe
]
∫ t

0

exp[
τ ′

τe
−κ sin(

2πτ ′

τm
)]dτ ′ =

Vo

R
exp[g(t)]

∫ t

0

exp[−g(τ ′)]dτ ′,

(9.17)
where τm = 2π/ωo, and κ ≡ τm

2πτe
, and g(t) = [κ sin(2πt

τm
)− t

τe
]. Here τe = RCo need

not be an RC time constant as for the macroscopic oscillator (Figure 13a); rather
it will likely be set by microscopic thermal processes, for instance, charge carrier
diffusion, generation and recombination rates. The type, doping, and temperature
of the semiconductor should have a strong influence on τe; for example, GaAs
should have significantly shorter time constants than Si.

The Gaussian parallel plate approximation E = q
εoA allows the electrostatic

energy gain over one period of mechanical oscillation τm to be written as

∆Ees =
∮

Fes · dy(t) =
∫ τm

0

q2(t)
2εo

[− 1
τm

ygap sin(
t

τm
)]dt (9.18)

Meanwhile, for lightly-damped oscillators (Qm � 1), the dissipation can be ex-
pressed in terms of Qm as:

∆Ediss �
πky2

gap

Qm
(9.19)
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Combining (9.18) and (9.19), the second criterion can be written:

∆Ees

∆Ediss
=

−Q

2πεoτmkygap

∫ τm

0

q2(t) sin(
t

τm
)dt. (9.20)

Resonant oscillation develops only for τe ∼ τm. Away from this condition
(either τm � τe or τm � τe), it can be shown (taking τe → 0 or τe → ∞ in
(9.17)) that the electric field becomes essentially static, so there is no net energy
gain per cycle (∆Ees −→ 0), while ∆Ediss remains constant (See (9.19).); thus the
oscillation damps out. In the regime τe ∼ τm, however, the asymmetry critical to
resonance is realized: more work is performed on the spring by the field during
gap closure than is work performed by the spring against the field on gap opening.
It is also required that the Q of the oscillator is sufficiently large that the energy
gain per cycle exceeds the energy loss per cycle. For lightly damped oscillators,
oscillation can be sustained by minimal energy input.

Criterion (iii) (Non-stick hammer): The third criterion arises from the dispar-
ity in magnitude and spatial variation of the strengths of the forces acting on the
hammer. For systems of interest, dissipative and electrostatic forces are subor-
dinate to spring and van der Waals forces over the critical distances near where
the hammer makes contact with the anvil. For the hammer not to stick to the
anvil, the spring force at y = ygap must exceed the sum of the electrostatic and
van der Waals (vdW) forces at the latter’s cut-off (saturation) distance, typically
ycut−off ∼ 1.6 × 10−10m, roughly an atomic radius. In this model, the dissipa-
tive and electrostatic forces act mechanically non-conservatively and can be of the
same order of magnitude. The spring and vdW forces, on the other hand, are
conservative and vary spatially with significantly different power laws and intrin-
sic strengths; while the spring force varies as Fs ∼ y, the vdW force varies as
FvdW ∼ [ygap − y]−3. Because of the latter’s stronger spatial dependence, it can
exceed the spring force at small gap distances – leading to stiction – unless steps
are taken. Varying surface composition, one can alter the vdW force magnitude
roughly over an order of magnitude via the Hamaker constant, but it can be most
directly and easily reduced by reducing the contact area between the surfaces.

Since the parameter space for viable hammer-anvil oscillators is quite broad,
for the sake of clarity and because experimental prototypes will most likely be pur-
sued first in the MEMS regime, we will restrict much of the following discussion
to parameters closely aligned with a well-known and specified MEMS production
standard: the SUMMiTTM process as developed and supported by Sandia Na-
tional Laboratories.

In Color Plate VII the principal forces exerted on the hammer (excluding dissi-
pation) are plotted versus gap opening for three typical oscillators, as specified by
cantilever length (10-90µm). The electrostatic force is given for Vo = Vbi = 0.6V,
with an electric field saturating at a maximum strength of 2 × 107V/m, similarly
as for the p-n standard device. (This follows the conservative assumption that
the vacuum gap electric field strength will remain below the dielectric strength of
silicon (3 × 107V/m). It should also render a conservative (under-) estimate of
actual device performance.) The vdW force is presented for five values of surface
contact fraction (10−4 ≤ η ≤ 1). (For optimal designs of the hammer-anvil, η can
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be up to about η � 10−2, indicating 1% direct physical contact between hammer
and anvil surfaces.)

The third criterion can be written Fs > FvdW + Fes, or

kygap >
HηA

6πy3
cut−off

+
εoE

2
maxA

2
(9.21)

Since Fes � FvdW in the contact region, the third criterion can be reduced to:

6πkygapy
3
cut−off

HηA
> 1 (9.22)

If one sets the third criterion ((9.22)) to equality and combines it with the
second criterion ((9.20)), one obtains a combined criterion

Q

4πε2oτmkygap

∫ τm

0

q2(t) sin(
t

τm
)dt > 1 (9.23)

If one extracts the dimensional term q2 from the integrand, assumes the integral
resolves to order one, and re-expresses slightly, then a general dimensionalized
condition for steady-state operation of the oscillator can be written:

6πy3
cut−off εoE

2
maxQ

ηH
� Q

η
· Electrostatic Pressure
van der Waals Pressure

> 1 (9.24)

This general condition is the product of two simple ratios. The pressure ratio
incorporates the pressure driving the oscillation (electrostatic) and the ‘stiction
pressure’ (van der Waals), while the other ratio indicates the importance of min-
imum dissipation (Q) and minimum surface contact (η). Interestingly, the spring
force, which figures prominently in both criteria (ii) and (iii), drops out of this
combined criterion entirely.

9.4.3 Numerical Simulations
Numerical simulations using MatLab and commercial semiconductor device sim-
ulators verified the principal results of the 1-D model of the dc-driven resonant
oscillator. Two-dimensional numerical simulations of the hammer-anvil, performed
using Silvaco International’s Semiconductor Device Simulation Software [Atlas (S-
Pisces, Giga)], verified the equilibrium aspects of the system’s electric field. Out-
put from the simulations were the steady-state, simultaneous solutions to the Pois-
son, continuity, and force equations, using the Shockley-Read-Hall recombination
model. Simulations verified that the magnitude of the open-gap electric field can
exceed that of the local depletion region by almost an order of magnitude, topping
out in excess of 2 × 107V/m, similarly as for Color Plate IVb. Although the gap
volume is significantly less than the depletion region volume (ygap � ydr), since
electrostatic energy density is proportional to E2, the electrostatic potential energy
of the open gap can significantly exceed that of the depletion region. Numerical
simulations also verified that the electric field and electrostatic energy in the gap
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is lost upon gap closure as a new depletion region forms. Like the standard device
earlier, the hammer-anvil constitutes a microcapacitor that can be discharged by
gap closure.

The electrostatic pressure Pe for the open-gap hammer-anvil with even modest
biasing (e.g., Vbias = 0.6V) will be at least P ∼ 103Pa. In principle, this can be
supplied by the built-in potential, (Vbias ≡ Vbi). Although the absolute electro-
static force exerted on the hammer is small, under Criteria (i-iii) it is sufficient
to resonantly drive and maintain a high-Q oscillation. NEMS-MEMS cantilevers
have documented Qs as high as Q ∼ 105 in vacuum [20]. This implies that a small
energy gain per cycle (∼ 10−5 total mechanical energy) should be sufficient to
sustain oscillation. In Plate VIII is plotted a range of viability for hammer-anvil
devices constructed with physical dimensions achievable with the SUMMiTTM

process, and identical with the lc = 30µm case from Plate VII. Plate VIII presents
minimum bias voltage required for sustained mechanical oscillation consistent with
Criteria (i-iii) and realistic physical parameters for silicon based devices. Voltages
are plotted as a function of quality factor Q and the ratio of electrical to mechani-
cal time constants ( τe

τm
). Equipotentials (0.6V - 90V) are overlayed for comparison.

Simulations are bounded above by the condition: Q < 106. Other areas not col-
ored represent unviable regions of parameter space wherein the device requires a
net input of reactive energy to oscillate, above and beyond the work required to
offset presumed dissipation.

Plate VIII, as expected, indicates that the hammer-anvil performs most effi-
ciently – i.e., at the lowest dc-voltage – at the resonance condition ( τe

τm
∼ 1) and at

large Q values. Away from these, either large driving voltages are required (e.g.,
Vo = 50V for τe

τm
∼ 10−1, Q ∼ 103) or else the device fails entirely (e.g., τe

τm
∼ 20,

Q ∼ 104). In the sweet spot of Plate VIII (0.25 ≤ τe

τm
≤ 4, 2 × 103 ≤ Q ≤ 105),

the device can be driven at relatively low voltages (1V≤ Vo ≤5V) and should have
a resonant electromechanical frequency of about f ∼ 1MHz. Note it should be
viable using Vo = Vbi � 0.6V. This device is almost macroscopic in size (maximum
dimension ∼ 0.1mm) and can be fabricated within the current art of MEMS tech-
nology. Analysis shows that this device should scale down well into the sub-micron
regime and operate well at biases comparable to standard built-in voltages.

The most sensitive device dimensions and tolerances occur in the hammer-
anvil gap. Optimal gap width will probably be less than 0.1 µm. The contacting
surfaces must be highly parallel and their morphology must be tightly controlled
so as to meet the condition of low contact fraction (η � 1). Contact wear is
inevitable and may place limits on the total number of oscillations the device can
execute [22, 23].

The hammer-anvil envisioned here will almost certainly require a kick start
since the maximum achievable electrostatic pressure, although sufficient to sustain
oscillation, appears insufficient to intitiate it. The kick start might be delivered in
a number ways, including: a) a large, transient dc voltage spike across the gap; b)
a small, short-lived, resonant, ac tickler voltage; or c) piezoelectric ac mechanical
drive of the entire device. Device operation might be monitored either by laser
interferometery of the hammer’s motion, or by coupling its vibrational energy to
piezolectric sensors. The latter would be propitious since, in principle, a piezo
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could be used both to jump start the oscillation and also to detect it.

9.5 Experimental Prospects

Prospects are good for laboratory construction and testing of these solid-state
electromechanical devices in the near future2. Present-day micro- and nano-
manufacturing techniques are adequate to construct the necessary structures, how-
ever, the art of surface finishing, which is crucial to reducing friction and stiction,
may not yet be adequate, particularly for the LEM. State-of-the-art molecular
beam epitaxy can reliably deposit layers to monolayer precision, but control of
surface states is still problematic. Self-assembly of the requisite surfaces is plau-
sible. Large scale biotic systems (e.g., DNA, microtubules) are well-known to
self-assemble with atomic precision, as are abiotic ones (e.g., carbon nanotubes
[11, 12]). Molecularly catalysed construction (e.g., RNA to protein transcription
inside ribosomes) is accomplished with atomic precision. Scanning tunneling mi-
croscopes have also been used to assemble complex systems atom by atom. In
light of these accomplishments, it seems plausible that experimental tests of these
solid-state challenges may be on the horizon. We predict laboratory tests for the
LEM will become feasible within 5 years; tests of the hammer-anvil concept are
feasible today. Such tests are currently being pursued by the USD group.

2Capacitive Chemical Reactor: One can also conceive of non-mechanical challenges emerging
from the thermal capacitor concept [24]. Consider gas molecules, having ionization energies less
than the work function of the semiconductor, infusing the J-II gap (Figure 9.1). The neutral
gas molecules positively ionize at the positive gap surface (n-side), then desorb, at which time
the gap electric field accelerates them across the gap up to superthermal energies (qVbi � kT ).
(Likewise, gas molecules with large electron affinities could form negative ions at the p-side and
accelerate in the opposite direction. Together, positive and negative ion fluxes would constitute
a diffusion current that is otherwise forbidden by the vacuum gap.) The positive ion current
is unidirectional since, with qVbi � kT , once an ion crosses the gap it cannot return until it is
neutralized. The ion kinetic energy is sufficient to drive chemical reactions (or at least catalyse
them). In principle, low-energy chemical reactants can enter the capacitor gap and emerge as
high-energy products. In this way, chemical energy can be created solely from heat (via the gap
electrostatic energy) — this in conflict with the Kelvin-Planck form of the second law.
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