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Low-Temperature
Experiments and Proposals

4.1 Introduction

Several independent groups are currently investigating low-temperature (T ≤
10K) second law challenges that exploit uniquely quantum mechanical behav-
iors. Two of these invoke the phase transition from normal to superconducting
states and are currently under active experimental investigation (§4.3, §4.4), while
others rely on quantum entanglement and constitute theoretical proposals for ex-
periments (§4.6). We begin with a brief review of superconductivity.

4.2 Superconductivity

4.2.1 Introduction
Superconductivity is a macroscopic quantum phenomenon. The first and most ob-
vious evidence of it is the Meissner effect discovered by Meissner and Ochsenfeld
in 1933 when they observed that a superconductor in a weak magnetic field com-
pletely expels the field from the superconducting bulk except for a thin layer at
the surface [1]. This is a more fundamental aspect of superconductivity than the
disappearance of electrical resistance1, first discovered in mercury at low tempera-
tures by Kamerlingh Onnes in 1911. Superconductivity is a state with long-range

1Electrical resistance is effectively zero (ρ < 10−26Ωm).
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phase correlations, which are a consequence of Bose-Einstein condensation of elec-
tron pairs [2, 3, 4]. Pairs of electrons (fermions individually) form Cooper pairs
(which are bosons) via electron-phonon-electron interactions, as described by the
Bardeen-Cooper-Schrieffer theory [5].

Complete flux expulsion in the simple form of the Meissner effect occurs only
in weak magnetic fields. If the applied field is sufficiently strong and if demagneti-
zation becomes appreciable, then magnetic flux penetrates through the supercon-
ductor. This penetration differentiates the two types of superconductors, which
have differing signs of the wall energy associated with the interface between the
normal and superconducting domains. In Type-I superconductors the wall energy
is positive and, therefore, the magnetic flux contained in a single normal domain
consists of many flux quanta. (One magnetic flux quantum (Φo = h

2q ) is the small-
est unit of magnetic flux.) Type-II superconductors are characterized by negative
interface boundary surface energy (wall energy). In this case, magnetic flux can be
distributed through the superconductor such as to form either normal regions or a
mixed phase of superconducting and normal regions. The particular type of super-
conductivity is determined by a parameter κ of the Ginzburg-Landau theory [6]:
at κ < 1/

√
2 the wall energy of a normal-superconducting interface is positive and

the superconductor is Type-I, while at κ > 1/
√

2 the wall energy is negative and
the superconductor is Type-II. The Ginzburg-Landau parameter κ = λ(T )/ξ(T )
relates the two characteristic lengths of superconductor: the penetration depth
λ(T ) and the coherence length ξ(T ). These have similar temperature dependences

ξ(T ) ≈ ξ0[1 − (
T

Tc
)4]−1/2

λ(T ) ≈ λ0[1 − (
T

Tc
)4]−1/2 (4.1)

The penetration depth λ0, the scale length over which an external magnetic field
can penetrate into the superconductor, depends only on the density of supercon-
ducting pairs. The coherence length, ξ0, is the maximum scale length over which
Cooper pairs interact, or equivalently, it is the scale length over which supercon-
ductivity can be established or destroyed. ξ0 decreases with the electron mean free
path in dirty superconductors. Type-II superconductivity occurs preferentially in
alloys or, more generally, in impure systems. Pure metals usually display Type-
I superconductivity. The penetration depth has approximately the same value
λ0 ≈ 10−8 − 10−7m for most superconductors, whereas the coherence length may
run from ξ(0) ≈ 10−6m in pure aluminium [7] down to ξ(0) < 10−9m in high
temperature superconductors [8].

The free energy of the superconducting phase fs(T ) is less than that of the
normal phase fn(T ) for temperatures lower than the critical one T < Tc. The
superconductor’s exclusion of magnetic flux increases its free energy density by
µ0H2

2 : the price of diagmagnetism. The magnetic field Hc at which the free energy
gain associated with electron condensation into Cooper pairs equals the free energy
cost of its diamagnetism, fn(T ) − fs(T ) = µ0H2

c

2 [9], is called the thermodynamic
critical field. There is another critical field, Hc2 =

√
2 κHc, called second critical
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field [9]. According to the Abrikosov theory [10] the transition between the normal
and superconducting vortex state of Type-II superconductors takes place at this
critical field Hc2 =

√
2 κHc > Hc. However, in reality, this transition is observed

below Hc2 [11, 12, 13]. Samples of Type-I superconductors (for which
√

2 κ < 1)
undergo transition between normal and superconducting phases at Hc > Hc2 =√

2 κHc when their size or demagnetization coefficient are enough small. In the
opposite case of a finite demagnetization coefficient D, the intermediate state is
observed at Hc(1 − D) < H < Hc. This state is a configuration consisting of a
mixture of normal and superconducting domains [9]. The critical field Hc, above
which superconductivity of Type-I superconductors disappears, has been found to
follow, to good approximation, the empirical relation

H(T ) = Hc[1 − (
T

Tc
)2]. (4.2)

Type-I superconductors have critical fields Hc ≤ 0.2T, whereas low-temperature
Type-II superconductors with high values of the Ginzburg-Landau parameter κ
have Hc2 =

√
2 κHc up to 50 T. High-temperature ceramic superconductors have

the second critical fields up to several hundred Teslas.

4.2.2 Magnetocaloric Effect
In non-zero fields, the normal-superconducting transition of Type-I supercon-
ductor is first order and has an associated latent heat. A sample heats (cools)
when making the transition to the superconducting (normal) state. This is the
magnetocaloric effect. (A non-quantum mechanical electrostatic analog, the elec-
trocaloric effect, is employed by Trupp in another second law challenge (§5.5 and
[14]).

Although superconductors are perfect diamagnets, excluding magnetic flux
from their bulk interiors, surface-parallel fields penetrate shallowly into their outer
layers, decaying exponentially in strength with a characteristic penetration depth
(see (4.1)); that is, H(z) = Hoe

−z/λ. Note that λ → ∞ as T → Tc since λ ∝ 1/
√

ns

[9], where ns ∝ Tc −T is the density of superconducting pairs; that is, as the pen-
etration depth becomes large at the transition temperature, the sample becomes
normal.

During transition between normal to superconducting phases, a sample usually
passes through an intermediate state wherein lamellae of normal phase riddle the
superconducting bulk. Samples of suitably small size (ξ ≥ d ≥ 5λ) can undergo
the normal-to-superconducting transition en masse, without passing through an
intermediate state. Given the inherently small sizes of ξ and λ, d is narrowly
restricted to roughly 10−6m≥ d ≥ 10−7m. In such a transition, there can be
no lamellae and the sample instantaneously can snap from one thermodynamic
equilibrium to the other. Type-I elemental superconductors that fit this criterion
include Sn ((ξ/λ) = 4.5), In ((ξ/λ = 6.9), and Al ((ξ/λ) = 32).

Whereas the intermediate state observed in large samples of Type-I supercon-
ductors have been investigated in detail [9], the thermodynamics of small samples
has not been well studied thus far. Although Pippard raised questions about
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the irreversible effects in the magnetization cycle of superconducting colloids as
early as 1952 [15], up to now there has been little experimental work devoted to
the magnetization and transition between normal and superconducting states of
small samples of Type-I superconductors. The resistive measurements of thin tin
whiskers made by Lutes and Maxwell as early as 1955 [16] show that an abrupt
transition from the superconducting to normal state can occur without the inter-
mediate state in samples of suitably small size. But only recently have techniques
been developed [17] that allow quantitative studies of thermodynamic properties of
individual superconducting particles at micron and sub-micron scale lengths. The
results of [18] demonstrate the irreversible effects in the magnetization cycle of Al
disks down to diameter > 0.3 µm [17]. However, it is important to emphasize that
this irreversibility is conditioned by a high value of demagnetization coefficient
typical of thin disks. Reversible behaviour can be expected only in small samples
with geometries like spheres.

The combination of the magnetocaloric effect with reversible transition renders
the coherent magnetocaloric effect (CMCE). This is the key new insight underlying
Keefe’s second law challenge. Inherently, this is a quantum mechanical process that
relies on the superconductor’s long-range order parameter (wavefunction).

4.2.3 Little-Parks (LP) Effect
The Meissner effect is a quantum phenomena arising from the quantization of
momentum circulation of superconducting pairs. The generalized momentum of a
charge q is given by p = mv + qA, where A is the magnetic vector potential. For
Cooper pairs q −→ 2e, where e is the charge of the electron. The quantization of
momentum circulation along a closed path is [2]

∮
p dl = nh =

∮
mv dl +

∮
2eA dl = m

∮
v dl + 2eΦ, (4.3)

where n is equal to zero for any closed path inside a simply-connected super-
conductor without a singularity in its wavefunction. Therefore, the persistent
electrical current jp = 2evns should be maintained in outer layers of a supercon-
ductor (where the velocity of superconducting pairs v is determined by the relation
m

∮
v dl + 2eΦ = 0), while in its interior bulk, where v = 0, the magnetic flux

should be absent (Φ = 0).
For a closed path in a multiply-connected superconductor — for example in

a loop — the integer n in (4.3) can be any value and the velocity circulation of
Cooper pairs should be

∮
v dl =

h

m

[
n − Φ

Φo

]
(4.4)

where Φ0 = h/2e is the flux quantum (fluxoid). The magnetic flux inside the loop is
Φ = BS +LIp, where B is the magnetic induction induced by an external magnet;
S is the area of the loop; L is the inductance of the loop; Ip = sjp = s2evns

is the persistent current around the loop. The velocity (4.4) and the persistent
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current of the loop with weak screening (LIp < Φ0) is a periodic function of
the magnetic flux Φ ≈ BS since velocity circulation (4.4) cannot be zero unless
Φ = nΦ0 and the thermodynamic average value of the quantum number n is close
to an integer number n corresponding to minimum kinetic energy Cooper pairs,
i.e., to minimum E ∝ v2 ∝ (n − Φ/Φ0)2. This quantum periodicity leads to
experimentally observable effects.

The first such effect was observed by Little and Parks in 1962 [19]. The quan-
tum periodicity in the transition temperature Tc of a superconducting cylinder
[19] or a loop [20] from enclosed magnetic flux following Φ was explained as a con-
sequence of the periodic dependence of the free energy [19, 21, 2]: ∆Tc ∝ −E ∝
−v2 ∝ −(n − Φ/Φ0)2. For a cylinder or loop with a radius R, the dependence of
critical temperature with flux varies as

Tc(Φ) = Tc

[
1 − (

ξ(0)
R

)2(n − Φ
Φo

)2
]

, (4.5)

where ξ(0) is its coherence length at T = 0. The values of (n − Φ/Φ0) is con-
strained between -0.5 and 0.5. The relation (4.5) describes well the experimental
dependencies Tc(Φ) obtained from resistive measurements [19, 2, 20].

This explanation of the Little-Parks (LP) effect is not complete, however. It
does not explain, for instance, why the persistent current Ip has been observed at
non-zero resistances (R > 0) in a number of studies. It is emphasized that the
observation of a persistent current Ip — i.e., a direct current observed under ther-
modynamic equilibrium conditions, at a non-zero resistance R > 0 — contradicts
standard expectations since it implies power dissipation (RI2

p) and, by inference,
a direct current power source under equilibrium conditions. Nikulov advances this
as evidence for the potential violability of the second law.

Nikulov’s key insight is to reinterpret and extend the results of the LP ex-
periments to consideration of inhomogeneous superconducting loops immersed in
magnetic fields near their transition temperatures. From these he concludes that
thermal fluctuations can be used to drive electrical currents in the presence of
nonzero resistance, and by this achieve nonzero electrical dissipation at the expense
of thermal fluctuations alone. In essence, thermal energy is rectified into macro-
scopic currents, this in violation of the second law. Nikulov proposes a new force,
the quantum force — which arises from the exigencies of the quantum-to-classical,
superconducting-to-normal transition — to explain these fluctuation-induced cur-
rents [22]

4.3 Keefe CMCE Engine

4.3.1 Theory
Keefe proposes a simple thermodynamic process in which a small superconducting
sample is cycled through field-temperature (H-T) space and performs net work
solely at the expense of heat from a heat bath [23, 24]. (We use Keefe’s nomen-
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Figure 4.1: Pictorial overview of CMCE cycle.

clature.) It incorporates facets of other standard H-T cycles [25, 26], but also
uniquely invokes the coherent magnetocaloric effect (CMCE).

The cycle is given pictorially and graphically in Figures 4.1 and 4.2. Figure
4.1 pictures a small armature of superconductor (meeting CMCE requirements)
moving in and out of a magnetic field during a full thermodynamic cycle. Here
“N” and “S/C” indicate normal and superconducting states. Figure 4.2 graphs
the armature’s progress in H-T space and indicates work and heat influxes and
effluxes.

The cycle begins with the armature (volume V ) in the superconducting state
(point A in Figure 4.2) at thermodynamic coordinates (T1, H1). Until otherwise
noted, the armature is thermally insulated and the process proceeds adiabatically.

The armature is moved slightly closer to the magnet, thus increasing the mag-
netic field it experiences, so it passes to the normal side of the critical field (Tuyn)
curve (point B, Figure 4.2) with coordinates (T1, H1 + ∆H). (The magnetody-
namic work to move the armature is assumed to be zero.) The armature coherently
transitions to the normal state, evolves latent heat (LH1) and magnetocalorically
cools to T2, given through

LH1 = T1(Sn1 − Ss1) = V ·
∫ T2

T1

CndT (4.6)

With precisely orchestrated motion, the armature moves inwardly toward the
magnet as it cools (Process B, Figure 4.1) so as to skirt the normal side of the
Tuyn curve (B → C, Fig 2.). The armature, now fully cooled (point C, Figure
4.2) at coordinates (T2, H2), is removed slightly out of the field, thus reducing its
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Figure 4.2: Coherent magnetocaloric effect (CMCE) cycle on H-T phase diagram.

field to H2 −∆H, and thereby crossing it back to the superconducting side of the
Tuyn curve (point D, Figure 4.1) at coordinates (T2, H2 − ∆H). Latent heat is
evolved, magnetocalorically heating the armature to T3, given via

LH2 = T2(Sn2 − Ss2) = V ·
∫ T3

T2

CsdT (4.7)

Now on the superconducting side of the Tuyn curve again, the Meissner effect
kicks in and forcibly expels the magnetic field from the interior of the armature,
whereupon the armature is repelled out of the high field region near the magnet.
During its forcible expulsion (path D → E, Figure 4.2), the armature performs
work

W1 =
µo(H2

2 − H2
3 )

2
· V (4.8)

Similarly as for path segment B → C in Figure 4.2, the armature moves in
a precisely timed and coordinated fashion from D → E so as to skirt the super-
conducting side of the Tuyn curve while magnetocalorically heating to T3 (and
also while simultaneously performing work). From point E (Figure 4.2), the su-
perconducting armature is moved further out of the field (Process D, Figure 4.1),
performing additional work

W2 =
µo(H2

3 − H2
1 )

2
· V (4.9)

and arrives at point F (Figure 4.2) with coordinates (T3, H1).
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Up to this point, processes have been adiabatic. From F → A (Fig 2), however,
the superconducting armature is thermally coupled to the surrounding heat bath
(T1) and heats (T3 → T1), thus closing the cycle and absorbing heat

Q = V ·
∫ T1

T3

CsdT. (4.10)

As described, heat transfer occurs only in the final step of the cycle; here heat is
absorbed. Since positive work is performed by the armature elsewhere in the cycle,
if the cycle operates in steady-state, the first law implies that the heat absorbed
from the heat bath is transformed into work.

Keefe calculated the net work per cycle expected for an exemplary tin armature
and cycle [27]. The cycle is specified by the vertex coordinates in Figure 4.2. In
terms of tin’s critical field (Hc) and the critical temperature (Tc), these are: (T1,
H1) = (0.6Tc, 0.64Hc), (T2, H2) = (0.186Tc, 0.965Hc), (T3, H3) = (0.407Tc,
0.834Hc). For this cycle, the latent heat densities are: LH1 = 340 J/m3, LH2 =
50J/m3. The work density/cycle is: W1 = 88J/m3, W2 = 107J/m3, and the heat
density/cycle is: Q = 195J/m3. Satisfying the first law, W1 +W2 = Q, implies for
the second:

∆S = −
∫ T1

T3

dQ(T )
T

dT < 0 (4.11)

In principle, net work can be extracted from the CMCE cycle mechanically
(e.g., motor), electronically (e.g., generator), or via a heat pump. Given the theo-
retical limitation to small armatures, usable power would probably be extracted in
large arrays. Since operating frequencies for mechanical devices of this size can be
high (f ∼ 109 − 1012Hz), high output power densities might be achieved [28]. For
example, assuming an individual tin CMCE motor is 10 times larger (103 times
greater volume) than its armature (d � 10−7m) and operates at f = 1010Hz,
based on tin’s calculated work density/cycle, its power density is estimated to be
P � f(W1 + W2) � 2 × 1012W/m3.

4.3.2 Discussion
The movement of normal phase electrons through the external magnetic field
should generate eddy currents, Ohmic heating, and entropy, with magnitude de-
pendent on the rapidity of movement. The armature’s coherent transition time
could be quite short, perhaps shorter than 10−12s (i.e., 10−4 the light travel time
across the armature) and the resultant latent heat should manifest itself as a tem-
perature change within a few vibrational periods of the lattice (τlattice ∼ 10−13s),
therefore, the armature must cycle quickly to faithfully trace the Tuyn curve, per-
haps at THz frequencies. At these frequencies, one expects eddy current heating of
the normal electrons (and perhaps even of the superelectrons). Normal electrons
are known to interact with ac fields, causing dissipation and entropy production
in superconducting samples. Superelectrons can absorb electromagnetic radiation
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near the necessary projected operating frequency of the armature. Magnetic dipole
radiation could also be significant.

The physical magnet giving rise to the armature’s external magnetic field
should experience a back reaction and possibly internal induced electric fields
and dissipation due to the rapid and possibly sizable distortions of field by the
action of the armature. Given its small size, account should be taken of thermal
fluctuations and whether these might drive it inopportunely across the transition
line. Hysteresis should also be considered [29]. Finally, the sophistication in mi-
croscopic mechanical engineering required to realize a working CMCE engine is
beyond the present state of the art in micro- or nanomanufacturing, but may be
on the horizon.

Experiments are currently being pursued in Moscow, Russia to understand
better the CMCE effect as it pertains to Keefe’s engine. While falling short of
an actual engine test, they are laying necessary foundations. Indium spheres
(r � 1.25 × 10−7m, Tc = 3.7K, ξ/λ = 6.9) will be analysed with a ballistic Hall
micromagnetometer as the sample is cycled through the normal-superconducting
transition (2.5K ≤ T ≤ 3K). Keefe, et al. will check predicted values of the transi-
tion field, the transition time scale, and investigate hysteresis, which can diminish
the efficiency of the thermodynamic cycle. Tight control of the sphere size and pu-
rity will be necessary since the CMCE effect is predicted to be robust only within
a narrow range of particle sizes.

In summary, the CMCE cycle appears theoretically compelling despite many
uncertainties surrounding superconducting and quantum processes in the meso-
scopic regime. Experimental considerations are problematic, but are currently
being investigated. The technical challenges in fabricating a working mechanical
CMCE engine are formidable.

4.4 Nikulov Inhomogeneous Loop

Over the last seven years, Zhilyaev, Dubonov, Nikulov, et al. have conducted
laboratory experiments that corroborate the essential features of Nikulov’s theory.
Recent independent theoretical analysis by Berger [30] also lends support to his
position. We introduce this challenge through Nikulov’s quantum force.

4.4.1 Quantum Force
Nikulov’s proposed quantum force arises from the fundamental differences between
classical and quantum states of electrons (or Cooper pairs) in a conducting (su-
perconducting) loop. In their classical state, electrons occupy a continuous energy
spectrum. Direct current cannot exist at equilibrium according to classical me-
chanics because the equilibrium distribution function f0 for electrons depends on
v quadratically through kinetic energy f0(v2) such that the average thermody-
namic current jav = q

∑
p vf0 for this continuous distribution is an odd integral
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jav = q
∫

vf0dv, which is equal to zero.
In contrast, in quantum mechanics a persistent current jpc can exist — i.e.,

direct current observed under equilibrium conditions — since the discrete sum

jpc = q
∑

p

vfo(
E(p)
kT

) =
q

m

∑
p

(p − qA)f(
E(p)
kT

) (4.12)

cannot be replaced by a continuous integral as in the classical case. The energy
difference between permitted states for a superconducting loop

Ep = s

∮
2ns(

mv2
s

2
)dl =

sh

4lm〈n−1
s 〉

[
n − Φ

Φo

]2

(4.13)

is much higher than the thermal energy ∆E = E(n + 1)− E(n) ≈ sh/4lm〈n−1
s 〉 �

kT in the closed superconducting state, when 〈n−1
s 〉−1 = (l−1

∮
l
dln−1

s )−1 ≈ ns,
since the number of Cooper pairs slns is very large for any realistic superconduct-
ing loop [22]. (Here s and l are the cross-sectional area and length of the loop wire
and ns is the number density of Cooper pairs.)2 Thus, a transition between the
discrete spectrum, with well-spaced energy states ∆E = E(n + 1) − E(n) � kT ,
and the continuous spectrum ∆E = 0 takes place when a loop is switched between
superconducting states with different connectivity. The velocity vs and the mo-
mentum p of Cooper pair change at this transition:

∮
l
pcldl = nh and the velocity

is defined by (4.4) in the closed superconducting state, whereas in the open super-
conducting state vs = 0 and

∮
l
pundl = 2eΦ. The momentum circulation changes

from 2eΦ to nh at closing of the superconducting state because of the flux quanti-
zation: nh − 2eΦ = h(n − Φ/Φ0). The time rate of change of the momentum due
to reiterated switching of the loop between superconducting states (at frequency
f) is a force given by

∮
Fqdl =

∮
(pcl − pun)fdl = h(〈n〉 − Φ

Φ0
)f. (4.14)

This is coined the quantum force [22], Fq = (pcl − pun)f . Here 〈n〉 is the thermo-
dynamic average of the quantum number n.

The reiterated switching can be induced by external current [31], by external
electrical noise [32], or by equilibrium thermal fluctuations [22]. The quantum
force induced by thermal fluctuations is the Langevin force [33, 34]. It maintains
the persistent current in the presence of a damping force (dissipation via electrical
resistance) just as the classical Langevin force maintains the Nyquist’s noise cur-
rent in a classical normal metal loop. In contrast with the classical Langevin force,
however, the average value of the quantum force is not equal to zero at Φ = nΦ0

and Φ = (n + 0.5)Φ0, when 〈n〉 − Φ/Φ0 �= 0. Therefore, the persistent current
at R > 0 is an ordered Brownian motion with non-zero direct component, this
in contradistinction to Nyquist’s noise, which is completely chaotic. According to

2The energy difference ∆E = E(n+1)−E(n) ≈ sh/4lm〈n−1
s 〉 = 0 in the open superconducting

state since 〈n−1
s 〉−1 = 0 when the density of Cooper pairs equals zero ns = 0 in any loop segment.

As expected, no current flows in this case.
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Nikulov, this phenomenon violates the postulate of randomness under equilibrium
conditions, the same that saved the second law of thermodynamics at the begin-
ning of 20th century. Nikulov claims that Ip �= 0 at R > 0 is evidence of persistent
power generation RI2

p , the existence of which conflicts with the second law [33, 34].
The first experimental evidence of this phenomenon is, apparently, the original LP
experiment itself over 40 years ago [19, 20] — and, therefore, arguably it represents
the first experimentally-based second law challenge.

4.4.2 Inhomogeneous Superconducting Loop
By analogy with well-known theoretical and experimental results for normally
conductive loops with inhomogeneous (asymmetric) resistivity, voltage oscillations
are expected on a segment ls of an inhomogeneous superconducting loop, satisfying

V (
Φ
Φ0

) =
[
Rls

ls
− Rl

l

]
lsIp(

Φ
Φ0

) (4.15)

Here Rls and ls are the resistance and length of a loop segment; Rl and l are the
resistance and length of the whole of the loop, and Ip is the persistent current.
Experimental results corroborate this [31, 32]. The quantum analogy to the clas-
sical electrical case appears valid since the quantum force is uniform around the
loop [22] just as the Faraday ‘voltage’ −dΦ/dt is uniform around a conventional
loop.

Segments of a superconducting loop can have different resistances Rls/ls �=
Rl/l �= 0 at nonzero currents Ip �= 0 if they are in the normal state at different
times when the loop is switched between superconducting states with different
connectivity. This is possible if loop segments, for example la and lb, have distinct
critical temperatures, specifically Tca > Tcb (See Figure 4.3.). The limiting case
is when one segment (lb) is switched between superconducting and normal states
while the other segment la (with la+lb = l) remains always in the superconducting
state (therefore, with Ra = 0 and R = Rb). This was considered by Nikulov in
[35]. A flat (h < R) and narrow (w � R) loop with h,w < λ was analysed. He
found that the direct potential difference Vb [35]

Vb = RbIp � (
lb〈nsb〉

lbnsa + la〈nsb〉
) · (nΦo − Φ

λ2
La

)ρb (4.16)

can be observed if the average value of the Cooper pair density 〈nsb〉 and resistivity
ρb of the lb segment do not equal zero; i.e., if the segment is switched between
superconducting and normal states. Here λLa = (m/4e2nsa)1/2 is the London
penetration length for segment la. Relation (4.16) is valid for high switching
frequency (f � Rb/L). At a low frequency (f � Rb/L), the amplitude of the
quantum oscillations of the dc voltage with respect to the magnetic field Vb(Φ/Φ0)
is proportional to the switching frequency f [35, 22] and is given by

Vb =
hf

2e
(〈n〉 − Φ

Φ0
)
lb
l
. (4.17)
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Figure 4.3: Schematic of inhomogeneous mesoscopic superconducting loop with
different critical temperatures on segments a and b.

The correlation between the dc voltage and the frequency is similar to that of
Josephson [36, 32].

The crux of this second law challenge [35, 22] lies in the switching of the lb
segment by thermal fluctuations at T ≈ Tcb. In this case, Vb is the persistent
voltage Vb ≡ Vp and Pp = IpVp = RbI

2
p = V 2

p /Rb is the persistent power [37]. It
can be shown in that the persistent power Pp of a single loop cannot exceed the
total power of thermal fluctuations [35, 37, 22]:

Pthermal �
(kT )2

h̄
. (4.18)

According to (4.18), the persistent power of a single mesoscopic loop made from a
high-temperature superconductor (HTSC) with Tc � 100K is expected to be quite
small; i.e., Pp < Pthermal � 10−8W, while for a low-temperature superconductor
(Tc � 10)K, one expects even less power: Pp < Pthermal � 10−10W. (Notice
that in (4.18), power scales as T 2.) However, since power sources can be stacked,
multiple inhomogeneous loops can be arranged in series such that their voltage Vp

and power Pp add. A series of N = 108 HTSC loops could, in theory, achieve dc
power up to Pp < N(kT )2/h̄ � 1 W [34] in an area ≈ 1cm2. Power densities of
the order of 108W/m3 might be possible [34].

In principle, the persistent voltage Vb can be measured experimentally even on a
single loop of low-temperature superconductor; one expects Vb < Rb((kT )2/h̄)0.5 ≈
10µV at T � 1 K and Rb � 10 Ω. For high-temperature superconductors and
loops in series, Vb could be an order of magnitude greater. These voltages are the
primary objects of experimental study.
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Figure 4.4: Electron micrograph of Series I experiments’ symmetric (top) and
asymmetric (bottom) mesoscopic aluminum loops. Ij and Vj are current and
voltage contacts for each loop. Additional V3 contacts on lower loop.

4.4.3 Experiments

Experiments investigating Nikulov’s paradoxical effect date to 1997 with unpub-
lished observations by I.N. Zhilyaev of dc voltages on segments of mesoscopic su-
perconducting aluminum loops near their transition temperature, in the absence
of external current. Since then two mains series of experiments have been con-
ducted. The first (Series I) [33, 32] were to verify Zhilyaev’s initial results in light
of new theoretical understanding [35], and the second, more detailed series (Series
II) examined multi-ring systems and the effects of external ac driving [31]. We
will review each.

4.4.3.1 Series I
Series I experiments were conducted on single, symmetric or asymmetric, meso-
scopic, high-purity aluminum loops on silicon wafer substrates [33, 32]. Figure
4.4 is an electron micrograph of exemplary symmetric (top) and asymmetric (bot-
tom) loops with current and voltage contacts. Structures were fashioned with
electron beam lithography. Loops were 60nm thick and had diameters 2R =1,
2, or 4µm and linewidths w = 0.2µm and 0.4µm. The midpoint of the su-
perconductive resistive transition was roughly Tc � 1.24K. Measurements were
carried out in a conventional helium-4 cryostat with base temperature of 1.2K.
Measurements of voltage oscillations were made in the narrow temperature range
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Figure 4.5: Voltage oscillation versus Φ
Φo

on single asymmetric loop measured
with V2 contacts (upper curve) and V3 contacts (lower curve). Loop parameters:
2R = 4µm, w = 0.4µm, Im = 0, T = 1.231K at bottom of resistive transition.

0.988Tc < T < 0.994Tc. Loop inhomogeneity (asymmetry) was created by reduc-
ing ring linewidth.

In principle [35], the dc voltage oscillation should not occur in homogeneous
(symmetric) loops, but should occur in inhomogeneous (asymmetric) loops. Ex-
periments qualitatively confirmed this prediction.

Figure 4.5 displays the dc voltage oscillation V ( Φ
Φo

) versus Φ
Φo

for a single
asymmetric loop (2R = 4µm, w = 0.4µm) measured at V2 contacts (upper curve)
and V3 contacts (lower curve) at T = 1.231K. Voltage oscillations are observed
both across the whole loop and across the segment that, because of its narrower
width, was a normal conductor.

For the symmetric loop, the voltage oscillations, (V1 = I1R1) followed expecta-
tions of standard LP oscillations; that is, when Im = I1 = 0, the voltage oscillations
disappeared (V1 = 0). In contrast, the voltage oscillations on the asymmetric loop
did not disappear for I2 = 0. In particular, voltages of magnitude V3 � 0.1µV
were observed on the asymmetric segment (Figure 4.6), when I2 = 0. This was
observed in the narrow temperature range at the bottom of the resistive transition
∆T = T − Tc � 0.1K. (Larger V3 were observed at lower temperatures.) This
stark difference in behavior between symmetric and asymmetric loops agrees with
theoretical predictions [35].

The researchers raise the caution that external noise — rather than purely
thermal fluctuations — cannot be ruled out as a cause for the observed dc volt-
ages. This issue partially motivated the next series of experiments.
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Figure 4.6: Electron micrograph of array of 20 asymmetric aluminum loops for
Series II experiments. Current ∆I imposed through I − I contacts. Voltage
contacts V 1 − V 8.

4.4.3.2 Series II
Series II experiments were conducted on systems of either 3 or 20 asymmetric
mesoscopic aluminum loops, again deposited on Si wafers and fashioned using
electron beam lithography [31]. Figure 4.6 shows an array of 20 loops. All loops
had diameters 2R = 4µm and thicknesses 40nm. The inhomogenities (asymme-
tries) consisted of having one half of each loop drawn with linewidth w = 0.2µm
and the other with w = 0.4µm. Resistance and current oscillations were studied in
the range 0.95Tc < T < 0.98Tc, where Tc is the midpoint of the superconducting
resistive transition, Tc � 1.3K.

As in Series I, measurements were performed in a helium-4 cryostat and a mag-
netic field was applied perpendicularly to the rings by a superconducting coil. Un-
like Series I, the rings were driven by an external ac current, Iac = ∆Isin(2πfact)
in the range 102Hz≤ fac ≤ 106Hz, with amplitude 0µA≤ ∆I ≤ 50µA between
contacts I − I in Figure 4.6. Iac was used to understand how noise (thermal or
spurious background) induces voltages in the loops. Voltages were measured be-
tween contacts labeled V 1−V 8 in Figure 4.6, thus allowing summation of voltages
in series loops to be tested.

DC-voltage oscillations were measured across single and multiple loops at var-
ious magnetic field strengths (B = Φ/πR2) as a function of ac-current magnitude
∆I and frequency fac. The magnitude of voltage oscillations V ( Φ

Φo
) was found

to be independent of fac over the frequency range explored (102 − 106Hz), but
was highly dependent on ∆I. (Independence of dc voltage from fac is not sur-
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Figure 4.7: Voltage oscillation V ( Φ
Φo

) on a single asymmetric loop versus Φ
Φo

for
different magnitudes of Iac at fac = 2.03kHz and T = 1.280K = 0.97Tc. All traces
except ∆I = 3.5µA are displaced vertically.

prising since, compared with the maximum possible switching frequency (fmax ∼
1011 − 1012Hz), the ratio fac/fmax ∼ 0, such that the driving field is effectively
static.)

Figure 4.7 displays plots of V ( Φ
Φo

) versus Φ
Φo

across a single loop for seven values
of ∆I at temperature T = 1.280K and frequency f = 2.03kHz. For all traces, at
large values of Φ/Φo (i.e., | Φ/Φo |≥ 10), one has V ∼ 0 because of the supression
of superconductivity at high imposed field values. The lowest trace (∆I = 3µA)
displays no V ( Φ

Φo
) voltage oscillations below a critical threshold current, ∆Icr for

| Φ/Φo |≤ 5. As the imposed field is increased, the critical current ∆Icr is reduced
so that voltage oscillation appear. As noted earlier, however, they disappear again
at | Φ/Φo |≥ 10 as the aluminum superconductivity is supressed by the imposed
field.

On the next trace up (∆I = 3.5µA), the voltage oscillations are most robust,
just beyond the critical threshold current. For large values of ∆I beyond ∆Icr,
the voltage oscillations (higher vertical traces in Figure 4.7) again decrease pro-
portionately because of suppression by ∆I-induced magnetic fields.

Loop oscillation voltages can be summed in series. In Figure 4.8, voltage oscil-
lations V ( Φ

Φ0
) are plotted versus Φ/Φ0 for two series cases: 3 loops and 20 loops.

A comparison is less quantitative than desired since the experimental parameters
are distinct for each case (See Figure 4.8 caption for details.), but a trend is ev-
ident: The ∆V magnitudes for 20 loops is on the order of 7 times greater than
for 3 loops, which in turn is roughly 3 times greater than for 1 loop (Figure 4.4).
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Figure 4.8: Series summation of loop voltage oscillations for 2 loop arrays. 20-
loop array [fac = 1.2kHz, ∆I = 3.2µA, T = 1.245K=0.97Tc]; 3-loop array [fac =
555kHz, ∆I = 4.5µA, T = 1.264K=0.96Tc].

Specifically, voltage oscillations were observed up to 10µV for a single loop, up to
40µV for 3 loops in series and up to 300µV for 20 loops in series.

The quantum oscillations in Figures 4.7 and 4.8 can be attributed to loop
switchings between superconducting states with different connectivity, as induced
by the external current [31], whereas those in Figure 4.5 possibly could be induced
by external electrical noise. Neither result directly contradicts the second law be-
cause the source of the observed dc power is not equilibrium thermal fluctuations.
However, it is significant that the dc voltages observed on Figures 5,7,8 are induced
by loop switchings near the critical temperature T ≈ Tc, thereby corroborating a
key aspect of the theory.

Recent theoretical and numerical work by Berger [30] lends strong qualitative
support to the experimental work of Dubonos, Nikulov, et al. [31-37]. Berger stud-
ied a superconducting loop with two, unequal weak links. The loop was held near
Tc and was threaded with magnetic flux. Although it does not match Nikulov’s
system exactly, it does bear strong physical similarities. Furthermore, it can be
modeled by textbook procedures for Josephson junctions and can be compared
directly to related work on Josephson rectifying ratchets [38, 39, 40].

Berger found that when loop superconductivity was broken by thermal fluctu-
ations and resistive noise (in the vicinity of Tc), the average dc loop voltage did
not vanish and showed qualitatively the same V ( Φ

Φ0
) versus Φ/Φ0 flux dependence

and the same frequency independence as was predicted and observed by Nikulov,
et al. He also reported the same V ( Φ

Φo
) dependence in the presence of ac current

∆I. (Compare, for example, Figure 4.5 in [30] with Figure 4.6 [31].)
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It is stressed that, while Berger’s study shows strong qualitative agreement with
the fundamental processes predicted and observed by Dubonos, Nikulov, et al., the
quantitative agreement is poor. Some of these differences might be attributable
to the differences in the models.

4.4.4 Discussion
The theory and experiments by Nikulov, Dubonos, et al. — and their further in-
dependent theoretical corroboration by Berger [30] — represent a cogent challenge
to the second law. Conclusive violation, however, cannot be claimed for several
reasons. First, only one of the physical variables necessary to establish dissipation
was measured experimentally; the other was inferred from theory. Ideally, both
should be measured simultaneously by independent means. Second, an unambigu-
ous experimental measurement of dissipation (local heating or radiation emission)
should be made and, ideally, some global accounting of energy (work plus heat)
should be carried out. Third, in no experiment has it been clearly established
that thermal fluctuations were the source of the experimentally measured voltage
oscillations and inferred persistent currents. Fourth, the experimental apparatus
and experimenter surely generated far more entropy than could be negated by the
loops.

The extreme experimental and physical requirements of this system (helium-4
cryostats, vacuum systems, microscale fabrication) probably make it commercially
impractical unless perhaps high-temperature superconductors can be employed.
On the other hand, as an experimentally-based challenge, it holds much promise.

4.5 Bose-Einstein Condensation and the Second
Law

Keefe’s and Nikulov’s paradoxes share deep similarities. Both capitalize on the
normal-to-superconducting transition — the transition from classical mechanical
to quantum mechanical behavior — and both operate at the borderline between
the two. In many respects, they can be considered quantum thermal ratchets.
Keefe’s CMCE engine exploits the transition induced by magnetic field strength
near the critical field (Hc) and, in its primary incarnation, delivers mechanical
work. Nikulov’s inhomogeneous mesoscopic loop exploits the transition induced
by thermal fluctuations near the critical temperature (Tc) and delivers electrical
work. Both exploit the exigency of Bose-Einstein condensation and the persistent
current3: the spontaneous drive to order as the system falls into a single, macro-
scopic quantum state. In Keefe’s case, this order is found in the diamagnetic
persistent current of the Meisner-Oschenfeld effect whereby mechanical work is
extracted as the armature is expelled from the high field region. In Nikulov’s case,

3Persistent currents have been claimed in normal metal [41] and semiconductor [42] mesoscopic
loops.
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again the order is in the form of a supercurrent, this time summoned by thermal
fluctuations via the Little-Parks effect.

In light of their simularities, these two challenges suggest a deeper, unifying
principle may be connecting them. They also suggest a fundamental limitation to
the second law in processes involving the transition from classical mechanical to
quantum behavior. Nikulov’s quantum force may hint at this deeper principle, but
it possibly does not go deep enough [22]. At a more fundamental level, the behavior
of bosons in Bose-Einstein condensation is antipodal to the behavior of fermions
subject to Pauli exclusion. The former intrinsically moves a multiparticle system
toward a state of low entropy (single wavefunction), while the latter guarantees
a state of relatively high entropy (no two particles in the same state). Neither
quantum tendency arises from thermodynamic action; rather, both emerge from
the purely quantum mechanical consideration of wavefunction parity.

Most classical systems are dominated by Fermi statistics and Pauli exclusion,
rather than by Bose-Einstein statistics or condensation. Given their antipodal
thermodynamic tendencies, perhaps it is not surprising that these two second
law challenges arise only in systems involving transitions between classical and
quantum statistics.

4.6 Quantum Coherence and Entanglement

4.6.1 Introduction
Allahverdyan, Nieuwenhuizen, et al. have written extensively on the limits to var-
ious formulations of the second law in the quantum regime, particularly quantum
coherence and entanglement. They have been among the most fastidious in rec-
ognizing that different formulations can mean different things and that one must
be cognizant of the caveats and limitations of each. They have championed the
Thomson formulation — No work can be extracted from a closed equilibrium system
during a cyclic variation of a parameter by an external source — because its basic
currency (work) is a well-defined physical quantity, whereas heat and entropy (the
more common currencies) are less well-defined and can be context dependent4.
(These researchers have also shown recently that the quantum mechanical effect
of level crossing limits the minimum work principle and that adiabatic procesess
do not correspond to optimal work if level crossing occurs [43].)

At this time, the hypotheses that quantum coherence or quantum entangle-
ment can lead to violations of various formulations of the second law remain ex-
perimentally untested and largely uncorroborated; however, several concepts for
experiments have been advanced. We will summarize the two most detailed of
these by Pombo, et al. [44] and Allahverdyan and Nieuwenhuizen [45].

4It is stressed that Allahverdyan, et al. have never claimed violation of the Thomson formu-
lation, but rather, have proved its inviolability for systems starting in equilibrium (§3.4).



136 Challenges to the Second Law

4.6.2 Spin-Boson Model
Pombo, et al. [44] propose several general schemes by which two-level systems
(modeled as spins) that are quantum mechanically entangled with a bath of har-
monic oscillators can extract work from a heat bath. Two-level systems are ubiq-
uitous in nature and technology and are among the most studied quantum systems
known. These include nuclear magnetic resonance (NMR), electron spin resonance
(ESR) and spintronic systems, two-level Josephson junctions, electrons in quantum
dots, and two-level atoms [46, 47].

Pombo, et al. analyse a spin-boson model, which approximates the behavior of
several systems listed above, and which also is exactly solvable analytically [46, 47].
The Hamiltonian for a system consisting of a spin 1/2 particle interacting with a
bath of harmonic oscillators can be written

H = HS + HB + HI , (4.19)

where

HS =
ε

2
σ̂z +

∆(t)
2

σ̂x; HB =
∑

k

h̄ωkâ†
kâk; HI =

1
2

∑
k

gk(â†
k + âk)σ̂z. (4.20)

Here HB,S,I are the Hamiltonians for the bath, the spin-1/2 particle, and their
interaction. σ̂ are the Pauli spin matrices; â†

k and âk are creation and annihilation
operators; gk are the coupling constants between the bath modes and the spin;
and ε = ḡµBB is the standard energy of a spin in a magnetic field, where µB is the
Bohr magneton, ḡ is the gyromagnetic constant and B is the magnetic field. ∆(t)
is an interaction potential that is switched on and off quickly from an external
source and affects the x-component of spin.

Various modes and protocols of interaction between spin and bath are discussed
[44]. We consider an archetypical one in which the spin is subjected to a sudden,
brief external pulse, by which the spin is quickly driven about the x-axis. (Here
∆ �= 0 lasts for duration δ1 and has large magnitude; i.e., ∆ ∼ 1

δ1
.) In principle,

this can be accomplished without changing the energy of the spin ε since energy
depends on σ̂z and not σ̂x. The time-evolution operator associated with the pulse
is: Û1 ≡ exp

[
−iHt

h̄

]
= exp

[
−iHδ1

h̄

]
, which, in this approximation (∆ ∼ 1

δ1
), can

be written Û1 � exp
[

i
2Θσ̂x

]
+ O(δ1), where Θ = − δ1∆

h̄ , the x-rotation angle.
Note, pulses correspond to a cyclic process of an external work source and they
change neither the energy of the spin, nor its statistical (von Neumann) entropy.

Although the energy of the spin need not change during on-off switching of
∆(t), the total system work involves both the spin and bath and it is found that
work can be extracted from the heat bath with proper pulsing of ∆(t). Under the
conditions that g is small, Θ ≡ − δ1∆

h̄ = −π
2 ; and t � 1

Γ = the relaxation time of
the bath; and ε = 0 (to insure the spin energy does not change), the added work
is given by

W1 =
gh̄Γ
2π

+
gkT

2
〈σ̂x(0)〉exp

[
− t

τ2

]
, (4.21)



Chapter 4: Low-Temperature Experiments and Proposals 137

where kT is bath thermal energy and τ2 is the transversal (σ̂x) spin decay time.
If the spin starts in a coherent state (〈σ̂x〉 = −1) and if the time is adjusted such
that kT

2 exp[− t
τ2

] > h̄Γ
2π , then (4.21) indicates work can be extracted from the bath

(W1 < 0). This demonstrates that the Thomson formulation cannot be applied
to the locally equilibrium heat bath. However, it is applicable if the whole system
— i.e. the spin and bath together — starts in equilibrium before applying the
first pulse. (Other schemes challenge the Clausius inequality, whereby work can
be extracted from the bath without changing the entropy of the spin [44].)

Pombo, et al. offer several incentives for pursuing laboratory experiments:
1) Two-level quantum systems and harmonic oscillator heat baths are ubiquitous,
within appropriate physical limits [46, 47], e.g., atoms in optical traps, electron
spins in semiconductors (injected or photonically excited), excitons in quantum
dots, nuclear spins (NMR), or electron spins (ESR) in condensed matter.
2) Experimental detection methods are, in principle, sufficiently well-developed
(e.g., ESR, NMR) to make the salient measurements.
3) The main quantum effects survive for completely disordered ensembles of spins.

4.6.3 Mesoscopic LC Circuit Model
Electrical circuits have long been fertile testbeds for thermodynamics and statisti-
cal mechanics [48, 49]. Recently, Allahverdyan and Nieuwenhuizen have suggested
experiments on mesoscopic or nanoscopic, linear LRC circuits interacting with a
low-temperature heat bath, which in principle could test for predicted violations
of the Clausius form of the second law in the quantum regime [45].

A classical series LRC circuit can be described in terms of conjugate variables
(charge (Q) and magnetic flux (Φ)). These play roles analogous to canonical
coordinate and momentum in a mass-spring system. Written side by side the LRC
circuit and mass-spring Hamiltonians are written (for zero-damping):

Hs =
Φ2

2L
+

Q2

2C
; H =

p2

2m
+

kx2

2
(4.22)

From inspection, p ≡ Φ, m ≡ L, k ≡ 1
C ; and x ≡ Q. Note that the conjugate

variables are also related analogously: Q̇ = Φ
L and ẋ = p

m . For the R = 0 case,
this classical system can be treated quantum mechanically by allowing Q and Φ
to act as operators satisfying the commutation relation: [Q,Φ] = ih̄.

In either the classical or quantum regimes, a measure of a circuit’s disorder
(entropy) can be taken to be the volume of phase space (Σ) that it explores. In
terms of the LRC circuit variables, this can be written

Σ =
∆Φ∆Q

h̄
≡

√
〈Φ2〉〈Q2〉

h̄2 (4.23)

where 〈Φ2〉 and 〈Q2〉 are the dispersions (variances) in Φ and Q. In the classical
thermodynamic limit, the dispersions take the Gibbsian forms:
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〈Φ2〉G =
1
2
Lh̄ωo tanh(

1
2
βh̄ωo) (4.24)

〈Q2〉G =
1
2
Ch̄ωo tanh(

1
2
βh̄ωo)

where ωo = 1√
LC

is the undamped LC resonance frequency, and β = 1
kT is the

inverse thermal energy.
Starting from the quantum Langevin equations and assuming quantum Gauss-

sian noise with the Nyquist spectrum having a large cut-off frequency (ωmax ≡ Γ)
[50], the quantum dispersions in Φ and Q can be written

〈Φ2〉 =
∫

dω

2π

ω2k(ω)
(1 + ω2

Γ2 )
[
(ω2 − ω2

o)2 + (ωR
L )2

] (4.25)

〈Q2〉 =
∫

dω

2π

k(ω)
[(ω2 − ω2

o)2L2 + (ωR)2]

with k(ω) = h̄Rω coth( h̄ω
2kT ).

Comparing (4.24) with (4.25), it is clear that the quantum and classical dis-
persions are distinct. Notably, the quantum dispersions include damping (R),
whereas the classical dispersions do not. In the limit of weak coupling with the
heat bath (R → 0) or at high temperatures ( h̄ω

kT → 0), the quantum cases revert
to the classical Gibbsian cases.

The Clausius formulation of the second law can be phrased in the form of
the Clausius inequality: dQ ≤ TdS. The heat and entropy changes can also be
expressed in terms of changes in phase space volume dΣ, which in turn can be
written in terms of physically measurable variances Q and Φ through (4.23-25).
Classically, if the LRC circuit absorbs heat from the heat bath, then its phase space
volume will expand; conversely, if heat is lost to the heat bath, its phase space
volume will contract. If the dispersions 〈Q2〉 and 〈Φ2〉 are Gibbsian, then classical
thermodynamics applies and the Clausius criterion dS ≥ dQ

T is satisfied. However,
if the temperature is sufficiently low, then the dispersions follow the quantum
prescriptions, (4.25), and as Allahverdyan and Nieuwenhuizen have shown, in this
regime the Clausius form of the second law can be violated [51, 52]. In this case,
the circuit can absorb heat from the bath while simultaneously contracting in
phase space. More precisely, at finite temperatures a cloud of electromagnetic
modes forms around the LRC circuit. Its energy should be counted to the bath
and may be partly harvested since changing a parameter of the LRC circuit can
induce a change in this cloud.

For the LRC circuit, in principle, this second law violation would be realized
by varying a system parameter (say, inductance L) via an external agent and,
thereby, affecting the heat transferred from the heat bath to the circuit. In the
quantum regime, they find that for low quality factor circuits,

dQ =
h̄R

2πL2
dL > 0 (4.26)
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and that dΣ
dL < 0; that is, there is positive heat transfer to the circuit and phase

space contraction. These constitute violations of the Clausius form of the second
law.

Unlike the classical Clausius constraint (dQ ≤ TdS), which requires non-zero
temperature for heat transfer, this quantum constraint for heat transfer from bath
to system is temperature independent; therefore, in principle, it can occur at zero
temperature. This observation spotlights the defining characteristic of this quan-
tum thermodynamic system: the role of entanglement. At first consideration, a
heat bath at T = 0 should not be able to render up heat since presumably it is
in its ground state, possessing only zero-point energy. Equation (4.26) indicates,
however, that heat can in fact be rendered from the bath at zero temperature.
Appealing to the first law, one concludes that the bath is not in its ground state.
In fact, because it is always entangled with the circuit — and, therefore, in a mixed
state — it is never in its true ground state. This extra entanglement energy has no
classical analog and lies at the heart of this quantum second law challenge. This
entanglement leads to a screening cloud, known elsewhere as a Kondo cloud or po-
laronic cloud. Not surprisingly, these also arise in some of Čápek’s systems (§3.6).
Nieuwenhuizen and Allahverdyan speculate that such clouds may well be the sole
cause underlying the differences between classical and quantum thermodynamics.

Experimental support for this challenge would consist in measuring heat flow
from the heat bath into the LRC circuit while simultaneously measuring decreases
in the dispersions 〈Φ2〉 and 〈Q2〉. Experiments on low-temperature mesoscopic
tunnel junctions have reported inferred values of 〈Q2〉 in related sub-Kelvin tem-
perature regimes [53, 54], thus offering hope that full-fledge tests of the Clausius
inequality might be possible. Such experiments would be difficult to design, con-
duct, and interpret, but they appear within the current experimental art.

4.6.4 Experimental Outlook
The above-mentioned experimental concepts and incentives are compelling and
should be pursued more fully since they offer the hope of sensitive tests of at least
two formulations of the second law (Thomson and Clausius) on many systems
for which there is already deep understanding. On the other hand, the level of
theoretical analysis and experimental details presented for the experiments thus
far [44, 45] are insufficient to determine whether such experiments are truly feasible
or even whether their proposed thermodynamic cycles can achieve breakeven in
entropy reduction. Let us consider theory first.

The analysis of Pombo’s thermodynamic cycle appears incomplete, leaving out
key thermodynamic steps. For instance, the work and entropy generation required
to prepare the 〈σ̂x(0)〉 = −1 state has not been assessed, although τ2 is admittedly
finite, such that spins must be restored on a regular basis for the cycle to repeat.
(If, on the other hand, random spins are used, then the conditions for (4.21)
to return strictly negative work (W1 < 0) appear compromised since W1 < 0
requires the simultaneous tuning of phase-dependent parameters. Or, if random
spins are used judiciously, these spin states must be measured, presumably by
an energy-consuming, entropy-generating agent.) Additionally, no assessment has
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been made of the work or entropy generation associated with the nonequilibrium
∆ pulse that couples the spin and bath. Similarly, for the quantum LRC circuit
no thermodynamic assessment has been made of the dL-varying agent5. In short,
several key elements of this cycle have not been assessed thermodynamically. On
the other hand, if the experiments aim merely to test for the fundamental effects
— full second law challenges aside — then these objections may be moot.

There are also many experimental issues that have not been addressed — too
many to list here — so let this summarize: No realistic experimental system for
either proposal (spin-boson or LRC) has explicitly been shown to meet the criteria
for work extraction from a heat bath, nor have explicit experimental designs with
realistic experimental parameters been vetted adequately. For neither model has
it been well-established that experimental techniques are adequate to make the
necessary measurements, nor that the negentropy of the cycle can outweigh the
the entropy production of the apparatus, even in principle. In contrast, Nikulov,
et al. (§4.4), Keefe (§4.3), and Sheehan (Chapters 7-9) have treated well-defined
experimental circumstances, realizing that with experiments, the devil is in the
details. In summary, within the idealizations of their theoretical development,
compelling cases have been made for second law challenges in the quantum regime;
however, these experiments are still in the conceptual stage.

The thermodynamic requirements for these and the previous challenges (§4.3,
§4.4) are extreme. The superconducting ones require both low-temperatures and
micro- or mesoscopic structures, which burden experimental techniques and ham-
per direct, unambiguous measurements of predicted entropy reductions or heat
fluxes — whichever is necessary. It is not enough for the CMCE engine to simply
run, or for voltage oscillations to be measured in an inhomogeneous superconduct-
ing loop near its transition temperature. To challenge the second law successfully,
the involvement of all other possible free energy sources must be ruled out and,
ideally, direct measurements must be made of sustained heat fluxes or entropy re-
ductions that are causally connected to the forbidden work. These types of energy
and entropy determinations are not trivial even for room-temperature, everyday
macroscopic devices like flashlights; thus, for a vacuum-packed, microscopic super-
conductor near absolute zero, it is likely to be more difficult. With regard to the
entanglement proposals, here the difficulties associated with microscopic devices
are traded for the intricacies and uncertainties associated with entanglement. As
a simple example, how does one quantitatively measure system-bath entanglement
and demonstrate unambiguously that it has been transformed into work?

Despite these hurdles, these low-temperature challenges are among the most
compelling of the modern era. At a deep level they underscore the fundamental
differences between classical and quantum thermostatistical behaviors. Of course,
quantum statistics were unknown at the time thermodynamics and statistical me-
chanics were being forged, and since then quantum systems have grown up to be
disrespectful of the zeroth and third laws. Perhaps it should not be too surprising
that they now show occasional disrespect for the second.

5In principle, a work source generates negligible entropy, but for real experimental systems
this is rarely the case.
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