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Entropy and the Second Law

Various formulations of the second law and entropy are reviewed. Longstand-
ing foundational issues concerned with their definition, physical applicability and
meaning are discussed.

1.1 Early Thermodynamics

The origins of thermodynamic thought are lost in the furnace of time. However,
they are written into flesh and bone. To some degree, all creatures have an innate
‘understanding’ of thermodynamics — as well they should since they are bound
by it. Organisms that display thermotaxis, for example, have a somatic familiarity
with thermometry: zeroth law. Trees grow tall to dominate solar energy reserves:
first law. Animals move with a high degree of energy efficiency because it is
‘understood’ at an evolutionary level that energy wasted cannot be recovered:
second law. Nature culls the inefficient.

Human history and civilization have been indelibly shaped by thermodynamics.
Survival and success depended on such things as choosing the warmest cave for
winter and the coolest for summer, tailoring the most thermally insulating furs,
rationing food, greasing wheels against friction, finding a southern exposure for a
home (in the northern hemisphere), tidying up occasionally to resist the tendencies
of entropy. Human existence and civilization have always depended implicitly on
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an understanding of thermodynamics, but it has only been in the last 150 years
that this understanding has been codified. Even today it is not complete.

Were one to be definite, the first modern strides in thermodynamics began
perhaps with James Watt’s (1736-1819) steam engine, which gave impetus to what
we now know as the Carnot cycle. In 1824 Sadi Nicolas Carnot (1796-1832),
published his only scientific work, a treatise on the theory of heat (Réflexions sur
la Puissance Motice du Feu) [1]. At the time, it was not realized that a portion of
the heat used to drive steam engines was converted into work. This contributed
to the initial disinterest in Carnot’s research.

Carnot turned his attention to the connection between heat and work, abandon-
ing his previous opinion about heat as a fluidum, and almost surmised correctly
the mechanical equivalent of heat1. In 1846, James Prescott Joule (1818-1889)
published a paper on thermal and chemical effects of the electric current and in
another (1849) he reported mechanical equivalent of heat, thus erasing the sharp
boundary between mechanical and thermal energies. There were also others who,
independently of Joule, contributed to this change of thinking, notably Hermann
von Helmholtz (1821-1894).

Much of the groundwork for these discoveries was laid by Benjamin Thompson
(Count of Rumford 1753-1814). In 1798, he took part in boring artillery gun
barrels. Having ordered the use of blunt borers – driven by draught horses – he
noticed that substantial heat was evolved, in fact, in quantities sufficient to boil
appreciable quantities of water. At roughly the same time, Sir Humphry Davy
(1778-1829) observed that heat developed upon rubbing two pieces of metal or
ice, even under vacuum conditions. These observations strongly contradicted the
older fluid theories of heat.

The law of energy conservation as we now know it in thermodynamics is usually
ascribed to Julius Robert von Mayer (1814-1878). In classical mechanics, however,
this law was known intuitively at least as far back as Galileo Galilei (1564-1642).
In fact, about a dozen scientists could legitimately lay claim to discovering energy
conservation. Fuller accounts can be found in books by Brush [2] and von Baeyer
[3]. The early belief in energy conservation was so strong that, since 1775, the
French Academy has forbidden consideration of any process or apparatus that
purports to produce energy ex nihilo: a perpetuum mobile of the first kind.

With acceptance of energy conservation, one arrives at the first law of ther-
modynamics. Rudolph Clausius (1822-1888) summarized it in 1850 thus: “In any
process, energy may be changed from one to another form (including heat and
work), but can never be produced or annihilated.” With this law, any possibility
of realizing a perpetuum mobile of the first kind becomes illusory.

Clausius’ formulation still stands in good stead over 150 years later, despite
unanticipated discoveries of new forms of energy — e.g., nuclear energy, rest mass
energy, vacuum energy, dark energy. Because the definition of energy is malleable,
in a practical sense, the first law probably need not ever be violated because, were
one to propose a violation, energy could be redefined so as to correct it. Thus,
conservation of energy is reduced to a tautology and the first law to a powerfully
convenient accounting tool for the two general forms of energy: heat and work.

1Unfortunately, this tract was not published, but was found in his inheritance in 1878.
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In equilibrium thermodynamics, the first law is written in terms of an additive
state function, the internal energy U , whose exact differential dU fulfills

dU = δQ + δW. (1.1)

Here δQ and δW are the inexact differentials of heat and work added to the
system. (In nonequilibrium thermodynamics, there are problems with introducing
these quantities rigorously.) As inexact differentials, the integrals of δQ and δW
are path dependent, while dU , an exact differential is path independent; thus,
U is a state function. Other state functions include enthalpy, Gibbs free energy,
Helmholtz free energy and, of course, entropy.

1.2 The Second Law: Twenty-One Formulations

The second law of thermodynamics was first enunciated by Clausius (1850) [4]
and Kelvin (1851) [5], largely based on the work of Carnot 25 years earlier [1].
Once established, it settled in and multiplied wantonly; the second law has more
common formulations than any other physical law. Most make use of one or more
of the following terms — entropy, heat, work, temperature, equilibrium, perpetuum
mobile — but none employs all, and some employ none. Not all formulations are
equivalent, such that to satisfy one is not necessarily to satisfy another. Some
versions overlap, while others appear to be entirely distinct laws. Perhaps this is
what inspired Truesdell to write, “Every physicist knows exactly what the first
and second laws mean, but it is my experience that no two physicists agree on
them.”

Despite — or perhaps because of — its fundamental importance, no single
formulation has risen to dominance. This is a reflection of its many facets and
applications, its protean nature, its colorful and confused history, but also its
many unresolved foundational issues. There are several fine accounts of its his-
tory [2, 3, 6, 7]; here we will give only a sketch to bridge the many versions we
introduce. Formulations can be catagorized roughly into five catagories, depend-
ing on whether they involve: 1) device and process impossibilities; 2) engines; 3)
equilibrium; 4) entropy; or 5) mathematical sets and spaces. We will now consider
twenty-one standard (and non-standard) formulations of the second law. This sur-
vey is by no means exhaustive.

The first explicit and most widely cited form is due to Kelvin2 [5, 8].

(1) Kelvin-Planck No device, operating in a cycle, can produce the
sole effect of extraction a quantity of heat from a heat reservoir and
the performance of an equal quantity of work.

2William Thomson (1824-1907) was known from 1866-92 as Sir William Thomson and after
1892 as Lord Kelvin of Largs.
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In this, its most primordial form, the second law is an injunction against perpetuum
mobile of the second type (PM2). Such a device would transform heat from a heat
bath into useful work, in principle, indefinitely. It formalizes the reasoning under-
girding Carnot’s theorem, proposed over 25 years earlier.

The second most cited version, and perhaps the most natural and experientially
obvious, is due to Clausius (1854) [4]:

(2) Clausius-Heat No process is possible for which the sole effect is
that heat flows from a reservoir at a given temperature to a reservoir
at higher temperature.

In the vernacular: Heat flows from hot to cold. In contradistinction to some formu-
lations that follow, these two statements make claims about strictly nonequilibrium
systems; as such, they cannot be considered equivalent to later equilibrium for-
mulations. Also, both versions turn on the key term, sole effect, which specifies
that the heat flow must not be aided by external agents or processes. Thus, for
example, heat pumps and refrigerators, which do transfer heat from a cold reser-
voir to a hot reservoir, do so without violating the second law since they require
work input from an external source that inevitably satisfies the law.

Other common (and equivalent) statements to these two include:

(3) Perpetual Motion Perpetuum mobile of the second type are im-
possible.

and

(4) Refrigerators Perfectly efficient refrigerators are impossible.

The primary result of Carnot’s work and the root of many second law formu-
lations is Carnot’s theorem [1]:

(5) Carnot theorem All Carnot engines operating between the same
two temperatures have the same efficiency.

Carnot’s theorem is occasionally but not widely cited as the second law. Usually it
is deduced from the Kelvin-Planck or Clausius statements. Analysis of the Carnot
cycle shows that a portion of the heat flowing through a heat engine must always
be lost as waste heat, not to contribute to the overall useful heat output3. The
maximum efficiency of heat engines is given by the Carnot efficiency: η = 1− Tc

Th
,

where Tc,h are the temperatures of the colder and hotter heat reservoirs between
which the heat engine operates. Since absolute zero (Tc = 0) is unattainable (by
one version of the third law) and since Th �= ∞ for any realistic system, the Carnot
efficiency forbids perfect conversion of heat into work (i.e., η = 1). Equivalent
second law formulations embody this observation:

3One could say that the second law is Nature’s tax on the first.
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(6) Efficiency All Carnot engines have efficiencies satisfying:
0 < η < 1.

and,

(7) Heat Engines Perfectly efficient heat engines (η = 1) are impos-
sible.

The efficiency form is not cited in textbooks, but is suggested as valid by Koenig
[9]. There is disagreement over whether Carnot should be credited with the dis-
covery of the second law [10]. Certainly, he did not enunciate it explicitly, but he
seems to have understood it in spirit and his work was surely a catalyst for later,
explicit statements of it.

Throughout this discussion it is presumed that realizable heat engines must
operate between two reservoirs at different temperatures. (Tc and Th). This con-
dition is considered so stringent that it is often invoked as a litmus test for second
law violators; that is, if a heat engine purports to operate at a single temperature,
it violates the second law. Of course, mathematically this is no more than assert-
ing η = 1, which is already forbidden.

Since thermodynamics was initially motivated by the exigencies of the indus-
trial revolution, it is unsurprising that many of its formulations involve engines
and cycles.

(8) Cycle Theorem Any physically allowed heat engine, when oper-
ated in a cycle, satisfies the condition

∮
δQ

T
= 0 (1.2)

if the cycle is reversible; and

∮
δQ

T
< 0 (1.3)

if the cycle is irreversible.

Again, δQ is the inexact differential of heat. This theorem is widely cited in the
thermodynamic literature, but is infrequently forwarded as a statement of the sec-
ond law. In discrete summation form for reversible cycles (

∑
i Qi/Ti = 0), it was

proposed early on by Kelvin [5] as a statement of the second law.

(9) Irreversibility All natural processes are irreversible.

Irreversibility is an essential feature of natural processes and it is the essential
thermodynamic characteristic defining the direction of time4 — e.g., omelettes do

4It is often said that irreversibility gives direction to time’s arrow. Perhaps one should say
irreversibility is time’s arrow [11-17].
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not spontaneously unscramble; redwood trees do not ‘ungrow’; broken Ming vases
do not reassemble; the dead to not come back to life. An irreversible process is,
by definition, not quasi-static (reversible); it cannot be undone without additional
irreversible changes to the universe. Irreversibility is so undeniably observed as an
essential behavior of the physical world that it is put forward by numerous authors
in second law statements.

In many thermodynamic texts, natural and irreversible are equated, in which
case this formulation is tautological; however, as a reminder of the essential con-
tent of the law, it is unsurpassed. In fact, it is so deeply understood by most
scientists as to be superfluous.

A related formulation, advanced by Koenig [9] reads:

(10) Reversibility All normal quasi-static processes are reversible,
and conversely.

Koenig claims, “this statement goes further than [the irreversibility statement]
in that it supplies a necessary and sufficient condition for reversibility (and irre-
versibility).” This may be true, but it is also sufficiently obtuse to be forgettable;
it does not appear in the literature beyond Koenig.

Koenig also offers the following orphan version [9]:

(11) Free Expansion Adiabatic free expansion of a perfect gas is an
irreversible process.

He demonstrates that, within his thermodynamic framework, this proposition is
equivalent to the statement, “If a [PM2] is possible, then free expansion of a gas
is a reversible process; and conversely.” Of course, since adiabatic free expansion
is irreversible, it follows perpetuum mobile are logically impossible — a standard
statement of the second law. By posing the second law in terms of a particu-
lar physical process (adiabatic expansion), the door is opened to use any natural
(irreversible) process as the basis of a second law statement. It also serves as a
reminder that the second law is not only of the world and in the world, but, in an
operational sense, it is the world. This formulation also does not enjoy citation
outside Koenig [9].

A relatively recent statement is proposed by Macdonald [18]. Consider a system
Z, which is closed with respect to material transfers, but to which heat and work
can be added or subtracted so as to change its state from A to B by an arbitrary
process P that is not necessarily quasi-static. Heat (HP) is added by a standard
heat source, taken by Macdonald to be a reservoir of water at its triple point. The
second law is stated:

(12) Macdonald [18] It is impossible to transfer an arbitrarily large
amount of heat from a standard heat source with processes terminating
at a fixed state of Z. In other words, for every state B of Z,
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Sup[HP : P terminates at B] < ∞,

where Sup[...] is the supremum of heat for the process P.
Absolute entropy is defined easily from here as the supremum of the heat HP

divided by a fiduciary temperature To, here taken to be the triple point of water
(273.16 K); that is, S(B) = Sup[HP/To : P terminates at B]. Like most formu-
lations of entropy and the second law, these apply strictly to closed equilibrium
systems.

Many researchers take equilibrium as the sine qua non for the second law.

(13) Equilibrium The macroscopic properties of an isolated nonstatic
system eventually assume static values.

Note that here, as with many equivalent versions, the term equilibrium is purpose-
fully avoided. A related statement is given by Gyftopolous and Beretta [19]:

(14) Gyftopolous and Beretta Among all the states of a system
with given values of energy, the amounts of constituents and the pa-
rameters, there is one and only one stable equilibrium state. Moreover,
starting from any state of a system it is always possible to reach a
stable equilibrium state with arbitrary specified values of amounts of
constituents and parameters by means of a reversible weight process.

(Details of nomenclature (e.g., weight process) can be found in §1.3.) Several
aspects of these two equilibrium statements merit unpacking.

• Macroscopic properties (e.g., temperature, number density, pressure) are
ones that exhibit statistically smooth behavior at equilibrium. Scale lengths
are critical; for example, one expects macroscopic properties for typical liq-
uids at scale lengths greater than about 10−6m. At shorter scale lengths
statistical fluctuations become important and can undermine the second law.
This was understood as far back as Maxwell [20, 21, 22, 23].

• There are no truly isolated systems in nature; all are connected by long-range
gravitational and perhaps electromagnetic forces; all are likely affected by
other uncontrollable interactions, such as by neutrinos, dark matter, dark en-
ergy and perhaps local cosmological expansion; and all are inevitably coupled
thermally to their surroundings to some degree. Straightforward calculations
show, for instance, that the gravitational influence of a minor asteroid in the
Asteroid Belt is sufficient to instigate chaotic trajectories of molecules in a
parcel of air on Earth in less than a microsecond. Since gravity cannot be
screened, the exact molecular dynamics of all realistic systems are constantly
affected in essentially unknown and uncontrollable ways. Unless one is able
to model the entire universe, one probably cannot exactly model any subset
of it5. Fortunately, statistical arguments (e.g., molecular chaos, ergodicity)
allow thermodynamics to proceed quite well in most cases.

5Quantum mechanical entanglement, of course, further complicates this task.
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• One can distinguish between stable and unstable static (or equilibrium) states,
depending on whether they “persist over time intervals significant for some
particular purpose in hand.” [9]. For instance, to say “Diamonds are for-
ever.” is to assume much. Diamond is a metastable state of carbon un-
der everyday conditions; at elevated temperatures (∼ 2000 K), it reverts to
graphite. In a large enough vacuum, graphite will evaporate into a vapor of
carbon atoms and they, in turn, will thermally ionize into a plasma of elec-
trons and ions. After 1033 years, the protons might decay, leaving a tenuous
soup of electrons, positrons, photons, and neutrinos. Which of these is a
stable equilibrium? None or each, depending on the time scale and environ-
ment of interest. By definition, a stable static state is one that can change
only if its surroundings change, but still, time is a consideration. To a large
degree, equilibrium is a matter of taste, time, and convenience.

• Gyftopoulos and Beretta emphasise one and only one stable equilibrium
state. This is echoed by others, notably by Mackey who reserves this caveat
for his strong form of the second law [24].

Thus far, entropy has not entered into any of these second law formulations.
Although, in everyday scientific discourse the two are inextricably linked, this is
clearly not the case. Entropy was defined by Clausius in 1865, nearly 15 years
after the first round of explicit second law formulations. Since entropy was origi-
nally wrought in terms of heat and temperature, this allows one to recast earlier
formulations easily. Naturally, the first comes from Clausius:

(15) Clausius-Entropy [4, 6] For an adiabatically isolated system
that undergoes a change from one equilibrium state to another, if the
thermodynamic process is reversible, then the entropy change is zero; if
the process is irreversible, the entropy change is positive. Respectively,
this is: ∫ f

i

δQ

T
= Sf − Si (1.4)

and ∫ f

i

δQ

T
< Sf − Si (1.5)

Planck (1858-1947), a disciple of Clausius, refines this into what he describes
as “the most general expression of the second law of thermodynamics.” [8, 6]

(16) Planck Every physical or chemical process occurring in nature
proceeds in such a way that the sum of the entropies of all bodies which
participate in any way in the process is increased. In the limiting case,
for reversible processes, the sum remains unchanged.

Alongside the Kelvin-Planck version, these two statements have dominated the
scientific landscape for nearly a century and a half. Planck’s formulation implic-
itly cuts the original ties between entropy and heat, thereby opening the door for
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other versions of entropy to be used. It is noteworthy that, in commenting on the
possible limitations of his formulation, Planck explicitly mentions the perpetuum
mobile. Evidently, even as thermodynamics begins to mature, the specter of the
perpetuum mobile lurks in the background.

Gibbs takes a different tack to the second law by avoiding thermodynamic
processes, and instead conjoins entropy with equilibrium [25, 6]:

(17) Gibbs For the equilibrium of an isolated system, it is necessary
and sufficient that in all possible variations of the state of the system
which do not alter its energy, the variation of its entropy shall either
vanish or be negative.

In other words, thermodynamic equilibrium for an isolated system is the state of
maximum entropy. Although Gibbs does not refer to this as a statement of the
second law, per se, this maximum entropy principle conveys its essential content.
The maximum entropy principle [26] has been broadly applied in the sciences, en-
gineering economics, information theory — wherever the second law is germane,
and even beyond. It has been used to reformulate classical and quantum sta-
tistical mechanics [26, 27]. For instance, starting from it one can derive on the
back of an envelope the continuous or discrete Maxwell-Boltzmann distributions,
the Planck blackbody radiation formula (and, with suitable approximations, the
Rayleigh-Jeans and Wien radiation laws) [24].

Some recent authors have adopted more definitional entropy-based versions [9]:

(18) Entropy Properties Every thermodynamic system has two
properties (and perhaps others): an intensive one, absolute temper-
ature T , that may vary spatially and temporally in the system T (x, t);
and an extensive one, entropy S. Together they satisfy the following
three conditions:
(i) The entropy change dS during time interval dt is the sum of: (a)
entropy flow through the boundary of the system deS; and (b) entropy
production within the system, diS; that is, dS = deS + diS.
(ii) Heat flux (not matter flux) through a boundary at uniform tem-
perature T results in entropy change deS = δQ

T .
(iii) For reversible processes within the system, diS = 0, while for
irreversible processes, diS > 0.

This version is a starting point for some approaches to irreversible thermodynam-
ics.

While there is no agreement in the scientific community about how best to state
the second law, there is general agreement that the current melange of statements,
taken en masse, pretty well covers it. This, of course, gives fits to mathematicians,
who insist on precision and parsimony. Truesdell [28, 6] leads the charge:
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Clausius’ verbal statement of the second law makes no sense.... All that
remains is a Mosaic prohibition; a century of philosophers and journal-
ists have acclaimed this commandment; a century of mathematicians
have shuddered and averted their eyes from the unclean.

Arnold broadens this assessment [29, 6]:

Every mathematician knows it is impossible to understand an elemen-
tary course in thermodynamics.

In fact, mathematicians have labored to drain this “dismal swamp of obscurity”
[28], beginning with Carathéodory [30] and culminating with the recent tour de
force by Lieb and Yngvason [31]. While both are exemplars of mathematical rigor
and logic, both suffer from incomplete generality and questionable applicability to
realistic physical systems; in other words, there are doubts about their empirical
content.

Carathéodory was the first to apply mathematical rigor to thermodynamics
[30]. He imagines a state space Γ of all possible equilibrium states of a generic
system. Γ is an n-dimensional manifold with continuous variables and Euclidean
topology. Given two arbitrary states s and t, if s can be transformed into t by
an adiabatic process, then they satisfy adiabatically accessibility condition, written
s ≺ t, and read s precedes t. This is similar to Lieb and Yngvason [31], except
that Lieb and Yngvason allow sets of possibly disjoint ordered states, whereas
Carathéodory assumes continuous state space and variables. Max Born’s simplified
version of Carathéodory’s second law reads [32]:

(19a) Carathéodory (Born Version): In every neighborhood of
each state (s) there are states (t) that are inaccessible by means of
adiabatic changes of state. Symbolically, this is:

(∀s ∈ Γ,∀Us) : ∃t ∈ Uss ≺ t, (1.6)

where Us and Ut are open neighborhoods surrounding the states s and t.
Carathéodory’s originally published version is more precise [30, 6].

(19b) Carathéodory Principle In every open neighborhood Us ⊂ Γ
of an arbitrarily chosen state s there are states t such that for some
open neighborhood Ut of t: all states r within Ut cannot be reached
adiabatically from s. Symbolically this is:

∀s ∈ Γ∀Us∃t ∈ Us&∃Ut ⊂ Us∀r ∈ Ut : s ≺ r. (1.7)

Lieb and Yngvason [31] proceed along similar lines, but work with an set of
distinct states, rather than a continuous space of them. For them, the second law
is a theorem arising out of the ordering of the states via adiabatic accessibility.
Details can be found in §1.3.

/

/
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In connection with analytical microscopic formulations of the second law, the
recent work by Allahverdyan and Nieuwenhuizen [33] is noteworthy. They rederive
and extend the results of Pusz, Woronowicz [34] and Lenard [35], and provide an
analytical proof of the following equilibrium formulation of the Thomson (Kelvin)
statement:

(20) Thomson (Equilibrium) No work can be extracted from a
closed equilibrium system during a cyclic variation of a parameter by
an external source.

The Allahverdyan-Niewenhuizen (A-N) theorem is proved by rigorous quantum
mechanical methods without invoking the time-invariance principle. This makes
it superior to previous treatments of the problem. Although significant, it is insuf-
ficient to resolve most types of second law challenges, for multiple reasons. First,
the A-N theorem applies to equilibrium systems only, whereas the original forms
of the second law (Kelvin and Clausius) are strictly nonequilibrium in character
and most second law challenges are inherently nonequilibrium in character; thus,
the pertinence of the A-N theorem is limited. Second, it assumes that the system
considered is isolated, but realistically, no such system exists in Nature. Third,
it assumes the Gibbs form of the initial density matrix. While this assumption
is natural when temperature is well defined, once finite coupling of the system to
a bath is introduced, this assumption can be violated appreciably, especially for
systems which purport second law violation (e.g., [36]).

The relationships between these various second law formulations are complex,
tangled and perhaps impossible to delineate completely, especially given the muzzi-
ness with which many of them and their underlying assumptions and definitions
are stated. Still, attempts have been made along these lines [2, 6, 7, 9] 6. This
exercise of tracing the connections between the various formulations has historical,
philosophical and scientific value; hopefully, it will help render a more inclusive
formulation of the second law in the future.

In addition to academic formulations there are also many folksy aphorisms that
capture aspects of the law. Many are catchphrases for more formal statements.
Although loathe to admit it, most of these are used as primary rules of thumb by
working scientists. Most are anonymous; when possible, we try to identify them
with academic forms. Among these are:

• Disorder tends to increase. (Clausius, Planck)

• Heat goes from hot to cold. (Clausius)

• There are no perfect heat engines. (Carnot)

• There are no perfect refrigerators. (Clausius)

• Murphy’s Law (and corollary) (Murphy ∼ 1947)
6See, Table I in Uffink [6] and Table II (Appendix A) in Koenig [9]
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1. If anything can go wrong it will.

2. Situations tend to progress from bad to worse.

• A mess expands to fill the space available.

• The only way to deal with a can of worms is to find a bigger can.

• Laws of Poker in Hell:

1. Poker exists in Hell. (Zeroth Law)

2. You can’t win. (First Law)

3. You can’t break even. (Second Law)

4. You can’t leave the game. (Third Law)

• Messes don’t go away by themselves. (Mom)

• Perpetual motion machines are impossible. (Nearly everyone)

Interestingly, in number, second law aphorisms rival formal statements. Perhaps
this is not surprising since the second law began with Carnot and Kelvin as an
injunction against perpetual motions machines, which have been scorned publically
back to times even before Leonardo da Vinci (∼ 1500). Arguably, most versions
of the second law add little to what we already understand intuitively about the
dissipative nature of the world; they only confirm and quantify it. As noted by
Pirruccello [37]:

Perhaps we’ll find that the second law is rooted in folk wisdom, plati-
tudes about life. The second law is ultimately an expression of human
disappointment and frustration.

For many, the first and best summary of thermodynamics was stated by Clau-
sius 150 years ago [4]:

2. Die Entropie der Welt strebt einem Maximum zu.

or, in English,

1. The energy of the universe is constant.
2. The entropy of the universe strives toward a maximum.

Although our conceptions of energy, entropy and the universe have undergone
tremendous change since his time, remarkably, Clausius’ summary still rings true
today — and perhaps even more so now for having weathered so much.

In surveying these many statements, one can get the impression of having
stumbled upon a scientific Rorschauch test, wherein the second law becomes a
reflection of one’s own circumstances, interests and psyche. However, although
there is much disagreement on how best to state it, its primordial injunction
against perpetuum mobile of the second type generally receives the most support

1. Die Energie der Welt ist konstant.
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and the least dissention. It is the gold standard of second law formulations. If the
second law is the flesh of thermodynamics, this injunction is its heart.

If the second law should be shown to be violable, it would nonetheless remain
valid for the vast majority of natural and technological processes. In this case, we
propose the following tongue-in-cheek formulation for a post-violation era, should
it come to pass:

(21) Post-Violation For any spontaneous process the entropy of the
universe does not decrease — except when it does.

1.3 Entropy: Twenty-One Varieties

The discovery of thermodynamic entropy as a state function is one of the
triumphs of nineteenth-century theoretical physics. Inasmuch as the second law is
one of the central laws of nature, its handmaiden — entropy — is one of the most
central physical concepts. It can pertain to almost any system with more than a
few particles, thereby subsuming nearly everything in the universe from nuclei to
superclusters of galaxies [38]. It is protean, having scores of definitions, not all
of which are equivalent or even mutually compatible7. To make matters worse,
“perhaps every month someone invents a new one,” [39]. Thus, it is not surprising
there is considerable controversy surrounding its nature, utility, and meaning. It
is fair to say that no one really knows what entropy is.

Roughly, entropy is a quantitative macroscopic measure of microscopic disor-
der. It is the only major physical quantity predicated and reliant upon wholesale
ignorance of the system it describes. This approach is simultaneously its greatest
strength and its Achilles heel. On one hand, the computational complexities of
even simple dynamical systems often mock the most sophisticated analytic and
numerical techniques. In general, the dynamics of n-body systems (n > 2) can-
not be solved exactly; thus, thermodynamic systems with on the order of a mole
of particles (1023) are clearly hopeless, even in a perfectly deterministic Lapla-
cian world, sans chaos. Thus, it is both convenient and wise to employ powerful
physical assumptions to simplify entropy calculations — e.g., equal a priori proba-
bility, ergodicity, strong mixing, extensivity, random phases, thermodynamic limit.
On the other hand, although they have been spectacularly predictive and can be
shown to be reasonable for large classes of physical systems, these assumptions are
known not to be universally valid. Thus, it is not surprising that no completely
satisfactory definition of entropy has been discovered, despite 150 years of effort.
Instead, there has emerged a menagerie of different types which, over the decades,
have grown increasingly sophisticated both in response to science’s deepening un-
derstanding of nature’s complexity, but also in recognition of entropy’s inadequate
expression.

This section provides a working man’s overview of entropy; it focuses on the
most pertinent and representative varieties. It will not be exhaustive, nor will

7P. Hänggi claims to have compiled a list of 55 different varieties; here we present roughly 21.
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it respect many of the nuances of the subject; for these, the interested reader is
directed to the many fine treatises on the subject.

Most entropies possess a number of important physical and mathematical prop-
erties whose adequate discussion extends beyond the aims of this volume; these
include additivity, subadditivity, concavity, invariance, insensitivity, continuity
conditions, and monotonicity [24, 31, 39]. Briefly, for a system A composed of
two subsystems A1 and A2 such that A = A1 + A2, the entropy is additive if
S(A) = S(A1) + S(A2). For two independent systems A and B, the entropy is
subadditive if their entropy when joined (composite entropy) is never less than
the sum of their individual entropies; i.e., S(A + B) ≥ S(A) + S(B). (Note that
for additivity the subsystems (A1, A2) retain their individual identities, while for
subadditivity the systems (A, B) lose their individual identities.) For systems A
and B, entropy demonstrates concavity if S(λA+(λ−1)B) ≥ λS(A)+(1−λ)S(B);
0 ≤ λ ≤ 1.

A workingman’s summary of standard properties can be extracted from
Gyftopoulous and Beretta [19]. Classical entropy must8:

a) be well defined for every system and state;
b) be invariant for any reversible adiabatic process (dS = 0) and in-
crease for any irreversible adiabatic process (dS > 0);
c) be additive and subadditive for all systems, subsystems and states.
d) be non-negative, and vanish for all states described by classical me-
chanics;
e) have one and only one state corresponding to the largest value of
entropy;
f) be such that graphs of entropy versus energy for stable equilibria
are smooth and concave; and
g) reduce to relations that have been established experimentally.

The following are summaries of the most common and salient formulations of
entropy, spiced with a few distinctive ones. There are many more.

(1) Clausius [4] The word entropy was coined by Rudolf Clausius (1865) as a
thermodynamic complement to energy. The en draws parallels to energy, while
tropy derives from the Greek word τρoπη, meaning change. Together en-tropy
evokes quantitative measure for thermodynamic change9.

Entropy is a macroscopic measure of the microscopic state of disorder or chaos
in a system. Since heat is a macroscopic measure of microscopic random kinetic
energy, it is not surprising that early definitions of entropy involve it. In its original
and most utilitarian form, entropy (or, rather, entropy change) is expressed in
terms of heat Q and temperature T . For reversible thermodynamic processes, it
is

dS =
δQ

T
, (1.8)

8Many physical systems in this volume do not abide these restrictions, most notably,
additivity.

9Strictly speaking, Clausius coined entropy to mean in transformation.
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while for irreversible processes, it is

dS >
δQ

T
(1.9)

These presume that T is well defined in the surroundings, thus foreshadowing the
zeroth law. To establish fiduciary entropies the third law is invoked. For systems
“far” from equilibrium, neither entropy nor temperature is well defined.

(2) Boltzmann-Gibbs [40, 41] The most famous classical formulation of entropy
is due to Boltzmann:

SBG,µ = S(E,N, V ) = k ln Ω(E,N, V ) (1.10)

Here Ω(E,N, V ) is the total number of distinct microstates (complexions) acces-
sible to a system of energy E, particle number N in volume V . The Boltzmann
relation provides the first and most important bridge between microscopic physics
and equilibrium thermodynamics. It carries with it a minimum number of as-
sumptions and, therefore, is quite general. It applies directly to the microcanoni-
cal ensemble (fixed E, N , V ), but, with appropriate inclusion of heat and particle
reservoirs, also to the canonical and grand canonical ensembles. In principle,
it applies to both extensive and nonextensive systems and does not presume the
standard thermodynamic limit (i.e., infinite particle number and volume [N → ∞,
V → ∞], finite density [N

V = C < ∞]) [38]; it can be used with boundary condi-
tions, which often handicap other formalisms; it does not presume temperature.
However, ergodicity (or quasi-ergodicity) is presumed in that the system’s phase
space trajectory is assumed to visit smoothly and uniformly all neighborhoods of
the (6N-1)-dimensional constant-energy manifold consistent with Ω(E,N, V ) 10.

The Gibbs entropy is similar to Boltzmann’s except that it is defined via ensem-
bles, distributions of points in classical phase space consistent with the macroscopic
thermodynamic state of the system. Hereafter, it is called the Boltzmann-Gibbs
(BG) entropy. Like other standard forms of entropy, SBG,µ applies strictly to
equilibrium systems.

Note that Ω is not well defined for classical systems since phase space variables
are continuous. To remedy this, the phase space can be measured in unit volumes,
often in units of h̄. This motivates coarse-grained entropy. Coarse-graining reduces
the information contained in Ω and may be best described as a kind of phase space
averaging procedure for a distribution function. The coarse-grained distribution
leads to a proper increase of the corresponding statistical (information) entropy.
A perennial problem with this, however, is that the averaging procedure is not
unique so that the rate of entropy increase is likewise not unique, in contrast to
presumably uniquely defined increase of the thermodynamic entropy.

Starting from SBG,µ, primary intensive parameters (temperature T , pressure
P , and chemical potential µ) can be calculated [42-46]:

10Alternatively, ergodicity is defined as the condition that the ensemble-averaged and time-
averaged thermodynamic properties of a system be the same.
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(
∂S

∂E
)N,V ≡ 1

T
(1.11)

(
∂S

∂V
)E,N ≡ P

T
(1.12)

(
∂S

∂N
)V,E ≡ −µ

T
. (1.13)

If one drops the condition of fixed E and couples the system to a heat reservoir
at fixed temperature T , allowing free exchange of energy between the system
and reservoir, allowing E to vary as (0 ≤ E ≤ ∞), then one passes from the
microcanonical to the canonical ensemble [41-46].

For the canonical ensemble, entropy is defined as

SBG,c ≡ k
[
ln(Z) + βE

]
= k

[
∂

∂T
(T ln(Z))

]
. (1.14)

Here β ≡ 1
kT and Z is the partition function (Zustandsumme or “sum over

states”) upon which most of classical equilibrium thermodynamic quantities can
be founded:

Z ≡
∑

i

e−βEi , (1.15)

where Ei are the constant individual system energies and E is the mean (average)
system energy:

E ≡
∑

i Eie
−βEi∑

i e−βEi
=

∑
i

Eipi. (1.16)

The probability pi is the Boltzmann factor exp[−Ei/kT ]. One can define entropy
through the probability sum

SBG = −k
∑

i

pi ln pi, (1.17)

or in the continuum limit

SBG = −k

∫
f ln fdv, (1.18)

where f is a distribution function over a variable v. This latter expression is
apropos to particle velocity distributions.

If, in addition to energy exchange, one allows particle exchange between a
system and a heat-particle reservoir, one passes from the canonical ensemble (fixed
T , N , V ) to the grand canonical ensemble (fixed T , µ, V ), for which entropy is
defined [41-46]:

SBG,gc ≡ 1
β

(
∂q

∂T
)z,V − Nk ln(z) + kq = k[

∂(T ln(Z)
∂T

]µ,V . (1.19)
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Here q is the q-potential:

q = q(z, V, T ) ≡ ln[Z(z, V, T )], (1.20)

defined in terms of the grand partition function:

Z(z, V, T ) ≡
∑
i,j

exp(−βEi − αNj) =
∞∑

Nj=0

zNj ZNj
(V, T ). (1.21)

Here z ≡ e−βµ is the fugacity, ZNj
is the regular partition function for fixed par-

ticle number Nj , and α = − µ
kT . The sum is over all possible values of particle

number and energy, exponentially weighted by temperature. It is remarkable that
such a simple rule is able to predict successfully particle number and energy oc-
cupancy and, therefrom, the bulk of equilibrium thermodynamics. This evidences
the power of the physical assumptions underlying the theory.

(3) von Neumann [47] In quantum mechanics, entropy is not an observable, but
a state defined through the density matrix, ρ:

SvN (ρ) = −kTr[ρ ln(ρ)]. (1.22)

(Recall the expectation value of an observable is 〈A〉 = Tr(ρA).) Roughly, SvN (ρ)
is a measure of the quantity of chaos in a quantum mechanical mixed state. The
von Neumann entropy has advantage over the Boltzmann formulation in that,
presumably, it is a more basic and faithful description of nature in that the number
of microstates for a system is well defined in terms of pure states, unlike the case of
the classical continuum. On the other hand, unlike the Boltzmann microcanonical
entropy, for the von Neumann formulation, important properties like ergodicity,
mixing and stability strictly hold only for infinite systems.

The time development of ρ for an isolated system is governed by the Liouville
equation

i
d

dt
ρ(t) =

1
h̄

[H, ρ(t)] ≡ Lρ(t). (1.23)

Here H is the Hamiltonian of the system and L . . . = 1
h̄ [H, . . .] is the Liouville

superoperator. It follows that the entropy is constant in time. As noted by Wehrl
[39],

... the entropy of a system obeying the Schrödinger equation (with a
time-independent Hamiltonian) always remains constant [because the
density matrix time evolves as] ρ(t) = e−iHtρeiHt. Since eiHt is a
unitary operator, the eigenvalues of ρ(t) are the same eigenvalues of
ρ. But the expression for the entropy only involves the eigenvalues of
the density matrix, hence S(ρ(t)) = S(ρ). (In the classical case, the
analogous statement is a consequence of Liouville’s theorem.)11

11This statement holds if H is a function of time; i.e., ρ(t) = Uρ(0)U†, where U =

T exp(− i
h̄

∫ t

0
Hdt).
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Figure 1.1: SGHB is based on weight processes.

Since the Schrödinger equation alone is not sufficient to motivate the time evolu-
tion of entropy as normally observed in the real world, one usually turns to the
Boltzmann equation, the master equation, or other time-asymmetric formalisms
to achieve this end [43, 48, 49, 50]. Finally, the von Neumann entropy depends
on time iff ρ is coarse-grained; in contrast, the fine-grained entropy is constant.
(This, of course, ignores the problematic issues surrounding the non-uniqueness of
the coarse graining process.)

(4) Gyftopoulous, et al. [19, 51] A utilitarian approach to entropy is advanced
by Gyftopoulos, Hatsopoulos, and Beretta. Entropy SGHB is taken to be an intrin-
sic, non-probabilistic property of any system whether microscopic, macroscopic,
equilibrium, or nonequilibrium. Its development is based on weight processes in
which a system A interacts with a reservoir R via cyclic machinery to raise or
lower a weight (Figure 1.1). Of course, the weight process is only emblematic of
any process of pure work. SGHB is defined in terms of energy E, a constant that
depends on a reservoir cR, and generalized available energy ΩR as:

SGHB = S0 +
1
cR

[(E − E0) − (ΩR − ΩR
0 )], (1.24)

for a system A that evolves from state A1 to state A0. E0 and ΩR
0 are values

of a reference state and S0 is a constant fixed value for the system at all times.
Temperature is not ostensibly defined for this system; rather, cR is a carefully
defined reservoir property (which ultimately can be identified with temperature).
Available energy ΩR is the largest amount of energy that can be extracted from
the system A-reservoir combination by weight processes. Like SGHB , it applies to
all system sizes and types of equilibria.

At first meeting, SGHB may seem contrived and circular, but its method of
weight processes is similar to and no more contrived than that employed by Planck
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and others; its theoretical development is no more circular than that of Lieb and
Yngvason [31]; furthermore, it claims to encompass broader territory than either
by applying both to equilibrium and nonequilibrium systems. It does not, how-
ever, provide a microscopic picture of entropy and so is not well-suited to statistical
mechanics.

(5) Lieb-Yngvason [31] The Lieb-Yngvason entropy SLY is defined through the
mathematical ordering of sets of equilibrium states, subject to the constraints of
monotonicity, additivity and extensivity. The second law is revealed as a math-
ematical theorem on the ordering of these sets. This formalism owes significant
debt to work by Carathéodory [30], Giles [52], Buchdahl [53] and others.

Starting with a space Γ of equilibrium states X,Y,Z ..., one defines an ordering
of this set via the operation denoted ≺, pronounced precedes. The various set
elements of Γ can be ordered by a comparison procedure involving the criterion of
adiabatic accessibility. For elements X and Y, [31]

A state Y is adiabatically accessible from a state X, in symbols X ≺ Y,
if it is possible to change the state X to Y by means of an interaction
with some device (which may consist of mechanical and electrical parts
as well as auxiliary thermodynamic systems) and a weight, in such a
way that the device returns to its initial state at the end of the process
whereas the weight may have changed its position in a gravitation field.

This bears resemblance to the GHB weight process above (Figure 1.1). Although
superficially this definition seems limited, it is quite general for equilibrium states.
It is equivalent to requiring that state X can proceed to state Y by any natural
process, from as gentle and mundane as the unfolding of a Double Delight rose in
a quiet garden, to as violent and ultramundane as the detonation of a supernova.

If X proceeds to Y by an irreversible adiabatic process, this is denoted X ≺≺
Y, and if X ≺ Y and Y ≺ X, then X and Y are called adiabatically equivalent,
written X A∼ Y. If X ≺ Y or Y ≺ X (or both), they are called comparable.

The Lieb-Yngvason entropy SLY is defined as [31]:

There is a real-valued function on all states of all systems (including
compound systems), called entropy and denoted by S such that
a) Monotonicity: When X and Y are comparable states then

X ≺ Y if and only if S(X) ≤ S(Y).

b) Additivity and extensivity: If X and Y are states of some (possibly
different) systems and if (X,Y) denotes the corresponding state in the
composition of the two systems, then the entropy is additive for these
states, i.e.,

S(X,Y) = S(X) + S(Y)
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S is also extensive, i.e., for each t > 0 and each state X and its scaled
copy tX,

S(tX) = tS(X).

The monotonicity clause is equivalent to the following:

X A∼ Y =⇒ S(X) = S(Y); and
X ≺≺ Y =⇒ S(X) < S(Y).

The second of these says that entropy increases for an irreversible adiabatic pro-
cess. This is the Lieb-Yngvason formulation of the second law.

The existence and uniqueness of SLY can be shown to follow from assump-
tions surrounding adiabatic accessibility and the comparsion process. In this for-
malism, temperature is not a primitive concept; rather, it is defined via SLY as
1
T := (∂SLY

∂U )V , where U is energy and V is volume. The mathematical details of
these results are beyond the scope of this discussion; the intrepid reader is directed
to [31].

(6) Carathéodory Historically preceding SLY , Carathéodory also defined en-
tropy in a formal mathematical sense [30, 6].

For simple12 systems, Carathéodory’s principle is equivalent to the
proposition that the differential form δQ := dU − δW possesses an
integrable divisor, i.e., there exists functions S and T on the state
space Γ such that

δQ = TdS.

Thus, for simple systems, every equilibrum state can be assigned values
for entropy and absolute temperature. Obviously these functions are
not uniquely determined by the relation [δQ = TdS].

Carathéodory’s entropy was not widely accepted by working scientists during his
lifetime, but it has grown in significance during the last 40 years as thermodynamic
foundations have been shored up.

(7) Shannon [54] Various information-relevant entropies have been proposed over
the last six decades, the most prominent of which are the Shannon entropy and
algorithmic randomness [55, 56, 57]. These are especially salient in considerations
of sentient Maxwell demons [21], which have helped expose the deep relationships
between physics and information theory.

Let pj be probabilities of mutually exclusive events, say for instance, the prob-
abilties of particular letters in an unknown word. The uncertainty (entropy) of
the information about this situation is the Shannon entropy:

12Consult the literature for the requirements of a simple system [6, 30]
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SSh = −
∑

j

pj log(pj) (1.25)

The logarithm may be taken to any fixed base, but base 2 is standard, giving
entropy in bits. Shannon entropy can be seen to be a discrete form of the classical
Boltzmann-Gibbs entropy, (1.17).

(8) Fisher Shannon entropy is defined over a space of unordered elements, for
instance, letters. For a space of ordered elements, for example, a continuous
parameter (e.g., the length or brightness of meteor trails), Fisher information
is appropriate. For a probability distribution f(x;φ) in the random variable x
dependent on the unobservable variable φ, the Fisher information (entropy) is

SF (φ) = K[
∂

∂φ
log f(x;φ)]2 = −K[

∂2

∂φ2
log f(x;φ)] (1.26)

Clearly, the sharpness of the support curve is proportional to the expection of
SF (φ), thus high information content (low entropy) corresponds to a sharp distri-
bution and a low information content (high entropy) to a broad distribution.

(9) Algorithmic Randomness [55, 56, 57] Algorithmic randomness (algorith-
mic complexity, Kolmorgorov complexity) of a string of elements is defined as the
minimum size of a program (e.g., in bits) executed on a universal computer that
yields the string. Strings are relatively simple or complex depending on whether
its program length is relatively short or long, respectively. For example, the string
of 60,000 digits (121223121223121223...) is relatively simple and has relatively low
algorithmic randomness since it can be programmed as 10,000 repeating blocks
of (121223), whereas a completely random string of 60,000 digits cannot be com-
pressed this way and thus has a relatively large algorithmic randomness. Most
strings cannot be compressed and, to leading order in binary notation, their al-
gorithmic randomness is given by their lengths in bits. By example, a random
natural number N, if it can be expressed as N ∼ 2s, has algorithmic randomness
∼ log2N = s.

Algorithmic complexity, in contrast to other standard definitions of entropy,
does not rely on probabilities. However, the randomness of a string is not uniquely
determined and there is no general method to discern a simple string from a com-
plex one; this is related to Gödel’s undecidability [59]. For example, the sequence
(2245915771836104547342715) may appear completely random, but it is easily
generated from πe. Or, the letter sequence FPURCLK might seem random until
it is unscrambled and considered in an appropriate context. Apparently, order can
be in the eye of the beholder.

Zurek suggests that physical entropy “is the sum of (i) the missing information
measured by Shannon’s formula and (ii) of the [algorithmic content] in the avail-
able data about the system” [58].

(10) Tsallis [60, 61] Tsallis entropy is a controversial generalization of Boltzmann-
Gibbs entropy and is an heir to the Rényi and Daróczy entropies below. It is
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defined as

STs =
1

q − 1

[
1 −

∫
fq(x)dx

]
, (1.27)

where q is a real number entropic index and f(x) is a probability distribution
function. For q = 1, STs reduces to the Boltzmann-Gibbs entropy.

Primary virtues of the Tsallis entropy include its mathematical simplicity and
descriptiveness of nonextensive systems. A physical quantity is extensive if its
value scales linearly with the size of the system 13. The extensive Boltzmann-Gibbs
entropy of two independent systems A and B is SBG(A+B) = SBG(A)+SBG(B),
while for the Tsallis entropy it is STs(A+B) = STs+STs(B)+(1−q)STs(A)STs(B).
The parameter q can be taken as a measure of nonextensivity14.

Tsallis entropy has been applied to numerous disparate physical phenomena
that are deemed beyond the reach of equilibrium thermodynamics. Notably, these
include systems with long-range nonextensive fields (e.g., gravitational, electro-
static) such as plasmas and multi-particle self-gravitating systems (e.g., galaxies,
globular clusters). It has been applied to the behaviors of self-organizing and low-
dimensional chaotic systems and processes far from equilibrium; examples include
financial markets, crowds, traffic, locomotion of microorganisms, subatomic par-
ticle collisions, and tornados. Unfortunately, its underlying physical basis has not
been well established, leading critics to label it ad hoc and its successes little more
than “curve fitting.” Its elegant simplicity and adaptability, however, cannot be
denied.

The entropic index (nonextensivity parameter) q is taken to be a measure of the
fractal nature of a system’s path in phase space. Whereas under Boltzmann-Gibbs
formalism, a system on average spends equal time in all accessible, equal-sized vol-
umes of phase space (equal a priori probability), under the Tsallis formalism the
phase space path is fractal, thereby allowing it to model chaotic, nonequilibrium
systems, and display rapid and radical changes in behavior and phase.

(11-21) Other Entropies There are a number of other entropy and entropy-like
quantities that are beyond the scope of this discussion. These include (with ρ the
density matrix, unless otherwise noted):

Daróczy entropy [62]:

SD =
1

21−α − 1
(Tr(ρα) − 1), (1.28)

with α > 0 and α �= 1.
Rényi entropy [63]:

SR =
k

1 − α
ln[Tr(ρα)], (1.29)

again with α > 0 and α �= 1.
13Extensivity is a traditional requirement for thermodynamic quantities like energy and

entropy.
14Notice that if q → 1, then STs → SBG.
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Hartley entropy [64]:

SH = k ln[N(ρ)], (1.30)

where N(ρ) is the number of positive eigenvalues of ρ.
Infinite norm entropy:

SIn = −k ln ‖ρ‖∞, (1.31)

where ‖ρ‖∞ = pmax is the largest eigenvalue of ρ.
Relative entropy (classical mechanics) [65, 66]:

SRel,c = −
∫

ρ(ln ρ − lnσ)dτ, (1.32)

where ρ and σ are probability distributions and τ is the phase space coordinate.
Relative entropy (quantum mechanics):

SRel,q(σ|ρ) = Tr[ρ(ln ρ − lnσ)], (1.33)

where ρ and σ are distinct density matrices. It is non-negative [67].
In addition to these, there is Segal entropy [68], which subsumes many of the

quantum mechanical entropies mentioned above; Kolmogorov-Sinai (KS) entropy,
which describes dynamical systems undergoing discrete time evolution; Kouch-
nirenko A entropies, close relatives to KS entropy; skew entropy [69]; Ingarden-
Urbanik entropy [70]; Macdonald entropy [18]. For completeness, you may add
your own personal favorite here: .

1.4 Nonequilibrium Entropy

There is no completely satisfactory definition of entropy. To some degree, every
definition is predicated on physical ignorance of the system it describes and, there-
fore, must rely on powerful ad hoc assumptions to close the explanatory gap. These
limit their scopes of validity. Let us review a few examples. The Boltzmann-Gibbs
entropy assumes equal a priori probability either of phase space or ensemble space.
While this is a reasonable assumption for simple equilibrium systems like the ideal
gas and Lorentz gas, it is known to fail for large classes of systems, especially at
disequilibrium; the molecular chaos ansatz (Boltzmann’s Stosszahlansatz) is sim-
ilarly suspect. It is not known what the necessary conditions are for ergodicity.
The thermodynamic limit, which is presumed or necessary for most quantum and
classical thermodynamic formalisms, on its face cannot be completely realistic,
particularly since it ignores boundary conditions that are known to be pivotal for
many thermodynamic behaviors. Extensivity, also presumed for most entropies,
is ostensibly violated by systems that exhibit long-range order and fields — these
include systems from nuclei up to the largest scale structures of the universe [38].
Information entropies are hobbled by lack of general definitions of order, disorder
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Figure 1.2: One-dimensional velocity distribution functions: (a) non-Maxwellian;
(b) Maxwellian.

and complexity. Finally, as it is deduced from thermodynamics, the notion of
entropy is critically dependent on the presumed validity of the second law.

Among the many foundational issues thwarting a general definition of physi-
cal entropy, none is more urgent than extending entropy into the nonequilbrium
regime. After all, changes in the world are primarily irreversible nonequilibrium
processes, but even the most basic nonequilibrium properties, like transport coef-
ficients, cannot be reliably predicted in general15.

The prominent classical and quantum entropies strictly apply at equilibrium
only. As a simple example, consider the two one-dimensional velocity distributions
in Figure 1.2. Distribution fa is highly nonequilibrium (non-Maxwellian) and does
not have a well-defined temperature, while fb is Maxwellian and does have a well-
defined temperature. Let’s say we wish to add heat δQ to fa to transform it into
fb and then calculate the entropy change for this process via

∫ f

i
δQ
T = ∆S. This

presents a problem in this formalism because T is not properly defined for fa or
any other other intermediate distribution on its way to the Maxwellian fb

16.

While small excusions into near nonequilibrium can be made via the Onsager
relations [71] or fluctuation-dissipation theorems [43, 72], in general, far nonequi-
librium systems are unpredictable. Only recently has theory begun to make sig-
nificant headway into these regimes. Excursions are limited to idealized systems
and carry with them their own questionable baggage, but results are heartening
[73]. Notable past and present exponents of nonequilibrium thermodynamics in-
clude Onsager, Prigogine, Meixner, Green, Kubo, Ruelle, Hoover, Evans, Cohen,
Gallavotti, Lebowitz, Nicolis, Gaspard, Dorfmann, Maes, Jou, Eu and many others
[71-89]. Notable recent advances in the microscopic descriptions of nonequilib-

15Some entropies, like SGHB and STs, are claimed to apply at nonequilibrium, but they do
not have compelling microscopic descriptions.

16On the other hand, one might aver that, since S = −k
∫

f ln fdv, one could calculate ∆S =

−k
[∫

fb ln fbdv −
∫

fa ln fadv
]
.



Chapter 1: Entropy and the Second Law 25

rium entropy have proceded largely through study of nonequilibrium steady states
(NESS), especially in fluids (gases) [73]. This formalism is apropos to many of the
challenges in this volume.

For NESS, classical phase space volumes (dx = dqdp) are often replaced by
more general measures, perhaps the best known of which is the Sinai-Ruelle-Bowen
(SRB) measure. It is especially useful in describing chaotic systems whose phase
space development is hyperbolic; that is, stretching in some dimensions while con-
tracting in others. Phase space stretching gives rise to the hallmark of chaos:
sensitivity to initial conditions. The separation rate of initially proximate phase
space trajectories is given by Lyapounov exponents λ, one for each dimension.
Negative λ indicates convergence of trajectories, while positive λ indicates expo-
nential separation of nearby trajectories — and chaos.

Although a general definition of entropy in NESS is lacking, entropy production
can be expressed as

Ṡ(ρ) =
∫

(−∇xX )ρ(dx), (1.34)

where divergence is with respect to the phase space measure coordinate and the
nonequilibrium time development of x is determined via

dx

dt
= X (x), (1.35)

where X (x) is a vector field denoting physical forces. Using SRB measures, the
second law demands that Ṡ(t) ≥ 0; for dissipative systems (those producing heat)
Ṡ(t) > 0. This is possible because SRB measures break time reversal symmetry,
rendering the system non-Hamiltonian, thus allowing ∇xX �= 0.

Within the chaotic dynamics paradigm, NESS exist at nonequilibrium attrac-
tors in phase space. An example of NESS attractors among second law challenges
can be inferred from Figure 6.6 in §6.2.4.3, pertaining to a gravitator that circulates
at a steady-state angular velocity within a gas-filled cavity, driven by spontaneous
pressure gradients. The primary difference between this and standard NESS is
that, while traditional NESS are dissipative (turn work into heat), second law
challenges are regenerative (turn heat into work), thus admitting Ṡ(t) < 0.

Nonequilibrium, irreversibility and dissipation are the triumvirate that rules
the natural thermodynamic world. Second law challenges obey the former two,
but not the third. As such, much of the formalism already developed for nonequi-
librium thermodynamics should be directly applicable to the challenges in this
volume, the chief proviso being sign reversal for heat and entropy production. By
turning this considerable theoretical machinery on the challenges, they may be
either further supported or resolved in favor of the second law.

It is now commonly held that the second law arises as a consequence of the
interaction between a quantum system and its thermal environment [90, 91, 92].
While this might be true, it should be noted that system-bath interactions can
also take an active role in violations of specific formulations of this law in specific
situations, as will be shown in Chapter 3.
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1.5 Entropy and the Second Law: Discussion

Entropy and the second law are commonly conflated — for example, the non-
decrease of entropy for a closed system is an oft-cited version — but many formu-
lations of the second law do not involve entropy at all; consider, for instance, the
Clausius and Kelvin-Planck forms. Entropy is surely handy, but it is not essential
to thermodynamics — one could hobble along without it. It is more critical to
statistical mechanics, which grapples with underlying dynamics and microstates,
but even there its utility must be tempered by its underlying assumptions and lim-
itations, especially when treating chaotic, nonlinear, and nonequilibrium systems
(See §2.3.2.).

The majority of second law challenges are phrased in terms of heat and work,
rather than in terms of entropy. This is largely because entropy per se is difficult
to measure experimentally. Heat, temperature, pressure, and work are measured
quantities, while entropy is usually inferred. Thus, entropy, the second law, and
its challenges are not as intimate as is often assumed. Entropy is a handmaiden
of the second law, not its peer.

At the microscopic level an individual molecule doesn’t know what entropy is
and it couldn’t care less about the second law. A classical system of N particles is
also oblivious to them insofar as its temporal trajectory in a (6N-1)-dimensional
phase space is simply a moving point to which an entropy cannot be ascribed and
to which entropy increases are meaningless. (In this context, for ensemble theory,
entropy cannot be strictly defined since f is singular.) Entropy is a global property
of a system, measurable in terms of the surface area of the constant energy manifold
on which the system’s phase space point wanders, but this assumes conditions on
the motion of the phase space point that, by definition, are either not measured
or not measurable and, hence, might not be valid.

In its very conception, entropy presumes ignorance of the microscopic details
of the system it attempts to describe. In order to close the explanatory gap, one or
more far-reaching assumptions about the microscopic behavior or nature of that
system must be made. Many of these provisos — e.g., ergodicity, strong mixing,
equal a priori probability, extensivity, thermodynamic limit, equilibrium — allow
accurate predictions for large and important classes of thermodynamic phenomena;
however, every formulation of entropy makes assumptions that limit the parameter
space in which it is valid, such that no known formulation applies to all possible
thermodynamic regimes17. It is doubtful that any formulation of entropy can be
completely inclusive since there will probably always be special cases outside the
range of validity of any proviso powerful enough to close the explanatory gap. The
best one can hope to do is to identify when a particular type of entropy will or
will not apply to a particular case — and even the criteria for this hope are not
known. Insofar as complex systems — and most realistic thermodynamic systems
are complex — can display chaotic and unpredictable behavior (unpredictable to
the experimenter and perhaps even to the system itself), it seems unlikely that any
single form of entropy will be able to capture all the novelty Nature can produce.

17Systems are known for which one, many, or all the above provisos fail.
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Entropy formulations vary across disciplines, from physics to engineering, from
chaos theory to economics, from biology to information theory. Even within a sin-
gle discipline (physics) there are numerous versions between classical and quantum
regimes, between utilitarian and formal approaches. Not all are equivalent, or even
compatible. Most become problematic at nonequilibrium, but this is where physics
becomes the most interesting. Most entropies blend seemlessly into others, making
clear distinctions nearly impossible. One could say the subject of entropy is well-
mixed and somewhat disordered. This state of affairs is intellectually unsatisfying
and epistemologically unacceptable.

It is the opinion of one of the authors (d.p.s.) that, despite its singular impor-
tance to thermodynamics and statistical mechanics, entropy will never have a com-
pletely satisfactory and general definition, nor will its sovereign status necessarily
endure. Rather, like the calorique, which was useful but not intellectually persua-
sive enough to survive the 19th century, entropy could well fade into history18. In
the end, each thermodynamic system (particularly nonequilibrium ones) should
be considered individually and microscopically with respect to its boundary con-
ditions, constraints, and composition to determine its behavior19. Considered
classically, it is the 6N-dimensional phase space trajectory that truly matters and
the various approximations that currently expedite calculations are too simplistic
to capture the true richness of dynamic behaviors. Thus, each system should be
considered on a case by case basis. If entropy is defined at the microscopic level
of detail necessary to make completely accurate predictions about phase space
trajectories, however, it loses its utility — and meaning 20.

Entropy remains enigmatic. The more closely one studies it, the less clear it
becomes. Like a pointillisme painting whose meaning dissolves into a collection
of meaningless points when observed too closely, so too entropy begins to lose
meaning when one contemplates it at a microscopic level. Insofar as our definition
of entropy is predicated on what is presumed unknown or unknowable about a
system, it is epistemologically unsatisfactory and must ultimately be surpassed.
As our understanding of the underlying dynamics of complex systems brightens,
so must the utility of entropy dim and, perhaps, entirely disappear. Fortunately,
the second law can survive without its handmaiden.

1.6 Zeroth and Third Laws of Thermodynamics

The first law is the skeleton of thermodynamics; the second law is its flesh.
The first gives structure; the second gives life. By comparison, the zeroth and

18In the near term, however, this will surely not be the case.
19A few simple cases, like the ideal gas, will be predictable due to their thermodynamic sim-

plicity, but realistically complex nonequilibrium systems that possess significant thermodynamic
depth — like life — will defy tidy description in terms of entropy, or easy prediction in terms of
behavior. In the most interesting cases, chaos rules.

20On the other hand, perhaps if a completely general definition of order and complexity is
discovered, this will lead to a general definition of physical entropy.
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third laws are mere hat and slippers. Since one should not go about undressed,
let us briefly consider the latter two.

Zeroth Law The zeroth law pertains to the transitivity of equilibrium. It can be
stated:

If system A is in equilibrium with systems B and C, then system B is
in equilibrium with system C.

More commonly, it is expressed in terms of temperature, because temperature is
the easiest equilibrium property to measure experimentally:

If the temperature of system A is equal to the temperature of system B,
and the temperature of system B is equal to the temperature of system
C, then the temperature of system A is equal to the temperature of
system C. (If TA = TB and TB = TC , then TA = TC .)

Or, to put it succinctly:

Thermometers exist.

The role of this law is far-reaching since it allows one to introduce, within
axiomatic thermodynamics, integral intensive characteristics of mutually equilib-
rium systems, such as temperature, pressure, or chemical potential. It is therefore
unsettling that quantum mechanical models exist that predict its violation (§3.6.7).

Third Law21 The third law of thermodynamics pertains primarily to establishing
fiduciary entropies. Like the second and zeroth, it can be stated in various ways.
The first, the Nernst-Planck form states:

Nernst-Planck Any change in condensed matter is, in the limit of
the zero absolute temperature, performed without change in entropy.
(Nernst 1906)

Planck supplemented this in 1912 (in modern form):

Planck The entropy of any pure substance at T = 0 is finite, and,
therefore, can be taken to be zero.

The third law says that any substance that has a unique stable or metastable
state as its temperature is reduced toward absolute zero can be taken to have zero
entropy at absolute zero [93]. In fact, at T = 0 most substances will have residual
zero point entropies associated with such things as mixed isotopic composition,
randomly oriented nuclear spins, minor chemical impurities, or crystal defects, but
if these do not affect the thermodynamic process for which entropy is pertinent,
they can be safely ignored since “they just go along for the ride.” In some sense,
the entropy depends on the knowledge or opinion of the observer. Ideally, if the

21M.O. Scully maintains, “The third law has all the weight of an Italian traffic advisory.”
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number of microstates that describes this perfect substance at T = 0 is Ω = 1,
then its entropy via the Boltzmann formula is S = k ln[Ω = 1] = 0 exactly. This
law has far reaching consequences like the zero-temperature vanishing of specific
heats, thermal expansion coefficients, latent heats of phase transitions.

The third law can also be stated as impossibilities, for instance:

It is impossible to reduce the temperature of a system to absolute zero
via any finite sequence of steps.

or,

Perpetuum mobile of the third type are impossible.

The first of these can be argued formally [93] and has not been violated ex-
perimentally; the current lower limit of experimentally achieved temperatures is
about 10−9K. The second of these has been effectively violated by a number of
non-dissipative systems, notably superfluids in motion and supercurrents, whose
theoretical decay time exceeds 105 years.

In summary, the laws of thermodynamics are not as sacrosanct as one might
hope. The third law has been violated experimentally (in at least one form); the
zeroth law has a warrant out for its arrest; and the first law can’t be violated
because it’s effectively tautological. The second law is intact (for now), but as we
will discuss, it is under heavy attack both experimentally and theoretically.
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[36] Čápek, V. and Mančal, T., Europhys. Letters 48 365 (1999).

[37] Pirruccullo, A., private communications (2004).

[38] Gross, D.H.E., Microcanonical Thermodynamics, World Scientific
Lecture Notes in Physics, Volume 66, (World Scientific, Singapore,
2001).

[39] Wehrl, A., Rev. Mod. Phys. 50 221 (1978).

[40] Boltzmann, L., Wiener Ber. 75 67; 76 373 (1877).

[41] Gibbs, J.W., Elementary Principles in Statistical Mechanics (Yale
University Press, Boston, 1902).

[42] Tolman, R.C., The Principles of Statistical Mechanics (Oxford Uni-
versity Press, Oxford, 1938).

[43] Reif, F., Fundamentals of Statistical and Thermal Physics (McGraw-
Hill, New York, 1965).

[44] Penrose, O., Foundations of Statistical Mechanics (Pergamon Press,
Oxford, 1970).

[45] Reichl, L.E., A Modern Course in Statistical Physics (Unversity of
Texas Press, Austin, 1980).

[46] Pathria, R.K., Statistical Mechanics (Pergamon Press, Oxford, 1985).

[47] von Neumann, J., Z. Phys. 57 30 (1929); Gött. Nachr. 273 (1927).
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