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Abstract: In this chapter we review and discuss the potential and limitations of 
econometric methods for the evaluation of productivity of scientific and 
technological (S&T) systems. We examine and compare the main approaches 
that have been applied in the literature: the production function and the 
production frontier approach. Both approaches present advantages and 
disadvantages. In the first part of the chapter we carry out a selective review of 
the two fields. In the second part we focus on the last developments of the 
efficiency analysis literature, with particular attention to the nonparametric 
approach. An illustration of the potential of robust nonparametric techniques is 
offered using data from the Italian National Research Council (CNR). The 
chapter concludes by discussing the potential of these approaches for the 
analysis of S&T systems beyond the existing applications. 

1. INTRODUCTION 

In this chapter we review and discuss the potential and limitations of 
econometric methods for the evaluation of productivity of S&T systems.  

Any notion of productivity relates a vector of inputs to a vector of 
outputs. Unfortunately, in S&T systems all three definitional elements of 
productivity (inputs, outputs and the functional relation between the two) are 
affected by severe conceptual and measurement problems. 

S&T production is based on a multi-input, multi-output relation, in 
which, differently from standard production activity, both inputs and outputs 
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are not only qualitatively heterogeneous but sometimes truly 
incommensurable, the relation between inputs and outputs is non-
deterministic, and the output is lagged but with a lag structure which is not 
fixed. 

The econometric approach to the analysis of R&D systems has taken two 
main directions. The former refers to the estimation of the structure of 
production of scientific and technological output by individual units (e.g., 
universities, research institutes, firms), the latter to the estimation of the 
impact of including science and technology as inputs in a more general 
production relation at the macroeconomic level. We will focus on the former 
types of problems, although we will take the latter into account in terms of 
the econometric problems which have been discussed and (sometimes) 
solved1.

We examine and compare the main approaches that have been applied in 
the literature in order to deal with these problems: the production function 
approach and the production frontier approach (efficiency analysis). 

In the production function approach the measurement of scientific 
productivity is carried out by specifying a functional relation which 
intersects observed data, looking for average relations, and estimating 
coefficients that relate inputs to outputs.  

In the production frontier approach, the interest lies in estimating a 
frontier that envelops the datapoints and in measuring the distance between 
each observed unit and the estimated ‘efficient’ frontier.  

With respect to the estimation of coefficients in the production function, 
the task of approximating the mean function can be done essentially in three 
ways. The parametric approach assumes that the mean curve has some pre-
specified functional form, e.g., a line with unknown slope and intercept. As 
an alternative one could try to estimate the mean function 
nonparametrically, i.e., without reference to a specific functional form. 
Finally, one could choose an intermediate solution. In fact, using a 
semiparametric approach, a part of the model is parameterised and another 
part is not. 

With respect to production frontiers, on the contrary, the estimation of 
efficiency indexes is made by comparing each unit with the best performers 
in the reference group. The best performers are defined as those units which 
obtain the maximum level of output given their level of inputs (the input 
oriented approach) or minimise the inputs utilised given the level of outputs 
obtained (the output oriented approach). By definition, an efficiency index 

1 For a survey of econometric studies that investigate the relationships between R&D and 
productivity, see Mairesse and Sassenou (1991). See also Hall and Mairesse (1995). 
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gives a score relative to another unit, without any reference to absolute 
efficiency. 

Production frontiers can be estimated following parametric, 
nonparametric or semiparametric estimation methods. The former specify 
functional form for the frontiers that envelope observed datapoints, whilst 
nonparametric methods leave the determination of the shape of the envelope 
to the data itself. Again, the semiparametric estimation method combines the 
two. 

2. A SELECTIVE REVIEW OF THE LITERATURE 

The measurement of productivity in S&T systems can follow different 
strategies. In the following we give a description of the main approaches, 
starting with a brief outline of ratio measures and index numbers and 
describing more deeply the measures based on production functions and 
production frontiers. 

A very simple approach is based on a crude comparison of simple 

measures of productivity expressed as output/input ratios. This approach takes 
one type of input and relates it to one type of output, ignoring all relations of 
complementarity and substitution between inputs, and all effects of joint 
production in outputs. They serve mainly as a first order approximation.  

Ratios of output to input are clearly partial productivity measures. This 
terminology distinguishes them from total factor productivity measures 
because the latter try to obtain a value of the output to input ratio which takes 
into account all outputs and inputs. Moving from partial to total factor 
productivity measures by combining all inputs and all outputs to obtain a 
single ratio helps to avoid imputing gains to one factor (or one output) that 
should be attributed to some other input (or output). However, total factor 
productivity measures present aggregation problems such as choosing the 
weights to be used in order to obtain a ‘single output to single input’ ratio. 

An index number is defined as a real number that measures changes in a 
set of variables. In particular, index numbers are applied to measure price and 
quantity changes over time, as well as to measure differences in the levels 
across firms, industries, regions, or countries. Panel data allow the 
measurement of productivity change as well as the estimation of technical 
progress or regress. Productivity change occurs when an index of outputs 
changes at a different rate from that at which an index of inputs does. 
Productivity change can be calculated using index number techniques such as 
Fischer or Tornqvist productivity indices. Both these indices require quantity 
and price information, as well as assumptions about the structure of the 
technology and the behaviour of producers.  
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Productivity change can also be calculated using a production frontier 
approach to construct a Malmquist productivity index. This approach does not 
require price information or technological and behavioural assumptions, and 
allows the identification of the sources of measured productivity change (i.e., 
technological progress/regress, and efficiency changes). It requires the 
estimation of a representation of production technology that can be made 
using both a parametric and a nonparametric frontier approach. A survey of 
the theoretical and empirical work on Malmquist productivity indices can be 
found in Färe, Grosskopf, and Russell (1998), while some applications to the 
efficiency and productivity of colleges and university licensing can be found 
in Førsund and Kalhagen (1999), Thursby (2000), Thursby and Kemp (2002), 
Thursby and Thursby (2002). 

2.1 Production Functions  

Theoretical mainstream production analysis focus on production activity 
as an optimisation process. On the other hand, empirical production analysis 
has focused on a central tendency, or ‘average’ or ‘most likely’ relationship 
constructed by intersecting data with a function. 

Production functions are based on equations which relate quantities of 
inputs to quantities of outputs. More precisely, the production function is a 
mathematical function (a relation) which associates (relates) the vector of 
input X with the maximum level of output Y 2.

From the empirical point of view estimating production functions means 
estimating the coefficients of regression equations which describe the average 
tendency of the relationship between inputs and outputs. In production 
functions the notion of efficiency refers to the average behaviour, not the 
individual behaviour of each unit. 

The production function framework applies to production process which 
are well specified, i.e., to well structured production processes.  

2 By means of its parameters, it is possible to analyse: the level of productivity, which is 
usually given by a coefficient which multiplies the function (this is the case of neutral

technical progress); the marginal productivity of each factor (making the assumptions that 
the factors can be measured without ambiguity, the other inputs can be kept constant, the 
availability of an infinite number of techniques such that the passage from one 
combination of factors to another could happen also for infinitesimal variations); the 
marginal rate of substitutions amongst factors; the factors’ intensity, given by the ratio of 
the amount of two inputs, given the marginal rate of substitutions; the optimal choice of 
the combination of inputs, trough the equality of the factors’ marginal rate of substitutions 
and their prices ratio; simple measure of productivity by doing the ratio of the observed 
level of output over the production function optimal level; measures of technical change; 
returns to scale; inputs’ elasticity of substitution. 
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In the field of S&T production functions have been used in both the 
estimation of production of scientific and technological output and in the 
estimation of the impact of S&T on economic growth.  

Within the former line of research, Adams and Griliches (1998) used a 
Cobb Douglas specification to study the relation between funding and 
published output of American universities and to estimate the presence and 
magnitude of economies of scale at the level of university and Arora, David 
and Gambardella (1998) estimated the production function for scientific 
publications in the field of biotechnology. Several other functional forms have 
been introduced in the literature to describe the relation between inputs and 
outputs (useful reviews on the production function forms are Nadiri, 1970, and 
Heathfield and Wibe, 1987; a review of empirical findings about productivity 
is in Bartlesman and Doms, 2000). 

Within the latter domain it is useful to recall the remark of Mairesse and 
Sassenou (1991), who pointed out that “most econometric studies that attempt 
to assess the contribution of R&D to economic growth rely on the Cobb 
Douglas production function as their basic analytical framework”. 

The adoption of a production function modeling strategy is based on a 
number of assumptions whose limits have been highlighted in the literature on 
the economics of education, but also apply to the domain of the economics of 
research. 

First, it is normally assumed that the production function is homothetic, 
that is, “the marginal rate of substitution among inputs (…) depends only on 
the proportions of the inputs and not on the scale of production” (Figlio, 1999, 
p. 242). This means that the relative impact of the addition of one unit of any 
given input will be the same irrespective of the size of the output (Gyimah-
Brempong and Gyapong, 1992; Hanushek, Rivkin, and Taylor, 1996). In the 
Cobb Douglas formulation elasticity of substitution (measuring the percentage 
change in factors’ proportion owed to a change in marginal rate of 
substitution) is considered constant. Second, production functions require 
additivity of inputs, excluding interaction effects.  

These assumptions may be considered restrictions within a more general 
specification, such as the translog or trascendental logarithmic (Griliches and 
Ringstad, 1971; see also Nadiri, 1970; Heathfield and Wibe, 1987). In 
particular, within this specification additivity requires that interaction terms 
are set to zero. Studies which adopt a more flexible specification generally 
conclude that the assumption of homotheticity is rejected (Nelson and Hevert, 
1992; de Groot, McMahon and Volkwein, 1991). 

In parallel, a consistent body of literature has worked with a multi-product 
cost specification based on the analysis of economies of scale and scope 
proposed by Baumol, Panzar, and Willig (1982). Using a flexible fixed cost 
quadratic function it is possible to take into account differences in fixed costs 
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associated with different outputs, abandoning the linear homogeneity property 
of costs with respect to the prices of factors (Cohn, Rhine and Santos, 1989; de 
Groot, McMahon, Volkwein, 1991; Dunbar and Lewis, 1995; King, 1997). 
With this specification it is possible to estimate economies of scope with 
respect to all possible combinations of outputs and to the overall effect. Since 
research activities are intrinsically multi-output, the estimation of economies 
of scope is a critical issue, particularly with respect to the teaching research 
complementarity. As shown by Cohn et al. (1989) the use of multi-output cost 
functions may lead to qualitatively different results than with single output 
models. 

Although these specifications are much more flexible than the standard 
Cobb Douglas, they still rely on a pre-specified functional form. 

2.2 Production Frontiers 

On the contrary, the approach of production frontiers (see, e.g., Färe, 
Grosskopf, and Lovell, 1994) is based on the envelopment of production data. 
From the empirical point of view it offers techniques for estimating the 
‘efficient’ production frontier and for measuring and interpreting the relative 
efficiency of each individual unit with respect to this estimated frontier. 

The purpose of efficiency analysis based on frontiers is to make a relative 
benchmark or comparison among decision making units (DMUs). Each DMU 
is compared to the best performer included in the analysis. The comparison is 
therefore made on the basis of the real or observed performance of units, and 
not the theoretical maximum as derived from a production function. 

Nonparametric frontiers do not require the user to prescribe weights to be 
attached to each input and output, as in the usual index number approaches, 
and do not require prescribing the functional forms which are needed in 
regression approaches. 

Efficiency measures are obtained by comparing each institute to the most 
efficient ones in its own comparison set. The most efficient institutes are those 
which minimise the use of inputs given a level of observable outputs (input 
oriented), or maximise outputs given a level of observable inputs (output 
oriented). 

The structure of production frontiers can be different from the structure of 
production functions constructed from the same data. Best practice is not just 
better than average practice, it may also be structurally different, and it is 
important to know whether the structure of efficient production differs from 
the structure of average production. Best practice may be better in the sense 
that it exploits available substitution possibilities or scale opportunities that 
average practice does not. Public policy based on the structure of best practice 
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frontiers may be very different from policy based on the structure of average 
practice functions. 

This approach is more appropriate for production processes in which the 
variance of output may be extremely high, for example because of the 
skewness of the underlying distribution. 

Efficiency analysis has been developed from the first empirical work of 
Farrell (1957) which defines a simple measure of firm efficiency which 
could account for multiple inputs and multiple outputs: “when one talks 
about the efficiency of a firm one usually means its success in producing as 
large as possible an output from a given set of inputs” (Farrell, 1957, p. 254). 
Farrell proposed that the efficiency of a firm consists of two components: 
technical efficiency, which reflects its ability to obtain maximal output from 
a given set of inputs, and price (or allocative) efficiency, which reflects the 
ability of a firm to use the inputs in optimal proportions, given their 
respective prices and the production technology. Starting from Farrell’s 
pioneering work mainly two approaches developed for the estimation of the 
‘efficient frontier’: 

a) A nonparametric approach based on the estimation of a piecewise linear 
convex frontier, constructed such that no observed point lies to the left or 
below it; 

b) A parametric approach based on a function fitted through the data, such 
that no observed point lies to the left or below it. 

Following point a), Charnes, Cooper, and Rhodes (1978) proposed the 
Data Envelopment Analysis (DEA) approach. DEA involves the use of 
linear programming methods to construct a non parametric piecewise surface 
(or frontier) over the data. It is based on the free disposability and convexity 
assumptions for the production set (the set of the attainable points). Free 
disposability means that the destruction of goods is not expensive. 
Convexity implies that the efficient frontier includes all linear combinations 
of dominant units.  

A more general nonparametric approach is the Free Disposal Hull (FDH), 
introduced by Deprins, Simar, and Tulkens (1984). FDH assumes only the free 
disposability of the production set. 

Efficiency measures are then calculated relative to this surface3.
Elasticities, measuring the degree of substitutability between pairs of factors, 

3 Charnes, Cooper, and Rhodes (1978) proposed a model that had an input orientation and 
assumed constant returns to scale (CRS). In their original study they described DEA as a 
“mathematical programming model applied to observational data that provides a new way of 
obtaining empirical estimates of extreme relations such as the (average, n.o.w.) production 
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can be computed through the parametrization of the nonparametric frontiers. 
They do not describe average values but the shape of the frontier. 

Returns to scale are estimated pointwise and globally. This allows one to 
track returns to scale in different regions of the size distribution. The analysis 
of efficiency indexes gives information on those inputs which are wasted (i.e., 
do not contribute to output) through the analysis of slacks.

From this original formulation an impressive literature developed, with a 
number of extensions and refinements. At present DEA encompasses a variety 
of models for evaluating performance4. A large literature has applied Data 
Envelopment Analysis to problems of productivity in a large number of 
manufacturing and service settings. 

Several studies have used approaches of DEA type in assessing the 
efficiency of academic research, e.g., Johnes and Johnes (1993, 1995), Rizzi 
(1999), Korhonen, Tainio, and Wallenius (2001), Abbott and Doucouliagos 
(2003). Studies applying DEA to education include Bessent and Bessent 
(1980); Bessent, Bessent, Kennington and Reagan (1982); Charnes et al. 
(1978); Färe, Grosskopf, and Weber (1989); Thanassoulis and Dunstan 
(1994); Sarrico, Hogan, Dyson and Athanassopoulos (1997); Grosskopf, 
Hayes et al. (1999); Grosskopf and Moutray (2001); and Grosskopf et al. 
(2001). 

Rousseau and Rousseau (1997, 1998) applied DEA to construct 
scientometric indicators and assess research productivity across countries. 
Bonaccorsi and Daraio (2003a) used DEA together with FDH and measures of 
order m to compare two large research institutions (CNR and INSERM) in 
different countries in the biomedical field. 

The parametric approach was introduced by Aigner and Chu (1968) who 
developed the deterministic frontier model approach based on the estimation 
of a parametric frontier production function of Cobb Douglas form. This 

                                                                     

functions and/or efficient production possibility surfaces that are a cornerstone of modern 
economics”. 
4 Banker, Charnes, and Cooper (1984) proposed an extension of the CRS DEA model to 
account for variable returns to scale (VRS) situations. The Banker, Charnes and Cooper 
(1984) model distinguishes between technical and scale inefficiencies by estimating pure 
Technical Efficiency (TE) and the Scale Efficiency (SE). The TE is a measure of the radial 
distance of a unit to the estimated efficient frontier. If TE is equal to 1 then the decision unit 
is located on the efficient frontier. If TE is less than 1 (input oriented), its value represents the 
proportionate reduction of inputs (given the value of outputs) the unit should put in place, in 
order to be fully efficient. The SE can be roughly interpreted as the ratio of the average 
product of a unit to the average product of a unit operating at a point of technically and 
optimal scale. If it is 1 the DMU is scale efficient, if it is less than 1 the unit is scale 
inefficient. 
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approach is called deterministic because in the frontier model the observed 
output is bounded above by the non-stochastic deterministic quantity. 

One of the main criticisms of the deterministic frontier model is that no 
account is taken of the possible influence of measurement errors and other 
noise upon the frontier. All deviations from the frontier are assumed to be the 
result of technical inefficiency. Aigner, Lovell, and Schmidt (1977) amongst 
others, proposed the stochastic frontier production function, in which an 
additional random error was added to the non-negative random variable which 
represents inefficiency. For a survey of recent contributions on the 
parametric frontier analysis, see Kumbhakar and Lovell (2000). 

A multi-output specification within a parametric frontier approach was 
developed by Grosskopf, Hayes, Taylor, and Weber (1997) using the indirect 
output distance function initially proposed by Färe, Grosskopf, and Lovell 
(1988). Cooper and Cohn (1997) applied a parametric function and frontier 
approach to evaluate the productivity of the educational system of South 
Carolina.

More recently a semiparametric generalization of the parametric approach 
has been introduced in the literature. In this approach a part of the model is 
parametric and another part is nonparametric (for more details, see Park and 
Simar, 1994; Park, Sickes, and Simar, 1998; 2003). 

Nonparametric production frontier techniques have several advantages for 
the analysis of S&T systems. Let us discuss them in detail. 

2.2.1 Absence of specification 

This property is particularly interesting for the analysis of S&T systems. 
Let us focus mainly on scientific production in the public sector research 
system. Scientific production is not only a multi-input multi-output process, 
but the relation between inputs and outputs is non-deterministic, uncertain, 
lagged, non-linear, and subject to important but subtle external effects.  

We know from the economics of science (Stephan, 1996; Stephan and 
Levin, 1996) that a few stylized facts about individual productivity do exist. 
First, the distribution of individual productivity of scientists is extremely 
skewed, with a small percentage of very productive scientists accounting for a 
disproportionate share of publications. Second, productivity declines over a 
scientist’s life cycle. These very basic features of scientific production make a 
representation in which the marginal rate of substitution between units of 
inputs is constant or independent on size, and in which interaction effects are 
zero, highly unrealistic. 

How these individual level factors combine on an organizational and 
institutional level is, in fact, a very open question. Do people with the same 
individual productivity attract each other, or perhaps are hired according to a 
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consistent quality strategy, so that in the end the same skewed distribution will 
also be observed across organizations and institutions? Or, quite to the 
contrary, do people with different individual productivities mix within 
research departments and institutes? What is the effect of the organizational 
setting on individual productivity? 

External factors may create complementarities which have a non-linear 
effect. Studies of individual productivity of scientists (Fox, 1983; Holbrook, 
1992; Johnston, 1993; Ramsden, 1994; Narin and Breitzman, 1995) often 
point to the extremely powerful effect of the external environment of 
scientists, in terms of complementary resources, time constraints, and social 
incentives at the level of department or institute.  

Whilst these external effects are clearly important, it is difficult to capture 
them within a production function approach, above all a parametric one. 

Under these conditions the lack of a specification is a clear advantage. 

2.2.2 Aggregation of output indicators 

Research activities are intrinsically multi-output activities. 
First of all, for a large part of the research system the allocation of the time 

of researchers takes place between research and teaching. Since the share of 
time is not fixed across disciplines and countries, it is sensible to take both 
outputs into consideration, when possible. 

Second, within the narrow area of research, whilst the single most 
important output is clearly scientific publications, it is difficult to claim that 
other outputs such as patents, software, advisory work for the government, 
consulting, or technical assistance do not have any relevance with respect to 
research.  

Finally, scientific publications cover a large range of specific outputs, such 
as papers in refereed journals, papers in technical or professional journals, 
notes, reviews, books, and edited books. Even though, as in standard 
bibliometrics, one eliminates unpublished materials such as technical notes, 
working papers, and conference papers, there is still much heterogeneity. How 
much worth is a book with respect to a paper in a refereed journal? Do more 
papers in the technical press compensate for fewer papers in academic 
journals? 

In order to take into consideration the multi-output nature of research it is 
necessary to aggregate each type of output. This may be done in two ways: 
assigning a weight to each type of output which is valid across all units of 
observation or using a multi-output specification. 

The first solution has no alternative if one takes a production function 
approach based on a Cobb Douglas. The regression equation will have to be 
run on an independent variable that aggregates several types of outputs within 
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a single measure. Owing to the lack of prices for most inputs and outputs of 
higher education and research, however, any weighting scheme which reflects 
their relative importance is fundamentally arbitrary5. More flexible forms such 
as translog allow the estimation of multi-input multi-output relations, but still 
under restrictive assumptions on the relations between inputs and outputs. 

Nonparametric techniques radically solve the problem by allowing each 
unit to select the vector of weights which maximizes its own efficiency score. 
This is an interesting property for the analysis of S&T systems, whose 
evaluation is inevitably open to debate owing to its intrinsic heterogeneity and 
the impossibility of value–free statements about the hierarchy of outputs. 

2.2.3 Pointwise estimation of efficiency 

As has been illustrated before, nonparametric techniques allow the 
estimation of returns to scale and scope on each point of the interval. This is 
another interesting property for addressing a difficult issue in the economics of 
research, which has also a well developed counterpart in the economics of 
education. 

In fact, there is lack of consensus on the existence of economies of scale in 
the production of research and university teaching. Amongst many others, 
Brinkman (1981), Brinkman and Leslie (1986), Cohn et al. (1989), de Groot, 
McMahon and Volkwein (1991), Nelson and Hevert (1992), and Lloyd, 
Morgan and Williams (1993) report the existence of economies of scale. Verry 
and Layard (1975), Verry and Davies (1976), and Adams and Griliches 
(1998), on the contrary, found constant returns to scale. 

This problem has clear implications in terms of governmental policies 
(Bonaccorsi and Daraio, 2003c). For example, Abbott and Doucouliagos 
(2003) report that the Australian government, in the attempt to improve the 
efficiency of the university system by exploiting economies of scale and 
scope, consolidated a large number of higher education institutions into a 
small number of large multi-campus universities.  

It is difficult to draw general implications from the existing evidence, 
mainly because data and methodologies are not strictly comparable.  

Estimating economies of scale over the entire range of observations, as is 
standard in the production function, will result in averaging a number of very 
different local size effects. The policy implication of finding, for example, 

5 Some developments of DEA includes preference structure models (Zhu, 1996) where the 
target for inefficient DMUs is given by a preference structure (represented through some 
weights) expressed by the decision maker; and the value efficiency analysis (Halme et al., 
2000) aims at incorporating the decision maker’s value judgements and preferences into 
the analysis, using a two stage procedure.  



62 Andrea Bonaccorsi and Cinzia Daraio

economies of scale will be consolidating universities or merging research 
units. But if size effects are local the policy may even worsen the situation. 
Suppose there are several regions of returns to scale, initially increasing then 
constant or decreasing. Merging units means that smaller institutes, which 
initially benefited from economies of scale, will become larger and will enter 
into a region where these effects are eliminated.  

On the contrary, in the nonparametric frontier approach it is possible to 
estimate separately the efficient frontier returns to scale, the global effect of 
scale, and the individual position with respect to returns to scale. As we shall 
see in the application at the end of this Chapter, it is possible that returns to 
scale are variable over a limited interval, whilst they are constant over other 
intervals of the observed size distribution.  

The only way to give accurate policy implications will be to examine scale 
effects across the whole range of observations, paying attention to local 
effects. Techniques that estimate average returns to scale fail to identify all 
these effects. 

2.3 Production Functions versus Production Frontiers in 

the Analysis of S&T Systems 

In using production functions there are several interconnected 
methodological problems to be examined.  

First of all, the problem of identification is crucial. Generally speaking, 
most empirical studies limit their task to describing the methodology of 
estimation and then interpret the obtained results. Before analysing the 
estimation and results, however, the fundamental issue of whether the 
parameters of interest in the model are even estimable must be resolved. (For 
an introduction to the problem of identification, see, e.g., Greene, 2000, pp. 
663 ff. For an historical and detailed discussion see Griliches and Mairesse, 
1998).  

Second, misspecification concerns the problems and errors related to the 
assumptions made by the model. Empirically, misspecification errors are 
mainly related to the specification of explanatory variables, in particular, 
knowledge of which ones of the variables to include and about the 
mathematical form of their inclusions. A related topic is the exclusion of 
relevant variables and the inclusion of irrelevant variables. Policy making 
based on empirical evidence is strictly related to the assumptions of the 
econometric methodology applied. Several studies have largely discussed, for 
instance, the effect of misspecification in the evaluation of the performance of 
universities or schools (see Hanushek, 1986; Nelson and Hevert, 1992; Figlio, 
1999; Pritcett and Filmer, 1999; Baker, 2001; Daneshvary and Clauretie, 
2001; for a survey see Dewey, Husted and Kenny, 2000). 
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Third, the simultaneity in the relationship between variables could greatly 
affect the estimation of parameters creating a source of bias. This problem 
could be controlled for using a General Method of Moments (GMM) 
approach. GMM (for a general presentation, see Hansen, 1982) is a method for 
parameter estimation that can be viewed as a general case of OLS, 
instrumental variable estimation, two stage least squares, and so on. For an 
application of GMM to estimating the productivity of R&D see Hall and 
Mairesse (1996). 

Finally, multicollinearity is the problem related to the existence of a linear 
dependence amongst the response or independent variables. The 
multicollinearity affects the problem of unidentifiability of the regression 
parameters.  

A discussion of the hypothesis of the model and a diagnostic analysis on, 
e.g., the model residuals, are generally omitted in the studies we reviewed. As 
an example, autocorrelated residuals could be related to omitted variables, 
incorrect specification of the model, inter-temporal aggregation of the data, or 
incorrect specification of the error term. 

Coefficients may be interpreted as elasticities of the output with respect to 
individual inputs. On the other hand, production functions do not allow the 
analysis of slacks of inputs. 

It must be underlined, however, that even the adoption of all 
(sophisticated) techniques for improving the quality of the estimation of 
coefficients, or the adoption of a nonparametric regression approach, does not 
solve the fundamental problem of estimating the expected or average value. 

This is appropriate for production process in which the variance of output 
is bounded around the average value. In S&T systems there is no a priori

rationale that this is the case. 
On the other hand, nonparametric frontier techniques also suffer from a 

number of limitations, although recently developments solve most of the 
problems. 

A first limitation of the nonparametric approach in production frontier 
analysis is its deterministic nature. In this framework it is assumed that all 
deviations from the efficient frontier are owed to inefficiencies. The problem 
of handling noise in this context is owed to the model not being identified 
unless some restrictions are assumed. See, e.g., Aigner, Lovell, and Schmidt 
(1977) for approaches that assume a parametric function for the frontier; or 
Kneip and Simar (1996) for the case of panel data. More general results for 
handling noise in nonparametric frontier models can be found in Hall and 
Simar (2002) and in Simar (2003). 

A second limitation of nonparametric techniques is the more difficult 

economic interpretation of the production process in terms of, e.g., shape of 
the production function, elasticities, etc. To overcome this drawback an 



64 Andrea Bonaccorsi and Cinzia Daraio

alternative is represented by the analysis of slacks, that is, the excess resources 
wasted in the production activity (see, e.g., Färe, Grosskopf, and Lovell, 
1994), whilst Florens and Simar (2002) propose the full theory for parametric 
approximations of nonparametric frontier. 

The problem of extremes or outliers can be treated applying the recently 
introduced robust order m frontiers (Cazals, Florens and Simar, 2002). The 
order m frontiers represent a more realistic benchmark. Instead of comparing 
the performance of each unit with the best performers, the benchmark is done 
against the expected value of an appropriate sample of m units, drawn 
randomly from the population. The method offers flexibility in choosing the 
level of robustness of the estimate, by varying the parameter m.

The robust nonparametric frontiers of order-m do not suffer also from the 
so called ‘curse of dimensionality’. Shared by many nonparametric methods 
the curse of dimensionality means that to avoid large variances and wide 
confidence interval estimates a large quantity of data is needed. 

Zhang and Bartels (1998) show formally how DEA efficiency scores are 
affected by sample size. They demonstrate that comparing measures of 
structural inefficiency between samples of different sizes leads to biased 
results. This sample size bias problem can be easily overcome using the robust 
nonparametric approach based on order m frontiers. 

Another limitation of the nonparametric approach is the difficulty in 

making statistical inference, owing to its complex nature: nonparametric 
estimation in a space at p+q dimensions (where p is the number of the inputs 
and q is the number of the outputs), based on very few assumptions. Thanks to 
the last developments of the literature, statistical inference in nonparametric 
frontier models is available based on asymptotic results or on bootstrap 
application (for a review see Simar and Wilson, 2000). Asymptotic results are 
potentially useful for estimating asymptotic bias and variance, as well as 
asymptotic confidence intervals, but they remain asymptotic results which 
may be misleading in conjunction with small samples. Moreover, additional 
noise is introduced when estimates of the unknown parameters of the limiting 
distributions are used in constructing estimates of confidence intervals. Hence 
an attractive alternative to asymptotic results is represented by the bootstrap6.

Useful bootstrap applications in a frontier analysis framework include the 
correction for the bias and the construction of confidence intervals for 
efficiency scores; applications to Malmquist indices and their various 
decompositions (see Simar and Wilson, 1999); tests procedure to assess 

6 The essence of the bootstrap idea is to approximate the sampling distributions of interest by 
simulating (or mimicking) the Data Generating Process. For an introduction to the bootstrap 
see Efron and Tibshirani (1993). 
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returns to scale (Simar and Wilson, 2002); statistical tests to compare the 
means of several groups of producers (see Simar and Zelenyuk, 2003). 

In addition, there may be uncertainty about the structure of the underlying 
statistical model in terms of whether certain variables are relevant or whether 
subsets of variables may be aggregated. Tests of hypotheses about the model 
structure have been introduced (see Simar and Wilson 2001 for more details). 

Finally, the traditional two stage approach used in nonparametric  frontier  
models to explain efficiency scores relies on a second regression–based step 
which, as pointed out by Simar and Wilson (2003a), suffers from several 
problems. Daraio and Simar (2003) propose a probabilistic approach for 
evaluating the influence of external environmental variables that overcomes 
most drawbacks of previous approaches. 

A summary of differences between production functions and frontiers is 
offered in Table 2.1. 

Table 2.1. (Parametric) Production functions vs. (nonparametric) production frontiers

Production functions Production frontiers 

Nature of production process
Functional specification 
Estimation problems 

Object of the estimation 
Economic interpretation 
Returns to scale 

Well specified 
Yes 
Yes (identification) 

Conditional expected value 
Parameters (elasticity) 
Average effects 

Not specified 
No
Yes (curse of 
dimensionality) 
Envelope 
No parameters 
Pointwise and globally 

3. A ROBUST AND PROBABILISTIC APPROACH 

TO EVALUATE AND EXPLAIN S&T 

PERFORMANCE 

3.1 Some Basic Concepts 

In this section we briefly outline the main ideas of a recently introduced 
probabilistic and robust nonparametric methodology for evaluating and 
explaining the productivity/efficiency of DMUs.  

In the light of our previous discussion about the advancements of the 
nonparametric approach in frontier analysis we believe it is a promising 
approach to be used in the evaluation and explanation of the performance of 
S&T systems.  
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It is based on the probabilistic approach proposed by Daraio and Simar 
(2003) to explain the efficiency of production units. It relies on the concept of 
order m frontiers introduced by Cazals, Florens and Simar (2002), known as 
robust estimator of the efficient frontier, and applied to the evaluation of 
scientific productivity by Bonaccorsi and Daraio (2003a).  

This methodology measures the productivity levels using a nonparametric

production frontier approach that does not require the specification of any 
functional form for the production frontier. In particular, it has been 
implemented in a FDH framework that, with respect to a DEA context, 
assumes only the free disposability of the production set (and not its convexity 
as in the DEA case). 

For the explanation of the observed performance it is based on a 
probabilistic formulation of the estimation problem that overcomes most 
limitations of previous approaches using an all in one approach or a two stage 
regression based approach. For more details see Daraio and Simar (2003) and 
Daraio (2003). 

In order to control the influence of extremes values and outliers it measures 
the productivity performances and investigates on their explaining factors in a 
robust way also, using the order m efficiency measures. 

Finally, it provides an easily interpreted graphical tool which is able to 
show the effect of external environmental variables on the performance of 
S&T systems. 

In the following paragraph we present an application of the methodology 
described to an investigation of size effects on scientific research in the 
institutes of the Italian CNR.  

3.2 An Illustration on the Italian National Research 

Council (CNR) Data 

Founded in 1923, the CNR (Consiglio Nazionale delle Ricerche) is the 
most important national research institution in Italy, spanning many scientific 
and technological areas. 

For this exercise we used a detailed cross-sectional database constructed 
by integrating several official sources on the year 1997. Further information 
about the database, as well as a discussion of its limitations, are reported in 
Bonaccorsi and Daraio (2003b, 2003c) where a theoretical and empirical 
analysis on size, agglomeration, and age effects in science is reported. 
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In the following we describe the variables and their descriptive statistics 
(see Tables 2.2 and 2.3) and present the graphic obtained by applying the 
probabilistic and robust approach described above (Figure 2.1)7.

Table 2.2. Definition of inputs, outputs and external factors 

 Variable Description 

Input 1 T_RES Number of researchers  
Input 2 ADTECH Number of technicians and administrative staff  
Input 3 RESFUN Total research funds 
Output INTPUB_N Normalised number of international publications 
External factor LABCOS Labour costs 

Table 2.3. Descriptive statistics 

Variable Mean Standard. deviation Min Max Inter quartile range

T_RES 13.1  9.1 1.0 45.0 11.2
ADTECH  13.8 12.8 1.0 69.0 11.0
RESFUN  984.1 865.0 45.0 7,329.0 718.0
INTPUB_N  1.0 0.6 0.03 3.1 0.8
LABCOS  2,127.4 1740.4 96.0 9,128.0 1,849.8

As explained in Daraio and Simar (2003), in order to detect the global 
effect of the external factor on the performance of the firms analysed, it is of 
interest to analyse the behaviour of the scatterplot and the smoothed 
regression of the ratios Qz on Z. Q

z is the ratio between the efficiency score of 
a unit taking into account the external factor Z (efficiency conditional to Z)
and the unconditional efficiency score. In order to have a robust measure of 
this effect it is reported also the robust nonparametric version plot (see 
bottom panel of Figure 2.1 where the plot of Qz

m against Z is reported). Qz
m is 

the ratio between the conditional (to Z) robust order m efficiency measures and 
the unconditional robust efficiency measures of a research unit analysed. We 
choose a level of robustness at 10% and then we find the value of m that left 
out the 10% of best performers in the population. In an input-oriented 
framework (as adopted here) an increasing nonparametric regression line 
indicates an unfavourable external factor, whilst a decreasing nonparametric 
regression line points to a favourable external factor.

7 For a comparative productivity analysis and a bootstrap application to these data see Daraio 
(2003). 
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Figure 2.1. Size Effects on CNR institutes (169 obs). External factor: Labor Costs (LABCOS) 

Figures 2.1 shows the effect of size (as represented by labour costs, 
measured in millions of Italian lire, one million Italian lire is equivalent to 
516.45 Euros) on the performance of the Italian CNR institutes. 

Units that lie around a Qz value of one are not influenced by size effects, 
whilst units scattered in the increasing (decreasing) portion of the curve are 
negatively (positively) influenced by size.  

A striking result is that the large majority of institutes is situated around 
the increasing part of the smoothed line: size negatively affects the 
performance of the majority of CNR institutes (with a level of Labour costs 
smaller than 4,500). Anyway, in the Italian public research system there are 
few large institutes (with a level of Labour costs higher than 4,500) the 
performance of which is positively affected by their large dimension. The 
corresponding smoothed line is decreasing, indicating a positive effect of size 
on their performance. This effect is confirmed if we use as proxy of size the 
Total Costs of research institutes (plots not reported to save place). 

It is clear that these local effects could not be identified using a production 
function approach, in which returns to scale are summarised in a single 
measure. Policy implications are largely different in the two cases. 
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4. CONCLUSIONS 

There could be some economic cases in which the function of interest 
can be determined by the economic theory, but one wants to reduce the 
strength of the assumptions required for estimation and inference. In these 
cases, the application of semiparametric statistical methods can be helpful 
(see Horowitz (1998) and Pagan and Ullah (1999) for an applied–oriented 
presentation of the several techniques available). 

Nevertheless, in general situations and in complex cases the 
nonparametric approach seems to have several merits. In particular, in the 
estimation of a regression curve it presents four main advantages (Hardle, 
1992). First, it provides a versatile method of exploring a general 
relationship between two variables. Second, it gives predictions of 
observations yet to be made without reference to a fixed parametric model. 
Third, it provides a tool for finding spurious observations by studying the 
influence of isolated points. Fourth, it constitutes a flexible method of 
substituting for missing values or interpolating between adjacent values of X.

This approach makes it possible to estimate functions of greater 
complexity and could be able to detect bimodal or other characteristics of 
distributions. The nonparametric approach is even more promising in the 
analysis of production frontier, particularly after the recent developments in 
robust techniques.  

We believe that every method has some cost associated with it. 
Nevertheless, the diffusion and application of the developments of the 
econometric tools will address the main limitations.  

Table 2.4 on the next page may be a useful tool, listing some basic 
references for researchers who wish to address empirically the difficult task 
of analysing productivity and efficiency in science and technology. 
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Table 2.4. Econometric tools for measuring productivity: a theoretical framework and some 
references 

 Parametric framework Semiparametric 

framework

Nonparametric framework 

Production 
functions 

Griliches and Mairesse 
(1998) 
Greene (2000) 

Pagan and Ullah 
(1999), 
Horowitz (1998) 

Härdle (1994), 
Pagan and Ullah (1999) 

Production 
frontiers 

Aigner and Chu (1968), 
Meusen and van den 
Broeck (1977), 
 Aigner, Lovell and 
Schmidt (1979), 
Kumbhakar and Lovell 
(2000) 

Park and Simar 
(1994), 
Park, Sickles and 
Simar (1998, 2003) 

Charnes, Cooper and Rodes 
(1978),  
Deprins, Simar and Tulkens 
(1984), 
Färe, Grosskopf and Lovell 
(1985, 1994), 
Cooper, Seiford and Tone 
(1999), 
Simar and Wilson (2003b) 
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