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3.1 Introduction 

Over the last two or three decades, a vast amount of literature on discrete 
bivariate and multivariate distributions has been accumulated. For an extensive 
account of these distributions, we refer our readers to the books by Kocherlakota 
and Kocherlakota (1992) and Johnson et al (1997), and the review articles by 
Papageorgiou (1997), Kocherlakota and Kocherlakota (1998), and Balakrishnan 
(2004, 2005). 

In this chapter, we restrict ourselves to reviewing methods of constructing 
discrete bivariate distributions. A review on constructions of continuous bi
variate distributions is given by Lai (2004). Unlike their continuous analogues, 
discrete bivariate distributions appear to be harder to construct. One of the 
problems is highlighted in Kemp and Papageorgiou (1982) in which they said, 
"Various authors have discussed the problem of constructing meaningful and 
useful bivariate versions of a given univariate distribution, the main difficulty 
being the impossibility of producing a standard set of criteria that can always 
be applied to produce a unique distribution which could unequivocally be called 
the bivariate version." Many bivariate distributions arise without having pre-
specified the marginals. There is no satisfactory unified mathematical scheme 
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of classifying these methods. What we hope to achieve is to group them into 
semicoherent clusters. The clusters may be listed as 

• Mixing and compounding 
• Trivariate reduction 
• One conditional and one marginal given 
• Conditionally specified method 
• Construction of discrete bivariate distributions with given marginals and 

correlation 
• Sums and limits of Bernoulli trials models 
• Sampling from urn models 
• Clustering (bivariate distributions of order k) 
• Construction of finite bivariate distributions via extreme points of convex 

sets 

• Generalized distributions method 
• Canonical correlation coefficients and semi-groups 
• Distributions arising from accident theory 
• Bivariate distributions generated from weight functions 
• Marginal transformations method 
• Truncation method 
• Constructions of positively dependent discrete bivariate distributions. 

Several of these are also common methods for constructing continuous bi
variate distributions. We refer the reader to Lai (2004) for a review of these 
and other methods of constructing continuous bivariate distributions. We note 
that for discrete bivariate distributions, the probability generating function is 
often used as a tool for construction as well as for studying their properties. 

We have not discussed computer generation of discrete bivariate random 
variables. We refer interested readers to the works by Professors A. W. Kemp 
and C. D. Kemp on this subject. Kocherlakota and Kocherlakota (1992) present 
several such references by the Kemps. 

3.2 Mixing and Compounding 

3.2.1 Mix ing 

As for continuous bivariate distributions, an easy way to construct a discrete 
bivariate distribution is to use the method of mixing two or more distributions. 
Suppose Hi and H2 are two discrete bivariate distributions; then 

H{x, y) = aHiix, y) + (1 - a)H2{x, y) (3.1) 
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(0 < a < 1) is a new bivariate distribution. 

Example: Consider the problem of describing the sex distribution of twins. 
Twin pairs fall into three classes: MM, MF, and FF where M denotes male and 
F female. This leads to the trinomial distribution. As twins may be dizygotic 
or monozygotic, a mixture of trinomials results. For more details, see Blischke 
(1978), Goodman and Kruskal (1959), and Strandskov and Edelen (1946). 

Papageorgiou and David (1994) studied several countable mixtures of bino
mial distributions. 

3.2.2 Compounding 

Compounding is perhaps the most common method of constructing discrete 
bivariate distributions. Let X and Y be two random variables with parameters 
9i and 2̂5 respectively. For a given value of (^1,^2)5 ^ sind Y may be either 
independent or correlated. 

(i) X and Y are conditionally independent. 

If 61 and 02 are independent, then the resulting pair Xand Y are also inde
pendent. For example, for given (^1, ^2)5 X and Y are independent Poissons. If 
61 and 02 are independent gammas, then the resulting X and Y are independent 
negative binomials. 

• 61 and 02 may have a bivariate distribution such as the case of Consael's 
bivariate Poisson distribution [Consael (1952)]. 

• David and Papageorgiou (1994) presented several compounded bivariate 
Poisson distributions that can be derived in this manner. 

(ii) X and Y are dependent for given values of the compounding parameters. 

• The compounded bivariate Poisson distributions given by Kocherlakota 
(1988) are obvious examples. 

• Another example is the generalized Consael distribution obtained by 

iX,Y) ~ BivP(Ai,A2,A3), A ^ F(Ai,A2,A3) 
(Ai,A2,A3) 

where the symbol A denotes compounding. Here BivP(Ai, A2, A3) has a 
bivariate Poisson distribution with a probability-generating function given 

by 

g{s, t) = exp{Ai(s - 1) + A2(< - 1) + \z{st - 1)}, (3.2) 
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and (Ai, A2, A3) has a trivariate distribution function F. 
For example, Hs distribution [Kemp and Papageorgiou (1982)] is obtained 

when (Ai,A2, A3) has a trivariate normal distribution. 
There are other variants of compounding; see, for example. Chapter 8 of 

Kocherlakota and Kocherlakota (1992). 

3.3 Trivariate Reduction 

This is also known as "the variables in common method." The idea here is 
to create a pair of dependent random variables from three or more random 
variables. In many cases, these initial random variables are independent, but 
occasionally they may be dependent. An important aspect of this method is 
that the functions connecting these random variables to the two dependent 
random variables are generally elementary ones; random realizations of the 
latter can therefore be generated easily from random realizations of the former. 
A broad definition of the variables-in-common technique is as follows. Set 

X = Ti{Xi,X2,Xs), 1 /o o\ 
r = r2(Xi,X2,X3), J ^ -̂̂ ^ 

where Xi,X2,X3 are not necessarily independent or identically distributed. A 
narrow definition is 

Y = X2 + Xs, j ^ ^ 

with Xi,X2,-X'3 being i.i.d. Another possible definition is 

X = T{XI,XS), 1 , . 
y = r(X2,X3), I ^̂ -̂ ^ 

with (i) the Xi being independently distributed and having c.d.f. Fo{xi; A )̂, and 
(ii) X and Y having distributions Fo(x; A1 + A2) and Fo{y; A1 + A3), respectively. 

Example: Suppose X^ ~Poisson(Ai), i = 1,2,3. Define X = Xi + X3, Y = 
X2 + Xs so that the joint pgf of (X, Y) is given by 

g{s, t) = exp{Ai(5 - 1) + X2{t - 1) + Xsist - 1)} (3.6) 

which is called the bivariate Poisson distribution. This distribution is often 
used as a basis for obtaining a compound bivariate Poisson distribution. More 
specifically, if each independent Ai~Gamma(ai,/3), then the resulting distri
bution is a bivariate negative binomial [see, e.g.. Stein and Juritz (1987)]. If 
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each independent Ai~GIG(ai, Q^ ^) (GIG = generalized inverse Gaussian), then 
{X, Y) has a bivariate inverse Gaussian-Poisson distribution. 

(Note: Ai + A2 - GIG(ai + a2,Ci + C2, ^). The inverse Gaussian-Poisson 
distribution is a special case of Sichel distribution.) 

An obvious disadvantage of this method is that the correlation is restricted 
to be strictly positive. 

Zheng and Matis (1993) generalized the trivariate reduction method by 
considering a random rewarding system so that 

Y _ ) ""1 ' ^ 2 with prob TTI 
\x. with prob 1 — TTI 

and 
Y — j ^ 1 + ^ 3 with prob 7r2 

1 -X'3 with prob 1 — 7r2. 

Several discrete bivariate distributions were constructed, whose marginal 
distributions are mixtures of negative binomial distributions. 

Lai (1995) proposed an extension to the model of Zheng and Matis (1993) 
by setting 

-^ = -^1 + hX2, \ /^ x̂ 
Y = Xs + hX2, f ^ -̂̂ ^ 

where /̂  (i = 1, 2) are indicator random variables which are independent of X^, 
but (/i, ^2) has a joint probability function. 

3.4 One Conditional and One Marginal Given 

A discrete bivariate distribution can be expressed as the product of a marginal 
distribution and a conditional distribution as 

Pr{X = x,Y = y} = Pr{F = y\X = x} Pr{X = x}, (3.8) 

This is an intuitively appealing approach, especially when Y can be thought 
of caused by, or predictable from, X. 

Moreover, given positive Pr{X = x\Y = y} for all x, y, and Pr{y = y\X = 
xo}, for all y and a fixed XQ, the joint distribution can be determined uniquely 
[Patil (1965)]: 

..^x-..y-.^.?sOi^^0E^;M^. ,3.) 
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Normalization determines the proportional constant; see, for example, Gelman 
and Speed (1993). 

Furthermore, discrete bivariate distributions can be generated from given 
conditional distributions and regression functions. We will discuss this in the 
next section dealing with conditionally specified distributions below. 

Examples: Korwar (1975), Dahiya and Korwar (1977), Cacoullos and Papa-
georgiou (1983), Papageorgiou (1983, 1984, 1985a), Kyriakoussis (1988), and 
Kyriakoussis and Papageorgiou (1989). 

3.5 Conditionally Specified Method 

Suppose in the preceding section, both Pr (y = y\X = x) and Pr(X = x\Y = y) 
are given for all x and y. We may have then overspecified the conditions as 
the two conditional distributions may not be compatible. In cases in which 
compatibility is confirmed, the question of possible uniqueness of the compat
ible distribution need to be addressed. The book of Arnold et al (1999) has 
revolutionized this subject area as it provides a rich mechanism for generating 
bivariate distributions. This book focuses on those conditional distributions 
that are members of some well-defined parametric families such as the exponen
tial families. Three discrete distributions are from exponential families, that is, 
binomial, geometric, and Poisson. Section 4.12 of the above mentioned mono
graph devotes a discussion to constructions of bivariate binomial, geometric, 
and Poisson distributions. 

Section 7.7 of Arnold et al. (1999) discusses generation of bivariate discrete 
distributions (as well as continuous bivariate distributions) for a given condi
tional distribution of X given Y and the regression function of F on X. In 
particular, Wesolowski (1995) has shown that if X | y = y has a power series 
distribution, that is, 

P,^X = x\Y = y) = c{x)yyc*{y), 

then the joint distribution of (X, Y) will be uniquely determined by the regres
sion function of y on X provided c(-) is reasonably well behaved. 



Discrete Bivariate Constructions 35 

3.6 Construction of Discrete Bivariate Distributions 
with Given Marginals and Correlation 

3.6.1 Discrete Frechet bounds 

For given marginals F and G, Hoeffding (1940) and Prechet (1951) have proved 
that there exist bivariate distribution functions, HL and Hu, called the lower 
and upper Prechet bounds, respectively, having minimum and maximum corre
lation. Specifically, we have 

HL{X, y) = max[F(:r) + G{y) - 1,0] (3.10) 

Hu{x,y) = mm[F{x),G{y)] (3.11) 

satisfying 

and that 

HL{X, y) < if (x, y) < Hu{x, y) (3.12) 

pL<P<Pu (3.13) 

where pL^ p and pu denote the Pearson product-moment correlation coefficients 
for HL, H and Hu, respectively. 

3.6.2 Probabi l i ty functions of Frechet bounds 

We now assume that X and Y are discrete with ranges that are subsets of 
N = {0,1 ,2 , . . .} . Let /i, / , and g be the probability functions that correspond 
to if, F , and G, respectively. Our aim now is to construct the probability 
functions hi and hjj that correspond to HL and iff/, respectively. In the 
following, we adopt the notations given in Nelsen (1987). 

Let D denote the portion of iV^ where HL{X^ y) > 0, D' denote the comple
ment of D in AT̂ , and dD denote the border of D; that is, 

D = {(x, y) G Ar2 \F{x) + G{y) - 1 > 0} 
D^ = {(x, y) e N^ \F{x) + G{y) - 1 = 0}, 

and 
dD = {{x,y)eD\{x-l,y),{x,y-l)ov{x-l,y-l)^D}. 

Nelsen (1987) has shown that 

hLix,y) 
fix) {x, y) € dD, {x, y-l)^D,{x-l,y)e dD 
9{y) (x, v) &dD,{x-l,y)i D, (x, y - 1) € dD 

= < F{x) + G{y)-1 {x,y)edD,{x,y-l)iD,{x-hy)iD 
1 - F(x - 1) - G{y - 1) (x,y) € dD, {x,y - 1) € dD, (x - l,y) 6 dD 
0 otherwise. 
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In order to obtain hjj, we set 

S = {{x,y)eN^\F{x) = Giy)}, 
T = {{x,y)eN^\F{x)>G{y)}, 

and 
dS = {{x,y)eS\{x,y-l)^S}, 
dT={{x,y)eT\{x-l,y)^T}. 

Nelsen (1987) has shown that 

hu{x,y) 
i f{x) {x,y)edS,{x-l,y-l)eT, ovy = 0 

g{y) {x,y)edS,{x-l,y-l)eS, oix = 0, y^O 
= < F{x)-\-G{y)-l {x,y)edT,{x-l,y-l)eS, oix = 0 

1-F{x-1)-G{y-1) {x,y)GdT,{x-l,y-l)eT, OTy = 0, x^O 
0 otherwise. 

The author has also presented two examples of finding hi and another two of 
finding hjj. 

3.6.3 Construct ion of bivariate distr ibutions 

Having obtained hi and hu, we are now in a position to generate one-parameter 
or two-parameter families of bivariate distributions with given marginals: 

he,ct> = OhUx, y) + {l-e- (j>)f{x)g{y) + (l>hu{x, y), ^, 0 > 0, ^ + 0 < 1. (3.14) 

Upon setting ^ = 0,0 > 0, we obtain a one-parameter family with positive 
correlation; and upon setting 0 = 0, 0 > 0, a one-parameter family with neg
ative correlation; and correlation coefficients for members of these families are 
functions of 6^ 0, pL and pu-

Mardia (1970, p. 33) has noted that if we let (9̂  = ^ ( 1 - 7 ) and (j) = ^ ( 1 + 7 ) , 
then (3.14) becomes 

/i7 = y (1 - l)hL{x, y) + (1 - 7 ')/(^)p(y) + \l\^ + l)hu{x, y) (3.15) 

It is worth noting that for (/> == 0, 

he = 9hL{x, y) + i l - e)f{x)g{y) (3.16) 

and that the correlation coefficient p is given by 

p = epL, 0<9<l (3.17) 

which has values between pL and 0. Thus for any desired correlation p between 
PL and 0, we can find the required value of 9 in [0, 1] to satisfy (3.17). 
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Similarly, for ^ = 0, (/> > 0, we have 

h^ = {l- (i>)f{x)g{y) + (t>hu{x, y) (3.18) 

and that the correlation coefficient p is given by 

P = (t>Pu^ (3.19) 

For any desired correlation between 0 and pc/, we can find the required value 
of (/)in [0, 1]. 

Nelsen (1987) presented two examples: 

1. both marginals are Poisson but with different parameters, p = —0.5 and 

2. one marginal is binomial (n = 4,p = 0.8) and the other discrete uniform 
on {1, 2,3,4,5}; and p positive. 

If we wish to use Mardia's one-parameter family (3.15), then the correlation 
coefficient p for h^ is given by 

2 2 

P = Y ( l - 7 ) P L + y ( l + 7)Pc/. 

To find the required value p between pi and pu-, we need to solve for 7 in 
the following cubic equation 

[pu - PL)1^ + {pu + Pih^ - 2p = 0. 

Then, we can construct the probability function by substituting the value 7 
into (3.14). 

3.6.4 Construct ion of bivariate Poisson distributions 

Griffiths et al. (1979) gave procedures for constructing bivariate Poisson distri
butions having negative correlations when the two marginals are specified. For 
given Poisson marginals F and G having parameters Ai and A2, respectively, 
they calculated and tabulated the minimum and maximum correlation coeffi
cients (i.e., the correlation coefficients of Hi and Hu defined, respectively, by 
(3.10) and (3.11)). 
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3.7 Sums and Limits of Bernoulli Trials 

3.7.1 The bivariate Bernoull i distribution 

Suppose (X, Y) has Bernoulli marginals; then it has only four possible values: 
(1,1), (1,0), (0,1), (0,0) with probabilities Pn,pio,PoiiPoo^ respectively. The 
marginal probabilities are given by 

P+i=Pn+Poi = ^-p+o J* 

It is easy to show that the correlation coefficient is given by 

(3.20) 

p=_PllPl±P±^, (3.21) 
\/Pl+PO-\-P-\-lP+0 

It takes on values -1 and +1 when pu = PQQ = 0 and pio = poi = 0, respectively. 
Here, p = 0 implies X and Y are independent. 

3.7.2 Construct ion of bivariate Bernoull i distributions 

It is well known that in the univariate case, the binomial, negative binomial 
(including geometric), hypergeometric and Poisson distributions are obtainable 
from the univariate Bernoulli distribution. Marshall and Olkin (1985) showed 
that these methods of derivation (using sums and limits) can be extended to 
twodimensions to obtain many bivariate distributions with binomial, negative 
binomial, geometric, hypergeometric, or Poisson marginals. 

3.8 Sampling from Urn Models 

Many discrete bivariate distributions are constructed by sampling from urn 
models. There are two types of sampling: (i) direct sampling and (ii) inverse 
sampling. By inverse sampling, we mean the sampling is continued until k 
individuals of a certain type are observed. For both types, sampling may be 
with or without replacement. 

Suppose a population has three distinct characters and let the population 
size be N. Let AT̂ , i = 0,1, 2, be the number of individuals having character 
z, for i = 0,1,2 such that NQ + Ni + N2 = N (alternatively, an urn contains 
N balls of three different colours, Ni being of i^^ colour (i = 0,1,2) such that 
No + Ni + N2 = N). Suppose that n individuals (balls) are drawn from the 
population (urn) with various forms of sampling schemes, and let X and Y 
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Table 3.1: Bivariate distributions from direct and inverse samplings 

No 

(i) 
(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

Name 

Bivariate Binomial 
Bivariate 
Negative Binomial 
Bivariate 
Hypergeometric 
Bivariate Inverse 
Hypergeometric 
Bivariate Negative 
Hypergeometric 

Bivariate Inverse 
Negative 
Hypergeometric 
Bivariate Polya 

Bivariate 
Inverse Polya 

Type of 
Sampling 
Direct 
Inverse 

Direct 

Inverse 

Direct 

Inverse 

Direct 

Inverse 

Replace 
(Yes/No) 
Yes 
Yes 

No 

No 

Special Features 

Ni finite 
Ni infinite 

— 

Trinomial 
compounded by 
bivariate beta 
Negative trinomial 
compounded by 
bivariate beta 
Add c additional 
individuals 
Add c additional 
individuals 

denote the number of type 1 character and type 2 character, respectively, in 
the sample. We can then construct various kinds of bivariate distributions 
which are summarized below: 

• Distribution (i) is also known as type 1 bivariate binomial distribution; 
see, for example, Section 3.3 of Kocherlakota and Kocherlakota (1992). 

• For distribution (ii), see, for example, Section 5.2 of Kocherlakota and 
Kocherlakota (1992). 

• For distributions (iii)-(vi), see Janardan (1972, 1973, 1975, 1976), Janar-
dan and Patil (1970, 1971, 1972). See also Chapter 6 of Kocherlakota and 
Kocherlakota (1992). 

• For distributions (vii) and (viii), see Janardan and Patil (1970, 1971) and 
Patil et al (1986). 

For other references and other distributions generated from urn models, see 
Johnson and Kotz (1977), Korwar (1988), and Marshall and Olkin (1990). 
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3.9 Clustering (Bivariate Distributions of Order k) 

In recent years, several bivariate generalizations of the binomial, negative bi
nomial, hypergeometric, Poisson, logarithmic, and other distributions were ob
tained. These are often called bivariate distributions of order k or bivariate 
cluster distributions; see Balakrishnan and Koutras (2002). As they bear the 
names binomial, negative binomial, hypergeometric, and negative hypergeomet
ric, it is not surprising that they also have the origin of sampling from an urn 
with and without replacements. 

3.9.1 Preliminary 

Consider an urn that contains balls of fc -h 1 types such that a balls bear the 
number 0 and /?i balls bear the number i,i = 1,2, ...,fc. 

(i) Suppose a sample of n balls is drawn with replacement. Let X denote 
the sum of the numbers shown on the balls drawn and p^, i = 1, 2 , . . . , fc be 

k 
the probability that a ball bearing the number i will be drawn: YlPi—P ^^d 

q = l —pis the probability that a ball bearing a zero will be drawn. Then, X 
has a cluster binomial distribution. 

(ii) If the sampling scheme above is without replacement, then a cluster 
hypergeometric distribution results. 

(iii) If as in (i) above, but with n not fixed and letting X be the sum of 
numbers sampled before the r*^ zero, then X has a cluster negative binomial 
distribution. 

(iv) If as in (ii) above but the compositions of balls is to be altered at each 
stage by adding a ball of the same type as the sampled one before the next 
draw is made, then X has a cluster Polya distribution. 

3.9.2 Bivariate Distributions of order k 

Now we may generalize this idea to the bivariate case. 
Suppose an urn contains balls of two different colours (say colour 1 and 

colour 2). The balls of colour i are numbered from 0 to fc^, i = 1, 2. n balls are 
drawn with replacement. Let pij denote the probability that a ball of colour 
i will bear number j , j = 0,1, 2 , . . . , ki. Let X and Y denote the sum of the 
numbers of the first and second colour, respectively; then (X, Y) has a cluster 
bivariate binomial distribution [Panaretos and Xekalaki (1986)]. 

Suppose now in the above example, ki = ^2 and another ball is added and 
labelled by (0, 0) with proportion p such that p + YH=I Y!J=\ Pij = 1- Balls are 
drawn with replacement until the r balls ( r > 1) bearing the number (0, 0) 
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appear. Let X and Y denote the sum of the numbers on colour 1 and colour 
2, respectively. Then (X, Y) has the bivariate negative binomial distribution of 
order k [Philippou et al, (1989) and Antzoulakos and Philippou (1991)]. 

Philippou et al. (1989) obtained a bivariate Poisson distribution of order k 
by taking limits from the above model such that 

Pij —> 0 and rpij -^ Xij (0 < Xij < oo, for 1 < i < 2,1 < j < k). 

For construction of bivariate logarithmic series distribution of order fc, also a 
limiting case of bivariate negative binomial of order k, see Philippou et al. (1989, 
1990). For constructions of bivariate Polya and inverse Polya distributions of 
order k^ see Phihppou and Tripsiannis (1991). 

Aki and Hirano (1994, 1995) have constructed multivariate geometric dis
tributions of order k. For a review on this subject, see Chapter 42 of Johnson 
et al. (1997) and Balakrishnan and Koutras (2002). 

Philippou and Antzoulakos (1990) have obtained several bivariate distribu
tions of order k through a "generalised sequence of order fc" which was first 
introduced by Aki (1985). For other types of bivariate binomial distributions 
of order fc, see Ling and Tai (1990). 

3-10 Construction of Finite Bivariate Distributions 
via Extreme Points of Convex Sets 

In this section, we consider the construction of bivariate distributions with 
finite support. The key reference for the following discussion is that of Rao and 
Subramanyam (1990). 

Let M(F, G) be the collection of all bivariate distributions with finite sup
port and marginals F and G. Then M is a compact convex set. In order to 
give an insight of the problem, we begin by considering joint probabilities of X 
and Y: pij = Pr(X = i,Y = j ) , pi = Pr(X = i), qj = FT{Y = j ) , i,= 1,2; 
i = 1,2,3. 

It is easy to see that the following set of equations hold (assuming for the 
time being that pu and pi2 are known): 

Pl3 = Pi 

P21 = qi • 

P22 = q2 • 

Pi3 + P23 = qs 

-pu 
-Pn 
-Pl2 

Pl2 

(3.22) 
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A - ^ 3 

Pi - Qz q\ 

Figure 3.1: Feasible region 

There are five equations and four unknowns. As pij > 0, it follows that 

Pi3 = Pi -Pn -Pi2>0 
P21 =qi-Pn>0 
P22 = q2-Pi2>0 

P2S = qs-pi +Pn +P12 > 0 

(3.23) 

The above may be expressed as four inequalities for pn and pu- These are 

(3.24) 

Pn+Pi2 <Pi 
Pn < qi 
Pl2 < 92 

Pn +P12 >Pi-qs 

In addition, we have two obvious inequalities which are 

j9ii > 0 and pi2 > 0. 

These six inequalities may be illustrated by the diagram above. The feasible 
region of bivariate distributions is a hexagon. However, if either qi or q2 exceeds 
pi, the region is then reduced to a pentagon. If both qi and q2 exceed pi, then 
the region is a quadrilateral. If both qi and q2 are smaller or equal to pi — qs^ 
then the region is a triangle. If one of qi and q2 is less than pi — qs whereas the 
other one exceeds pi — 93, then the resulting region is a quadrilateral. 

Note that the intersections of the boundary lines are the extreme points. In 
this example, there are three to six extremal points. 

Well-established mathematical fact: Let Ai{i — l , 2 , . . . , n ) be the 
extreme points of a compact convex set M. Then any element B oi M can be 

n n 
written as -B = ^ aiAi where ^ ai = 1. 

i=l i=l 
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It follows that we can generate a discrete bivariate distribution after the 
extreme points are identified. 

3.10.1 Finding extreme points 

Prom the above discussion, it is clear that it is easy to generate a bivariate 
distribution with specified marginals if we can identify the extremal points of 
M. For example, suppose we have pi = ^,p2 = | ; 9 i = \^Q2 = 2^Qs = \' As 
q2 = ^ > Pi = ^^ the region is a pentagon. It follows from the above diagram 
that one of the intersections is pu = pi — qs = ^ ,P i2 = 0. It follows from 
(3.22) and (3.23) that one of the extreme points of M is 

h 0 \ 

The other four extreme points can be found similarly. 
Let m be the number of p^ > 0 and n be the number oi qi > 0. This 

contingency table has (m — l)(n — 1) degrees of freedom. In general, we have 
(m + n) equations and (m + n — 1) unknowns (i.e., one equation is always 
redundant). These (m + n — 1) equations are expressed in terms of pi, qi and 
the (m — l)(n — 1) free parameters (with dependent parameters on the left of 
the equations, and p^, qi and free parameters on the right). Also as the free 
parameters pij > 0, we therefore have (m + n — 1) + (m — l)(n — 1) = mn 
inequalities. Hence they form a polygon with a maximum of mn sides. 

Oluyede (1994) obtained a family of bivariate binomial distributions gener
ated by extreme bivariate Bernoulli distributions. 

3.11 Generalized Distributions 

The adjective "generalized" has often been used for discrete distributions, how
ever, its meaning is not uniquely defined. In the literature, there is no clear-cut 
discrimination between the terms "compound" and "generalized." Moreover, 
the word "generalized" in this discussion is also used with other meanings such 
as extension. For example, we used the term "generalized inverse Gaussian" in 
Section 3.3 to denote a distribution which includes the inverse Gaussian as its 
special case. 

We now define "generalized" in a restricted sense. 
Suppose the pgf (probability-generating function) of a distribution Fi is 

gi{s). If the argument s is replaced by the pgf 32(5) of another distribution F2, 
then the resulting generating function gi{g2{s)) is also a probability-generating 
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function. This distribution is called a generalized Fi distribution. More pre
cisely, it is called an Fi distribution generalized by the generalizer (or general
izing distribution) F2. It may be written in the symbolic form 

F1VF2; (3.25) 

see Johnson and Kotz (1969, p. 202). 
In the univariate case, the generalized distribution is simply a compound 

distribution. 

3.11.1 Generalized bivariate distributions 

The above idea may be extended to the bivariate case. In a general setting, 
there are at least two ways of "generalizing." 

(i) Let G{s) be the pgf of the original distribution Fi and 7r(5, t) be the joint 
pgf of the bivariate distribution of F2. Then a generalized bivariate distribution 
can be obtained by replacing s of G by 7r(5, t) to give 

g{s,t) = G{7r{s,t)), (3.26) 

(ii) Let G(5, t) be the original pgf of a bivariate distribution Fi. Replace the 
arguments s and t of G by the univariate pgf's 7ri{s) and 7r2(<), respectively, so 
that the resulting generalized distribution has pgf 

g{s,t) = G{7ri{s),n2{t)). (3.27) 

(iii) The third way may be obtained by combining the trivariate reduction 
technique together with the "generalized" method. Let TT̂  be the pgf of the 
generalizer Xi and Gi be the pgf of the distribution that generalizes Xi^i = 
1,2,3. Let (X, Y) = {Xi+Xs, X2+X3). Then the resulting generahzed bivariate 
distribution of (X, Y) has pgf given by 

g{s,t) = Gii7ri{s))G2{7r2{t))Gs{7rs{st)), (3.28) 

3.11.2 Generalized bivariate Poisson distributions 

(i) Bivariate Neyman type A distributions 

Holgate (1966) constructed three types of bivariate Neyman A distributions. 
Type I: This corresponds to (3.26) with G being the pgf of a Poisson and 

7r(5, t), the pgf of the bivariate Poisson given by 

7r(5, t) = exp{Ai(s - 1) + X2{t - 1) + Xsist - 1)}. (3.29) 

Type II : This corresponds to (3.27) where G is the pgf of the bivariate 
Poisson given by (3.29) and 7ri(5) = exp{(j)i{s — 1)} and 7r2(t) = exp{02(t — 1)}. 
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Type III: This is obtained via the trivariate reduction method such that 
X = Xi+Xs and Y = X2+X3 where X^ (i = 1, 2,3) are independent Neyman A 
distributions. Alternatively, let Gi{s) = exp{Ai(5 — 1)} and 7ri{s) = exp{(/)^(5 — 
1)}. By applying (3.28), we obtain this distribution. 

(ii) Bivariate Poisson binomial distributions 

Charalambides and Papageorgiou (1981a) also derived three types of bivariate 
Poisson binomial distributions based on the "generalized" method. 

3.11.3 General ized bivariate general binomial distr ibutions 

Three types of bivariate generalized general binomials were derived by Char
alambides and Papageorgiou (1981b). 

For other examples, see Papageorgiou and Kemp (1983). 

3.12 Canonical Correlation Coefficients and 
Semigroups 

3.12.1 Diagonal expansion 

The diagonal expansion of a bivariate distribution involves representing it as 

00 

dH{x, y) = dF{x)dG{y)Y,PMx)Vj{y). (3.30) 
1=1 

^i and r]i being known as the canonical variables and the pi as the canonical 
correlations. 

When X and Y have finite moments of all orders, sets of orthonormal poly
nomials {Pn} and {Qn} can be constructed with respect to F and G; for ex
ample, the Krawtchouk polynomials for binomial marginals, the Meixner poly
nomials for negative binomial marginals, and the Poisson-Charlier polynomials 
for Poisson marginals. 

If 

EfX^iy = y]= a polynomial of degree n 1 (^'^^\ 
E[Y'^\X = x]= a polynomial of degree n j ' 

then H has a diagonal expression in terms of F and G and their respective 
orthonormal polynomials. 
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3.12.2 Canonical correlation coefficients and positive definite 
sequence 

Suppose now X and Y are two exchangeable variables so that the two sets 
of orthonormal polynomials {Pn} and {Qn} are identical. A sequence {tn} 
is said to be positive definite with respect to {Qn} if for all M (integer), all 

M 

X = 0 ,1 ,2 , . . . and all sequences {an} of real numbers, Y^ CLnQni^) implies that 
n=0 

M 

Yl (^ntnQni^)' (We assume here to = 1.) 

For finite discrete bivariate distributions, Eagleson (1969) showed that every 
^̂  

canonical sequence {pn '- Y. Pi < ^ is a positive definite sequence. GriflBths 
i=0 

(1970) generahzed the result to the case when the support of X is unbounded. 

3.12.3 Moment sequence and canonical correlation coefficient 

A sequence {bn} is said to be a moment sequence if it can be expressed as 
bn = J t^dG{t) for some distribution function G. Assume again that the support 
of X is unbounded and X and Y are exchangeable. Tyan and Thomas (1975) 
showed that every sequence of canonical correlation coefllcients is a moment 
sequence on [0, 1] or [—1,1]. If X is non-negative, then the moment sequence is 
defined on [0, 1]. Conversely, if {p^ = p^} is a sequence of canonical correlation 
coeflBcients, it is easy to show that every moment sequence is a sequence of 
canonical correlation coefficients. For the binomial and Poisson, the sequence 
{p^} is indeed a sequence of canonical correlation coefficients; see, for example, 
Lancaster (1983). 

3.12.4 Constructions of bivariate distributions via 
canonical sequences 

Let C denote the set of all sequences of canonical correlation coeflScients. 

• It is easy to see that C is convex. Hence, if {a^} and {bn} are two 
sequences of canonical correlation coefficients, then {pn = Aa7i + (1 —A)&ri} 
is also a sequence of canonical correlation coeflBcients for a new bivariate 
distribution having the same set of marginals. 

As positive definite sequences are closed under termwise multiplication, 
C forms a semigroup with respect to termwise multiplication. For fi
nite discrete distribution, this result was proved by Vere-Jones (1971). 
Vere-Jones's result can be easily generalized to the case with unbounded 
support. In other words, {pn = cbn^n} is a sequence of canonical corre
lation coeflBcients if {an} and {bn} are. In this way, numerous bivariate 
distributions can be constructed. 
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3.13 Bivariate Distributions from Accident Models 

In Section 20.3 and Section 21, Hutchinson and Lai (1990) considered the joint 
distribution of the severities of injury to two people in the same road accident. 
It was found that a bivariate normal distribution, generated by the method of 
variables in common, may be used to model such injury. Here, we are concerned 
with the number of injury accidents rather than the amount of injury. 

Let X denote the number of injury accidents on a given stretch of highway 
and Zi denote the number of fatalities in the i^^ accident, i = l , 2 , . . . , X . Also, 
let Y denote the total number of fatalities recorded among the X accidents. In 
other words, we may represent them in the following manner: 

Y = Zi + Z2 + '" + Zx (3.32) 

The question of interest is to find the joint distribution of X and Y. Unlike 
the bivariate distributions we have discussed so far, the two marginals are, in 
general, of different types of univariate distributions. 

Following the pioneering work of Edwards and Gurland (1961) in using 
a discrete bivariate distribution (i.e., a bivariate negative binomial) to model 
accident data, Leiter and Hamdan (1973), Cacoullos and Papageorgiou (1980, 
1982) and others developed several models to represent the joint distribution 
of (X,y) as specified in (3.32). 

3.13.1 T h e Poisson-Poisson, Poisson-binomial , and 
Poisson-Bernoul l i m e t h o d s 

Suppose X has a Poisson distribution. By letting Zi (assuming they are i.i.d), 
we obtain 

• Poisson-Bernoulli model when Zi has a Bernoulli distribution [Leiter and 
Hamdan (1973)]. 

• Poisson-Binomial model when Zi has a binomial distribution [Cacoullos 
and Papageorgiou (1980)]. 

• Poisson-Poisson model when Zi has a Poisson distribution [Leiter and 
Hamdan (1973)]. 

• Poisson-geometric model when Zi has a geometric distribution [Papageor
giou (1985b)]. 
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3.13.2 Negative binomial-Poisson and negative 
binomial-Bernoulli models 

It has been pointed out by many authors [see Kemp (1970)] that the num
ber of accidents is more adequately described by a negative binomial (i.e., the 
Poisson distribution whose parameter A has a gamma distribution). For this 
reason, CacouUos and Papageorgiou (1982) constructed the following bivariate 
distribution assuming X to have a negative binomial distribution. 

• Negative binomial-Poisson model where Zi has a Poisson distribution. 

• Negative binomial-Bernoulli models where Z has a Bernoulli distribution. 
The joint distribution of (X, Y) is a special case of the bivariate negative 
binomial of Edwards and Gurland (1961). 

3-14 Bivariate Distributions Generated from 
Weight Functions 

Let f{x,y) be the probability function of {X^Y). Kocherlakota (1995), and 
Gupta and Tripathi (1996) defined the probability function of the weighted 
distribution with the weight function W{x,y) as 

^ ^ ( ^ ' ^ ^ ^ E[W{X,Y)] • 

In particular, they considered the multiplicative weight function of the form 

T (̂x,y) = x(^V^\ 

where x^^^ = x{x — 1) • • • (x — a +1) . The weighted bivariate Poisson, weighted 
bivariate binomial, weighted bivariate negative binomial, and weighted bivariate 
logarithmic series distributions were obtained by this method; see also Section 
43.5 of Johnson et al. (1997) for other details. 

3.15 Marginal Transformations Method 

The marginal transformation method to generate a continuous bivariate dis
tribution from another continuous bivariate distribution can be implemented 
easily. Suppose (X, Y) has a joint cumulative distribution function H{x, y) 
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with marginal F{x) and G{y). If we transform X -^ X* and y —> y*, then the 
joint distribution function of (X*, Y*) is given by 

H*{x*,y*) = H{F-'[F*{x*)],G-\G*{y*)]), (3.33) 

where F* and G* are the distribution functions of X* and Y*, respectively. 
The key to this method lies on the fact that U = F{X),V = G{Y) as well 
as [/' = F*(X*),F ' = G*{Y*) are all uniformly distributed for continuous 
marginals. Thus, the method cannot be readily applied to construct discrete 
bivariate distributions as discrete random variables cannot be transformed into 
uniform random variables. 

It appears that the method can be transportable if H{x, y) is continuous, 
whereas X* and y* are two discrete random variables with finite or countable 
values. Then, the /f*(x*,y*) can be expressed as 

if*(x*,y*)= / / h{x,y)dxdy, (3.34) 

where /i(x, y) is the joint density function of (X, Y). 
Van Ophem (1999) has constructed a discrete bivariate distribution in this 

manner assuming h{x^ y) to be the standard bivariate normal density function 
with correlation coefficient p. Lee (2001) derived the range of correlation coeffi
cients of a discrete bivariate distribution and showed that the discrete bivariate 
distribution of Van Ophem (1999) has a ffexible correlation coefficient. 

3.16 Truncation Methods 

Similar to its continuous counterpart, discrete bivariate distributions may be ob
tained through truncations. Truncations may be necessary where certain values 
are missing or may not be recorded in the data sets. Piperigou and Papageor-
giou (2003) gave a unified treatment of three types of zero class 
truncation: 

• The zero cell (0,0) is not recorded. 

• The zero class for the variable X, {(0, y), y = 0 ,1 , . . . } , is not recorded. 

• The zero class for both X a n d F , {(0,y), y = 0 , 1 , . . . ; (x,0), x = 0 ,1 , . . . } , 
is not recorded. 

Using the probability-generating function approach, various properties of the 
truncated discrete bivariate distributions are then examined. 
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3.17 Construction of Positively Dependent Discrete 
Bivariate Distributions 

There are various concepts of positive dependence for a bivariate distribution. 
We consider only two of these here. 

A pair of random variables, X and F , are said to be positively quadrant 
dependent (PQD) if the following inequality holds, that is, if 

Pr(X <x,Y <Y)> Pr(X < x) PT{Y < y). (3.35) 

The variable Y is said to be positive regression dependent (PRD) on X if 
VriY > x\X = x) IS increasing in x for every y. 

For other concepts of stochastic dependence, one may see, for example. 
Chapter 12 of Hutchinson and Lai (1990). 

3.17.1 Posi t ive quadrant dependent distributions 

We shall begin with construction of a pair of PQD binary variables. A binary 
random variable may be used to indicate the state of a component (or a system) 
which is either functioning or not functioning. More specifically, we let the 
binary variable Xi denote the state of the ith component such that 

^ _ J 1 if it is functioning . . 
1 0 otherwise. 

Then, Pr(X^ = 1) is the static reliability of the component at a given time 
instant. 

Suppose X and Y are two identically distributed binary random variables 
having the joint probability function given as follows: 

and 

Pr(X = 0) = a + 6, Pr(X = 1) = 1 - a - 6 

Pr (F = 0) = a + 6, P r (y = 1) - 1 - a - fe. 

Table 3.2: Joint probabilities 

Pr(X = 0, y - 0) = a 
Pr(X = l , y ^ O ) = b 

Pr(X = 0 , y = l) = 6 
Pr(X = l , F ^ l ) = ^ l - a - 2 b 
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We now proceed to construct a pair of PQD binary variables as follows: 

Clearly, for (x,y) = (0,1), (1,0), or (1,1), inequality (3.35) readily holds 
without requiring any condition. Thus, the binary pair X and Y are positively 
quadrant dependent if and only if 

Pr(X = 0, F - 0) > Pr(X = 0) Pr (y = 0) (3.37) 

which is equivalent to the condition 

(a + bf < a. (3.38) 

It is clear that for a given 6, 0 < 6 < 1, we can solve for a so that (3.38) 
holds. It is easy to show that 

Now, let X and Y be two discrete non-negative integer valued random 
variables with Pr(X = i^Y = j) = pij^ i = 1, 2 , . . . , r and j = 1, 2 , . . . , c. 

Holzsager (1996) has proved that if 

Pi^ij+iFriX <i,Y<j)> Pr(X < i,Y = j + l)Pr{X = i + l,Y<j), (3.40) 

then X and Y are PQD. Thus, (3.40) provides a mechanism to construct a pair 
of discrete PQD random variables. 

Rao and Subramanyam (1990) provided a mechanism to identify the extreme 
points of the set of all discrete PQD bivariate distributions when the marginal 
distributions have finite support. It is easy to see that we can utilize this idea 
to generate PQD discrete distributions with finite marginals. 

3.17.2 Positive regression dependent distributions 

Subramanyam and Rao and (1996) also provided an algorithm to identify the 
extreme points of the set of all discrete PRD bivariate distributions when the 
marginal distributions have finite support. After identifying these points, pos
itive regression dependent discrete bivariate distributions can be constructed. 

References 

1. Aki, S. (1985). Discrete distributions of order fc on a binary sequence. 
Annals of the Institute of Statistical Mathematics^ 37, 205-224. 



52 C. D. Lai 

2. Aki, S., and Hirano, K. (1994). Distributions of number of failures and 
successes until the first k consecutive successes, Annals of the Institute of 
Statistical Mathematics^ 46, 193-202. 

3. Aki, S., and Hirano, K. (1995). Joint distributions of numbers of success-
runs and failures until the first k consecutive successes. Annals of the 
Institute of Statistical Mathematics, 47, 225-235. 

4. Antzoulakos, D. L., and Philippou, A. N. (1991). A note on multivariate 
negative binomial distribution of order A:, Communications in Statistics-
Theory and Methods, 20, 1389-1399. 

5. Arnold, B. C , Castillo, E., and Sarabia, J. M. (1999). Conditional Spec
ification of Statistical Methods, Springer-Verlag, New York. 

6. Balakrishnan, N. (2004). Discrete multivariate distributions, In Ency
clopedia of Actuarial Sciences (Eds., J. L. Tuegels and B. Sundt), pp. 
549-571, John Wiley & Sons, New York. 

7. Balakrishnan, N. (2005). Discrete multivariate distributions. In Encyclo
pedia of Statistical Sciences, 2nd ed., (Eds., N. Balakrishnan, C. Read, 
and B. Vidakovic), John Wiley &: Sons, Hoboken, NJ (to appear). 

8. Balakrishnan, N., and Koutras, M. V. (2002). Runs and Scans with 
Applications, John Wiley k Sons, New York. 

9. Bates, G. E., and Neyman, J. (1952). Contribution to the theory of 
accident proneness I, University of California Publications in Statistics, 
1, 215-254. 

10. Blischke, W. R. (1978). Mixtures of distributions. International Encyclo
pedia of Statistics, Vol 1, 174-179. 

11. CacouUos, T., and Papageorgiou, H. (1980). On some bivariate proba
bility models applicable to traffic accidents and fatalities, International 
Statistical Review, 48, 345-356. 

12. CacouUos, T., and Papageorgiou, H. (1982). Bivariate negative binomial-
Poisson and negative binomial-Bernoulli models with an application to 
accident data. In Statistics and Probability: Essays in Honor of C. R. 
Rao (Eds., G. KaUianpur, P. R. Krishnaiah, and J. K. Ghosh), pp. 155-
168, North-Holland, Amsterdam. 

13. CacouUos, T., and Papagergiou, H. (1983). Characterisations of discrete 
distributions by a conditional distribution and a regression function, An
nals of the Institute of Statistical Mathematics, 35, 95-104. 



Discrete Bivariate Constructions 53 

14. Charalambides, Ch. A., and Papageroiou, H. (1981a). Bivariate Poisson 
binomial distributions, Biometrical Journal^ 23, 437-450. 

15. Charalambides, Ch. A., and Papageorgiou, H. (1981b). On bivariate 
generalised binomial and negative binomial distributions, Metrika^ 28, 
83-92. 

16. Consael, R. (1952). Sur les processus composes de Poisson a deux vari
ables aleatories, Academie Royale de Belgigue, Classe des Sciences^ Mem-
oires, 27, 4-43. 

17. Dahiya, R. C , and Korwar, R. M. (1977). On characterising some bi
variate discrete distributions by linear regression, Sankhya, Series yl, 39, 
124-129. 

18. David, K. M., and Papageorgiou, H. (1994). On compounded bivariate 
Poisson distributions. Naval Research Logistics^ 41 , 203-214. 

19. Eagleson, G. K. (1969). A characterization theorem for positive definite 
sequences on the Krawtchouk polynomials, Australian Journal of Statis
tics, 11, 29-38. 

20. Edwards, C. B., and Gurland, J. (1961). A class of distributions appli
cable to accidents. Journal of the American Statistical Association, 56, 
503-517. 

21. Prechet, M. (1951). Sur le tableaux de correlation dont les marges sont 
donness, Annales de VUniversite de Lyon, Serie 5, 14, 53-77. 

22. Gelman, A., and Speed, T. P. (1993). Characterizing a joint probabil
ity distributions by conditionals. Journal of the Royal Statistical Society, 
Series 5, 55, 185-188. 

23. Goodman, L. A., and Kruskal, W. H. (1959). Measures of association for 
cross classifications: II, Further discussion and references. Journal of the 
American Statistical Association, 54, 123-163. 

24. Griffiths, R. C. (1970). Positive definite sequences and canonical correla
tion coefficients, Australian Journal of Statistics, 12, 162-165. 

25. Griffiths, R. C , Milne, R. K., and Wood, R. (1979). Aspects of correlation 
in bivariate Poisson distributions and processes, Australian Journal of 
Statistics, 21, 238-255. 

26. Gupta, R. C , and Tripathi, R. C. (1996). Weighted bivariate logarithmic 
series distributions. Communications in Statistics—Theory and Methods, 
25, 2517-2539. 



54 a D. Lai 

27. HoefFding, W. (1940). Masstabinvariate Korrelations-theorie, Schriffen 
des Mathematischen Instituts und des Instituts fur Angewandte Mathe-
matik der Universitat Berlin, 5, 179-233. 

28. Holgate, P. (1966). Bivariate generalisations of Neyman's Type A distri
bution, Biometrika, 53, 241-244. 

29. Holzsager, R. (1996). Positive quadrant dependent random variables, 
American Mathematical Monthly, 103, 350-351. 

30. Hutchinson, T. P., and Lai, C. D. (1990). Continuous Bivariate Distribu-
tionsj Emphasising Applications, Rumsby Scientific Publishing, Adelaide, 
Australia. 

31. Janardan, K. G. (1972). A unified approach for a class of multivariate 
hypergeometric models, Sankhya, Series A, 35, 363-376. 

32. Janardan, K. G. (1973). Chance mechanisms for multivariate hypergeo
metric models, Sankhyd, Series A, 35, 465-478. 

33. Janardan, K. G. (1975). Certain inference problems for multivariate 
hypergeometric models. Communications in Statistics, 4, 375-388. 

34. Janardan, K. G. (1976). Certain estimation problems for multivariate 
hypergeometric models. Annals of the Institute of Statistical Mathematics, 
28, 429-444. 

35. Janardan, K. G., and Patil, G. P. (1970). On the multivariate Polya dis
tribution: a model of contagion for data with multiple counts, In Random 
Counts in Scientific Work (Ed., G. P. Patil), Vol. 3, pp. 143-162, The 
Pennsylvania State University Press, University Park, PA. 

36. Janardan, K. G., and Patil, G. P. (1971). The multivariate inverse Polya 
distribution: a model of contagion for data with multiple counts on inverse 
sampling, Studi di Probabilita Statistica e Ricera Operative in Onore de 
G, Pompilj, Toreno, 327-341. 

37. Janardan, K. G., and Patil, G. P. (1972). A unified approach for a class 
of multivariate hypergeometric models, Sankhya, Series A, 34, 363-376. 

38. Johnson, N. L. and Kotz, S. (1969). Distributions in Statistics: Discrete 
Distributions, Houghton Mifflin, Boston. 

39. Johnson, N. L., and Kotz, S. (1977). Urn Models and Their Applications, 
John Wiley &: Sons, New York. 

40. Johnson, N. L., Kotz, S., and Balakrishnan, N. (1997). Discrete Multi
variate Distributions, John Wiley & Sons, New York. 



Discrete Bivariate Constructions 55 

41. Kemp, C. D. (1970). Accident proneness and discrete distribution theory, 
In Random Counts in Scientific Work (Ed., G. P. Patil), pp. 41-64, The 
Pennsylvania University Press, Philadelphia, PA. 

42. Kemp, C. D., and Papageorgiou, H. (1982). Bivariate Hermite distribu
tions, Sankhyd, Series A^ 44, 269-280. 

43. Kocherlakota, S. (1988). On the compounded bivariate Poisson distribu
tion: a unified approach. Annals of the Institute of Statistical Mathemat
ics, 40, 61-76. 

44. Kocherlakota, S. (1995). Discrete bivariate weighted distributions un
der multiplicative weight function. Communications in Statistics—Theory 
and Methods, 25, 533-551. 

45. Kocherlakota, S., and Kocherlakota, K (1992). Bivariate Discrete Distri
butions, Marcel Dekker, New York. 

46. Kocherlakota, S., and Kocherlakota, K (1998). Bivariate Discrete Dis
tributions. In Encyclopedia of Statistical Sciences (Eds., S. Kotz, C. B. 
Read and D. L. Banks), Update Vol. 2, pp. 68-83, John Wiley &; Sons, 
New York. 

47. Korwar, R. M. (1975). On characterizing some discrete distributions by 
linear regression. Communication in Statistics, 4, 1133-1147. 

48. Korwar, R. M. (1988). On the observed number of classes from multivari
ate distributions, Sankhyd^ Series B, 50, 39-59. 

49. Kyriakoussis, A. (1988). Characterizations of bivariate discrete distribu
tions, Sankhyd, Series A, 50, 286-287. 

50. Kyriakoussis, A., and Papageorgiou, H. (1989). On characterization of 
power series distribution by a marginal distribution and a regression func
tion. Annals of the Institute of Statistical Mathematics, 41 , 671-676. 

51. Lai, C. D. (1995). Construction of bivariate distributions by a generalised 
trivariate reduction technique. Statistics & Probability Letters, 25, 265-
270. 

52. Lai, C. D. (2004). Constructions of continuous bivariate distributions. 
Journal of the Indian Society for Probability and Statistics, 8, 21-43. 

53. Lancaster, H. O. (1983). Special joint distributions of Meixner variables, 
Australian Journal of Statistics, 25, 298-309. 

54. Lee, L. F. (2001). On the range of correlation coefficients of bivariate 
ordered discrete random variables. Econometric Theory, 17, 247-256. 



56 C. D. Lai 

55. Leiter, R. E., and Hamdan, M. A. (1973). Some bivariate probability 
models applicable to traffic accidents and fatalities, International Statis
tical Review, 41, 87-100. 

56. Ling, K. D., and Tai, T. H. (1990). On bivariate binomial distributions 
of order fc, Soochow Journal of Mathematics, 16, 211-220. 

57. Marida, K. V. (1970). Families of Bivariate Distributions, Charles Griffin, 
London. 

58. Marshall, A. W., and Olkin, L (1985). A family of bivariate distributions 
generated by the bivariate Bernoulli distribution. Journal of the American 
Statistical Association, 80, 332-338. 

59. Marshall, A. W., and Olkin, L (1990). Bivariate distributions generated 
from Polya-Eggenberger urn models. Journal of Multivariate Analysis, 
35, 48-65. 

60. Nelsen, R. B. (1987). Discrete bivariate distributions with given marginals 
and correlation. Communications in Statistics—Simulation and Compu
tation, 16, 199-208. 

61. Oluyede, B. O. (1994). A family of bivariate binomial distributions gener
ated by extreme Bernoulli distributions. Communications in Statistics— 
Theory and Methods, 23, 1531-1547. 

62. Panaretos, J., and Xekalaki, E. (1986). On generalised binomial and 
multinomial distributions and their applications to generalised Poisson 
distributions. Annals of the Institute of Statistical Mathematics, 38, 223-
231. 

63. Papageorgiou, H. (1983). On characterizing some bivariate discrete dis
tributions, Australian Journal of Statistics, 25, 136-144. 

64. Papageorgiou, H. (1984). Characterizations of multinomials and negative 
multinomial mixtures by regression, Australian Journal of Statistics, 26, 
25-29. 

65. Papageorgiou, H. (1985a). On characterizing some discrete distributions 
by a conditional distribution and a regression function, Biometrical Jour
nal, 27, 473-479. 

66. Papageorgiou, H. (1985b). On a bivariate Poisson-geometric distribution. 
Zastowania Mathematyki, 18, 541-547. 

67. Papageorgiou, H. (1997). Multivariate discrete distributions. In Encyclo
pedia of Statistical Sciences (Eds., S. Kotz, C. B. Read and D. L. Banks), 
Update Vol. 1, pp. 408-419, John Wiley & Sons, New York. 



Discrete Bivariate Constructions 57 

68. Papageorgiou, H., and David, K. M. (1994). On the countable mixture of 
bivariate binomial distributions, Biometrical Journal^ 36, 581-601. 

69. Papageorgiou, H., and Kemp, C. D. (1983). Conditionality in bivariate 
generalized distributions, Biometrical Journal^ 25, 757-763. 

70. Patil, G. P. (1965). On a characterization of multivariate distribution 
by a set of its conditional distributions. In Handbook of 35th Interna
tional Statistical Institute Conference in Belgrade^ International Statisti
cal Institute. 

71. Patil, G. P. (1986). Polya distribution, multivariate. In Encyclopedia of 
Statistical Sciences (Eds., S. Kotz and N. L. Johnson), Vol. 7, pp. 59-63, 
John Wiley h Sons, New York. 

72. Patil, G. P., Rao, C. R., and Ratnaparkhi, M. V. (1986). On discrete 
weighted distributions and their use in model choice for observed data. 
Communications in Statistics—Theory and Methods, 15, 907-918. 

73. Philippou, A. N., and Antzoulakos, D. L. (1990). Multivariate distribu
tions of order fc on a generalised sequence. Statistics & Probability Letters, 
9, 453-463. 

74. Philippou, A. N., Antzoulakos, D. L., and Tripsiannis, G. A. (1989). Mul
tivariate distributions of order fc. Statistics & Probability Letters, 7, 207-
216. 

75. Philippou, A. N., Antzoulakos, D. L., and Tripsiannis, G. A. (1990). Mul
tivariate distributions of order k, Part II, Statistics & Probability Letters, 
10, 29-35. 

76. Philippou, A. N., and Tripsiannis, G. K. (1991). Multivariate Polya and 
inverse Polya distributions of order k, Biometrical Journal, 33, 225-236. 

77. Piperigou, V. E., and Papageorgiou, H. (2003). On truncated bivariate 
discrete distributions: A unified treatment, Metrika, 58, 221-233. 

78. Rao, M. B., and Subramanyam, K. (1990). The structure of some classes 
of bivariate distributions and some applications. Computational Statistics 
& Data Analysis, 10, 175-187. 

79. Stein, G. Z., and Juritz, J. M. (1987). Bivariate compound distributions. 
Communications in Statistics—Theory and Methods, 16, 3591-3607. 

80. Strandskov, H. H., and Edelen, E. W. (1946). Monozygotic and dizygotic 
twin birth frequencies in the total of the "white" and the "coloured" US 
population. Genetics, 31, 438-446. 



58 C. D. Lai 

81. Subramanyam, K., and Rao, M. B. (1996). Analysis of regression de
pendence in 2 X n bivariate distributions and some applications in con
tingency tables, Mathematics and Applications, Vol. 359, pp. 385-400, 
Kluwer Academic Publishers, Dordrecht. 

82. Tyan, S., and Thomas, J. B. (1975). Characterization of a class of bivari
ate distribution functions. Journal of Multivariate Analysis, 5, 227-235. 

83. Van Ophem, H. (1999). A general method to estimate correlated discrete 
random variables. Econometric Theory, 15, 228-237. 

84. Vere-Jones, D. (1971). Finite bivariate distributions and semigroups of 
non-negative matrices. The Quarterly Journal of Mathematics, 22, 247-
270. 

85. Wesolowski, J. (1995). Bivariate discrete measures via power series con
ditional distribution and a regression function. Journal of Multivariate 
Analysis, 55, 219-229. 

86. Zheng, Q., and Matis, J. H. (1993). Approximating discrete multivari
ate distributions from known moments. Communications in Statistics— 
Theory and Methods, 22, 3553-3567. 




