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Solvability of the uniform output regulation
problem

In this chapter we establish general conditions for solvability of the global
and local uniform output regulation problem. First, we review some known
ideas and results related to the conventional local output regulation problem.
These results are based on the center manifold theorem. In order to extend
these results to the uniform output regulation problem for both the local
and global case, we present invariant manifold theorems, which serve as non-
local counterparts of the center manifold theorem. In the formulation of these
invariant manifold theorems, the notion of convergent systems, developed in
Chapter 2, plays a central role. Based on these invariant manifold theorems,
general necessary and sufficient conditions for the solvability of the global and
local uniform output regulation problems are derived. These conditions also
indicate what kind of properties a controller must have to solve the uniform
output regulation problem. This information will be exploited at the stage of
controller design in Chapter 5.

4.1 Analysis of the conventional local output regulation
problem

The conventional local output regulation problem, which can also be called the
local exponential output regulation problem, has been solved in [39] (see also
[8, 38]). In that paper necessary and sufficient conditions for the solvability
of this problem are obtained. We will review one of these results in order to
motivate its extensions to the global uniform output regulation problem.

To understand the ideas and techniques used in the analysis of the con-
ventional local output regulation problem, we investigate the dynamics of the
closed-loop system (3.8), (3.9) corresponding to a controller (3.6), (3.7) solving
the conventional local output regulation problem.

By z := (xT , ξT )T denote the state of the closed-loop system (3.8), (3.9)
and by F (z, w), its right-hand side. With these new notations, the regulated
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output e equals e = h̄r(z, w) := hr(x,w). Therefore, the combination of the
closed-loop system and the exosystem can be written as

ż = F (z, w), (4.1)
ẇ = s(w), (4.2)
e = h̄r(z, w).

As follows from the formulation of the conventional local output regulation
problem, for any controller solving this problem the corresponding closed-
loop system is such that F (0, 0) = 0 and the function F (z, w) has continuous
partial derivatives of some high order. Moreover, the fact that for w(t) ≡
0 the closed-loop system has an asymptotically stable linearization at the
origin is equivalent to the Jacobian matrix ∂F/∂z(0, 0) being Hurwitz. At
the same time, the fact that the zero solution w(t) ≡ 0 of the exosystem is
Lyapunov stable in forward and backward time (this is a consequence of the
neutral stability assumption on the exosystem) implies that ∂s/∂w(0) has
all its eigenvalues on the imaginary axis. These conditions allow us to apply
the center manifold theorem (see, e.g., [10]), a particular case of which is
formulated below.

Theorem 4.1. Consider systems (4.1) and (4.2). Suppose F (z, w) and s(w)
are C2 vector-functions with F (0, 0) = 0, s(0) = 0, and all eigenvalues of
∂F/∂z(0, 0) have negative real parts, while all eigenvalues of ∂s/∂w(0) have
zero real parts. Then there exist δ > 0 and a C1 function α(w) defined for
all |w| < δ such that α(0) = 0 and the graph z = α(w) is a locally invariant
and locally exponentially attractive manifold for systems (4.1) and (4.2). The
mapping α(w) satisfies the partial differential equation

∂α

∂w
(w)s(w) = F (α(w), w). (4.3)

If a set W ⊂ {w : |w| < δ} is (positively) invariant with respect to system
(4.2), then the graph

M(W) := {(z, w) : z = α(w), w ∈ W}

is (positively) invariant with respect to systems (4.1) and (4.2), and for all
solutions (z(t), w(t)) starting close enough to the origin (0, 0) it holds that

|z(t) − α(w(t))| ≤ Ce−βt|z(0) − α(w(0))| (4.4)

for some C > 0 and β > 0.

The manifold M(W) is called the center manifold. As follows from (4.3), if
w(t) is a solution of system (4.2) satisfying |w(t)| < δ for all t ∈ R, then
z̄w(t) := α(w(t)) is a solution of system (4.1) defined for all t ∈ R. In general,
the center manifold theorem is formulated for bidirectionally coupled systems,
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i.e., when the right-hand side of system (4.2) also depends on z. For the output
regulation problem it is sufficient to formulate the center manifold theorem
only for unidirectionally coupled systems (4.1) and (4.2).

Applying the center manifold theorem (Theorem 4.1) to systems (4.1) and
(4.2), we conclude that there exists δ > 0 and a C1 mapping α(w) defined for
all |w| < δ such that α(0) = 0 and the graph z = α(w) is locally invariant
and locally exponentially attractive with respect to systems (4.1) and (4.2).
The mapping α(w) satisfies the partial differential equation

∂α

∂w
(w)s(w) = F (α(w), w) (4.5)

for all w ∈ W. Moreover, since the zero solution w(t) ≡ 0 of the exosystem is
Lyapunov stable in forward and backward time, there exists a neighborhood
of the origin W ⊂ {w : |w| < δ} that is invariant with respect to (4.2). Hence,
the graph M(W) := {(z, w) : z = α(w), w ∈ W} is invariant with respect
to systems (4.1), (4.2) and for all solutions z(t), w(t) starting close enough to
the origin (0, 0) it holds that

z(t) − α(w(t)) → 0 as t → +∞. (4.6)

This fact shows that in some neighborhood of the origin the dynamics of the
closed-loop system (4.1) coupled with the exosystem (4.2) reduce, after tran-
sients, to the dynamics on the center manifold M(W). Hence, the properties
of this center manifold determine whether the regulated output e(t) tends to
zero along solutions of the closed-loop system or not. In particular, it can be
shown (see, e.g., [8, 39]) that, under the neutral stability assumption on the
exosystem, the fact that e(t) = h̄r(z(t), w(t)) → 0 as t → +∞ for all solutions
of the closed-loop system (4.1) and the exosystem (4.2) starting close enough
to the origin is equivalent to

h̄r(α(w), w) = 0 (4.7)

for all w in some neighborhood of the origin Ŵ ⊂ R
m.

As follows from the analysis presented above, the question of whether a
controller solves the conventional local output regulation problem reduces to
the questions of whether for w(t) ≡ 0 the corresponding closed-loop system
has an asymptotically stable linearization at the origin and whether there
exists a locally defined C1 mapping α(w), with α(0) = 0, satisfying (4.5)
and (4.7). If we denote (π(w), σ(w)) := α(w), where π(w) and σ(w) are the
components of the mapping α(w) corresponding to the x- and ξ-coordinates
of the closed-loop system, respectively, this statement can be summarized in
the following theorem.

Theorem 4.2 ([8]). Under the neutral stability assumption on the exosystem
(3.4), a controller of the form (3.6), (3.7) solves the conventional local output
regulation problem if and only if the following two conditions hold:



46 4 Solvability of the uniform output regulation problem

(i) For w(t) ≡ 0 the corresponding closed-loop system (3.8), (3.9) has an
asymptotically stable linearization at the origin.

(ii) There exist C1 mappings π(w) and σ(w) defined in some neighborhood of
the origin Ŵ and satisfying π(0) = 0, σ(0) = 0 and

∂π

∂w
(w)s(w) = f(π(w), θ(σ(w), hm(π(w), w)), w),

∂σ

∂w
(w)s(w) = η(σ(w), hm(π(w), w)),

0 = hr(π(w), w) ∀ w ∈ Ŵ.

This theorem provides a characterization of all controllers solving the con-
ventional local output regulation problem. It also forms a foundation for fur-
ther results related to solvability and controller design for the conventional
local output regulation problem, which can be found, for example, in [8].

Since in this book we also study global variants of the output regulation
problem, we need to extend the result of Theorem 4.2 to the global case. An
essential obstacle for such an extension is that the analysis in Theorem 4.2 is
based on the center manifold theorem (Theorem 4.1), which is a local result.
Existing extensions of this theorem to nonlocal cases (see, e.g., [22, 49, 53, 87])
are based on certain quantitative conditions on the dynamics of the coupled
systems (the closed-loop system and the exosystem in the case of the output
regulation problem). We would like to avoid such quantitative conditions and
find nonlocal counterparts of the center manifold theorem based on certain
qualitative conditions on the coupled systems. As a preliminary observation,
notice that in the center manifold theorem the Jacobian ∂F/∂z(0, 0) must be
a Hurwitz matrix. As we know from Theorem 2.41, this condition is equivalent
to the requirement that system (4.1) be locally exponentially convergent for
the class of inputs PCm. This observation shows that the requirement of some
convergence property on system (4.1) may serve as a nonlocal counterpart
of the condition on ∂F/∂z(0, 0). In fact, as we will see in the next section,
existence of a continuous invariant manifold of the form z = α(w) for systems
(4.1) and (4.2) is, under certain assumptions, equivalent to some form of
the uniform convergence property of system (4.1). The invariant manifold
theorems presented in the next section will naturally lead us to necessary
and sufficient conditions for the solvability of the global and local variants of
the uniform output regulation problem. This fact, in turn, explains why we
have based the uniform output regulation problem studied in this book on the
notion of uniform convergence.

4.2 Invariant manifold theorems

In this section we present certain invariant manifold theorems that serve as
counterparts of the center manifold theorem for studying the solvability of the



4.2 Invariant manifold theorems 47

global and local variants of the uniform output regulation problem. To this
end, we consider coupled systems of the form

ż = F (z, w), (4.8)
ẇ = s(w), (4.9)

where z ∈ R
d, w ∈ R

m. The function F (z, w) is locally Lipschitz in z and
continuous in w; s(w) is locally Lipschitz. In the analysis of the uniform output
regulation problem, system (4.8) corresponds to a closed-loop system and
system (4.9) corresponds to an exosystem.

First, we consider the case of system (4.9) with some open invariant set of
initial conditions W ⊂ R

m. Recall that Is(W) denotes the class of all solutions
of system (4.9) starting in W. The next technical lemma provides conditions
for the existence of a continuous asymptotically stable invariant manifold of
the form z = α(w). This lemma will serve as a foundation for further results
on invariant manifolds presented in this section.

Lemma 4.3. Consider system (4.8) and system (4.9) with an open invariant
set of initial conditions W ⊂ R

m. Suppose

(i) System (4.8) is uniformly convergent in a set Z ⊂ R
d for the class of

inputs Is(W), and for any compact set K0 ⊂ W there exists a compact
set Kz ⊂ Z such that for any w(·) ∈ Is(W) satisfying w(0) ∈ K0 the
corresponding steady-state solution satisfies z̄w(t) ∈ Kz for all t ∈ R.

Then

(ii) There exists a continuous mapping α : W → Z such that the graph

M(W) := {(z, w) : z = α(w), w ∈ W}

is invariant with respect to systems (4.8) and (4.9). Moreover, for every
w(·) ∈ Is(W) the corresponding solution of system (4.8) z̄w(t) = α(w(t))
is uniformly asymptotically stable in Z.

In general, the mapping α(w) is not unique. But for any two such mappings
α1(w) and α2(w) and for any w(·) ∈ Is(W), it holds that

α1(w(t)) − α2(w(t)) → 0 as t → +∞ (4.10)

and α1(w(t)) ≡ α2(w(t)) for any w(t) lying in some compact subset of W for
all t ∈ R.
If system (4.9) satisfies the boundedness assumption A1 in the set W, then
statements (i) and (ii) are equivalent and the mapping α(w) defined in (ii) is
unique.

Proof: See Appendix 9.10.
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This lemma is a preliminary technical result that allows us to obtain fur-
ther global and local results related to the existence of continuous invariant
manifolds of the form z = α(w). The conditions in Lemma 4.3 seem rather
complicated because this lemma covers the general case. In particular cases of
this lemma, which are formulated below, the conditions will simplify signifi-
cantly. In particular, under the boundedness assumption A1 on system (4.9)
for Z = R

d we obtain the following global result.

Theorem 4.4. Consider system (4.8) and system (4.9) satisfying the bound-
edness assumption A1 in some open invariant set W ⊂ R

m. The following
statements are equivalent:

(ig) System (4.8) is globally uniformly convergent with the UBSS property for
the class of inputs Is(W).

(iig) There exists a unique continuous mapping α : W → R
d such that the

graph
M(W) := {(z, w) : z = α(w), w ∈ W}

is invariant with respect to systems (4.8) and (4.9). Moreover, for every
w(·) ∈ Is(W) the corresponding solution of system (4.8) z̄w(t) = α(w(t))
is uniformly globally asymptotically stable.

Proof: We only need to show that the conditions given in (ig) are equivalent
to the conditions (i) in Lemma 4.3 for Z := R

d.
(ig)⇒(i). Consider a compact set K0 ⊂ W. By the boundedness assump-
tion A1, there exists a compact set Kw ⊂ W such that if a solution w(t) of
system (4.9) starts in w(0) ∈ K0 then w(t) ∈ Kw for all t ∈ R. At the same
time, by the UBSS property, there exists a compact set Kz ⊂ R

d such that
the fact that w(t) ∈ Kw for all t ∈ R implies z̄w(t) ∈ Kz for all t ∈ R. This
implies (i).
(i)⇒(ig). Consider a compact set Kw ⊂ W and a solution of system (4.9)
satisfying w(t) ∈ Kw for all t ∈ R. In particular, this solution satisfies
w(0) ∈ K0 := Kw. By the conditions given in (i), there exists a compact
set Kz ⊂ R

d such that for any solution w(t) starting in w(0) ∈ K0 (hence, for
any w(t) satisfying w(t) ∈ Kw for all t ∈ R) the corresponding steady-state
solution z̄w(t) lies in Kz. Thus, we have shown that system (4.8) has the UBSS
property for the class of inputs Is(W), i.e. we have shown (ig). 	


Under the boundedness assumption A1 the class of inputs Is(W) is con-
tained in PC(W), so we therefore obtain the following corollary to Theo-
rem 4.4.

Corollary 4.5. Consider system (4.8) and system (4.9) satisfying the bound-
edness assumption A1 in some open invariant set W. Suppose system (4.8) is
globally uniformly convergent with the UBSS property for the class of inputs
PC(W). Then statement (iig) of Theorem 4.4 holds.



4.2 Invariant manifold theorems 49

In the global forward time uniform output regulation problem we deal with
exosystems that do not need to satisfy the boundedness assumption A1, but
they satisfy the assumption A2, i.e., their solutions start in some compact
positively invariant set of initial conditions W+ ⊂ R

m. For such systems we
formulate the following result.

Theorem 4.6. Consider systems (4.8) and (4.9). Let W+ be a compact pos-
itively invariant set of system (4.9) and W± ⊂ W+ be an invariant subset
of W+. Suppose system (4.8) is globally uniformly convergent with the UBSS
property for the class of inputs PC(W̃), where W̃ is some neighborhood of W+.
Then there exists a continuous mapping α : W̃ → R

d such that the set

M(W+) := {(z, w) : z = α(w), w ∈ W+}

is positively invariant with respect to (4.8), (4.9), and for any solution of
system (4.9) w(t) starting in w(0) ∈ W+ the corresponding solution of system
(4.8) z̄w(t) = α(w(t)) is uniformly globally asymptotically stable. In general,
the mapping α(w) is not unique. But for any two such mappings α1(w) and
α2(w) and for any w(t) starting in w(0) ∈ W+ it holds that

|α1(w(t)) − α2(w(t))| → 0 as t → +∞, (4.11)

and α1(w) = α2(w) for all w ∈ W±.

Proof: See Appendix 9.11.

In Theorem 4.6 the mapping α(w) may be nonunique as can be seen from
the following example, which is a modified example from [78].

Example 4.7. Consider two scalar systems

ż = −z, (4.12)

ẇ = −w3

2
. (4.13)

System (4.12) is globally uniformly convergent with the UBSS property for
the class of inputs PC1, since for every input w(t) the steady-state solution
equals z̄w(t) ≡ 0 and it is globally exponentially stable. For every r > 0 the
set W+(r) := {w : |w| ≤ r} is compact and positively invariant with respect
to (4.13). The set W± contains only the origin, W± = {0}. It can be easily
checked that for any constant c the mapping

αc(w) =
{
ce−1/w2

, w �= 0,
0, w = 0,

is continuous and the graph z = αc(w) is invariant with respect to (4.12) and
(4.13). The mappings αc(w) for all parameters c coincide in the origin, which
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belongs to W±. For any initial condition w(0) ∈ R the solution w(t) of system
(4.13) tends to zero, which implies αc(w(t)) → 0 as t → +∞. Thus for any c1
and c2 it holds that

αc1(w(t)) − αc2(w(t)) → 0, as t → +∞. �

The next theorem provides a local variant of the invariant manifold theo-
rems presented above.

Theorem 4.8. Consider systems (4.8) and (4.9) with F (0, 0) = 0, s(0) = 0
and with F (z, w) being C1 with respect to z and continuous with respect to w.
Let the equilibrium w = 0 of system (4.9) be stable in forward and backward
time. Then the following statements are equivalent:

(il) System (4.8) is locally uniformly convergent for the class of inputs
Is(W∗), where W∗ ⊂ R

m is some invariant neighborhood of the origin.
(iil) There exist an invariant neighborhood of the origin W and a unique con-

tinuous mapping α : W → R
d such that α(0) = 0 and the graph

M(W) := {(z, w) : z = α(w), w ∈ W}

is invariant with respect to systems (4.8) and (4.9). Moreover, there exists
a neighborhood of the origin Z ⊂ R

d such that for every w(·) ∈ Is(W)
the solution z̄w(t) := α(w(t)) is uniformly asymptotically stable in Z.

Proof: See Appendix 9.12.

In general, it is not a simple task to find an invariant manifold even if its
existence is guaranteed by the invariant manifold theorems presented above.
Yet, in some simple cases such a manifold can be found analytically. We will
show this with a few examples.

Example 4.9. Consider a linear system

ẇ = Sw, w ∈ R
m, (4.14)

with the matrix S having all its eigenvalues simple and lying on the imaginary
axis. This system satisfies the boundedness assumption A1 in the whole state
space. Consider a system given by the equation

ż = Az + q(w), (4.15)

where A is a Hurwitz matrix and q(w) is a polynomial in w of some finite
degree n. Notice that this system is globally exponentially convergent with the
UBSS property for the class of inputs PCm (see, for example, Theorem 2.29).
By Corollary 4.5, there exists a unique continuous function α(w) such that
the graph M := {(z, w) : z = α(w), w ∈ R

m} is invariant with respect to
systems (4.15) and (4.14). As follows from [8] (Lemma 1.2), the mapping α(w)
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is a polynomial in w of the same degree as the degree of q(w). It is a unique
solution of the equation

∂α

∂w
(w)Sw = Aα(w) + q(w).

The right- and left-hand sides of this equation are polynomials in w. Thus,
by equating the corresponding components of these polynomials, we find the
unique coefficients of the polynomial α(w).�

Using ideas from [8], this example can be extended in the following way.

Example 4.10. Consider the nonlinear system

ż1 = A1z1 + q1(z2, . . . zk, w), z1 ∈ R
d1 ,

ż2 = A2z2 + q2(z3, . . . zk, w), z2 ∈ R
d2 , (4.16)

· · ·
żk = Akzk + qk(w), zk ∈ R

dk ,

where the matrices Ai, i = 1, . . . , k, are Hurwitz and qi(·), i = 1, . . . , k,
are polynomials of their arguments. Every ith subsystem of system (4.16)
with zi+1, . . . , zk and w as inputs is input-to-state convergent (see Theo-
rem 2.29). Therefore, system (4.16) is a series connection of input-to-state
convergent systems. By Property 2.27, this system is input-to-state conver-
gent. By Property 2.19, input-to-state convergence, in turn, implies that sys-
tem (4.16) is globally uniformly convergent with the UBSS property for the
class of inputs PCm. By Corollary 4.5, there exists a unique continuous map-
ping α(w) such that the manifold M := {(z, w) : z = α(w), w ∈ R

m}, where
z := (zT

1 , . . . , z
T
k )T , is invariant with respect to systems (4.16) and (4.14). Ap-

plying the results obtained for system (4.15) to the last equation in (4.16), we
find the component of α(w) corresponding to zk. This component αk(w) is a
polynomial. Substituting this αk(w) in the (k−1)th equation, we again obtain
an equation of the form (4.15), from which we can find αk−1(w). Repeating
this process, we find the remaining components of the mapping α(w).�

These examples indicate that in some cases it is possible to find the in-
variant manifold, whose existence is guaranteed by the invariant manifold
theorems presented in this section, analytically.

The invariant manifold theorems presented in this section state equivalence
between the existence of a (globally) uniformly asymptotically stable invariant
manifold of the form z = α(w) with a continuous function α(w) on the one
hand, and certain convergence properties of system (4.8) on the other hand
(under Assumptions A1, A2, or under the neutral stability assumption on
system (4.9)). The sufficient conditions for various convergence properties
presented in Section 2.2.4 allow us to determine whether systems (4.8) and
(4.9) have such an invariant manifold.

As will be seen from the next sections, the invariant manifold theorems
will naturally lead us to certain necessary and sufficient conditions for the
solvability of different variants of the uniform output regulation problem.
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4.3 ω-limit sets

Prior to deriving the conditions for solvability of the uniform output regulation
problem, we recall the notion of ω-limit sets. This notion appears to be an
important ingredient of the solvability analysis. Consider the system

ẇ = s(w), w ∈ R
m, (4.17)

with a locally Lipschitz function s(w). Let w(t, w0) denote the solution of
system (4.17) starting in w(0, w0) = w0.

Definition 4.11 ([3]). A point w∗ ∈ R
m is called an ω-limit point of the

trajectory w(t, w0) if for any T > 0 and any ε > 0 there exists t∗ > T such
that |w(t∗, w0)−w∗| < ε. The set of all ω-limit points of the trajectory w(t, w0)
is called the ω-limit set and denoted by Ω(w0). For trajectories starting in
some set W ⊂ R

m, the notation Ω(W) denotes Ω(W) :=
⋃

w0∈W Ω(w0).

The following statements reflect some standard facts on ω-limit sets, see,
e.g., [3]. For a trajectory w(t, w0) that is bounded for t ≥ 0 the ω-limit set
Ω(w0) is a bounded invariant set. If W ⊂ R

m is a bounded positively invariant
set, then Ω(W) is a bounded invariant set that attracts all trajectories w(t, w0)
starting in w0 ∈ W, i.e., for any w0 ∈ W it holds that dist(w(t, w0), Ω(W)) →
0 as t → +∞. Here, the distance dist(w,W) between a point w ∈ R

m and a
set W ⊂ R

m is defined as dist(w,W) := infw∗∈W |w −w∗|. If W is a compact
positively invariant set, then Ω(W) ⊂ W.

With these facts at hand, we can proceed with the solvability analysis of
the uniform output regulation problem.

4.4 Solvability of the global (forward time)
uniform output regulation problem

In this section we apply the invariant manifold theorems to study solvability
of the global uniform output regulation problem. Since there are two variants
of the global uniform output regulation problem, we will obtain solvability
results for both. Moreover, we will present solvability results for the robust
global uniform output regulation problem.

4.4.1 Solvability of the global uniform output regulation problem

The next theorem, which is based on Theorem 4.4, establishes necessary and
sufficient conditions for a controller (3.6), (3.7) to solve the global uniform
output regulation problem.

Theorem 4.12. Consider system (3.1)–(3.3) and exosystem (3.4) satisfying
the boundedness assumption A1 in an open invariant set of initial conditions
W. The following statements are equivalent:
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(i) Controller (3.6), (3.7) solves the global uniform output regulation problem.
(ii) The closed-loop system is globally uniformly convergent with the UBSS

property for the class of inputs Is(W) and there exist continuous map-
pings π : W → R

n and σ : W → R
q satisfying the equations

d

dt
π(w(t)) = f(π(w), θ(σ(w), hm(π(w), w)), w),

d

dt
σ(w(t)) = η(σ(w), hm(π(w), w)), (4.18)

∀ w(t) = w(t, w0) ∈ W,

0 = hr(π(w), w) ∀ w ∈ Ω(W). (4.19)

(iii) There exist continuous mappings π : W → R
n and σ : W → R

q satisfying
equations (4.18) and (4.19) and for every w(·) ∈ Is(W) the solution
of the closed-loop system (x̄w(t), ξ̄w(t)) = (π(w(t)), σ(w(t))) is globally
uniformly asymptotically stable.

Proof: We will prove the equivalence of (i), (ii) and (iii) in the following se-
quence: (i)⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii). Suppose controller (3.6), (3.7) solves the global uniform output
regulation problem. Then the closed-loop system (3.8), (3.9) is globally uni-
formly convergent with the UBSS property for the class of inputs Is(W). By
Theorem 4.4, this implies the existence of a continuous mapping α(w) such
that the graph of this mapping

M(W) := {(x, ξ, w)) : (x, ξ) = α(w), w ∈ W}

is invariant with respect to the closed-loop system (3.8), (3.9) and the exosys-
tem (3.4). Denote by π(w) and σ(w) the x- and ξ-components of the mapping
α(w). Since the graph M(W) is invariant, for any solution of the exosystem
w(t) starting in w(0) ∈ W, the pair of functions (π(w(t)), σ(w(t))) repre-
sents a solution of the closed-loop system (3.8), (3.9). This implies that the
functions π(w(t)) and σ(w(t))) satisfy (4.18). Since the regulated output e(t)
tends to zero along any solution of the closed-loop system and the exosystem
starting in (x(0), ξ(0)) ∈ R

n+q and w(0) ∈ W, respectively, e(t) also tends to
zero along the solution (π(w(t)), σ(w(t)), w(t)), i.e.,

hr(π(w(t)), w(t)) → 0 as t → +∞. (4.20)

Let us show that this fact implies (4.19). Suppose there exists w∗ ∈ Ω(W)
such that hr(π(w∗), w∗) �= 0. By the definition of the ω-limit set Ω(W), there
exists a solution w(t) starting in w(0) ∈ W and a sequence {tk}+∞

k=1 such that
tk → +∞ and w(tk) → w∗ as k → +∞. Since hr(π(w), w) is continuous in
W, we obtain

hr(π(w(tk)), w(tk)) → hr(π(w∗), w∗) �= 0, as k → +∞.
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This contradicts (4.20). Thus, indeed, the equality (4.19) holds. This com-
pletes the proof of this implication.

(ii)⇒(iii). Since the closed-loop system (3.8), (3.9) is globally uniformly
convergent with the UBSS property for the class of inputs Is(W), by Theo-
rem 4.4 for every solution of the exosystem w(t) starting in W, the solution of
the closed-loop system (x̄w(t), ξ̄w(t)) := (π(w(t), σ(w(t)) lying on this mani-
fold is uniformly globally asymptotically stable.

(iii)⇒(i). By Theorem 4.4, the existence of the continuous mappings π(w)
and σ(w) given in (iii) implies that the closed-loop system (3.8), (3.9) is
globally uniformly convergent with the UBSS property for the class of in-
puts Is(W). We only need to show that for any solution of the closed-loop
system and the exosystem starting in (x(0), ξ(0)) ∈ R

n+q and w(0) ∈ W,
the regulated output e(t) tends to zero. Consider a solution of the exosys-
tem w(t) starting in w(0) ∈ W and the solution of the closed-loop system
(x̄w(t), ξ̄w(t)) := (π(w(t)), σ(w(t)). Since the solution (x̄w(t), ξ̄w(t)) is glob-
ally uniformly asymptotically stable, for any other solution of the closed-loop
system (x(t), ξ(t)) it holds that x(t) − π(w(t)) → 0 and ξ(t) − σ(w(t)) → 0 as
t → +∞. Thus,

e(t) = hr(x(t), w(t)) → hr(π(w(t)), w(t)) as t → +∞. (4.21)

At the same time, dist(w(t), Ω(W)) → 0 as t → +∞ (see Section 4.3). Since
w(t) is bounded, this implies

hr(π(w(t)), w(t)) → hr(π(Ω(W)), Ω(W)) = {0} as t → +∞.

Together with (4.21), this implies e(t) = hr(x(t), w(t)) → 0 as t → +∞. This
completes the proof of the theorem. 	


Remark. In the literature, global variants of the output regulation prob-
lem are considered mostly for the case of exosystems being linear harmonic
oscillators. Such exosystems satisfy the boundedness assumption A1. Many
of the proposed controllers solving such variants of the global output regula-
tion problem (see, e.g., [12, 58, 69, 79]) are designed in such a way that they
guarantee existence and global uniform asymptotic stability of a sufficiently
smooth invariant manifold (x, ξ) = (π(w), σ(w)), with π(w) and σ(w) satis-
fying (4.18), (4.19). As follows from Theorem 4.12, such controllers solve the
global uniform output regulation problem.�

Theorem 4.12 provides a criterion for checking whether a particular con-
troller solves the global uniform output regulation problem. It can be used
directly for controller design (we will address this problem in Chapter 5) in
the following way: given some controller such that the corresponding closed-
loop system satisfies the conditions (ii) or (iii) in Theorem 4.12, this theorem
guarantees that this controller solves the global uniform output regulation
problem. Alternatively, we can specifically design a controller such that the
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corresponding closed-loop system satisfies conditions (ii) or (iii). At the same
time, Theorem 4.12 allows one to obtain certain controller-independent nec-
essary conditions for the solvability of the global uniform output regulation
problem as follows from the next lemma.

Lemma 4.13. The global uniform output regulation problem is solvable only if
there exist continuous mappings π(w) and c(w) defined in some neighborhood
of Ω(W) satisfying the equations

d

dt
π(w(t)) = f(π(w(t)), c(w(t)), w(t)), (4.22)

0 = hr(π(w(t)), w(t)), (4.23)

for all solutions of the exosystem w(t) satisfying w(t) ∈ Ω(W), t ∈ R.

Proof: The statement of the lemma is obtained from (4.18) and (4.19) by de-
noting c(w) := θ(σ(w), hm(π(w), w)). 	


Equations (4.22) and (4.23) are the so-called regulator equations, see, e.g.,
[8, 38, 39]. Solvability of the regulator equations guarantees that for every solu-
tion of the exosystem lying in the ω-limit set Ω(W) there exists a control input
ūw(t) := c(w(t)) for which system (3.1) has the solution x̄w(t) := π(w(t)), and
along this solution the regulated output equals zero. Notice that the ω-limit
set Ω(W) can be treated, in a certain sense, as the steady-state dynamics of
the exosystem, because this set is invariant and attracts all solutions of the
exosystem starting in W. From this point of view, solvability of the regulator
equations can be interpreted in the following way: for any solution w(t) of the
exosystem from the steady-state dynamics set Ω(W), there exists at least one
control input ūw(t) such that system (3.1) with these w(t) and ūw(t) has a
solution x̄w(t) along which the regulated output e(t) is identically zero.

Originally, solvability of the regulator equations in some neighborhood of
the origin was obtained as a necessary condition for the solvability of the
conventional local output regulation problem under the assumption that exo-
system (3.4) is neutrally stable. Lemma 4.13 shows that solvability of the
regulator equations (4.22) and (4.23) is also necessary for the solvability of
the global uniform output regulation problem.

With the regulator equations at hand, we can obtain further necessary
conditions for the solvability of the global uniform output regulation problem.
As follows from (4.18), controller (3.6), (3.7) is such that if we excite it with
the input ȳw(t) := hm(π(w(t)), w(t)), for some solution of the exosystem
w(t) ∈ Ω(W), it has a solution ξ̄w(t) = σ(w(t)), which is bounded on R, and
along this solution the output of the controller equals ūw(t) = c(w(t)), where
π(w) and c(w) are solutions of the regulator equations defined above. This
property motivates the introduction of the following definition.

Definition 4.14. Consider controller (3.6), (3.7). Let ȳ(t) and ū(t) be defined
and bounded for all t ∈ R. We say that the input ȳ(t) induces the output ū(t)
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in controller (3.6), (3.7), if for this ȳ(t) system (3.6), (3.7) has a solution
ξ̄(t) defined and bounded on R and satisfying the equality ū(t) = θ(ξ̄(t), ȳ(t))
for all t ∈ R.

We will say that controller (3.6), (3.7) has a generalized internal model
property if for any solution of the exosystem w(t) lying in the ω-limit set Ω(W)
the input ȳw(t) := hm(π(w(t)), w(t)) induces the output ūw(t) = c(w(t)) in
controller (3.6), (3.7). The generalized internal model property closely relates
to the notions of immersion and internal models used in the output regulation
theory (see [8, 40, 42] for further details on immersion and internal models).

With these definitions at hand, we obtain the following necessary condition
for the solvability of the global uniform output regulation problem.

Lemma 4.15. Suppose the global uniform output regulation problem is solv-
able. Then there exists a controller of the form (3.6), (3.7) such that for
any solution of the exosystem w(t) lying in the ω-limit set Ω(W) the in-
put ȳw(t) := hm(π(w(t)), w(t)) induces the output ūw(t) = c(w(t)) in the
controller (3.6), (3.7), where c(w) and π(w) are solutions to the regulator
equations (4.22) and (4.23). In other words, there exists a controller with the
generalized internal model property. Moreover, the closed-loop system corre-
sponding to this controller is globally uniformly convergent with the UBSS
property for the class of inputs Is(W).

The requirement that the controller makes the corresponding closed-loop sys-
tem globally uniformly convergent with the UBSS property for the class of
inputs Is(W) is natural, since it comes from the problem statement. The gen-
eralized internal model property guarantees that controller (3.6), (3.7) is ca-
pable of generating the steady-state control ūw(t) = c(w(t)) (see Lemma 4.13)
based on the measured signal y(t).

Lemmas 4.13 and 4.15 provide necessary conditions for the solvability of
the global uniform output regulation problem. In fact, as follows from the
next theorem, these conditions are not only necessary, but also sufficient for
the solvability of the problem.

Theorem 4.16. Consider system (3.1)–(3.3) and exosystem (3.4) satisfying
the boundedness assumption A1 in an open invariant set of initial conditions
W. The global uniform output regulation problem is solvable if and only if the
following conditions are satisfied:

(i) There exist continuous mappings π(w) and c(w) defined in some neigh-
borhood of Ω(W) and satisfying the regulator equations (4.22) and (4.23)
for all solutions w(t) of exosystem (3.4) satisfying w(t) ∈ Ω(W) for all
t ∈ R.

(ii) There exists a controller of the form (3.6), (3.7) such that for any so-
lution of the exosystem w(t) lying in the set Ω(W) the input ȳw(t) :=
hm(π(w(t)), w(t)) induces the output ūw(t) = c(w(t)) in controller (3.6),
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(3.7), and the closed-loop system corresponding to this controller is glob-
ally uniformly convergent with the UBSS property for the class of inputs
Is(W).

Under these conditions, a controller solves the global uniform output regulation
problem if and only if it satisfies the conditions given in (ii).

Proof: The only if part of the theorem follows from Lemmas 4.13 and 4.15.
We only need to show that if the condition (i) is satisfied then a controller
satisfying the conditions given in (ii) solves the global uniform output regu-
lation problem. We will do this by showing that if a controller satisfies the
conditions given in (ii), then the corresponding closed-loop system satisfies
condition (ii) in Theorem 4.12. Thus, by Theorem 4.12 this controller solves
the global uniform output regulation problem.

Suppose controller (3.6), (3.7) satisfies the conditions given in (ii). Then
by Theorem 4.4 there exist continuous functions π̃(w) and σ̃(w) such that the
graph (x, ξ) = (π̃(w), σ̃(w)) for w ∈ W is invariant with respect to the closed-
loop system (3.8), (3.9) and the exosystem (3.4). This implies that π̃(w) and
σ̃(w) satisfy the following equations:

d

dt
π̃(w(t)) = f(π̃(w), θ(σ̃(w), hm(π̃(w), w)), w),

d

dt
σ̃(w(t)) = η(σ̃(w), hm(π̃(w), w)), (4.24)

for all solutions of the exosystem w(t) lying in the set W. Moreover, for
every w(t) lying in W, the solution of the closed-loop system (x̃w(t), ξ̃w(t)) :=
(π̃(w(t)), σ̃(w(t))) is globally uniformly asymptotically stable. Let us show
that the mapping π̃(w) also satisfies the equation

hr(π̃(w), w) = 0 ∀ w ∈ Ω(W). (4.25)

Once this equality is proved, by Theorem 4.12 we obtain that controller (3.6),
(3.7) solves the global uniform output regulation problem.

In order to prove (4.25), we will show that

π(w(t)) ≡ π̃(w(t)) (4.26)

for any solution of the exosystem lying in Ω(W). Then equality (4.25) will
follow from (4.23) and from the fact that Ω(W) is an invariant set with respect
to system (3.1) (i.e., for any w∗ ∈ Ω(W) there exists a solution w(t) lying in
Ω(W) for all t ∈ R and satisfying w(0) = w∗).

Let us first show that for every solution w(t) lying in Ω(W) the closed-loop
system (3.8), (3.9) has a solution (x̄w(t), ξ̄w(t)) which is defined and bounded
for all t ∈ R. This fact follows from the regulator equations (4.22) and from
the property of the controller that for the input ȳw(t) := hm(π(w(t)), w(t))
it has a solution ξ̄w(t) which is defined and bounded for all t ∈ R and for
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which θ(ξ̄w(t), hm(π(w(t)), w(t))) ≡ c(w(t)) for all t ∈ R. Substituting this
(x̄w(t), ξ̄w(t)) := (π(w(t)), ξ̄w(t)) in the equations of the closed-loop system
(3.8), (3.9), one can easily check that such a pair (x̄w(t), ξ̄w(t)) is indeed a
solution of the closed-loop system. Since w(t) lies in a compact subset of Ω(W)
(due to assumption A1) and since π(w) is continuous in some neighborhood
of Ω(W), the function π(w(t)) and hence (x̄w(t), ξ̄w(t)) are bounded for all
t ∈ R.

Recall that the solution (x̃w(t), ξ̃w(t)) := (π̃(w(t)), σ̃(w(t))) is defined and
bounded for all t ∈ R and it is globally uniformly asymptotically stable. By
Property 2.4, this implies that (x̃w(t), ξ̃w(t)) ≡ (x̄w(t), ξ̄w(t)) for t ∈ R. This,
in turn, implies (4.26), which completes the proof of the theorem. 	


Theorem 4.16 provides a way to solve the global uniform output regulation
problem. First, one needs to solve the regulator equations (4.22) and (4.23)
(or show that they are not solvable, which implies that the problem cannot
be solved) and then to find a controller satisfying the conditions given in (ii).
Particular ways of finding such controllers will be discussed in Chapter 5.

4.4.2 Solvability of the robust global uniform output regulation
problem

In this section we provide solvability conditions for the robust global uniform
output regulation problem. In this problem we consider systems of the form
(3.10)–(3.12) depending on a vector of unknown, but constant, parameters p
taken from an open set P. The problem is to find a controller (independent
of p) that solves the global uniform output regulation problem for all p ∈ P.
This problem can be reduced to a regular variant of the global uniform output
regulation problem by extending the exosystem in the following way:(

ẇ
ṗ

)
=
(
s(w)

0

)
=: ŝ(w, p). (4.27)

After such an extension the parameter p is considered to be a part of the exo-
signal. Notice that if the original exosystem (3.4) satisfies the boundedness
assumption A1 in a certain open set W ⊂ R

m, then the extended exosystem
(4.27) satisfies assumption A1 in the set W × P. Therefore, controller (3.6),
(3.7) solves the global uniform output regulation problem for all parameters
p taken from the set P if it solves the global uniform output regulation prob-
lem for the extended exosystem (4.27), with (w, p) being a new state of the
exosystem. The converse statement is not true, in general, because the UBSS
property of the closed-loop system for the class of inputs Is(W) for every
parameter p ∈ P, which is required in the problem formulation of the robust
global uniform output regulation problem, does not imply the UBSS property
of the closed-loop system for the class of extended inputs Iŝ(W × P), where
Iŝ(W × P) denotes all solutions of the extended exosystem (4.27) starting
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in the open invariant set W × P. In fact, solvability of the global uniform
output regulation problem for the extended exosystem (4.27) is necessary for
the solvability of the so-called strong robust global uniform output regulation
problem, which is formulated in the following way.

Controller (3.6), (3.7) solves the strong robust global uniform
output regulation problem if it solves the global uniform output
regulation problem for all p ∈ P, and for any compact subsets Kw ⊂
W and Kp ⊂ P there exists a compact set Kz ⊂ R

d such that for
any solution of the exosystem w(t) starting in w(0) ∈ Kw and any
parameter p ∈ Kp the corresponding steady-state solution z̄wp(t) of
the closed-loop system lies in the set Kz for all t ∈ R.

One can easily check that this strong robust global uniform output regula-
tion problem is equivalent to the global uniform output regulation problem
for system (3.10)–(3.12) and exosystem (4.27). Using this fact, we can ap-
ply the results obtained in the previous section to study solvability of the
strong robust global uniform output regulation problem. Consequently, we
can formulate the following results, which are counterparts of Theorems 4.12
and 4.16.

Theorem 4.17. Consider system (3.10)–(3.12) with the parameter p taken
from an open set P and exosystem (3.4) satisfying the boundedness assumption
A1 in an open invariant set of initial conditions W. The following statements
are equivalent:

(i) Controller (3.6), (3.7) solves the strong robust global uniform output reg-
ulation problem.

(ii) The closed-loop system is globally uniformly convergent with the UBSS
property for the class of inputs Iŝ(W × P) and there exist continuous
mappings π(·, ·) : W × P → R

n and σ(·, ·) : W × P → R
q satisfying the

equations

d

dt
π(w(t), p) = f(π(w, p), θ(σ(w, p), hm(π(w, p), w, p)), w, p),

d

dt
σ(w(t), p) = η(σ(w, p), hm(π(w, p), w, p)), (4.28)

∀ w(t) = w(t, w0) ∈ W, p ∈ P,

0 = hr(π(w, p), w, p) ∀ w ∈ Ω(W), p ∈ P. (4.29)

(iii) There exist continuous mappings π(·, ·) : W × P → R
n and σ(·, ·) :

W × P → R
q satisfying (4.28) and (4.29) and for every w(·) ∈ Is(W)

and every p ∈ P the solution (x̄wp(t), ξ̄wp(t)) = (π(w(t), p), σ(w(t), p)) is
globally uniformly asymptotically stable.

The next theorem provides solvability conditions for the strong robust global
uniform output regulation problem. It directly follows from Theorem 4.16.
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Theorem 4.18. Consider system (3.10)–(3.12) with the parameter p taken
from an open set P and exosystem (3.4) satisfying the boundedness assump-
tion A1 in an open invariant set of initial conditions W. The strong robust
global uniform output regulation problem is solvable if and only if the following
conditions are satisfied:

(i) There exist continuous mappings π(w, p) and c(w, p) defined in some
neighborhood of Ω(W) × P, satisfying the regulator equations

d

dt
π(w(t), p) = f(π(w(t), p), c(w(t), p), w(t), p), (4.30)

0 = hr(π(w(t), p), w(t), p), (4.31)

for all solutions w(t) of the exosystem (3.4) lying in the set Ω(W) and
for all p ∈ P.

(ii) There exists a controller of the form (3.6), (3.7) such that for any solution
of the exosystem w(t) lying in the set Ω(W) and for any p ∈ P the input
ȳw(t) := hm(π(w(t), p), w(t), p) induces the output ū(t) = c(w(t), p) in
controller (3.6), (3.7) and the closed-loop system corresponding to this
controller is globally uniformly convergent with the UBSS property for the
class of inputs Iŝ(W × P).

Under these conditions, a controller solves the strong robust global uniform
output regulation problem if and only if it satisfies the conditions given in (ii).

4.4.3 Solvability of the global forward time uniform
output regulation problem

Solvability of the global forward time uniform output regulation problem can
be studied in a similar way as solvability of the global uniform output reg-
ulation problem. The main difference is that instead of Theorem 4.4, which
forms the foundation for the analysis in the previous sections, the results in
this section are based on Theorem 4.6. The proofs are identical to the proofs
of Theorems 4.12 and 4.16 and are omitted here. The first theorem, which
is a counterpart of Theorem 4.12, provides necessary and sufficient condi-
tions under which a controller solves the global forward time uniform output
regulation problem.

Theorem 4.19. Consider system (3.1)–(3.3) and exosystem (3.4) with a
compact positively invariant set of initial conditions W+ ⊂ R

m. The following
statements are equivalent:

(i) Controller (3.6), (3.7) solves the global forward time uniform output reg-
ulation problem.
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(ii) There exist continuous mappings π : W̃ → R
n and σ : W̃ → R

q, where
W̃ ⊂ R

m is some neighborhood of W+, satisfying

d

dt
π(w(t)) = f(π(w), θ(σ(w), hm(π(w), w)), w),

d

dt
σ(w(t)) = η(σ(w), hm(π(w), w)), (4.32)

∀ w(t) = w(t, w0) ∈ W+, for t ≥ 0,
0 = hr(π(w), w) ∀ w ∈ Ω(W+), (4.33)

and the closed-loop system (3.8), (3.9) is globally uniformly convergent
with the UBSS property for the class of inputs PC(W̃).

The next theorem is a counterpart of Theorem 4.16. It provides necessary
and sufficient conditions for solvability of the global forward time uniform
output regulation problem.

Theorem 4.20. Consider system (3.1)–(3.3) and exosystem (3.4) with a
compact positively invariant set of initial conditions W+ ⊂ R

m. The global
forward time uniform output regulation problem is solvable if and only if the
following conditions are satisfied:

(i) There exist continuous mappings π(w) and c(w) defined in some neigh-
borhood of Ω(W+) and satisfying the regulator equations

d

dt
π(w(t)) = f(π(w(t)), c(w(t)), w(t)), (4.34)

0 = hr(π(w(t)), w(t)), (4.35)

for all solutions of exosystem (3.4) satisfying w(t) ∈ Ω(W+) for t ∈ R.

(ii) There exists a controller of the form (3.6), (3.7) such that for any so-
lution of the exosystem w(t) lying in the set Ω(W+) the input ȳw(t) :=
hm(π(w(t)), w(t)) induces the output ūw(t) = c(w(t)) in controller (3.6),
(3.7), and the closed-loop system corresponding to this controller is glob-
ally uniformly convergent with the UBSS property for the class of inputs
PC(W̃), where W̃ is some neighborhood of W+.

Under these conditions, a controller solves the global forward time uniform
output regulation problem if and only if it satisfies the conditions given in (ii).

Results related to solvability of the robust variant of the global forward
time uniform output regulation problem can be obtained in the same way as
in Section 4.4.2.
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4.5 Solvability of the local uniform output
regulation problem

Analysis of the solvability of the local uniform output regulation problem is
very close to the analysis in the global case (see Section 4.4.1). Analysis in the
local case is based on the local invariant manifold theorem (Theorem 4.8). We
omit the proofs of the results presented in this section since they are nearly
identical to the proofs of the results from Section 4.4.1.

The following theorem provides necessary and sufficient conditions for a
controller of the form (3.6), (3.7) to solve the local uniform output regulation
problem.

Theorem 4.21. Consider system (3.1)–(3.3) and exosystem (3.4) satisfying
the neutral stability assumption. The following statements are equivalent:

(i) Controller (3.6), (3.7) solves the local uniform output regulation problem.
(ii) There exist continuous mappings π(w) and σ(w) defined in some invariant

neighborhood of the origin W ⊂ R
m, satisfying π(0) = 0, σ(0) = 0, and

d

dt
π(w(t)) = f(π(w), θ(σ(w), hm(π(w), w)), w),

d

dt
σ(w(t)) = η(σ(w), hm(π(w), w)), (4.36)

∀ w(t) = w(t, w0) ∈ W,

0 = hr(π(w), w), ∀ w ∈ W, (4.37)

for all w(·) ∈ Is(W), and the closed-loop system (3.8), (3.9) corresponding
to this controller is locally uniformly convergent for the class of inputs
Is(W).

The main difference between Theorem 4.21 and Theorem 4.12 (if we do
not take into account that in the first case the analysis is local and in the
second it is global) is in (4.37) and (4.19). In (4.37), the equality

hr(π(w), w) = 0 (4.38)

is required for all w ∈ W, while in (4.19) this equality is required only for
the set Ω(W). This difference is explained by the fact that the exosystem is
neutrally stable. By the definition (see Definition 3.1), neutral stability im-
plies that for some neighborhood of the origin Ŵ it holds that Ŵ ⊂ Ω(Ŵ).
Thus, for a sufficiently small neighborhood W of the origin the equality
hr(π(w), w) = 0 for all w ∈ Ω(W) implies that this equality is satisfied
for all w ∈ W. The opposite is also true. If equality (4.38) is satisfied for all
w in some invariant neighborhood of the origin W, one can choose another
invariant neighborhood of the origin W̃ such that equality (4.38) holds for all
w ∈ Ω(W̃). The proof of this statement is as follows. From the definition of
the set Ω(W̃) one can conclude that Ω(W̃) ⊂ clos(W̃), where clos(W̃) is the
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closure of the set W̃. Hence, if we find an invariant neighborhood of the origin
W̃ such that clos(W̃) ⊂ W, then equality (4.38) is satisfied for all w ∈ Ω(W̃).
Such a neighborhood W̃ exists, because the trivial solution w(t) ≡ 0 is sta-
ble in forward and backward time (see the proof of Theorem 4.8, where this
statement is proved and used several times).

The next theorem provides a local counterpart of Theorem 4.16.

Theorem 4.22. Consider system (3.1)–(3.3) and exosystem (3.4) satisfying
the neutral stability assumption. The local uniform output regulation problem
is solvable if and only if the following conditions are satisfied:

(i) There exist continuous mappings π(w) and c(w) defined in some invariant
neighborhood of the origin W ⊂ R

m, such that π(0) = 0, c(0) = 0, and

d

dt
π(w(t)) = f(π(w(t)), c(w(t)), w(t)), (4.39)

0 = hr(π(w(t)), w(t)), (4.40)

for all solutions of exosystem (3.4) satisfying w(t) ∈ W for all t ∈ R.
(ii) There exists a controller of the form (3.6), (3.7) satisfying the following

conditions: a) there exists a continuous mapping σ : W → R
q satisfying

σ(0) = 0 and

d

dt
σ(w(t)) = θ(σ(w), hm(π(w), w)), (4.41)

c(w(t)) = θ(σ(w(t)), hm(π(w(t)), w(t))),

for all w(t) ∈ W, and b) the closed-loop system corresponding to this
controller is locally uniformly convergent for the class of inputs Is(W).

Under these conditions, a controller satisfying the conditions given in (ii)
solves the local uniform output regulation problem.

Remark. The requirement that the controller satisfy (4.41) for some con-
tinuous σ(w) guarantees that for any solution of the exosystem w(t) lying
in the set W for all t ∈ R the input ȳw(t) := hm(π(w(t)), w(t)) induces the
output ūw(t) = c(w(t)) in controller (3.6) (3.7).�

4.6 Applications of the invariant manifold theorems

All solvability results presented in this chapter are based on the invariant
manifold theorems (Theorems 4.4, 4.6, and 4.8). Although these theorems
were derived for studying the output regulation problem, they are interesting
in their own respect. In this section we discuss how these invariant manifold
theorems can be applied in the scope of so-called generalized synchronization
and for the analysis of nonlinear systems excited by harmonic signals.
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4.6.1 Generalized synchronization

In the field of master-slave synchronization one considers coupled systems of
the form

ż = F (z, w), (4.42)
ẇ = s(w). (4.43)

System (4.43) can be treated as a master system that generates a driving sig-
nal for the slave system (4.42). One of the phenomena studied in the context
of the master-slave synchronization is the so-called generalized synchroniza-
tion [64, 65, 76]. Roughly speaking, generalized synchronization occurs if for
some continuous function α(w) all solutions z(t) of system (4.42) converge to
the manifold z = α(w), i.e., limt→+∞(z(t) − α(w(t)) = 0. As follows from
Theorem 4.6, if all solutions of system (4.43) start in a compact positively
invariant set W+ and system (4.42) is globally uniformly convergent with
the UBSS property for the class of inputs PC(W̃), where W̃ is some neigh-
borhood of W+, then there exists a continuous function α(w) defined in W̃
such that for all initial conditions z(0) ∈ R

d and w(0) ∈ W+ it holds that
limt→+∞(z(t) − α(w(t)) = 0. Since the ω-limit set Ω(W+) is an invariant set
inside W+, Theorem 4.6 implies that the mapping α(w) is uniquely defined
for all w ∈ Ω(W+). Therefore, we see that the result of Theorem 4.6 can be
applied for studying generalized synchronization phenomena.

4.6.2 Nonlinear frequency response functions

A common way to analyze the behavior of a dynamical system is to investi-
gate its responses to harmonic excitations at different frequencies. For linear
systems, the information on responses to harmonic excitations, which is con-
tained in frequency response functions and usually represented in the form
of Bode plots, allows us to identify the system and analyze its properties
such as performance and robustness. Moreover, it serves as a powerful tool
for controller design. There exists a vast literature on frequency domain iden-
tification, analysis, and controller design methods for linear systems. Most
(high-performance) industrial controllers, especially for motion systems, are
designed and tuned based on these methods. The lack of such methods for
nonlinear systems is one of the reasons why nonlinear systems and controllers
are not popular in industry. Even if a (nonlinear) controller achieves a certain
control goal (e.g., tracking or disturbance attenuation), which can be proved,
for example, using Lyapunov stability methods, it is very difficult to say some-
thing about performance of the corresponding nonlinear closed-loop system,
while performance is critical in many industrial applications. So, there is a
need to extend the linear analysis and controller design methods based on
harmonic excitations to nonlinear systems.
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One of the first difficulties in such an extension is that a general nonlin-
ear system being excited by a periodic (e.g., harmonic) signal can have none,
one, or multiple periodic solutions and, if a periodic solution does exist, its
period can differ from the period of the excitation signal. Moreover, if such
periodic solutions exist, they essentially depend not only on the excitation
frequency, but also on the amplitude of the excitation. As follows from Prop-
erty 2.23, uniformly convergent systems, although nonlinear, have relatively
simple dynamics and for any periodic excitation there exists a unique periodic
solution that has the same period as the excitation. Such periodic solutions
can be found numerically using, for example, shooting and path following
methods [63]. These methods require significant computational efforts, since
they are based on the integration of the corresponding differential equations.
At the same time, if in addition to the uniform convergence property a sys-
tem has the UBSS property for the class of bounded piecewise continuous
inputs, periodic solutions corresponding to all harmonic excitations of the
form u(t) = A sin(ωt) for all frequencies ω and all amplitudes A can be found
from only one function. This statement follows from the next theorem.

Theorem 4.23. Consider the system

ż = F (z, u), (4.44)
y = h(z), (4.45)

with state z ∈ R
d, input u ∈ R and output y ∈ R; the function F (z, u) is

assumed to be locally Lipschitz with respect to z and continuous with respect
to u. Suppose system (4.44) is globally uniformly convergent with the UBSS
property for the class of inputs PC1. Then there exists a unique continuous
mapping α : R

3 → R
d such that z̄u(t) = α(A sin(ωt),A cos(ωt), ω) is a unique

periodic solution of system (4.44) corresponding to the excitation input u(t) =
A sin(ωt). Moreover, z̄u(t) is uniformly globally asymptotically stable.

Proof: The proof of this theorem follows from the fact that harmonic signals of
the form u(t) = A sin(ωt) for various amplitudes and frequencies are generated
by the following system:

ẇ1 = ωw2,

ẇ2 = −ωw1, (4.46)
ω̇ = 0,
u = w1.

The initial conditions of this system determine the excitation amplitude A and
frequency ω. Thus, we can treat system (4.44) excited by the input u(t) =
A sin(ωt) as a system being coupled with exosystem (4.46). One can easily
check that system (4.46) satisfies the boundedness assumption A1. Thus, by
Corollary 4.5 there exists a unique continuous function α : R

3 → R
d such
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that the steady-state solution corresponding to the solution of the exosystem
(w1(t), w2(t), ω(t)) = (A sin(ωt),A cos(ωt), ω) equals

z̄u(t) = α(A sin(ωt),A cos(ωt), ω).

Since system (4.44) is globally uniformly convergent for the class of inputs
PC1, by Property 2.23 we obtain that z̄u(t) is a unique periodic solution of sys-
tem (4.44) and, in addition, it is uniformly globally asymptotically stable. 	


As follows from Theorem 4.23, the function α(w1, w2, ω) contains all in-
formation related to periodic solutions of system (4.44) corresponding to har-
monic excitations, and the function h(α(w1, w2, ω)) contains all information
on the periodic outputs corresponding to harmonic excitations. So, the func-
tion h(α(w1, w2, ω)) can be considered as a nonlinear frequency response func-
tion. Notice that this frequency response function depends, in the nonlinear
case, not only on the frequency of the excitation, but also on its amplitude
and phase. For the analysis of nonlinear systems it can be useful to introduce
some kind of a magnitude plot for h(α(w1, w2, ω)). This can be done in the
following way. Suppose we are interested in responses of system (4.44) to har-
monic excitations at all frequencies ω ≥ 0 and all amplitudes not exceeding
some A∗ > 0. Define

ΥA∗(ω) := sup
A∈(0,A∗]

(
sup

w2
1+w2

2=A2

|h(α(w1, w2, ω))|
A

)
.

This function is a nonlinear analog of the Bode magnitude plot. The meaning
of this function is the following. First, we take some A ∈ (0,A∗] and compute
the maximal absolute value of the periodic output corresponding to the ex-
citation u(t) = A sin(ωt). Then we divide it by A. Such normalized maximal
value is a gain k(ω,A) with the following meaning: if the harmonic excita-
tion with frequency ω has amplitude A, then the maximal absolute value of
the periodic output corresponding to this excitation equals k(ω,A)A. Finally,
ΥA∗(ω) is the maximal value of the gain k(ω,A) over all amplitudes from the
set A ∈ (0,A∗]. For linear systems of the form ż = Az + Bu with a Hurwitz
matrix A and output y = Cz, the gain k(ω,A) is independent of the ampli-
tude A and it equals k(ω) = |C(iωI −A)−1B|. Hence, ΥA∗(ω) is independent
of A∗ and it equals ΥA∗(ω) = |C(iωI − A)−1B|. Therefore, we see that for
linear systems the graph of ΥA∗(ω) versus the excitation frequency ω coincides
with the Bode magnitude plot. The function ΥA∗(ω) can be used further to
study dynamical properties of uniformly convergent systems. Depending on
the inputs and outputs that we choose for the nonlinear system (4.44), we
can define nonlinear variants of the sensitivity and complementary sensitivity
functions of controlled convergent systems.

As has been mentioned in Section 4.2, the problem of finding the mapping
α(w1, w2, ω) is, in general, not an easy task. But in certain cases it is possible
to find this mapping analytically. Let us find α(w1, w2, ω) for a particular
example.
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Example 4.24. Consider the system

ż1 = −z1 + z2
2 , (4.47)

ż2 = −z2 + u, (4.48)
y = z1. (4.49)

This system is a series connection of input-to-state convergent systems. There-
fore, by Property 2.27, system (4.47), (4.48) is input-to-state convergent. This,
by Property 2.19, implies that system (4.47), (4.48) is globally uniformly con-
vergent with the UBSS property for the class of inputs PC1. Consequently,
by Theorem 4.23 the mapping α(w1, w2, ω) exists and it is unique. Using the
method described in Example 4.10, we will first find α2(w1, w2, ω) (the sec-
ond component of α) from (4.48). In our case, α2(w1, w2, ω) is a polynomial
function of degree 1 in the variables w1 and w2. So, we will seek α2 in the
form:

α2(w1, w2, ω) = a1(ω)w1 + a2(ω)w2.

Substituting this expression in (4.48), we find

a1(ω) =
1

1 + ω2 , a2(ω) =
−ω

1 + ω2 .

Then, substituting the obtained α2 for z2 in (4.47), we compute α1(w1, w2, ω).
In our case, it is a polynomial of w1 and w2 of the same degree as the poly-
nomial (α2(w1, w2, ω))2. Thus, we will seek α1(w1, w2, ω) in the form

α1(w1, w2, ω) = b1(ω)w2
1 + 2b2(ω)w1w2 + b3(ω)w2

2. (4.50)

After the corresponding computations, we obtain

b1(ω) =
2ω4 + 1

(1 + 4ω2)(1 + ω2)2
, b2(ω) =

ω3 − 2ω
(1 + 4ω2)(1 + ω2)2

,

b3(ω) =
2ω4 + 5ω2

(1 + 4ω2)(1 + ω2)2
.

After the function α(w1, w2, ω) is found, one can numerically, though very
efficiently, compute the magnitude characteristics ΥA∗(ω) for some maximal
excitation amplitude A∗ and all frequencies over the band of interest. In Fig-
ure 4.1, ΥA∗(ω) is computed for A∗ = 1. Since α1(w1, w2, ω) is a uniform
polynomial function of degree 2 with respect to the variables w1 and w2 (see
formula (4.50)), one can easily check that for arbitrary A∗ > 0 it holds that
ΥA∗(ω) = A∗Υ1(ω). Here we see the dependency of the amplification gain on
the amplitude of the excitation. This is an essentially nonlinear phenomenon.�

It is common knowledge that nonlinear systems may have very complex
dynamics and that, in general, it is not possible to apply linear analysis and
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Fig. 4.1. The function ΥA∗(ω) computed for A∗ = 1.

design methods to investigate nonlocal dynamical properties of nonlinear sys-
tems. At the same time, uniformly convergent systems, even when nonlinear,
exhibit relatively simple dynamics. Moreover, for uniformly convergent sys-
tems with the UBSS property we can define a frequency response function and
an analog of a well-known linear analysis tool such as the Bode plot, which
can be used, for example, for studying attenuation properties at different exci-
tation frequencies. It is still an open question whether such a nonlinear Bode
plot contains enough information to fully identify the system or to design
controllers based on this plot. Another open question is how to compute the
function α(w1, w2, ω). A standard solution would be to find it numerically. Yet,
such numerical methods still need to be developed. As we have shown with an
example, in certain cases α(w1, w2, ω) can be found analytically. The results
and open questions discussed in this section open an interesting direction in
nonlinear systems and control analysis.

4.7 Summary

In this chapter we have presented several results related to solvability of the
global, global robust, global forward time, and local uniform output regula-
tion problems. Theorems 4.12, 4.17, 4.19, and 4.21 provide characterizations
of all controllers solving the above-mentioned variants of the uniform output
regulation problem. Theorems 4.16, 4.18, 4.20, and 4.22 provide necessary
and sufficient conditions for the solvability of these problems. These solvabil-
ity conditions consist of two ingredients: solvability of the regulator equations
and existence of a controller which has the generalized internal model prop-
erty and makes the closed-loop system uniformly convergent. Solvability of
the regulator equations guarantees that for every solution of the exosystem
lying in a certain ω-limit set it is possible to find at least one control input for
which the controlled system has a solution along which the regulated output
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equals zero. The generalized internal model property of the controller guaran-
tees that this controller is capable of generating this control input based on the
information available from the measurements. The uniform convergence prop-
erty guarantees that the above-mentioned solution, along which the regulated
output equals zero, is (globally, locally) asymptotically stable.

All solvability results presented in this chapter are based on the invariant
manifold theorems (Theorems 4.4, 4.6, and 4.8), which, in the context of the
output regulation problem, serve as counterparts of the center manifold theo-
rem. Although the invariant manifold theorems are derived in order to study
solvability of the uniform output regulation problem, they are interesting in
their own respect. As follows from the discussion in Section 4.6, these invariant
manifold theorems can be used for checking the generalized synchronization
property for coupled systems and for the computation of periodic solutions
of uniformly convergent systems excited by harmonic inputs. Moreover, these
theorems allow us to define nonlinear frequency response functions and a vari-
ant of the Bode plot for uniformly convergent nonlinear systems. This opens
a new direction in the analysis of nonlinear systems.




