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Preface

The problem of asymptotic regulation of the output of a dynamical system
plays a central role in control theory. An important variant of this problem
is the output regulation problem, which can be used in areas such as set-
point control, tracking reference signals and rejecting disturbances generated
by an external system, controlled synchronization of dynamical systems, and
observer design for autonomous systems. At the moment this is a hot topic in
nonlinear control.

This book is a result of a four-year research project conducted at the
Eindhoven University of Technology. This project, entitled “Robust output
regulation for complex dynamical systems,” began with the observation that
the problem of controlled synchronization of dynamical systems can be consid-
ered as a particular case of the output regulation problem. In the beginning of
the project, known solutions to the controlled synchronization problem were
global and dealt with nonlinear systems having complex (“chaotic”) dynam-
ics. At the same time, most of the existing solutions to the nonlinear output
regulation problem were local and dealt mostly with exosystems being linear
harmonic oscillators. Our initial idea was, using the results from the controlled
synchronization problem as a starting point, to extend solutions of the non-
linear output regulation problem from the local case to the global case and to
avoid restrictive assumptions on the exosystem.

As a first step, we started looking for points that were common to these
two problems. In this way we encountered or, to be more precise, recalled
the notion of convergent systems, which was overlooked in the West, but well
known in Russia. It appeared to be the common point we were seeking. With
this notion as a starting point, the local-to-global, simple-to-complex exten-
sion began. We started with improving some results on the local nonlinear
output regulation problem. Then, we gradually managed to extend some con-
troller design techniques to the global case. At some point, it appeared that the
solvability theory—well developed for the case of the local nonlinear output
regulation problem—can be extended, using the notion of convergence, to the
global case. These achievements also led us to a new problem setting for the
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output regulation problem, which, again based on the notion of convergence,
naturally extends the linear and local nonlinear output regulation problem to
the global nonlinear case. Moreover, with this new problem setting, which we
call the uniform output regulation problem, the results on solvability analysis
and controller design became accurate and rather compact. This was a good
sign. Both the controller design and the solvability analysis were founded on
the concept of convergence and required further developments of the appara-
tus of convergent systems. After all, the developed techniques on convergent
systems appeared to be very interesting and promising for application to other
control problems as well. Now it is even difficult to say whether the machinery
of convergent systems is a helpful tool for tackling the output regulation prob-
lem, or the output regulation problem serves as a good illustrating example
for the power of convergent systems. Time will show whether it is one way or
the other.

This four-year journey has been interesting and inspiring for us, and we
hope that this book, as a result, will also be interesting and valuable for the
reader.

In the end, we would like to thank all the people who helped us in this
project and in the preparation of the book: Dr. Henri Huijberts, for initi-
ating the project and providing very valuable comments on the manuscript
(which, initially, was the PhD thesis of A. Pavlov); Dr. Sasha Pogromsky,
for attracting our attention to convergent systems and for endless discussions
on this subject; Bart Janssen—a master student at the Eindhoven Univer-
sity of Technology—for his invaluable help in building the experimental setup
and conducting the experiments; Prof. Maarten Steinbuch and Prof. Okko
Bosgra, for their valuable comments on the manuscript, and all our colleagues
from Eindhoven University of Technology and from the St. Petersburg con-
trol community who directly or indirectly influenced (in a positive way) this
work. This research was partially supported by the Netherlands Organization
for Scientific Research (NWO).

Eindhoven, The Netherlands Alexey Pavlov
October 2005 Nathan van de Wouw

Henk Nijmeijer
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1

Introduction

1.1 The output regulation problem

The output regulation problem is one of the central problems in control the-
ory. This problem deals with asymptotic tracking of prescribed reference sig-
nals and/or asymptotic rejection of undesired disturbances in the output of
a dynamical system. The main feature that distinguishes the output regula-
tion problem from conventional tracking and disturbance rejection problems
is that, in the output regulation problem, the class of reference signals and
disturbances consists of solutions of some autonomous system of differential
equations. This system is called an exosystem. Reference signals and/or dis-
turbances generated by the exosystem are called exosignals.

Many control problems can be formulated as a particular case of the output
regulation problem. For example, in the set-point control problem the constant
reference signals to be asymptotically tracked by the output of a system can
be considered as outputs of an exosystem given by a differential equation
with zero right-hand side. A particular value of the reference signal is, in this
case, determined by the corresponding initial condition of the exosystem. In
the same way, constant disturbances acting on a system can be considered
as outputs of an exosystem with zero right-hand side. Therefore, the set-
point control problem and the problem of asymptotic rejection of constant
disturbances in the output of a system can be considered as particular cases
of the output regulation problem. Similar to the case of constant exosignals,
harmonic reference signals and disturbances can be considered as outputs
of a linear harmonic oscillator. In this case, the parameters of the oscillator
determine the frequency content of the exosignal, while the initial conditions
of the oscillator determine particular amplitudes and phases of the exosignal.
Here, we see that the problem of asymptotic tracking and disturbance rejection
for the case of harmonic reference signals and disturbances can be considered
as a particular case of the output regulation problem.

Examples of the output regulation problem with more complex exosystem
dynamics can be found, for example, in the problem of controlled synchroniza-
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tion (see, e.g., [60, 61, 74]). In this problem one considers two systems of the
same dimensions. The first system is autonomous and is called a “master” sys-
tem. The master system usually has some complex dynamics, e.g., it may have
a chaotic attractor. The second system can be controlled and is called a “slave”
system. The controlled synchronization problem is to find a controller that,
based on the measured signals from the master and slave systems, generates
a control action such that the state of the slave system asymptotically tracks
the state of the master system. In other words, the states of these two systems
asymptotically synchronize. The fact that a controlled synchronization prob-
lem can be treated as a particular case of the output regulation problem was
pointed out in [36]. From the formulation of the controlled synchronization
problem, one can easily notice that this problem has a lot in common with the
observer design problem for the autonomous master system. In fact, the slave
system can be treated as an observer for the master system. Therefore, the
problem of observer design for autonomous systems can also be considered as
an output regulation problem.

For linear systems the output regulation problem was completely solved in
the 1970s in the works of B.A. Francis, W.M. Wonham, E.J. Davison, and oth-
ers [13, 21, 88]. This research resulted in the well-known internal model princi-
ple [21] and in the observation that solvability of the linear output regulation
problem is related to the solvability of the so-called “regulator equations,”
which, in the linear case, are two linear matrix equations [20]. A different
approach to the linear output regulation problem was pursued in the works
of V.A. Yakubovich and his colleagues [56, 81, 90]. This approach is based on
treating the output regulation problem as some kind of the linear-quadratic
optimal control problem. Although controllers obtained within this approach
do not guarantee that the regulated output converges to zero (it converges to
small values depending on the chosen cost functional), they are less sensitive
to variations in the exosystem parameters. The problem of output regulation
for linear systems subject to constraints on the inputs and state variables was
studied in a number of publications, see, e.g., [30, 77] and references therein.

Following the trend of developing nonlinear control systems theory (see,
e.g., [38, 62] and references therein), in the 1980s several authors started
studying the output regulation problem for nonlinear systems [16, 28, 29].
A breakthrough in the nonlinear output regulation problem was reported in
the seminal paper [39] by A. Isidori and C.I. Byrnes. In that paper the au-
thors showed that under the neutral stability assumption on the exosystem
and some standard stabilizability/detectability assumptions on the system,
the local output regulation problem is solvable if and only if certain mixed
algebraic equations and partial differential equations are solvable. These equa-
tions are called the regulator equations. They are nonlinear counterparts of the
regulator equations from the linear output regulation problem. An alternative
solution to the local output regulation problem was proposed in [34]. These
papers were followed by a number of publications dealing with various aspects
of the local output regulation problem. For example, if it is difficult to solve
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the local output regulation problem (because it requires solving the regulator
equations), then approximate (in some sense) solutions to the problem can be
found, as reported in [8, 33, 35, 86]. The problem of structurally stable (i.e.,
when the system parameters are assumed to be close enough to their nominal
values) output regulation was addressed in [8, 38]. The case when the system
parameters are allowed to vary within a given compact set was considered in
[8, 44, 50, 52]. The semiglobal output regulation problem with an adaptive
internal model, which allowed for uncertainties in the exosystem, has been
considered in [80]. Probably the most complete list of references to results on
the output regulation problem can be found in [7, 8, 31, 42].

So far, the results on the output regulation problem mentioned above dealt
either with the local or semiglobal (i.e., when initial conditions belong to some
predefined compact set) case. Actually, the number of results on the global
variant of the output regulation problem is very small compared to the number
of results on the local and semiglobal cases. Only recently have more papers
on the global output regulation problem started to appear. In [79] the global
robust output regulation problem was solved for minimum-phase systems that
are linear in the unmeasured variables. The same class of systems as in [79],
but with unknown system and exosystem parameters, was considered in [17].
In that paper the global output regulation problem was solved using adaptive
control techniques. In [12, 58] the global robust servomechanism problem for
nonlinear systems in triangular form was considered. In [11] a problem for-
mulation for the global robust output regulation problem was proposed and a
possible conversion of this problem into a certain robust stabilization problem
was suggested.

Careful examination of the global results mentioned above allows one to
conclude two things. First, at the moment there is still no generally accepted
problem statement for the global output regulation problem. Second, all these
results start with the assumption that the regulator equations are solvable
and that the corresponding solutions are defined either globally or in some
predefined set. The only vague justification for this assumption is that in the
local output regulation problem, the existence of locally defined solutions to the
regulator equations is a necessary condition for the solvability of the problem.
In fact, these two observations are, in a certain sense, coupled. Recall that in
the local output regulation problem [8, 39], a properly chosen problem setting
with a “right” set of standing assumptions allowed one to obtain necessary and
sufficient conditions for the solvability of the problem and to build up a nice,
complete theory for this problem. Our hypothesis, which is now confirmed by
the results contained in this book, is that by choosing a proper problem setting
for the global output regulation problem and a proper set of assumptions, one
can build up a more or less complete theory for the global output regulation
problem, just as was done for the local case in [8, 39]. Such a theory would
include necessary and sufficient conditions for the solvability of the problem
and would embrace the existing problem formulations and results on the global
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output regulation problem. Moreover, it would provide us with new solutions
to the global output regulation problem for new classes of systems.

One possible way of defining such a new problem setting has been proposed
in [40]. Although the approaches adopted in this book and in [40] are different,
the corresponding final results are close to each other.

A cornerstone of such a new problem formulation for the global output
regulation problem adopted in this book is the natural requirement that the
closed-loop system must have some “convergence” property. Roughly speak-
ing, this property means that all solutions of the closed-loop system “forget”
their initial conditions and converge to some unique solution, which can be
called a steady-state solution. This solution is determined only by the exosig-
nal generated by the exosystem. This “convergence” property is discussed in
the next section.

1.2 Convergent dynamics

In many control problems and, in particular, in the output regulation prob-
lem, it is required that controllers be designed in such a way that all solutions
of the corresponding closed-loop system “forget” their initial conditions and
converge to some steady-state solution, which is determined only by the in-
put of the closed-loop system. This input can be, for example, a command
signal or a signal generated by a feedforward part of the controller or, as in
the output regulation problem, it can be the signal generated by the exo-
system. For asymptotically stable linear systems excited by inputs, this is
a natural property. Indeed, due to linearity of the system, every solution is
globally asymptotically stable and, therefore, all solutions of such a system
“forget” their initial conditions and converge to each other. After transients,
the dynamics of the system are determined only by the input.

For nonlinear systems, in general, global asymptotic stability of a system
with zero input does not guarantee that all solutions of this system with a
nonzero input “forget” their initial conditions and converge to each other.
There are many examples of nonlinear globally asymptotically stable systems
that, being excited by a periodic input, have coexisting periodic solutions.
These periodic solutions do not converge to each other. This fact indicates that
for nonlinear systems the convergent dynamics property requires additional
conditions.

The property that all solutions of a system “forget” their initial conditions
and converge to some steady-state solution has been addressed in a number
of papers. In [73] this property was investigated for systems of differential
equations that are periodic in time. In that work systems with a unique pe-
riodic globally asymptotically stable solution were called convergent. Later,
the definition of convergent systems given by V.A. Pliss in [73] was extended
by B.P. Demidovich in [15] (see also [66]) to the case of systems that are not
necessarily periodic in time. According to [15], a system is called convergent if
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there exists a unique globally asymptotically stable solution that is bounded
on the whole time axis. Obviously, if such a solution does exist, all other solu-
tions, regardless of their initial conditions, converge to it. This solution can be
considered as a steady-state solution. In [14, 15] B.P. Demidovich presented a
simple sufficient condition for such a convergence property (the English trans-
lation of this result can be found in [66]). With the development of absolute
stability theory, V.A. Yakubovich showed in [89] that for a linear system with
one scalar nonlinearity satisfying some incremental sector condition, the cir-
cle criterion guarantees the convergence property for this system with any
nonlinearity satisfying this incremental sector condition.

In parallel with this Russian line of research, the property of solutions con-
verging to each other was addressed in the works of T. Yoshizawa [91, 92] and
J.P. LaSalle [54]. In [54] this property of a system was called extreme stability.
In [91] T. Yoshizawa provided sufficient and, under certain assumptions, nec-
essary conditions for this extreme stability. These conditions are formulated in
terms of existence of a Lyapunov-type function satisfying certain conditions.
Extremely stable systems with periodic and almost-periodic right-hand sides
were studied in [92].

Several decades after these publications, the interest in stability properties
of solutions with respect to one another revived. Incremental stability, incre-
mental input-to-state stability, and contraction analysis are some of the terms
related to such properties. In the mid-1990s, W. Lohmiller and J.-J.E. Slo-
tine (see [57] and references therein) independently reobtained and extended
the result of B.P. Demidovich. In particular, they pointed out that systems
satisfying the (extended) Demidovich condition may enjoy certain properties
of asymptotically stable linear systems that are not encountered in general
asymptotically stable nonlinear systems. A different approach was pursued in
the works by V. Fromion et al. [23–25]. In this approach a dynamical system
is considered as an operator that maps some functional space of inputs to
a functional space of outputs. If this operator is Lipschitz continuous (has a
finite incremental gain or is incrementally stable), then, under certain observ-
ability and reachability conditions, all solutions of a state-space realization of
this system converge to each other. The sufficient conditions for such Lipschitz
continuity condition proposed in [25] are very close to the sufficient conditions
for the convergence property obtained by Demidovich. In [2] D. Angeli devel-
oped a Lyapunov approach for studying both the global uniform asymptotic
stability of all solutions of a system (in [2], this property is called incremen-
tal stability) and the so-called incremental input-to-state stability property,
which is compatible with the input-to-state stability approach (see, e.g., [82]).
As was pointed out in these recent papers, observer design and (controlled)
synchronization problems are some of the possible applications of such stabil-
ity properties.

In this book, for the property that all solutions of a system “forget” their
initial conditions and converge to some steady-state solution, we will adopt the
notion of convergent systems introduced by B.P. Demidovich. In comparison
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to the other notions mentioned above, the property of convergence has two
main advantages: it is coordinate independent, while, for example, the notion
of incremental stability and incremental input-to-state stability is not, and it
allows us to define the steady-state solution in a unique way, which proves to
be beneficial in further analysis and applications of convergent systems.

1.3 Book outline

In this book we systematically study the output regulation problem based
on the notion of convergent systems. As a preliminary step, in Chapter 2
we extend the notion of convergent systems introduced by B.P. Demidovich,
investigate various properties of such systems, and design certain tools for
the analysis of convergent systems. All these results can be used not only in
the context of the output regulation problem, but also in other problems in
systems and control theory.

In Chapter 3 we formulate the so-called uniform output regulation prob-
lem. This is a new problem formulation for the output regulation problem
based on the notion of convergent systems. We state global and local variants
of the uniform output regulation problem as well as a robust variant of this
problem for systems with uncertainties. This new problem formulation has
several advantages over the existing problem formulations (see, e.g., [8, 11]).
First, it allows one to deal with exosystems having complex dynamics, e.g.,
exosystems with a (chaotic) attractor. Up to now most of the results on the
output regulation problem dealt only with exosystems having relatively sim-
ple dynamics, for example, with linear harmonic oscillators. The ability to
deal with complex exosystem dynamics allows one to treat the problem of
controlled synchronization (see, e.g., [36]) and the problem of observer de-
sign for autonomous systems with complex dynamics as particular cases of
the uniform output regulation problem. The second advantage of this new
problem setting is that, as will be discussed below, it allows one to treat the
local and global variants of the uniform output regulation problem in a unified
way regardless of the complexity of the exosystem dynamics. This new prob-
lem setting includes, as its particular cases, the output regulation problem
for linear systems and the conventional local output regulation problem for
nonlinear systems (see, e.g., [8]).

For the global, global robust, and local variants of the uniform output
regulation problem, we provide necessary and sufficient conditions for the
solvability of these problems as well as results on characterization of all con-
trollers solving these problems. These results are presented in Chapter 4. For
all these different variants of the problem, the obtained results on the solv-
ability of the problem and controllers characterization look similar. Such a
uniformity is a sign of the right choice of the problem setting. Moreover, we
show that many of the existing controllers solving the global output regula-
tion problem in other problem settings (see, e.g., [12, 58, 68, 69, 79]), which
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can be different from the global uniform output regulation problem, in fact
solve the global uniform output regulation problem. The solvability analysis of
the uniform output regulation problem is based on certain invariant manifold
theorems. We demonstrate that these invariant manifold theorems can also
be used for studying the so-called generalized synchronization of coupled sys-
tems, for the computation of periodic solutions of nonlinear systems excited
by harmonic inputs and for the extension of frequency response functions and
such a well-known analysis and design tool as the Bode magnitude plot from
linear systems to nonlinear uniformly convergent systems. These nonlinear
frequency response functions and the Bode plot can be used, for example, for
nonlinear system performance analysis.

The solvability conditions for the global uniform output regulation prob-
lem do not provide direct recipes for finding controllers solving this problem.
Therefore, in Chapter 5 we provide results on controller design for the global
uniform output regulation problem for several classes of nonlinear systems.
One of these controller designs is based on the notions of quadratic stabi-
lizability and detectability. These notions extend the conventional notions
of stabilizability and detectability from linear systems theory to the case of
nonlinear systems. The controller design based on these notions extends the
known controllers solving the linear and the local nonlinear output regula-
tion problems to the case of the global uniform output regulation problem for
nonlinear systems. For the case of a Lur’e system with a nonlinearity having
a bounded derivative and an exosystem being a linear harmonic oscillator,
feasibility conditions for this controller design are formulated in terms of lin-
ear matrix inequalities. Moreover, for this class of systems and exosystems we
provide a robust controller design that copes not only with the uncertainties
in the system parameters, but also with the uncertain nonlinearity from a
class of nonlinearities with a given bound on their derivatives. All controller
designs presented in Chapter 5 are based on certain general methods that
allow us to design controllers making the corresponding closed-loop systems
convergent. These methods can also be used for other control problems where
the convergence property of the closed-loop system is required or desired.

If we cannot find a solution to the global uniform output regulation prob-
lem, it can still be possible to find a controller that solves the local output
regulation problem. There are standard procedures for such controller designs
(see, e.g., [8, 38]). The resulting controllers solve the output regulation prob-
lem for the initial conditions of the closed-loop system and the exosystem
lying in some neighborhood of the origin. To enhance applicability of these
controllers, in Chapter 6 we present estimation results that, given a controller
solving the local output regulation problem, provide estimates of this neigh-
borhood of initial conditions for which the controller works. Such estimation
results are presented for both the exact and approximate variants of the local
output regulation problem. These estimation results are also based on the
notion of convergent systems.
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The nonlinear output regulation problem has been studied from a theo-
retical point of view in a series of publications. At the same time, there are
very few publications aiming at an experimental validation of solutions to
the nonlinear output regulation problem [4, 55]. In Chapter 7 we address the
nonlinear output regulation problem from an experimental point of view. We
study a local output regulation problem for the so-called TORA system, which
is a nonlinear mechanical benchmark system, see, e.g., [32, 45, 85]. A simple
controller solving this problem is proposed. This controller is implemented
in an experimental setup and its performance is investigated in experiments.
The reason for this experimental study is twofold. The first reason is to check
whether controllers from the nonlinear output regulation theory are applica-
ble in an experimental setting in the presence of disturbances and modeling
uncertainties, which are inevitable in practice. The second reason is to iden-
tify the factors that can deteriorate the controller performance and therefore
require specific attention already at the stage of controller design. Successful
results of this experimental study, which are presented in Chapter 7, show the
applicability of the nonlinear output regulation theory in experiments and
give new data for analysis and further developments in the field of nonlinear
output regulation.

Finally, concluding remarks are presented in Chapter 8.



2

Convergent systems

In many control problems and, in particular, in the output regulation prob-
lem, the closed-loop system must have the following internal stability prop-
erty: every solution of the closed-loop system “forgets” its initial condition and
converges to a (unique) steady-state solution determined only by the input.
This input can represent, for example, the feedforward part of the controller
or a disturbance. This property is conveniently formalized in the notion of
convergent systems. This notion forms the foundation of all results on the
output regulation problem presented in this book. In this chapter we present
definitions, properties, and sufficient conditions for various notions of conver-
gent systems. Since these notions and results can be applied not only in the
context of the output regulation problem, but also for other control problems,
this chapter can be used separately from the rest of the material of the book.

2.1 Stability concepts

We begin by giving definitions of some stability concepts for nonautonomous
systems which will be used as building blocks for the notion of convergent
systems.

2.1.1 Lyapunov stability

Consider the system

ż = F (z, t), z ∈ R
d, t ∈ R, (2.1)

where F (z, t) is piecewise continuous in t and locally Lipschitz in z. First we
give some standard definitions of Lyapunov stability of a solution of system
(2.1).

Definition 2.1. A solution z̄(t) of system (2.1), which is defined for t ∈
(t∗,+∞), is said to be
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• stable if for any t0 ∈ (t∗,+∞) and ε > 0 there exists δ = δ(ε, t0) > 0 such
that |z(t0) − z̄(t0)| < δ implies |z(t) − z̄(t)| < ε for all t ≥ t0.

• uniformly stable if it is stable and the number δ in the definition of stability
is independent of t0.

• asymptotically stable if it is stable and for any t0 ∈ (t∗,+∞) there exists
δ̄ = δ̄(t0) > 0 such that |z(t0)−z̄(t0)| < δ̄ implies limt→+∞ |z(t)−z̄(t)| = 0.

• uniformly asymptotically stable if it is uniformly stable and there exists
δ̄ > 0 (independent of t0) such that for any ε > 0 there exists T = T (ε) > 0
such that |z(t0) − z̄(t0)| < δ̄ for t0 ∈ (t∗,+∞) implies |z(t) − z̄(t)| < ε for
all t ≥ t0 + T .

• exponentially stable if there exist δ̄ > 0, C > 0, and β > 0 such that
|z(t0) − z̄(t0)| < δ̄ for t0 ∈ (t∗,+∞) implies

|z(t) − z̄(t)| ≤ Ce−β(t−t0)|z(t0) − z̄(t0)|, ∀ t ≥ t0.

Asymptotic stability of z̄(t) implies that all solutions starting in some neigh-
borhood of z̄(t) are attracted to z̄(t). If we are interested in asymptotic sta-
bility of the solution z̄(t) for a predefined set of initial conditions Z ⊂ R

d, we
need the following definitions.

Definition 2.2. A solution z̄(t) of system (2.1), which is defined for t ∈
(t∗,+∞), is said to be

• asymptotically stable in a set Z ⊂ R
d if it is asymptotically stable and

any solution of system (2.1) starting in z(t0) ∈ Z, t0 ∈ (t∗,+∞) satisfies
|z(t) − z̄(t)| → 0 as t → +∞.

• uniformly asymptotically stable in Z ⊂ R
d if it is uniformly asymptotically

stable and it attracts solutions of system (2.1) starting in z(t0) ∈ Z, t0 ∈
(t∗,+∞) uniformly over t0, i.e., for any compact set K ⊂ Z and any
ε > 0 there exists T (ε,K) > 0 such that if z(t0) ∈ K, t0 ∈ (t∗,+∞), then
|z(t) − z̄(t)| < ε for all t ≥ t0 + T (ε,K).

• exponentially stable in Z ⊂ R
d if it is exponentially stable and there exist

constants C > 0 and β > 0 such that any solution starting in z(t0) ∈ Z,
t0 ∈ (t∗,+∞) satisfies

|z(t) − z̄(t)| ≤ Ce−β(t−t0)|z(t0) − z̄(t0)|. (2.2)

Recall that the domain of attraction of an asymptotically stable solution z̄(t) is
defined as a family of sets D(t0) ⊂ R

d, t0 ∈ (t∗,+∞) such that if z(t0) ∈ D(t0)
then |z(t) − z̄(t)| → 0 as t → +∞. In general, a domain of attraction D(t0)
depends on t0. Thus, the requirement of asymptotic stability in a set Z means
that Z ⊂ D(t0) for all t0 ∈ (t∗,+∞). In this case, the set Z can be called a
uniform domain of attraction.

Definition 2.3. A solution z̄(t), which is defined for t ∈ (t∗,+∞), is called
globally (uniformly, exponentially) asymptotically stable if it is (uniformly,
exponentially) asymptotically stable in Z = R

d.
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Remark. In the literature, stability notions are usually defined only with
respect to the zero solution z̄(t) ≡ 0 (see, e.g., [51]). This is due to the fact
that if z̄(t) is not identically zero, one can make the coordinate transformation
x := z − z̄(t). After such a coordinate transformation, system (2.1) takes the
form

ẋ = F (x + z̄(t), t) − F (z̄(t), t), (2.3)

with the solution x̄(t) ≡ 0 corresponding to the solution z̄(t) in the original
coordinates. After such a transformation, (uniform) stability and (uniform)
asymptotic stability of solutions z̄(t) and x̄(t) ≡ 0 are equivalent. At the same
time, if we deal with (uniform) asymptotic stability of z̄(t) with some uniform
domain of attraction Z, this coordinate transformation not only transforms
z̄(t) into x̄(t) ≡ 0, but it also transforms the set Z into some time-dependent
set X (t). Analysis of a solution with a time-dependent domain of attraction is
rather complicated. Therefore, we provide the definitions of (uniform) asymp-
totic stability in a set Z with respect to the solution z̄(t) in the original
coordinates. Notice that in the case of Z = R

d, global (uniform, exponential)
asymptotic stability of a bounded solution z̄(t) is equivalent to global (uniform,
exponential) asymptotic stability of the solution x̄(t) ≡ 0 of system (2.3). In
this case, Definition 2.3 is equivalent to conventional definitions of (uniform,
exponential) global asymptotic stability, see, e.g., [51].�

In the analysis of the output regulation problem, we will need the following
two properties of uniformly asymptotically stable solutions.

Property 2.4. Suppose z̄(t) is a solution of system (2.1) defined for all t ∈ R

and uniformly asymptotically stable in Z. If there exists a solution z̃(t) that
is defined for all t ∈ R and lies in some compact set K ⊂ Z for all t ∈ R,
then z̃(t) ≡ z̄(t).

Proof: Suppose at some instant t∗ ∈ R the solutions z̄(t) and z̃(t) satisfy
|z̃(t∗) − z̄(t∗)| ≥ ε > 0 for some ε > 0. Since z̄(t) is uniformly asymptotically
stable in Z, there exists a number T (ε,K) such that if z̃(t0) ∈ K for some
t0 ∈ R then

|z̃(t) − z̄(t)| < ε, ∀ t ≥ t0 + T (ε,K). (2.4)

Set t0 := t∗−T (ε,K). Then for t = t∗ inequality (2.4) implies |z̃(t∗)− z̄(t∗)| <
ε. Thus, we obtain a contradiction. Since t∗ has been chosen arbitrarily, this
implies z̃(t) ≡ z̄(t). 	


In the case of Z = R
d Property 2.4 means the following. If a solution z̄(t)

defined for all t ∈ R is globally uniformly asymptotically stable, and there
exists some solution z̃(t) that is also defined and bounded for all t ∈ R, then
z̄(t) and z̃(t) coincide. The next property states uniqueness of a solution that
is uniformly asymptotically stable in a set Z.

Property 2.5. If there exists a solution z̄(t) of system (2.1) such that it is
defined for all t ∈ R and uniformly asymptotically stable in Z, then such a
solution is unique.
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Proof: Suppose z̃(t) is another solution that is defined for all t ∈ R and
uniformly asymptotically stable in Z. Suppose at some instant t∗ ∈ R it holds
that |z̃(t∗) − z̄(t∗)| ≥ 2ε > 0 for some ε > 0. Let z∗ be some point in the set
Z. Since both z̃(t) and z̄(t) are uniformly asymptotically stable in Z, there
exists T (ε, z∗) > 0 such that if z(t0) = z∗ for some t0 ∈ R then

|z(t) − z̄(t)| < ε, |z(t) − z̃(t)| < ε ∀ t ≥ t0 + T (ε, z∗). (2.5)

Set t0 := t∗ −T (ε, z∗). By the triangle inequality and inequality (2.5), it holds
that for t := t∗ = t0 + T (ε, z∗)

|z̃(t∗) − z̄(t∗)| ≤ |z̃(t∗) − z(t∗)| + |z(t∗) − z̄(t∗)| < 2ε.

Thus, we obtain a contradiction. Hence, z̃(t∗) = z̄(t∗). Due to the arbitrary
choice of t∗, we conclude that z̃(t) ≡ z̄(t) for all t ∈ R. 	


2.1.2 Input-to-state stability

In this section we recall the notion of input-to-state stability (ISS) and review
some related results. Prior to introducing the notion of ISS, we recall the
following definitions of class K and class KL functions [51].

Definition 2.6. A continuous function α : [0, a) → [0,+∞) is said to belong
to class K if it is strictly increasing and α(0) = 0. It is said to belong to class
K∞ if a = +∞ and α(r) → +∞ as r → +∞.

Definition 2.7. A continuous function β : [0, a)× [0,+∞) → [0,+∞) is said
to belong to class KL if, for each fixed s, the mapping β(r, s) belongs to class
K with respect to r and, for each fixed r, the mapping β(r, s) is decreasing
with respect to s and β(r, s) → 0 as s → +∞.

With these definitions at hand, we can formulate the property of ISS.
Consider the system

ż = F (z, w, t), z ∈ R
d, w ∈ R

m, t ∈ R, (2.6)

where F (z, w, t) is locally Lipschitz in z, continuous in w, and piecewise con-
tinuous in t. The input w(t) is a piecewise continuous function of t. Suppose
for w(t) ≡ 0 system (2.6) has an equilibrium point z = 0.

Definition 2.8 ([51]). System (2.6) is said to be locally ISS if there exist a
class KL function β(r, s), a class K function γ(r), and positive constants kz

and kw such that for any initial state z(t0) with |z(t0)| ≤ kz and any input
w(t) with supt≥t0 |w(t)| ≤ kw, the solution z(t) exists and satisfies

|z(t)| ≤ β(|z(t0)|, t − t0) + γ

(
sup

t0≤τ≤t
|w(τ)|

)
(2.7)

for all t ≥ t0. It is said to be ISS if inequality (2.7) is satisfied for any initial
state z(t0) and any bounded input w(t).
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Remark. Local ISS implies, in particular, that for any input w(t) satisfy-
ing |w(t)| ≤ kw for all t ≥ t0 and w(t) → 0 as t → +∞, any solution z(t) of
system (2.6) starting in |z(t0)| ≤ kz tends to zero, i.e., z(t) → 0 as t → +∞.�

Below we review some results related to the ISS that will be used further
in the book. The following theorem gives a sufficient condition for ISS.

Theorem 2.9 ([51]). Consider system (2.6). Let V (z, t) be a continuously
differentiable function such that

α1(|z|) ≤ V (z, t) ≤ α2(|z|), (2.8)

∂V

∂t
+

∂V

∂z
F (z, w, t) ≤ −α3(|z|), ∀|z| ≥ ρ(|w|) > 0, (2.9)

for all (z, w, t) ∈ R
d × R

m × R, where α1(r) is a class K∞ function and
α2(r), α3(r), and ρ(r) are class K functions. Then system (2.6) is ISS with
γ = α−1 ◦ α2 ◦ ρ.1

The following lemma establishes a link between the uniform asymptotic sta-
bility of the equilibrium z = 0 of the unforced system (2.6) and the local ISS
of system (2.6).

Lemma 2.10 ([51]). Consider system (2.6). Suppose that in some neighbor-
hood of the origin (z,w)=(0,0), the function F (z, w, t) is continuously differen-
tiable and the Jacobian matrices ∂F/∂z and ∂F/∂w are bounded, uniformly
in t. If the equilibrium z = 0 of system (2.6) with w(t) ≡ 0 is uniformly
asymptotically stable, then system (2.6) is locally ISS.

The next lemma allows one to establish existence of a solution of a (locally)
ISS system that is defined and bounded for all t ∈ R.

Lemma 2.11. Suppose system (2.6) is locally ISS. Then there exists a number
k̃w > 0 such that for any input w(t) defined for all t ∈ R and satisfying
supt∈R |w(t)| ≤ k̃w there exists a solution zw(t) that is defined for all t ∈ R

and satisfies

sup
t∈R

|zw(t)| ≤ γ

(
sup
t∈R

|w(t)|
)
, (2.10)

where γ(r) is the class K function from the definition of the ISS. If system
(2.6) is ISS, then a solution zw(t) satisfying (2.10) exists for any input w(t)
bounded on R.

Proof: See Appendix 9.1.

The ISS property is very useful for studying interconnected systems. Con-
sider the systems

1Here ◦ denotes the composition of two functions, i.e., (α ◦ ρ)(r) = α(ρ(r)).
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ż = F (z, y, w, t), (2.11)
ẏ = G(y, w, t), (2.12)

with the functions F (z, y, w, t) and G(y, w, t) being locally Lipschitz in z and
y, continuous in w, and piecewise continuous in t.

Theorem 2.12 ([82]). Consider systems (2.11) and (2.12). Suppose the sys-
tem (2.11) with (y, w) as input is ISS and the system (2.12) with w as input
is ISS. Then the interconnection of systems (2.11) and (2.12) is also ISS.

The theorem presented above deals only with series interconnection of ISS
systems. The next theorem, which is known as the small gain theorem for ISS
systems, allows one to establish ISS for arbitrarily interconnected ISS systems.
Consider the systems

ż = F (z, y, w, t), (2.13)
ẏ = G(z, y, w, t), (2.14)

with functions F (z, y, w, t) and G(z, y, w, t) being locally Lipschitz in z and
y, continuous in w, and piecewise continuous in t.

Theorem 2.13 ([48]). Consider systems (2.13) and (2.14). Suppose system
(2.13) with (y, w) as input and system (2.14) with (z, w) as input are ISS
and, for some class K functions γy(r), γz(r), γwz(r), and γwy(r), and for
some class KL functions βz(r, s) and βy(r, s), any solution of system (2.13)
with bounded inputs y(t) and w(t) satisfies

|z(t)| ≤ βz(|z(t0)|, t − t0) + γy

(
sup

t0≤τ≤t
|y(τ)|

)
+ γwz

(
sup

t0≤τ≤t
|w(τ)|

)
and any solution of system (2.14) with bounded inputs z(t) and w(t) satisfies

|y(t)| ≤ βy(|y(t0)|, t − t0) + γz

(
sup

t0≤τ≤t
|z(τ)|

)
+ γwy

(
sup

t0≤τ≤t
|w(τ)|

)
.

Suppose for some class K function ρ(r) the following small gain relation is
satisfied:

(γz + ρ) ◦ (γy + ρ)(r) ≤ r.

Then the interconnected system (2.13), (2.14) is ISS.

2.2 Convergent systems

2.2.1 Basic definitions

In this subsection we give definitions of convergent systems. These definitions
extend the original definition of convergent systems given by B.P. Demidovich
in [15]; see also [66]. Consider the system
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ż = F (z, t), (2.18)

where z ∈ R
d and t ∈ R; F (z, t) is locally Lipschitz in z and piecewise contin-

uous in t.

Definition 2.14. System (2.18) is said to be

• convergent in a set Z ⊂ R
d if there exists a solution z̄(t) satisfying the

following conditions:
(i) z̄(t) is defined and bounded for all t ∈ R,
(ii) z̄(t) is asymptotically stable in Z.

• uniformly convergent in Z if it is convergent in Z and z̄(t) is uniformly
asymptotically stable in Z.

• exponentially convergent in Z if it is convergent in Z and z̄(t) is exponen-
tially stable in Z.

If system (2.18) is (uniformly, exponentially) convergent in Z = R
d, then it

is called globally (uniformly, exponentially) convergent.

The solution z̄(t) will be called a steady-state solution and the set Z will be
referred to as a convergence region. As follows from the definition of conver-
gence, any solution of a convergent system starting in a convergence region
“forgets” its initial condition and converges to some steady-state solution. In
general, the steady-state solution z̄(t) may be nonunique. But for any two
steady-state solutions z̄1(t) and z̄2(t), it holds that |z̄1(t) − z̄2(t)| → 0 as
t → +∞. This statement follows from the triangle inequality

|z̄1(t) − z̄2(t)| ≤ |z̄1(t) − z(t)| + |z(t) − z̄2(t)|,

where z(t) is some solution of system (2.18) starting in z(t0) ∈ Z, t0 ∈ R, and
from the fact that z̄1(t) and z̄2(t) attract solutions starting in Z.

In the original definition of convergent systems given by B.P. Demidovich
in [15], it is required that there exists only one solution z̄w(t) bounded on
R; i.e., the steady-state solution is unique. Therefore, the class of convergent
systems defined above is larger than the class of convergent systems defined
by B.P. Demidovich. At the same time, for the practically important case of
uniformly convergent systems, we see that Property 2.5 yields uniqueness of
the steady-state solution.

Property 2.15. If system (2.18) is uniformly convergent in Z, then the
steady-state solution z̄(t) is unique.

The convergence property is an extension of stability properties of asymp-
totically stable linear time-invariant (LTI) systems. Recall that for a piece-
wise continuous vector-function f(t), which is bounded on t ∈ R, the sys-
tem ż = Az + f(t) with a Hurwitz matrix A has a unique solution z̄(t)
which is defined and bounded on t ∈ (−∞,+∞). It is given by the formula
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z̄(t) :=
∫ t

−∞ exp(A(t − s))f(s)ds. This solution is globally exponentially sta-
ble with the rate of convergence depending only on the matrix A. Thus, an
asymptotically stable LTI system excited by a bounded piecewise-continuous
function f(t) is globally exponentially convergent.

2.2.2 Convergent systems with inputs

In the scope of control problems, time dependency of the right-hand side of
system (2.18) is usually due to some input. This input may represent, for
example, a disturbance or a feedforward control signal. In this section we
will consider convergence properties for systems with inputs. So, instead of
systems of the form (2.18), we consider systems

ż = F (z, w), (2.19)

with state z ∈ R
d and input w ∈ R

m. The function F (z, w) is locally Lips-
chitz in z and continuous in w. The inputs w(t) are assumed to be piecewise
continuous functions of time defined for all t ∈ R.

Classes of inputs
In this book we will deal with several important classes of inputs. The first
class consists of piecewise continuous vector functions w(t) ∈ R

m that are
defined and bounded on t ∈ R. This class of inputs is denoted by PCm. The
second class PC(W) is defined in the following way. Let W be some subset of
R

m. A function w(·) : R → W belongs to the class PC(W) if it is piecewise
continuous and if there exists a compact set Kw ⊂ W such that w(t) ∈ Kw for
all t ∈ R. In particular, we obtain that PC(Rm) = PCm. Another important
class of inputs considered in the book is related to solutions of the system

ẇ = s(w), w ∈ R
m, (2.20)

with a locally Lipschitz function s(w). Let the set W ⊂ R
m be invariant with

respect to system (2.20).2 The class of inputs Is(W) consists of solutions
w(t) = w(t, w0) of system (2.20) starting in w(0) = w0 ∈ W. Note that since
the set W is invariant, we have for w(·) ∈ Is(W) that w(t) ∈ W for all t ∈ R.

Below we define the convergence property for systems with inputs.

Definition 2.16. System (2.19) is said to be (uniformly, exponentially) con-
vergent in a set Z ⊂ R

m for a class of inputs N ⊂ PCm if it is (uniformly,
exponentially) convergent in Z for every input w(·) ∈ N . In order to empha-
size the dependency of the steady-state solution on the input w(t), it is denoted
by z̄w(t).

2A set W ⊂ R
m is called invariant (positively invariant) with respect to sys-

tem (2.20) if w0 ∈ W implies w(t, w0) ∈ W for all t ∈ R (for all t ≥ 0).
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As follows from the previous section, a simple example of a system that is
globally exponentially convergent for the class of inputs PCm is the system

ż = Az + Bw, (2.21)

with a Hurwitz matrix A. The corresponding steady-state solution z̄w(t)
equals z̄w(t) :=

∫ t

−∞ exp(A(t−s))Bw(s)ds. Moreover, this solution is bounded
by

|z̄w(t)| ≤
∫ 0

−∞
‖ exp(−As)B‖ds sup

τ∈R

|w(τ)|.

Thus, for all inputs w(t) satisfying |w(t)| ≤ ρ, for some ρ > 0 and all t ∈ R,
the corresponding steady-state solutions satisfy |z̄w(t)| ≤ R for all t ∈ R,
where R := ρ

∫ 0
−∞ ‖ exp(−As)B‖ds. Therefore, all steady-state solutions cor-

responding to the inputs satisfying |w(t)| ≤ ρ for all t ∈ R are bounded by
R uniformly with respect to all inputs from this set. This motivates the in-
troduction of the uniformly bounded steady-state (UBSS) property. For a set
W ⊂ R

m, consider some class of inputs N (W) ⊂ PC(W).

Definition 2.17. The system (2.19) that is convergent in Z for a class of
inputs N (W) is said to have the UBSS property if for any compact set Kw ⊂
W there exists a compact set Kz ⊂ R

d such that for any input w(·) ∈ N (W)
the following implication holds:

w(t) ∈ Kw ∀ t ∈ R ⇒ z̄w(t) ∈ Kz ∀ t ∈ R. (2.22)

Remark. For Z = R
d, W = R

m, and N (W) = PCm this definition is
equivalent to the following statement. For every ρ > 0 there exists R > 0
such that if a piecewise continuous input w(t) satisfies |w(t)| ≤ ρ for all t ∈ R,
then the corresponding steady-state solution satisfies |z̄w(t)| ≤ R for all t ∈ R.
This UBSS property will prove to be useful in Chapter 4.�

A property that is even stronger than the UBSS property and also holds
for asymptotically stable LTI systems is presented in the following definition.

Definition 2.18. System (2.19) is said to be input-to-state convergent if it is
globally uniformly convergent for the class of inputs PCm and for every input
w(·) ∈ PCm system (2.19) is ISS with respect to the steady-state solution
z̄w(t), i.e., there exist a KL-function β(r, s) and a K∞-function γ(r) such
that any solution z(t) of system (2.19) corresponding to some input ŵ(t) :=
w(t) + ∆w(t) satisfies

|z(t) − z̄w(t)| ≤ β(|z(t0) − z̄w(t0)|, t − t0) + γ

(
sup

t0≤τ≤t
|∆w(τ)|

)
. (2.23)

In general, the functions β(r, s) and γ(r) may depend on the particular input
w(·).
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The following property establishes a link between the input-to-state con-
vergence and the global uniform convergence with the UBSS property.

Property 2.19. If system (2.19) is input-to-state convergent, then it is glob-
ally uniformly convergent with the UBSS property for the class of inputs PCm.

Proof: We only need to show that an input-to-state convergent system has
the UBSS property for the class of inputs PCm. Consider some input ŵ(·) ∈
PCm. Since the system is input-to-state convergent, there exists a steady-
state solution z̄ŵ(t), which is bounded on t ∈ R. For any input w(·) ∈ PCm

satisfying |w(t)| ≤ ρ for some ρ > 0 and all t ∈ R, the corresponding steady-
state solution z̄w(t) satisfies

|z̄w(t)| ≤ |z̄ŵ(t)| + |z̄w(t) − z̄ŵ(t)|

≤ sup
t∈R

|z̄ŵ(t)| + β(|z̄w(t0) − z̄ŵ(t0)|, t − t0) + γ

(
sup
t∈R

|w(t) − ŵ(t)|
)

≤ sup
t∈R

|z̄ŵ(t)| + γ

(
sup

t∈R, |w|≤ρ

|w − ŵ(t)|
)

=: R. (2.24)

In the last inequality we have used the fact that |z̄w(t0) − z̄ŵ(t0)| remains
bounded as t0 → −∞ and, therefore, β(|z̄w(t0) − z̄ŵ(t0)|, t − t0) → 0
as t0 → −∞. Thus, we have shown that for any input w(t) satisfying
|w(t)| ≤ ρ for all t ∈ R, the corresponding steady-state solution z̄w(t) sat-
isfies |z̄w(t)| ≤ R for all t ∈ R. Notice that R does not depend on w(t). This
proves the UBSS property. 	


Similarly to the conventional ISS property, the property of input-to-state
convergence is especially useful for studying convergence properties of inter-
connected systems. For this purpose the input-to-state convergence property
will be used in Chapter 5. For local analysis we introduce the notion of local
convergence.

Definition 2.20. System (2.19) with F (0, 0) = 0 is said to be locally (uni-
formly, exponentially) convergent for some class of inputs N ⊂ PCm if there
exists a neighborhood of the origin Z ⊂ R

d and a number ρ > 0 such that
system (2.19) is (uniformly, exponentially) convergent in Z for all inputs
w(·) ∈ N satisfying the condition |w(t)| < ρ for all t ∈ R.

Roughly speaking, if system (2.19) is locally convergent, then for any suffi-
ciently small input w(t) from the class N all solutions of system (2.19) starting
close enough to the origin converge to the same steady-state solution z̄w(t).

2.2.3 Basic properties of convergent systems

As follows from the previous section, the (uniform) convergence property and
the input-to-state convergence property are extensions of stability properties
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of asymptotically stable LTI systems. In this section we present certain prop-
erties of convergent systems that are inherited from asymptotically stable LTI
systems. The results presented in this section will be used in subsequent chap-
ters in the analysis and controller design for the output regulation problem.

Since all ingredients of the (uniform) convergence, the UBSS property, and
the input-to-state convergence are invariant under smooth coordinate trans-
formations (see Definitions 2.14, 2.17, 2.18), we can formulate the following
statement.

Property 2.21. The uniform convergence property is preserved under smooth
coordinate transformations in the following sense. If system (2.19) is (uni-
formly) convergent in Z for some class of inputs N ⊂ PCm, then after a
smooth coordinate transformation z̃ = ψ(z) the system in the new coordinates
is (uniformly) convergent in Z̃, where Z̃ = ψ(Z) is the image of Z under the
mapping ψ. Moreover, the UBSS property and the input-to-state convergence
property are preserved under smooth coordinate transformations.

Certain properties of convergent systems can be concluded if the input
w(t) is defined only on the positive half axis t ∈ [t0,+∞) rather than on the
whole time axis as in the definition of the convergence property.

Property 2.22. Suppose system (2.19) is globally (uniformly) convergent for
the class of inputs PC(W). Then for every piecewise continuous input w(t)
defined for t ≥ t0 and lying in some compact subset of W for all t ≥ t0, there
exists a solution z̃w(t) that is defined and bounded for all t ≥ t0 and that is
(uniformly) globally asymptotically stable.

Proof: Define w̃(t) such that w̃(t) = w(t) for all t ≥ t0 and w̃(t) ≡ w(t0)
for all t < t0. This w̃(t) belongs to the class PC(W). Since system (2.19) is
globally (uniformly) convergent for the class of inputs PC(W), there exists
a steady-state solution z̄w̃(t) corresponding to the input w̃(t). This solution
z̄w̃(t) is (uniformly) globally asymptotically stable. By definition, for t ≥ t0
this z̄w̃(t) is a solution of system (2.19) with the input w(t). This establishes
our claim. 	


The next statement summarizes some properties of uniformly convergent
systems excited by periodic or constant inputs.

Property 2.23. Suppose system (2.19) with a given input w(t) is uniformly
convergent in Z. If the input w(t) is constant, then the corresponding steady-
state solution z̄w(t) is also constant; if the input w(t) is periodic with period
T , then the corresponding steady-state solution z̄w(t) is also periodic with the
same period T .

Proof: Suppose the input w(t) is periodic with period T > 0. Denote z̃w(t) :=
z̄w(t + T ). Notice that z̃w(t) is a solution of system (2.19). Namely, by the
definition of z̃w(t), it is a solution of the system
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ż = F (z, w(t + T )) ≡ F (z, w(t)).

Here we have used the periodicity of w(t), i.e., w(t + T ) ≡ w(t). Since
z̄w(t) is bounded on t ∈ R and uniformly asymptotically stable in Z, so is
z̃w(t), because z̃w(t) is a time-shifted version of z̄w(t). Thus, z̃w(t) is also
a steady-state solution of system (2.19). But as follows from Property 2.15,
the steady-state solution of a uniformly convergent system is unique. Thus,
z̄w(t + T ) = z̃w(t) ≡ z̄w(t). This proves T -periodicity of the steady-state so-
lution z̄w(t). A constant input w(t) ≡ w∗ is periodic for any period T > 0.
Hence, the corresponding steady-state solution z̄w(t) is also periodic with any
period T > 0. This implies that z̄w(t) is constant. 	


If a system is locally uniformly convergent for some class of inputs N ⊂
PCm containing the zero input w(t) ≡ 0, then it has a certain continuity
property that guarantees that for small inputs the corresponding steady-state
solutions are also small. This is stated in the following property.

Property 2.24. Consider system (2.19) with F (0, 0) = 0 and F (z, w) being
C1 in some neighborhood of the origin (z, w) = (0, 0). Suppose system (2.19) is
locally uniformly convergent for some class of inputs N ⊂ PCm containing the
zero input w(t) ≡ 0. Then there exists a neighborhood of the origin Z ⊂ R

d,
a number kw > 0 and a class K function γ(r) such that system (2.19) is
uniformly convergent in Z for any w(·) ∈ N satisfying supt∈R |w(t)| ≤ kw

and the corresponding steady-state solution z̄w(t) satisfies

sup
t∈R

|z̄w(t)| ≤ γ

(
sup
t∈R

|w(t)|
)
. (2.25)

Proof: See Appendix 9.2.

If two inputs converge to each other, so do the corresponding steady-state
solutions, as follows from the next property.

Property 2.25. Suppose system (2.19) is globally uniformly convergent for
the class of inputs PCm and F (z, w) is C1. Then for any two inputs w1(·)
and w2(·) ∈ PCm satisfying w1(t) −w2(t) → 0 as t → +∞, the corresponding
steady-state solutions z̄w1(t) and z̄w2(t) satisfy z̄w1(t)−z̄w2(t) → 0 as t → +∞.

Proof: See Appendix 9.3.

The next two properties relate to parallel and series connections of uniformly
convergent systems, as shown in Figures 2.1 and 2.2.

Property 2.26 (Parallel connection). Consider the system{
ż = F (z, w), z ∈ R

d,
ẏ = G(y, w), y ∈ R

q.
(2.26)
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Suppose the z- and y-subsystems are globally uniformly convergent for some
class of inputs N ⊂ PCm (input-to-state convergent). Then the system (2.26)
is globally uniformly convergent for the class of inputs N (input-to-state con-
vergent).

Proof: The proof directly follows from the definitions of uniformly convergent
and input-to-state convergent systems. 	

Property 2.27 (Series connection). Consider the system{

ż = F (z, y, w), z ∈ R
d,

ẏ = G(y, w), y ∈ R
q.

(2.27)

Suppose the z-subsystem with (y, w) as input is input-to-state convergent, and
the y-subsystem with w as input is input-to-state convergent. Then system
(2.27) is input-to-state convergent.

Proof: See Appendix 9.4.

The next property deals with bidirectionally interconnected input-to-state
convergent systems, as shown in Figure 2.3.

Property 2.28. Consider the system{
ż = F (z, y, w), z ∈ R

d,
ẏ = G(z, y, w), y ∈ R

q.
(2.28)

Suppose the z-subsystem with (y, w) as input is input-to-state convergent. As-
sume that there exists a class KL function βy(r, s) such that for any input
(z(·), w(·)) ∈ PCd+m any solution of the y-subsystem satisfies

F

G

w

z

y w

z
F

G
y

w

Fig. 2.1. Parallel connection of two
systems with inputs.

Fig. 2.2. Series connection of two sys-
tems with inputs.

F

G w

z

y

w

Fig. 2.3. Bidirectionally interconnected systems with inputs.
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|y(t)| ≤ βy(|y(t0)|, t − t0).

Then the interconnected system (2.28) is input-to-state convergent.

Proof: Denote z̄w(t) to be the steady-state solution of the z-subsystem corre-
sponding to y = 0 and to some w(·) ∈ PC. Then (z̄w(t), 0) is a solution of the
interconnected system (2.28) that is defined and bounded for all t ∈ R. We
establish the property by performing the change of coordinates z̃ = z − z̄w(t)
and applying the small gain theorem for ISS systems (Theorem 2.13). 	


Remark. We will use Property 2.28 in Chapter 5 to prove the separation
principle for input-to-state convergent systems. In that context system (2.28)
represents a system in closed loop with a state-feedback controller and an
observer generating state estimates for this controller. The y-subsystem cor-
responds to the state estimation error dynamics of the observer.�

2.2.4 Sufficient conditions for convergence

In the previous sections we presented the definitions and basic properties of
convergent systems. The next question is how to check whether a system is
convergent. In this section we provide sufficient conditions for convergence for
smooth and nonsmooth systems.

For smooth systems, a simple sufficient condition for the exponential con-
vergence property was proposed in [14] (see also [66]). Here we give a different
formulation of the result from [14] adapted for systems with inputs and ex-
tended to include the input-to-state convergence property.

Theorem 2.29. Consider system (2.19) with the function F (z, w) being C1

with respect to z ∈ R
d and continuous with respect to w ∈ W ⊂ R

m. Suppose
there exist matrices P = PT > 0 and Q = QT > 0 such that

P
∂F

∂z
(z, w) +

∂F

∂z

T

(z, w)P ≤ −Q, ∀z ∈ R
d, w ∈ W. (2.29)

Then system (2.19) is globally exponentially convergent with the UBSS prop-
erty for the class of inputs PC(W). If W = R

m, then system (2.19) is input-
to-state convergent.

We will refer to condition (2.29) as the Demidovich condition, after B.P. Demi-
dovich, who applied this condition for studying convergence properties of dy-
namical systems [14, 15, 66]. We will say that a system satisfies the Demi-
dovich condition if the right-hand side of this system satisfies condition (2.29)
for some matrices P = PT > 0 and Q = QT > 0.

A complete proof of Theorem 2.29 is provided in Appendix 9.5. It is based
on the two technical lemmas formulated below. These lemmas will also be
used in subsequent results on the convergence properties.
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Lemma 2.30 ([14, 66]). Suppose F (z, w) is C1 with respect to z and con-
tinuous with respect to w. Let C ⊂ R

d and W ⊂ R
m be such that

P
∂F

∂z
(z, w) +

∂F

∂z

T

(z, w)P ≤ −Q, ∀z ∈ C, w ∈ W, (2.30)

for some positive definite matrices P = PT and Q = QT . Then there exists
β > 0 such that for any w ∈ W and for any two points z1, z2 ∈ R

d such that
the open line segment (z1, z2) connecting these two points lies in C, it holds
that

(z1 − z2)TP (F (z1, w) − F (z2, w)) ≤ −β(z1 − z2)TP (z1 − z2). (2.31)

The number β > 0 depends only on the matrices P and Q. If the set C is
convex, then relation (2.31) holds for any two points z1, z2 ∈ C and for any
w ∈ W.

Remark. The number β can be chosen equal to β := λmin(Q)/λmax(P ),
where λmin(·) and λmax(·) denote the minimal and the maximal eigenvalues of
a symmetric matrix. If Q := aI for some scalar a > 0, then β = a/‖P‖, where
‖ · ‖ = λmax(·) is the matrix norm induced by the vector norm |z| = (zT z)1/2.
This expression for β will be used in Chapter 6.�

For the case of C = R
d, Lemma 2.30 allows one to establish global expo-

nential stability of every solution of system (2.19) corresponding to any input
w(·) ∈ PC(W) (see details in the proof of Theorem 2.29 in Appendix 9.5).
The second lemma allows one to establish the existence of a solution z̄w(t)
that is defined and bounded on R.

Lemma 2.31 ([14, 89]). Consider system (2.19) with a given continuous
input w(t) defined for all t ∈ R. Suppose D ⊂ R

d is a compact set that is
positively invariant with respect to system (2.19) with the input w(t). Then
there exists a solution z̄w(t) of system (2.19) satisfying z̄w(t) ∈ D for all
t ∈ R.

Theorem 2.29 is proved in the following way. The Demidovich condition
(2.29) guarantees that for any input w(·) ∈ PC(W) any solution of sys-
tem (2.19) is globally exponentially stable. Moreover, this condition guaran-
tees that for any input w(·) ∈ PC(W) system (2.19) has a compact positively
invariant set Dw (see details in the proof of Theorem 2.29 in Appendix 9.5).
By Lemma 2.31 this implies the existence of a solution z̄w(t) which is defined
and bounded for all t ∈ R. Therefore, system (2.19) is globally exponentially
convergent. The UBSS property and the input-to-state convergence property
require a rather technical proof (see Appendix 9.5). The reasoning used in the
proof of Theorem 2.29 and Lemmas 2.30 and 2.31 will be used in the proofs
of subsequent results on the convergence property.
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Example 2.32. Let us illustrate the application of Theorem 2.29 with a simple
example. Consider the system

ż1 = −z1 + wz2 + w, (2.32)
ż2 = −wz1 − z2.

The Jacobian of the right-hand side of system (2.32) equals

J(z1, z2, w) =
( −1 w

−w −1

)
.

Obviously, J + JT = −2I < 0. Thus, the Demidovich condition (2.29) is
satisfied for all z1, z2, and w (with P = I and Q = 2I). By Theorem 2.29,
system (2.32) is input-to-state convergent.�

If the right-hand side of system (2.19) is not smooth with respect to z
(therefore, the Jacobian ∂F/∂z(z, w) may be undefined in certain points of
the state space), after some adjustments we can still apply the Demidovich
condition (2.29) for checking the exponential convergence property. The next
theorem extends Theorem 2.29 to the case where the function F (z, w) may
lose continuous differentiability on certain low-dimensional sets.

Theorem 2.33. Consider system (2.19). Let F (z, w) be continuous with re-
spect to w ∈ W ⊂ R

m and locally Lipschitz with respect to z ∈ R
d. Moreover,

let F (z, w) be C1 with respect to z in (z, w) ∈ (Rd \ Γ ) × W, where Γ ⊂ R
d

is a set consisting of a finite number of hyperplanes given by equations of the
form HT

j z + hj = 0, for some Hj ∈ R
d and hj ∈ R, j = 1, . . . , k. Suppose

there exist matrices P = PT > 0 and Q = QT > 0 such that

P
∂F

∂z
(z, w) +

∂F

∂z

T

(z, w)P ≤ −Q, ∀z ∈ R
d \ Γ, w ∈ W. (2.33)

Then system (2.19) is globally exponentially convergent with the UBSS prop-
erty for the class of inputs PC(W). If W = R

m, then system (2.19) is input-
to-state convergent.

Proof: See Appendix 9.6.

Remark. It can be proved that the statement of Theorem 2.33 holds also
for the case when the set Γ consists of a finite number of smooth manifolds
given by equations of the form hj(z) = 0, j = 1, . . . k. The proof is based on
the same ideas as the proof of Theorem 2.33, but contains much more techni-
cal details.�

As a particular case of Theorem 2.33 we obtain the following result for
piecewise affine systems.
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Theorem 2.34. Consider the state space R
d which is divided into non-

intersecting cells Λi, i = 1, . . . , l, by hyperplanes given by equations of the
form HT

j z + hj = 0, for some Hj ∈ R
d and hj ∈ R, j = 1, . . . , k. Consider

the piecewise affine system

ż = Aiz + bi + Dw, for z ∈ Λi, i = 1, . . . , l. (2.34)

Suppose the right-hand side of (2.34) is continuous and there exists a positive
definite matrix P = PT > 0 such that

PAi + AT
i P < 0, i = 1, . . . , l. (2.35)

Then system (2.34) is globally exponentially convergent for the class of inputs
PCm and input-to-state convergent.

The continuity requirement on the right-hand side of system (2.34) can be
checked with the following lemma.

Lemma 2.35. Consider system (2.34). The right-hand side of system (2.34)
is continuous if and only if the following condition is satisfied: for any two
cells Λi and Λj having a common boundary HT z + h = 0 the corresponding
matrices Ai and Aj and the vectors bi and bj satisfy the equalities

GHHT = Ai − Aj , (2.36)
GHh = bi − bj ,

for some vector GH ∈ R
d.

Proof: See Appendix 9.7.

Recall that by Property 2.27 a series connection of input-to-state conver-
gent systems is again an input-to-state convergent system. Therefore we obtain
the following corollary of Property 2.27 and Theorems 2.29, 2.33, and 2.34.

Corollary 2.36. The series connection of systems satisfying the Demidovich
condition for W = R

m is an input-to-state convergent system.

Taking into account the existence of powerful solvers for linear matrix in-
equalities (LMIs), condition (2.35) can be efficiently checked with a computer.
In certain cases, feasibility of the Demidovich condition (2.29) or (2.33) can
also be concluded from feasibility of LMIs of the form (2.35). Namely, suppose
there exist matrices A1, . . . , Ak such that

∂F

∂z
(z, w) ∈ co{A1, . . . , Ak}, ∀ z ∈ R

d \ Γ, w ∈ W,

where
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co{A1, . . . , Ak} :=

{
A ∈ R

d×d : A =
k∑

i=1

λiAi,

k∑
i=1

λi = 1, λi ≥ 0

}
is the convex hull of matrices A1, . . . , Ak. If the LMIs

PAi + AT
i P < 0, i = 1, . . . , k (2.37)

admit a common positive definite solution P = PT > 0, then condition (2.29)
or (2.33) is satisfied with this matrix P .

In some cases, feasibility of the LMI (2.37) can be checked using frequency
domain methods following from the Kalman–Yakubovich lemma (see [51, 89]).
For example, one can use the circle criterion [51, 78, 89], as follows from the
next lemma.

Lemma 2.37. Consider a matrix A ∈ R
d×d, matrices B ∈ R

d×1, C ∈ R
1×d,

and some number γ > 0. Denote A−
γ := A − γBC and A+

γ := A + γBC. The
following conditions are equivalent:

(i) There exists P = PT > 0 such that

PA−
γ + (A−

γ )TP < 0, PA+
γ + (A+

γ )TP < 0. (2.38)

(ii)The matrix A is Hurwitz and
∣∣C(iωI − A)−1B

∣∣ < 1
γ for all ω ∈ R.

This lemma allows one to check input-to-state convergence for the so-called
Lur’e systems, as follows from the example below. Exponential convergence
of Lur’e systems with nonlinearities satisfying some incremental sector con-
dition has been studied in [89]. In that work the nonlinearities may even be
discontinuous.

Example 2.38. Consider the system

ż = Az + Bϕ(y) + Ew, (2.39)
y = Cz + Hw,

with the Hurwitz matrix A, scalar output y, and scalar nonlinearity ϕ(y) ∈ R.
Suppose the nonlinearity ϕ(y) is C1 and it satisfies the condition

∣∣∣∂ϕ
∂y (y)

∣∣∣ ≤ γ

for all y ∈ R. Then the Jacobian of the right-hand side of system (2.39), which
is equal to ∂F

∂z := A + BC ∂ϕ
∂y (y), satisfies ∂F

∂z ∈ co{A−
γ , A+

γ } for all y ∈ R. By
Lemma 2.37, if the condition∣∣C(iωI − A)−1B

∣∣ < 1
γ
, ∀ ω ∈ R, (2.40)

is satisfied, then LMI (2.38) admits a common positive definite solution.
Therefore, system (2.39) satisfies the Demidovich condition (2.29) for all
z ∈ R

d and all w ∈ R
m. By Theorem 2.29, this system is globally exponentially

convergent for the class of inputs PCm and it is input-to-state convergent.�
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If the nonlinearity ϕ(y) is not C1, in some cases one can still conclude the
input-to-state convergence of the system, as follows from the next example.

Example 2.39. Consider system (2.39) with H = 0 and the nonlinearity ϕ(y)
given by the formula

ϕ(y) :=

⎧⎨⎩k1y, |y| ≤ δ,
k2y + (k1 − k2)δ, y > δ,
k2y − (k1 − k2)δ, y < δ,

(2.41)

for some δ > 0 and k2 > k1 > 0. The nonlinearity ϕ(y) is shown in Figure 2.4.
The system (2.39), (2.41) represents a linear system in closed loop with a

variable gain controller. In [26] such controllers are proposed to enhance the
performance of DVD drives. One of the questions addressed in [26] is: under
what conditions does system (2.39), (2.41), being excited by a periodic in-
put w(t), have a unique globally asymptotically stable periodic solution? This
question can be easily answered using Lemma 2.37 and Theorem 2.34, which
guarantee that system (2.39), (2.41) is globally exponentially convergent. No-
tice that system (2.39), (2.41) is an example of a continuous piecewise affine
system (2.34) with two modes separated by the switching surfaces Cz = δ
and Cz = −δ. The matrices A1 and A2 corresponding to different modes can
be written as A1 = Ã + γBC and A2 = Ã − γBC, where Ã = A + k1+k2

2 BC

and γ = (k2 −k1)/2. Therefore, if Ã is Hurwitz and
∣∣∣C(iωI − Ã)−1B

∣∣∣ < 1
γ for

all ω ∈ R, then, by Lemma 2.37, there exists a matrix P = PT > 0 such that
(2.35) is satisfied. By Theorem 2.34 system (2.39), (2.41) is globally exponen-
tially convergent. This implies that all solutions of system (2.39), (2.41) expo-
nentially converge to a unique steady-state solution z̄w(t). By Property 2.23,
for any periodic input w(t) this steady-state solution z̄w(t) is periodic with
the same period T as the period of w(t).�

Theorem 2.29 is based on quadratic Lyapunov functions. It may happen
that there are no matrices P = PT > 0 and Q = QT > 0 such that system

−δ

δ

Slope k1

Slope k2

ϕ

y

Fig. 2.4. Nonlinearity ϕ(y).
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(2.19) satisfies the Demidovich condition (2.29). Yet, this system can be uni-
formly convergent if it satisfies the conditions of the theorem presented below.
This theorem is a generalization of Theorem 2.29.

Theorem 2.40. Consider system (2.19). Suppose there exist C1 functions
V1(z1, z2) and V2(z), K-functions α2(s), α3(s), α5(s), γ(s), and K∞-functions
α1(s), α4(s) satisfying the conditions

α1(|z1 − z2|) ≤ V1(z1, z2) ≤ α2(|z1 − z2|), (2.42)

∂V1

∂z1
(z1, z2)F (z1, w) +

∂V1

∂z2
(z1, z2)F (z2, w) ≤ −α3(|z1 − z2|), (2.43)

α4(|z|) ≤ V2(z) ≤ α5(|z|), (2.44)

∂V2

∂z
(z)F (z, w) ≤ 0 for |z| ≥ γ(|w|) (2.45)

for all z1, z2, z ∈ R
d and all w ∈ R

m. Then system (2.19) is globally uniformly
convergent and has the UBSS property for the class of inputs PCm.

Proof: See Appendix 9.8.

In order to establish the local exponential convergence property of system
(2.19), one needs to check the linearization of system (2.19) at the origin, as
follows from the next theorem.

Theorem 2.41. Consider system (2.19) with F (0, 0) = 0 and F (z, w) being
C1 with respect to z and continuous with respect to w in some neighborhood
of (z, w) = (0, 0). Let N ⊂ PCm be some class of inputs w(·) containing the
zero input w(t) ≡ 0. The following statements are equivalent:

(i) System (2.19) is locally exponentially convergent for the class of inputs
N .

(ii) System (2.19) is locally exponentially convergent for the class of inputs
PCm.

(iii) The matrix ∂F/∂z(0, 0) is Hurwitz.

Proof: See Appendix 9.9.

2.3 Summary

In this chapter we have presented several notions of convergent systems, which
will play a central role in the analysis and design problems for the output reg-
ulation problem. The notion of convergence represents a convenient formal-
ization of the property that all solutions of a system with an input “forget”
their initial conditions and converge to some steady-state solution, which is
determined only by the input. The notion of convergence is more convenient
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than the other existing formalizations of such property (contraction property
[57], incremental stability [2, 23], and incremental ISS [2]), because the con-
vergence property is a rigorously defined topological property of solutions of
a system with inputs; it is coordinate independent and it does not require an
operator description of the system. The convergence property is an extension
of stability properties of asymptotically stable LTI systems to the nonlin-
ear case. Therefore, convergent systems have a number of stability properties
that are inherited from asymptotically stable linear systems. Some of these
properties have been presented in this chapter. We have provided sufficient
conditions for various convergence properties. These conditions apply to sys-
tems with smooth right-hand sides and nonsmooth, but continuous right-hand
sides. As a particular case, we have presented sufficient conditions for input-
to-state convergence for continuous piecewise affine systems. The results on
convergent systems presented in this chapter will be subsequently used in the
analysis of and controller design for the output regulation problem. At the
same time, they can be used for analysis and synthesis purposes in other con-
trol problems, where it is important that solutions of a system “forget” their
initial conditions and converge to some steady-state solution determined by
the input. These problems include tracking, synchronization, observer design,
disturbance rejection, and nonlinear performance analysis.



3

The uniform output regulation problem

The output regulation problem is, roughly speaking, either a disturbance rejec-
tion problem or a tracking problem or a combination of these two problems.
The key feature that distinguishes the output regulation problem from the
conventional disturbance rejection and tracking problem is that disturbances
and/or reference signals are generated by an external autonomous system,
which is called an exosystem. Disturbances and reference signals generated by
the exosystem are called exosignals. The exosystem together with the set of
possible initial conditions determines the class of exosignals that affect the
system. The output that we want to regulate (e.g., the tracking error in the
tracking problem) is called the regulated output. The output that is available
for measurement is called the measured output. The output regulation prob-
lem is, in general, to find a measured output feedback controller such that the
closed-loop system is internally stable and the regulated output tends to zero
along solutions of the closed-loop system regardless of the exosignals affecting
the system. The internal stability requirement roughly means that all solu-
tions of the closed-loop system “forget” their initial conditions and converge to
some steady-state solution, which is determined only by the exosignal. As we
have seen in the previous chapter, such an internal stability requirement can
be formalized as the requirement of (uniform) convergence of the closed-loop
system, which has been defined in Chapter 2.

In this chapter we state several variants of the uniform output regulation
problem based on the notion of uniform convergence. First, in Section 3.1 we
introduce the equations of the systems under consideration and make basic as-
sumptions on these systems. After that, in Section 3.2 we state the global and
local variants of the uniform output regulation problem as well as the problem
of robust uniform output regulation. Relations between the uniform output
regulation problem and the conventional formulations of the output regulation
problem are discussed in Section 3.3. Relations between the observer design
and controlled synchronization problems on the one hand and the uniform
output regulation problem on the other hand are studied in Section 3.4.
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3.1 System equations and basic assumptions

Consider systems modeled by equations of the form

ẋ = f(x, u, w), (3.1)
e = hr(x,w), (3.2)
y = hm(x,w), (3.3)

with state x ∈ R
n, input u ∈ R

k, regulated output e ∈ R
lr , and measured

output y ∈ R
lm . The exogenous signal w(t) ∈ R

m, which can be viewed as
a disturbance in (3.1) or as a reference signal in (3.2), is generated by an
external autonomous system

ẇ = s(w), (3.4)

with some set of initial conditions W ⊂ R
m. System (3.4) is called an exo-

system. The functions f(x, u, w), hr(x,w), hm(x,w) and s(w) are assumed to
be continuous and, where necessary, locally Lipschitz in order to guarantee
existence and uniqueness of solutions of the corresponding differential equa-
tions. Recall that if a set W ⊂ R

m is invariant with respect to system (3.4),
then Is(W) denotes the class of solutions of the exosystem (3.4) starting in
w(0) ∈ W (see Section 2.2.2). This notation will be widely used in the problem
statement and in the analysis of the uniform output regulation problem.

In the context of the output regulation problem, we will consider sev-
eral classes of exosystems. Exosystems of the first class satisfy the following
boundedness assumption in a set of initial conditions W:

A1 The set W is invariant with respect to exosystem (3.4) and for any com-
pact set K0 ⊂ W there exists a compact set Kw ⊂ W such that any
solution w(t) starting in w(0) ∈ K0 satisfies w(t) ∈ Kw for all t ∈ R.

For the case of W = R
m, Assumption A1 can be reformulated in the following

equivalent way: for any a > 0 there exists b > 0 such that |w(0)| ≤ a implies
|w(t)| ≤ b for all t ∈ (−∞,+∞). Using the definitions of Yoshizawa [91], such
a property of solutions of exosystem (3.4) can be called equi-boundedness of
solutions in forward and backward time.

A simple and practically important example of an exosystem satisfying
the boundedness assumption A1 is a linear system

ẇ = Sw, (3.5)

with the matrix S such that its spectrum consists of simple eigenvalues on
the imaginary axis with, possibly, multiple eigenvalues at zero. This system
is a linear harmonic oscillator. Without loss of generality, we assume that the
matrix S is skew-symmetric. In this case, the exosystem (3.5) satisfies A1
in any ball Wr := {w : |w| < r}, 0 < r ≤ +∞. Indeed, for every solution
of exosystem (3.5) it holds that |w(t)| ≡ Const. Thus, for any compact set
K0 ⊂ Wr we can choose Kw to be a closed ball Kw := {w : |w| ≤ r̄}, where
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r̄ > 0 is such that r̄ < r and K0 ⊂ Kw. With this choice of Kw it holds that
Kw is a compact subset of Wr and any solution w(t) starting in w(0) ∈ K0
satisfies w(t) ∈ Kw for all t ∈ R.

Assumption A1 is rather restrictive since a wide variety of practically and
theoretically important exosystems do not satisfy this assumption. For exam-
ple, exosystems having a limit cycle or any other bounded attractor with an
unbounded domain of attraction do not satisfy this assumption because these
exosystems have trajectories leaving any compact set as t → −∞. Such exo-
systems are encountered, for example, in (controlled) synchronization prob-
lems, see, e.g., [36, 37, 61]. As will be shown in Section 3.4, the controlled
synchronization problem is a particular case of the output regulation prob-
lem. In practice we are interested not in the dynamics for negative time, but
only in the asymptotic dynamics for positive time, i.e., for t → +∞. Thus, we
come to the second class of exosystems to be considered in this book. Exosys-
tems of this class satisfy the following assumption in a compact set of initial
conditions W+:

A2 The set W+ is compact and positively invariant with respect to exosystem
(3.4).

This set W+ may consist, for example, of a bounded attractor and some
compact positively invariant subset of its domain of attraction.

For local variants of the output regulation problem, we will consider so-
called neutrally stable exosystems.

Definition 3.1. The exosystem (3.4) with an equilibrium w = 0 is called
neutrally stable if w = 0 is stable in forward and backward time and for any
solution of the exosystem w(t, w0) starting in a point w(0, w0) = w0 close
enough to the origin, there exists a sequence {tk}+∞

k=0 such that tk → +∞ and
w(tk, w0) → w0 as k → +∞.

From this definition we see that any point w0 close enough to the origin
belongs to the ω-limit set of the trajectory w(t, w0). Similar to the case of
exosystems satisfying the boundedness assumption A1, the class of neutrally
stable exosystems contains linear harmonic oscillators. Indeed, any linear har-
monic oscillator (3.5) has an equilibrium w = 0, which is stable in forward
and backward time. Moreover, every trajectory w(t, w0) of exosystem (3.5)
returns to any neighborhood of its initial state w0.

3.2 The uniform output regulation problem

In this section we formulate several settings for the uniform output regulation
problem. In every problem setting one has to find, if possible, a controller of
the form

ξ̇ = η(ξ, y), ξ ∈ R
q, (3.6)

u = θ(ξ, y), (3.7)
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for some q ≥ 0 such that the closed-loop system

ẋ = f(x, θ(ξ, hm(x,w)), w), (3.8)
ξ̇ = η(ξ, hm(x,w)) (3.9)

satisfies three conditions: regularity, uniform convergence, and asymptotic out-
put zeroing.

The regularity condition means that the closed-loop system satisfies condi-
tions for existence and uniqueness of solutions. Throughout the book we will
require that the closed-loop system is locally Lipschitz with respect to (x, ξ)
and continuous with respect to w.

The uniform convergence condition means that the closed-loop system
with w as input is uniformly convergent in some set Z ⊂ R

n+q for every
w(t) being a solution of the exosystem starting in some predefined set of
initial conditions W ⊂ R

m. The sets Z and W will be determined in the
specific problem settings introduced in this section. The uniform convergence
requirement guarantees that every solution of the closed-loop system starting
in (x(0), ξ(0)) ∈ Z and corresponding to a solution of the exosystem w(t)
starting in w(0) ∈ W “forgets” its initial conditions and converges to a unique
steady-state solution z̄w(t), which is determined only by w(t). Moreover, in
some problem settings it will be required that the closed-loop system has
the UBSS property (see Definition 2.17), which means that for inputs taking
their values in some bounded set, the corresponding steady-state solutions are
bounded uniformly with respect to these inputs.

The asymptotic output zeroing condition means that for every solution of
the closed-loop system starting in (x(0), ξ(0)) ∈ Z and every solution of the
exosystem starting in w(0) ∈ W, it holds that the regulated output tends to
zero:

e(t) = hr(x(t), w(t)) → 0 as t → +∞.

In the following subsections we formulate precise problem statements for
the global and local variants of the uniform output regulation problem.

3.2.1 The global uniform output regulation problem

In this section we consider global variants of the uniform output regulation
problem for two types of exosystems. The first variant is formulated for exo-
systems with trajectories starting in some open invariant set W ⊂ R

m for
which the exosystem satisfies the boundedness assumption A1. This variant
is called the global uniform output regulation problem. The second variant is
formulated for the case of exosystems for which the set of initial conditions W+
is compact and positively invariant, i.e., for exosystems that satisfy Assump-
tion A2 in the set W+. This variant is called the global forward time uniform
output regulation problem. Both variants of the global uniform output regu-
lation problem are formulated in the following definition. Requirements that
are different for the forward time variant of the problem are given in brackets.
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The global (forward time) uniform output regulation problem: given
exosystem (3.4) satisfying the boundedness assumption A1 in an open set
of initial conditions W ⊂ R

m [satisfying the assumption A2 in a compact
set of initial conditions W+ ⊂ R

m], find, if possible, a controller of the form
(3.6), (3.7) such that the closed-loop system (3.8), (3.9) satisfies the following
conditions:

a) the right-hand side of the closed-loop system is locally Lipschitz with respect
to (x, ξ) and continuous with respect to w;

b) the closed-loop system is globally uniformly convergent with the UBSS prop-
erty for the class of inputs Is(W) [for the class of inputs PC(W̃), where
W̃ is some neighborhood of W+];

c) for all solutions of the closed-loop system and the exosystem starting in
(x(0), ξ(0)) ∈ R

n+q and w(0) ∈ W [w(0) ∈ W+] it holds that e(t) =
hr(x(t), w(t)) → 0 as t → +∞.

The main difference between the forward time variant and the regular
variant of the global uniform output regulation problem is in the uniform
convergence condition b). In the forward time variant of the problem, the set
W+ is compact and only positively invariant with respect to the exosystem.
Therefore, certain solutions of the exosystem starting in W+ may be not
defined for all t ∈ R. This fact does not allow us to require the uniform
convergence property in b) for the class of inputs consisting of solutions of
the exosystem starting in w(0) ∈ W+ because in the definition of convergence
the inputs must be defined for the whole time axis R. In order to cope with
this difficulty, the uniform convergence, in this case, is required for a larger
class of inputs PC(W̃).

Both variants of the global uniform output regulation problem will be
similarly treated at the stage of controller design in Chapter 5. We will en-
counter the differences between these two variants only at the analysis stage
in Chapter 4, when the question of solvability of the problems is answered.

3.2.2 The local uniform output regulation problem

For the local variant of the uniform output regulation problem, it is assumed
that f(0, 0, 0) = 0, hr(0, 0) = 0, hm(0, 0) = 0, s(0) = 0, and the functions
f(x, u, w) and hm(x,w) are C1. Also, it is assumed that the exosystem (3.4)
is neutrally stable (see Definition 3.1). Notice that neutral stability of the
exosystem implies that arbitrarily close to the origin w = 0 there exists a
neighborhood of the origin W that is invariant with respect to the exosystem
dynamics. We will formulate two variants of the local output regulation prob-
lem: one, which is more general, using the uniform convergence property and
another one using the exponential convergence property.
The local uniform (exponential) output regulation problem: find, if
possible, a controller of the form (3.6), (3.7) with η(0, 0) = 0, θ(0, 0) = 0 such
that the closed-loop system (3.8), (3.9) satisfies the following conditions:
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a) the right-hand side of the closed-loop system is C1 with respect to (x, ξ)
and continuous with respect to w;

b) the closed-loop system is locally uniformly (exponentially) convergent for
the class of inputs Is(W), where W ⊂ R

m is some invariant neighborhood
of the origin;

c) for all solutions of the closed-loop system and the exosystem starting close
enough to the origin (x, ξ, w) = (0, 0, 0) it holds that

e(t) = hr(x(t), w(t)) → 0 as t → +∞.

Remark. In the case of the local exponential output regulation problem,
requirement b) is equivalent to the requirement that the Jacobian matrix
of the right-hand side of the closed-loop system (3.8), (3.9) evaluated at
(x, ξ, w) = (0, 0, 0) is Hurwitz. This statement follows from Theorem 2.41 and
from the fact that w(t) ≡ 0 is a solution of the exosystem and this solution
belongs to the class Is(W) for any neighborhood of the origin W.�

3.2.3 Types of controllers

Depending on the information available for feedback, one can distinguish dif-
ferent types of controllers. If y = (x,w), i.e., the states of the system and the
exosystem are available for feedback, controller (3.6), (3.7) is called a state
feedback. If only the measured output y is available for feedback, then con-
troller (3.6), (3.7) is called an output feedback. Notice that the controller (3.6),
(3.7) may consist only of the static block (3.7). In this case, ξ = ∅ and the
controller is called static. Otherwise, it is called dynamic.

3.2.4 Robust output regulation

In practice certain parameters of the system and the exosystem may not be
known exactly. In this case, these parameters may be included in the system
model as an unknown constant vector p ∈ R

r, with a nominal value p◦:

ẋ = f(x, u, w, p), (3.10)
e = hr(x,w, p), (3.11)
y = hm(x,w, p), (3.12)
ẇ = s(w). (3.13)

Suppose controller (3.6), (3.7) solves the (global, local) uniform output
regulation problem for the nominal values of parameters p◦. We say that con-
troller (3.6), (3.7) is structurally stable at p◦ if it solves the (global, local)
uniform output regulation problem for all parameters p from some neighbor-
hood of the nominal vector p◦. If controller (3.6), (3.7) solves the (global,
local) uniform output regulation problem for all p from some predefined set
P ⊂ R

r, it is called robust with respect to p ∈ P. In other words, such a
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controller solves the robust (global, local) uniform output regulation problem
with respect to p ∈ P.

It may occur that not only certain constant parameters of the system are
unknown, but also certain functional characteristics are not known exactly.
Such an uncertainty may be represented as an unknown function ϕ in the
right-hand side of the system equations:

ẋ = f(x, u, w, ϕ(x,w)). (3.14)

The only information that is known about ϕ is that it belongs to a certain class
F . If controller (3.6), (3.7) solves the (global, local) uniform output regulation
problem for all functions ϕ from the class F , it is called robust with respect
to the functional uncertainty ϕ ∈ F .

3.2.5 Properties of the closed-loop system

Notice that, due to the requirement of uniform convergence, every solution of
the closed-loop system (3.8), (3.9) corresponding to a controller solving one of
the variants of the uniform output regulation problem is bounded for t ≥ 0.

If the system and the exosystem satisfy f(0, 0, 0) = 0, hm(0, 0) = 0,
s(0) = 0 and a controller solving the (local, global) uniform output regu-
lation problem satisfies the conditions η(0, 0) = 0 and θ(0, 0) = 0, then for
w(t) ≡ 0 the closed-loop system (3.8), (3.9) has a (locally, globally) asymptot-
ically stable equilibrium at the origin (x, ξ) = (0, 0). This property guarantees
that if there are no disturbances or reference signals (w(t) ≡ 0) then controller
(3.6), (3.7) (locally, globally) stabilizes system (3.1)–(3.3) at the origin.

3.3 Relations to conventional problem settings

The uniform output regulation problem formulated in the previous sections is
somewhat different from conventional variants of the output regulation prob-
lem, see, e.g., [8, 21, 34, 39]. Usually, instead of the uniform convergence con-
dition some other internal stability condition is required. Yet, in some cases
the conventional problem settings are particular cases of the uniform output
regulation problem. We will illustrate this statement with two examples.

In the linear output regulation problem (see, e.g., [8, 13]), the system is
given by equations of the form

ẋ = Ax + Bu + Ew, (3.15)
e = Crx + Hrw,

y = Cmx + Hmw,

where x is the state, u is the control, e and y are the regulated and measured
outputs respectively, and w is the external signal generated by the exosystem
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ẇ = Sw,

which is a linear harmonic oscillator.

The linear output regulation problem is to find a controller of the form

ξ̇ = Kξ + Ny, (3.17)
u = Mξ + Ly

such that the closed-loop system(
ẋ

ξ̇

)
=

(
A + BLCm BM

NCm K

)(
x
ξ

)
+
(
E + BLHm

NHm

)
w

=: F
(
x
ξ

)
+ Rw

satisfies the following two properties:

a) Internal stability: for w(t) ≡ 0 the closed-loop system is asymptotically
stable, i.e., the matrix F is Hurwitz;

b) Asymptotic output zeroing: for all solutions of the closed-loop system and
the exosystem it holds that e(t) = Crx(t) + Hrw(t) → 0 as t → +∞.

Notice that the closed-loop system is linear with a Hurwitz matrix F . This
implies (see Section 2.2.2) that the closed-loop system is globally exponentially
convergent and has the UBSS property for the class of inputs PCm. Thus, the
linear output regulation problem is a particular case of the global uniform
output regulation problem.

For nonlinear systems, the output regulation problem has been most thor-
oughly investigated for the local problem setting. In this problem setting,
which we will call the conventional local output regulation problem, one con-
siders system (3.1)–(3.3) and exosystem (3.4) with f(0, 0, 0) = 0, hm(0, 0) = 0,
hr(0, 0) = 0, s(0) = 0 such that the functions f(x, u, w), hm(x,w), hr(x,w),
and s(w) have continuous partial derivatives of sufficiently high order. The
exosystem is assumed to be neutrally stable.

The conventional local output regulation problem is to find a controller
of the form (3.6), (3.7) with sufficiently smooth mappings η(ξ, w) and θ(ξ, w)
satisfying η(0, 0) = 0 and θ(0, 0) = 0 such that the closed-loop system (3.8),
(3.9) satisfies the following conditions:

a) Local internal stability: for w(t) ≡ 0 the closed-loop system has an asymp-
totically stable linearization at the origin;

b) Local asymptotic output zeroing: for every solution of the closed-loop sys-
tem and the exosystem starting close enough to the origin (x, ξ, w) =
(0, 0, 0) it holds that e(t) = hr(x(t), w(t)) → 0 as t → +∞.
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As follows from Theorem 2.41 (see also the remark to the formulation of
the local uniform (exponential) output regulation problem in Section 3.2.2),
such a local internal stability requirement is equivalent to local exponential
convergence of the closed-loop system from the local exponential output reg-
ulation problem presented in Section 3.2.2. From this fact we conclude that
the conventional local output regulation problem is, in fact, a particular case
of the local exponential output regulation problem.

Both the linear output regulation problem and the conventional local out-
put regulation problem for nonlinear systems admit complete solutions in the
form of some necessary and sufficient conditions for the solvability of these
problems [8]. As will become clear in Chapter 4, the global uniform output
regulation problem admits similar necessary and sufficient conditions for its
solvability.

The global output regulation problem for nonlinear systems, which re-
mained a tough and quite unaddressed problem for a long time, has received
attention in a number of recent publications [11, 17, 40, 58, 79]. In these pa-
pers the authors use problem settings for the global output regulation problem
with various internal stability requirements. For example, in [79] all solutions
of the closed-loop system must be bounded; in [58], in addition to the re-
quirement of boundedness of solutions of the closed-loop system, for w(t) ≡ 0
the closed-loop system must have a globally asymptotically stable equilibrium
at the origin. In [40] all solutions of the closed-loop system and the exosys-
tem starting in any compact set of initial conditions must lie in a set with
a compact closure for all t ≥ 0. Due to the novelty of the problem, at the
moment there are no conventional formulations for the global output regu-
lation problem. At the same time, as we will see in Chapter 4, many of the
existing controllers solving the global output regulation problem for various
classes of systems in fact solve the global uniform output regulation problem.
This observation indicates that the uniform output regulation problem may
be a convenient problem setting for nonlinear nonlocal variants of the output
regulation problem.

3.4 Observer design and controlled synchronization

Some classical control problems can be placed in the framework of the output
regulation problem. In this section we show how the problem of observer
design for autonomous systems and the controlled synchronization problem
can be formulated as variants of the uniform output regulation problem.

3.4.1 Observer design problem

In the observer design problem for autonomous nonlinear systems, we consider
a system of the form
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ẇ = s(w), (3.18)
r = ho(w),

with state w and measured output r. The problem is to find a system that
asymptotically reconstructs the state of system (3.18) from the measured out-
put r, i.e., we need to find a system of the form

ż = F (z, r), (3.19)
ŵ = g(z, r),

such that ŵ(t) − w(t) → 0 as t → +∞ and all solutions of system (3.19) are
bounded for t ≥ 0. Such system (3.19) is called an observer for system (3.18).

In many observer design methods, the dimension of the observer state z
equals the dimension of w and the output ŵ equals z. In this case, especially
if system (3.18) exhibits oscillatory behavior, the problem of finding such a
system (3.19) is called a synchronization problem, because we find a system
whose state z(t) synchronizes with w(t), in the sense that they converge to
each other. Links between synchronization, which is extensively studied in
the physics community (see, e.g., [9, 49, 65]), and observer design problems,
which are studied in the field of control, have been revealed in [61]. In general,
system (3.19) can have a higher dimension than system (3.18). It is assumed
that solutions of system (3.18) start in some compact positively invariant set
W+ ⊂ R

m. In many cases this is a natural assumption since in most real life
systems the variables describing the state of a system to be observed lie in
some bounded set for all t ≥ 0.

The problem of finding an observer for system (3.18) can be formulated
as a global forward time uniform output regulation problem. To show this,
consider the system

ẋ = u, x, u ∈ R
m, (3.20)

e = x − w, (3.21)

y =
(

x
ho(w)

)
. (3.22)

Suppose a controller of the form (3.6), (3.7) solves the global forward time
uniform output regulation problem for system (3.20)–(3.22) and exosystem
(3.18). By the formulation of the global forward time uniform output regula-
tion problem, for every solution of system (3.18) starting in w(0) ∈ W+ and
for every solution of the closed-loop system

ẋ = θ(ξ, x, ho(w)), (3.23)
ξ̇ = η(ξ, x, ho(w)), (3.24)

starting in (x(0), ξ(0)) ∈ R
m × R

q, it holds that e(t) = x(t) − w(t) → 0
as t → +∞. At the same time, system (3.23), (3.24) is globally uniformly
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convergent for the class of inputs PC(W̃), where W̃ is some neighborhood
of W+. This implies that every solution of system (3.23), (3.24) is defined
and bounded for all t ≥ 0. Hence, system (3.23), (3.24) is an observer for
system (3.18).

3.4.2 Controlled synchronization problem

In the scope of the controlled synchronization problem, we consider two sys-
tems: a so-called master system and a slave system. The master system is
given by an equation of the form

ẇ = s(w), (3.25)
rm = ho(w),

with state w ∈ R
m and output rm. It is assumed that solutions of system

(3.25) start in some compact positively invariant set W+ ⊂ R
m. The slave

system is given by the equation

ẋ = f(x, u), (3.26)
rs = g(x),

with state x ∈ R
m, control u and output rs. The controlled synchronization

problem is to find a controller that, based on the measured signals rm(t) and
rs(t), generates a control action u(t) such that x(t) − w(t) → 0 as t → +∞
for all solutions of the slave system starting in x(0) ∈ R

m and all solutions of
the master system starting in w(0) ∈ W+. One can easily see that this prob-
lem can be formulated as the global forward time uniform output regulation
problem for exosystem (3.25) and system (3.26) with the regulated output
e = x − w and the measured output y = (g(x), ho(w)). The observer design
problem discussed in the previous section is a particular case of this controlled
synchronization problem with the right-hand side f(x, u) ≡ u and the output
rs = x.

3.5 Summary

In this chapter we have presented the global and local variants of the uniform
output regulation problem. In all variants of the problem there are three basic
requirements: regularity, uniform convergence, and asymptotic output zeroing.
The regularity requirement guarantees existence and uniqueness of solutions
of the closed-loop system. The uniform convergence requirement guarantees
that solutions of the closed-loop system “forget” their initial conditions and
converge to some steady-state solution determined only by the input. The
asymptotic output zeroing condition means that along solutions of the closed-
loop system and the exosystem, the regulated output tends to zero. The prob-
lem statements are presented for three classes of exosystems. The first class
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consists of exosystems satisfying the boundedness assumption A1. An impor-
tant representative of this class is a linear harmonic oscillator. The second
class consists of exosystems with initial conditions in a compact positively
invariant set. This class includes exosystems with limit cycles and (chaotic)
attractors. The third class of exosystems, which is considered in the local
uniform output regulation problem, consists of neutrally stable exosystems.
An important representative of this class is a linear harmonic oscillator. The
presented global variants of the uniform output regulation problem extend
the output regulation problem for linear systems and the conventional local
output regulation problem for nonlinear systems to the case of global output
regulation for nonlinear systems. It is shown that the problem of observer
design for autonomous systems and the controlled synchronization problem
can be considered as particular cases of the global uniform output regulation
problem. The key ingredient of the uniform output regulation problem, which
distinguishes it from other variants of the output regulation problem known
in literature, is the requirement of uniform convergence. As will be shown in
Chapter 4, this new problem setting with the uniform convergence require-
ment allows one to obtain necessary and sufficient conditions for solvability
of the global uniform output regulation problem.



4

Solvability of the uniform output regulation
problem

In this chapter we establish general conditions for solvability of the global
and local uniform output regulation problem. First, we review some known
ideas and results related to the conventional local output regulation problem.
These results are based on the center manifold theorem. In order to extend
these results to the uniform output regulation problem for both the local
and global case, we present invariant manifold theorems, which serve as non-
local counterparts of the center manifold theorem. In the formulation of these
invariant manifold theorems, the notion of convergent systems, developed in
Chapter 2, plays a central role. Based on these invariant manifold theorems,
general necessary and sufficient conditions for the solvability of the global and
local uniform output regulation problems are derived. These conditions also
indicate what kind of properties a controller must have to solve the uniform
output regulation problem. This information will be exploited at the stage of
controller design in Chapter 5.

4.1 Analysis of the conventional local output regulation
problem

The conventional local output regulation problem, which can also be called the
local exponential output regulation problem, has been solved in [39] (see also
[8, 38]). In that paper necessary and sufficient conditions for the solvability
of this problem are obtained. We will review one of these results in order to
motivate its extensions to the global uniform output regulation problem.

To understand the ideas and techniques used in the analysis of the con-
ventional local output regulation problem, we investigate the dynamics of the
closed-loop system (3.8), (3.9) corresponding to a controller (3.6), (3.7) solving
the conventional local output regulation problem.

By z := (xT , ξT )T denote the state of the closed-loop system (3.8), (3.9)
and by F (z, w), its right-hand side. With these new notations, the regulated
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output e equals e = h̄r(z, w) := hr(x,w). Therefore, the combination of the
closed-loop system and the exosystem can be written as

ż = F (z, w), (4.1)
ẇ = s(w), (4.2)
e = h̄r(z, w).

As follows from the formulation of the conventional local output regulation
problem, for any controller solving this problem the corresponding closed-
loop system is such that F (0, 0) = 0 and the function F (z, w) has continuous
partial derivatives of some high order. Moreover, the fact that for w(t) ≡
0 the closed-loop system has an asymptotically stable linearization at the
origin is equivalent to the Jacobian matrix ∂F/∂z(0, 0) being Hurwitz. At
the same time, the fact that the zero solution w(t) ≡ 0 of the exosystem is
Lyapunov stable in forward and backward time (this is a consequence of the
neutral stability assumption on the exosystem) implies that ∂s/∂w(0) has
all its eigenvalues on the imaginary axis. These conditions allow us to apply
the center manifold theorem (see, e.g., [10]), a particular case of which is
formulated below.

Theorem 4.1. Consider systems (4.1) and (4.2). Suppose F (z, w) and s(w)
are C2 vector-functions with F (0, 0) = 0, s(0) = 0, and all eigenvalues of
∂F/∂z(0, 0) have negative real parts, while all eigenvalues of ∂s/∂w(0) have
zero real parts. Then there exist δ > 0 and a C1 function α(w) defined for
all |w| < δ such that α(0) = 0 and the graph z = α(w) is a locally invariant
and locally exponentially attractive manifold for systems (4.1) and (4.2). The
mapping α(w) satisfies the partial differential equation

∂α

∂w
(w)s(w) = F (α(w), w). (4.3)

If a set W ⊂ {w : |w| < δ} is (positively) invariant with respect to system
(4.2), then the graph

M(W) := {(z, w) : z = α(w), w ∈ W}

is (positively) invariant with respect to systems (4.1) and (4.2), and for all
solutions (z(t), w(t)) starting close enough to the origin (0, 0) it holds that

|z(t) − α(w(t))| ≤ Ce−βt|z(0) − α(w(0))| (4.4)

for some C > 0 and β > 0.

The manifold M(W) is called the center manifold. As follows from (4.3), if
w(t) is a solution of system (4.2) satisfying |w(t)| < δ for all t ∈ R, then
z̄w(t) := α(w(t)) is a solution of system (4.1) defined for all t ∈ R. In general,
the center manifold theorem is formulated for bidirectionally coupled systems,
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i.e., when the right-hand side of system (4.2) also depends on z. For the output
regulation problem it is sufficient to formulate the center manifold theorem
only for unidirectionally coupled systems (4.1) and (4.2).

Applying the center manifold theorem (Theorem 4.1) to systems (4.1) and
(4.2), we conclude that there exists δ > 0 and a C1 mapping α(w) defined for
all |w| < δ such that α(0) = 0 and the graph z = α(w) is locally invariant
and locally exponentially attractive with respect to systems (4.1) and (4.2).
The mapping α(w) satisfies the partial differential equation

∂α

∂w
(w)s(w) = F (α(w), w) (4.5)

for all w ∈ W. Moreover, since the zero solution w(t) ≡ 0 of the exosystem is
Lyapunov stable in forward and backward time, there exists a neighborhood
of the origin W ⊂ {w : |w| < δ} that is invariant with respect to (4.2). Hence,
the graph M(W) := {(z, w) : z = α(w), w ∈ W} is invariant with respect
to systems (4.1), (4.2) and for all solutions z(t), w(t) starting close enough to
the origin (0, 0) it holds that

z(t) − α(w(t)) → 0 as t → +∞. (4.6)

This fact shows that in some neighborhood of the origin the dynamics of the
closed-loop system (4.1) coupled with the exosystem (4.2) reduce, after tran-
sients, to the dynamics on the center manifold M(W). Hence, the properties
of this center manifold determine whether the regulated output e(t) tends to
zero along solutions of the closed-loop system or not. In particular, it can be
shown (see, e.g., [8, 39]) that, under the neutral stability assumption on the
exosystem, the fact that e(t) = h̄r(z(t), w(t)) → 0 as t → +∞ for all solutions
of the closed-loop system (4.1) and the exosystem (4.2) starting close enough
to the origin is equivalent to

h̄r(α(w), w) = 0 (4.7)

for all w in some neighborhood of the origin Ŵ ⊂ R
m.

As follows from the analysis presented above, the question of whether a
controller solves the conventional local output regulation problem reduces to
the questions of whether for w(t) ≡ 0 the corresponding closed-loop system
has an asymptotically stable linearization at the origin and whether there
exists a locally defined C1 mapping α(w), with α(0) = 0, satisfying (4.5)
and (4.7). If we denote (π(w), σ(w)) := α(w), where π(w) and σ(w) are the
components of the mapping α(w) corresponding to the x- and ξ-coordinates
of the closed-loop system, respectively, this statement can be summarized in
the following theorem.

Theorem 4.2 ([8]). Under the neutral stability assumption on the exosystem
(3.4), a controller of the form (3.6), (3.7) solves the conventional local output
regulation problem if and only if the following two conditions hold:
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(i) For w(t) ≡ 0 the corresponding closed-loop system (3.8), (3.9) has an
asymptotically stable linearization at the origin.

(ii) There exist C1 mappings π(w) and σ(w) defined in some neighborhood of
the origin Ŵ and satisfying π(0) = 0, σ(0) = 0 and

∂π

∂w
(w)s(w) = f(π(w), θ(σ(w), hm(π(w), w)), w),

∂σ

∂w
(w)s(w) = η(σ(w), hm(π(w), w)),

0 = hr(π(w), w) ∀ w ∈ Ŵ.

This theorem provides a characterization of all controllers solving the con-
ventional local output regulation problem. It also forms a foundation for fur-
ther results related to solvability and controller design for the conventional
local output regulation problem, which can be found, for example, in [8].

Since in this book we also study global variants of the output regulation
problem, we need to extend the result of Theorem 4.2 to the global case. An
essential obstacle for such an extension is that the analysis in Theorem 4.2 is
based on the center manifold theorem (Theorem 4.1), which is a local result.
Existing extensions of this theorem to nonlocal cases (see, e.g., [22, 49, 53, 87])
are based on certain quantitative conditions on the dynamics of the coupled
systems (the closed-loop system and the exosystem in the case of the output
regulation problem). We would like to avoid such quantitative conditions and
find nonlocal counterparts of the center manifold theorem based on certain
qualitative conditions on the coupled systems. As a preliminary observation,
notice that in the center manifold theorem the Jacobian ∂F/∂z(0, 0) must be
a Hurwitz matrix. As we know from Theorem 2.41, this condition is equivalent
to the requirement that system (4.1) be locally exponentially convergent for
the class of inputs PCm. This observation shows that the requirement of some
convergence property on system (4.1) may serve as a nonlocal counterpart
of the condition on ∂F/∂z(0, 0). In fact, as we will see in the next section,
existence of a continuous invariant manifold of the form z = α(w) for systems
(4.1) and (4.2) is, under certain assumptions, equivalent to some form of
the uniform convergence property of system (4.1). The invariant manifold
theorems presented in the next section will naturally lead us to necessary
and sufficient conditions for the solvability of the global and local variants of
the uniform output regulation problem. This fact, in turn, explains why we
have based the uniform output regulation problem studied in this book on the
notion of uniform convergence.

4.2 Invariant manifold theorems

In this section we present certain invariant manifold theorems that serve as
counterparts of the center manifold theorem for studying the solvability of the
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global and local variants of the uniform output regulation problem. To this
end, we consider coupled systems of the form

ż = F (z, w), (4.8)
ẇ = s(w), (4.9)

where z ∈ R
d, w ∈ R

m. The function F (z, w) is locally Lipschitz in z and
continuous in w; s(w) is locally Lipschitz. In the analysis of the uniform output
regulation problem, system (4.8) corresponds to a closed-loop system and
system (4.9) corresponds to an exosystem.

First, we consider the case of system (4.9) with some open invariant set of
initial conditions W ⊂ R

m. Recall that Is(W) denotes the class of all solutions
of system (4.9) starting in W. The next technical lemma provides conditions
for the existence of a continuous asymptotically stable invariant manifold of
the form z = α(w). This lemma will serve as a foundation for further results
on invariant manifolds presented in this section.

Lemma 4.3. Consider system (4.8) and system (4.9) with an open invariant
set of initial conditions W ⊂ R

m. Suppose

(i) System (4.8) is uniformly convergent in a set Z ⊂ R
d for the class of

inputs Is(W), and for any compact set K0 ⊂ W there exists a compact
set Kz ⊂ Z such that for any w(·) ∈ Is(W) satisfying w(0) ∈ K0 the
corresponding steady-state solution satisfies z̄w(t) ∈ Kz for all t ∈ R.

Then

(ii) There exists a continuous mapping α : W → Z such that the graph

M(W) := {(z, w) : z = α(w), w ∈ W}

is invariant with respect to systems (4.8) and (4.9). Moreover, for every
w(·) ∈ Is(W) the corresponding solution of system (4.8) z̄w(t) = α(w(t))
is uniformly asymptotically stable in Z.

In general, the mapping α(w) is not unique. But for any two such mappings
α1(w) and α2(w) and for any w(·) ∈ Is(W), it holds that

α1(w(t)) − α2(w(t)) → 0 as t → +∞ (4.10)

and α1(w(t)) ≡ α2(w(t)) for any w(t) lying in some compact subset of W for
all t ∈ R.
If system (4.9) satisfies the boundedness assumption A1 in the set W, then
statements (i) and (ii) are equivalent and the mapping α(w) defined in (ii) is
unique.

Proof: See Appendix 9.10.



48 4 Solvability of the uniform output regulation problem

This lemma is a preliminary technical result that allows us to obtain fur-
ther global and local results related to the existence of continuous invariant
manifolds of the form z = α(w). The conditions in Lemma 4.3 seem rather
complicated because this lemma covers the general case. In particular cases of
this lemma, which are formulated below, the conditions will simplify signifi-
cantly. In particular, under the boundedness assumption A1 on system (4.9)
for Z = R

d we obtain the following global result.

Theorem 4.4. Consider system (4.8) and system (4.9) satisfying the bound-
edness assumption A1 in some open invariant set W ⊂ R

m. The following
statements are equivalent:

(ig) System (4.8) is globally uniformly convergent with the UBSS property for
the class of inputs Is(W).

(iig) There exists a unique continuous mapping α : W → R
d such that the

graph
M(W) := {(z, w) : z = α(w), w ∈ W}

is invariant with respect to systems (4.8) and (4.9). Moreover, for every
w(·) ∈ Is(W) the corresponding solution of system (4.8) z̄w(t) = α(w(t))
is uniformly globally asymptotically stable.

Proof: We only need to show that the conditions given in (ig) are equivalent
to the conditions (i) in Lemma 4.3 for Z := R

d.
(ig)⇒(i). Consider a compact set K0 ⊂ W. By the boundedness assump-
tion A1, there exists a compact set Kw ⊂ W such that if a solution w(t) of
system (4.9) starts in w(0) ∈ K0 then w(t) ∈ Kw for all t ∈ R. At the same
time, by the UBSS property, there exists a compact set Kz ⊂ R

d such that
the fact that w(t) ∈ Kw for all t ∈ R implies z̄w(t) ∈ Kz for all t ∈ R. This
implies (i).
(i)⇒(ig). Consider a compact set Kw ⊂ W and a solution of system (4.9)
satisfying w(t) ∈ Kw for all t ∈ R. In particular, this solution satisfies
w(0) ∈ K0 := Kw. By the conditions given in (i), there exists a compact
set Kz ⊂ R

d such that for any solution w(t) starting in w(0) ∈ K0 (hence, for
any w(t) satisfying w(t) ∈ Kw for all t ∈ R) the corresponding steady-state
solution z̄w(t) lies in Kz. Thus, we have shown that system (4.8) has the UBSS
property for the class of inputs Is(W), i.e. we have shown (ig). 	


Under the boundedness assumption A1 the class of inputs Is(W) is con-
tained in PC(W), so we therefore obtain the following corollary to Theo-
rem 4.4.

Corollary 4.5. Consider system (4.8) and system (4.9) satisfying the bound-
edness assumption A1 in some open invariant set W. Suppose system (4.8) is
globally uniformly convergent with the UBSS property for the class of inputs
PC(W). Then statement (iig) of Theorem 4.4 holds.
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In the global forward time uniform output regulation problem we deal with
exosystems that do not need to satisfy the boundedness assumption A1, but
they satisfy the assumption A2, i.e., their solutions start in some compact
positively invariant set of initial conditions W+ ⊂ R

m. For such systems we
formulate the following result.

Theorem 4.6. Consider systems (4.8) and (4.9). Let W+ be a compact pos-
itively invariant set of system (4.9) and W± ⊂ W+ be an invariant subset
of W+. Suppose system (4.8) is globally uniformly convergent with the UBSS
property for the class of inputs PC(W̃), where W̃ is some neighborhood of W+.
Then there exists a continuous mapping α : W̃ → R

d such that the set

M(W+) := {(z, w) : z = α(w), w ∈ W+}

is positively invariant with respect to (4.8), (4.9), and for any solution of
system (4.9) w(t) starting in w(0) ∈ W+ the corresponding solution of system
(4.8) z̄w(t) = α(w(t)) is uniformly globally asymptotically stable. In general,
the mapping α(w) is not unique. But for any two such mappings α1(w) and
α2(w) and for any w(t) starting in w(0) ∈ W+ it holds that

|α1(w(t)) − α2(w(t))| → 0 as t → +∞, (4.11)

and α1(w) = α2(w) for all w ∈ W±.

Proof: See Appendix 9.11.

In Theorem 4.6 the mapping α(w) may be nonunique as can be seen from
the following example, which is a modified example from [78].

Example 4.7. Consider two scalar systems

ż = −z, (4.12)

ẇ = −w3

2
. (4.13)

System (4.12) is globally uniformly convergent with the UBSS property for
the class of inputs PC1, since for every input w(t) the steady-state solution
equals z̄w(t) ≡ 0 and it is globally exponentially stable. For every r > 0 the
set W+(r) := {w : |w| ≤ r} is compact and positively invariant with respect
to (4.13). The set W± contains only the origin, W± = {0}. It can be easily
checked that for any constant c the mapping

αc(w) =
{
ce−1/w2

, w �= 0,
0, w = 0,

is continuous and the graph z = αc(w) is invariant with respect to (4.12) and
(4.13). The mappings αc(w) for all parameters c coincide in the origin, which
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belongs to W±. For any initial condition w(0) ∈ R the solution w(t) of system
(4.13) tends to zero, which implies αc(w(t)) → 0 as t → +∞. Thus for any c1
and c2 it holds that

αc1(w(t)) − αc2(w(t)) → 0, as t → +∞. �

The next theorem provides a local variant of the invariant manifold theo-
rems presented above.

Theorem 4.8. Consider systems (4.8) and (4.9) with F (0, 0) = 0, s(0) = 0
and with F (z, w) being C1 with respect to z and continuous with respect to w.
Let the equilibrium w = 0 of system (4.9) be stable in forward and backward
time. Then the following statements are equivalent:

(il) System (4.8) is locally uniformly convergent for the class of inputs
Is(W∗), where W∗ ⊂ R

m is some invariant neighborhood of the origin.
(iil) There exist an invariant neighborhood of the origin W and a unique con-

tinuous mapping α : W → R
d such that α(0) = 0 and the graph

M(W) := {(z, w) : z = α(w), w ∈ W}

is invariant with respect to systems (4.8) and (4.9). Moreover, there exists
a neighborhood of the origin Z ⊂ R

d such that for every w(·) ∈ Is(W)
the solution z̄w(t) := α(w(t)) is uniformly asymptotically stable in Z.

Proof: See Appendix 9.12.

In general, it is not a simple task to find an invariant manifold even if its
existence is guaranteed by the invariant manifold theorems presented above.
Yet, in some simple cases such a manifold can be found analytically. We will
show this with a few examples.

Example 4.9. Consider a linear system

ẇ = Sw, w ∈ R
m, (4.14)

with the matrix S having all its eigenvalues simple and lying on the imaginary
axis. This system satisfies the boundedness assumption A1 in the whole state
space. Consider a system given by the equation

ż = Az + q(w), (4.15)

where A is a Hurwitz matrix and q(w) is a polynomial in w of some finite
degree n. Notice that this system is globally exponentially convergent with the
UBSS property for the class of inputs PCm (see, for example, Theorem 2.29).
By Corollary 4.5, there exists a unique continuous function α(w) such that
the graph M := {(z, w) : z = α(w), w ∈ R

m} is invariant with respect to
systems (4.15) and (4.14). As follows from [8] (Lemma 1.2), the mapping α(w)
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is a polynomial in w of the same degree as the degree of q(w). It is a unique
solution of the equation

∂α

∂w
(w)Sw = Aα(w) + q(w).

The right- and left-hand sides of this equation are polynomials in w. Thus,
by equating the corresponding components of these polynomials, we find the
unique coefficients of the polynomial α(w).�

Using ideas from [8], this example can be extended in the following way.

Example 4.10. Consider the nonlinear system

ż1 = A1z1 + q1(z2, . . . zk, w), z1 ∈ R
d1 ,

ż2 = A2z2 + q2(z3, . . . zk, w), z2 ∈ R
d2 , (4.16)

· · ·
żk = Akzk + qk(w), zk ∈ R

dk ,

where the matrices Ai, i = 1, . . . , k, are Hurwitz and qi(·), i = 1, . . . , k,
are polynomials of their arguments. Every ith subsystem of system (4.16)
with zi+1, . . . , zk and w as inputs is input-to-state convergent (see Theo-
rem 2.29). Therefore, system (4.16) is a series connection of input-to-state
convergent systems. By Property 2.27, this system is input-to-state conver-
gent. By Property 2.19, input-to-state convergence, in turn, implies that sys-
tem (4.16) is globally uniformly convergent with the UBSS property for the
class of inputs PCm. By Corollary 4.5, there exists a unique continuous map-
ping α(w) such that the manifold M := {(z, w) : z = α(w), w ∈ R

m}, where
z := (zT

1 , . . . , z
T
k )T , is invariant with respect to systems (4.16) and (4.14). Ap-

plying the results obtained for system (4.15) to the last equation in (4.16), we
find the component of α(w) corresponding to zk. This component αk(w) is a
polynomial. Substituting this αk(w) in the (k−1)th equation, we again obtain
an equation of the form (4.15), from which we can find αk−1(w). Repeating
this process, we find the remaining components of the mapping α(w).�

These examples indicate that in some cases it is possible to find the in-
variant manifold, whose existence is guaranteed by the invariant manifold
theorems presented in this section, analytically.

The invariant manifold theorems presented in this section state equivalence
between the existence of a (globally) uniformly asymptotically stable invariant
manifold of the form z = α(w) with a continuous function α(w) on the one
hand, and certain convergence properties of system (4.8) on the other hand
(under Assumptions A1, A2, or under the neutral stability assumption on
system (4.9)). The sufficient conditions for various convergence properties
presented in Section 2.2.4 allow us to determine whether systems (4.8) and
(4.9) have such an invariant manifold.

As will be seen from the next sections, the invariant manifold theorems
will naturally lead us to certain necessary and sufficient conditions for the
solvability of different variants of the uniform output regulation problem.
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4.3 ω-limit sets

Prior to deriving the conditions for solvability of the uniform output regulation
problem, we recall the notion of ω-limit sets. This notion appears to be an
important ingredient of the solvability analysis. Consider the system

ẇ = s(w), w ∈ R
m, (4.17)

with a locally Lipschitz function s(w). Let w(t, w0) denote the solution of
system (4.17) starting in w(0, w0) = w0.

Definition 4.11 ([3]). A point w∗ ∈ R
m is called an ω-limit point of the

trajectory w(t, w0) if for any T > 0 and any ε > 0 there exists t∗ > T such
that |w(t∗, w0)−w∗| < ε. The set of all ω-limit points of the trajectory w(t, w0)
is called the ω-limit set and denoted by Ω(w0). For trajectories starting in
some set W ⊂ R

m, the notation Ω(W) denotes Ω(W) :=
⋃

w0∈W Ω(w0).

The following statements reflect some standard facts on ω-limit sets, see,
e.g., [3]. For a trajectory w(t, w0) that is bounded for t ≥ 0 the ω-limit set
Ω(w0) is a bounded invariant set. If W ⊂ R

m is a bounded positively invariant
set, then Ω(W) is a bounded invariant set that attracts all trajectories w(t, w0)
starting in w0 ∈ W, i.e., for any w0 ∈ W it holds that dist(w(t, w0), Ω(W)) →
0 as t → +∞. Here, the distance dist(w,W) between a point w ∈ R

m and a
set W ⊂ R

m is defined as dist(w,W) := infw∗∈W |w −w∗|. If W is a compact
positively invariant set, then Ω(W) ⊂ W.

With these facts at hand, we can proceed with the solvability analysis of
the uniform output regulation problem.

4.4 Solvability of the global (forward time)
uniform output regulation problem

In this section we apply the invariant manifold theorems to study solvability
of the global uniform output regulation problem. Since there are two variants
of the global uniform output regulation problem, we will obtain solvability
results for both. Moreover, we will present solvability results for the robust
global uniform output regulation problem.

4.4.1 Solvability of the global uniform output regulation problem

The next theorem, which is based on Theorem 4.4, establishes necessary and
sufficient conditions for a controller (3.6), (3.7) to solve the global uniform
output regulation problem.

Theorem 4.12. Consider system (3.1)–(3.3) and exosystem (3.4) satisfying
the boundedness assumption A1 in an open invariant set of initial conditions
W. The following statements are equivalent:
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(i) Controller (3.6), (3.7) solves the global uniform output regulation problem.
(ii) The closed-loop system is globally uniformly convergent with the UBSS

property for the class of inputs Is(W) and there exist continuous map-
pings π : W → R

n and σ : W → R
q satisfying the equations

d

dt
π(w(t)) = f(π(w), θ(σ(w), hm(π(w), w)), w),

d

dt
σ(w(t)) = η(σ(w), hm(π(w), w)), (4.18)

∀ w(t) = w(t, w0) ∈ W,

0 = hr(π(w), w) ∀ w ∈ Ω(W). (4.19)

(iii) There exist continuous mappings π : W → R
n and σ : W → R

q satisfying
equations (4.18) and (4.19) and for every w(·) ∈ Is(W) the solution
of the closed-loop system (x̄w(t), ξ̄w(t)) = (π(w(t)), σ(w(t))) is globally
uniformly asymptotically stable.

Proof: We will prove the equivalence of (i), (ii) and (iii) in the following se-
quence: (i)⇒(ii)⇒(iii)⇒(i).

(i)⇒(ii). Suppose controller (3.6), (3.7) solves the global uniform output
regulation problem. Then the closed-loop system (3.8), (3.9) is globally uni-
formly convergent with the UBSS property for the class of inputs Is(W). By
Theorem 4.4, this implies the existence of a continuous mapping α(w) such
that the graph of this mapping

M(W) := {(x, ξ, w)) : (x, ξ) = α(w), w ∈ W}

is invariant with respect to the closed-loop system (3.8), (3.9) and the exosys-
tem (3.4). Denote by π(w) and σ(w) the x- and ξ-components of the mapping
α(w). Since the graph M(W) is invariant, for any solution of the exosystem
w(t) starting in w(0) ∈ W, the pair of functions (π(w(t)), σ(w(t))) repre-
sents a solution of the closed-loop system (3.8), (3.9). This implies that the
functions π(w(t)) and σ(w(t))) satisfy (4.18). Since the regulated output e(t)
tends to zero along any solution of the closed-loop system and the exosystem
starting in (x(0), ξ(0)) ∈ R

n+q and w(0) ∈ W, respectively, e(t) also tends to
zero along the solution (π(w(t)), σ(w(t)), w(t)), i.e.,

hr(π(w(t)), w(t)) → 0 as t → +∞. (4.20)

Let us show that this fact implies (4.19). Suppose there exists w∗ ∈ Ω(W)
such that hr(π(w∗), w∗) �= 0. By the definition of the ω-limit set Ω(W), there
exists a solution w(t) starting in w(0) ∈ W and a sequence {tk}+∞

k=1 such that
tk → +∞ and w(tk) → w∗ as k → +∞. Since hr(π(w), w) is continuous in
W, we obtain

hr(π(w(tk)), w(tk)) → hr(π(w∗), w∗) �= 0, as k → +∞.
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This contradicts (4.20). Thus, indeed, the equality (4.19) holds. This com-
pletes the proof of this implication.

(ii)⇒(iii). Since the closed-loop system (3.8), (3.9) is globally uniformly
convergent with the UBSS property for the class of inputs Is(W), by Theo-
rem 4.4 for every solution of the exosystem w(t) starting in W, the solution of
the closed-loop system (x̄w(t), ξ̄w(t)) := (π(w(t), σ(w(t)) lying on this mani-
fold is uniformly globally asymptotically stable.

(iii)⇒(i). By Theorem 4.4, the existence of the continuous mappings π(w)
and σ(w) given in (iii) implies that the closed-loop system (3.8), (3.9) is
globally uniformly convergent with the UBSS property for the class of in-
puts Is(W). We only need to show that for any solution of the closed-loop
system and the exosystem starting in (x(0), ξ(0)) ∈ R

n+q and w(0) ∈ W,
the regulated output e(t) tends to zero. Consider a solution of the exosys-
tem w(t) starting in w(0) ∈ W and the solution of the closed-loop system
(x̄w(t), ξ̄w(t)) := (π(w(t)), σ(w(t)). Since the solution (x̄w(t), ξ̄w(t)) is glob-
ally uniformly asymptotically stable, for any other solution of the closed-loop
system (x(t), ξ(t)) it holds that x(t) − π(w(t)) → 0 and ξ(t) − σ(w(t)) → 0 as
t → +∞. Thus,

e(t) = hr(x(t), w(t)) → hr(π(w(t)), w(t)) as t → +∞. (4.21)

At the same time, dist(w(t), Ω(W)) → 0 as t → +∞ (see Section 4.3). Since
w(t) is bounded, this implies

hr(π(w(t)), w(t)) → hr(π(Ω(W)), Ω(W)) = {0} as t → +∞.

Together with (4.21), this implies e(t) = hr(x(t), w(t)) → 0 as t → +∞. This
completes the proof of the theorem. 	


Remark. In the literature, global variants of the output regulation prob-
lem are considered mostly for the case of exosystems being linear harmonic
oscillators. Such exosystems satisfy the boundedness assumption A1. Many
of the proposed controllers solving such variants of the global output regula-
tion problem (see, e.g., [12, 58, 69, 79]) are designed in such a way that they
guarantee existence and global uniform asymptotic stability of a sufficiently
smooth invariant manifold (x, ξ) = (π(w), σ(w)), with π(w) and σ(w) satis-
fying (4.18), (4.19). As follows from Theorem 4.12, such controllers solve the
global uniform output regulation problem.�

Theorem 4.12 provides a criterion for checking whether a particular con-
troller solves the global uniform output regulation problem. It can be used
directly for controller design (we will address this problem in Chapter 5) in
the following way: given some controller such that the corresponding closed-
loop system satisfies the conditions (ii) or (iii) in Theorem 4.12, this theorem
guarantees that this controller solves the global uniform output regulation
problem. Alternatively, we can specifically design a controller such that the
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corresponding closed-loop system satisfies conditions (ii) or (iii). At the same
time, Theorem 4.12 allows one to obtain certain controller-independent nec-
essary conditions for the solvability of the global uniform output regulation
problem as follows from the next lemma.

Lemma 4.13. The global uniform output regulation problem is solvable only if
there exist continuous mappings π(w) and c(w) defined in some neighborhood
of Ω(W) satisfying the equations

d

dt
π(w(t)) = f(π(w(t)), c(w(t)), w(t)), (4.22)

0 = hr(π(w(t)), w(t)), (4.23)

for all solutions of the exosystem w(t) satisfying w(t) ∈ Ω(W), t ∈ R.

Proof: The statement of the lemma is obtained from (4.18) and (4.19) by de-
noting c(w) := θ(σ(w), hm(π(w), w)). 	


Equations (4.22) and (4.23) are the so-called regulator equations, see, e.g.,
[8, 38, 39]. Solvability of the regulator equations guarantees that for every solu-
tion of the exosystem lying in the ω-limit set Ω(W) there exists a control input
ūw(t) := c(w(t)) for which system (3.1) has the solution x̄w(t) := π(w(t)), and
along this solution the regulated output equals zero. Notice that the ω-limit
set Ω(W) can be treated, in a certain sense, as the steady-state dynamics of
the exosystem, because this set is invariant and attracts all solutions of the
exosystem starting in W. From this point of view, solvability of the regulator
equations can be interpreted in the following way: for any solution w(t) of the
exosystem from the steady-state dynamics set Ω(W), there exists at least one
control input ūw(t) such that system (3.1) with these w(t) and ūw(t) has a
solution x̄w(t) along which the regulated output e(t) is identically zero.

Originally, solvability of the regulator equations in some neighborhood of
the origin was obtained as a necessary condition for the solvability of the
conventional local output regulation problem under the assumption that exo-
system (3.4) is neutrally stable. Lemma 4.13 shows that solvability of the
regulator equations (4.22) and (4.23) is also necessary for the solvability of
the global uniform output regulation problem.

With the regulator equations at hand, we can obtain further necessary
conditions for the solvability of the global uniform output regulation problem.
As follows from (4.18), controller (3.6), (3.7) is such that if we excite it with
the input ȳw(t) := hm(π(w(t)), w(t)), for some solution of the exosystem
w(t) ∈ Ω(W), it has a solution ξ̄w(t) = σ(w(t)), which is bounded on R, and
along this solution the output of the controller equals ūw(t) = c(w(t)), where
π(w) and c(w) are solutions of the regulator equations defined above. This
property motivates the introduction of the following definition.

Definition 4.14. Consider controller (3.6), (3.7). Let ȳ(t) and ū(t) be defined
and bounded for all t ∈ R. We say that the input ȳ(t) induces the output ū(t)
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in controller (3.6), (3.7), if for this ȳ(t) system (3.6), (3.7) has a solution
ξ̄(t) defined and bounded on R and satisfying the equality ū(t) = θ(ξ̄(t), ȳ(t))
for all t ∈ R.

We will say that controller (3.6), (3.7) has a generalized internal model
property if for any solution of the exosystem w(t) lying in the ω-limit set Ω(W)
the input ȳw(t) := hm(π(w(t)), w(t)) induces the output ūw(t) = c(w(t)) in
controller (3.6), (3.7). The generalized internal model property closely relates
to the notions of immersion and internal models used in the output regulation
theory (see [8, 40, 42] for further details on immersion and internal models).

With these definitions at hand, we obtain the following necessary condition
for the solvability of the global uniform output regulation problem.

Lemma 4.15. Suppose the global uniform output regulation problem is solv-
able. Then there exists a controller of the form (3.6), (3.7) such that for
any solution of the exosystem w(t) lying in the ω-limit set Ω(W) the in-
put ȳw(t) := hm(π(w(t)), w(t)) induces the output ūw(t) = c(w(t)) in the
controller (3.6), (3.7), where c(w) and π(w) are solutions to the regulator
equations (4.22) and (4.23). In other words, there exists a controller with the
generalized internal model property. Moreover, the closed-loop system corre-
sponding to this controller is globally uniformly convergent with the UBSS
property for the class of inputs Is(W).

The requirement that the controller makes the corresponding closed-loop sys-
tem globally uniformly convergent with the UBSS property for the class of
inputs Is(W) is natural, since it comes from the problem statement. The gen-
eralized internal model property guarantees that controller (3.6), (3.7) is ca-
pable of generating the steady-state control ūw(t) = c(w(t)) (see Lemma 4.13)
based on the measured signal y(t).

Lemmas 4.13 and 4.15 provide necessary conditions for the solvability of
the global uniform output regulation problem. In fact, as follows from the
next theorem, these conditions are not only necessary, but also sufficient for
the solvability of the problem.

Theorem 4.16. Consider system (3.1)–(3.3) and exosystem (3.4) satisfying
the boundedness assumption A1 in an open invariant set of initial conditions
W. The global uniform output regulation problem is solvable if and only if the
following conditions are satisfied:

(i) There exist continuous mappings π(w) and c(w) defined in some neigh-
borhood of Ω(W) and satisfying the regulator equations (4.22) and (4.23)
for all solutions w(t) of exosystem (3.4) satisfying w(t) ∈ Ω(W) for all
t ∈ R.

(ii) There exists a controller of the form (3.6), (3.7) such that for any so-
lution of the exosystem w(t) lying in the set Ω(W) the input ȳw(t) :=
hm(π(w(t)), w(t)) induces the output ūw(t) = c(w(t)) in controller (3.6),



4.4 Solvability of the global (forward time) uniform output regulation problem 57

(3.7), and the closed-loop system corresponding to this controller is glob-
ally uniformly convergent with the UBSS property for the class of inputs
Is(W).

Under these conditions, a controller solves the global uniform output regulation
problem if and only if it satisfies the conditions given in (ii).

Proof: The only if part of the theorem follows from Lemmas 4.13 and 4.15.
We only need to show that if the condition (i) is satisfied then a controller
satisfying the conditions given in (ii) solves the global uniform output regu-
lation problem. We will do this by showing that if a controller satisfies the
conditions given in (ii), then the corresponding closed-loop system satisfies
condition (ii) in Theorem 4.12. Thus, by Theorem 4.12 this controller solves
the global uniform output regulation problem.

Suppose controller (3.6), (3.7) satisfies the conditions given in (ii). Then
by Theorem 4.4 there exist continuous functions π̃(w) and σ̃(w) such that the
graph (x, ξ) = (π̃(w), σ̃(w)) for w ∈ W is invariant with respect to the closed-
loop system (3.8), (3.9) and the exosystem (3.4). This implies that π̃(w) and
σ̃(w) satisfy the following equations:

d

dt
π̃(w(t)) = f(π̃(w), θ(σ̃(w), hm(π̃(w), w)), w),

d

dt
σ̃(w(t)) = η(σ̃(w), hm(π̃(w), w)), (4.24)

for all solutions of the exosystem w(t) lying in the set W. Moreover, for
every w(t) lying in W, the solution of the closed-loop system (x̃w(t), ξ̃w(t)) :=
(π̃(w(t)), σ̃(w(t))) is globally uniformly asymptotically stable. Let us show
that the mapping π̃(w) also satisfies the equation

hr(π̃(w), w) = 0 ∀ w ∈ Ω(W). (4.25)

Once this equality is proved, by Theorem 4.12 we obtain that controller (3.6),
(3.7) solves the global uniform output regulation problem.

In order to prove (4.25), we will show that

π(w(t)) ≡ π̃(w(t)) (4.26)

for any solution of the exosystem lying in Ω(W). Then equality (4.25) will
follow from (4.23) and from the fact that Ω(W) is an invariant set with respect
to system (3.1) (i.e., for any w∗ ∈ Ω(W) there exists a solution w(t) lying in
Ω(W) for all t ∈ R and satisfying w(0) = w∗).

Let us first show that for every solution w(t) lying in Ω(W) the closed-loop
system (3.8), (3.9) has a solution (x̄w(t), ξ̄w(t)) which is defined and bounded
for all t ∈ R. This fact follows from the regulator equations (4.22) and from
the property of the controller that for the input ȳw(t) := hm(π(w(t)), w(t))
it has a solution ξ̄w(t) which is defined and bounded for all t ∈ R and for
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which θ(ξ̄w(t), hm(π(w(t)), w(t))) ≡ c(w(t)) for all t ∈ R. Substituting this
(x̄w(t), ξ̄w(t)) := (π(w(t)), ξ̄w(t)) in the equations of the closed-loop system
(3.8), (3.9), one can easily check that such a pair (x̄w(t), ξ̄w(t)) is indeed a
solution of the closed-loop system. Since w(t) lies in a compact subset of Ω(W)
(due to assumption A1) and since π(w) is continuous in some neighborhood
of Ω(W), the function π(w(t)) and hence (x̄w(t), ξ̄w(t)) are bounded for all
t ∈ R.

Recall that the solution (x̃w(t), ξ̃w(t)) := (π̃(w(t)), σ̃(w(t))) is defined and
bounded for all t ∈ R and it is globally uniformly asymptotically stable. By
Property 2.4, this implies that (x̃w(t), ξ̃w(t)) ≡ (x̄w(t), ξ̄w(t)) for t ∈ R. This,
in turn, implies (4.26), which completes the proof of the theorem. 	


Theorem 4.16 provides a way to solve the global uniform output regulation
problem. First, one needs to solve the regulator equations (4.22) and (4.23)
(or show that they are not solvable, which implies that the problem cannot
be solved) and then to find a controller satisfying the conditions given in (ii).
Particular ways of finding such controllers will be discussed in Chapter 5.

4.4.2 Solvability of the robust global uniform output regulation
problem

In this section we provide solvability conditions for the robust global uniform
output regulation problem. In this problem we consider systems of the form
(3.10)–(3.12) depending on a vector of unknown, but constant, parameters p
taken from an open set P. The problem is to find a controller (independent
of p) that solves the global uniform output regulation problem for all p ∈ P.
This problem can be reduced to a regular variant of the global uniform output
regulation problem by extending the exosystem in the following way:(

ẇ
ṗ

)
=
(
s(w)

0

)
=: ŝ(w, p). (4.27)

After such an extension the parameter p is considered to be a part of the exo-
signal. Notice that if the original exosystem (3.4) satisfies the boundedness
assumption A1 in a certain open set W ⊂ R

m, then the extended exosystem
(4.27) satisfies assumption A1 in the set W × P. Therefore, controller (3.6),
(3.7) solves the global uniform output regulation problem for all parameters
p taken from the set P if it solves the global uniform output regulation prob-
lem for the extended exosystem (4.27), with (w, p) being a new state of the
exosystem. The converse statement is not true, in general, because the UBSS
property of the closed-loop system for the class of inputs Is(W) for every
parameter p ∈ P, which is required in the problem formulation of the robust
global uniform output regulation problem, does not imply the UBSS property
of the closed-loop system for the class of extended inputs Iŝ(W × P), where
Iŝ(W × P) denotes all solutions of the extended exosystem (4.27) starting
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in the open invariant set W × P. In fact, solvability of the global uniform
output regulation problem for the extended exosystem (4.27) is necessary for
the solvability of the so-called strong robust global uniform output regulation
problem, which is formulated in the following way.

Controller (3.6), (3.7) solves the strong robust global uniform
output regulation problem if it solves the global uniform output
regulation problem for all p ∈ P, and for any compact subsets Kw ⊂
W and Kp ⊂ P there exists a compact set Kz ⊂ R

d such that for
any solution of the exosystem w(t) starting in w(0) ∈ Kw and any
parameter p ∈ Kp the corresponding steady-state solution z̄wp(t) of
the closed-loop system lies in the set Kz for all t ∈ R.

One can easily check that this strong robust global uniform output regula-
tion problem is equivalent to the global uniform output regulation problem
for system (3.10)–(3.12) and exosystem (4.27). Using this fact, we can ap-
ply the results obtained in the previous section to study solvability of the
strong robust global uniform output regulation problem. Consequently, we
can formulate the following results, which are counterparts of Theorems 4.12
and 4.16.

Theorem 4.17. Consider system (3.10)–(3.12) with the parameter p taken
from an open set P and exosystem (3.4) satisfying the boundedness assumption
A1 in an open invariant set of initial conditions W. The following statements
are equivalent:

(i) Controller (3.6), (3.7) solves the strong robust global uniform output reg-
ulation problem.

(ii) The closed-loop system is globally uniformly convergent with the UBSS
property for the class of inputs Iŝ(W × P) and there exist continuous
mappings π(·, ·) : W × P → R

n and σ(·, ·) : W × P → R
q satisfying the

equations

d

dt
π(w(t), p) = f(π(w, p), θ(σ(w, p), hm(π(w, p), w, p)), w, p),

d

dt
σ(w(t), p) = η(σ(w, p), hm(π(w, p), w, p)), (4.28)

∀ w(t) = w(t, w0) ∈ W, p ∈ P,

0 = hr(π(w, p), w, p) ∀ w ∈ Ω(W), p ∈ P. (4.29)

(iii) There exist continuous mappings π(·, ·) : W × P → R
n and σ(·, ·) :

W × P → R
q satisfying (4.28) and (4.29) and for every w(·) ∈ Is(W)

and every p ∈ P the solution (x̄wp(t), ξ̄wp(t)) = (π(w(t), p), σ(w(t), p)) is
globally uniformly asymptotically stable.

The next theorem provides solvability conditions for the strong robust global
uniform output regulation problem. It directly follows from Theorem 4.16.
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Theorem 4.18. Consider system (3.10)–(3.12) with the parameter p taken
from an open set P and exosystem (3.4) satisfying the boundedness assump-
tion A1 in an open invariant set of initial conditions W. The strong robust
global uniform output regulation problem is solvable if and only if the following
conditions are satisfied:

(i) There exist continuous mappings π(w, p) and c(w, p) defined in some
neighborhood of Ω(W) × P, satisfying the regulator equations

d

dt
π(w(t), p) = f(π(w(t), p), c(w(t), p), w(t), p), (4.30)

0 = hr(π(w(t), p), w(t), p), (4.31)

for all solutions w(t) of the exosystem (3.4) lying in the set Ω(W) and
for all p ∈ P.

(ii) There exists a controller of the form (3.6), (3.7) such that for any solution
of the exosystem w(t) lying in the set Ω(W) and for any p ∈ P the input
ȳw(t) := hm(π(w(t), p), w(t), p) induces the output ū(t) = c(w(t), p) in
controller (3.6), (3.7) and the closed-loop system corresponding to this
controller is globally uniformly convergent with the UBSS property for the
class of inputs Iŝ(W × P).

Under these conditions, a controller solves the strong robust global uniform
output regulation problem if and only if it satisfies the conditions given in (ii).

4.4.3 Solvability of the global forward time uniform
output regulation problem

Solvability of the global forward time uniform output regulation problem can
be studied in a similar way as solvability of the global uniform output reg-
ulation problem. The main difference is that instead of Theorem 4.4, which
forms the foundation for the analysis in the previous sections, the results in
this section are based on Theorem 4.6. The proofs are identical to the proofs
of Theorems 4.12 and 4.16 and are omitted here. The first theorem, which
is a counterpart of Theorem 4.12, provides necessary and sufficient condi-
tions under which a controller solves the global forward time uniform output
regulation problem.

Theorem 4.19. Consider system (3.1)–(3.3) and exosystem (3.4) with a
compact positively invariant set of initial conditions W+ ⊂ R

m. The following
statements are equivalent:

(i) Controller (3.6), (3.7) solves the global forward time uniform output reg-
ulation problem.
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(ii) There exist continuous mappings π : W̃ → R
n and σ : W̃ → R

q, where
W̃ ⊂ R

m is some neighborhood of W+, satisfying

d

dt
π(w(t)) = f(π(w), θ(σ(w), hm(π(w), w)), w),

d

dt
σ(w(t)) = η(σ(w), hm(π(w), w)), (4.32)

∀ w(t) = w(t, w0) ∈ W+, for t ≥ 0,
0 = hr(π(w), w) ∀ w ∈ Ω(W+), (4.33)

and the closed-loop system (3.8), (3.9) is globally uniformly convergent
with the UBSS property for the class of inputs PC(W̃).

The next theorem is a counterpart of Theorem 4.16. It provides necessary
and sufficient conditions for solvability of the global forward time uniform
output regulation problem.

Theorem 4.20. Consider system (3.1)–(3.3) and exosystem (3.4) with a
compact positively invariant set of initial conditions W+ ⊂ R

m. The global
forward time uniform output regulation problem is solvable if and only if the
following conditions are satisfied:

(i) There exist continuous mappings π(w) and c(w) defined in some neigh-
borhood of Ω(W+) and satisfying the regulator equations

d

dt
π(w(t)) = f(π(w(t)), c(w(t)), w(t)), (4.34)

0 = hr(π(w(t)), w(t)), (4.35)

for all solutions of exosystem (3.4) satisfying w(t) ∈ Ω(W+) for t ∈ R.

(ii) There exists a controller of the form (3.6), (3.7) such that for any so-
lution of the exosystem w(t) lying in the set Ω(W+) the input ȳw(t) :=
hm(π(w(t)), w(t)) induces the output ūw(t) = c(w(t)) in controller (3.6),
(3.7), and the closed-loop system corresponding to this controller is glob-
ally uniformly convergent with the UBSS property for the class of inputs
PC(W̃), where W̃ is some neighborhood of W+.

Under these conditions, a controller solves the global forward time uniform
output regulation problem if and only if it satisfies the conditions given in (ii).

Results related to solvability of the robust variant of the global forward
time uniform output regulation problem can be obtained in the same way as
in Section 4.4.2.
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4.5 Solvability of the local uniform output
regulation problem

Analysis of the solvability of the local uniform output regulation problem is
very close to the analysis in the global case (see Section 4.4.1). Analysis in the
local case is based on the local invariant manifold theorem (Theorem 4.8). We
omit the proofs of the results presented in this section since they are nearly
identical to the proofs of the results from Section 4.4.1.

The following theorem provides necessary and sufficient conditions for a
controller of the form (3.6), (3.7) to solve the local uniform output regulation
problem.

Theorem 4.21. Consider system (3.1)–(3.3) and exosystem (3.4) satisfying
the neutral stability assumption. The following statements are equivalent:

(i) Controller (3.6), (3.7) solves the local uniform output regulation problem.
(ii) There exist continuous mappings π(w) and σ(w) defined in some invariant

neighborhood of the origin W ⊂ R
m, satisfying π(0) = 0, σ(0) = 0, and

d

dt
π(w(t)) = f(π(w), θ(σ(w), hm(π(w), w)), w),

d

dt
σ(w(t)) = η(σ(w), hm(π(w), w)), (4.36)

∀ w(t) = w(t, w0) ∈ W,

0 = hr(π(w), w), ∀ w ∈ W, (4.37)

for all w(·) ∈ Is(W), and the closed-loop system (3.8), (3.9) corresponding
to this controller is locally uniformly convergent for the class of inputs
Is(W).

The main difference between Theorem 4.21 and Theorem 4.12 (if we do
not take into account that in the first case the analysis is local and in the
second it is global) is in (4.37) and (4.19). In (4.37), the equality

hr(π(w), w) = 0 (4.38)

is required for all w ∈ W, while in (4.19) this equality is required only for
the set Ω(W). This difference is explained by the fact that the exosystem is
neutrally stable. By the definition (see Definition 3.1), neutral stability im-
plies that for some neighborhood of the origin Ŵ it holds that Ŵ ⊂ Ω(Ŵ).
Thus, for a sufficiently small neighborhood W of the origin the equality
hr(π(w), w) = 0 for all w ∈ Ω(W) implies that this equality is satisfied
for all w ∈ W. The opposite is also true. If equality (4.38) is satisfied for all
w in some invariant neighborhood of the origin W, one can choose another
invariant neighborhood of the origin W̃ such that equality (4.38) holds for all
w ∈ Ω(W̃). The proof of this statement is as follows. From the definition of
the set Ω(W̃) one can conclude that Ω(W̃) ⊂ clos(W̃), where clos(W̃) is the
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closure of the set W̃. Hence, if we find an invariant neighborhood of the origin
W̃ such that clos(W̃) ⊂ W, then equality (4.38) is satisfied for all w ∈ Ω(W̃).
Such a neighborhood W̃ exists, because the trivial solution w(t) ≡ 0 is sta-
ble in forward and backward time (see the proof of Theorem 4.8, where this
statement is proved and used several times).

The next theorem provides a local counterpart of Theorem 4.16.

Theorem 4.22. Consider system (3.1)–(3.3) and exosystem (3.4) satisfying
the neutral stability assumption. The local uniform output regulation problem
is solvable if and only if the following conditions are satisfied:

(i) There exist continuous mappings π(w) and c(w) defined in some invariant
neighborhood of the origin W ⊂ R

m, such that π(0) = 0, c(0) = 0, and

d

dt
π(w(t)) = f(π(w(t)), c(w(t)), w(t)), (4.39)

0 = hr(π(w(t)), w(t)), (4.40)

for all solutions of exosystem (3.4) satisfying w(t) ∈ W for all t ∈ R.
(ii) There exists a controller of the form (3.6), (3.7) satisfying the following

conditions: a) there exists a continuous mapping σ : W → R
q satisfying

σ(0) = 0 and

d

dt
σ(w(t)) = θ(σ(w), hm(π(w), w)), (4.41)

c(w(t)) = θ(σ(w(t)), hm(π(w(t)), w(t))),

for all w(t) ∈ W, and b) the closed-loop system corresponding to this
controller is locally uniformly convergent for the class of inputs Is(W).

Under these conditions, a controller satisfying the conditions given in (ii)
solves the local uniform output regulation problem.

Remark. The requirement that the controller satisfy (4.41) for some con-
tinuous σ(w) guarantees that for any solution of the exosystem w(t) lying
in the set W for all t ∈ R the input ȳw(t) := hm(π(w(t)), w(t)) induces the
output ūw(t) = c(w(t)) in controller (3.6) (3.7).�

4.6 Applications of the invariant manifold theorems

All solvability results presented in this chapter are based on the invariant
manifold theorems (Theorems 4.4, 4.6, and 4.8). Although these theorems
were derived for studying the output regulation problem, they are interesting
in their own respect. In this section we discuss how these invariant manifold
theorems can be applied in the scope of so-called generalized synchronization
and for the analysis of nonlinear systems excited by harmonic signals.
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4.6.1 Generalized synchronization

In the field of master-slave synchronization one considers coupled systems of
the form

ż = F (z, w), (4.42)
ẇ = s(w). (4.43)

System (4.43) can be treated as a master system that generates a driving sig-
nal for the slave system (4.42). One of the phenomena studied in the context
of the master-slave synchronization is the so-called generalized synchroniza-
tion [64, 65, 76]. Roughly speaking, generalized synchronization occurs if for
some continuous function α(w) all solutions z(t) of system (4.42) converge to
the manifold z = α(w), i.e., limt→+∞(z(t) − α(w(t)) = 0. As follows from
Theorem 4.6, if all solutions of system (4.43) start in a compact positively
invariant set W+ and system (4.42) is globally uniformly convergent with
the UBSS property for the class of inputs PC(W̃), where W̃ is some neigh-
borhood of W+, then there exists a continuous function α(w) defined in W̃
such that for all initial conditions z(0) ∈ R

d and w(0) ∈ W+ it holds that
limt→+∞(z(t) − α(w(t)) = 0. Since the ω-limit set Ω(W+) is an invariant set
inside W+, Theorem 4.6 implies that the mapping α(w) is uniquely defined
for all w ∈ Ω(W+). Therefore, we see that the result of Theorem 4.6 can be
applied for studying generalized synchronization phenomena.

4.6.2 Nonlinear frequency response functions

A common way to analyze the behavior of a dynamical system is to investi-
gate its responses to harmonic excitations at different frequencies. For linear
systems, the information on responses to harmonic excitations, which is con-
tained in frequency response functions and usually represented in the form
of Bode plots, allows us to identify the system and analyze its properties
such as performance and robustness. Moreover, it serves as a powerful tool
for controller design. There exists a vast literature on frequency domain iden-
tification, analysis, and controller design methods for linear systems. Most
(high-performance) industrial controllers, especially for motion systems, are
designed and tuned based on these methods. The lack of such methods for
nonlinear systems is one of the reasons why nonlinear systems and controllers
are not popular in industry. Even if a (nonlinear) controller achieves a certain
control goal (e.g., tracking or disturbance attenuation), which can be proved,
for example, using Lyapunov stability methods, it is very difficult to say some-
thing about performance of the corresponding nonlinear closed-loop system,
while performance is critical in many industrial applications. So, there is a
need to extend the linear analysis and controller design methods based on
harmonic excitations to nonlinear systems.
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One of the first difficulties in such an extension is that a general nonlin-
ear system being excited by a periodic (e.g., harmonic) signal can have none,
one, or multiple periodic solutions and, if a periodic solution does exist, its
period can differ from the period of the excitation signal. Moreover, if such
periodic solutions exist, they essentially depend not only on the excitation
frequency, but also on the amplitude of the excitation. As follows from Prop-
erty 2.23, uniformly convergent systems, although nonlinear, have relatively
simple dynamics and for any periodic excitation there exists a unique periodic
solution that has the same period as the excitation. Such periodic solutions
can be found numerically using, for example, shooting and path following
methods [63]. These methods require significant computational efforts, since
they are based on the integration of the corresponding differential equations.
At the same time, if in addition to the uniform convergence property a sys-
tem has the UBSS property for the class of bounded piecewise continuous
inputs, periodic solutions corresponding to all harmonic excitations of the
form u(t) = A sin(ωt) for all frequencies ω and all amplitudes A can be found
from only one function. This statement follows from the next theorem.

Theorem 4.23. Consider the system

ż = F (z, u), (4.44)
y = h(z), (4.45)

with state z ∈ R
d, input u ∈ R and output y ∈ R; the function F (z, u) is

assumed to be locally Lipschitz with respect to z and continuous with respect
to u. Suppose system (4.44) is globally uniformly convergent with the UBSS
property for the class of inputs PC1. Then there exists a unique continuous
mapping α : R

3 → R
d such that z̄u(t) = α(A sin(ωt),A cos(ωt), ω) is a unique

periodic solution of system (4.44) corresponding to the excitation input u(t) =
A sin(ωt). Moreover, z̄u(t) is uniformly globally asymptotically stable.

Proof: The proof of this theorem follows from the fact that harmonic signals of
the form u(t) = A sin(ωt) for various amplitudes and frequencies are generated
by the following system:

ẇ1 = ωw2,

ẇ2 = −ωw1, (4.46)
ω̇ = 0,
u = w1.

The initial conditions of this system determine the excitation amplitude A and
frequency ω. Thus, we can treat system (4.44) excited by the input u(t) =
A sin(ωt) as a system being coupled with exosystem (4.46). One can easily
check that system (4.46) satisfies the boundedness assumption A1. Thus, by
Corollary 4.5 there exists a unique continuous function α : R

3 → R
d such
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that the steady-state solution corresponding to the solution of the exosystem
(w1(t), w2(t), ω(t)) = (A sin(ωt),A cos(ωt), ω) equals

z̄u(t) = α(A sin(ωt),A cos(ωt), ω).

Since system (4.44) is globally uniformly convergent for the class of inputs
PC1, by Property 2.23 we obtain that z̄u(t) is a unique periodic solution of sys-
tem (4.44) and, in addition, it is uniformly globally asymptotically stable. 	


As follows from Theorem 4.23, the function α(w1, w2, ω) contains all in-
formation related to periodic solutions of system (4.44) corresponding to har-
monic excitations, and the function h(α(w1, w2, ω)) contains all information
on the periodic outputs corresponding to harmonic excitations. So, the func-
tion h(α(w1, w2, ω)) can be considered as a nonlinear frequency response func-
tion. Notice that this frequency response function depends, in the nonlinear
case, not only on the frequency of the excitation, but also on its amplitude
and phase. For the analysis of nonlinear systems it can be useful to introduce
some kind of a magnitude plot for h(α(w1, w2, ω)). This can be done in the
following way. Suppose we are interested in responses of system (4.44) to har-
monic excitations at all frequencies ω ≥ 0 and all amplitudes not exceeding
some A∗ > 0. Define

ΥA∗(ω) := sup
A∈(0,A∗]

(
sup

w2
1+w2

2=A2

|h(α(w1, w2, ω))|
A

)
.

This function is a nonlinear analog of the Bode magnitude plot. The meaning
of this function is the following. First, we take some A ∈ (0,A∗] and compute
the maximal absolute value of the periodic output corresponding to the ex-
citation u(t) = A sin(ωt). Then we divide it by A. Such normalized maximal
value is a gain k(ω,A) with the following meaning: if the harmonic excita-
tion with frequency ω has amplitude A, then the maximal absolute value of
the periodic output corresponding to this excitation equals k(ω,A)A. Finally,
ΥA∗(ω) is the maximal value of the gain k(ω,A) over all amplitudes from the
set A ∈ (0,A∗]. For linear systems of the form ż = Az + Bu with a Hurwitz
matrix A and output y = Cz, the gain k(ω,A) is independent of the ampli-
tude A and it equals k(ω) = |C(iωI −A)−1B|. Hence, ΥA∗(ω) is independent
of A∗ and it equals ΥA∗(ω) = |C(iωI − A)−1B|. Therefore, we see that for
linear systems the graph of ΥA∗(ω) versus the excitation frequency ω coincides
with the Bode magnitude plot. The function ΥA∗(ω) can be used further to
study dynamical properties of uniformly convergent systems. Depending on
the inputs and outputs that we choose for the nonlinear system (4.44), we
can define nonlinear variants of the sensitivity and complementary sensitivity
functions of controlled convergent systems.

As has been mentioned in Section 4.2, the problem of finding the mapping
α(w1, w2, ω) is, in general, not an easy task. But in certain cases it is possible
to find this mapping analytically. Let us find α(w1, w2, ω) for a particular
example.
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Example 4.24. Consider the system

ż1 = −z1 + z2
2 , (4.47)

ż2 = −z2 + u, (4.48)
y = z1. (4.49)

This system is a series connection of input-to-state convergent systems. There-
fore, by Property 2.27, system (4.47), (4.48) is input-to-state convergent. This,
by Property 2.19, implies that system (4.47), (4.48) is globally uniformly con-
vergent with the UBSS property for the class of inputs PC1. Consequently,
by Theorem 4.23 the mapping α(w1, w2, ω) exists and it is unique. Using the
method described in Example 4.10, we will first find α2(w1, w2, ω) (the sec-
ond component of α) from (4.48). In our case, α2(w1, w2, ω) is a polynomial
function of degree 1 in the variables w1 and w2. So, we will seek α2 in the
form:

α2(w1, w2, ω) = a1(ω)w1 + a2(ω)w2.

Substituting this expression in (4.48), we find

a1(ω) =
1

1 + ω2 , a2(ω) =
−ω

1 + ω2 .

Then, substituting the obtained α2 for z2 in (4.47), we compute α1(w1, w2, ω).
In our case, it is a polynomial of w1 and w2 of the same degree as the poly-
nomial (α2(w1, w2, ω))2. Thus, we will seek α1(w1, w2, ω) in the form

α1(w1, w2, ω) = b1(ω)w2
1 + 2b2(ω)w1w2 + b3(ω)w2

2. (4.50)

After the corresponding computations, we obtain

b1(ω) =
2ω4 + 1

(1 + 4ω2)(1 + ω2)2
, b2(ω) =

ω3 − 2ω
(1 + 4ω2)(1 + ω2)2

,

b3(ω) =
2ω4 + 5ω2

(1 + 4ω2)(1 + ω2)2
.

After the function α(w1, w2, ω) is found, one can numerically, though very
efficiently, compute the magnitude characteristics ΥA∗(ω) for some maximal
excitation amplitude A∗ and all frequencies over the band of interest. In Fig-
ure 4.1, ΥA∗(ω) is computed for A∗ = 1. Since α1(w1, w2, ω) is a uniform
polynomial function of degree 2 with respect to the variables w1 and w2 (see
formula (4.50)), one can easily check that for arbitrary A∗ > 0 it holds that
ΥA∗(ω) = A∗Υ1(ω). Here we see the dependency of the amplification gain on
the amplitude of the excitation. This is an essentially nonlinear phenomenon.�

It is common knowledge that nonlinear systems may have very complex
dynamics and that, in general, it is not possible to apply linear analysis and
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Fig. 4.1. The function ΥA∗(ω) computed for A∗ = 1.

design methods to investigate nonlocal dynamical properties of nonlinear sys-
tems. At the same time, uniformly convergent systems, even when nonlinear,
exhibit relatively simple dynamics. Moreover, for uniformly convergent sys-
tems with the UBSS property we can define a frequency response function and
an analog of a well-known linear analysis tool such as the Bode plot, which
can be used, for example, for studying attenuation properties at different exci-
tation frequencies. It is still an open question whether such a nonlinear Bode
plot contains enough information to fully identify the system or to design
controllers based on this plot. Another open question is how to compute the
function α(w1, w2, ω). A standard solution would be to find it numerically. Yet,
such numerical methods still need to be developed. As we have shown with an
example, in certain cases α(w1, w2, ω) can be found analytically. The results
and open questions discussed in this section open an interesting direction in
nonlinear systems and control analysis.

4.7 Summary

In this chapter we have presented several results related to solvability of the
global, global robust, global forward time, and local uniform output regula-
tion problems. Theorems 4.12, 4.17, 4.19, and 4.21 provide characterizations
of all controllers solving the above-mentioned variants of the uniform output
regulation problem. Theorems 4.16, 4.18, 4.20, and 4.22 provide necessary
and sufficient conditions for the solvability of these problems. These solvabil-
ity conditions consist of two ingredients: solvability of the regulator equations
and existence of a controller which has the generalized internal model prop-
erty and makes the closed-loop system uniformly convergent. Solvability of
the regulator equations guarantees that for every solution of the exosystem
lying in a certain ω-limit set it is possible to find at least one control input for
which the controlled system has a solution along which the regulated output
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equals zero. The generalized internal model property of the controller guaran-
tees that this controller is capable of generating this control input based on the
information available from the measurements. The uniform convergence prop-
erty guarantees that the above-mentioned solution, along which the regulated
output equals zero, is (globally, locally) asymptotically stable.

All solvability results presented in this chapter are based on the invariant
manifold theorems (Theorems 4.4, 4.6, and 4.8), which, in the context of the
output regulation problem, serve as counterparts of the center manifold theo-
rem. Although the invariant manifold theorems are derived in order to study
solvability of the uniform output regulation problem, they are interesting in
their own respect. As follows from the discussion in Section 4.6, these invariant
manifold theorems can be used for checking the generalized synchronization
property for coupled systems and for the computation of periodic solutions
of uniformly convergent systems excited by harmonic inputs. Moreover, these
theorems allow us to define nonlinear frequency response functions and a vari-
ant of the Bode plot for uniformly convergent nonlinear systems. This opens
a new direction in the analysis of nonlinear systems.



5

Controller design for the global uniform output
regulation problem

In the previous chapter we presented necessary and sufficient conditions for
solvability of different variants of the uniform output regulation problem. Even
if the problem is solvable, these conditions do not answer the question of how
to find a particular controller to solve this problem. For the local exponential
output regulation problem, such design methods are well known and can be
found, for example, in [8]. In this chapter we discuss and present methods on
controller design for the global uniform output regulation problem.

5.1 Controller design strategy

In this chapter we consider the system

ẋ = f(x, u, w), (5.1)
e = hr(x,w), (5.2)
y = hm(x,w), (5.3)

with state x ∈ R
n, control u ∈ R

k, regulated output e ∈ R
lr , and measured

output y ∈ R
lm . The external input w ∈ R

m is generated by the exosystem

ẇ = s(w). (5.4)

We will consider both the regular and the forward time variants of the
global uniform output regulation problem. In the first case, all solutions of
the exosystem start in an open invariant set of initial conditions W ⊂ R

m

such that exosystem (5.4) satisfies the boundedness assumption A1 in the
set W. A controller solving this variant of the problem makes the closed-
loop system globally uniformly convergent with the UBSS property for the
class of inputs Is(W) and guarantees that for all solutions of the closed-loop
system starting in R

n+q (here q is the dimension of the controller) and all
solutions of the exosystem starting in W, the regulated output e(t) tends
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to zero. In the forward time variant of the global uniform output regulation
problem, all solutions of the exosystem start in a positively invariant compact
set W+ ⊂ R

m. A controller solves this problem if it makes the corresponding
closed-loop system globally uniformly convergent with the UBSS property for
the class of inputs PC(W̃), where W̃ is some neighborhood of W+, and it
guarantees that for all solutions of the closed-loop system starting in R

n+q

and all solutions of the exosystem starting in W+, the regulated output e(t)
tends to zero. Controller designs presented in this chapter are suitable for
both the regular and the forward time variants of the global uniform output
regulation problem.

As we have seen in Chapter 4 (see Theorem 4.16), if the global uniform
output regulation problem is solvable, then there exist continuous mappings
π(w) and c(w), defined in some neighborhood of the ω-limit set Ω(W), such
that they satisfy the regulator equations

d

dt
π(w(t)) = f(π(w(t)), c(w(t)), w(t)), (5.5)

0 = hr(π(w(t)), w(t)),

for any solution of the exosystem w(t) lying in the ω-limit set Ω(W). In case
of the forward time variant of the problem, a necessary condition for the
solvability of the problem (see Theorem 4.20) is the existence of continuous
mappings π(w) and c(w) defined in some neighborhood of the ω-limit set
Ω(W+) such that they satisfy the regulator equations (5.5) for all solutions of
the exosystem w(t) lying in the ω-limit set Ω(W+). In the following we will
denote the ω-limit sets Ω(W) and Ω(W+) by Ω omitting W or W+.

Since solvability of the regulator equations (5.5) is a necessary condition for
the solvability of the global (forward time) uniform output regulation problem,
we assume that this condition is satisfied and that the continuous mappings
π(w) and c(w) satisfying these equations for all solutions of the exosystem
w(t) lying in the ω-limit set Ω are known. Moreover, we assume that these
mappings π(w) and c(w) are continuously extended to the whole state space
R

m. This means that π(w) and c(w) are globally defined continuous mappings
that satisfy the regulator equations (5.5) for all solutions of the exosystem w(t)
lying in the ω-limit set Ω.

In general, it can be rather difficult to check solvability of the regulator
equations and find its solutions. Yet, for some particular systems this can be
done easily, as illustrated by the following example.

Example 5.1. Consider the system

ẋ1 = x2,

ẋ2 = x3 − x2 + sin(x2), (5.6)
ẋ3 = u,

e = x1 − w1,
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and the exosystem

ẇ1 = w2, (5.7)
ẇ2 = −w1.

Notice that exosystem (5.7) satisfies the boundedness assumption A1 in the
whole state space R

2. Moreover, since all solutions of (5.7) are periodic,
Ω(R2) = R

2. For system (5.6), the regulator equations have the form

d

dt
π1(w(t)) = π2(w),

d

dt
π2(w(t)) = π3(w) − π2(w) + sin(π2(w)), (5.8)

d

dt
π3(w(t)) = c(w),

0 = π1(w) − w1.

Here we adopt the notation π(w) = [π1(w), π2(w), π3(w)]T . The last equation
in (5.8) gives us π1(w) = w1. Substituting this π1(w) into the first equation
in (5.8), we obtain π2(w) = w2. Repeating this procedure for the second and
the third equations, we obtain π3(w) = −w1 + w2 − sin(w2) and c(w) =
−w1 − w2 + w1 cos(w2).�

In subsequent sections, we will design controllers of the form

ξ̇ = η(ξ, y), (5.9)
u = θ(ξ, y),

having the following two properties:

a) system (5.1)–(5.3) in closed loop with controller (5.9) is input-to-state
convergent;

b) for any solution w(t) of exosystem (5.4) lying in the ω-limit set Ω, the
input ȳw(t) := hm(π(w(t)), w(t)) induces the output ūw(t) = c(w(t)) in
the controller (5.9) (see Definition 4.14).

Notice that a controller having these two properties solves the global uniform
output regulation problem, and, in the forward time case, it solves the global
forward time uniform output regulation problem. Namely, the input-to-state
convergence property implies that the corresponding closed-loop system is
globally uniformly convergent with the UBSS property for the class of inputs
PCm. Since in the regular variant of the global uniform output regulation
problem the exosystem satisfies the boundedness assumption A1 in the set
W, the class of inputs Is(W) is contained in PCm. Therefore, the closed-
loop system is globally uniformly convergent with the UBSS property for the
class of inputs Is(W). This fact, together with the generalized internal model
property b) implies, by Theorem 4.16, that such a controller solves the global
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uniform output regulation problem. In the forward time case, Theorem 4.20
guarantees that such a controller solves the global forward time uniform out-
put regulation problem.

One can try to find a controller with properties a) and b) stated above
directly or try to tackle this problem by decomposing the desired controller
and finding its parts separately. The last approach is discussed in the next
section.

5.2 Controller decomposition

In practice the generalized internal model property and the input-to-state
convergence property can be achieved with two different parts of the controller.
Thus the problem of finding a controller solving the global uniform (forward
time) output regulation problem can be tackled in two steps. First, we find a
controller of the form

ξ̇1 = η1(ξ1, y), (5.10)
u1 = θ1(ξ1, y),

that has the generalized internal model property, i.e., that for any solution of
exosystem (5.4) lying in the ω-limit set Ω, the input ȳw(t) = hm(π(w(t)), w(t))
induces the output ūw(t) = c(w(t)) in system (5.10). Once such a controller
is found, we extend system (5.1) with this controller in the following way:

ẋ = f(x, θ1(ξ1, y) + u2, w),
ξ̇1 = η1(ξ1, y) + v, (5.11)
ye = (ξ1, y),

where (u2, v) is a new input and ye is an extended output. After such an
extension the problem reduces to finding a controller

ξ̇2 = η2(ξ2, ye),
u2 = θ2(ξ2, ye), (5.12)
v = ψ(ξ2, ye),

such that the extended system (5.11) in closed loop with controller (5.12) is
input-to-state convergent and that in the steady-state operation both u2 and
v are zero. Finding such a controller is the second step in the controller design
problem. If we find it, then the overall controller takes the form

ξ̇1 = η1(ξ1, y) + ψ(ξ2, ξ1, y),
ξ̇2 = η2(ξ2, ξ1, y), (5.13)
u = θ1(ξ1, y) + θ2(ξ2, ξ1, y).
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Controller (5.13) solves the global uniform (forward time) output regulation
problem. Namely, it makes the corresponding closed-loop system input-to-
state convergent (this implies that the closed-loop system is globally uniformly
convergent with the UBSS property for the class of inputs PCm), and for
any solution of exosystem (5.4) lying in the ω-limit set Ω, the input ȳw(t) =
hm(π(w(t)), w(t)) induces the output ūw(t) = c(w(t)) in the controller. Hence,
by Theorem 4.16 (Theorem 4.20 for the forward time case) this controller
solves the global uniform (forward time) output regulation problem.

After such a controller decomposition, the question is how to find con-
trollers (5.10) and (5.12) with the properties described above. If the external
signal w(t) is measured, controller (5.10) can be set to u1(w) = c(w). If this
is not the case, one can use the next obvious choice:

ξ̇1 = s(ξ1), (5.14)
u1 = c(ξ1).

This controller does not use y, but, despite this fact, for any solution of the
exosystem w(t) lying in the set Ω, system (5.14) has a solution ξ1(t) ≡ w(t)
along which its output u1 equals c(w(t)). So, indeed, system (5.14) has the
generalized internal model property. Being a part of the overall controller
(5.13), ξ1-system (5.14) serves as an observer for the exosystem. The next
possible choice for the ξ1-subsystem is a linear system, as stated in the next
lemma.

Lemma 5.2. Suppose y ∈ R, u ∈ R and there exist numbers a0, . . . ar, ar �= 0
and b0, . . . br such that for any solution of exosystem (5.4) w(t) lying in the
set Ω, the functions ȳw(t) = hm(π(w(t)), w(t)) and ūw(t) = c(w(t)) satisfy
the relation

r∑
i=0

ai
di

(dt)i
ūw(t) =

r∑
i=0

bi
di

(dt)i
ȳw(t). (5.15)

Then there exist matrices Φ ∈ R
(r−1)×(r−1), N ∈ R

(r−1)×1, M ∈ R
1×(r−1),

and κ ∈ R such that the input ȳw(t) induces the output ūw(t) in the system

ξ̇1 = Φξ1 + Ny, (5.16)
u1 = Mξ1 + κy.

Proof: Choose Φ, N , M , and κ such that system (5.16) is the state space
realization of the linear system u = W (s)y with the transfer function
W (s) := b(s)/a(s), where a(s) =

∑r
i=0 ais

i and b(s) =
∑r

i=0 bis
i. Relation

(5.15) shows that ȳw(t) and ūw(t) satisfy the relation u = W (s)y. Therefore,
system (5.16) with the input ȳw(t) has a bounded solution along which the
output u1 equals ūw(t). Hence, system (5.16) has the required generalized
internal model property. 	
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A different way of finding a ξ1-subsystem with the generalized internal
model property can be found, for example, in [11]. Why may we need sev-
eral different implementations of the ξ1-subsystem? It may happen that for
a certain implementation of the ξ1-subsystem it is not possible to design a
ξ2-subsystem that guarantees global uniform convergence of the closed-loop
system. At the same time, for another implementation of the ξ1-subsystem
such a ξ2-subsystem can be found. For example, in the local exponential out-
put regulation problem, the internal model, which is a counterpart of the
ξ1-subsystem, is required to have certain detectability properties. Without
these properties it is not possible to find a ξ2-subsystem of the controller that
makes the closed-loop system locally exponentially convergent (see, e.g., [8]).

Having found controller (5.10) with the generalized internal model prop-
erty, we need to find controller (5.12) that makes the overall closed-loop system
input-to-state convergent. This problem is discussed in the next section.

5.3 How to make a system input-to-state convergent?

In this section we present different methods for designing controllers that
make the corresponding closed-loop system input-to-state convergent. These
methods are based on basic results on convergent systems from Chapter 2.

5.3.1 Backstepping design

In this section we present an analog of the backstepping method for designing a
feedback that makes a system input-to-state convergent. Consider the system

ż1 = F (z1, z2, w), (5.17)
ż2 = u, (5.18)

with states z1 ∈ R
d, z2 ∈ R

k, control u ∈ R
k, and external input w ∈ R

m.
The function F (z1, z2, w) is locally Lipschitz with respect to z1 and z2 and
continuous with respect to w.

Theorem 5.3. Consider the system (5.17), (5.18). Suppose there exists a C1

function ψ(z1) such that the system

ż1 = F (z1, ψ(z1) + v̄, w), (5.19)

with inputs v̄ and w is input-to-state convergent. Then for any scalar b > 0
the controller

u = −b(z2 − ψ(z1)) +
∂ψ

∂z1
(z1)F (z1, z2, w) + v (5.20)

is such that the closed-loop system (5.17), (5.18), (5.20) with v and w as
inputs is input-to-state convergent.
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Proof: Consider the coordinate transformation ξ1 := z1, ξ2 = z2 − ψ(z1). In
the new coordinates the system equations are

ξ̇1 = F (ξ1, ψ(ξ1) + ξ2, w),

ξ̇2 = u − ∂ψ

∂z1
(ξ1)F (ξ1, ψ(ξ1) + ξ2, w).

After applying the feedback

u = −bξ2 + v +
∂ψ

∂z1
(ξ1)F (ξ1, ψ(ξ1) + ξ2, w), (5.21)

the equations of the closed-loop system become

ξ̇1 = F (ξ1, ψ(ξ1) + ξ2, w), (5.22)
ξ̇2 = −bξ2 + v. (5.23)

Due to the choice of ψ(ξ1), the ξ1-subsystem with inputs (ξ2, w) is input-to-
state convergent. At the same time, the ξ2-subsystem is input-to-state conver-
gent because it is linear with the Hurwitz matrix −bI (this system satisfies the
Demidovich condition with the matrices P = I, Q = 2bI, see Theorem 2.29).
By Property 2.27, the series connection of systems (5.22) and (5.23) is an
input-to-state convergent system. Finally, notice that in the original coordi-
nates (z1, z2) controller (5.21) equals the controller given in (5.20). 	


Remark 1. The input-to-state convergence property of system (5.19) can
be established, for example, using Theorem 2.29. Some methods for finding
the function ψ(z1) with the required properties will be discussed later in this
chapter.�

Remark 2. The parameter b > 0 can be used to influence the rate of
convergence in the closed-loop system, while the additional input v can be
used to shape steady-state solutions of the closed-loop system (for example,
in order to guarantee certain steady-state behavior of the closed-loop system).
Actually, instead of the controller (5.20) we can use any controller of the form

u = −κ(z2 − ψ(z1)) +
∂ψ

∂z1
(z1)F (z1, z2, w) + v,

where the function κ(·) is such that the system ξ̇2 = −κ(ξ2) + v is input-to-
state convergent.�

Remark 3. The result of Theorem 5.3 can be extended to the case of
arbitrary number of integrators in the system:

ż1 = F (z1, z2, w),
ż2 = z3,

· · ·
żr = u.
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In this case, F (z1, z2, w) and ψ(z1) must be sufficiently differentiable.�

To illustrate the backstepping controller design method, consider the following
example.

Example 5.4. Consider the system

ẋ1 = x2,

ẋ2 = −x1 − x3
2 + x3, (5.25)

ẋ3 = u.

It can be easily checked that for ψ(x1, x2) = x3
2 − ax2, a > 0, the (x1, x2)

subsystem with x3 = ψ(x1, x2) + v̄ is input-to-state convergent (because it
becomes a linear system with a Hurwitz system matrix). By Theorem 5.3, for
any b > 0 the controller

u = −b(x3 − x3
2 + ax2) + (3x2

2 − a)(−x1 − x3
2 + x3) + v (5.26)

makes the closed-loop system (5.25), (5.26) with v as input input-to-state
convergent.�

5.3.2 Quadratic stability design

In this section we consider controller design procedures based on the notions of
quadratic stability, stabilizability and detectability, which are defined below.

Definition 5.5. A matrix function A(ζ) ∈ R
d×d is called quadratically stable

over a set Ξ if for some P = PT > 0 and Q = QT > 0

PA(ζ) + A(ζ)T P ≤ −Q ∀ζ ∈ Ξ. (5.27)

Definition 5.6. A pair of matrix functions A(ζ) ∈ R
d×d and B(ζ) ∈ R

d×k is
said to be quadratically stabilizable over Ξ if there exists a matrix K ∈ R

k×d

such that A(ζ) + B(ζ)K is quadratically stable over Ξ.

Definition 5.7. A pair of matrix functions A(ζ) ∈ R
d×d and C(ζ) ∈ R

l×d is
said to be quadratically detectable over Ξ if there exists a matrix L ∈ R

d×l

such that A(ζ) + LC(ζ) is quadratically stable over Ξ.

Notice that if A(ζ) ≡ A is constant, quadratic stability of A is equivalent
to the matrix A being Hurwitz; quadratic stabilizability of constant matrices
(A,B) and quadratic detectability of constant matrices (A, C) are equivalent
to conventional stabilizability and detectability of the pairs of matrices (A,B)
and (A, C), respectively. Similar to the case of constant matrices, the pair
(A(ζ),B(ζ)) is quadratically stabilizable over Ξ if and only if (AT (ζ),BT (ζ))
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is quadratically detectable over Ξ. This fact follows from pre- and postmulti-
plication by P−1 of the inequality

P(A(ζ) + B(ζ)K) + (A(ζ) + B(ζ)K)T P ≤ −Q.

The purpose of the notion of quadratic stability introduced above becomes
clear if one recalls Theorem 2.29. As follows from this theorem, if the system

ż = F (z, w), z ∈ R
d, w ∈ R

m, (5.28)

is such that F (z, w) is C1 with respect to z, continuous with respect to w,
and the Jacobian ∂F

∂z (z, w) is quadratically stable over (z, w) ∈ R
d ×R

m, then
system (5.28) is input-to-state convergent. The notions of quadratic stabiliz-
ability and detectability are useful for controller and observer design as will
be shown below. Consider the system

ż = F (z, u, w), (5.29)
y = h(z, w),

with state z ∈ R
d, control u ∈ R

k, external signal w ∈ R
m, and measured

output y ∈ R
l. The functions F (z, u, w), h(z, w) are assumed to be C1 with

respect to z and u and continuous with respect to w.

Lemma 5.8. Consider the system (5.29). Suppose the pair of matrix func-
tions ∂F

∂z (z, u, w) and ∂F
∂u (z, u, w) is quadratically stabilizable over R

d+k+m

with some matrix K ∈ R
k×d. Then the system

ż = F (z,Kz + v, w) (5.30)

with inputs v and w is input-to-state convergent.

Proof: The Jacobian of the right-hand side of system (5.30) equals

J(z, v, w) :=
∂F

∂z
(z,Kz + v, w) +

∂F

∂u
(z,Kz + v, w)K.

By the choice of the matrix K, J(z, v, w) is quadratically stable over R
d+k+m.

Hence, by Theorem 2.29 system (5.30) is input-to-state convergent. 	


As we can see from this lemma, quadratic stabilizability of the pair
(∂F

∂z ,
∂F
∂u ) implies the existence of a feedback u = Kz+v that makes the closed-

loop system input-to-state convergent. The additional feedforward term v can
be used, for example, for shaping steady-state solutions of the closed-loop
system (5.30). The next lemma shows how the notion of quadratic detectabil-
ity can be used for designing an observer with exponentially convergent error
dynamics.
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Lemma 5.9. Consider system (5.29). Suppose the pair of matrix functions
∂F
∂z (z, u, w) and ∂h

∂z (z, w) is quadratically detectable over R
d+k+m with some

matrix L ∈ R
d×l. Then the system

˙̂z = F (ẑ, u, w) + L(h(ẑ, w) − y) (5.31)

is an observer for system (5.29) with the observer error satisfying

|ẑ(t) − z(t)| ≤ Ce−a(t−t0)|ẑ(t0) − z(t0)| (5.32)

for some numbers C > 0 and a > 0 independent of the particular inputs u(t),
w(t), and solution z(t). Moreover, the observer error dynamics

∆ż = G(z + ∆z, u,w) − G(z, u, w), (5.33)

where G(z, u, w) := F (z, u, w) + Lh(z, w), is such that for any input z(·) ∈
PCd, w(·) ∈ PCm and any feedback u = U(∆z, t) all solutions of system (5.33)
satisfy

|∆z(t)| ≤ Ce−a(t−t0)|∆z(t0)|, (5.34)

where the numbers C > 0 and a > 0 are independent of z(t), w(t) and u =
U(∆z, t).

Proof: Let us first prove the second part of the lemma. The Jacobian
∂G
∂z (z, u, w) equals ∂F

∂z (z, u, w) + L∂h
∂z (z, w). By the choice of the matrix L,

∂G
∂z (z, u, w) is quadratically stable over R

d+k+m, i.e., there exist positive def-
inite matrices P > 0 and Q > 0 such that

P
∂G

∂z
(z, u, w) +

∂G

∂z

T

(z, u, w)P ≤ −Q

for all (z, u, w) ∈ R
d+k+m. Hence, by Lemma 2.30 the derivative of the func-

tion V (∆z) := 1/2∆zTP∆z along solutions of system (5.33) satisfies

dV

dt
= ∆zTP (G(z+∆z, u,w)−G(z, u, w)) ≤ −a|∆z|2P = −2aV (∆z), (5.35)

where |∆z|P denotes |∆z|P = (∆zTP∆z)1/2. In inequality (5.35), the number
a > 0 depends only on the matrices P and Q and does not depend on the
particular values of z, u, and w. This inequality, in turn, implies that there
exists C > 0 depending only on the matrix P such that if z(t) and w(t) are
defined for all t ≥ t0 then any solution of system (5.33) ∆z(t) is also defined
for all t ≥ t0 and satisfies

|∆z(t)| ≤ Ce−a(t−t0)|∆z(t0)|, ∀t ≥ t0. (5.36)

We must still show that system (5.31) is an observer for system (5.29). Denote
∆z := ẑ − z(t). Since z(t) is a solution of system (5.29), ∆z satisfies (5.33).
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By the previous analysis, we obtain that ∆z(t) satisfies (5.36). This implies
(5.32). 	


Lemma 5.9 provides conditions under which system (5.31) is an observer
for system (5.29). The observer itself is designed in such a way that it is
input-to-state convergent for y, u, and w viewed as inputs.

Lemmas 5.8 and 5.9 show how to design a state feedback controller that
makes the closed-loop system input-to-state convergent and an observer for
this system with an exponentially stable error dynamics. In fact, for such
controllers and observers one can use the separation principle to design an
output feedback controller that makes the closed-loop system input-to-state
convergent. This statement follows from the next theorem.

Theorem 5.10. Consider the system (5.29). Suppose the pair of matrix func-
tions ∂F

∂z (z, u, w) and ∂F
∂u (z, u, w) is quadratically stabilizable over R

d+k+m

with some matrix K ∈ R
k×d and the pair of matrix functions ∂F

∂z (z, u, w) and
∂h
∂z (z, w) is quadratically detectable over R

d+k+m with some matrix L ∈ R
d×l.

Then system (5.29) in closed loop with the controller

˙̂z = F (ẑ, u, w) + L(h(ẑ, w) − y), (5.37)
u = Kẑ + v, (5.38)

with (v, w) as inputs is input-to-state convergent.

Proof: Denote ∆z := ẑ−z. Then in the new coordinates (z,∆z) the equations
of the closed-loop system are

ż = F (z,Kz + K∆z + v, w), (5.39)
∆ż = G(z + ∆z, u,w) − G(z, u, w), (5.40)
u = K(z + ∆z) + v, (5.41)

where G(z, u, w) = F (z, u, w) + Lh(z, w). By the choice of K, system (5.39)
with (∆z, v, w) as inputs is input-to-state convergent for the class of inputs
PCd+k+m (see Lemma 5.8). By the choice of the observer gain L, for any
bounded inputs z(t), w(t), v(t) and for the feedback u = K(z(t) +∆z) + v(t)
any solution of system (5.40), (5.41) satisfies

|∆z(t)| ≤ Ce−a(t−t0)|∆z(t0)|, (5.42)

where the numbers C > 0 and a > 0 are independent of z(t), w(t), and v(t)
(see Lemma 5.9). Hence, applying Property 2.28, we obtain that the closed-
loop system (5.39)–(5.41) is input-to-state convergent. 	


Remark. The controller proposed in Theorem 5.10 consists of the observer
(5.37) and the linear state-feedback controller (5.38), which uses the estimates
of the system states for feedback. As follows from the proof of the theorem,
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linearity of the controller is not essential. What is essential is that system
(5.39) with ∆z, v, and w as inputs is input-to-state convergent. Therefore,
instead of the linear controller (5.38) one can use any controller u = ψ(z) + v
that makes the system

ż = F (z, ψ(z + ∆z) + v, w)

input-to-state convergent with respect to the inputs ∆z, v and w. For exam-
ple, such a controller can be found using the backstepping method described
in the previous section.�

As we can see from Theorem 5.10, the notions of quadratic stability, stabi-
lizability, and detectability can be very helpful in designing an output feedback
controller that makes the corresponding closed-loop system input-to-state con-
vergent. The question is how to check quadratic stability, stabilizability, and
detectability. In general, this is not an easy task. Yet, in some particular cases
this can be done efficiently, as shown in the following lemma.

Lemma 5.11. Consider the matrix functions A(ζ) ∈ R
d×d, B(ζ) ∈ R

d×k,
and C(ζ) ∈ R

l×d, ζ ∈ Ξ, where Ξ is some set.

(i) Suppose there exist matrices A1, . . . ,Ap such that

A(ζ) ∈ co{A1, . . . ,Ap}, ∀ζ ∈ Ξ,

and the LMI

PAi + AT
i P < 0, i = 1, . . . , p, (5.43)

P = PT > 0,

is feasible. Then A(ζ) is quadratically stable over Ξ.
(ii) Suppose there exist matrices A1, . . . ,Ap and B1, . . . ,Bp such that

[A(ζ) B(ζ)] ∈ co{[A1 B1], . . . , [Ap Bp]}, ∀ζ ∈ Ξ,

and the LMI

AiP + PAT
i + BiY + YT BT

i < 0, i = 1, . . . , p,
P = PT > 0, (5.44)

is feasible. Then the pair A(ζ),B(ζ) is quadratically stabilizable over Ξ
with the matrix K = YP−1, where Y and P satisfy (5.44).

(iii) Suppose there exist matrices A1, . . . ,Ap and C1, . . . , Cp such that

[A(ζ) C(ζ)] ∈ co{[A1 C1], . . . , [Ap Cp]}, ∀ζ ∈ Ξ,

and the LMI
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PAi + AT
i P + XCi + CT

i X T < 0, i = 1, . . . , p,
P = PT > 0, (5.45)

is feasible. Then the pair A(ζ), C(ζ) is quadratically detectable over Ξ
with the matrix L = P−1X , where X and P satisfy (5.45).

Lemma 5.11 is a compilation of standard results on LMI applications to con-
trol (see, e.g., [5]). In general, the LMI conditions presented above are only
sufficient for quadratic stability, stabilizability, and detectability. Yet, for the
case of systems with one scalar output dependent nonlinearity, these condi-
tions are not only sufficient, but also necessary. We consider such systems in
the next section.

5.3.3 Controller design for Lur’e systems

In this section we consider controller design based on the notions of quadratic
stability, stabilizability and detectability for systems with one scalar out-
put dependent nonlinearity. In literature, systems with output dependent
nonlinearities are often referred to as Lur’e systems, named after the Russian
mathematician A.I. Lur’e. For such systems the notions of quadratic stability,
stabilizability, and detectability simplify significantly. This simplification is
due to the equivalence of quadratic stability and feasibility of certain LMIs,
which will be stated below. Consider the system

ż = Az + Dϕ(ζ) + Bu + Ew,

ζ = Cζz + Hζw, (5.46)
y = Cz + Hw,

with state z ∈ R
d, control u ∈ R

k, external signal w ∈ R
m, measured out-

put y ∈ R
l, output ζ ∈ R, and scalar nonlinearity ϕ(ζ). The nonlinearity is

assumed to be C1 and to satisfy the condition

sup
ζ∈R

∂ϕ

∂ζ
(ζ) = γ, inf

ζ∈R

∂ϕ

∂ζ
(ζ) = −γ, (5.47)

for some finite γ > 0. If the nonlinearity ϕ(ζ) does not satisfy (5.47), but
satisfies the condition

sup
ζ∈R

∂ϕ

∂ζ
(ζ) = α, inf

ζ∈R

∂ϕ

∂ζ
(ζ) = β,

for some finite α > β, then by introducing the transformation ϕ̃(ζ) := ϕ(ζ) −
α+β

2 ζ and Ã := A + α+β
2 DCζ , Ẽ := E + α+β

2 DHζ , system (5.46) can be
written in an equivalent form

ż = Ãz + Dϕ̃(ζ) + Bu + Ẽw,
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with the nonlinearity ϕ̃(ζ) satisfying condition (5.47) for γ := (α − β)/2.
So, we assume that all such transformations have been made and that the
nonlinearity ϕ(ζ) satisfies (5.47). Denote the Jacobian of the right-hand side
of (5.46) with respect to z by A(ζ) := A+ ∂ϕ

∂ζ (ζ)DCζ . Denote A−
γ := A−γDCζ

and A+
γ := A+γDCζ . The next lemma shows that quadratic stability of A(ζ),

quadratic stabilizability of the pair (A(ζ), B), and quadratic detectability of
the pair (A(ζ), C) are equivalent to feasibility of certain LMIs.

Lemma 5.12. Consider system (5.46).

• The following statements are equivalent:
(i) The matrix function A(ζ) is quadratically stable over R.
(ii) There exists a matrix P = PT > 0 satisfying the LMI

PA−
γ + (A−

γ )TP < 0, PA+
γ + (A+

γ )TP < 0. (5.48)

(iii) The matrix A is Hurwitz and

sup
ω∈R

|Cζ(iωI − A)−1D| < 1
γ
. (5.49)

• The pair of matrix functions (A(ζ), B) is quadratically stabilizable over R

if and only if the following LMI is feasible:

A−
γ P + P(A−

γ )T + BY + YTBT < 0,

A+
γ P + P(A+

γ )T + BY + YTBT < 0, (5.50)

P = PT > 0.

Under this condition, A(ζ)+BK with K := YP−1, where Y and P satisfy
(5.50), is quadratically stable over R.

• The pair of matrix functions (A(ζ), C) is quadratically detectable over R

if and only if the following LMI is feasible:

PA−
γ + (A−

γ )T P + XC + CT X T < 0,

PA+
γ + (A+

γ )T P + XC + CT X T < 0, (5.51)

P = PT > 0.

Under this condition, A(ζ)+LC with L := P−1X , where X and P satisfy
(5.51), is quadratically stable over R.

Proof: The equivalence of (ii) and (iii) follows from Lemma 2.37. The impli-
cation (ii)⇒(i) holds because A(ζ) ∈ co{A−

γ , A+
γ }. We still must prove the

implication (i)⇒(ii). Suppose A(ζ) is quadratically stabilizable over R. Thus,
there exist matrices P = PT > 0 and Q = QT > 0 such that

PA(ζ) + AT (ζ)P ≤ −Q, ∀ζ ∈ R. (5.52)
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Due to condition (5.47), there exist sequences {ζ−k }+∞
k=1 and {ζ+

k }+∞
k=1 such that

A(ζ−k ) → A−
γ and A(ζ+

k ) → A+
γ as k → +∞. Substituting these A(ζ−k ) and

A(ζ+
k ) in inequality (5.52), in the limit for k → +∞ we obtain (ii). This proves

the first part of the lemma.
Let us show the equivalence of quadratic stabilizability of the pair (A(ζ), B)

and the feasibility of the LMI (5.50). The “if” part follows from Lemma 5.11.
So, we only need to show that quadratic stabilizability of the pair (A(ζ), B)
implies the feasibility of the LMI (5.50). Since the pair (A(ζ), B) is quadrati-
cally stabilizable, there exists a matrix K such that A(ζ)+BK is quadratically
stable over R. By the result of the first part of the theorem, this implies that

P (A−
γ + BK) + (A−

γ + BK)TP < 0, (5.53)

P (A+
γ + BK) + (A+

γ + BK)TP < 0, (5.54)

for some matrix P = PT > 0. Denote P := P−1 and Y := KP−1. Pre- and
postmultiplication of inequalities (5.53) and (5.54) by P−1 implies that P and
Y satisfy (5.50). This proves the second part of the lemma.

The last part of the lemma on quadratic detectability of the pair (A(ζ), C)
is proved in the same way as the part on quadratic stabilizability of the pair
(A(ζ), B). 	


Condition (5.47) means that ∂ϕ
∂ζ (ζ) exactly “fits” the range [−γ, γ]. This

condition allowed us to prove the equivalence of quadratic stability, stabiliz-
ability, and detectability to certain LMIs. In practice, however, it is sufficient
to know that the nonlinearity ϕ(ζ) satisfies the condition

∣∣∣∂ϕ
∂ζ (ζ)

∣∣∣ ≤ γ for
all ζ ∈ R. For system (5.46) with such a nonlinearity ϕ(ζ), the LMIs (5.48),
(5.50), and (5.51) still guarantee quadratic stability of A(ζ), stabilizability of
(A(ζ), B), and detectability of (A(ζ), C), respectively. In the following we will
denote the class of such nonlinearities by Fγ , i.e.,

Fγ :=
{
ϕ ∈ C1 :

∣∣∣∣∂ϕ∂ζ (ζ)
∣∣∣∣ ≤ γ ∀ζ ∈ R

}
.

The result of Lemma 5.12 together with Theorem 5.10 gives us the following
corollary.

Corollary 5.13. Consider system (5.46) with a nonlinearity ϕ ∈ Fγ . Suppose
the LMIs (5.50) and (5.51) are feasible. Then there exist matrices K and L
such that system (5.46) in closed loop with the controller

˙̂z = Aẑ + Dϕ(ζ̂) + Bu + Ew + L(ŷ − y), (5.55)

ζ̂ = Cζ ẑ + Hζw, ŷ = Cẑ + Hw, (5.56)
u = Kẑ + v, (5.57)

is input-to-state convergent.
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An example illustrating an application of this controller design will be pre-
sented in Section 5.4.

Corollary 5.13 enables us to design an output feedback controller that
makes the closed-loop system input-to-state convergent. An important obser-
vation regarding this controller design is that it requires accurate knowledge
of the system parameters and the nonlinearity ϕ(ζ). In some cases, however,
we may not know exactly the system parameters and the only available infor-
mation about ϕ(ζ) is that it belongs to the class Fγ . In this case, it may still
be possible to design an output feedback controller that makes the closed-loop
system input-to-state convergent. Such a controller design can be performed
based on Lemma 5.12. Denote A◦, B◦, D◦, C◦, and C◦

ζ to be the nominal
values of the matrices A,B,D,C, and Cζ . We will seek a robust controller of
the form

ξ̇ = Gξ + My, (5.58)
u = Nξξ + Nyy + v.

The following lemma gives sufficient conditions under which system (5.46) in
closed loop with controller (5.58) is input-to-state convergent for all matri-
ces A,B,D,C, and Cζ close enough to their nominal values, for all matrices
E,H,Hζ , and for all nonlinearities ϕ(ζ) from the class Fγ .

Lemma 5.14. Consider the closed-loop system (5.46), (5.58) for the nominal
parameters with w ≡ 0, v ≡ 0 and with ϕ as input:

ż = A◦z + B◦(Nξξ + NyC
◦z) + D◦ϕ,

ξ̇ = Gξ + MC◦z, (5.59)
ζ = C◦

ζ z.

Suppose all poles of system (5.59) have negative real part and the transfer
function W ◦

ϕζ(s) of system (5.59) from input ϕ to output ζ satisfies

‖W ◦
ϕζ‖∞ <

1
γ
. (5.60)

Then system (5.46) in closed loop with controller (5.58) is input-to-state con-
vergent for all matrices A,B,D,C,Cζ close enough to their nominal values,
for all matrices E,H,Hζ , and for all nonlinearities ϕ ∈ Fγ .

Proof: System (5.46) in closed loop with controller (5.58) has the form

χ̇ = Âχ + D̂ϕ(ζ) + Êw + Ĥv, (5.61)
ζ = Ĉχ + Hζw, (5.62)

where χ := (zT , ξT )T and

Â :=
(
A + BNyC BNξ

MC G

)
, D̂ :=

(
D
0

)
, Ê :=

(
BNyH + E

MH

)
,
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Ĥ :=
(
B
0

)
, Ĉ := (Cζ , 0).

Recall that the norm ‖Wϕζ‖∞ of the transfer function Wϕζ(s) is defined as
‖Wϕζ‖∞ = supω∈R |Ĉ(iωI − Â)−1D̂|. Notice that ‖Wϕζ‖∞ depends on the
matrices Ĉ, Â, and D̂ continuously (at least in the domain where all eigenval-
ues of Â have negative real parts). The matrices Ĉ, Â, and D̂ depend on the
system matrices A,B,D,C, and Cζ continuously. The matrix Â◦—the matrix
Â corresponding to the nominal system parameters—is Hurwitz. Therefore,
the conditions of the theorem imply that Â is Hurwitz and ‖Wϕζ‖∞ < 1/γ
for all matrices A,B,D,C, and Cζ close enough to their nominal values. By
Lemma 5.12, this implies that the Jacobian of the right-hand side of the
closed-loop system, which is equal to A(ζ) := Â + D̂Ĉ ∂ϕ

∂ζ (ζ), is quadratically
stable over R. Hence, according to Theorem 2.29 the closed-loop system is
input-to-state convergent provided that the matrices A,B,D,C, and Cζ are
close enough to their nominal values. Since condition (5.60) does not depend
on the nonlinearity ϕ(ζ) and on the matrices E, H, and Hζ , the input-to-state
convergence property holds for all nonlinearities ϕ ∈ Fγ and all matrices E,
H, and Hζ . 	


Remark. The problem of finding a linear controller (5.58) such that the
corresponding transfer function Wϕζ(s) satisfies condition (5.60) is a standard
H∞ optimization problem. There are many software packages for solving this
problem. For example, one may use a standard MATLAB routine hinflmi.
An example of this robust controller design will be given in Section 5.4.�

An important assumption in the results presented in this section is that
the nonlinearity ϕ(ζ) belongs to the class Fγ for some γ > 0. Below we give a
result on controller design for systems with an arbitrary C1 nonlinearity ϕ(ζ).
Consider the system

ż = Az + ϕ(y) + Bu + Ew, (5.63)
y = Cz + Hw,

with state z ∈ R
d, measured output y ∈ R, control u ∈ R, and external

input w ∈ R
m. We assume that system (5.63) has relative degree one, i.e.,

CB �= 0. Without loss of generality, we assume CB > 0. The variable on
which the nonlinearity depends is assumed to be measured, i.e., ζ = y. The
only available information on the nonlinearity ϕ(y) is that it is C1 and there
exists a continuous scalar function ψ(y) such that∣∣∣∣∂ϕ∂y (y)

∣∣∣∣ ≤ ψ(y), y ∈ R. (5.64)

Theorem 5.15. Consider system (5.63) with the nonlinearity ϕ(y) satisfying
condition (5.64). Suppose all zeros of the system
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ż = Az + Bu, (5.65)
y = Cz,

have negative real parts and CB > 0 (i.e., system (5.65) has relative degree
equal to one). Then there exists a C1 function U(y) such that system (5.63)
in closed loop with the controller u = U(y)+v, where v is an additional scalar
input, is input-to-state convergent for the class of inputs PC1 × PCm. The
function U(y) can be chosen, for example, equal to

U(y) = −κy − µ

∫ y

0
|ψ(τ)|2dτ, ∀κ ≥ κ∗, µ ≥ µ∗, (5.66)

where the numbers κ∗ and µ∗ depend only on the matrices A, B, and C and
can be determined from the matrix inequalities

PA + ATP − 2κ∗CTC < 0, PB = CT ,

µ∗I ≥ −P (PA + ATP − 2κ∗CTC)−1P,

which are feasible.

Proof: See Appendix 9.13.
Remark 1. Theorem 5.15 can be extended to the case of y and u being

vectors of dimensions larger than one. The idea of the proof remains the same
as in the scalar case.�

Remark 2. A possible way to relax the requirement that system (5.65) must
be of relative degree one is by using filtered output transformations presented
in [59]. Such transformations allow one to reduce the relative degree of the
system while preserving the property that all zeros of the system lie in the
left-half complex plane (minimum-phaseness).�

Remark 3. Theorem (5.15) shows that any strongly minimum-phase sys-
tem of the form (5.63) (i.e., system with CB �= 0 and stable zeros) with a
nonlinearity ϕ(y) satisfying condition (5.64) can be made input-to-state con-
vergent with a static output feedback of the form (5.66) provided that the
gains κ and µ are high enough. The only essential information is the sign
of CB (if CB < 0 then the formula for U(y) must be with pluses) and the
bound function ψ(y). Such a characterization of controllers can be useful, for
example, in adaptive control.�

Remark 4. The result of Theorem 5.15 is closely related to the problem
of passification (making a control system passive by means of feedback). We
will not go into details on this point. The interested readers are referred to
the literature on this subject, e.g., [18, 19].�
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5.4 Controller design for the global uniform output
regulation problem

With the controller design methods given in the previous section, we can
present results on controller design for the global (forward time) uniform out-
put regulation problem. The results in this section are formulated in terms
of Jacobians of the functions f(x, u, w), hm(x,w), and s(w), which are as-
sumed to be at least C1. In the following, we will use the following notation:
χ := (x, u, w) ∈ R

n+k+m,

A(χ) :=
∂f

∂x
(x, u, w), B(χ) :=

∂f

∂u
(x, u, w),

E(χ) :=
∂f

∂w
(x, u, w), C(χ) :=

∂hm

∂x
(x,w),

H(χ) :=
∂hm

∂w
(x,w), S(χ) :=

∂s

∂w
(w).

5.4.1 State feedback controller design

Let us first consider the state feedback case when the states x and w are
available for measurements, i.e., y = (x,w).
Theorem 5.16. Consider system (5.1)–(5.3) with y = (x,w) and exosystem
(5.4). Suppose the regulator equations (5.5) are solvable and the corresponding
continuous solutions π(w) and c(w) are globally defined (see Section 5.1 for de-
tails). If the pair (A(χ), B(χ)) is quadratically stabilizable over χ ∈ R

n+k+m,
then the global (forward time) uniform output regulation problem is solved by
a controller of the form

u = c(w) + K(x − π(w)), (5.67)

where the matrix K is such that the matrix function A(χ)+B(χ)K is quadrat-
ically stable over χ ∈ R

n+k+m.
Proof: The controller (5.67) is such that for ȳw(t) := (π(w(t)), w(t)) it gener-
ates control ūw(t) = c(w(t)). Therefore it has the generalized internal model
property (see Section 5.1). Moreover, by the choice of the matrix K, the
closed-loop system

ẋ = f(x,Kx + c(w) − Kπ(w), w)

is input-to-state convergent. Therefore, this controller solves the global (for-
ward time) uniform output regulation problem (see Section 5.1 for details). 	


As described in Section 5.2, controller (5.67) consists of two parts: u =
u1 + u2, where u1 := c(w) and u2 = K(x − π(w)). The first component u1
guarantees the generalized internal model property, i.e., that for the input
ȳw(t) = (π(w(t)), w(t)) the controller has the output ūw(t) = c(w(t)). The
second component u2 guarantees that the closed-loop system is input-to-state
convergent.



90 5 Controller design for the global uniform output regulation problem

5.4.2 Output feedback controller design

If the full state (x,w) is not available for measurement, we can design an
observer to asymptotically reconstruct the unmeasured variables in controller
(5.67). If w(t) is measured, a controller takes the form

u = c(w) + K(x̂ − π(w)),

where the state estimates x̂ are generated, for example, by an observer of the
form

˙̂x = f(x̂, u, w) + Lx(hm(x̂, w) − y). (5.68)

For such an observer design and related convergence analysis of the total
closed-loop system, we can directly use Theorem 5.10. The main problem is
that the state w of the exosystem is, in many cases, not available for measure-
ments. This happens, for example, if the exosystem generates disturbances.
Therefore, w(t) can, in general, not be used in the controller. To overcome
this difficulty, we extend the observer (5.68) with an observer for the exosys-
tem and generate the controller from the formula u = c(ŵ) + K(x̂ − π(ŵ)),
where ŵ are the estimates of w. The main result on such a controller design
is formulated in the following theorem.

Theorem 5.17. Consider system (5.1)–(5.3) and exosystem (5.4). Suppose
the regulator equations (5.5) are solvable and the corresponding solutions
π(w) and c(w) are globally defined locally Lipschitz mappings. If the pair
(A(χ), B(χ)) is quadratically stabilizable over χ ∈ R

n+k+m and the pair[
A(χ) E(χ)

0 S(χ)

]
, [C(χ) H(χ)], (5.69)

is quadratically detectable over χ ∈ R
n+k+m, then the global (forward time)

uniform output regulation problem is solved by a controller of the form

u = c(ŵ) + K(x̂ − π(ŵ)),
˙̂x = f(x̂, u, ŵ) + Lx(ŷ − y), (5.70)
˙̂w = s(ŵ) + Lw(ŷ − y),
ŷ = hm(x̂, ŵ),

where the matrices K and L = [LT
x , L

T
w]T are such that the matrix functions

A(χ) + B(χ)K and [
A(χ) E(χ)

0 S(χ)

]
+ L[C(χ) H(χ)]

are quadratically stable over χ ∈ R
n+k+m.
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Proof: Notice that controller (5.70) has the generalized internal model prop-
erty. Namely, for every solution of the exosystem w(t) lying in Ω(W), for the
input ȳw(t) = hm(π(w(t)), w(t)) system (5.70) has the solution (x̂(t), ŵ(t)) =
(π(w(t)), w(t)). This solution is bounded for all t ∈ R and for this solution
the output of the controller equals u = c(w(t)). So, controller (5.70) indeed
has the generalized internal model property. Moreover, system (5.1) in closed
loop with controller (5.70) is input-to-state convergent. The proof of this part
is identical to the proof of Theorem 5.10 since the observer error dynamics are
globally exponentially stable. Therefore, this controller solves the global (for-
ward time) uniform output regulation problem (see Section 5.1 for details). 	


Remark. As follows from Theorems 4.16 and 4.20, continuity of the map-
pings π(w) and c(w) is a necessary condition for the solvability of the global
(forward time) uniform output regulation problem. In Theorem 5.17, the func-
tions π(w) and c(w) are required to be locally Lipschitz. This additional re-
quirement guarantees uniqueness of solutions of the closed-loop system. The
requirement that π(w) and c(w) are globally defined is not very restrictive,
since in many cases π(w) and c(w) can be extended from a neighborhood of
Ω(W) (Ω(W+) in the case of the forward time variant of the problem) to the
whole space R

m.�

5.4.3 Controller design for Lur’e systems

The conditions for controller design presented in the previous section become
easily checkable when system (5.1)–(5.3) is a system with a scalar nonlinearity
depending on an output. So, in this section we consider the system

ẋ = Ax + Bu + Dϕ(ζ) + Ew,

ζ = Cζx + Hζw, (5.71)
e = Crx + Hrw,

y = Cx + Hw,

with state x ∈ R
n, control u ∈ R

k, auxiliary output ζ ∈ R, regulated output
e ∈ R

lr , and measured output y ∈ R
lm . The nonlinearity ϕ(ζ) is scalar and

assumed to belong to the class Fγ . We assume that the exogenous signal
w(t) ∈ R

m is generated by the linear exosystem

ẇ = Sw, (5.72)

where S is such that all its eigenvalues are simple and lie on the imaginary
axis. This exosystem generates constant signals and harmonic signals at a fixed
finite set of frequencies. Without loss of generality, we assume that S is skew-
symmetric. It can easily be checked that in this case the exosystem satisfies
the boundedness assumption A1 in any ball Wr = {w ∈ R

m : |w| < r}.
Moreover, Ω(Wr) = Wr. In the following we assume that solutions of the
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exosystem (5.72) start in a ball Wr for some r ∈ (0,+∞]. Thus, we are dealing
with the regular variant of the global uniform output regulation problem. The
regulator equations, in this case, have the form

d

dt
π(w(t)) = Aπ(w) + Bc(w) + Dϕ(Cζπ(w) + Hζw) + Ew, (5.73)

0 = Crπ(w) + Hrw,

for all solutions of exosystem (5.72) lying in Wr. Denote A−
cγ := A − γDCζ ,

A+
cγ := A + γDCζ . First, let us consider the static state feedback case with

the states x and w being available for measurement, i.e., y = (x,w).

Theorem 5.18. Consider system (5.71) and exosystem (5.72) with y =
(x,w) and the nonlinearity ϕ ∈ Fγ . Suppose the regulator equations (5.73)
are solvable and the mappings π(w) and c(w) are globally defined continuous
mappings. If the LMI

A+
cγPc + Pc(A+

cγ)T + BY + YTBT < 0,

A−
cγPc + Pc(A−

cγ)T + BY + YTBT < 0, (5.74)

Pc = PT
c > 0,

is feasible, then the global uniform output regulation problem is solved by a
controller of the form

u = c(w) + K(x − π(w)), K := YP−1
c , (5.75)

where Pc and Y satisfy (5.74).

Proof: This theorem is a corollary of Theorem 5.16 and Lemma 5.12. 	


Next, we consider the case when only the output y is available for feedback.
At this point, we will need the following notation: C := [C H],

A−
oγ :=

[
A − γDCζ E − γDHζ

0 S

]
,

A+
oγ :=

[
A + γDCζ E + γDHζ

0 S

]
.

The following theorem provides conditions for output feedback controller de-
sign for Lur’e systems.

Theorem 5.19. Consider system (5.71) with the nonlinearity ϕ ∈ Fγ and
exosystem (5.72). Suppose the regulator equations (5.73) are solvable with the
solutions π(w) and c(w) being globally defined locally Lipschitz mappings. If
the LMI (5.74) and the LMI
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PoA
+
oγ + (A+

oγ)T Po + XC + CT X T < 0,

PoA
−
oγ + (A−

oγ)T Po + XC + CT X T < 0, (5.76)

Po = PT
o > 0,

are feasible, then the global uniform output regulation problem is solved by a
controller of the form

u = c(ŵ) + K(x̂ − π(ŵ)), (5.77)
˙̂x = Ax̂ + Bu + Dϕ(ζ̂) + Eŵ + Lx(ŷ − y), (5.78)
˙̂w = Sŵ + Lw(ŷ − y), (5.79)

ζ̂ = Cζ x̂ + Hζŵ, ŷ = Cx̂ + Hŵ, (5.80)

with K = YP−1
c , where Pc and Y satisfy (5.74), and L = [LT

x , L
T
w]T = P−1

o X ,
where Po and X satisfy (5.76).

Proof: This theorem is a corollary of Theorem 5.17 and Lemma 5.12. 	


Remark. If ζ is measured, then the condition on feasibility of the LMI
(5.76) can be relaxed by demanding that the pair of matrices[

A E
0 S

]
, [C H],

is detectable. Under this condition the observer (5.78)–(5.80) can be replaced
by the observer

˙̂x = Ax̂ + Bu + Dϕ(ζ) + Eŵ + L1(ŷ − y),
˙̂w = Sŵ + L2(ŷ − y), (5.81)
ŷ = Cx̂ + Hŵ,

where L := [LT
1 LT

2 ]T is taken such that the matrix[
A E
0 S

]
+ L[C H]

is Hurwitz. Observer (5.81) has linear exponentially stable estimation error
dynamics.�

Let us illustrate the controller design presented in the last theorem with
an example.

Example 5.20. Consider the system

ẋ1 = x2,

ẋ2 = x3 − x2 + sin(x2), (5.82)
ẋ3 = u,

e = y = x1 − w1,
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and the exosystem

ẇ1 = w2, (5.83)
ẇ2 = −w1. (5.84)

The corresponding regulator equations admit the solution π1(w) = w1,
π2(w) = w2, π3(w) = w2 − w1 − sin(w2), c(w) = −w1 − w2 + w1 cos(w2)
(see Example 5.1). The mappings π(w) and c(w) are globally defined and
continuously differentiable. Let us apply Theorem 5.19. In our case,

A =

⎡⎣0 1 0
0 −1 1
0 0 0

⎤⎦ , S =
[

0 1
−1 0

]
,

B = [0 0 1]T , E ≡ 0, Cr = C = [1 0 0], Hr = H = [−1 0], ζ = x2, Cζ = [0, 1, 0],
Hζ = 0, and ϕ(ζ) = sin(ζ) ∈ F1. Denote

A−
c :=

⎡⎣0 1 0
0 −2 1
0 0 0

⎤⎦ , A+
c :=

⎡⎣0 1 0
0 0 1
0 0 0

⎤⎦ ,

A−
o :=

[
A−

c E
0 S

]
, A+

o :=
[
A+

c E
0 S

]
,

C := [C H]. Numerical computations show that both LMIs (5.74) and (5.76)
are feasible and, for example, the matrices K = [−6 − 11, −6]T and L =
[−153, −78, −13, −132, 52] can be used in controller (5.77)–(5.80).

Thus, all conditions of Theorem 5.19 are satisfied. By this theorem, con-
troller (5.77)–(5.80) with the system matrices, mappings π(w), c(w) and con-
troller parameters K, L specified above solves the global uniform output reg-
ulation problem for W = R

2. First, we perform simulations for the following
initial conditions: x(0) = (1, 2, 0)T , w(0) = (1, 0)T , x̂(0) = 0, ŵ(0) = 0. The
results of these simulations are presented in Figures 5.1–5.4. Figure 5.1 shows
the variable x1(t) and the external signal w1(t). The regulated output e(t) is
presented in Figure 5.2. Figure 5.3 shows the control u(t) and in Figure 5.4 the
states of the closed-loop system are presented. Further, we present simulation
results for various initial conditions of the closed-loop system and the exosys-
tem. The regulated output corresponding to these simulations is presented in
Figure 5.5.�

As can be seen from Theorems 5.18 and 5.19, the proposed controllers
require accurate knowledge of the system model and the mappings π(w) and
c(w). In practice, both the system model and the mappings π(w) and c(w)
may not be known exactly or they may change if certain system parameters
are varied. This raises the problem of robust controller design to cope with
the uncertainties. This problem is addressed in the next section.
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Fig. 5.1. Reference signal w1(t)
(dotted) and x1(t) (solid).

Fig. 5.2. Regulated output e(t).
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Fig. 5.3. Control u(t). Fig. 5.4. System state x(t).
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Fig. 5.5. The regulated output e(t) corresponding to various initial conditions of
the closed-loop system and the exosystem.
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5.4.4 Robust controller design for Lur’e systems

In this section we design a controller that solves the global uniform output
regulation problem not only for the nominal parameters of system (5.71), but
also for the parameters from some neighborhood of the nominal ones and for
all nonlinearities ϕ ∈ Fγ satisfying the additional condition ϕ(0) = 0. The
exosystem is assumed to be a linear harmonic oscillator given by (5.72). To
design a robust controller, we make the following assumptions.

R1 There exist matrices Λ ∈ R
lr×lm and Ψ ∈ R

1×lm such that e = Λy and
ζ = Ψy.

R2 Both y and u are of the same dimension.

At this point, instead of solving the robust output regulation problem for
system (5.71), we will solve it for the system

ẋ = Ax + Bu + Dϕ(Ψy) + Ew, (5.85)
ē = y = Cx + Hw,

with the new regulated output ē. Obviously, since the original regulated output
e is a linear function of ē, by solving the problem for system (5.85), we also
solve it for the original system. The nominal parameters of system (5.85) are
denoted by A◦, B◦, C◦, D◦.

Before presenting results on controller design for system (5.85), let us
consider the case of system (5.85) without nonlinearity ϕ(ζ), i.e., the system

ẋ = Ax + Bu + Ew, (5.86)
ē = Cx + Hw.

It is said that controller

ξ̇ = Gξ + Mē, (5.87)
u = Nξξ + Ny ē,

solves the linear robust output regulation problem for system (5.86) and exo-
system (5.72), if for all matrices A, B, and C close enough to their nominal
values and for all matrices E and H, the closed-loop system (5.86), (5.87)
with w = 0 is asymptotically stable, and for any solution of the closed-loop
system (5.86), (5.87) and exosystem (5.72) it holds that ē(t) → 0 as t → +∞.

It is known (see, e.g., [8]) that if controller (5.87) solves the linear robust
output regulation problem, then for matrices A, B, and C close enough to their
nominal values and for arbitrary matrices E and H there exist matrices Π ∈
R

n×m, Γ ∈ R
k×m, and Σ ∈ R

q×m satisfying the following matrix equation:

ΠS = AΠ + BΓ + E, (5.88)
0 = CΠ + H, (5.89)

ΣS = GΣ, Γ = NξΣ. (5.90)
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Equations (5.88) and (5.89) are the regulator equations for the linear case.
This can be seen from the fact that if (5.88), (5.89) are postmultiplied by
w, then they transform to the regulator equations with π(w) = Πw and
c(w) = Γw. Equation (5.90) is a linear counterpart of the generalized internal
model property of controller (5.87). Namely, if (5.90) is postmultiplied by w,
then the resulting equation means that controller (5.87) with the input ȳw(t) =
ēw(t) = CΠw(t) + Hw(t) ≡ 0 (due to (5.89)) has a solution ξ̄w(t) = Σw(t),
which is defined and bounded on R (because w(t) is defined and bounded on
R), and along this solution ξ̄w(t), the output of the controller equals ūw(t) =
NξΣw(t) = Γw(t) = c(w(t)). This means that the input ēw(t) ≡ 0 induces
the output ūw(t) = Γw(t) in controller (5.87).

After this intermezzo on the linear output regulation problem, we can
formulate a technical result related to robust controller design for the global
uniform output regulation problem for system (5.85) and exosystem (5.72).

Lemma 5.21. Suppose controller (5.87) is such that

(i) it solves the linear robust output regulation problem for system (5.86) and
exosystem (5.72);

(ii) for w ≡ 0, the transfer function W ◦
ϕζ(s) of the closed-loop system with the

nominal parameters

ẋ = A◦x + B◦(Nξξ + NyC
◦x) + D◦ϕ,

ξ̇ = Gξ + MC◦x, (5.91)
ζ = ΨC◦x,

from input ϕ to output ζ satisfies ‖W ◦
ϕζ‖∞ < 1/γ.

Then controller (5.87) solves the global unform output regulation problem for
system (5.85) and exosystem (5.72) for all matrices E and H, all nonlinear-
ities ϕ ∈ Fγ satisfying ϕ(0) = 0, and for all matrices A, B, C, and D being
close enough to their nominal values.

Proof: For all matrices A, B, C, and D being close enough to their nominal
values, for all matrices E and H and for all nonlinearities ϕ ∈ Fγ , system
(5.85) in closed loop with (5.87) is input-to-state convergent. This fact fol-
lows from Lemma 5.14. Since controller (5.87) also solves the linear robust
output regulation problem for system (5.86) and exosystem (5.72), for all ma-
trices A, B, C, and D being close enough to their nominal values and for all
matrices E and H there exist matrices Π, Γ and Σ satisfying (5.88)–(5.90).
Since y = ē = 0 yields ϕ(Ψy) = 0, (5.88)–(5.89) imply that the mappings
π(w) := Πw and c(w) := Γw are solutions to the regulator equations (5.73).
Just like in the case of the linear output regulation problem for system (5.86)
and exosystem (5.72), (5.90) implies that for any solution of the exosystem
w(t) the input ȳw(t) = ēw(t) ≡ 0 induces the output ūw(t) = Γw(t) in con-
troller (5.87). By Theorem 4.16, controller (5.87) solves the global uniform
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output regulation problem for all A, B, C, and D close enough to their nom-
inal values, for all E and H and for all ϕ ∈ Fγ satisfying ϕ(0) = 0. 	


Remark. The problem of finding a controller that satisfies conditions (i)
and (ii) in Lemma 5.21 has been solved in [1]. Yet, careful examination shows
that the conditions under which the problem has been solved in [1] are not
satisfied in our case. In particular, in [1] it is required that system (5.85) with
input u and output ē has relative degree zero, i.e., that u is directly present in
the output ē. In our case, this condition is not satisfied. So, we proceed with
our own controller design.�

Necessary and sufficient conditions for solvability of the linear robust out-
put regulation problem for linear system (5.86) and exosystem (5.72) are given
by the following condition [8]:

R3 The pair (A◦, B◦) is stabilizable, the pair (A◦, C◦) is detectable, and for
every λ being an eigenvalue of the matrix S the matrix[

A◦ − λI B◦

C◦ 0

]
has full row rank.

We assume that condition R3 is satisfied and proceed with a design of a
robust regulator. The design closely follows the design of a robust controller
for the linear robust output regulation problem (see, e.g., [8]). Let Smin be
a p × p matrix whose characteristic polynomial coincides with the minimal
polynomial of S. Construct a block-diagonal kp × kp matrix Φ that has k
blocks Smin on its diagonal, where k is the number of inputs (see Assumption
R2). Choose a kp × k matrix N and a k × kq matrix Γ such that (Φ, Γ ) is
controllable and (Φ,N) is observable. Consider the augmented system

ẋ = A◦x + B◦Γξ1 + B◦v + D◦ϕ,
ξ̇1 = Φξ1 + NC◦x, (5.92)
ζ = ΨC◦x.

Next, we need to find a controller

ξ̇2 = Kξ2 + LC◦x, (5.93)
v = Mξ2 + RC◦x,

such that system (5.92) in closed loop with this controller is asymptotically
stable for ϕ = 0 and the transfer function W ◦

ϕζ(s) from input ϕ to output ζ
satisfies ‖W ◦

ϕζ‖∞ < 1/γ. As follows from the linear regulator theory [8], the
total controller

ξ̇1 = Φξ1 + Ny,

ξ̇2 = Kξ2 + Ly, (5.94)
u = Γξ1 + Mξ2 + Ry,
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solves the linear robust output regulation problem for system (5.86) and
exosystem (5.72). At the same time, the transfer function W ◦

ϕζ(s) satisfies
‖W ◦

ϕζ‖∞ < 1/γ. Therefore, by Lemma 5.21 controller (5.94) solves the global
uniform output regulation problem for system (5.85) and exosystem (5.72) for
all matrices A, B, C, and D close enough to their nominal values, for all E
and H, and for all ϕ ∈ Fγ satisfying ϕ(0) = 0.

The problem of finding a controller (5.93) that guarantees ‖W ◦
ϕζ‖∞ <

1/γ is a standard problem in H∞ optimization, for which efficient solvers
are available, for example, in MATLAB. Notice that the proposed robust
controller design follows the decomposition strategy from Section 5.2. First,
we design a ξ1-subsystem with the generalized internal model property and
then we find a ξ2-subsystem that makes the overall closed-loop system input-
to-state convergent. Let us illustrate the proposed robust controller design
with an example.

Example 5.22. Consider system (5.71) with the nominal system matrices

A◦ =

⎡⎣ 1 −2 0
40 3 4
1 0 5

⎤⎦ , B◦ =

⎡⎣0
3
1

⎤⎦ , D◦ =

⎡⎣1
1
0

⎤⎦ , C◦ = [1, 0, 0].

The exosignal w is generated by the exosystem

ẇ1 = w2, (5.95)
ẇ2 = −w1.

The outputs of the system are equal: ζ = e = y = Cx + Hw. The matrices
E and H can be chosen arbitrarily. The value γ for the class of nonlinearities
Fγ is chosen γ = 0.1. Notice that with such a choice of system matrices
assumptions R1–R3 hold. Following the design procedure given above, we
set

Φ =
[

0 1
−1 0

]
, N =

[
1
0

]
, Γ = [1 0].

Next, we search for a controller (5.93) that would satisfy the inequality
‖W ◦

ϕζ‖ < 1/γ. Such controller is found using the MATLAB routine hinflmi.
The obtained controller is validated by means of simulations. In the simula-
tions the matrices A,B,C, and D are taken equal to their nominal values and
the nonlinearity is chosen ϕ(ζ) = γ sin(ζ).

For the initial conditions x(0) = [1, 2, 3]T , ξ1(0) = 0, ξ2(0) = 0, w1(0) = 1,
w2(0) = 0, and for the matrices E and H

E :=

⎡⎣ 1 2
0 1

−1 2

⎤⎦ , H := [0, 1],

the simulation results are shown in Figures 5.6 and 5.7. Results of several
simulations with randomly chosen matrices E and H and random initial con-
ditions for the closed-loop system and exosystem are given in Figure 5.8.�
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Fig. 5.8. Simulation results for various initial conditions and for various E and H.

5.5 Summary

In this chapter we have presented several controller design methods for solving
the global (forward time) uniform output regulation problem. All designs are
based on the assumption that the regulator equations are solvable and that the
corresponding solutions of these equations are known. Under this assumption
and under the assumption that the global uniform output regulation problem
is solvable, a controller that solves the problem can be decomposed into two
parts:

• the first part guarantees the generalized internal model property of the
controller, which is necessary for the output regulation to occur;

• the second part guarantees that the overall closed-loop system is input-to-
state convergent.

In Section 5.2 we have discussed certain ways how to design the first part
of the controller. The problem of making a system input-to-state convergent
by means of feedback has been discussed in more detail in Section 5.3. We
have presented controller design methods based on backstepping, quadratic
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stability, and H∞ optimization methods. When being applied to Lur’e sys-
tems, these methods are formulated in a simple and easily verifiable format.
Although these controller design methods have been developed in the scope
of the output regulation problem, they can be used independently for dif-
ferent nonlinear control problems, e.g., for the problem of tracking arbitrary
time-varying reference signals and for the nonlinear observer design problem.

With the design tools on making a closed-loop system input-to-state con-
vergent at our disposal, we have presented controller design methods for the
global uniform (forward time) output regulation problem. Under the assump-
tion that the states of the system and the exosystem are measured, a state
feedback controller design has been presented. If only some output is avail-
able for measurements, we have shown how to design an observer-based output
feedback controller. These two controller designs are based on the quadratic
stability approach. For Lur’e systems, the conditions that need to be satisfied
for such controller designs to be feasible reduce to checking the solvability
of certain LMIs. For the case of a Lur’e system with uncertain parameters
and an unknown nonlinearity from the class of nonlinearities with a bounded
derivative, we have presented a robust controller design that copes with such
uncertainties.



6

The local output regulation problem:
convergence region estimates

In the previous chapter we presented several controller design methods provid-
ing solutions for the global uniform output regulation problem. These methods
allow one to solve this problem for certain classes of nonlinear systems. If a
system does not belong to one of these classes, it may happen that either
the global uniform output regulation problem is not solvable, or it is solv-
able, but we do not know how to find a solution. At the same time, it may
still be possible to find a controller that solves the local exponential output
regulation problem. There are many results on controller design for the local
exponential output regulation problem for different classes of systems (see,
e.g., [8, 34, 38]). Despite the fact that the local output regulation problem is
well studied, one question remained open: given a controller solving the expo-
nential output regulation problem locally, in some neighborhood of the origin,
how do we determine (or estimate) this neighborhood of admissible initial con-
ditions? Without answering this question, solutions to the local exponential
output regulation problem may not be satisfactory from an engineering point
of view. In this chapter we address this estimation problem. In the first part
of the chapter we consider this problem for the so-called exact variant of the
local output regulation problem. In this variant, the regulated output tends
to zero for all solutions of the closed-loop system and the exosystem starting
close enough to the origin.

For certain systems it can be very difficult to find a controller that guar-
antees that the regulated output tends exactly to zero. At the same time,
there are relatively simple design procedures for finding controllers guaran-
teeing that output regulation occurs approximately: for small initial conditions
of the closed-loop system and the exosystem, the regulated output tends to
small values with the order of magnitude determined by the controller design.
The problem of estimating the sets of admissible initial conditions is also rel-
evant for such an approximate local output regulation problem. This problem
will be considered in the second part of the chapter.

We will consider only controllers solving the (approximate) local exponen-
tial output regulation problem, which in Chapter 3 was also referred to as
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the conventional local output regulation problem. For the sake of brevity, the
word exponential in the name of the problem will be omitted, and by the
local output regulation problem we will indicate the local exponential output
regulation problem. This abbreviated name of the problem is also consistent
with the name used in the literature.

6.1 Estimates for the local output regulation problem

6.1.1 Estimation problem statement

First, we recall the local output regulation problem (see also Section 3.3).
Consider systems modeled by equations of the form

ẋ = f(x, u, w), (6.1)
e = hr(x,w), (6.2)
y = hm(x,w), (6.3)

with state x ∈ R
n, input u ∈ R

k, regulated output e ∈ R
lr , measured output

y ∈ R
lm , and exogenous input w ∈ Rm generated by the linear exosystem

ẇ = Sw. (6.4)

The functions f(x, u, w), hr(x,w), and hm(x,w) have continuous partial
derivatives of some high order and satisfy f(0, 0, 0) = 0, hr(0, 0) = 0,
hm(0, 0) = 0. It is assumed that exosystem (6.4) is neutrally stable (see Def-
inition 3.1). The assumption of linearity of the exosystem is introduced to
avoid unnecessary technical complications. All results presented below can
be extended to the case of general neutrally stable exosystems. Due to the
neutral stability assumption, the spectrum of S consists of eigenvalues on the
imaginary axis with their geometric and algebraic multiplicity being equal.
Without loss of generality, we assume that S is skew-symmetric, and there-
fore any solution of system (6.4) has the property |w(t)| ≡ Const. Notice that
if the right-hand side of (6.1) depends on a vector p of unknown constant
parameters, w and p can be united and treated together as an external signal
(w, p) generated by an extended exosystem given by (6.4) and ṗ = 0. This
extended exosystem also satisfies the neutral stability assumption. We assume
that such an extension has already been made and that (6.4) corresponds to
an extended exosystem.

The local output regulation problem is to find, if possible, a feedback of
the form

ξ̇ = η(ξ, y), (6.5)
u = θ(ξ, y),

with sufficiently smooth functions η(ξ, y) and θ(ξ, y) satisfying η(0, 0) = 0,
θ(0, 0) = 0 such that
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a) for w(t) ≡ 0 the closed-loop system

ẋ = f(x, θ(ξ, hm(x,w)), w), (6.6)
ξ̇ = η(ξ, hm(x,w)), (6.7)

has an asymptotically stable linearization at the origin;
b) for every solution of the closed-loop system and exosystem (6.4) start-

ing close enough to the origin (x, ξ, w) = (0, 0, 0) it holds that e(t) =
hr(x(t), w(t)) → 0 as t → +∞.

A controller solving the local output regulation problem makes the output
e(t) tend to zero at least for small initial conditions (x(0), ξ(0), w(0)). Without
specifying the region of admissible initial conditions for which output regula-
tion occurs, such a solution may not be satisfactory from an engineering point
of view [70]. Thus, we come to the following estimation problem: given the
closed-loop system (6.6), (6.7) and the neutrally stable exosystem (6.4), esti-
mate the region of admissible initial conditions for which the regulated output
e(t) = hr(x(t), w(t)) tends to zero.

Denote z := (xT , ξT )T ∈ R
d. Then the closed-loop system (6.6), (6.7) can

be written as

ż = F (z, w), (6.8)
e = h̄r(z, w) := hr(x,w),

where F (z, w) is the right-hand side of (6.6), (6.7). As shown in Section 4.1
(see also [8, 38, 39]), the controller (6.5) solves the local output regulation
problem if and only if the corresponding closed-loop system (6.8) satisfies the
following conditions:

A) the Jacobian matrix ∂F
∂z (0, 0) is Hurwitz;

B) there exists a C1 mapping α(w) defined in a neighborhood W of the origin,
with α(0) = 0, such that

∂α
∂w (w)Sw = F (α(w), w),

0 = h̄r(α(w), w), for all w ∈ W.
(6.9)

We will give a solution to the estimation problem formulated above based on
the functions F (z, w) and α(w), which are found at the stage of controller
design [8, 38]. To simplify the subsequent analysis, it is assumed that the
closed-loop system (6.8) and the mapping α(w) are defined globally for all
z ∈ R

d and w ∈ R
m (i.e., W = R

m). If this assumption does not hold, one
should restrict the subsequent results to the sets Z ⊂ R

d and W ⊂ R
m for

which F (z, w) and α(w) are well defined.
Before proceeding with solving the estimation problem, we discuss the

main idea of the solution. First, we find two sets C ⊆ R
d and Wc ⊆ R

m

having the following property: if w(t) ∈ Wc for t ≥ 0, then any two solutions
z1(t) and z2(t) of system (6.8) lying in C for all t ≥ 0 converge to each other:



106 6 The local output regulation problem: convergence region estimates

|z1(t) − z2(t)| → 0 as t → ∞. We call the set C a convergence set and the
set Wc a companion of the set C. Such sets exist, due to condition A). This
condition implies that near the origin, for small w(t), the closed-loop system
(6.8) behaves like a linear asymptotically stable system and, in particular,
all its solutions are exponentially stable (this statement will be made precise
later on). Second, we find a set Y ⊂ C × Wc of initial conditions (z(0), w(0))
such that any trajectory (z(t), w(t)) starting in this set satisfies the following
conditions: w(t) ∈ Wc, α(w(t)) ∈ C and z(t) ∈ C for all t ≥ 0. As follows from
condition B), z̄w(t) := α(w(t)) is a solution of system (6.8) along which e(t) ≡
0. Thus, by the properties of C and Wc, it holds that z(t) → z̄w(t) := α(w(t))
as t → +∞ and hence e(t) = h̄r(z(t), w(t)) → h̄r(α(w(t)), w(t)) ≡ 0. So, Y
is an estimate of the set of admissible initial conditions (z(0), w(0)) for which
output regulation occurs.

6.1.2 Convergence sets and the Demidovich condition

In this section we discuss how to find a convergence set C and its companion set
Wc for the closed-loop system (6.8). As follows from Lemma 2.30, if a convex
set C ⊆ R

d and a set Wc ⊆ R
m are such that the Demidovich condition

P
∂F

∂z
(z, w) +

∂F

∂z

T

(z, w)P ≤ −Q, ∀z ∈ C, w ∈ Wc, (6.10)

holds for some positive definite matrices P = PT and Q = QT , then there
exists β > 0 such that

(z1 − z2)TP (F (z1, w) − F (z2, w)) ≤ −β(z1 − z2)TP (z1 − z2) (6.11)

for all z1, z2 ∈ C and for any w ∈ Wc. The number β > 0 depends only
on the matrices P and Q. Consider the function V (z1, z2) = 1/2|z1 − z2|2P ,
where |z|P denotes |z|P := (zTPz)1/2. Inequality (6.11) implies that for any
piecewise-continuous input w(t) satisfying w(t) ∈ Wc for t ≥ t0 and for any
two solutions z1(t) and z2(t) of system (6.8) corresponding to this input and
satisfying z1(t) ∈ C and z2(t) ∈ C for all t ≥ t0, it holds that

d

dt
V (z1(t), z2(t)) ≤ −2βV (z1(t), z2(t)). (6.12)

This, in turn, implies that z1(t) exponentially tends to z2(t):

|z1(t) − z2(t)|P ≤ e−β(t−t0)|z1(t0) − z2(t0)|P .
Consequently, we see that a convex set C and a set Wc for which the Demi-
dovich condition (6.10) is satisfied represent a convergence set and its com-
panion, respectively.

Another consequence of inequality (6.12) is that if z̄(t) is a solution of
system (6.8) and the ellipsoid EP (z̄(t), r) := {z : |z − z̄(t)|P < r} is contained
in C for all t ≥ 0, then EP (z̄(t), r) is invariant. This observation results in the
following corollary.
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Corollary 6.1. Suppose C and Wc satisfy the Demidovich condition (6.10).
Let w(t) ∈ Wc for all t ≥ 0 and z̄(t) be a solution of (6.8) such that z̄(t) ∈ C
for all t ≥ 0. If the ellipsoid EP (z̄(t), r) is contained in C for all t ≥ 0, then
any solution of (6.8) starting in z(0) ∈ EP (z̄(0), r) exponentially tends to z̄(t).

To solve the estimation problem stated in Section 6.1.1, we need to find sets
C and Wc satisfying the Demidovich condition (6.10) for some P = PT > 0
and Q = QT > 0. To reduce the number of arbitrary parameters in the
Demidovich condition, we rewrite it in the form

sup
z∈C, w∈Wc

Λ

(
P
∂F

∂z
(z, w) +

∂F

∂z

T

(z, w)P

)
=: −a < 0, (6.13)

where Λ(·) denotes the largest eigenvalue of a symmetric matrix. Condition
(6.13) is equivalent to condition (6.10) for Q := aI and it is more conve-
nient for finding the sets C and Wc. Since ∂F

∂z (0, 0) is Hurwitz (this is the
case due to condition A)), one can choose a matrix P = PT > 0 sat-
isfying the matrix inequality P ∂F

∂z (0, 0) + ∂F
∂z

T
(0, 0)P < 0. By continuity,

P ∂F
∂z (z, w)+ ∂F

∂z

T
(z, w)P is negative definite at least for small z and w. Hence,

the Demidovich condition (6.13) is satisfied for C(R) := {z : |z| < R} and
W(ρ) := {w : |w| < ρ} for some small R and ρ. If P ∂F

∂z (z, w) + ∂F
∂z

T
(z, w)P

depends only on part of the coordinates z, then the Demidovich condition is
satisfied for CN (R) := {z : |Nz| < R} and Wc(ρ) := {w : |w| < ρ}, where
the matrix N is such that Nz consists of the coordinates that are present in
P ∂F

∂z (z, w) + ∂F
∂z

T
(z, w)P . Having chosen the matrix N , the numbers ρ and

R can be found numerically solving inequality (6.13) with CN (R) and Wc(ρ),
where R and ρ are the parameters to be found. In some simple cases such R
and ρ can be found analytically.

6.1.3 Estimation results

Having found a convergence set CN (R) and its companion Wc(ρ), we can
solve the estimation problem stated in Section 6.1.1. Prior to formulating the
solution, let us introduce the following function:

mN (w0) := sup
t≥0

|Nα(w(t, w0))|, (6.14)

where w(t, w0) is a solution of the exosystem (6.4) satisfying w(0, w0) = w0.
The function mN (w0) indicates whether α(w(t, w0)) lies in the set CN (R):
if mN (w0) < R, then α(w(t, w0)) ∈ CN (R) for all t ≥ 0. Denote δ to be
the smallest number such that the inequality |Nz| ≤ δ|z|P is satisfied for all
z ∈ R

d. The number δ can be found from the formula δ = ‖NP−1/2‖, where
‖ · ‖ is the matrix norm induced by the vector norm | · |. Indeed,
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δ = sup
|z|P =1

|Nz| = sup
|P 1/2z|=1

|Nz| = sup
|z̃|=1

|NP−1/2z̃| = ‖NP−1/2‖.

The following theorem gives an estimate of the set of admissible initial condi-
tions in the form of a neighborhood of the output-zeroing manifold z = α(w).

Theorem 6.2. Let the local output regulation problem be solved. Suppose
the closed-loop system (6.8) satisfies the Demidovich condition (6.13) with
CN (R) := {z : |Nz| < R} and Wc(ρ) := {w : |w| < ρ} for some R > 0, ρ > 0
and some matrix N . Then any trajectory (z(t), w(t)) of the closed-loop system
(6.8) and the exosystem (6.4) starting in the set

Y :=
{

(z0, w0) : |w0| < ρ, mN (w0) < R, |z0 − α(w0)|P <
1
δ
(R − mN (w0))

}
(6.15)

satisfies
|z(t) − α(w(t))| ≤ Ce−βt|z(0) − α(w(0))| (6.16)

for some β > 0 and C > 0 independent of z(0), w(0), and

e(t) = h̄r(z(t), w(t)) → 0, as t → ∞.

Proof: We need to show that (6.16) holds for any solution (z(t), w(t)) that
starts in (z(0), w(0)) satisfying the relations: |w(0)| < ρ, mN (w(0)) < R
and z(0) ∈ EP (α(w(0)), r), where EP (z̄, r) := {z : |z − z̄|P < r} and r :=
(R − mN (w(0)))/δ. Due to the conditions on (z(0), w(0)) and the properties
of the exosystem, |w(t)| ≡ |w(0)| < ρ and the solution z̄w(t) := α(w(t))
satisfies

|Nz̄w(t)| ≤ sup
t≥0

|Nα(w(t))| = mN (w(0)) < R.

Hence, z̄w(t) ∈ CN (R) and w(t) ∈ Wc(ρ) for all t ≥ 0. Let us show that
EP (z̄w(t), r) ⊂ CN (R) for all t ≥ 0. Suppose z ∈ EP (z̄w(t), r) for some t ≥ 0.
Then

|Nz| ≤ |Nz̄w(t)| + |N(z − z̄w(t))| ≤ mN (w(0)) + δ|z − z̄w(t)|P
< mN (w(0)) + δr = R.

Consequently, EP (z̄w(t), r) ⊂ CN (R) for all t ≥ 0. The sets CN (R) and Wc(ρ)
satisfy the Demidovich condition (6.10). By Corollary 6.1, we obtain (6.16).
Finally, e(t) = h̄r(z(t), w(t)) → h̄r(α(w(t)), w(t)) ≡ 0 as t → +∞. 	


The relation between the sets Y, CN (R), and Wc(ρ) is schematically shown
in Figure 6.1. If we want the closed-loop system (6.8) and the exosystem (6.4)
to start in the set Y, we need to guarantee that, first, the exosystem starts
in a point w0 in the set L := {w0 : |w0| < ρ,mN (w0) < R} and, second, that
the closed-loop system (6.8) starts in the set D(w0) := {z0 : (z0, w0) ∈ Y}.
As can be seen from Figure 6.2, the sets D(w0) may be different for different
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z

w

Y
z = α(w)

CN (R) ×Wc(ρ)

C N
(R

)
Wc(ρ)

0

Fig. 6.1. Relation between the sets Y, CN (R), and Wc(ρ): Y is an invariant set
inside CN (R) ×Wc(ρ).

z

w

Y

z = α(w)

D(w1)

0

D(w2)

w1 w2

Fig. 6.2. The sets Y and D(w): for different w1 and w2, the sets D(w1) and D(w2)
may be different.

values of w0. Thus, the knowledge of w0 is important. In practice, however, we
may not know the exact value of w0. For example, if the exosystem generates
disturbances, then, knowing the level of disturbances, we can establish that
w0 ∈ L, but still the exact value of w0 is unknown. To cope with this difficulty,
in the next result we find sets Z0 and W0 such that in whatever point w0 ∈
W0 the exosystem is initialized, output regulation will occur if the closed-
loop system starts in z0 ∈ Z0. Prior to formulating the result, we define the
functions

σ(r) := sup
|w|≤r

(|Nα(w)| + δ|α(w)|P ), R(r) := (R − σ(r))/δ. (6.17)

The function σ(r) is nondecreasing and σ(0) = 0. Let r∗ > 0 be the largest
number such that r∗ ≤ ρ and σ(r) < R for all r ∈ [0, r∗). Now, we can
formulate the result.

Theorem 6.3. The conclusion of Theorem 6.2 holds for any trajectory of the
closed-loop system (6.8) and the exosystem (6.4) starting in

z(0) ∈ EP (R(r)) := {z : |z|P < R(r)}, w(0) ∈ Bw(r) := {w : |w| < r},
for some r ∈ [0, r∗).
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Proof: The proof of this theorem is based on the fact that for every r ∈ [0, r∗)
the set EP (R(r))×Bw(r) is a subset of Y, as shown in Figure 6.3. If EP (R(r))×
Bw(r) ⊂ Y for any r ∈ [0, r∗), then the statement of Theorem 6.3 follows from
Theorem 6.2. Let us show EP (R(r))×Bw(r) ⊂ Y for any r ∈ [0, r∗). Suppose
z0 ∈ EP (R(r)) and w0 ∈ Bw(r) for some fixed r ∈ [0, r∗). According to the
definition of Y, we first need to show that |w0| < ρ. This is true because
|w0| < r < r∗ ≤ ρ. Next, we show that mN (w0) < R. By the definition of
σ(r), it holds that |Nα(w)| ≤ σ(r) for all |w| ≤ r. The choice of |w0| < r
implies |w(t, w0)| ≡ |w0| < r. Hence, by the definition of mN (w0) we obtain

mN (w0) = sup
t≥0

|Nα(w(t, w0))| ≤ sup
|w|<r

|Nα(w)| ≤ σ(r).

The choice of r < r∗ implies σ(r) < R and, consequently, mN (w0) < R.
Next, we need to show that |z0−α(w0)|P < (R−mN (w0))/δ. The triangle

inequality implies

|z0 − α(w0)|P ≤ |z0|P + |α(w0)|P . (6.18)

By the choice of z0 and by the definition of R(r), we obtain

|z0|P < R(r) = (R − σ(r))/δ = (R − sup
|w|≤r

(|Nα(w)| + δ|α(w)|P ))/δ

≤ (R − mN (w0))/δ − |α(w0)|P .

Substituting this inequality in (6.18), we obtain

|z0 − α(w0)|P <
1
δ
(R − mN (w0)).

This completes the proof. 	


The estimates presented in Theorem 6.3 are based on a pair of numbers
(R, ρ) such that the Demidovich condition (6.13) is satisfied for the sets CN (R)

z

w

Y

z = α(w)

0

EP (R(r)) × Bw(r)

Fig. 6.3. Relation between the sets Y, EP (R(r)), and Bw(r).
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and Wc(ρ). In fact, there is a whole set of pairs (R, ρ) and the corresponding
family of sets of CN (R) and Wc(ρ) for which condition (6.13) is satisfied. For
estimation purposes, among all such sets CN (R) and Wc(ρ) we want to find
the ones that are maximal in a certain sense. To this end, denote R∗(ρ) to be
the largest number such that the Demidovich condition (6.13) is satisfied for
all sets CN (R) and Wc(ρ) = {w : |w| < ρ} with R ∈ [0,R∗(ρ)). One can easily
check that R∗(ρ) is a nonincreasing function of ρ. This function can be found
numerically. Having found R∗(ρ), we can enlarge the estimates presented in
Theorem 6.3 by redefining R(r) (see (6.17)) in the following way:

R(r) := (R∗(r) − σ(r))/δ. (6.19)

In this case, the convergence of solutions to the output-zeroing manifold will
be exponential, but the numbers C > 0 and β > 0 in (6.16) may depend on
the initial conditions (z(0), w(0)).

6.1.4 Example: the TORA system

Let us illustrate the application of Theorem 6.3. Consider the so-called TORA
system (transitional oscillator with a rotational actuator), which is shown in
Figure 6.4. This system consists of a cart of mass M which is attached to a
wall with a spring of stiffness k. The cart is affected by a disturbance force Fd.
An arm of mass m rotates around the axis in the center of the cart. The center
of mass of the arm CM is located at distance l from the rotational axis. J is
the inertia of the arm with respect to the rotational axis. The arm is actuated
by a control torque Tu. The cart and the arm move in the horizontal plane
and, therefore, there is no effect of gravity. The horizontal displacement of the
cart is denoted by e and the angular displacement of the arm is denoted by θ.
This is a nonlinear mechanical benchmark system that was introduced in [85]
(see also [45, 47]). This is an idealized system in which no friction, flexibility,
motor dynamics, and so on are taken into account. A real TORA system will
be used for experiments in Chapter 7.

The control problem is to find a control law for the torque Tu such that
the horizontal displacement e tends to zero in the presence of the harmonic
disturbance force Fd of known frequency, but unknown amplitude and phase.
This is a particular case of the output regulation problem. We will find a
controller solving this problem locally, i.e., for small initial conditions e(0),
ė(0), θ(0), and θ̇(0) and for disturbances with small amplitudes. After finding
such a local controller, we will estimate the set of admissible initial conditions
of the closed-loop system and admissible amplitudes of the disturbance force.
These estimates will be found based on Theorem 6.3.

The equations of motion for the TORA system are given by [85]:

(M + m)ë + ml(θ̈ cos θ − θ̇2 sin θ) + ke = Fd, (6.20)
Jθ̈ + mlë cos θ = Tu.



112 6 The local output regulation problem: convergence region estimates

M

e

Fd

Tu

m

CMl

θ

k

Fig. 6.4. The TORA system.

The disturbance force Fd can be considered as an output of the linear harmonic
oscillator

ẇ1 = ωw2, ẇ2 = −ωw1, Fd = w1. (6.21)

For simplicity, we assume that e, ė, θ, θ̇, w1, and w2 are measured. All pa-
rameters of system (6.20) and exosystem (6.21) are known. To solve the local
output regulation problem, we transform system (6.20) into a simpler form.
After the time transformation τ :=

√
k/(m + M) t and coordinate transfor-

mation

x1 : =

√
M + m

J
e + φ sin θ, φ :=

ml√
J(M + m)

,

x2 : =

√
M + m

J

de

dτ
+ φ

dθ

dτ
cos θ,

x3 : = θ, x4 :=
dθ

dτ
,

and feedback transformation

Tu =
Jk

M + m
((1 − φ2 cos2 x3)v − φ cosx3(x1 − (1 + x2

4)φ sinx3 − µFd)),

where µ = 1
k

√
M+m

J and v is a new control, system (6.20) takes the form (see
[85] for details):

ẋ1 = x2,
ẋ2 = −x1 + φ sinx3 + µFd,
ẋ3 = x4,
ẋ4 = v,

e = (x1 − φ sinx3)
√

J
M+m .

(6.22)

The exosystem (6.21) transforms into
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ẇ1 = ω̂w2, ẇ2 = −ω̂w1, Fd = w1, (6.23)

where ω̂ :=
√

(m + M)/k ω is the new excitation frequency.
Let us solve the local output regulation problem for system (6.22) and

exosystem (6.23). We will use the controller design method from [8]. According
to this method, first we need to solve the regulator equations

d

dt
π(w(t)) = f(π(w), c(w), w), (6.24)

0 = hr(π(w), w),

where the functions f(x, v, w) and hr(x,w) correspond to (6.22). The map-
pings π(w) and c(w) satisfying (6.24) in some neighborhood of the origin are
given by the formulas

π1(w) := −µw1

ω̂2 , π2(w) := −µw2

ω̂
, π3(w) := − arcsin

(
µw1

ω̂2φ

)
, (6.25)

π4(w) := − µω̂w2√
ω̂4φ2 − µ2w2

1

, c(w) :=
µω̂2w1(ω̂4φ2 − µ2(w2

1 + w2
2))(√

ω̂4φ2 − µ2w2
1

)3 .

At the next step, choose a matrix K such that

∂f

∂x
(0, 0, 0) + K

∂f

∂u
(0, 0, 0)

is a Hurwitz matrix. This is possible, because at the origin the pair of matrices
(∂f

∂x ,
∂f
∂u ) is stabilizable. Then the controller v = c(w) + K(x − π(w)) solves

the local output regulation problem. Indeed, it is easy to check that for this
controller the closed-loop system satisfies conditions A) and B) given earlier
with the mapping α(w) := π(w) and the function

F (x,w) :=

⎛⎜⎜⎝
x2

−x1 + φ sinx3 + µw1
x4

c(w) + K(x − π(w))

⎞⎟⎟⎠ .

Since the controller is static, the state of the closed-loop system z coincides
with the system state x. Having found a controller solving the output regu-
lation problem in some neighborhood of the origin, let us estimate this set
of admissible initial conditions (x(0), w(0)) for the following values of the pa-
rameters: φ = 0.5, µ = 0.04, ω̂ = 1, K = (12,−4,−8,−5). To this end, we
apply Theorem 6.3.

First, we must choose a matrix P = PT > 0 such that

P
∂F

∂x
(0, 0) +

∂F

∂x

T

(0, 0)P < 0.
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We find such P from the Lyapunov equation

P
∂F

∂x
(0, 0) +

∂F

∂x

T

(0, 0)P = −Q,

where Q is the diagonal matrix diag(2, 8, 1, 1). The estimation procedure de-
pends on the choice of the matrix P . Therefore, different choices of the matrix
Q (and, consequently, of the matrix P ) may result in different estimates. The
particular value of the matrix Q presented above has been found by trial
and error to obtain better (larger in some sense) estimates. For convenience,
the matrix P corresponding to the chosen matrix Q is normalized such that
‖P‖ = 1. Since ∂F

∂x (x,w) depends only on x3, the matrix N for the set CN (R)
is chosen equal to N = (0, 0, 1, 0), i.e., such that Nx = x3. So, the convergence
set C is sought in the form CN (R) := {x : |x3| < R} (see Section 6.1.2 for
details). Since ∂F

∂x (x,w) does not depend on w, the companion set Wc can be
taken equal to R

m and R∗(ρ) ≡ R∗ = Const. In our example, the matrix

J(x,w) = P
∂F

∂x
(x,w) +

∂F

∂x

T

(x,w)P

depends only on x3. The number R∗ is the largest number such that J(x3) is
negative definite for all |x3| < R∗. This R∗ can be found numerically in the
following way. We check whether J(R) and J(−R) are negative definite for
increasing R starting with R = 0 until one of the matrices J(R) or J(−R)
ceases being negative definite. The step for the increment of R is taken equal to
0.01. The value of R at which one of the matrices J(R) or J(−R) ceases being
negative definite is an approximate value of R∗. This procedure gives R∗ ≈
1.03. Finally, computation of R(r) using formula (6.19) gives us estimates of
the admissible initial conditions set: EP (R(r)) × Bw(r). The function R(r)
is shown in Figure 6.5. The apparent linearity of the graph of R(r) can be
explained by the fact that it corresponds to small values of the state variables,
for which the nonlinearity present in the system does not play a significant
role.

R
(r

)

Disturbance level r

Fig. 6.5. R(r) and r for the estimates EP (R(r)) × Bw(r).
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To compare the estimates with the actual set for which output regulation
occurs, we perform simulations. First, we fix a disturbance level r = 1. The es-
timate of the set of admissible x(0) corresponding to this level of disturbances
is equal to EP (R∗(r)). This is a four-dimensional set. To visualize it, we take
a cross-section of this set for fixed x3 = 0 and x4 = 0. This cross-section is
shown in Figure 6.6 by a solid ellipsoid. Then we compute the cross-section of
the actual region of convergence corresponding to x3 = 0, x4 = 0, and the level
of disturbances r = 1. In Figure 6.6, it is shown by the dotted ellipsoid. This
cross-section is found by numerical integration of system (6.22) and exosys-
tem (6.23) in the following way. A point (x1, x2) belongs to this cross-section
if for the initial condition x(0) = (x1, x2, 0, 0)T output regulation occurs for
all initial conditions of the exosystem satisfying |w(0)| ≤ r. As can be seen
from Figure 6.6, the estimates are fairly conservative. One possible reason for
such conservativeness is a bad choice of the matrix P . A different choice of P
may result in better estimates. At the moment, it is an open question how to
choose P to obtain the best (in some sense) estimates. Another explanation
for such conservative estimates is that the estimation procedure is based on
quadratic Lyapunov functions analysis, which is conservative by itself when
applied to nonlinear systems.

x1

x
2

Fig. 6.6. The actual (dotted) and the estimated (solid) sets of admissible initial
conditions: cross-section for x3 = 0, x4 = 0, and |w0| = 1.

6.2 Estimates for the approximate local output
regulation problem

Even though the local output regulation can be solvable, it can be extremely
difficult to find a controller that solves it. Condition B) is the one that is
especially difficult to satisfy. At the same time, in many cases it is easy to find
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a controller satisfying (6.9) in condition B) approximately (see [8, 33, 35]),
i.e., satisfying the condition

B∗) there exists a C1 mapping α̃(w) defined in a neighborhood W of the origin,
with α̃(0) = 0, such that

∂α̃
∂w (w)Sw = F (α̃(w), w) + ε1(w),

0 = h̄r(α̃(w), w) + ε2(w),
(6.27)

for all w ∈ W , where ε1(w) and ε2(w) are small (in some sense) contin-
uous functions satisfying ε1(0) = 0 and ε2(0) = 0.

It is known (see [35]) that if the closed-loop system satisfies conditions A) and
B∗), then for all sufficiently small initial conditions z(0) and w(0) the regulated
output e(t) converges to a function ẽ(w(t)), where ẽ(w) is of the same order
of magnitude as ε1(w) and ε2(w). It means that if for some ν ≥ 1, C1 > 0 and
C2 > 0 it holds that |εi(w)| ≤ Ci|w|ν , i = 1, 2, for all w in some neighborhood
of the origin W , then there exists Ce > 0 such that |ẽ(w)| ≤ Ce|w|ν for all
w ∈ W . This is called approximate local output regulation. Since it is required
that the initial conditions be sufficiently small, the problem of estimating
this set of admissible initial conditions is also relevant in the case of such
approximate output regulation [71]. This estimation problem can be solved
using the same techniques as in the case of exact output regulation.

The main idea is to find a set of initial conditions Ỹ ⊂ C × Wc (where C
and Wc satisfy the Demidovich condition) such that if (z(0), w(0)) ∈ Ỹ, then
z(t) ∈ C, α̃(w(t)) ∈ C and w(t) ∈ Wc for all t ≥ 0. As follows from (6.27),
z̃(t) := α̃(w(t)) can be considered as a solution of the perturbed system

ż = F (z, w(t)) + ε1(w(t)) (6.28)

and along this solution the regulated output equals −ε2(w(t)). Since z̃(t) is
exponentially stable (because of the Demidovich condition), a small perturba-
tion ε1(w(t)) implies, in the limit, a small difference between z(t) and α̃(w(t)).
Hence, Ỹ is an estimate of the set of admissible initial conditions. Estimates
in the form of direct product Z̃0 × W̃0 can be found in a similar way as in
Theorem 6.3. In the derivation of estimation results, we will need the following
technical lemma.

Lemma 6.4. Consider the closed-loop system

ż = F (z, w(t)) (6.29)

and the perturbed system

ż = F (z, w(t)) + ε(t), (6.30)

where ε(t) is a continuous function of time. Suppose C and Wc are such that
system (6.29) satisfies the Demidovich condition (6.13). Let w(t) ∈ Wc for
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all t ≥ 0, and z̄(t) be a solution of (6.30) such that the ellipsoid EP (z̄(t), r) :=
{z : |z − z̄(t)|P ≤ r} is contained in C for all t ≥ 0. If the perturbation term
satisfies |ε(t)|P ≤ ar/(2‖P‖) for t ≥ 0, then any solution of the unperturbed
system (6.29) starting in z(0) ∈ EP (z̄(0), r) satisfies

lim sup
t→+∞

|z(t) − z̄(t)|P ≤ 2‖P‖
a

lim sup
t→+∞

|ε(t)|P . (6.31)

Proof: See Appendix 9.14.

6.2.1 Estimation results

Having found the sets CN (R) and Wc(R) for which the closed-loop system
(6.8) satisfies the Demidovich condition, we can solve the estimation problem
for the approximate local output regulation problem. Prior to formulating the
solution, let us introduce the following functions:

m̃N (w0) := sup
t≥0

|Nα̃(w(t, w0))|, q(w0) := sup
t≥0

|ε1(w(t, w0))|P . (6.32)

The following theorem gives an estimate of the set of admissible initial condi-
tions in the form of a neighborhood of the approximate output-zeroing man-
ifold z = α̃(w).

Theorem 6.5. Consider the closed-loop system (6.8) and the exosystem (6.4)
satisfying conditions A) and B∗). Suppose the closed-loop system (6.8) satisfies
the Demidovich condition (6.13) with CN (R) := {z : |Nz| < R} and Wc(ρ) :=
{w : |w| < ρ} for some R > 0, ρ > 0 and some matrix N . Then any trajectory
(z(t), w(t)) of the closed-loop system (6.8) and the exosystem (6.4) starting in
the set

Ỹ :=
{

(z0, w0) : |w0| < ρ, m̃N (w0) +
2δ‖P‖

a
q(w0) < R, (6.33)

|z0 − α̃(w0)|P <
1
δ
(R − m̃N (w0))

}
satisfies

lim sup
t→+∞

|z(t) − α̃(w(t))|P ≤ 2‖P‖
a

lim sup
t→+∞

|ε1(w(t))|P (6.34)

and, consequently,

lim sup
t→+∞

|e(t)| ≤ C̄ lim sup
t→+∞

|ε1(w(t))|P + lim sup
t→+∞

|ε2(w(t))|, (6.35)

for some number C̄ > 0 independent of the particular solution (z(t), w(t)).

The proof of this theorem is very similar to the proof of Theorem 6.2. It is
provided in Appendix 9.15.



118 6 The local output regulation problem: convergence region estimates

The next theorem is a counterpart of Theorem 6.3. It provides estimates
in the form of a direct product of two sets Z0 × W0 such that in whatever
point w0 ∈ W0 the exosystem is initialized, approximate output regulation
will occur if the closed-loop system starts in z0 ∈ Z0. Prior to formulating the
result, we define the functions

σ̃(r) := sup
|w0|<r

(|Nα̃(w0)| + δ|α̃(w0)|P ), R̃(r) := (R − σ̃(r))/δ,

η(r) := sup
|w0|<r

(
|Nα̃(w0)| +

2δ‖P‖
a

|ε1(w0)|P
)
. (6.36)

Let r∗ > 0 be the largest number such that r∗ ≤ ρ, σ̃(r) < R and η(r) < R
for all r ∈ [0, r∗). The estimates for the sets of admissible z(0) and w(0) are
given by the next theorem.

Theorem 6.6. The conclusion of Theorem 6.5 holds for any trajectory of the
closed-loop system (6.8) and the exosystem (6.4) starting in

z(0) ∈ EP (R̃(r)) := {z : |z|P < R̃(r)}, w(0) ∈ Bw(r) := {w : |w| < r},

for some r ∈ [0, r∗).

Similar to the proof of Theorem 6.3, the proof of this theorem is based on the
fact that for every r ∈ [0, r∗) the set EP (R̃(r)) × Bw(r) is a subset of Ỹ. The
proof is given in Appendix 9.16.

6.2.2 Example

Let us illustrate the application of Theorem 6.6. Consider the local output
regulation problem for the TORA system (6.22) (see Section 6.1.4). This time
we assume that the disturbance force Fd equals

Fd = λ arctan(w1/λ)

for λ = 3, as shown in Figure 6.7. As in the previous example, w1 is generated
by the linear harmonic oscillator (6.23).

Although this problem looks similar to the problem considered in Sec-
tion 6.1.4, it is difficult to solve. The difficulty is in solving the regulator
equations (6.24). At the same time, for the controller

v = c(w) + K(x − π(w)),

with the mappings π(w) and c(w) defined in (6.25), the closed-loop system
satisfies the conditions A) and B∗) with

α̃(w) := π(w), ε1(w) := (0, µ(λ arctan(w1/λ) − w1), 0, 0)T , ε2(w) ≡ 0.
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Therefore, this controller solves the approximate local output regulation prob-
lem, i.e., for small initial conditions of the closed-loop system and the exosys-
tem the regulated output tends to small values, as shown in Figure 6.8 (see
[8, 33, 35] for details on controller design for the approximate local output
regulation problem). The values of the parameters φ, µ, ω, and K are taken
the same as in Section 6.1.4 and λ = 3.

Let us apply Theorem 6.6 to estimate the set of admissible (x(0), w(0)).
First, we need to find a pair of sets CN (R) and Wc(r) satisfying the Demi-
dovich condition (6.13). Since ∂F

∂x (x,w) does not depend on w, the companion
set Wc can be taken equal to R

m. For the convergence set CN (R) we choose
R = 0.88. The corresponding a equals a = 0.083. We have chosen arbitrary
R from the range of Rs for which the corresponding a is positive. Such a
range has been determined numerically in the previous example and it equals
[0, 1.03). Finally, after computing R̃(r), η(r), and r∗, we obtain estimates of
the admissible initial conditions set EP (R̃(r)) × Bw(r), where R̃(r) is given
in Figure 6.9.

F
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Fig. 6.7. Nonlinear disturbance force: Fd(w1) = λ arctan(w1/λ), for λ = 3 – solid,
Fd(w1) = w1 – dashed.
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Fig. 6.8. Approximate output regulation: the regulated output converges to small
(in some sense) values.
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Fig. 6.9. Approximate output regulation: the function R̃(r) for the estimates
EP (R̃(r)) × Bw(r).

Theorem 6.6 provides the estimates for r ∈ [0, r∗). In our case, r∗ ≈ 2.3
(for r = r∗, the function η(r) reaches R). For r > r∗, Theorem 6.6 does not
guarantee that both x(t) starting in EP (R̃(r)) and α̃(w(t)) with w(t) starting
in Bw(r) will lie in the convergence set CN (R). Thus, Lemma 6.4 cannot be
applied and the inequalities (6.34) and (6.35) may not hold.

Note that the mappings α̃(w) and c(w) and, thus, the closed-loop system
are defined only for |w1| < ω2φ/µ. For the given values of the system param-
eters this constraint is given by |w1| < 12.5. The obtained estimates satisfy
this condition. Just like in the case of exact output regulation, the estimates
are rather conservative, which can be explained either by an inappropriate
choice of the matrix P or by the approach itself, since it is based on quadratic
Lyapunov functions.

6.3 Summary

In this chapter we have considered the problem of estimating the sets of ad-
missible initial conditions for a solution to the (approximate) local output
regulation problem. The presented solutions to this estimation problem are
based on the Demidovich condition. If a controller solves the local output regu-
lation problem, then the closed-loop system satisfies the Demidovich condition
at least in some neighborhood of the origin. This neighborhood is estimated,
and, based on these estimates, we provide a way to compute estimates of
the sets of admissible initial conditions for the (approximate) local output
regulation problem. The obtained estimates consist of initial conditions for
which the trajectories of the forced closed-loop system exponentially converge
to the (approximate) output-zeroing manifold. The results are illustrated by
application to a disturbance rejection problem in the TORA system. Since
the exosystem is allowed to generate constant signals, the obtained results are
also suitable for systems with parametric uncertainties. Although the analysis
in this chapter has been performed under the assumption of linearity of the
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exosystem, the results can be extended to the case of general neutrally stable
exosystems.

The obtained estimates are, in general, fairly conservative since they are
based on a quadratic stability analysis and strongly depend on the choice of
the matrices N and P . Despite this conservatism, the results can be useful in
the following situations. First, one can directly use the estimates in practice
(for certain simple systems they may be quite satisfactory). Second, if the
estimates are too conservative, one can use them as a starting point for ob-
taining larger estimates by means of, for example, backward integration. The
third way is to use the estimates as a criterion for choosing/tuning certain
controller parameters. Since controller design admits some freedom in choos-
ing certain controller parameters (like the matrix K in the TORA example),
one can pick such parameters that guarantee larger estimates.



7

Experimental case study

The output regulation problem for nonlinear systems has been studied from a
theoretical point of view in a series of publications. For a number of nonlinear
mechanical systems, the output regulation problem has been studied in the
papers [32, 41, 43, 83, 84] and in the monograph [42]. Despite the significant
interest in this problem, most of the known results are theoretical with only a
few papers aiming at experimental validation of the proposed solutions [4, 55].

In this chapter we address the nonlinear output regulation problem from
an experimental point of view. We study the disturbance rejection problem
for the TORA system considered in Section 6.1.4. This problem is a particular
case of the local output regulation problem. First, in Section 7.1 we design a
simple state feedback controller solving this problem. Second, this controller
is implemented in an experimental setup described in Section 7.2. Third, in
Section 7.3 we present experimental results. Moreover, we identify the causes
that limit the performance of this controller in practice and show that output
regulation is attained experimentally.

The reason for this experimental study is twofold. The first reason is to
check whether the controllers from the nonlinear output regulation theory
are applicable in an experimental setting in the presence of disturbances and
modeling uncertainties, which are inevitable in practice. The second reason is
to identify factors that can deteriorate the controller performance and there-
fore require specific attention already at the stage of controller design. The
results presented in this chapter should be considered as the first steps in the
problem of experimental output regulation. As any other first step into terra
incognita, these results will probably raise more questions and new challenges
than provide ultimate answers.

7.1 Controller design for the TORA system

In this section we design a simple controller for the disturbance rejection prob-
lem considered in Section 6.1.4. This problem is a particular case of the local
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output regulation problem. A controller solving this problem has already been
presented in Section 6.1.4. In that controller design, we first transformed the
system model into a simple form by means of certain coordinate and feedback
transformations and then designed a controller for the simplified model. The
controller designed in such a way is convenient for illustrating the estimation
results presented in the previous chapter because it is easier to compute esti-
mates of the set of admissible initial conditions for closed-loop systems hav-
ing a relatively simple form. Due to the nonlinear feedback transformations
employed in the simplification of the system model, the resulting controller
becomes a rather sophisticated nonlinear controller. In practice, however, it
is convenient, important, and in some cases even critical that the controller is
simple. Computational limitations of digital signal processors used in the con-
troller implementation are one of the reasons for simplicity of the controller.
Another reason, which is more philosophical, is that the more sophisticated a
controller is the more difficult it is to analyze its performance and to identify
possible problems, which are inevitable in practice. Since in this chapter we
aim at the experimental implementation of an output regulation controller,
we need to design a simple controller for the TORA system.

We start with the equations of motion for the ideal TORA system (see
Section 6.1.4):

M̄ ë + ml(θ̈ cos θ − θ̇2 sin θ) + ke = Fd, (7.1)
Jθ̈ + mlë cos θ = Tu.

Recall (see Figure 6.4) that in this model e is the horizontal displacement of
the cart, θ is the angular position of the arm, Fd is the disturbance force, and
Tu is the control torque applied to the arm. The parameters of the system
are M̄ := M + m, where M is the mass of the cart and m is the mass of the
rotating arm, l is the distance between the rotational axis of the arm and its
center of mass, k is the stiffness of the spring, and J is the total inertia of the
arm with respect to the rotational axis. Notice that J > ml2. The disturbance
force Fd is generated by the linear exosystem

ẇ1 = ωw2, ẇ2 = −ωw1, Fd = w1, (7.2)

where ω is the oscillation frequency. The initial conditions of the exosystem
(7.2) determine the amplitude and phase of the excitation. Recall that the
control problem is to asymptotically regulate e(t) to zero for all sufficiently
small initial conditions of the closed-loop system and for all sufficiently small
initial conditions of the exosystem. This is a particular case of the local output
regulation problem. For simplicity it is assumed that e, ė, θ, θ̇, w1, and w2
are measured.

A controller solving this problem is sought in the form

Tu = c(w) + K(x − π(w)), (7.3)
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where x := [e, ė, θ, θ̇]T is the state of the system (7.1), w := [w1, w2]T is the
state of the exosystem (7.2), c(w) and π(w) are the solutions of the regulator
equations, and the matrix K is such that for w = 0 the closed-loop system
(7.1), (7.3) has an asymptotically stable linearization at the origin (see, e.g.,
Section 4.1 or [8] for more information on controller design for the local output
regulation problem).

The requirement on the matrix K is equivalent to the requirement that
A + BK is a Hurwitz matrix, where the matrices

A :=

⎡⎢⎢⎣
0 1 0 0

− kJ
M̄J−m2l2

0 0 0
0 0 0 1

kml
M̄J−m2l2

0 0 0

⎤⎥⎥⎦ , B :=

⎡⎢⎢⎣
0

− ml
M̄J−m2l2

0
M̄

M̄J−m2l2

⎤⎥⎥⎦ ,

follow from the linearization of the system (7.1) at the origin with Fd = 0
and Tu viewed as input. Notice that in the model (7.1), J > ml2 and
M̄ > m. Therefore, M̄J − m2l2 > 0. One can easily check that this in-
equality implies controllability of the pair (A,B). Hence, we can always
choose a matrix K such that A + BK is Hurwitz. Next we need to solve
the regulator equations. In other words, we need to find continuous map-
pings π(w) := [π1(w), π2(w), π3(w), π4(w)]T and c(w) defined in a neigh-
borhood of the origin w = 0 and satisfying π(0) = 0 and c(0) = 0 such
that, for any sufficiently small solution of the exosystem w(t), for the distur-
bance force Fd(t) = w1(t) and controller action Tu(t) = c(w(t)), the function
x̄w(t) = π(w(t)) is a solution of system (7.1) and along this solution the
displacement e(t) equals zero. By substitution one can easily check that the
mappings

π1(w) = 0, π2(w) = 0, π3(w) = −arcsin
( w1

mlω2

)
, (7.4)

π4(w) = − ωw2

(m2l2ω4 − w2
1)1/2 , c(w) =

ω2w1(m2l2ω4 − w2
1 − w2

2)J
(m2l2ω4 − w2

1)3/2 , (7.5)

satisfy the regulator equations. Consequently, we have found a controller solv-
ing the local output regulation problem. Controller (7.3) admits some freedom
in the choice of the matrix K. This freedom can be used, for example, in tun-
ing the controller to obtain desirable performance of the closed-loop system.
Controller (7.3) is implemented in the experimental setup described in the
next section.

7.2 Experimental setup

To obtain experimental validation of the proposed controller, an experimental
setup for the TORA system has been built. This setup has been constructed



126 7 Experimental case study

by adapting an existing X-Y positioning system (the H-bridge setup available
in the Dynamics and Control Technology Laboratory at Eindhoven University
of Technology) shown in Figure 7.1.

Fig. 7.1. The adapted H-bridge setup.

The adapted H-bridge setup is schematically shown in Figure 7.2. It con-
sists of the following components. The two parallel axes Y1 and Y2 are
equipped with Linear Magnetic Motor Systems LiMMS Y1 and LiMMS Y2

Y1 Y2

LiMMS Y1 LiMMS Y2

LiMMS X

DC motor

Arm

Cart

e

θ

Fig. 7.2. The adapted H-bridge setup scheme, top view.
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that can move along their axes. The Y1 and Y2 carriages support the X axis.
In all experiments that are performed on this setup the Y1 and Y2 carriages
are controlled with a low-level PID controller to maintain a fixed position.
Therefore, in the following we will assume that these two carriages stand still
and that the X axis is fixed.

In the following we will refer to the X-LiMMS carriage moving along the X
axis as the cart. The mass of the cart is M [kg]. The displacement of the cart
e [m] is measured using a linear incremental encoder (Heidenhain LIDA 201)
with a 1 µm resolution. The force applied to the cart by the linear motor
is proportional to the (voltage) control signal uF , which is fed to the linear
motor through a proportional current amplifier, i.e., F = κFuF . The constant
κF has the value of 74.4 N/V ([27]). In addition to the actuating force, a
friction force Ff is present in the bearings of the cart. Moreover, a cogging
force Fc, which is caused by the interaction of the permanent magnets in the
X rail and the iron-core coils of the electromagnets in the cart, acts on the
cart (see [27] for details on the cogging force). We assume that the friction
force depends only on the cart velocity, i.e., Ff = Ff (ė), and the cogging force
depends only on the position of the cart, i.e., Fc = Fc(e). This assumption,
although being a simplification of reality, helps with dealing with these two
forces.

To implement the TORA system at the H-bridge setup, additional hard-
ware has been added to the cart (see Figure 7.3). A vertical shaft supported
by a set of (angular contact) ball bearings is attached to the back of the cart,
thus forming a rotational joint. An arm of mass m [kg] is attached to the
lower end of the shaft. The center of mass of the arm is located at the dis-
tance of l [m] from the shaft center line. The angular position of the shaft
(and consequently of the arm) θ is measured by a rotational incremental en-
coder (Maxon, HEDL55) with a (quadrature decoded) resolution of 0.18◦ at
the motor shaft. A 48V, 150W DC motor (Maxon RE40) fitted with a ceramic
planetary gearhead (Maxon GP42C) drives the shaft via an adapted flexible
coupling (ROBA-DX, type 931.333). The gear ratio equals gr = 113. The
backlash in the gearhead is approximately 0.5◦ at the output shaft. The total
inertia of all rotating parts (the arm, shaft, coupling, gearhead, and motor)
with respect to the shaft is J [kg m2]. Due to the friction in the motor, gear-
head, and ball bearings of the shaft, an additional friction torque Tf = Tf (θ̇)
acts on the arm. The torque T generated by the DC motor is proportional to
the current i [A] fed to the motor, i.e., T = κT i, where κT = 60.3 mN · m/A is
the motor constant. The current i is generated by an analog current amplifier.
It is proportional to the (voltage) control signal uT fed to the amplifier, i.e.,
i = κAuT , where κA = 1.2A/V is the amplifier constant. More details on the
adapted H-bridge setup can be found in [46, 72].

Taking into account all the active forces and torques, we obtain the fol-
lowing model of the setup consisting of the cart moving along the fixed X axis
and the (horizontally) rotating arm attached to the cart
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Fig. 7.3. The adapted H-bridge setup: rear view and connection scheme.

M̄ ë + ml(θ̈ cos θ − θ̇2 sin θ) = F − Ff (ė) + Fc(e), (7.6)

Jθ̈ + mlë cos θ = T − Tf (θ̇),

where M̄ := M + m, the actuator force acting on the cart equals F = κFuF

and the actuator torque acting on the arm equals T = grκTκAuT , where uF

and uT are the control signals for the cart and for the arm, respectively.
The cogging force Fc(e) and the friction force Ff (ė) are identified using

the methods presented in [6]. The corresponding graphs are presented in Fig-
ures 7.4 and 7.5, respectively. The friction torque Tf (ė) has been identified
using constant angular velocity tests. The resulting graph is given in Fig-
ure 7.6.

Initial estimates of the mass M̄ , the product ml, and the inertia J are
computed from the CAD drawings, material data, and specifications of the
motor and gearhead. These estimates are M̄ = 20.965 kg, ml = 1.2514 kg m
and J = 0.5405 kg m2. They will be used as a starting point to obtain more
accurate estimates based on closed-loop experiments.

To implement the TORA system in the resulting setup, we need to com-
pensate for the friction in the cart and the arm and for the cogging force in
the X axis. Moreover, we need to implement the virtual spring action −ke
and the disturbance force Fd along the X axis. For the cart, this is achieved
by the controller

uF =
1
κF

(F̂f (ė) − F̂c(e) − ke + Fd), (7.7)



7.2 Experimental setup 129

-0.2 -0.1 0 0.1 0.2

-20

-15

-10

-5

0

5

10

15

20

e [m]

F
c

[N
]

-0.5 0 0.5

-20

-10

0

10

20
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Fig. 7.4. The identified cogging force
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Fig. 7.5. The identified friction force
Ff (ė).

-300 -200 -100 0 100 200 300

-1

-0.5

0

0.5

1

θ̇ [deg/s]

T
f

[N
m

]

Fig. 7.6. The identified friction torque Tf (θ̇).

where F̂f (ė) and F̂c(e) are the friction compensation and cogging compen-
sation forces (based on the identified values of these forces), k [N/m] is the
stiffness of the virtual spring (which we can set arbitrarily), and Fd(t) = w1(t)
is the disturbance force acting on the cart. In the experiments performed on
the setup, parameter k is set equal to k = 500 N/m. The exosystem (7.2),
with w(t) = [w1(t), w2(t)]T , is integrated in the PC/dSpace-system and the
disturbance force Fd(t) = w1(t) is computed from the obtained solutions.

Next, we need to implement friction compensation in the rotating arm.
This is achieved by the controller

uT =
1

grκTκA
(Tu + T̂f (θ̇)), (7.8)

where T̂f (θ̇) is the friction compensation torque based on the identified friction
torque in the arm (see Figure 7.6), and Tu is a new control input.

After implementing the low-level controllers (7.7), (7.8) and the exosystem
(7.2), the resulting system takes the form

M̄ ë + ml(θ̈ cos θ − θ̇2 sin θ) + ke = Fd + εF , (7.9)
Jθ̈ + mlë cos θ = Tu + εT ,



130 7 Experimental case study

where Fd(t) = w1(t) is the disturbance force, Tu is the control torque (new
input), and εF and εT are the residual terms due to nonexact friction and
cogging compensation and uncertainties in the system parameters. System
(7.9) is now in the form of system (7.1) (if the residual terms are not taken
into account) for which the controller (7.3) solves the local output regulation
problem. This controller requires the values of e and θ, which are measured
by the encoders, the derivatives ė and θ̇, which are obtained by numerical
differentiation and filtering of the measured signals e and θ, and the values of
w1(t) and w2(t), which are computed in the dSpace-system.

7.3 Experiments

In this section we present results of experiments performed on the adapted
H-bridge setup in closed loop with the controller (7.3).

7.3.1 Parameter settings

The gain matrix K in the controller (7.3) is set to K := [29, −1.5, −11, −1.9].
The eigenvalues of the linearized closed-loop system corresponding to this K
and to the initial estimates of the system parameters given in the previous
section equal −1.0313±5.8493i and −0.9121±3.8901i. The choice of the matrix
K is determined by several requirements. The first and the third entries in
the matrix K, which correspond to the displacement of the cart e and angular
position of the arm θ, must be large enough to compensate for the residual
friction and backlash present in the system. At the same time, the real part
of the eigenvalues of the linearized closed-loop system must be less than a
certain threshold to guarantee fast convergence rates and sufficient robustness
properties of the closed-loop system. In theory, for any matrix K such that
A + BK is Hurwitz, controller (7.3) solves the output regulation problem
in some neighborhood of the origin, i.e., for initial conditions of the closed-
loop system and the exosystem being small enough. This neighborhood of
admissible initial conditions essentially depends on the choice of K. Thus, our
choice of the matrix K must be such that the resulting set of admissible initial
conditions is relatively large in order to test this controller in experiments (the
problem of estimating this neighborhood of admissible initial conditions for
a system in closed loop with a controller solving the local output regulation
problem has been considered in Chapter 6). Finally, the control signal resulting
from the controller with this matrix K must not exceed, in most operating
conditions, the bounds imposed by the amplifier and DC motor specifications.
Taking these requirements into account, a combination of some optimization
procedures with trial and error resulted in the matrix K presented above.

The estimates for the parameters J and ml are tuned based on closed-loop
experiments using the output regulation controller (to obtain better perfor-
mance). The new estimates are Ĵ = 0.4270 N·m2 (21% smaller than the initial
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estimate) and m̂l = 1.3389 kg · m (7% larger than the initial estimate). These
estimates are used in the feedforward part of the output regulation controller
in the experiments presented below.

The friction compensation torque in the rotating arm T̂f (θ̇) is set 1.5
times larger than the identified friction torque Tf (θ̇) given in Figure 7.6. It
has been noticed that for this friction compensation in the rotating arm the
controller has a better performance. Such a large deviation from the identified
values may be explained by the fact that the friction in the gearhead, which
is the main contributor to the friction in the arm motion, depends not only
on the angular velocity θ̇, but also on the torque applied to the shaft. The
identification of the friction torque has been performed for very low torques
(constant velocity experiments), while in the experiments with the TORA
controller the torques are much higher. The cogging compensation force F̂c(e)
is set equal to the identified cogging force presented in Figure 7.4. The friction
compensation force F̂f (ė) in the cart motion is set to 90% of the identified
friction force presented in Figure 7.5 to avoid overcompensation. Moreover,
for a cart velocity ė of magnitude less than 0.035 m/s, it is set to

F̂f (ė) :=
|ė|0.90
0.035

Ff (ė).

The resulting friction compensation force is shown in Figure 7.7. This under-
compensation of the friction in the cart motion reduces the friction-induced
limit-cycling, which is observed in experiments if the friction compensation
force is set equal the real friction force, see, e.g., [75]. At the same time, friction
undercompensation makes the equilibrium set, in terms of the position of the
cart, larger. In the experiments, this equilibrium set can be easily observed
when the cart sticks in a point e∗, which is close but not equal to zero.
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Fig. 7.7. The identified friction force Ff (ė) and the friction compensation force
F̂f (ė).
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In the experiments, the frequency of the disturbance force Fd(t) (the fre-
quency of the exosystem) is set to 1 Hz, which corresponds to ω in the exo-
system (7.2) equal to ω = 2π rad/s.

7.3.2 Experimental results

All experiments are performed for the initial conditions of the exosystem equal
to w1(0) = 0, w2(0) = A. These initial conditions correspond to the distur-
bance force Fd(t) := A sin(ωt). We perform the experiments for two values of
the amplitude A: A = 15 N and A = 25 N.

Two types of experiments are performed. In the experiments of the first
type, the system starts in a given initial condition e(0) = e0 [m], ė(0) =
0 [m/s], θ(0) = θ0 [deg], θ̇(0) = 0 [deg/s]. For each value of the amplitude A
we perform three experiments corresponding to different initial conditions e0
and θ0. These initial conditions are given in Table 7.1.

e0 [m] θ0 [deg]
Experiment # 1 -0.2 20
Experiment # 2 0.2 20
Experiment # 3 0.1 90

Table 7.1. Initial conditions e0 and θ0 used in the experiments.

The results of the experiments corresponding to the disturbance ampli-
tudes A = 15 N and A = 25 N are presented in Figures 7.8 and 7.9, re-
spectively. In these figures the controller effort is represented by the current
i = κAuT [A] fed by the amplifier to the DC motor.

In the experiments of the second type, the system is affected by the dis-
turbance force Fd(t) of amplitude A. Initially, only the feedback part in the
controller (7.3) is active, i.e., Tu = Kx, and there is no compensation for
the disturbance force Fd(t). Since there is no disturbance compensation, the
cart starts oscillating. At an arbitrary time instant t∗ the feedforward part
of the controller is activated, i.e., Tu = c(w) + K(x − π(w)). This results in
disturbance rejection in the position of the cart e. The results of the experi-
ments corresponding to the disturbance amplitudes A = 15 N and 25 N are
presented in Figures 7.10 and 7.11, respectively.

From these experimental results we can immediately draw the following
conclusion. The output regulation controller (7.3) does compensate a signifi-
cant part of the harmonic disturbance force acting on the cart. This results in
stabilization of the cart at an equilibrium position close to zero. The remaining
regulation error is due to the residual friction in the cart motion.

In Figure 7.12 the cart displacement signal related to an experiment, per-
formed at a different time, is depicted. Clearly, exact output regulation is
not attained and a limit cycle of small amplitude remains. In this respect, it
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Fig. 7.8. Experiments for a disturbance force of amplitude A = 15 N and predefined
initial conditions.

should be noted that the friction characteristics in the setup are subject to
change due to temperature and humidity change in the laboratory. However,
exactly the same friction compensation as in the previous experiments was
used. Consequently, the limit cycling can be caused by an interaction of sev-
eral factors: friction and friction compensation in the cart motion, friction and
friction compensation in the rotating arm, feedback controller and backlash
in the gearhead. As can be seen from Figure 7.13, the backlash, for example,
manifests itself through the peaks in the angular velocity of the arm. When
the shaft reaches the border of the backlash zone, an impact occurs that causes
the peaks in θ̇. These peaks, in turn, are amplified by the controller (7.3) and
fed back into the DC motor actuating the arm. This provides the system with
extra energy to compensate for the energy dissipation due to friction. These
problems require an additional investigation, which is outside the scope of our
research.

7.4 Summary

In this chapter, experimental results on the local output regulation problem
for the TORA system have been presented. We have constructed a simple
state-feedback controller that solves a disturbance rejection problem for the
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Fig. 7.9. Experiments for a disturbance force of amplitude A = 25 N and predefined
initial conditions.

TORA system. This problem is a particular case of the local output regulation
problem. To validate this controller in experiments, an experimental setup
for the TORA system has been built from an existing H-bridge setup. The
proposed state-feedback controller has been implemented in this setup and
tested in a series of experiments.

As follows from the results of these experiments, for the setup in closed
loop with the proposed controller output regulation occurs, though only ap-
proximately. This means that the regulated output e(t) does not tend to zero
exactly, but either sticks in an equilibrium position close to zero or keeps on
oscillating with a small amplitude. These phenomena are due to nonexact
compensation of the friction and the backlash problem in the gearhead of
the rotating arm. At the stage of controller design for the output regulation
problem, these factors have not been taken into account.

In practice there is always some type of (non)parametric uncertainty
present in the system. It can be either due to inaccurately identified parame-
ters of the system or friction, backlash, or other parasitic phenomena, which
are not taken into account in the system model. These uncertainties may
significantly reduce the performance of a controller. This performance deteri-
oration may manifest itself, for example, in a steady-state regulation error, as
illustrated by the experimental results on the TORA system presented above.
As follows from the experiments on the TORA system performed for different
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Fig. 7.10. Experiments for a disturbance force of amplitude A = 15 N. Disturbance
compensation is activated during the experiment.

values of the controller gain K while tuning the controller, this steady-state
regulation error can be reduced by a proper choice of the gain K. Also, this
gain matrix K essentially determines the region of admissible initial conditions
for which this local controller works. Moreover, it determines the rate of con-
vergence for the closed-loop system. In this experimental case study, the choice
of the matrix K, which takes into account these practically important design
issues, has been done using ad hoc optimization and trial-and-error methods.
It should be noted that the problem of a systematic choice or tuning con-
troller parameters for nonlinear output regulation that takes into account the
above-mentioned design considerations has not been studied in the literature
so far. This fact urges the need for further work in this direction.

Even with the ad hoc tuning of the controller and with many uncertainties
present in the system, the experimental results show relatively good perfor-
mance of the closed-loop system. These successful experiments indicate that
the output regulation theory can be successfully applied in experiments.
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Concluding remarks

The problem of asymptotic regulation of the output of a dynamical system,
which includes both tracking and disturbance rejection problems, plays an
important role in control theory. A particular case, when the reference signals
and/or disturbances are generated by an autonomous system of differential
equations, is the output regulation problem. This problem has been system-
atically studied in this book. Our treatment of the output regulation problem
is based on the notion of convergent systems. In the development of this ap-
proach we have passed several stages.

Convergent systems. We have extended and elaborated the notions of con-
vergent systems originally developed by B.P. Demidovich. We have introduced
the notions of the uniform and exponential convergence, the UBSS property,
and the input-to-state convergence property. Then we studied various prop-
erties of convergent systems. It appears that convergent systems, although
nonlinear, have rather simple dynamics and enjoy many stability properties
comparable to those of asymptotically stable linear systems. This makes them
convenient to deal with. Finally, we have proposed sufficient conditions for var-
ious convergence properties for systems with smooth and nonsmooth right-
hand sides. These sufficient conditions and properties of convergent systems
serve as tools in the subsequent treatment of the output regulation problem.
Moreover, they can be used for other control problems as well.

The uniform output regulation problem. Having developed a mathematical
apparatus for convergent systems, we have formulated the uniform output reg-
ulation problem. This is a new problem formulation for the output regulation
problem based on the notion of convergent systems. In this problem formula-
tion one needs to find a controller such that for any input generated by the
exosystem, the corresponding closed-loop system has a unique (globally) uni-
formly asymptotically stable steady-state solution and the regulated output
tends to zero along all solutions of the closed-loop system. We have formulated
the global, local, as well as robust variants of the uniform output regulation
problem. This new problem setting includes as particular cases the output
regulation problem for linear systems and the conventional local output reg-
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ulation problem for nonlinear systems. Moreover, it has several advantages
over other existing problem formulations. It allows one to deal with exosys-
tems having complex dynamics, e.g., exosystems with a (chaotic) attractor
with an unbounded domain of attraction. Up to now most of the results on
the output regulation problem dealt only with exosystems having relatively
simple dynamics, for example, with linear harmonic oscillators. Another ad-
vantage of this new problem formulation is that it allows one to treat the local
and global variants of the uniform output regulation problem in a unified way.
As becomes clear from the solvability analysis of the global uniform output
regulation problem, many of the known controllers solving the global output
regulation problem in some other problem settings in fact solve the global
uniform output regulation problem.

Solvability analysis. One of the main advantages of the chosen problem
setting for the uniform output regulation problem is that it allows one to ob-
tain relatively simple results on the solvability of the problem. For the global,
global robust, and local variants of the uniform output regulation problem,
we have provided necessary and sufficient conditions for the solvability of
these problems as well as results on the characterization of all controllers
solving these problems. These results extend the solvability results for the
conventional local output regulation problem, which are based on the center
manifold theorem. The solvability analysis of the uniform output regulation
problem is based on certain invariant manifold theorems. They serve as non-
local counterparts of the center manifold theorem. These invariant manifold
theorems, although obtained in the scope of the output regulation problem,
can be applied in other fields of systems and control theory as well. For ex-
ample, they can be used for the analysis of synchronization phenomena, the
computation of periodic solutions of nonlinear systems excited by harmonic
inputs, and for the performance analysis of nonlinear convergent systems.

Controller design. The analysis of the global uniform output regulation
problem provides necessary and sufficient conditions under which a controller
solves the problem. How to design a controller satisfying these conditions is
a separate problem. We have addressed this problem for several classes of
nonlinear systems and provided several results on controller design for the
global uniform output regulation problem. One of these controller designs
is based on the notions of quadratic stabilizability and detectability, which
extend the conventional notions of stabilizability and detectability from linear
systems theory to the case of nonlinear systems. The controller design based
on these notions extends known controllers solving the linear and the local
nonlinear output regulation problems to the case of the global uniform output
regulation problem for nonlinear systems. For the case of a Lur’e system with
a nonlinearity having a bounded derivative and an exosystem being a linear
harmonic oscillator, feasibility conditions for such controller design can be
easily verified by checking the feasibility of certain LMIs. Moreover, for this
class of systems and exosystems we provide a robust controller design, which
copes not only with uncertainties in the system parameters, but also with an
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uncertain nonlinearity from a class of nonlinearities with a given bound on
their derivatives. The controller design results obtained at this stage allow
us to solve the global uniform output regulation problem for new classes of
nonlinear systems.

Convergence region estimates. If a solution to the global uniform output
regulation problem cannot be found, it can still be possible to find a con-
troller that solves the corresponding local output regulation problem. The
resulting controller solves the output regulation problem for initial conditions
of the closed-loop system and the exosystem lying in some neighborhood of
the origin. In this book we have presented estimation results that, given a
controller solving the local output regulation problem, provide estimates of
this neighborhood of admissible initial conditions. These results are obtained
for both the exact and the approximate local output regulation problem. The
proposed estimation results enhance the applicability of the controller design
procedures for the nonlinear local output regulation problem. As in the rest
of the book, the notion of convergence plays a central role in these estimation
results.

Experimental case study. To check the applicability of controllers from the
nonlinear output regulation theory in practice, we have performed an experi-
mental case study for the TORA system. For this system we have considered
a disturbance rejection problem, which is a particular case of the local output
regulation problem. We have designed a controller solving this problem and
checked its performance in experiments. To this end, an experimental setup
for the TORA system has been built and the proposed controller has been im-
plemented in this setup. Despite the uncertainties and several parasitic effects,
such as residual uncompensated friction, backlash, and a residual cogging force
present in the system, the proposed controller has demonstrated good perfor-
mance in the experiments by achieving approximate output regulation (the
regulated output converges to small values). The residual regulation error is
due to modeling uncertainties, which are inevitable in practice. This is one of
the first experimental works in the field of nonlinear output regulation.

The results presented in this book can be extended in several ways. Below
we briefly review some possible extensions.

In this book the uniform output regulation problem has been considered
for systems modeled by ordinary differential equations (ODEs). At the same
time, many practical systems cannot be modeled by ODEs and may require
a model in the form of integral equations or partial differential equations
(PDEs). The analysis and controller design methods for the output regulation
problem for systems given by integral equations or PDEs is a possible step for
further research. Another direction of research can be related to the output
regulation problem for systems given in the form of differential equations with
nonsmooth and discontinuous right-hand sides. Some preliminary results in
this direction have been presented in [67].

The problem of controller design for the uniform output regulation prob-
lem requires a lot of further research, since the class of nonlinear systems for
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which the available controller design methods apply is rather limited. One
of the main problems is designing controllers that make the corresponding
closed-loop system globally uniformly convergent. This interesting problem
has connections to different areas of nonlinear control theory. Controller de-
sign methods for convergent systems can be beneficial for both tracking and
disturbance rejection problems.

In the problem of estimating the set of admissible initial conditions for the
local output regulation problem there are several unanswered questions. The
estimation procedures presented in this book depend on several parameters,
which can be chosen in many ways. How to choose these parameters to obtain
the largest (in some sense) estimates is still an open question. Another ques-
tion is how to choose controller parameters to increase the set of admissible
initial conditions.

For a given system and exosystem, the output regulation problem can be
solved (if it is solvable) by many controllers. All these controllers achieve the
control goal of regulating the output of the system, but the performance of the
closed-loop system depends on the particular controller. In this respect, we
face the problem of performance analysis for nonlinear systems. This problem
has been thoroughly investigated for linear systems, but for nonlinear systems
there are more questions than answers, starting with the question of how
to quantify the performance of a nonlinear system. A possible approach to
tackling the performance analysis problem for nonlinear convergent systems
can be based on the invariant manifold theorems presented in this book. These
theorems allow to extend the Bode plot defined for linear systems to the case
of nonlinear convergent systems. The extended Bode plot can be applied for
performance analysis of nonlinear convergent systems. This fact opens an
interesting research direction in nonlinear (control) systems theory.

The notion of convergent systems seems to be very useful in many areas
of systems and control theory. The research on properties of convergent sys-
tems, analysis, and design tools for convergent systems has started relatively
recently. At the moment, there is a need for new design and analysis tools for
convergent systems.

At the end of the book we can conclude that the approach to the output
regulation problem based on the notion of convergent systems appears to be
very effective. Moreover, the results presented in this book can be applied not
only to the output regulation problem, but to other problems in systems and
control theory as well.
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Appendix

9.1 Proof of Lemma 2.11

The proof of this lemma is based on ideas from [15, 89]. Since system (2.6) is
locally ISS, there exist kz > 0 and kw > 0, a class KL function β(r, s), and
a class K function γ(r) such that for any initial state z(t0) with |z(t0)| ≤ kz

and any input w(t) satisfying supt≥t0 |w(t)| ≤ kw, the solution z(t) exists for
all t ≥ t0 and satisfies

|z(t)| ≤ β(|z(t0)|, t − t0) + γ

(
sup

t0≤τ≤t
|w(τ)|

)
. (9.1)

Choose k̃w > 0 such that k̃w ≤ kw and β(γ(k̃w), 0) + γ(k̃w) < kz. Such
k̃w exists because β(r, 0) and γ(r) are continuous and satisfy β(0, 0) = 0 and
γ(0) = 0. We will show that for any input w(t) satisfying supt≥t0 |w(t)| ≤
k̃w there exists a solution zw(t) that is defined for all t ∈ R and satisfies
supt∈R |zw(t)| ≤ kz. If such a solution exists, then it satisfies the inequality

|zw(t)| ≤ β(|zw(t0)|, t − t0) + γ

(
sup

t0≤τ≤t
|w(τ)|

)
for all t0 ∈ R and t ≥ t0. In the limit for t0 → −∞ the term β(|zw(t0)|, t− t0)
tends to zero because |zw(t0)| is bounded on R and β(r, s) is a KL function.
Hence, we obtain |zw(t)| ≤ γ(supτ∈R |w(τ)|) for all t ∈ R. This implies the
statement of the lemma.

Let us show that a solution zw(t) described above does exist. Choose ε > 0
such that for ρ := γ(k̃w) + ε it holds that β(ρ, 0) + γ(k̃w) ≤ kz and ρ <
kz. Such ε exists due to continuity of β(r, 0) and the choice of k̃w. Denote
B̄ρ to be the closed ball B̄ρ := {z : |z| ≤ ρ}. By the formula (9.1), any
solution z(t) satisfying z(t0) ∈ B̄ρ and corresponding to some input w(t) such
that supt≥t0 |w(t)| ≤ k̃w is defined for all t ≥ t0 and satisfies the inequality
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supt≥t0 |z(t)| ≤ β(ρ, 0) + γ(k̃w). By the choice of k̃w and ρ this implies that
supt≥t0 |z(t)| ≤ kz.

Choose T > 0 such that β(ρ, T ) < ε. Such T exists because β(r, s) is a
decreasing function of s. For every n ≥ 0, define the set

Vn := {ẑ ∈ R
d : ẑ := z(0, z0,−nT ), z0 ∈ B̄ρ},

where z(t, z0, t0) is a solution of system (2.6) starting in z(t0) = z0. Since B̄ρ

is a compact set, by continuity of the solution z(t, z0, t0) on z0 we obtain that
Vn is also a compact set. By the definition of the set Vn, if ẑ ∈ Vn, then the
solution of system (2.6) satisfying z(0) = ẑ is defined at least for t ∈ [−nT, 0]
and |z(−nT )| ≤ ρ. Hence, by the reasoning presented above, such z(t) is
defined for all t ≥ −nT and satisfies supt≥−nT |z(t)| ≤ kz.

Let us show that Vn+1 ⊂ Vn for all n ≥ 0. As follows from the definition
of Vn, it is enough to show that any solution starting in z(−(n + 1)T ) ∈ B̄ρ

satisfies z(−nT ) ∈ B̄ρ. Suppose z(t) satisfies |z(−(n + 1)T )| ≤ ρ. Then it is
defined for all t ≥ −(n + 1)T and satisfies (9.1). Then, by the properties of
functions β(r, s) and γ(r), this solution satisfies |z(−nT )| ≤ β(ρ, T ) + γ(k̃w).
By the choice of T we obtain that |z(−nT )| ≤ ε+ γ(k̃w) = ρ. Indeed, it holds
that Vn+1 ⊂ Vn for all n ≥ 0.

Since the sets Vn are compact and Vn+1 ⊂ Vn for all n ≥ 0, their inter-
section is nonempty, i.e., there exists z∗ ∈ ⋂+∞

n=0 Vn. Consider the solution
zw(t) starting in zw(0) = z∗. Since z∗ ∈ Vn for all n ≥ 0, the solution zw(t) is
defined for all t ∈ R and it satisfies supt∈R |zw(t)| ≤ kz.

The proof of the case of system (2.6) being ISS is identical to the local
case. 	


9.2 Proof of Property 2.24

Notice that since F (z, w) is C1, the Jacobians ∂F
∂z (z, w) and ∂F

∂w (z, w) are
bounded in some neighborhood of the origin (z, w) = (0, 0). Thus, all condi-
tions of Lemma 2.10 are satisfied. By Lemma 2.10, system (2.19) is locally
ISS. Hence, by Lemma 2.11, there exists k̃w > 0 and a class K function
γ(r) such that for any input w(t) satisfying |w(t)| ≤ k̃w, for all t ∈ R, sys-
tem (2.19) has a solution zw(t) that is defined for all t ∈ R and satisfies
supt∈R |zw(t)| ≤ γ(supt∈R |w(t)|). Since system (2.19) is locally uniformly
convergent for the class of inputs N , there exist r > 0 and a neighborhood of
the origin Z ⊂ R

d such that system (2.19) is uniformly convergent in Z for any
input w(·) ∈ N satisfying |w(t)| < r for all t ∈ R. Choose kw > 0 such that
kw < k̃w, kw < r and such that the closed ball B̄γ(kw) := {z : |z| ≤ γ(kw)}
lies in Z. Such kw exists, because γ(0) = 0, the function γ(r) is continuous
and Z is a neighborhood of the origin. Consider some input w(·) ∈ N satis-
fying |w(t)| < kw for all t ∈ R. Due to uniform convergence, for this input
there exists a steady-state solution z̄w(t) that is defined and bounded for all
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t ∈ R and uniformly asymptotically stable in Z. Moreover, there exists a so-
lution zw(t) defined for all t ∈ R and lying in the compact set B̄γ(kw) ⊂ Z.
Hence, by Property 2.4 z̄w(t) ≡ zw(t) for t ∈ R. Thus, for any input w(·) ∈ N
satisfying |w(t)| < kw for all t ∈ R the corresponding steady-state solution
satisfies (2.25). 	


9.3 Proof of Property 2.25

Consider two inputs w1(·) and w2(·) ∈ PCm satisfying w1(t) − w2(t) → 0 as
t → +∞ and the corresponding steady-state solutions z̄w1(t) and z̄w2(t). By
the definition of convergence, both z̄w1(t) and z̄w2(t) are defined and bounded
for all t ∈ R. Consider the system

∆ż = F (z̄w2(t) + ∆z,w2(t) + ∆w) − F (z̄w2(t), w2(t)). (9.2)

This system describes the dynamics of ∆z = z(t) − z̄w2(t), where z(t) is some
solution of system (2.19) with the input w2(t) + ∆w(t). Since F (z, w) ∈ C1

and both z̄w2(t) and w2(t) are bounded uniformly with respect to t ∈ R, the
partial derivatives

∂F

∂z
(z̄w2(t) + ∆z,w2(t) + ∆w)

and
∂F

∂w
(z̄w2(t) + ∆z,w2(t) + ∆w)

are bounded in some neighborhood of the origin (∆z,∆w) = (0, 0), uniformly
in t ∈ R. Also, for ∆w ≡ 0 system (9.2) has a uniformly globally asymptoti-
cally stable equilibrium ∆z = 0. By Lemma 2.10, system (9.2) is locally ISS
with respect to the input ∆w. This implies (see Remark to Definition 2.8)
that there exist kz > 0 and kw > 0 such that for any input ∆w(t) satisfying
|∆w(t)| ≤ kw for all t ≥ t0 and ∆w(t) → 0 as t → +∞, it holds that any
solution ∆z(t) starting in |∆z(t0)| ≤ kz tends to zero, i.e., ∆z(t) → 0 as
t → +∞.

Choose t0 ∈ R such that |w1(t) − w2(t)| ≤ kw for all t ≥ t0. Consider a
solution of the system

ż = F (z, w1(t)) (9.3)

starting in a point z(t0) satisfying |z(t0) − z̄w2(t0)| ≤ kz. By the reasoning
presented above, ∆z(t) := z(t) − z̄w2(t) → 0 as t → +∞. At the same time,
z̄w1(t) is a uniformly globally asymptotically stable solution of system (9.3).
Hence, z(t) − z̄w1(t) → 0 as t → +∞. Therefore, z̄w2(t) − z̄w1(t) → 0 as
t → +∞. 	
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9.4 Proof of Property 2.27

Consider some input w(·) ∈ PCm. Since the y-subsystem is input-to-state
convergent, there exists a solution ȳw(t) that is defined and bounded on R.
Since the z-subsystem with (y, w) as inputs is input-to-state convergent, there
exists a steady-state solution z̄w(t) corresponding to the input (ȳw(t), w(t)).
This z̄w(t) is defined and bounded on R.

Let (z(t), y(t)) be some solution of system (2.27) with some input w̃(t).
Denote ∆z := z − z̄w(t), ∆y := y − ȳw(t) and ∆w = w̃ − w(t). Then ∆z and
∆y satisfy the equations

∆ż = F (z̄w(t) + ∆z, ȳw(t) + ∆y,w(t) + ∆w) − F (z̄w(t), ȳw(t), w(t)), (9.4)

∆ẏ = G(ȳw(t) + ∆y,w(t) + ∆w) − G(ȳw(t), w(t)). (9.5)

Since both the z-subsystem and the y-subsystem of system (2.27) are input-
to-state convergent, system (9.4) with (∆y,∆w) as input is ISS and system
(9.5) with ∆w as input is ISS. Hence, by Theorem 2.12 the interconnected
system (9.4), (9.5) is ISS. In the original coordinates (z, y) this means that
system (2.27) is ISS with respect to the solution (z̄w(t), ȳw(t)). This implies
that system (2.27) is input-to-state convergent. 	


9.5 Proof of Theorem 2.29

As follows from Lemma 2.30, the Demidovich condition (2.29) guarantees that
every solution of system (2.19) corresponding to an input w(·) ∈ PC(W) is
globally exponentially stable. Namely, condition (2.29) implies that inequality
(2.31) is satisfied for any two points z1, z2 ∈ R

d and for any w ∈ W. This, in
turn, implies that for a given input w(t) taking its values in W and for any
two solutions z1(t) and z2(t) corresponding to this input, the derivative of the
function V (z1, z2) = 1

2 (z1 − z2)TP (z1 − z2) satisfies

d

dt
V (z1(t), z2(t)) = (z1 − z2)TP (F (z1, w) − F (z2, w)) ≤ −2βV (z1, z2). (9.6)

The last inequality guarantees that the difference between any two solutions
z1(t) and z2(t) corresponding to some input w(·) ∈ PC(W) exponentially
tends to zero. In particular,

|z1(t) − z2(t)|P ≤ e−β(t−t0)|z1(t0) − z2(t0)|P ,
where |z|P denotes |z|P := (zTPz)1/2.

It remains to show that for any w(·) ∈ PCm there exists a solution z̄w(t)
that is defined and bounded on R. To show this, consider the function W (z) :=
1
2z

TPz. The derivative of this function along a solution z(t) corresponding to
some bounded input w(t) equals
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d

dt
W (z(t)) = zTPF (z, w) = (z − 0)TP (F (z, w) − F (0, w)) + zTPF (0, w).

Applying inequality (2.31), we obtain

d

dt
W (z(t)) ≤ −β|z|2P + |zTPF (0, w)|.

Notice that the term |zTPF (0, w)| can be estimated using the Cauchy in-
equality in the following way. Let the matrix Π be such that P = ΠTΠ.
Then zTPF (0, w) = (Πz)T (ΠF (0, w)), i.e., zTPF (0, w) equals the scalar
product of Πz and ΠF (0, w). By the Cauchy inequality, we obtain

|(Πz)T (ΠF (0, w))| ≤ |Πz||ΠF (0, w)| = |z|P |F (0, w)|P .

Here we have used the equality |z|P = |Πz|. With this estimate of the term
|zTPF (0, w)|, we obtain

d

dt
W (z(t)) ≤ −β|z|2P + |z|P |F (0, w(t))|P ≤ −|z|P (β|z|P − sup

t∈R

|F (0, w(t))|P ).

In this inequality, supt∈R |F (0, w(t))|P is finite, since F (0, w) is continuous in
w ∈ W and, since w(·) ∈ PC(W), w(t) belongs to a compact subset of W for
all t ∈ R. So, we obtain that for a given input w(·) ∈ PC(W), the inequality
dW/dt(z) ≤ 0 holds for |z|P ≥ r, where r := supt∈R |F (0, w(t))|P /β. Con-
sequently, the set {z : |z|P ≤ r} is a compact positively invariant set. The
existence of a solution z̄w(t) that is defined and bounded for all t ∈ R follows
from Lemma 2.31. Thus, for every input w(·) ∈ PC(W) there exists a solution
z̄w(t) that is defined and bounded for all t ∈ R and is globally exponentially
stable. Hence, system (2.19) is globally exponentially convergent for the class
of inputs PC(W). The fact that the steady-state solution z̄w(t) lies in the set
{z : |z|P ≤ r}, where r := supt∈R |F (0, w(t))|P /β, determines that system
(2.19) has the UBSS property for the class of inputs PC(W). Namely, for
any compact set Kw ⊂ W the compact set Kz in the definition of the UBSS
property can be chosen equal to

Kz :=
{
z : |z|P ≤ sup

w∈Kw

|F (0, w)|P /β
}
.

Let us show that for the case of W = R
d system (2.19) is input-to-state

convergent for the class of inputs PCm. Consider some input w(·) ∈ PCm and
the corresponding steady-state solution z̄w(t). Let z(t) be a solution of system
(2.19) corresponding to some input ŵ(·) ∈ PCm. Denote ∆z := z − z̄w(t) and
∆w := ŵ − w(t). Then ∆z satisfies the equation

∆ż = F (z̄w(t) + ∆z,w(t) + ∆w) − F (z̄w(t), w(t)). (9.7)
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We will use Theorem 2.9 to show that this system is ISS. Then input-to-state
stability of system (9.7) implies that system (2.19) is input-to-state convergent
for the class of inputs PCm.

Consider the function V (∆z) = 1
2 (∆z)TP∆z. Its derivative along solutions

of system (9.7) satisfies

dV

dt
= ∆zTP{F (z̄w(t) + ∆z,w(t) + ∆w(t)) − F (z̄w(t), w(t))} (9.8)

= ∆zTP{F (z̄w(t) + ∆z,w(t) + ∆w(t)) − F (z̄w(t), w(t) + ∆w(t))}
+∆zTP{F (z̄w(t), w(t) + ∆w(t)) − F (z̄w(t), w(t))}.

Applying Lemma 2.30 to the first component in formula (9.8), we obtain

∆zTP{F (z̄w(t) + ∆z,w(t) + ∆w(t)) − F (z̄w(t), w(t) + ∆w(t))} ≤ −β|∆z|2P .
(9.9)

Applying the Cauchy inequality to the second component in formula (9.8), we
obtain the following estimate:

|∆zTP{F (z̄w(t), w(t)+∆w(t))−F (z̄w(t), w(t))}| ≤ |∆z|P |δ(t,∆w)|P , (9.10)

where
δ(t,∆w) := F (z̄w(t), w(t) + ∆w) − F (z̄w(t), w(t)).

Since F (z, w) is continuous and z̄w(t) and w(t) lie in compact sets for all
t ∈ R, the function δ(t,∆w) is continuous in ∆w uniformly in t ∈ R. This,
in turn, implies that ρ̃(r) := supt∈R sup|∆w|≤r |δ(t,∆w)|P is a continuous
nondecreasing function. Define the function ρ(r) := ρ̃(r) + r. This function is
continuous, strictly increasing, and ρ(0) = 0. Thus, it is a class K function.
Also, due to the definition of ρ(r), we obtain the following estimate:

|δ(t,∆w)|P ≤ ρ(|∆w|).

After substituting this estimate together with estimates (9.10) and (9.9) in
formula (9.8), we obtain

dV

dt
≤ −β|∆z|2P + |∆z|P ρ(|∆w|). (9.11)

From this formula we obtain that

dV

dt
≤ −β

2
|∆z|2P , ∀ |∆z|P ≥ 2

β
ρ(|∆w|). (9.12)

Thus, applying Theorem 2.9, we obtain that system (9.7) is input-to-state
stable. This completes the proof of the theorem. 	
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9.6 Proof of Theorem 2.33

We will show that the conditions of the theorem imply the existence of β > 0
such that for any w ∈ W and for any two points z1, z2 ∈ R

d it holds that

(z1 − z2)TP (F (z1, w) − F (z2, w)) ≤ −β|z1 − z2|2P . (9.13)

Once this relation is proved, the rest of the proof repeats the proof of Theo-
rem 2.29. Basically, the proof of inequality (9.13) replaces Lemma 2.30 in the
proof of Theorem 2.29.

Notice that inequality (9.13) holds automatically for z1 = z2. Hence, we
need to prove it only for the case z1 �= z2. Inequality (9.13) will be proved in
several steps. First, consider two points z1, z2 ∈ R

d, z1 �= z2, such that the
open line segment (z1, z2) connecting these points, thus not containing these
points, lies entirely in the set C := R

d \ Γ , as shown in Figure 9.1. Then, by
Lemma 2.30, inequality (9.13) holds for these z1 and z2 and for any w ∈ W.

Second, consider two points z1, z2 ∈ R
d such that the open line segment

(z1, z2) connecting these points intersects the set Γ in a finite number of points,
as shown in Figure 9.2. Denote y1 := z1, yp := z2, and yi, i = 2, . . . , p−1—the
points of intersection of the line segment (z1, z2) with the set Γ . The points
y1, . . . , yp are ordered in such a way that any open line segment (yi, yi+1),
i = 1, . . . , p−1, does not intersect Γ and yi �= yi+1 for i = 1, . . . , p−1. Denote
e := (z1 − z2)/|z1 − z2|P . Since all points yi, i = 1, . . . , p, lie on the same
closed line segment [z1, z2], and they are ordered, we obtain

e =
yi − yi+1

|yi − yi+1|P , i = 1, . . . , p − 1. (9.14)

Taking this fact into account, we obtain

(z1 − z2)TP (F (z1, w) −F (z2, w)) = |z1 − z2|P
p−1∑
i=1

eTP (F (yi, w) −F (yi+1, w))

Γ
z1

z2

Γ

z1 =: y1

z2 =: y4

y2y3

Fig. 9.1. The line segment (z1, z2)
does not intersect Γ .

Fig. 9.2. The line segment (z1, z2) in-
tersects the set Γ in a finite number
of points. The points y1, . . . , y4 are or-
dered.



150 9 Appendix

= |z1 − z2|P
p−1∑
i=1

(yi − yi+1)TP (F (yi, w) − F (yi+1, w))
|yi − yi+1|P . (9.15)

Notice that for each pair of points yi and yi+1, i = 1, . . . , p − 1, the open
line segment (yi, yi+1) connecting these points, but not including them, lies
entirely in the set C := R

d \Γ . Thus, as follows from the first step of the proof,

(yi − yi+1)TP (F (yi, w) − F (yi+1, w)) ≤ −β|yi − yi+1|2P .

Substituting this inequality in (9.15), we obtain

(z1 − z2)TP (F (z1, w) − F (z2, w)) ≤ −β|z1 − z2|P
p−1∑
i=1

|yi − yi+1|P .

Since all points yi, i = 1, . . . , p, lie on the same line segment [z1, z2] and they
are ordered,

p−1∑
i=1

|yi − yi+1|P = |y1 − yp|P = |z1 − z2|P . (9.16)

This fact implies

(z1 − z2)TP (F (z1, w) − F (z2, w)) ≤ −β|z1 − z2|2P .

In the third step, consider two points z1, z2 ∈ R
d such that the open line

segment (z1, z2) connecting these points intersects the set Γ in infinite number
of points. In our case, this means that the line segment (z1, z2) belongs to one
or more hyperplanes constituting the set Γ . These hyperplanes are given by
the equations HT

j z + hj = 0, j = 1, . . . , k. Consider the sequences {z1i}+∞
i=1

and {z2i}+∞
i=1 such that z1i → z1 and z2i → z2 as i → +∞ and such that each

line segment (z1i, z2i), i = 1, 2, . . . , intersects the set Γ in a finite number of
points. Such sequences exist because for small variations of either z1 or z2
in the direction transversal to the hyperplane HT

j z + hj = 0 to which the
line segment (z1, z2) belongs, the varied line segment (z̃1, z̃2) does not lie in
the hyperplane HT

j z + hj = 0. Since each line segment (z1i, z2i), i = 1, 2, . . .
intersects the set Γ in a finite number of points, from the second step we
obtain

(z1i − z2i)TP (F (z1i, w) − F (z2i, w)) ≤ −β|z1i − z2i|2P , i = 1, 2, . . . .

By continuity of the vectorfield F (z, w), in the limit for i → +∞ we obtain

(z1 − z2)TP (F (z1, w) − F (z2, w)) ≤ −β|z1 − z2|2P .

This completes the proof. 	
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9.7 Proof of Lemma 2.35

Let us first prove sufficiency. Suppose conditions (2.36) are satisfied. To check
continuity, we need to check whether Aiz+ bi = Ajz+ bj for all z lying in the
set Π := {z : HT z+h = 0}. Conditions (2.36) imply that Aiz+bi−Ajz−bj =
GH(HT z +h). Hence, if z belongs to the set Π, then Aiz + bi −Ajz − bj = 0.

At the next step, we prove necessity. Suppose

Aiz + bi − Ajz − bj = 0 (9.17)

for all z lying in the set Π. Every point in Π can be expressed as z = z∗ + z̃,
where z∗ is some point such that HT z∗ + h = 0 and z̃ is an arbitrary point
satisfying HT z̃ = 0. Substituting this expression in (9.17), we obtain

Ai(z∗ + z̃) + bi − Aj(z∗ + z̃) + bj = 0.

Since (9.17) holds, in particular, for z = z∗, from the last expression we obtain
(Ai − Aj)z̃ = 0 for all z̃ satisfying HT z̃ = 0. Hence, (Ai − Aj)z̃ = 0 for all
z̃ ∈ KerHT . Let Ar

ij be the rth row of the matrix Ai − Aj . Then

Ar
ij z̃ = 0 ∀z̃ ∈ KerHT . (9.18)

Since H is a nonzero vector, KerHT is a (d − 1)-dimensional subspace. The
relation Ar

ij z̃ = 0 for all z̃ ∈ KerHT implies that Ar
ij lies in the orthogonal

compliment to KerHT , which is spanned by HT . Hence, Ar
ij = αrH

T for some
scalar αr. Repeating this analysis for all rows of the matrix Ai −Aj , we obtain
Ai − Aj = GHHT , where the vector GH equals GH = (α1, . . . , αd)T . After
substituting this equality in (9.17), we obtain GHHT z + bi − bj = 0 for all z
satisfying HT z + h = 0. This, in turn, implies bi − bj = GHh. 	


9.8 Proof of Theorem 2.40

Conditions (2.44) and (2.45) imply that the set N(ρ) := {z : V2(z) ≤ α5◦γ(ρ)}
is positively invariant for every input w(·) ∈ PCm satisfying

|w(t)| ≤ ρ ∀ t ∈ R. (9.19)

Condition (2.44) implies that for every ρ ≥ 0 the set N(ρ) is bounded. Hence
for any input w(·) ∈ PCm every solution of system (2.19) remains in a bounded
set N(ρ) for some ρ ≥ supt∈R |w(t)|.

Consider an input w(t) satisfying (9.19). Then the set N(ρ) is a compact
positively invariant set. By Lemma 2.31 there exists a solution z̄w(t) lying
in N(ρ) for all t ∈ R. By condition (2.44), this solution satisfies |z̄w(t)| ≤
α−1

4 ◦ α5 ◦ γ(ρ) for all t ∈ R. This is a uniform bound on |z̄w(t)| for all w(t)
satisfying (9.19). Substituting z̄w(t) for z2 in (2.42) and (2.43) gives conditions
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for uniform global asymptotic stability of the solution z̄w(t) (see [51]). As a
consequence, system (2.19) is globally uniformly convergent for the class of
inputs PCm. Moreover, since the steady-state solutions z̄w(t) are bounded
on R uniformly with respect to inputs satisfying (9.19), system (2.19) has the
UBSS property. 	


9.9 Proof of Theorem 2.41

We will prove this theorem in the following sequence: (i)⇒(iii)⇒(ii)⇒(i).
(i)⇒(iii). Since (2.19) is locally exponentially convergent, for the input

w(t) ≡ 0 the steady-state solution z̄w(t) ≡ 0 is locally exponentially stable.
This implies that the linearization of system ż = F (z, 0) at the origin is
exponentially stable (see [51], Theorem 3.13). This is equivalent to the matrix
∂F/∂z(0, 0) being Hurwitz.

(iii)⇒(ii). Since ∂F
∂z (0, 0) is Hurwitz, there exists a positive definite matrix

P = PT > 0 such that

P
∂F

∂z
(0, 0) +

∂F

∂z

T

(0, 0)P < 0. (9.20)

Denote J(z, w) = P ∂F
∂z (z, w) + ∂F

∂z

T
(z, w)P . Since F (z, w) ∈ C1, the function

J(z, w) is continuous. This implies, since J(0, 0) is negative definite, that
J(z, w) is negative definite for all small z and w. Consider a neighborhood of
the origin z = 0 in the form of the ellipsoid EP (R) := {z : |z|P < R}, where
|z|P := (zTPz)1/2. Choose R > 0 and r > 0 small enough to guarantee that
J(z, w) < −Q for some Q > 0, all z ∈ EP (R), and all |w| < r. Note that the
set EP (R) is convex. Therefore, by Lemma 2.30, this implies the existence of
β > 0 such that

(z1 − z2)TP (F (z1, w) − F (z2, w)) ≤ −β|z1 − z2|2P (9.21)

holds for any z1, z2 ∈ EP (R) and any |w| < r. Relation (9.21), in turn, implies
that for any input w(t) satisfying |w(t)| < r for all t ∈ R, any two solutions
z1(t) and z2(t) lying in EP (R) for all t ≥ t0 exponentially converge to each
other, i.e.,

|z1(t) − z2(t)|P ≤ e−β(t−t0)|z1(t0) − z2(t0)|P . (9.22)

Choose a positive number r̄ ≤ r such that sup|w|<r̄ |F (0, w)|P < βR. This
is possible because F (0, w) is continuous and F (0, 0) = 0. With this choice
of r̄ the set EP (R) will be invariant for any input w(t) satisfying |w(t)| < r̄.
Namely, consider the function W (z) := 1

2 |z|2P . Its derivative along a solution
of (2.19) equals

dW

dt
= zTPF (z, w) = (z − 0)TP (F (z, w) − F (0, w)) + zTPF (0, w).
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Applying inequality (9.21) and Cauchy inequality, we obtain

dW

dt
≤ −|z|P

(
β|z|P − sup

t∈R

|F (0, w(t))|P
)
.

Thus, if |w(t)| ≤ r̄ for all t ∈ R, then for |z|P = R it holds that

dW

dt
≤ −R

(
βR − sup

|w|≤r̄

|F (0, w)|P
)
.

By the choice of r̄ we obtain dW/dt ≤ 0 for all |z|P = R. Thus, the set EP (R)
is compact and positively invariant with respect to system (2.19) with any
input w(t) satisfying the inequality |w(t)| ≤ r̄ for all t ∈ R. This implies that,
first, by Lemma 2.31, for every w(t) satisfying |w(t)| ≤ r̄ for all t ∈ R there
exists a solution z̄w(t) that is defined for all t ∈ R and lies in EP (R) for all
t ∈ R. Second, since EP (R) is invariant, any two solutions starting in EP (R)
satisfy (9.22). Hence, for any input w(t) satisfying |w(t)| ≤ r̄, for all t ∈ R,
the corresponding steady-state solution z̄w(t) is defined and bounded on R

and it is exponentially stable in EP (R), i.e., the system (2.19) is convergent
in Z := EP (R). Thus, system (2.19) is locally exponentially convergent for
the class of inputs PCm.

(ii)⇒(i). This implication follows from the following inclusion:

N
⋂

{w(·) : |w(t)| < r̄, t ∈ R} ⊂ PCm

⋂
{w(·) : |w(t)| < r̄, t ∈ R}.

Thus, if system (2.19) is exponentially convergent in some neighborhood of
the origin for the class of inputs PCm subjected to the constraint |w(t)| < r̄,
for some r̄ > 0 and all t ∈ R, then it is also exponentially convergent in
the same neighborhood for the class of inputs N subjected to the constraint
|w(t)| < r̄. 	


9.10 Proof of Lemma 4.3

(i)⇒(ii). We prove the existence of α(w) by constructing this mapping. Since
system (4.8) is uniformly convergent in Z for the class of inputs Is(W), for
any solution of the exosystem w(t, w0) starting in w(0, w0) = w0 ∈ W there
exists a unique steady-state solution z̄w(t) that is bounded on R and uniformly
asymptotically stable in Z. To emphasize the dependency of this steady-state
solution on w0, we denote it by z̄(t, w0). Construct the mapping α(w) in the
following way: for every w0 ∈ W and every t ∈ R set α(w(t, w0)) := z̄(t, w0)
or, equivalently, α(w0) = z̄(0, w0). By the definition of the mapping α(w), the
graph z = α(w) is invariant with respect to (4.8) and (4.9) and any solution
z(t) = α(w(t)) lying on this manifold is uniformly asymptotically stable in Z.
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It remains to show that the mapping z = α(w), constructed above, is
continuous, i.e., that for any w1 ∈ W and any ε > 0 there exists δ > 0 such
that |w1 − w2| < δ implies |α(w1) − α(w2)| < ε. In the following we assume
that ε > 0 and w1 ∈ W are chosen arbitrarily and are fixed, while w2 varies
in the closed ball K0 := {w : |w1 − w| ≤ r}, where r > 0 is chosen such that
K0 ⊂ W. Such r exists because w1 ∈ W and W is an open set.

As a preliminary observation, notice that by the conditions given in (i), for
the compact set K0 there exists a compact set Kz ⊂ Z such that z̄(t, w0) ∈ Kz

for all w0 ∈ K0 and all t ∈ R. Hence, since α(w(t, w0)) ≡ z̄(t, w0), for any w1
and w2 from the set K0 it holds that α(w(t, wi)) ∈ Kz for i = 1, 2 and for all
t ∈ R.

To prove continuity of α(w), we introduce the function

ϕT (w1, w2) := ẑ(0,−T, α(w(−T,w2)), w1),

where T > 0 will be specified later and ẑ(t, t0, z0, w∗) is the solution of the
time-varying system

˙̂z = F (ẑ, w(t, w∗)) (9.23)

satisfying the initial conditions ẑ(t0, t0, z0, w∗) = z0.
The function ϕT (w1, w2) has the following meaning, which is illustrated

in Figure 9.3. First, consider the steady-state solution α(w(t, w2)), which
is a solution of system (9.23) with the input w(t, w2). At time t = 0,
α(w(0, w2)) = α(w2). Next, we shift along α(w(t, w2)) to time t = −T
and appear in α(w(−T,w2)). Then we switch the input in system (9.23) to
w(t, w1), shift forward to the time instant t = 0 along the solution ẑ(t) start-
ing in ẑ(−T ) = α(w(−T,w2)), and appear in ẑ(0) = ϕT (w1, w2). Notice that
ϕT (w0, w0) = α(w0) (there is no switch of inputs and we just shift back and
forth along the same solution α(w(t, w0))). Thus,

α(w(t, w2))

α(w(t, w1))

α(w(0, w2)) = ϕT (w2, w2)

α(w(0, w1)) = ϕT (w1, w1)

ϕT (w1, w2)
α(w(−T, w2))

input w(t, w1)

input w(t, w2)

Fig. 9.3. The construction of the function ϕT (w1, w2).
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α(w1) − α(w2) = ϕT (w1, w1) − ϕT (w2, w2)
= ϕT (w1, w1) − ϕT (w1, w2) (9.24)

+ϕT (w1, w2) − ϕT (w2, w2).

By the triangle inequality, this implies

|α(w1) − α(w2)| ≤ |ϕT (w1, w1) − ϕT (w1, w2)| (9.25)
+ |ϕT (w1, w2) − ϕT (w2, w2)|.

First, we will show that there exists T > 0 such that

|ϕT (w1, w1) − ϕT (w1, w2)| < ε/2 ∀ w2 ∈ K0. (9.26)

Second, we will show that given T > 0 satisfying (9.26), there exists δ > 0
such that

|ϕT (w1, w2) − ϕT (w2, w2)| < ε/2 ∀ w2 : |w1 − w2| < δ. (9.27)

Combining inequalities (9.26) and (9.27), we obtain |α(w1) − α(w2)| < ε for
all w2 satisfying |w1 − w2| < δ. Due to the arbitrary choice of ε > 0 and
w1 ∈ W, this proves continuity of α(w) in the set W.

To show (9.26), notice that ϕT (w1, w1) = ẑ1(0) and ϕT (w1, w2) = ẑ2(0),
where ẑ1(t) and ẑ2(t) are solutions of the system

˙̂z = F (ẑ, w(t, w1)), (9.28)

with the initial conditions

ẑ1(−T ) = α(w(−T,w1)), ẑ2(−T ) = α(w(−T,w2)).

By the conditions given in (i), ẑ1(t) = α(w(t, w1)) is a solution of system
(9.28); it is uniformly asymptotically stable in Z and lies in the compact
set Kz. By the definition of uniform asymptotic stability in the set Z, this
implies that ẑ1(t) attracts all other solutions ẑ(t) of system (9.28) uniformly
over the initial conditions t0 ∈ R and ẑ(t0) from any compact subset of Z. In
particular, for the compact set Kz and for ε > 0 there exists T = T (ε,Kz) > 0
such that ẑ(t0) ∈ Kz implies

|ẑ1(t) − ẑ(t)| < ε/2, ∀ t ≥ t0 + T (ε,Kz), t0 ∈ R. (9.29)

By the definition of ẑ2(t), ẑ2(−T ) = α(w(−T,w2)). Since α(w(t, w2)) ∈ Kz

for all t ∈ R (see above), ẑ2(−T ) ∈ Kz. Thus, for t0 = −T and t = 0 formula
(9.29) implies

|ẑ1(0) − ẑ2(0)| < ε/2, (9.30)

which is equivalent to (9.26).
To show (9.27), notice that for a fixed T > 0, the function ẑ(0,−T, z0, w0)

is continuous with respect to z0 and w0. Thus, it is uniformly continuous over
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the compact set G := {(z0, w0) : z0 ∈ Kz, w0 ∈ K0}. Hence, there exists
δ > 0, such that if z0 ∈ Kz, w1 ∈ K0, w2 ∈ K0, and |w1 − w2| < δ, then

|ẑ(0,−T, z0, w1) − ẑ(0,−T, z0, w2)| < ε/2. (9.31)

Recall that by the definition of ϕT (w1, w2)

ϕT (w1, w2) − ϕT (w2, w2) = ẑ(0,−T, z0, w1) − ẑ(0,−T, z0, w2), (9.32)

where z0 := α(w(−T,w2)). Since w1 ∈ K0, w2 ∈ K0, and α(w(−T,w2)) ∈ Kz,
it follows from (9.31) and (9.32) that

|w1 − w2| < δ ⇒ |ϕT (w1, w2) − ϕT (w2, w2)| < ε/2.

Thus, we have shown (9.27). This completes the proof of continuity of α(w)
and completes the proof of implication (i)⇒(ii).

Let us prove relation (4.10). Suppose α1 : W → Z and α2 : W → Z are
continuous mappings such that the sets

M1(W) := {(z, w) : z = α1(w), w ∈ W},
M2(W) := {(z, w) : z = α2(w), w ∈ W},

are invariant with respect to systems (4.8) and (4.9). Consider some solution
of the exosystem w(t) lying in W (i.e., w(·) ∈ Is(W)). For this solution, the
functions z1(t) := α1(w(t)) and z2(t) := α2(w(t)) are solutions of system (4.8)
lying in the set Z for all t ∈ R. Since system (4.8) is uniformly convergent
in Z for the input w(t), there exists a steady-state solution z̄w(t) attracting
all solutions of system (4.8) starting in Z. This implies |z̄w(t) − zi(t)| → 0 as
t → +∞ for i = 1, 2. By the triangle inequality, the last expression implies
|z1(t) − z2(t)| → 0 as t → +∞. Hence, we have proved relation (4.10).

Let us show that if a solution w(t) of the exosystem (4.9) lies in a compact
set Kw ⊂ W for all t ∈ R, then α1(w(t)) ≡ α2(w(t)) for t ∈ R. Since α1(w)
and α2(w) are continuous, z1(t) := α1(w(t)) and z2(t) := α2(w(t)) are two
solutions of system (4.8) corresponding to the same input w(t) and lying in
the compact set Kz := α1(Kw)

⋃
α2(Kw) ⊂ Z for all t ∈ R. Since system

(4.8) is uniformly convergent in the set Z for the class of inputs Is(W), the
steady-state solution is uniformly asymptotically stable in Z. By Property 2.5,
the steady-state solution z̄w(t) is unique and, by Property 2.4, we obtain
z̄w(t) ≡ zi(t) for i = 1, 2 and t ∈ R. Hence, z1(t) ≡ z2(t) or, equivalently,
α1(w(t)) ≡ α2(w(t)) for t ∈ R.

If system (4.9) satisfies the boundedness assumption A1 in the set W,
then any solution w(t) starting in w(0) ∈ W lies in a compact subset of W.
Therefore, by the reasoning presented above, the mapping α(w) defined in (ii)
is unique.

Let us show that under the boundedness assumption A1 on system (4.9),
(ii) implies (i). We show that system (4.8) is uniformly convergent in Z for
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the class of inputs Is(W). Recall that the class Is(W) contains all solutions
of system (4.9) starting in W. Due to assumption A1, any solution w(t)
of system (4.9) starting in w(0) ∈ W lies in some compact set Kw ⊂ W
for all t ∈ R. For any w(·) ∈ Is(W), define z̄w(t) := α(w(t)). Because the
graph M(W) is invariant with respect to systems (4.8) and (4.9), z̄w(t) is a
solution of system (4.8) that is defined and bounded on R. By the conditions
given in (ii), z̄w(t) is uniformly asymptotically stable in Z. Hence, system
(4.8) is uniformly convergent in Z for the class of inputs Is(W). Due to the
boundedness assumption A1, for any compact set of initial conditions K0 ⊂ W
there exists a compact set Kw ⊂ W such that if w(0) ∈ K0, then w(t) ∈ Kw

for all t ∈ R. Since α(w) is a continuous mapping from W to Z, for the
compact set Kw ⊂ W the set Kz := α(Kw) ⊂ Z is also compact. Therefore, if
a solution of the exosystem w(t) starts in w(0) ∈ K0, then the corresponding
steady-state solution z̄w(t) = α(w(t)) lies in the compact set Kz for all t ∈ R.
Hence, we have proved (i). This completes the proof of the lemma. 	


9.11 Proof of Theorem 4.6

The proof of this theorem is based on the fact that any system (4.9) with a
compact positively invariant set W+ can be extended to some neighborhood
of W+ in such a way that the extended system satisfies the boundedness
assumption A1 in this neighborhood and, at the same time, it has the same
dynamics on W+ as the original system (4.9). This statement is formulated
in the following lemma.

Lemma 9.1. Consider system (4.9). Suppose W+ ⊂ R
m is a compact set

that is positively invariant with respect to system (4.9). Then for any open set
W̃ ⊃ W+ there exists a system

ẇ = s̃(w) (9.33)

such that s̃(w) is a locally Lipschitz function, s̃(w) = s(w) for all w ∈ W+

and system (9.33) satisfies the boundedness assumption A1 in the set W̃.

Proof: Since W+ is a compact set and W̃ is a neighborhood of W+, we can
choose R > 0 such that the set L := {w : dist(w,W+) ≤ R} lies in W̃.
Consider system (4.8) and system (9.33) with s̃(w) being a locally Lipschitz
function such that s̃(w) = s(w) for all w ∈ W+, and s̃(w) = 0 for all w
satisfying dist(w,W+) ≥ R. For example, s̃(w) can be chosen equal to s̃(w) :=
ψ(dist(w,W+))s(w), where ψ(x) is a smooth scalar function satisfying ψ(x) =
1 for x = 0 and ψ(x) = 0 for x ≥ R. In particular, one can choose ψ(x) to be
equal to (see [51]):

ψ(x) := 1 − 1
b

x∫
0

e(
−1
y )e(

−1
R−y )dy for 0 ≤ x < R,
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and ψ(x) := 0 for x ≥ R, where b is chosen such that ψ(R) = 0. Since
dist(w,W+) is a globally Lipschitz function of w, ψ(x) is smooth, and s(w) is
locally Lipschitz, the function s̃(w) defined above is locally Lipschitz.

Notice that system (9.33) satisfies the boundedness assumption A1 in the
open set W̃. Namely, the right-hand side of (9.33) is constructed in such a way
that it is not equal to zero only inside the compact set L, which lies strictly
inside W̃. Moreover, the set L is invariant because s̃(w) = 0 on the boundary
of L. Thus, if a solution of system (9.33) starts in a point w(0) ∈ W̃, then it
either lies in the compact set L or remains constant. Hence, if a solution of
system (9.33) starts in a compact set K0 ⊂ W̃, then it remains in the compact
set Kw := K0

⋃L for all t ∈ R. 	


Now we can prove Theorem 4.6. Since system (9.33) satisfies the bound-
edness assumption A1 in the set W̃, Is̃(W̃)—the class of solutions of system
(9.33) starting in the open invariant set W̃—satisfies Is̃(W̃) ⊂ PC(W̃). There-
fore, the fact that system (4.8) is globally uniformly convergent and has the
UBSS property for the class of inputs PC(W̃) implies that it is globally uni-
formly convergent with the UBSS property for the class of inputs Is̃(W̃).
Applying Theorem 4.4, we conclude that there exists a continuous mapping
α : W̃ → Z such that the set M := {(z, w) : z = α(w), w ∈ W̃} is invariant
with respect to systems (4.8) and (9.33) and every solution z(t) = α(w(t)) on
this manifold is globally uniformly asymptotically stable. Since the dynamics
of systems (4.9) and (9.33) coincide in the positively invariant set W+, the
set M(W+) = {(z, w) : z = α(w), w ∈ W+} is positively invariant with
respect to (4.8) and (4.9) and for every solution w(t) of system (4.9) starting
in w(0) ∈ W+, the solution of system (4.8) z̄w(t) := α(w(t)) considered for
t ≥ 0 is globally uniformly asymptotically stable.

The mapping α(w) depends on the choice of the auxiliary system (9.33),
which can be made in many ways. So, in general, such a mapping α(w) is
not unique. If α1(w) and α2(w) are two such mappings, then for any solution
of system (4.9) starting in w(0) ∈ W+, the functions z1(t) := α1(w(t)) and
z2(t) := α2(w(t)) are two solutions of system (4.8) corresponding to the input
w(t), which is well defined for all t ≥ 0. By Property 2.22, there exists a
solution z̃w(t) defined for t ≥ 0 that is globally asymptotically stable. Hence,
it attracts both α1(w(t)) and α2(w(t)) as t → +∞. This implies (4.11).

If w(0) ∈ W±, then the corresponding solution w(t) of system (4.9) lies in
the compact set W+ for all t ∈ R. Since both α1(w) and α2(w) are continuous
in W, α1(w(t)) and α2(w(t)) are two solutions of system (4.8) corresponding to
the same input w(t) and lying in the compact set Kz := α1(W+)

⋃
α2(W+)

for all t ∈ R. But due to the global uniform convergence of system (4.8),
by Property 2.4 these solutions must coincide with the steady-state solution.
Hence, α1(w(t)) ≡ α2(w(t)) for t ∈ R. Since this relation holds for any solution
w(t) ∈ W±, we obtain α1(w) = α2(w) for all w ∈ W±. 	
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9.12 Proof of Theorem 4.8

(il)⇒(iil). This implication is proved using Lemma 4.3. To apply this lemma,
we will show that there exists a neighborhood of the origin Z ⊂ R

d, and an
invariant neighborhood of the origin Ŵ ⊂ R

m such that a) system (4.8) is
uniformly convergent in Z for the class of inputs Is(Ŵ) and b) there exists
a compact set Kz ⊂ Z such that for any w(·) ∈ Is(Ŵ) the corresponding
steady-state solution z̄w(t) lies in Kz for all t ∈ R. Once a) and b) are proved,
then condition (i) in Lemma 4.3 is satisfied for the sets Z and Ŵ defined
above. By this lemma, there exists a continuous mapping α : Ŵ → Z such
that the graph M(Ŵ) := {(z, w) = α(w), w ∈ Ŵ} is invariant with respect
to systems (4.8) and (4.9). As follows from Lemma 4.3, the mapping α(w)
is uniquely defined for all solutions of the exosystem lying in some compact
subset of Ŵ for all t ∈ R. Consider a closed ball B̄ρ := {w : |w| ≤ ρ}, where
ρ > 0 is such that B̄ρ ⊂ Ŵ. Such a ball exists, since Ŵ is a neighborhood of
the origin. Choose W to be an invariant neighborhood of the origin such that
W ⊂ B̄ρ. Such a neighborhood exists, since w(t) ≡ 0 is Lyapunov stable in
forward and backward time. Therefore, all solutions of system (4.9) starting
in W lie in a compact subset of Ŵ for all t ∈ R. Thus, the mapping α(w)
satisfies the conditions in (iil), and, by Lemma 4.3, any other function α̃(w)
satisfying these conditions coincides with α(w) for all w ∈ W. The fact that
z̄w(t) ≡ 0 is the steady-state solution corresponding to the input w(t) ≡ 0
implies α(0) = 0. This proves (iil).

Let us show that the neighborhoods of the origin Z and Ŵ described above
do exist. Notice that in our case system (4.8) satisfies the conditions of Prop-
erty 2.24. Let Z be a neighborhood of the origin provided by Property 2.24.
Then we can choose ε > 0 such that the closed ball B̄ε := {z : |z| ≤ ε}
lies in Z. As follows from Property 2.24, there exists δ > 0 such that system
(4.8) is uniformly convergent in Z for all solutions of the exosystem satisfying
|w(t)| ≤ δ for all t ∈ R and the corresponding steady-state solutions z̄w(t)
lie in the compact set B̄ε ⊂ Z (such δ can be chosen equal to δ := γ−1(ε),
where γ(r) is the class K function from Property 2.24). Because w(t) ≡ 0
is stable in forward and backward time, there exists an invariant neighbor-
hood of the origin Ŵ such that if w(0) ∈ Ŵ then |w(t)| ≤ δ for all t ∈ R.
By the reasoning presented above, system (4.8) is uniformly convergent in Z
for the class of inputs Is(Ŵ) and for any w(·) ∈ Is(Ŵ) the corresponding
steady-state solution z̄w(t) lies in the compact set B̄ε ⊂ Z. Hence, Z and Ŵ
are the required neighborhoods of the origin. This completes the proof of the
implication (il)⇒(iil).

(iil)⇒(il). We will show that there exist a neighborhood of the origin Z ⊂
R

d and an invariant neighborhood of the origin W∗ ⊂ R
m such that system

(4.8) is uniformly convergent in Z for the class of inputs Is(W∗). Since W
defined in (iil) is a neighborhood of the origin, there exists a closed ball B̄δ :=
{w : |w| ≤ δ} such that B̄δ ⊂ W. Since w(t) ≡ 0 is stable in forward
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and backward time, there exists an invariant neighborhood of the origin W∗
satisfying W∗ ⊂ B̄δ. Hence, any solution of the system (4.9) starting in W∗
lies in a compact subset of W. Since α(w) is continuous for all w ∈ W, for
any solution of the exosystem starting in W∗ the function z̄w(t) := α(w(t))
is a solution of system (4.8) that is defined and bounded on R and that is
uniformly asymptotically stable in Z. Hence, by the definition of uniform
convergence, system (4.8) is uniformly convergent in Z for the class of inputs
Is(W∗). This completes the proof of the implication (iil)⇒(il) and the proof
of the theorem. 	


9.13 Proof of Theorem 5.15

Consider system (5.63) in closed loop with control u = U(y) + v, where the
function U(y) equals

U(y) = −κy − µ

∫ y

0
|ψ(τ)|2dτ

for some κ ∈ R and µ ≥ 0. The derivative of U(y) equals ∂U
∂y (y) = −κ −

µ|ψ(y)|2. Denote ξ(y) := ∂ϕ
∂y (y). Then the Jacobian of the right-hand side of

the closed-loop system equals

A(y) = A + ξ(y)C + B(−κ − µ|ψ(y)|2)C.

Due to condition (5.64), |ξ(y)| ≤ |ψ(y)| for all y ∈ R. Let us show that there
exist κ∗ ∈ R, µ∗ ≥ 0 and matrices P = PT > 0 and Q = QT > 0 such that

J := P (A+ ξC +B(−κ− µ|ψ|2)C) + (A+ ξC +B(−κ− µ|ψ|2)C)TP ≤ −Q,
(9.34)

for all κ ≥ κ∗, µ ≥ µ∗, and all ξ ∈ R
d, ψ ∈ R satisfying the condition |ξ| ≤

|ψ|. Inequality (9.34) implies that the Jacobian A(y) is quadratically stable
over R and, therefore, the closed-loop system is input-to-state convergent (see
Definition 5.5 and Theorem 2.29). Rewrite J in the following form:

J := P (A−κBC)+(A−κBC)TP +PξC+CT ξTP −µ|ψ|2(PBC+CTBTP ).
(9.35)

Since CB > 0 and system (5.65) has all its zeros with negative real part, it
follows from [18, 19] that there exist κ∗ ∈ R and a matrix P = PT > 0 such
that

P (A − κ∗BC) + (A − κ∗BC)TP =: −2Q < 0, PB = CT . (9.36)

Notice that this implies

P (A − κBC) + (A − κBC)TP ≤ −2Q, ∀κ ≥ κ∗. (9.37)
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Namely,

P (A − κBC) + (A − κBC)TP

= P (A − κ∗BC) + (A − κ∗BC)TP − (κ − κ∗)(PBC + CTBTP )
= −2Q − 2(κ − κ∗)CTC ≤ −2Q.

In this reasoning we have used the fact that PB = CT . From (9.35) and (9.37)
we obtain

J ≤ −2Q + PξC + CT ξTP − 2µ|ψ|2CTC

for all κ ≥ κ∗. The inequalities µ ≥ 0 and |ψ| ≥ |ξ| imply

J ≤ −2Q + PξC + CT ξTP − 2µ|ξ|2CTC

= −Q − (Q − PξC − CT ξTP + CT ξT (2µI)ξC).

By completion of squares, we obtain

Q−PξC−CT ξTP +CT ξTPQ−1PξC = (Π−Π−1PξC)T (Π−Π−1PξC) ≥ 0,

where Π = ΠT > 0 is such that Q = ΠTΠ. Hence,

J ≤ −Q + CT ξT (PQ−1P − 2µI)ξC

for all κ ≥ κ∗, and all |ψ| ≥ |ξ|. If µ∗ is such that 2µ∗I ≥ PQ−1P , then for all
µ ≥ µ∗ and all ξ ∈ R

d it holds that J ≤ −Q. Matrix inequalities for finding κ∗
and µ∗ directly follow from inequality (9.36), which is feasible, and condition
2µ∗I ≥ PQ−1P . This completes the proof. 	


9.14 Proof of Lemma 6.4

Denote ζ := z − z̄. It satisfies the equation

ζ̇ := F (z, w(t)) − F (z̄, w(t)) − ε(t). (9.38)

Consider the Lyapunov function V (ζ) := 1/2ζTPζ. Its derivative satisfies

dV

dt
= ζTP (F (z, w(t)) − F (z̄, w(t)) − ε(t)).

Notice that in the region |ζ|P ≤ r both z̄(t) and z = ζ + z̄(t) belong to C.
Since w(t) belongs to Wc for all t ≥ 0, and the sets C and Wc satisfy the
Demidovich condition (6.13), we can apply Lemma 2.30. By formula (2.31),

dV

dt
≤ −β|ζ|2P − ζTPε(t) (9.39)

for some β > 0. Due to the remark to Lemma 2.30, the number β equals
β = a/‖P‖, where a is from the Demidovich condition (6.13). Taking into
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account this fact and applying the Cauchy inequality to the second term in
formula (9.39), we obtain

dV

dt
≤ − a

‖P‖ |ζ|2P + |ζ|Pλ(t0), for t ≥ t0 ≥ 0, (9.40)

where λ(t0) := supt≥t0 |ε(t)|P . By the conditions of the lemma, λ(t0) <
ar/(2‖P‖) for any t0 ≥ 0. Thus, from (9.40) we can conclude that the ellip-
soid ĒP (r) := {ζ : |ζ|P < r} is invariant with respect to (9.38). Application of
Theorem 5.1 from [51] implies that for any solution starting in ĒP (r) and any
η satisfying 2‖P‖

a λ(t0) < η < r there exists T > 0 such that |ζ(t)|P ≤ η for all
t ≥ t0 + T . Due to the arbitrary choice of η > 2‖P‖/aλ(t0), any solution of
(9.38) starting in ĒP (r) satisfies

lim sup
t→+∞

|ζ(t)|P ≤ 2‖P‖
a

λ(t0).

Since the left-hand side does not depend on t0, we can conclude that

lim sup
t→+∞

|ζ(t)|P ≤ 2‖P‖
a

lim
t0→+∞λ(t0) =

2‖P‖
a

lim sup
t→+∞

|ε(t)|P .

This completes the proof. 	


9.15 Proof of Theorem 6.5

We need to show that (6.34) holds for any solution (z(t), w(t)) that starts
in (z(0), w(0)) satisfying the relations |w(0)| < ρ, m̃N (w0) + 2δ‖P‖

a q(w0) <
R and z(0) ∈ EP (α̃(w(0)), r), where EP (z̄, r) := {z : |z − z̄|P < r} and
r := (R − m̃N (w(0)))/δ. Due to the properties of the exosystem, we obtain
|w(t)| ≡ |w(0)| < ρ and the solution z̄w(t) := α̃(w(t)) of the system

ż = F (z, w(t)) + ε1(w(t)) (9.41)

satisfies
|Nz̄w(t)| ≤ sup

t≥0
|Nα̃(w(t))| = m̃N (w(0)) < R.

Hence, z̄w(t) ∈ CN (R) and w(t) ∈ Wc(ρ) for all t ≥ 0. Let us show that
EP (z̄w(t), r) ⊂ CN (R) for all t ≥ 0. Suppose z ∈ EP (z̄w(t), r) for some t ≥ 0.
Then

|Nz| ≤ |Nz̄w(t)| + |N(z − z̄w(t))| ≤ m̃N (w(0)) + δ|z − z̄w(t)|P
< m̃N (w(0)) + δr = R.

Consequently, EP (z̄w(t), r) ⊂ CN (R) for all t ≥ 0. As follows from the second
inequality in the definition of Ỹ, the term ε1(w(t)) satisfies
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|ε1(w(t))|P ≤ sup
t≥0

|ε1(w(t))|P = q(w(0)) <
a

2‖P‖r.

Thus, by Lemma 6.4 we obtain that any solution of system (6.8) starting
in z(0) ∈ EP (z̄w(0), r) satisfies (6.34). Since the set Ỹ is bounded and the
function h̄r(z, w) is C1, there exists a constant L > 0 such that

|h̄r(z1, w) − h̄r(z2, w)| ≤ L|z1 − z2|P
for all (zi, w) ∈ Ỹ, i = 1, 2. With this inequality, inequality (6.34) implies
(6.35) with the constant C̄ := 2‖P‖L/a. 	


9.16 Proof of Theorem 6.6

It is sufficient to show that EP (R(r))×Bw(r) ⊂ Ỹ for any r ∈ [0, r∗). Then the
statement of Theorem 6.6 follows from Theorem 6.5. Suppose z0 ∈ EP (R(r))
and w0 ∈ Bw(r) for some fixed r ∈ [0, r∗). According to the definition of Ỹ,
we first need to show that |w0| < ρ. This is true because |w0| < r < r∗ ≤ ρ.
Next, we show that m̃N (w0) + 2δ‖P‖

a |q(w0)|P < R. By the definition of η(r),
it holds that |Nα̃(w)| + 2δ‖P‖

a |ε1(w)|P ≤ η(r) for all |w| < r. The choice of
|w0| < r implies |w(t, w0)| ≡ |w0| < r. Hence, by the definition of m̃N (w0)
and q(w0) we obtain

m̃N (w0) = sup
t≥0

|Nα̃(w(t, w0))| ≤ sup
|w|<r

|Nα̃(w)|,

q(w0) = sup
t≥0

|ε1(w(t, w0))|P ≤ sup
|w|<r

|ε1(w)|P .

Thus, we obtain

m̃N (w0) +
2δ‖P‖

a
|q(w0)|P ≤ sup

|w|<r

(
|Nα̃(w)| +

2δ‖P‖
a

|ε1(w)|P
)

= η(r).

The choice of r < r∗ implies that η(r) < R and consequently

m̃N (w0) +
2δ‖P‖

a
|q(w0)|P < R.

Next, we need to show that |z0 − α̃(w0)|P < (R − m̃N (w0))/δ. The triangle
inequality implies

|z0 − α̃(w0)|P ≤ |z0|P + |α̃(w0)|P . (9.42)

By the choice of z0 and by the definition of R̃(r),

|z0|P < R̃(r) = (R − σ̃(r))/δ =
(
R − sup

|w0|<r

(|Nα̃(w0)| + δ|α̃(w0)|P )
)
/δ ≤

(R − m̃N (w0))/δ − |α̃(w0)|P .
Substituting this inequality in (9.42), we obtain |z0 − α̃(w0)|P < (R −
m̃N (w0))/δ. This completes the proof. 	
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