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Summary. Total curvatures of boundaries of geodesic disks in Riemannian manifolds are in-
vestigated. The first terms in the corresponding power series expansions are obtained for the
total scalar curvature and theL2-norms of the scalar curvature, the Ricci tensor and the curvature
tensor. As an application, it is shown that these functions characterize the local geometry of most
of the two-point homogeneous spaces.

1 Introduction

In the study of geometric properties of a Riemannian manifold (M, g), it is often useful
to consider geometric objects naturally associated to (M, g). These can be special
hypersurfaces like small geodesic spheres and tubes around geodesics, bundles with
(M, g) as base manifold, or families of transformations reflecting symmetry properties
of (M, g) [V88]. The existence of a relationship between the curvature of a Riemannian
manifold and the volume of its geodesic spheres and tubes led some authors to state
the following question:

To what extent is the curvature (or the geometry) of a given Riemannian mani-
fold (M, g) influenced, or even determined, by the volume properties of certain
naturally defined families of geometric objects (for example geodesic spheres
and tubes) inM?

This problem seems very difficult to handle in such a generality. However, when one
looks at manifolds with a high degree of symmetry (e.g., two-point homogeneous
spaces), these geometric objects have nice properties and one may expect to obtain
characterizations of those spaces by means of such properties. For instance, the two-
point homogeneous spaces may be characterized by using the spectrum of their geodesic
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spheres [CV81] or in most cases by the L2-norm of the curvature tensor of geodesic
spheres [DGH]. (See also [DGV] for more information on total curvatures of geodesic
spheres.)

This work fits into the general program above. The family of geometric objects to be
considered are the geodesic disks, which were previously investigated by O. Kowalski
and L. Vanhecke with special attention to their volume properties [KV82], [KV83],
[KV85]. Here, we are interested in the intrinsic geometry of the boundaries of these
disks and we devote our attention to the study of their total scalar curvatures ob-
tained by integrating the scalar curvature and the quadratic curvature invariants on
these boundaries. In doing that, we compute the first terms in their power series expan-
sions. Several conclusions are obtained from those coefficients. In particular, we note
that

two-point homogeneous spaces are characterized by some of the total curva-
tures of the boundaries of geodesic disks among Riemannian manifolds with
adapted holonomy.

The paper is organized as follows. In Section 2, we recall some notation and basic
notions on scalar curvature invariants. The first terms in the power series expansions
of the corresponding total invariants are derived in §2.2. These are used in Section 3
to obtain the first terms in the power series expansions of the total curvatures of the
boundaries. Finally, Section 4 is devoted to point out some applications of those ex-
pressions.

2 Preliminaries

Let (Mn, g) be an n-dimensional smooth Riemannian manifold of classC∞. We denote
by ∇ the Levi–Civita connection and put RXY = ∇[X,Y ] − [∇X,∇Y ] for the curvature
tensor, whereX, Y are vector fields onM . Also,RXYZW = g(RXYZ,W) and the Ricci
tensor and the scalar curvature are given by ρXY =∑n

i=1 RXeiYei and τ =∑n
i=1 ρeiei

respectively, and with respect to an orthonormal basis {e1, . . . , en}. For simplicity,
here and in what follows, we use the notation ρij = ρeiej , Rijkl = Reiej ekel , ∇ijk... =
∇eiej ek... and so on.

Finally, note that to avoid problems with the domains of exponential maps, the
geodesic spheres and disks considered here are sufficiently small, i.e., their radius is
always smaller than the injectivity radius at their center.

2.1 Scalar curvature invariants

A scalar curvature invariant is a polynomial in the components of the curvature tensor
that does not depend on the choice of the orthonormal basis used to build it. The
order of a scalar curvature invariant is, by definition, the number of derivatives of the
metric tensor involved in it. Let I (k, n) be the vector space of curvature invariants of
order 2k, m ∈ M and {e1, . . . , en} an orthonormal basis of the tangent space at m,
TmM .
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For n ≥ 2, I (1, n) has dimension 1 and is generated by τ . For n ≥ 4, I (2, n) has
dimension 4 and a basis is given by,

τ 2 , ‖ρ‖2 =
∑
ρ2
ij , ‖R‖2 =

∑
R2
ijkl ,  τ =

∑
∇2
iiτ. (1)

A basis for I (3, n) is given in [GV79]. For our purposes here, only invariants of
order two and four are needed. Indeed, those allow to characterize important classes of
Riemannian manifolds. We have for n > 2 [CV81]:

For any n-dimensional Riemannian manifold,

‖ρ‖2 ≥ 1

n
τ 2, (2)

with equality if and only if the manifold is an Einstein space.
For any n-dimensional Riemannian manifold,

‖R‖2 ≥ 2

n− 1
‖ρ‖2, (3)

with equality if and only if the manifold has constant sectional curvature.
For a 2n-dimensional Kähler manifold,

‖R‖2 ≥ 4

n+ 1
‖ρ‖2, (4)

with the equality holding if and only ifM has constant holomorphic sectional curvature.
For a 4n-dimensional quaternionic Kähler manifold,

‖R‖2 ≥ 5 n+ 1

(n+ 2)2
‖ρ‖2, (5)

with the equality holding precisely for the quaternionic space forms.

2.2 Total scalar curvatures of geodesic spheres

Our purpose here is to obtain the first two terms in the power series expansions of
the integrals of the curvature invariants of order two and four on geodesic spheres.
We denote by Gm(r) the geodesic sphere with center m ∈ M and radius r , that is,
Gm(r) = {m′ ∈ M/d(m,m′) = r}. Since r > 0 is supposed to be smaller than the
injectivity radius at m, the geodesic sphere Gm(r) is a hypersurface of M and Gm(r)
= expm(Sn−1(r)), where Sn−1(r) = {y ∈ TmM/‖x‖ = r} is the sphere of radius r
in the tangent space to M at the basepoint m. Moreover as a matter of notation, let
τ̃ , ‖ρ̃‖2, . . . denote the scalar curvature, the square norm of the Ricci tensor, . . . of
the geodesic sphere Gm(r), and set τ , ‖ρ‖2, . . . for the corresponding objects for the
ambient manifold (M, g).

First of all, note that we will not consider the Laplacian of the scalar curvature since∫
Gm(r)

 ̃τ̃ du = 0. Also, in what follows, cn−1 = nπn/2

(n/2)! where (n/2)! = �((n/2)+ 1)
stands for the volume of the unit sphere in the Euclidean n-space (cf. [G90]). In the
lemma below, the first terms in the power series expansions of the total scalar curvature
[CV81] and the L2-norms of the scalar curvature, the Ricci tensor and the curvature
tensor [DGH] of sufficiently small geodesic spheres are given.
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Lemma 1 ([CV81], [DGH]). Let (M, g) be an n-dimensional Riemannian manifold
and m ∈ M . Then, we have:∫

Gm(r)

τ̃ = cn−1r
n−1

{
(n− 2) (n− 1)

r2
− (n− 3) (n− 2)

6n
τ(m)

+ 1

n (n+ 2)

[
− (n+ 2)(n+ 3)

120
‖R‖2 + n2 + 5 n+ 21

45
‖ρ‖2

+n
2 − 7 n− 6

72
τ 2 − (n− 3) (n− 2)

20
 τ

]
(m) r2 +O (r3)

}
,

∫
Gm(r)

τ̃ 2 = cn−1r
n−1

{
(n− 2)2 (n− 1)2r−4− (n−5) (n−2)2 (n−1)

6n
τ(m)r−2

+ 1

n (n+ 2)

[
− (n− 2) (n− 1) (n2 + 13 n+ 10)

120
‖R‖2

+ n4 + 10 n3 + 43 n2 − 14 n+ 120

45
‖ρ‖2

+ n4 − 14 n3 + 29 n2 − 60 n− 188

72
τ 2

− (n− 5) (n− 2)2 (n− 1)

20
 τ

]
(m)+O

(
r2
)}
,

∫
Gm(r)

‖ρ̃‖2 = cn−1r
n−1

{
(n− 2)2 (n− 1) r−4− (n− 5) (n− 2)2

6n
τ(m)r−2

+ 1

n (n+ 2)

[
−n

3 − 9n2 − 16n− 20

120
‖R‖2

+ n3 + 31n2 − 16n− 120

45
‖ρ‖2 + n3 − 13n2 − 16n+ 44

72
τ 2

− (n− 5)(n− 2)2

20
 τ

]
(m)+O

(
r2
)}
,

∫
Gm(r)

‖R̃‖2 = cn−1r
n−1

{
2 (n− 2) (n− 1) r−4− (n− 5) (n− 2)

3n
τ(m)r−2

+ 1

n (n+ 2)

[
59n2 − 93n− 10

60
‖R‖2 + 2

(
n2 − 37n+ 60

)
45

‖ρ‖2

+n
2 − 11n+ 2

36
τ 2 − (n− 5) (n− 2)

10
 τ

]
(m)+O

(
r2
)}
.
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3 Total scalar curvatures of boundaries of geodesic disks

Geodesic disks were introduced by O. Kowalski and L. Vanhecke as a generalization
of the notion of a two-dimensional disk in the Euclidean space E

3. In a series of
papers ([KV82], [KV83], [KV85]) they investigated their volume properties in relation
to local homogeneity and obtained a characterization of the two-point homogeneous
spaces by means of the volumes of their small geodesic disks. Since the boundaries
of geodesic disks are compact submanifolds, we are interested in their total scalar
curvatures obtained by integrating the corresponding scalar curvature invariants of
order two and four.

Recall that the geodesic diskD
ξ

m(r) of radius r , centered atm ∈ M and orthogonal
to ξ ∈ TmM , is defined by

D
ξ

m(r) = {expm(su)/u ∈ TmM, ‖u‖ = 1, g(u, ξ) = 0, 0 ≤ s ≤ r}
= {m′ ∈ M/d(m,m′) ≤ r} ∩ expm({ξ}⊥)

where expm : TmM → M is the exponential map at m. For the purpose of this paper
and the investigation of total scalar curvatures, we consider the boundaries

Dξm(r) = {m′ ∈ M/d(m,m′) = r} ∩ expm({ξ}⊥).
In order to obtain the first terms in the power series expansions of the total curvatures of
these boundaries, the following result will be extensively used. It relates scalar curvature
invariants of order two and four of expm({ξ}⊥) with the corresponding objects in the
ambient space.

Lemma 2. Let (M, g) be an n-dimensional Riemannian manifold and ξ ∈ TmM a unit
vector. If R̃, ρ̃, τ̃ , . . . denote the objects in expm({ξ}⊥) and R, ρ, τ , . . . denote the
corresponding objects on (M, g), then the following hold at m:

‖R̃‖2 = ‖R‖2 + 4
n∑

i,j=1

R2
ξiξj − 4

n∑
i,j,k=1

R2
ξijk,

‖ρ̃‖2 = ‖ρ‖2 + ρ2
ξξ − 2

n∑
i=1

ρ2
ξi +

n∑
i,j=1

R2
ξiξj − 2

n∑
i,j=1

ρijRξiξj ,

τ̃ = τ − 2ρξξ ,

 ̃τ̃ =  τ − 2 ρξξ + 2∇2
ξξ ρξξ − ∇2

ξξ τ + 4

9
ρ2
ξξ

− 4

9

n∑
i=1

ρ2
ξi +

4

3

n∑
i,j=1

R2
ξiξj − 2

3

n∑
i,j,k=1

R2
ξijk.

Proof. It follows from the work in [KV82], after some calculations. �

Now, the first terms in the power series expansions of the total curvatures of
the boundaries of geodesic disks are obtained from the corresponding ones for the
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geodesic spheres in Lemma 1 after using the identities in Lemma 2. As a matter of
notation τ̂ , ‖ρ̂‖2, . . . denote the curvature objects on the boundaries Dξm(r), while
τ , ‖ρ‖2, . . . stand for the corresponding objects on (M, g). We omit the calculations
which are straightforward and immediately state the different expansions separately in
Theorem 1–Theorem 4.

Theorem 1. Let (M, g) be an n-dimensional Riemannian manifold, m ∈ M and ξ ∈
TmM a unit vector. Then, for sufficiently small radius r , one has the following expansion
for the total scalar curvature of the boundaries Dξm(r):∫

D
ξ
m(r)

τ̂ = cn−2r
n−2

{
(n− 2)(n− 3)r−2 + A(0)(m)+ A(2)(m)r2 +O(r)

}
where

A(0) = − (n− 3)(n− 4)

6(n− 1)
[τ − 2ρξξ ],

A(2) = 1

(n−1)(n+1)

{
n2−9n+2

72
τ 2− (n+2)(n+1)

120
‖R‖2 + n2 + 3n+ 17

45
‖ρ‖2

− (n− 3)(n− 4)

20
 τ + (n− 3)(n− 4)

20
[∇2
ξξ τ − 2∇2

ξξ ρξξ + 2 ρξξ ]

− (n+ 2)(n+ 11)

45

n∑
i=1

ρ2
ξi −

(n− 4)(7n− 11)

90

×
n∑

i,j=1

R2
ξiξj − 2(n2 + 3n+ 17)

45

n∑
i,j=1

Rξiξj ρij + n2 − 2n+ 7

15

×
n∑

i,j,k=1

R2
ξijk − n2 − 9n+ 2

18
τρξξ + (n− 1)(n− 4)

18
ρ2
ξξ

}
.

Theorem 2. Let (M, g) be an n-dimensional Riemannian manifold, m ∈ M and ξ ∈
TmM a unit vector. Then, for sufficiently small radius r , one has the following expansion
for the L2-norm of the scalar curvature of the boundaries Dξm(r):∫
D
ξ
m(r)

τ̂ 2 = cn−2r
n−2

{
(n− 2)2(n− 3)2r−4 + B(−2)(m)r

−2 + B(0)(m)+O(r)
}

where

B(−2) = − (n− 3)2(n− 6)(n− 2)

6(n− 1)
[τ − 2ρξξ ],
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B(0) = 1

(n− 1)(n+ 1)

{
n4 − 18n3 + 77n2 − 164n− 84

72
τ 2

− (n−2)(n−3)(n2+11n−2)

120
‖R‖2+ n

4+6n3+19n2−74n+168

45
‖ρ‖2

− (n− 3)2(n− 6)(n− 2)

20
 τ + (n− 3)2(n− 6)(n− 2)

20

× [∇2
ξξ τ − 2∇2

ξξ ρξξ + 2 ρξξ ] − n4 + 26n3 − 31n2 − 4n+ 228

45

×
n∑
i=1

ρ2
ξi −

7n4 − 78n3 + 223n2 − 488n+ 276

90

×
n∑

i,j=1

R2
ξiξj − 2(n4 + 6n3 + 19n2 − 74n+ 168)

45

×
n∑

i,j=1

Rξiξj ρij + (n− 2)(n− 3)(n2 + n+ 8)

15

×
n∑

i,j,k=1

R2
ξijk − n4 − 18n3 + 77n2 − 164n− 84

18
τρξξ

+n
4 − 10n3 + 57n2 − 136n− 60

18
ρ2
ξξ

}
.

Theorem 3. Let (M, g) be an n-dimensional Riemannian manifold, m ∈ M and ξ ∈
TmM a unit vector. Then, for sufficiently small radius r , one has the following expansion
for the L2-norm of the Ricci tensor of the boundaries Dξm(r):∫
D
ξ
m(r)

‖ρ̂‖2 = cn−2r
n−2

{
(n− 2)(n− 3)2r−4 + C(−2)(m)r

−2 + C(0)(m)+O(r)
}

where

C(−2) = − (n− 3)2(n− 6)

6(n− 1)
[τ − 2ρξξ ],

C(0) = 1

(n− 1)(n+ 1)

{
n3 − 16n2 + 13n+ 46

72
τ 2 − n3 − 12n2 + 5n− 14

120
‖R‖2

+ n3 + 28n2 − 75n− 74

45
‖ρ‖2 − (n− 3)2(n− 6)

20
 τ + (n− 3)2(n− 6)

20

× [∇2
ξξ τ − 2∇2

ξξ ρξξ + 2 ρξξ ] − n3 + 68n2 − 195n− 94

45
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×
n∑
i=1

ρ2
ξi −

7n3 − 164n2 + 435n− 218

90

×
n∑

i,j=1

R2
ξiξj − 2(n3 + 28n2 − 75n− 74)

45

×
n∑

i,j=1

Rξiξj ρij + n3 − 12n2 + 25n− 34

15

×
n∑

i,j,k=1

R2
ξijk − n3 − 16n2 + 13n+ 46

18
τρξξ + n3 − 35n+ 38

18
ρ2
ξξ

}
.

Theorem 4. Let (M, g) be an n-dimensional Riemannian manifold, m ∈ M and ξ ∈
TmM a unit vector. Then, for sufficiently small radius r , one has the following expansion
for the L2-norm of the curvature tensor of the boundaries Dξm(r):∫
D
ξ
m(r)

‖R̂‖2 = cn−2r
n−2

{
2(n− 2)(n− 3)r−4 +D(−2)(m)r

−2 +D(0)(m)+O(r)
}

where

D(−2) = − (n− 3)(n− 6)

3(n− 1)
[τ − 2ρξξ ],

D(0) = 1

(n− 1)(n+ 1)

{
n2 − 13n+ 14

36
τ 2 + 59n2 − 211n+ 142

60
‖R‖2

+ 2(n2 − 39n+ 98)

45
‖ρ‖2 − (n− 3)(n− 6)

10
 τ

+ (n− 3)(n− 6)

10
[∇2
ξξ τ − 2∇2

ξξ ρξξ + 2 ρξξ ]

− 2(n2 − 69n+ 178)

45

n∑
i=1

ρ2
ξi +

173n2 − 657n+ 514

45

×
n∑

i,j=1

R2
ξiξj − 4(n2 − 39n+ 98)

45

n∑
i,j=1

Rξiξj ρij − 2(29n2 − 101n+ 62)

15

×
n∑

i,j,k=1

R2
ξijk − n2 − 13n+ 14

9
τρξξ + (n− 2)(n− 23)

9
ρ2
ξξ

}
.

4 Characterizations of the model spaces

The purpose of this section is to obtain characterizations of the two-point homogeneous
spaces by means of the total curvatures of the boundaries of geodesic disks as an
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application of the expansions in Theorems 1–4. First of all, we recall that by a two-
point homogeneous space we mean one of the following spaces: Euclidean n-space,
the n-dimensional spheres and the hyperbolic spaces, the projective and hyperbolic
n-spaces over the complex numbers or over the quaternions, and the Cayley projective
or hyperbolic plane. Furthermore, we say that the holonomy of a Riemannian manifold
(M, g) is adapted to one of these models, if the holonomy group of (M, g) is a subgroup
of the holonomy group of the given model space, that is, the holonomy of (M, g) is
contained in O(n), U(n), Sp(1) · Sp(n) or Spin(9) respectively. Moreover, note that
in what follows, we will omit the Cayley plane since its holonomy group completely
characterizes its local geometry. In fact, if a manifold has holonomy group contained
in Spin(9), then it is flat or locally isometric to the Cayley plane or its non-compact
dual [A67].

We begin with the following:

Lemma 3. Let (M, g) be an n-dimensional Riemannian manifold. Suppose that one of
the following holds:

(i) 4 < n and the total scalar curvature of the boundaries of geodesic disks coincides
with the corresponding one in an Einstein manifold;

(ii) 3 < n �= 6 and any of the L2-norms of the scalar curvature, the Ricci tensor
or the curvature tensor of the boundaries of geodesic disks coincides with the
corresponding one in an Einstein manifold.

Then, (M, g) is an Einstein manifold with the same scalar curvature as the model
space.

Proof. (i) is obtained from the coefficient A(0) in Theorem 1 and (ii) follows immedi-
ately from the corresponding coefficients of r−2 in the expansions in Theorems 2–4.

�

Recall that a Riemannian manifold is said to be 2-stein if (M, g) is Einsteinian and
satisfies

n∑
i,j=1

R2
xixj = λg(x, x)2

for all x. Also, (M, g) is said to be super-Einstein if it is Einstein and
n∑

i,j,k=1

R2
xijk = µg(x, x)

for all x. It was shown in [CV81] that 2-stein manifolds are super-Einstein, but the
converse is not true. (For instance, irreducible symmetric spaces are super-Einstein,
but they are not necessarily 2-stein.)

Lemma 4. Let (M, g) be an n-dimensional Einstein manifold. If

a‖R‖2 + b
n∑

i,j,k=1

R2
ξijk + c

n∑
i,j=1

R2
ξiξj = k (6)

for some real constants a, b, c, k with (n + 4)b + 3c �= 0, c �= 0 and for all unit
vectors ξ , then (M, g) is 2-stein.
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Proof. Put

ωxyvw =
n∑

i,j=1

RxiyjRviwj , ηxy =
n∑

i,j,k=1

RxijkRyijk.

Then, for all vectors x, y ∈ TmM and all α, β ∈ R, it follows from (6) that

a‖R‖2g(αx + βy, αx + βy)2 + bηαx+βy,αx+βyg(αx + βy, αx + βy)
+ cωαx+βy,...,αx+βy = kg(αx + βy, αx + βy)2.

Expand the previous expression and take the coefficients of α2β2. Then, put y = ei
and take the trace to obtain

2a‖R‖2(n+ 2)g(x, x)+ b(‖R‖2g(x, x)+ (n+ 4)ηxx)

+ 2c

(
n∑

i,j=1

ρijRxixj + 3

2
ηxx

)
= 2(n+ 2)kg(x, x) . (7)

Since (M, g) is assumed to be Einsteinian, (7) becomes

[b(n+ 4)+ 3c]ηxx=−
[

2(n+ 2)a‖R‖2 + b‖R‖2+ 2cτ 2

n2
− 2(n+ 2)k

]
gxx, (8)

and contracting this gives

[b(n+ 4)+3c]‖R‖2 =−n
[

2(n+2)a‖R‖2+b‖R‖2+ 2cτ 2

n2
−2(n+ 2)k

]
. (9)

Now, from (8) and (9), one has

[b(n+ 4)+ 3c]ηxx = b(n+ 4)+ 3c

n
‖R‖2gxx,

and thus η = ‖R‖2

n
g. Hence, it follows from (6) that

ωxxxx = −1

c

(
na + b
n

‖R‖2 − k
)
g2
xx

which shows that (M, g) is 2-stein. �

Lemma 5. Let (M, g) be an n-dimensional Riemannian manifold. Suppose that one of
the following holds:

(i) 4 < n and the total scalar curvature of the boundariesDξm(r) does not depend on
the normal direction ξ , or

(ii) 3 < n �= 6 and any of the L2-norms of the scalar curvature, the Ricci tensor
or the curvature tensor of the boundaries Dξm(r) does not depend on the normal
direction ξ .

Then, (M, g) is 2-stein.
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Proof. We first show (i). Since the total scalar curvature of the boundaries of geodesic
disks does not depend on the normal direction, the coefficients A(0) and A(2) are in-
dependent of the unit ξ . Therefore, it follows from A(0) = −[(n − 3)(n − 4)/6(n −
1)] [τ − 2ρξξ ] that (M, g) is an Einstein space. Moreover, for an Einstein manifold,
ρ = (τ/n)g holds and so, the coefficient A(2) becomes

A(2) = 1

(n−1)(n+1)

{
(n− 4)(5n3 − 37n2 + 62n+ 92)

360n2
τ 2 − (n+ 2)(n+ 1)

120
‖R‖2

− (n− 4)(7n− 11)

90

n∑
i,j=1

R2
ξiξj + n2 − 2n+ 7

15

n∑
i,j,k=1

R2
ξijk

}
.

So, (M, g) is 2-stein as an application of Lemma 4. The case (ii) is obtained in an
analogous way. Indeed, if one assumes eitherB(−2) orC(−2) orD(−2) to be independent
of ξ and dimM �= 3, 6, then (M, g) is an Einstein space. The fact that it is also 2-stein
follows from Lemma 4 after consideration of the coefficientsB(0),C(0) andD(0), which
now become

B(0) = 1

(n− 1)(n+ 1)

{
5n6−102n5+789n4−2712n3+3352n2+1520n−5712

360n2
τ 2

− (n− 2)(n− 3)(n2 + 11n− 2)

120
‖R‖2 − 7n4 − 78n3 + 223n2 − 488n+ 276

90

×
n∑

i,j=1

R2
ξiξj + (n− 2)(n− 3)(n2 + n+ 8)

15

n∑
i,j,k=1

R2
ξijk

}
, (10)

C(0) = 1

(n− 1)(n+ 1)

{
5n5 − 92n4 + 605n3 − 1622n2 + 548n+ 2696

360n2
τ 2

− n3 − 12n2 + 5n− 14

120
‖R‖2 − 7n3 − 164n2 + 435n− 218

90

×
n∑

i,j=1

R2
ξiξj + n3 − 12n2 + 25n− 34

15

n∑
i,j,k=1

R2
ξijk

}
, (11)

D(0) = 1

(n− 1)(n+ 1)

{
5n4 − 77n3 + 14n2 + 1180n− 2072

180n2
τ 2

+ 59n2 − 211n+ 142

60
‖R‖2 + 173n2 − 657n+ 514

45

×
n∑

i,j=1

R2
ξiξj − 2(29n2 − 101n+ 62)

15

n∑
i,j,k=1

R2
ξijk

}
. (12)

�
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Now we are ready to derive the desired characterizations of the two-point homoge-
neous spaces for n > 4.

Theorem 5. Let (M, g) be an n-dimensional Riemannian manifold with holonomy
adapted to a two-point homogeneous space. If 4 < n and the total scalar curvature of
sufficiently small boundaries Dξm(r) coincides with that of a two-point homogeneous
space, then (M, g) is locally isometric to that model space.

Proof. It follows from Lemma 5-(i) that (M, g) is 2-stein and thus super-Einstein
[CV81], from where it follows that

n∑
i,j=1

R2
ξiξj = 1

n(n+ 2)

(
3

2
‖R‖2 + 1

n
τ 2
)
,

n∑
i,j,k=1

R2
ξijk = 1

n
‖R‖2. (13)

Then, the coefficient A(0) in the power series expansion of the total scalar curvature of
the boundaries of geodesic disks becomes

A(2) = 1

n(n2 − 1)(n+ 2)

{
(n− 4)(5n4 − 27n3 − 12n2 + 188n+ 228)

360n
τ 2

− (n− 4)(n3 + n2 + 26n+ 6)

120
‖R‖2

}
.

Now the result is obtained by just comparing this with the corresponding coefficient
A(2) in the model spaces and using the equations (2)–(5). �

Here it is worthwhile to emphasize that dimension four is excluded in previous
theorem. Since the boundaries of the geodesic disks in a 4-dimensional manifold are
compact surfaces, the total curvature

∫
D
ξ
m(r)

τ̂ is the Gauss Bonnet integral, and thus a
topological invariant.

Theorem 6. Let (M, g) be an n-dimensional Riemannian manifold with holonomy
adapted to a two-point homogeneous space. If 3 < n �= 6 and the L2-norms of
the scalar curvature or the Ricci tensor or the curvature tensor of sufficiently small
boundaries of geodesic disks coincides with that of a two-point homogeneous space,
then (M, g) is locally isometric to that model space.

Proof. Proceeding as in the previous theorem and using (13), the equations (10), (11)
and (12) of the corresponding coefficients become

B(0) = 1

n(n2 − 1)(n+ 2)

×
{

5n7 − 92n6 + 585n5 − 1162n4 − 1760n3 + 7332n2 − 720n− 12528

360n
τ 2

−n
6 − 9n4 − 190n3 + 714n2 − 840n− 216

120
‖R‖2

}
,
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C(0) = n− 3

n(n2 − 1)(n+ 2)

{
5n5 − 67n4 + 220n3 + 220n2 − 1380n− 2088

360n
τ 2

− (n
2 − 14n− 2)(n2 − n+ 18)

120
‖R‖2

}
,

D(0) = 1

n(n2 − 1)(n+ 2)

{
(n− 3)(5n4 − 52n3 − 296n2 + 1012n+ 696

180n
τ 2

+ (n− 3)(59n3 − 148n2 − 34n− 12)

60
‖R‖2

}
.

Now the result follows by comparing these with the corresponding coefficients in the
model spaces and using the characterizations (2)–(5). �

Explicit formulas for the total scalar curvatures of the boundaries of geodesic disks
in the two-point homogeneous spaces are not yet available. However, by making use
of the expansions in Theorems 1–4, the first terms in their power series expansions can
be explicitly computed.
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