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Summary. We show that there exist non-formal compact oriented manifolds of dimension n
and with first Betti number b1 = b ≥ 0 if and only if n ≥ 3 and b ≥ 2, or n ≥ (7 − 2b) and
0 ≤ b ≤ 2. Moreover, we present explicit examples for each one of these cases.

1 Introduction

Simply connected compact manifolds of dimension less than or equal to 6 are formal
[11, 10, 5]. A method to construct non-formal simply connected compact manifolds of
any dimension n ≥ 7 was given by the authors in [6]. An alternative method is given in
[3] (see also [12] for an example in dimension 7). A natural question is whether there
are examples of non-formal compact manifolds of any dimension whose first Betti
number b1 = b ≥ 0 is arbitrary. We consider the following problem on the geography
of manifolds:

For which pairs (n, b) with n ≥ 1 and b ≥ 0 are there compact oriented manifolds
of dimension n and with b1 = b which are non-formal? Note that we can restrict to
just considering connected manifolds. In this paper, we solve this problem completely
by proving the following theorem.

Theorem 1. There are compact oriented n-dimensional manifolds with b1 = b which
are non-formal if and only if n ≥ 3 and b ≥ 2, or n ≥ (7 − 2b) and 0 ≤ b ≤ 2.

In the case of a simply connected manifold M , formality for M is equivalent to
saying that its real homotopy type is determined by its real cohomology algebra. In the
non-simply connected case, things are a little bit more complicated. IfM is nilpotent,
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i.e., π1(M) is nilpotent and it acts nilpotently on πi(M) for i ≥ 2, then formality means
again that the real homotopy type is determined by the real cohomology algebra. In
general, we shall say that M is formal, if the minimal model of the manifold (which
is, by definition, the minimal model of the algebra of differential forms �∗(M)) is
determined by the real cohomology algebra (see Section 2 for precise definitions).
Note that there are alternative (and non-equivalent) definitions of formality in the non-
nilpotent situation (see [8]). This punctualization is important because the non-formal
manifolds that we construct in Section 3 are necessarily not nilpotent (see Section 5).
In the following table, the big dots mark the pairs (n, b1) for which all manifolds of
dimension n and first Betti number b1 are formal. For any of the small dots, there are
examples of non-formal manifolds. To prove Theorem 1 we need to do two things.
On one hand, we need to verify that manifolds of dimension n ≤ 6 with b1 = 0 and
manifolds of dimension n ≤ 4 with b1 = 1 are always formal. For this we use the
results of [5]. On the other hand, we need to present examples of non-formal manifolds
of dimension n ≥ 7 with b1 = 0, of dimension n ≥ 5 with b1 = 1 and of dimension
n ≥ 3 for any other b1 ≥ 2. For this we use a similar method to that of [6]. Note that
both questions for the case b1 = 0 are already solved, so here we have to focus on the
case b1 = 1.

Table 1. Geography of non-formal manifolds

n ≥ 7 · · · · · ·
n = 6 • · · · · ·
n = 5 • · · · · ·
n = 4 • • · · · ·
n = 3 • • · · · ·
n = 2 • • • •

b1 = 0 b1 = 1 b1 = 2 b1 ≥ 3

2 Minimal models and formality

We recall some definitions and results about minimal models [2, 7, 13]. Let (A, d) be a
differential algebra, that is, A is a graded commutative algebra over the real numbers,
with a differential d which is a derivation, i.e., d(a · b) = (da) · b+ (−1)deg(a)a · (db),
where deg(a) is the degree of a. Morphisms between differential algebras are required to
be degree preserving algebra maps which commute with the differentials. A differential
algebra (A, d) is said to be minimal if:

1. A is free as an algebra, that is,A is the free algebra
∧
V over a graded vector space

V = ⊕V i , and
2. there exists a collection of generators {aτ , τ ∈ I }, for some well-ordered index set
I , such that deg(aµ) ≤ deg(aτ ) if µ < τ and each daτ is expressed in terms of
preceding aµ (µ < τ ). This implies that daτ does not have a linear part, i.e., it lives
in
∧
V
>0 ·∧V>0 ⊂∧V .

We shall say that a minimal differential algebra (
∧
V, d) is a minimal model for a

connected differentiable manifoldM , if there exists a morphism of differential graded
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algebras ρ : (
∧
V, d) −→ (�M, d), where�M is the de Rham complex of differential

forms onM , inducing an isomorphism

ρ∗ : H ∗(
∧
V ) −→ H ∗(�M, d) = H ∗(M)

on cohomology. If M is a simply connected manifold (or, more generally, a nilpotent
space), the dual of the real homotopy vector spaceπi(M)⊗R is isomorphic toV i for any
i. Halperin in [7] proved that any connected manifoldM has a minimal model unique
up to isomorphism, regardless of its fundamental group. A minimal model (

∧
V, d) of

a manifold M is said to be formal, and M is said to be formal, if there is a morphism
of differential algebras ψ : (

∧
V, d) −→ (H ∗(M), d = 0) that induces the identity on

cohomology. Alternatively, the above property means that (
∧
V, d) is a minimal model

of the differential algebra (H ∗(M), 0). Therefore, (�M, d) and (H ∗(M), 0) share their
minimal model, i.e., one can obtain the minimal model ofM out of its real cohomology
algebra. When M is nilpotent, the minimal model encodes its real homotopy type. In
order to detect non-formality, we have Massey products. Let us recall its definition. Let
M be a (not necessarily simply connected) manifold and let ai ∈ Hpi (M), 1 ≤ i ≤ 3,
be three cohomology classes such that a1 ∪ a2 = 0 and a2 ∪ a3 = 0. Take forms αi in
M with ai = [αi] and write α1 ∧ α2 = dξ , α2 ∧ α3 = dη. The Massey product of the
classes ai is defined as

〈a1, a2, a3〉 = [α1 ∧ η + (−1)p1+1ξ ∧ α3]

∈ Hp1+p2+p3−1(M)

a1 ∪Hp2+p3−1(M)+Hp1+p2−1(M) ∪ a3
.

We have the following result, for whose proof we refer to [2, 13, 14].

Theorem 2. IfM has a non-trivial Massey product, thenM is non-formal.

Therefore, the existence of a non-zero Massey product is an obstruction to the
formality.

In order to prove formality, we extract the following notion from [5].

Definition 1. Let (
∧
V, d) be a minimal model of a differentiable manifoldM . We say

that (
∧
V, d) is s-formal, orM is a s-formal manifold (s ≥ 0) if for each i ≤ s one can

get a space of generators V i of elements of degree i that decomposes as a direct sum
V i = Ci ⊕Ni , where the spaces Ci and Ni satisfy the three following conditions:

1. d(Ci) = 0,
2. the differential map d : Ni −→∧

V is injective,
3. any closed element in the ideal Is = I (⊕

i≤s
Ni), generated by

⊕
i≤s
Ni in

∧
(
⊕
i≤s
V i),

is exact in
∧
V .

The condition of s-formality is weaker than that of formality. However, we have
the following positive result proved in [5].

Theorem 3. Let M be a connected and orientable compact differentiable manifold of
dimension 2n or (2n− 1). ThenM is formal if and only if is (n− 1)-formal (that is, if
and only ifM is s-formal, for s = n− 1, according to the previous definition).
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This result is very useful because it allows us to check that a manifoldM is formal
by looking at its s-stage minimal model, that is,

∧
(
⊕
i≤s
V i). In general, when computing

the minimal model ofM , after we pass the middle dimension, the number of generators
starts to grow quite dramatically. This is due to the fact that Poincaré duality imposes that
the Betti numbers do not grow and therefore there are a large number of cup products
in cohomology vanishing, which must be killed in the minimal model by introducing
elements inNi , for i above the middle dimension. This makes Theorem 3 a very useful
tool for checking formality in practice.

3 Non-formal manifolds with b1 = 1 and dimensions 5 and 6

The 5-dimensional example

LetH be the Heisenberg group, that is, the connected nilpotent Lie group of dimension 3
consisting of matrices of the form

a =
⎛⎝1 x z

0 1 y

0 0 1

⎞⎠ ,
where x, y, z ∈ R. Then a global system of coordinates x, y, z for H is given by
x(a) = x, y(a) = y, z(a) = z, and a standard calculation shows that a basis for the left
invariant 1-forms onH consists of {dx, dy, dz− x dy}. Let � be the discrete subgroup
of H consisting of matrices whose entries are integer numbers. So the quotient space
N = �\H is a compact 3-dimensional nilmanifold. Hence the forms dx, dy, dz−x dy
descend to 1-forms α, β, γ on N and

dα = dβ = 0, dγ = −α ∧ β.
The non-formality of N is detected by a non-zero triple Massey product

〈[β], [α], [α]〉 = [−α ∧ γ ] ∈ H 2(N)

[β] ∪H 1(N)+H 1(N) ∪ [α]
= H 2(N).

Now, let us consider the 5-dimensional manifold X = N × T2, where T2 = R2/Z2.
The coordinates of R2 will be denoted x1, x2. So {dx1, dx2} defines a basis {δ1, δ2} for
the 1-forms on T2. We get a non-zero triple Massey product as follows:

〈[β ∧ δ1], [α], [α]〉 = [−γ ∧ α ∧ δ1]. (1)

Our aim now is to kill the fundamental group of X by performing a suitable surgery
construction, in order to obtain a manifold with b1 = 1. The projection p(x, y, z) =
(x, y) describes N as a fiber bundle p : N → T2 with fiber S1. Actually, N is the
total space of the unit circle bundle of the line bundle of degree 1 over the 2-torus. The
fundamental group of N is therefore

π1(N) ∼= � = 〈λ1, λ2, λ3 | [λ1, λ2] = λ3, λ3 central〉, (2)
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where λ3 corresponds to the fiber. The fundamental group of X = N × T2 is

π1(X) = π1(N)⊕ Z2. (3)

Consider the following submanifolds embedded in X:

T1 = p−1({0} × S1)× {0} × {0},
T2 = {ξ} × S1 × S1,

with ξ a point in N . These are 2-dimensional tori with trivial normal bundle. Consider
now another 5-manifold Y with an embedded 2-dimensional torus T with trivial normal
bundle. Then, we may perform the fiber connected sum of X and Y identifying T1 and
T , denotedX#T1=T Y , in the following way: take (open) tubular neighborhoods ν1 ⊂ X
and ν ⊂ Y of T1 and T respectively; then ∂ν1 ∼= T2 × S2 and ∂ν ∼= T2 × S2; take

an orientation reversing diffeomorphism φ : ∂ν1
�→∂ν; the fiber connected sum is

defined to be the (oriented) manifold obtained by gluing X− ν1 and Y − ν along their
boundaries by the diffeomorphism φ. In general, the resulting manifold depends on the
identification φ, but this will not be relevant for our purposes.

Lemma 1. Suppose Y is simply connected, then the fundamental group ofX#T1=T Y is
the quotient of π1(X) by the image of π1(T1).

Proof. Since the codimension of T1 is bigger than or equal to 3, we have that π1(X −
ν1) = π1(X−T1) is isomorphic toπ1(X). The Seifert–Van Kampen theorem establishes
that π1(X#T1=T Y ) is the amalgamated sum of π1(X− ν1) = π1(X) and π1(Y − ν) =
π1(Y ) = 1 over the image of π1(∂ν1) = π1(T1 × S2) = π1(T1), as required. &'

We shall take for Y the 5-sphere S5. We embed a 2-dimensional torus T2 in R5. This
torus has a trivial normal bundle since its tangent bundle is trivial (being parallelizable)
and the tangent bundle of R5 is also trivial. After compactifying R5 by one point, we
get a 2-dimensional torus T ⊂ S5 with trivial normal bundle. In the same way, we
may consider another copy of the 2-dimensional torus T ⊂ S5 and perform the fiber
connected sum of X and S5 identifying T2 and T . We may do both fiber connected
sums along T1 and T2 simultaneously, since T1 and T2 are disjoint. Call

M = X#T1=T S5#T2=T S5 (4)

the resulting manifold. By Lemma 1, π1(M) is the quotient of π1(X) by the images of
π1(T1) and π1(T2). This kills the Z2 summand in (3) and it also kills λ2 and λ3 in (2).
Therefore π1(M) = 〈λ1〉 ∼= Z, i.e., b1(M) = 1.

Our goal now is to prove that M is non-formal. We shall do this by proving the
non-vanishing of a suitable triple Massey product. More specifically, let us prove that
the Massey product (1) survives toM . For this, let us describe geometrically the coho-
mology classes [α ∧ δ1] and [β]. Consider the following submanifolds of X:

B1 = p−1(S1 × {a2})× {b1} × S1,

B2 = p−1({a1} × S1)× S1 × S1,
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where the ai and bi are generic points of S1. It is easy to check that Bi ∩ Tj = ∅ for
all i and j . So Bi may be also considered as submanifolds ofM . Let ηi be the 2-forms
representing the Poincaré dual to Bi in X. By [1], ηi can be taken supported in a small
tubular neighborhood of Bi . Therefore the support of ηi lies insideX− T1 − T2, so we
also have naturally ηi ∈ �2(M). Note that in X we have clearly that [η1] = [β ∧ e1]
and [η2] = [α], where e1 is (the pull-back of) a differential 1-form on S1 (considered
as the first of the two circle factors in X = N × S1 × S1) cohomologous to δ1 and
supported in a neighborhood of b1 ∈ S1. Thus [η1] = [β ∧ δ1] in X.

Lemma 2. The triple Massey product 〈[η1], [η2], [η2]〉 is well-defined onM and equals
to [−γ ∧ α ∧ e1].

Proof. Let α′ be the pull-back toN of the 1-form supported in a neighborhood of a1 in
the first factor of S1 × S1 under the projection p : N → T2. Analogously, let β ′ be the
pull-back toN of the 1-form supported in a neighborhood of a2 in the second factor of
S1 × S1. Therefore [α′] = [α] and [β ′] = [β]. Clearly,

(α′ ∧ e1) ∧ β ′ = dγ ′ ∧ e1,

where dγ ′ = α′ ∧ β ′. It can be supposed easily that γ ′ is zero in a neighborhood of
ξ ∈ N . Therefore the support of γ ′ ∧ e1 is disjoint from T1 and T2. Hence γ ′ ∧ e1 is
well-defined as a form inM . So the triple Massey product

〈[η1], [η2], [η2]〉 = [−γ ′ ∧ α ∧ e1]

is well-defined inM . &'
Finally, let us see that this Massey product is non-zero in

H 3(M)

[β ′ ∧ e1] ∪H 1(M)+H 2(M) ∪ [α′]
.

Consider B3 = p−1(S1 × {a3})× S1 × {b2}, for generic points a3, b2 of S1. Then
the Poincaré dual of B3 is defined by a 2-form β ′′ ∧ e2 supported near B3, where β ′′ is
Poincaré dual to p−1(S1 × {a3}), [β ′′] = [β], and e2 is (the pull-back of) a differential
1-form on S1 (considered as the second of the two circle factors in X = N × S1 × S1)
cohomologous to δ2 and supported in a neighborhood of b2 ∈ S1. Again this 2-form
can be considered as a form inM . Now, for any [ϕ] ∈ H 1(M), [ϕ′] ∈ H 2(M)we have,

([γ ′ ∧ α ∧ e1] + [β ′ ∧ e1 ∧ ϕ] + [α′ ∧ ϕ′]) · [β ′′ ∧ e2] = 1,

since the first product gives 1, the second is zero and the third is zero because α′ ∧ β ′′
is exact in N and hence inM . This result and Theorem 2 prove the following:

Theorem 4. The manifold M , defined by (4), is a compact oriented non-formal 5-
manifold with b1 = 1.
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The 6-dimensional example

A compact oriented non-simply connected and non-formal manifoldM ′ of dimension 6
is obtained in an analogous fashion to the construction of the 5-dimensional manifoldM .
We start with X′ = N × T3 and consider the 3-dimensional tori with trivial normal
bundle

T ′
1 = p−1({0} × S1)× {0} × {0} × S1,

T ′
2 = {ξ} × S1 × S1 × S1.

Define

M ′ = X′#T ′
1=T ′S6#T ′

2=T ′S6, (5)

where T ′ is an embedded 3-torus in S6 with trivial normal bundle. Then M ′ is a non-
formal 6-manifold with b1 = 1, which can be proved in a similar way to Theorem 4.

4 Proof of theorem 1

Let us first prove the affirmative results in Theorem 1.

Proposition 1. LetM be a connected, compact and orientable manifold of dimension
n and first Betti number b1 = b.

• If n ≤ 2, thenM is formal.
• If n ≤ 6 and b = 0, thenM is formal.
• If n ≤ 4 and b = 1, thenM is formal.

Proof. The first item is well-known: The circle and any oriented surface are formal.
However, it follows from Theorem 3 very easily. SinceM is connected,M is 0-formal.
HenceM is formal as n ≤ 2. Second item follows from [5, 10, 11]. Let us recall briefly
the proof. Since M has b1 = 0, it follows that in the minimal model V 1 = 0. This
implies that N2 = 0 since there are no decomposable elements of degree 3 and hence
no element of V 2 can kill any element of degree 3 in the minimal model. Thus M
is 2-formal and hence formal, by Theorem 3, since n ≤ 6. The third item is proved
similarly. SinceM has b1 = 1, in the minimal model (

∧
V, d) we have that V 1 = C1

is generated by one element ξ . There cannot be any element in N1 since there are no
decomposable elements of degree 2 (the only such element is ξ · ξ = 0). Thus M is
1-formal and hence formal, by Theorem 3, since n ≤ 4. &'

With this result, we only need to find non-formal (connected, compact, orientable)
manifolds under the conditions n ≥ max{3, 7 − 2b1} to complete the proof of
Theorem 1.

• Non-formal manifolds with n ≥ 7 and b1 = 0 are constructed by the authors in [6].
Actually, those examples are simply connected. An alternative method is given in
[3]. Oprea [12] also constructed examples of dimension 7 for other purposes.

• Non-formal manifolds of dimensions n = 5 or 6 and first Betti number b1 = 1.
These are the manifoldsM andM ′ given by (4) and (5) in Section 3.
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• Non-formal manifolds of dimension n ≥ 7 and b1 = 1. Take the non-formal
5-dimensional manifold M of Section 3 and consider M × Sn−5. This is again
non-formal (by [5, Lemma 2.11]) and has b1(M × Sn−5) = b1(M) = 1.

• Case n = 3 and b1 = 2. The manifold N considered as the beginning of Section 3
is non-formal.

• Casen = 3 and b1 ≥ 3. ConsiderN#(b1−2)(S1×S2), which is non-formal because
the Massey product 〈[β], [α], [α]〉 = [α ∧ γ ] is again defined and non-zero (as it
happened for N ).

• Casen = 4 andb1 ≥ 3. Consider
(
N#(b1 − 3)(S1 × S2)

)×S1, which is non-formal
being a product of a non-formal manifold with other manifold.

• Case n ≥ 5 and b1 ≥ 2. We just consider
(
N#(b1 − 2)(S1 × S2)

)× Sn−3.
• Case n = 4 and b1 = 2. A non-formal example can be constructed by a nilmanifold

which is non-formal. For example (see [4]), letE be the total space of the S1-bundle
over N with Chern class c1 = [β ∧ γ ] ∈ H 2(N). The nilmanifold E is defined by
the equations,

dα = dβ = 0, dγ = −α ∧ β, dη = β ∧ γ,
where {α, β, γ, η} is a basis for the differential 1-forms on E. Then [β] ∪ [α] =
[α] ∪ [α] = 0, so that the Massey product 〈[β], [α], [α]〉 is well-defined, and it
is non-zero because it is represented by the cohomology class of γ ∧ α which is
non-zero in cohomology.

5 Final remarks

Note that the examples of non-formal manifolds with b1 = 1 that we have constructed
have Abelian fundamental group, since it is isomorphic to Z. However, these manifolds
are not nilpotent. Actually, if a manifoldM with b1 = 1 is nilpotent, thenM is 2-formal.
Furthermore, if the dimension is n ≤ 6 and M is compact oriented, then it is formal.
To prove that for a nilpotent manifoldM with b1 = 1 we have thatM is 2-formal, it is
enough to check that N2 = 0. This would follow from the fact that no decomposable
element of degree 3 (i.e., elements in V 1 ·V 2) is exact. Let ξ be the generator of V 1 and
let a ∈ V 2 be a non-zero closed element. Suppose that [ξ ] ∪ [a] = 0 and let us reach
to a contradiction. We use the following lemma of Lalonde–McDuff–Polterovich [9],
which has been communicated to us by J. Oprea.

Lemma 3. Suppose that γ ∈ π1(M),A ∈ π2(M), h ∈ H 1(M; Z) and α ∈ H 2(M; Z),
satisfy that h(γ ) �= 0 and α(A) �= 0. Then if α ∪ h = 0, the action of γ on A is
non-trivial.

In our case, take h = [ξ ] ∈ H 1(M) (after suitable rescaling if necessary to make it
an integral class). Let γ ∈ π1(M) be any element with h(γ ) �= 0. Then, h(γ n) �= 0 for
anyn > 0. Now takeα = [a] and consider any elementA ∈ π2(M)withα(A) �= 0 (this
exists since we are assuming thatM is nilpotent and in this case V 2 = (π2(M)⊗R)∗).
Then Lemma 3 implies that γ n acts on A non-trivially. Hence γ acts non-nilpotently
on π2(M), which is a contradiction.

We end up with some questions that arise naturally once Theorem 1 is answered.
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1. Are there any restrictions on the Betti numbers for the existence of non-formal
manifolds? Alternatively, solve the following geography problem:
For which tuples (n, b1, . . . , bs) with n ≥ 1, s = [n/2] and bi ≥ 0 is there a
compact oriented manifold M of dimension n, with Betti numbers bi(M) = bi ,
i = 1, . . . , s, and which is non-formal?

2. Another alternative question is the following: Given a finitely presented group
� and an integer n with n ≥ max{3, 2b1(�) − 7}, are there always non-formal
n-manifoldsM with fundamental group π1(M) ∼= �?
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