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Summary. We present and investigate, within the general frame of deformation theory, new
Z2-constructions for generalized moduli spaces of holomorphic and symplectic structures.

1 Introduction

Deformation theories are one of the keystone settings of contemporary geometry, ap-
pearing in very different areas and providing, through moduli space constructions, a
highly powerful tool to produce new invariants (cf. [6] and [7] for recent accounts).

This paper, in the first part, describes a tuning up of a general machine for de-
formation theory, enhancing the relationships between Z and Z2-theories. Then, after
presenting equivalence classes of A∞-algebras as an example of deformation space,
to show how vast the range covered by deformation theories is, it deals with com-
plex/holomorphic deformations and symplectic deformation. In the latter case, a totally
new non-naı̈f theory is constructed.

By means of the results established in the first part, both in the complex/holomorphic
case and the symplectic case, we define and discuss the corresponding Z2-theories
(complex/holomorphic and supersymplectic structures).

2 Z2-theory and Z-theory of deformations of DLA

2.1 Z2-theory: superstructures

We start with a quick overview of superstructures (or Z2-structures).

Definition 1. 1. A super vector space is a vector spaceV together with a decomposition

V = V (0) ⊕ V (1).
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Vectors in V (0) and in V (1) are called homogeneous of degree (or parity) 0 and 1,
respectively. The degree of the homogeneous vector v is denoted by |v|.
A vector supersubspace of V is a subspaceW ⊂ V of the form

W = W(0) ⊕W(1),

whereW(j) is a vector subspace of V (j), j = 0, 1.
2. A super algebra is an algebra A together with a vector space decomposition

A = A(0) ⊕ A(1),
in such a way that

A(j)A(k) ⊂ A(j+k), j, k ∈ Z2.

The bracket [ , ], defined on homogeneous elements as

[a, b] := ab − (−1)|a||b|ba,

is called the super commutator of A and A is said to be supercommutative if its
super commutator vanishes identically.

3. A super Lie algebra is a super vector space g = g(0)⊕g(1) together with a bilinear
map,

[ , ] : g × g −→ g,

such that
a) [g(j), g(k)] ⊂ g(j+k), j, k ∈ Z2

b) for homogeneous elements a, b, c, we have:
i. [a, b] = −(−1)|a||b|[b, a],

ii. [a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]].

Note that:

• given a vector space V , the exterior algebra ∧∗V has a natural structure of super-
commutative super algebra, just setting

V (0) = ∧evenV , V (1) = ∧oddV ;
• given a super vector space V = V (0) ⊕ V (1) with projections p1 and p2, then
End(V ) has a natural structure of super algebra, just setting

End(V )(0) := {f ∈ End(V ) | f (V (j)) ⊂ V (j) , j ∈ Z2},
End(V )(1) := {f ∈ End(V ) | f (V (j)) ⊂ V (j+1) , j ∈ Z2},

the relation,

f = (p1 ◦ f ◦ p1 + p2 ◦ f ◦ p2)+ (p1 ◦ f ◦ p2 + p2 ◦ f ◦ p1),

proves that

End(V ) = End(V )(0) ⊕ End(V )(1);
• given a super algebra A , the super commutator [ , ] defines on A the structure of

super Lie algebra.
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Definition 2. Let

A = A(0) ⊕ A(1)
be a super algebra.

1. A super derivation D of degree |D| on A is an element of End(A)(|D|) such that

D(ab) = (Da)b + (−1)|D||a|a(Db).

This amounts to say that, for every a ∈ A, we have

[D, La] − LDa = 0,

La being the left multiplication by a.
2. A differential d on A is a super derivation of degree 1 such that d2 = 0. The

couple (A, d) is called a differential super algebra (DSA).

Definition 3. Let

g = g(0) ⊕ g(1)

be a super Lie algebra.

1. A super derivation D of degree |D| on g is an element of End(g)(|D|) such that:

D[a, b] = [Da, b] + (−1)|D||a|[a, Db].

2. A differential d on g is a super derivation of degree 1 such that d2 = 0. The couple
(g, d) is called a differential super Lie algebra (DSLA).

Note that, in both cases, the super commutator of the super derivations D and F
is a super derivation of degree |D| + |F | .

Let (g, [ , ], d) be a DSLA. We set

Z(p) = Z(p)(g, d) := {a ∈ g(p) | da = 0} , Z = Z(0) ⊕ Z(1),
B(p) = B(p)(g, d) := d(g(p−1)) , B = B(0) ⊕ B(1),
H (p) = H(p)(g, d) = Z(p)(g, d)/B(p)(g, d) , H = H(0) ⊕H(1).

Let (g = g(0) ⊕ g(1), [ , ], d) be a DSLA. For γ ∈ g(1), set

dγ a := da + [γ, a].

Clearly,

dγ [a, b] = [dγ a, b] + (−1)|a|[a, dγ b]

and

dγ + 1

2
[γ, γ ] = 0 �⇒ d2

γ = 0,

i.e.,

γ satisfies the Maurer-Cartan (MC) equation �⇒ d2
γ = 0.
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Set

MCZ2(g) = {γ ∈ g(1) | γ satisfies MC}.
Given α ∈ g, set

ad(exp(α)) :=
∞∑
h=0

1

h!
(αδ(α))h

(where, of course,αδ(α)(ε) := [α, ε]). Therefore exp(g) acts on the left on g. exp(g(0))
acts on the dγ ’s on the left as

dγ �→ ad(exp(α))dγ ad(exp(−α))
and this induces a left action of exp(g(0)) on MCZ2(g) given by

(α, γ ) �→ χ(α)γ := γ −
∞∑
h=0

1

(h+ 1)!
(αδ(α))h(dγ α).

As usual, the results of the present section hold in the framework of formal power
series, i.e., modulo convergence. Convergence can be rigorously established in the class
of Artin rings and their projective limits.

Set

DefZ2(g) := MCZ2(g)/ exp(g(0)).

Definition 4. DefZ2(g) is called the Z2-deformation space of the DSLA g .

Note that:

• if t �→ γ (t) is a smooth curve in MC(g) , with γ (0) = γ , then,

dγ (t)+ 1

2
[γ (t), γ (t)] = 0

and so

0 = dγ ′(0)+ [γ, γ ′(0)] = dγ γ ′(0).
Consequently,

TγMC(g) ⊂ Z(1)(g , dγ ).

•
d

dt
χ(tα)γ|t=0 = −dγ α

and so,

γ �→ −dγ α,
represents the fundamental vector field of α associated to the given action.
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• Setting

γ̂ (t) := χ(tα)γ (t),
we get

γ̂ ′(0) = γ ′(0)− dγ α.
Consequently, if ε ∈ Z(1)(g, dγ ) is tangent to MC(g) at γ , then any element of
[ε] ∈ H(1)(g, dγ ) is tangent to MC(g) at γ and is related to ε by the action induced
by χ . Therefore, if 〈γ 〉 ∈ DefZ2(g) then

T〈γ 〉DefZ2(g) ⊂ H(1)(g, dγ ).
We set the following

Definition 5. If

T〈γ 〉DefZ2(g) = H(1)(g, dγ ),
we say that the deformation theory of the DSLA g is totally unobstructed at 〈γ 〉 .

We are mainly interested, as we shall see, in infinitesimal deformations at 0 or,
more precisely, formal developments of deformations.

2.2 Z-theory

As a special case of superstructures we have Z-graded structures.

Definition 6. A graded vector space is a vector spaceV together with a decomposition,

V =
⊕
p∈Z

Vp,

with the agreement that Vp = {0}, if p < 0 ; again vectors in the Vp’s are called ho-
mogeneous and they are assigned to have degree p. In the same way, we can consider
graded algebras, graded Lie algebras, differential graded algebras (DGA), differen-
tial graded Lie algebras (DGLA) etc., with the same definitions as before (indices in
Z ).

In particular, if ⎛⎝g =
⊕
p∈Z

gp, [ , ] , d

⎞⎠
is a DGLA, we set

MCZ(g) = {γ ∈ g1 | γ satisfiesMC}.
Then, exactly as the Z2-case, we have a left action of exp(g0) on MCZ(g) and we

set

DefZ(g) := MCZ(g)/ exp(g0).

Note that any graded structure has a natural underlying superstructure.
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2.3 Formal deformations

We want to describe the basic setting of formal deformations. Let (g, [ , ], d) be a
DSLA and let H be its cohomology. Let H ∗ be the super vector space dual of H and
let K := k[[H ∗]] be the completed supersymmetric algebra of H ∗.

In particular, if {v1, . . . , vN } is a super basis ofH , the dual superbasis {x1, . . . , xN }
satisfies |xj | = |vj | − 1 , 1 ≤ j ≤ N .

Set

gK := g ⊗K , dK := d ⊗ 1 etc.,

extend the structure of DSLA to gK in the standard way, i.e.,

• [a ⊗ α, b ⊗ β] = (−1)|α||b|[a, b] ⊗ αβ,
• |a ⊗ α| = |a||α|.
Finally, let mK be the maximal ideal of K .
Note that

• g ⊗ mK an ideal (and hence a subalgebra) of gK ;
• ω ∈ gK can be written as

ω =
∞∑
j=0

ωj ,

where the ωj ’s are homogeneous polynomials of degree j in the H ∗-variables;
• vh �→ vhxh , 1 ≤ h ≤ N , identifies H with a degree-one homogeneous polyno-

mial in (H ⊗ mK)
(1).

Set

MCZ2 [[g]] := MCZ2(g ⊗ mK) =
{
γ ∈ (g ⊗ mK)

(1) | dKγ + 1

2
[γ, γ ] = 0

}
,

DefZ2 [[g]] := Def(g ⊗ mK).

Definition 7. We say that the deformation theory of the DSLA g is formally totally
unobstructed (at 〈γ 〉), if the deformation theory of g ⊗ mK is totally unobstructed at
〈γ 〉.

2.4 Z-theory versus Z2-theory

It is a very interesting fact that Z2-deformation theory fibers in a natural manner over
Z-deformation theory.

In fact, let (g = ⊕
p∈Z

gp, [ , ] , d) be a DGLA, let πj : g −→ gj , j ∈ Z be
the natural projections, and let g̃ := ⊕j>1 gj ; consider on g the underlying structure
of DSLA. Then we have:

Lemma 1. π1 : g −→ g1 induces a surjective map

π : MCZ2(g) −→ MCZ(g)
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such that:

1. for every γ1 ∈ MCZ(g),

π−1(γ1) = γ1 + MCZ2(g̃, dγ1);
2. for every α ∈ g(0),

π1 ◦ χ(α) = χ(π0(α)) ◦ π1,

and thus we obtain a surjective map

π : DefZ2(g) −→ DefZ(g)

and

π−1(〈γ1〉) ≈ DefZ2(g̃, dγ1).

Proof. Let γ ∈ MCZ2(g). Write γ = γ1 + σ with γ1 = π1(γ ) and σ ∈ g̃ ∩ g(1).
Then,

dγ + 1

2
[γ, γ ] = 0

= dγ1 + dσ + 1

2
[γ1, γ1] + 1

2
[σ, , σ ] + [γ1 , σ ]

= dγ1 + 1

2
[γ1, γ1] + dγ1σ + 1

2
[σ, , σ ],

and thus,

π1(γ ) ∈ MCZ(g), σ ∈ MCZ2(g̃).

This gives the surjectivity and 1. at once. 2. is now obvious.

At formal level, we have:

g ⊗ mK =
⊕
p∈{Z

(g ⊗ mK)p,

where

(g ⊗ (mK))p =
⊕
r+s=p

(g)r ⊗ (mK)s.

In particular,

(g ⊗ (mK)1 = g0 ⊗ (mK)1g1 ⊗ mK)0,

and

(mK)0 = m
K̂
,

where

K̂ = k[[x1, . . . , xn]] with n = dimkH
1.

Therefore, we have a further reduction; the results are summarized in the following
lemma, which can be proved exactly as the previous one.
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Lemma 2. Let

p : (g ⊗ mK)1 −→ g1(⊗mK)0

be the natural projection. Then

1. p induces a surjective map:

p : MCZ(g ⊗ mK) −→ MCZ[[g]] :=
{
α ∈ g1 ⊗ mK)0 | dα + 1

2
[α, α] = 0

}
;

2. for every γ1 ∈ MCZ[[g]] ,

p−1(γ1) = γ1 + EZ[[g, dγ1 ]] :=
{
α ∈ g0 ⊗ mK)1 | dγ1α + 1

2
[α, α] = 0

}
;

3. p is exp(g0 ⊗ (mK)0-invariant;
4. setting π̃ := p ◦ π1 we have that, for every γ1 ∈ MCZ[[g]] ,

π̃1(γ1) = γ1 + F(γ1),

where

F(γ1) = {(β, σ ) |β ∈ EZ[[g, dγ1 ]] , σ ∈ MCZ2(g̃, dγ1+β)};
5. we obtain a surjective map,

π̃ : DefZ2 [[g]] −→ DefZ[[g]] := MCZ[[g]]/ exp(g0 ⊗ (mK)0),

and π̃−1(〈γ1〉) ≈ {(〈β〉, 〈σ 〉)}, where

〈β〉 ∈ EZ[[g, dγ1 ]]/ exp(g0 ⊗ (mK)0), 〈σ 〉 ∈ DefZ2(g̃, dγ1+β),

2.5 A special case

Let us begin with some general facts.

Definition 8. A differential k-vector space (V , d) is a k-vector spaceV equipped with
d ∈ Homk(V , V ) satisfying d2 = 0 ; set Z := Ker d, B := Im d, H := Z/B.

Lemma 3. Let (V , d) be a differential k-vector space; then there exist vector subspaces
H and S with

1 H ⊕ B = Z (and so H ≈ H ),

2 S ∩ Z = {0},
in such a way that

V = H ⊕ dS ⊕ S. (1)

(1) is called a Hodge decomposition for (V , d).
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Moreover, given (1),Q ∈ Homk(V , V ) is defined in such a way that

α = πH(α)+ dQ(α)+Q(dα),
i.e., Q is a cohomological homotopy between I and πH and α ∈ g is d-exact if and
only if dα = 0 and πH(α) = 0 and in this case α = dQ(α). Finally, if V is a super
vector space (resp. a graded vector space) and d is compatible with the grading, then it
is possible to choose H and S to be supersubspaces (resp. graded subspaces) obtaining
a super (resp., graded) Hodge decomposition.

Proof. Let H ⊂ Z be a vector subspace such that

H ⊕ B = Z.
Let R ⊂ g be a vector subspace such that:

• g = H ⊕ R,

• B ⊂ R.

Clearly, R ∩ Z = B.
Let S ⊂ R be a supersubspace such that R = B ⊕ S. Then

S ∩ Z = 0 and B = dS.
Finally, if

α = πH(α)+ dβ + γ,
just set Q(α) = β. Then dQ(dα) = dα = dγ and thus γ = Q(dα); note also that
Q2 = 0. Concerning the last statement, just observe that we can perform the whole
construction preserving the grading.

We have now the following

Lemma 4. Let (g = g(0)⊕g(1), d) be a DSLA. Then the following facts are equivalent:

1. there exists a quasi isomorphism,

φ : (g , [ , ] , d) −→ (H, 0, 0);
2. we have:

[g, g] ∩ Z ⊂ B; (2)

3. there exists super Hodge decomposition g = H ⊕ dS ⊕ S, such that

[g, g] ⊂ dS ⊕ S. (3)

Proof. 1. �⇒ 2. Since � is a quasi-isomorphism, we have, in particular

[g, g] ∩ Z ⊂ Ker� ∩ Z = B.
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2. �⇒ 3. Let H ⊂ Z be a supersubspace such that

H ⊕ B = Z.
Clearly H ∩ [g, g] = {0}. Then as in the general construction of Hodge decompo-
sition, just choose R ⊂ g to be a supersubspace such that:
• g = H ⊕ R,
• [g, g] + B ⊂ R.

3. �⇒ 1. Just set �(α) := [πH(α)].

We recall that a dGBV algebra (A,  , d) satisfying the d-lemma is an example
of DSLA meeting the condition of lemma (4) (cf.[3] and [5] [1]).

We have the following

Lemma 5. Assume the DSLA (g, [ , ], d) satisfies the conditions of lemma (4) ; fix
H , S and hence � andQ. Let

a : MCZ2 [[g]] −→ (Z ⊗ mK)
(1),

be defined by

a(γ ) := γ + 1

2
QK([γ, γ ]).

Then:

1. a is one-to-one with inverse map,

b := α =
∞∑
j=1

αj �→ γ =
∞∑
j=1

γj ,

where:

γ1 = α1

...

γj = −1

2

∑
r+s=j

QK([γr , γs])+ αj .

2.

a(χ(β)γ ) = a(γ )mod((B ⊗ mK)1)

a−1(α + dε) = a−1(ε)mod(exp((g ⊗ mK)0))

and so

a∗ : 〈γ 〉 �→ [a(γ )]

establishes a bijection

DefZ2 [[g]] −→ (H ⊗ mK)
(1).
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3. Let

M̃CZ2 [[g]] := {γ ∈ (MCZ2 [[g]] | γj ∈ Ker�⊗ mK , j ≥ 2}.
Then

a) M̃CZ2 [[g]] is exp((g ⊗ mK)
(0))− invariant

b) a∗ : D̃efZ2
[[g]] := M̃CZ2 [[g]]/ exp((g ⊗ mK)

(0)) −→ H

Proof. 1. First note that, given γ ∈ MCZ2 [[g]], we have that [γ, γ ] is dK -exact and,
because of (4),

[γ, γ ] = dKQK([γ, γ ]).

Therefore

da(γ ) = dKγ + 1

2
dKQK([γ, γ ]) = 0.

Now we can first check that, given α ∈ (Z ⊗ mK)
(1) , we have

db(α)+ 1

2
[b(α), b(α)] = 0. (4)

Now (4) amounts to

dγj = −1

2

∑
r+s=j

[γr , γs],

and this can be shown recursively. It is certainly true for j = 1. Assume it is true
for l < j , then:

d
∑
r+s=j

[γr , γs] =
∑
r+s=j

([dγr , γs] − [γr , dγs])

= −1

2

∑
r+s=j

∑
p+q=r

[[γp, γq ], γs] + 1

2

∑
r+s=j

∑
t+u=s

[γr , [γt ], γu]

= −
∑

r+s+t=j
[[γr , γs], γt ]

= 0, by Jacobi identity.

Therefore,

b : (Z ⊗ mK)
(1) −→ MCZ2 [[g]].

Then,

ab(α) =
∞∑
j=1

βj = b(α)+ 1

2
Q([(

¯
α), b(α)]) = α.
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In fact,

βj = γj + 1

2

∑
r+s=j

Q([γr , γs])

= −1

2

∑
r+s=j

Q([γr , γs])+ αj + 1

2

∑
r+s=j

Q([γr , γs]) = αj ,

ba(γ ) =
∞∑
j=0

εj = γ,

can be shown recursively. Definitely true for j = 1, assume it holds true for l < j .
Then,

εj = −1

2

∑
r+s=j

Q([εr , εs])+ γj + 1

2

∑
r+s=j

Q([γr , γs]) = γj .

2. We can easily show by direct computation that:

a(χ(η)γ ) = a(γ )+ dQ(χ(η)γ − γ ).
Vice versa, given ε ∈ (g ⊗ mK)

(0) , we can construct recursively η ∈ (g ⊗ mK)
(0)

such that,

a−1(α + dε) = χ(η)a−1(α),

i.e.,

α + dε = α + dQ(χ(η)a−1(α)− a−1(α)).

Set η1 = ε1 and assume ηl has been constructed for l < j . Note that, in general,

(χ(η)γ − γ )j = Aj − dηj ,
where Aj depends on γr , ηs for 0 < r, s < j .
Therefore:

(dQ(χ(η)γ − γ ))j = dQ(Aj )− dηj .
Thus choose ηj = Q(Aj )− εj .

3. is clear.

Finally, if (g, [ , ], d) is a DGLA, we have the following, easy to prove lemma:

Lemma 6. The following diagram is commutative:

MCZ2 [[g]]
a−−−−→ (Z ⊗ mK)

(1)⏐⏐%π̃ ⏐⏐%π̃
MCZ[[g]]

a−−−−→ (Z ⊗ mK)
(1)

Moreover,

a∗ ◦ π̃∗ = π̃∗ ◦ a∗

and analogous results hold true for M̃C , provided |�| = 0 in Z .
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Finally, note that, if we want to efficiently define a at the Z-level only, we just need
to replace (2) with

[g1, g1] ∩ Z2 ⊂ B2.

3 An example: A∞-algebras and deformation theory

As a first example of deformation space, we consider the following. Let (V = V (0) ⊕
V (1), d)be a differentiable k-super vector space. We can extendd and the superstructure
to the tensor algebra T(V ). In particular,

• d(R ⊗ S) = dR ⊗ S + (−1)|R|R ⊗ dS;
• if L ∈ Homk(V

⊗r , V⊗s), then

dL = d ◦ L− (−1)|L|L ◦ d
and

d(L ◦M) = dL ◦M + (−1)|L|L ◦ dM.
Set

Cp(V ) := Homk(V
⊗(p+1), V ),

and given R ∈ Cp(V ) , set

‖R‖ = (|R| + p) mod 2.

Given R ∈ Cp(V ), S ∈ Cq(V ), let [R, S] ∈ Cp+q(V ) be defined as

[R, S] :=
p+1∑
k=1

(−1)p(k−1)R ◦ (I⊗(k−1) ⊗ S ⊗ I⊗((p+1−k))+

− (−1)‖R‖‖S‖
q+1∑
k=1

(−1)q(k−1)S ◦ (I⊗(k−1) ⊗ R ⊗ I⊗((q+1−k)).

Then,

d[R, S] = [dR, S] + (−1)‖R‖[R, dS]

and ⎛⎝C(V ) :=
⊕
p∈Z

Cp(V ), [ , ], d

⎞⎠ ,
is a DSLA.

Let A(V ) be the completion ofC(V ) and extend in an obvious way the DSLA struc-
ture to A(V ). Let A∗(V ) be the sub DSLA of A(V ) of elements with no components
in C0(V ). Then,

a structure of A∞-algebra on V is a solution of the MC equation in A∗(V ).

See [11] and [12] for examples of A∞-algebras related to complex and symplectic
geometry.
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4 Complex and holomorphic deformation theory

4.1 Preliminaries

Let

Jn =
(
O −In
In 0

)
.

We consider the faithful representation,

ρ : gl(n, C) −→ gl(2n, R),

ρ : A+ iB �→
(
A −B
B A

)
.

In the sequel, we shall identify

gl(n, C) with ρ(gl(n, C)) = {X ∈ gl(2n, R) |XJn − JnX = 0}.
Moreover,

gl(2n, R) = gl(n, C)⊕ s(n),

where

s(n) := {X ∈ gl(2n, R) |XJn + JnX = 0},
with projections

R : gl(2n, R) −→ gl(n, C), X �→ 1

2
(X − JnXJn),

S : gl(2n, R) −→ s(n), X �→ 1

2
(X + JnXJn).

Let

W(n) := {P ∈ GL(2n, R) |P 2 = −I }.
Clearly,

• P ∈ W(n) ⇐⇒ P = AJnA−1,
• P = AJnA−1 = BJnB−1 ⇐⇒ B−1A ∈ GL(n, C).

Consequently,

W(n) = GL(2n, R)/GL(n, C)

and

GL(2n, R) �→ W(n)

is a GL(n, C)-principal bundle with projection π(A) = AJnA
−1. In particular, there

exists a neighborhood U of Jn and a section σ over U , i.e., a map σ : U −→
GL(2n,R) such that:
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a. σ(Jn) = I ,

b. for every P ∈ U , σ(P )Jnσ (P )−1 = P .

Moreover, since R(σ(Jn)) = I , if U is sufficiently small, then, for every P ∈ U ,
R(σ(P )) ∈ GL(n, C) and so σ̃ (P ) := σ(P )(R(σ(P )))−1 is a section over U with
R(σ̃ (P )) ≡ I . It is obvious that σ̃ is uniquely characterized by these conditions,
namely,

• σ̃ (Jn) = I ,

• R(σ̃ )(P ) ≡ I .

In other words, every P ∈ U can be expressed in a unique way as

P = (I + L)Jn(I + L)−1 with LJn = −JnL. (5)

We can give a complete description of those elements in W(n) which are expressible
as (5). Let

A(n) := {X ∈ s(n) | det (I +X) �= 0},
P(n) := {P ∈ W(n) | det (I − JnP ) �= 0}.

Then, we have the following:

Lemma 7. Set

r(P ) := (I − JnP )−1(I + JnP ).
Then r diffeomorphically sends P(n) into A(n)
Proof. Just note that

r(P ) = 2(I − JnP )−1 − I = −(I − PJn)−1(I + PJn),
and that, clearly,

r−1(L) = (I + L)Jn(I + L)−1.

Note also that the elements P ∈ W(n) are in one-to-one correspondence with
complex subspacesW of C

2n = (R2n)C, satisfying

C
2n = W ⊕ W̄ . (6)

In fact, given P ∈ W(n), just set W = V
0,1
P ; vice versa, given W satisfying (6), set

P = −it2 ◦ t−1
1 , where

t1 := p1|W̄ : W̄ −→ R
2n,

t2 := p2|W̄ : W̄ −→ iR2n.

Given W̄ sufficiently close to V 0,1
Jn

, W̄ can be described as the graph of a C-linear map

L : V 0,1
Jn

−→ V
1,0
Jn

(and so LJn = −JnL). Consequently,

W̄ = {(I + L)X + i(I + L)JX |X ∈ R
2n},

and the corresponding element of W(n) is P = (I + L)Jn(I + L)−1.
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4.2 Starting deformation theory

Let (M, J ) be a complex manifold and let H(M) be the Lie algebra of smooth vector
fields onM . Given X, Y ∈ H(M), set

(∂̄JX)(Y ) := 1

4
([Y, X] + J [JY, X] + [JY, JX] − J [Y, JX])

= 1

2
([Y, X] + J [JY, X])− 1

4
NJ (X, Y ),

(7)

where, as usual,

NJ ∈ ∧0,2
J (M)⊗ TM,

defined as

NJ (X, Y ) := [JX, JY ] − [X, Y ] − J [JX, Y ] − J [X, JY ],

is the Nijenhuis tensor of J and

NJ = 0 ⇐⇒ J is integrable.

Then we have:

• ∂̄JX ∈ ∧0,1
J ⊗ TM ,

• ∂̄J JX = J ∂̄JX, i.e., ∂̄J J = 0.

Note also that, given f ∈ C∞(M, C) , then

(∂̄J )
2f (X, Y ) = −1

8
(NJ (X, Y )− iJNJ (X, Y ))f.

Let (M, J ) be a holomorphic manifold and set

• g = A := ∧0,∗
J (M)⊗ TM ,

• [X, Y ] = [X ∗ Y ] := 1
2 ([X, Y ] − [JX, JY ]), for X, Y ∈ H(M).

A straightforward computation shows that [ ∗ ] is a Lie algebra bracket (note that
for a general complex structure J , we have:

S[X ∗ [Y ∗ Z]] = 1

4
S[JN, NJ (JY, Z)]),

• d = ∂̄J where, now, for X, Y ∈ H ,

(∂̄JX)(Y ) := 1

2
([Y, X] + J [JY, X]).

Then:

1. Define |α ⊗X| := |α| and so,

A =
⊕
p∈Z

Ap,
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where

Ap =
{

∧0,p
J (M)⊗ TM, if 0 ≤ p ≤ n,

0 , otherwise.

2. Extend [ ∗ ] to A in the following way:
a) if L ∈ ∧0,1

J (M)⊗ TM , define [L ∗ L] by means of the formula

[L ∗ L](X, Y ) = [L(X) ∗ L(Y )] − L([L(X) ∗ Y ] + [X ∗ L(Y )]
− L([X ∗ Y ]));

b) given R, S ∈ ∧0,1
J (M)⊗ TM , define [R ∗ S] by polarization, i.e.,

[R ∗ S] := 1

2
([R + S ∗ R + S] − [R ∗ R] − [S ∗ S]);

c) given α ∈ ∧pJ (M), β ∈ ∧qJ (M), define

[α ∧ R ∗ β ∧ S] := (−1)qα ∧ β ∧ [R ∗ S];
d) extend to the general case by bilinearity.

Note that, in terms of local complex coordinates z1, . . . , zn, under the identification

TM ←→ T 1,0M, X ←→ 1

2
(X − iJX),

we have that, given R ∈ Ap , S ∈ Aq ,

R =
n∑
j=1

∑
|I |=p

rjI dz̄I ⊗ ∂

∂ zj
=

n∑
j=1

rj ⊗ ∂

∂ zj
,

S =
n∑
j=1

∑
|K|=q

sjKdz̄I ⊗ ∂

∂ zj
=

n∑
j=1

sj ⊗ ∂

∂ zj
.

Then,

[R ∗ S] =
n∑

j,k=1

(
rj ∧ ∂

∂ zj
sk − (−1)pqsj ∧ ∂

∂ zj
rk

)
⊗ ∂

∂ zk
,

where, of course,

∂

∂ zj
sk =

∑
|K|=q

∂

∂ zj
skKdz̄K,

(see e.g. [8]).
3. Extend ∂̄ to A by setting

∂̄J (α ⊗X) = ∂̄J α ⊗X + (−1)|α|α ∧ ∂̄JX.



92 P. de Bartolomeis

Then (A, [ ∗ ], ∂̄J ) is a DGLA; note that A0 = H(M) and, consequently, exp(A0),
is the connected component of idM in Diff(M). Let J̃ be another complex structure on
M with det (I − J J̃ ) �= 0. Then we can write in a unique way,

J̃ = AJA−1,

with

A = I + L and LJ + JL = 0,

i.e.,

L ∈ ∧0,1
J (M)⊗ TM.

A tedious but straightforward computation yields the following

Lemma 8. Let L, A, J̃ be as before and let

ρ(A) := (A∗)−1 ⊗ A ∈ Aut(T ∗M ⊗ TM).
Then:

• ρ−1(A)N
J̃

= −4(∂̄J L+ 1
2 [L ∗ L]);

• ρ−1(A) ◦ ∂̄
J̃

◦ ρ(A) = ∂̄J + [L ∗ ·] ,

i.e., on TM :

• A−1N
J̃
(AX, AY) = −4(∂̄J L+ 1

2 [L ∗ L](X, Y )),
• A−1(∂̄

J̃
AX)(AY) = (∂̄JX)(Y )+ [L ∗X](Y ).

Proof. It is enough to consider the case

J = Jn, A(0) = I (i.e., L(0) = 0),

and perform the computations at 0.

Consequently,

• (∂̄J )L = ∂̄J + [L ∗ ·] corresponds to ∂̄
J̃

;
• L ∈ MCZ(A), det (I +L) �= 0, ⇐⇒, J̃ = (I +L)J (I +L)−1 is a holomorphic

structure and so L �→ (I + L)J (I + L)−1 establishes a bijection:

MC∗
Z
(A) := {L ∈ MCZ(A) | det (I + L) �= 0}

↓
{holomorphic strucures J̃ s. t. det (I − J̃ J ) �= 0};

• two exp(A0)-equivalent elements of MCZ(A) correspond to diffeomorphic holo-
morphic structures.

We have also the following, easy to prove
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Lemma 9. Let L,A, J̃ be as before. Then, on ∧0,∗
J (M) we have

ρ−1(A) ◦ ∂̄
J̃

◦ ρ(A) = ∂̄J + L ∧ ∂J ,
where, more generally,

∧ : (∧0,p
J (M)⊗ T 1,0

J M)× (∧0,q
J (M)⊗ ∧1,0

J (M)) −→ ∧0,p+q
J (M)

is defined by means of the duality pairing.

Lemma 9 suggests the possibility of considering operators on ∧0,∗
J (M) of the form:

α �→ ∂̄J α + L ∧ ∂J α,
with

L ∈ ∧odd
J (M)⊗ TM , L =

[ n+1
2 ]∑
p=1

Lp with Lp ∈ ∧0,2p−1
J M,

possibly with L1 = 0, i.e., including L1 into a new J̃ on the basis of Lemma 8.
Therefore, we can set the following:

Definition 9. A supercomplex (resp. superholomorphic) structure on M is the datum
J = (J, L) of a complex (resp. holomorphic) structure J on M and L ∈ A(1) =
∧odd
J (M)⊗ TM .

Given a superholomorphic structure J = (J, L), set, on ∧0,∗
J (M) :

�̄ = �̄J = ∂̄J + L ∧ ∂J .

Clearly �̄ is a parity one derivation and

�̄
2 = (∂̄J L+ 1

2
[L ∗ L]) ∧ (∂ + L ∧ ∂̄J ).

Moreover, �̄ extends to A as

�̄ = ∂̄J + [L ∗ ·] ,
and it satisfies

�̄(α ⊗X) = �̄α ⊗X + (−1)|α|α ∧ �̄X,

for X ∈ A0 , α ∈ ∧0,∗
J (M). Clearly �̄ reflects the Z2-deformation theory of A. Thus,

in particular, we have

�̄
2 = 0 ⇐⇒ ∂̄J L+ 1

2
[L ∗ L] = 0,
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which gives by lemma 1,

∂̄J L1 + 1

2
[L1 ∗ L1] = 0,

i.e.,
J̃ := (I + L)J (I + L)−1

is holomorphic. This leads to a superholomorphic structure J̃ = (J̃ , L̃) with L̃1 = 0.
Note that:

• if n = 2, then superholomorphic structures coincide with complex structures (be-
cause L = L1 !),

• if n = 3, then L = L1 + L2 and

∂̄J L+ 1

2
[L ∗ L] = 0 ⇐⇒ ∂̄J L1 + 1

2
[L1 ∗ L1] = 0,

and so, assuming L1 = 0, we obtain for

α ∈ ∧0,∗
J (M), α = α0 + α1 + α2 + α3, with αp ∈ ∧0,p

J (M) 0 ≤ p ≤ 3 :

�̄α = 0 ⇐⇒

⎧⎪⎨⎪⎩
∂̄J α0 = 0,

∂̄J α1 = 0,

∂̄J α2 + L2 ∧ ∂J α0 = 0.

4.3 A very simple example

LetM = T
2n = C

n/Z2n and let J = (J, L), where

• J = Jsdt ,
• L =∑n

p=2 Lp , Lp =∑n
j=1

∑
|I |=2p−1 aĪj dzĪ ⊗ ∂

∂ zj
, aĪj ∈ C.

Clearly,

�̄
2
J = 0.

5 Symplectic deformation theory

5.1 Preliminaries

Let (V , κ) be a 2n-dimensional symplectic vector space. Define the symplectic Hodge
operator

� : ∧rV ∗ −→ ∧2n−rV ∗,

by means of the relation,

α ∧ �β = κ(α, β)κ
n

n!
,

α, β ∈ ∧rV ∗. It is easy to check that �2 = I .
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Consider the following endomorphisms of ∧∗V ∗ :

• L : α �→ κ ∧ α,
• � := −�L�,
• H =∑2n

r=0(n− r)pr , where

pr : ∧∗V ∗ −→ ∧rV ∗,

is the natural projection.

It is easy to check that

[L, �] = H , [L, H ] = −2L , [�, H ] = 2�,

and so ∧∗V ∗ has the natural structure of the sl(2, C)-module.
We have

Lemma 10. For 0 ≤ p ≤ n,

Lp : ∧n−pV ∗ −→ ∧n+pV ∗,

is an isomorphism and so, in particular, for 0 ≤ p < n,

L : ∧pV ∗ −→ ∧p+2V ∗,

is injective.

We have also

Lemma 11. Let 0 ≤ p ≤ n.

• If α ∈ ∧pV ∗, then

�(α ∧ κn−p) = (−1)
1
2p(p−1)(n− p)!(α +�α ∧ κ). (8)

•

� κp = p!

(n− p)!κ
n−p. (9)

For every A ∈ End(V ) , we define T A ∈ End(V ) by means of the relation

κ(Av, w) = κ(v, T Aw).
Let,

Sκ(V ) := {A ∈ End(V ) |A = T A},
S∗
κ (V ) = Sκ(V ) ∩ Aut(V ).

We can immediately check that

A ∈ S∗
κ (V ) ⇐⇒ A−1 ∈ S∗

κ (V ).
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Clearly, given A ∈ Sκ(V ),
κA(v, w) := κ(Av, w)

defines an element of ∧2V ∗ and

!κ : Sκ(V ) −→ ∧2V ∗ , A �→ κA,

is a bijection sending S∗
κ (V ) into symplectic forms.

Let κ̃ now be a symplectic form on V . Then there exists a uniquely defined A ∈
Sκ(V ) §a such that:

κ̃ = κA.
Consequently, if α, β ∈ ∧rV ∗, then,

κ̃(α, β) = κ(ρ(A)α, β) = κ(α, ρ(A)β),
where, as before,

ρ(A)(ζ1 ∧ · · · ∧ ζr ) = (A∗)−1ζ1 ∧ · · · ∧ (A∗)−1ζr .

Moreover,

κ̃n = enλκn,

where λ = λ(A) = 1
2n log |det A|.

Therefore, if �̃ is the symplectic Hodge operator with respect to κ̃ , we have

α ∧�̃β = κ̃(α, β) κ̃
n

n!
= κ(α, enλρ(A)β)κ

n

n!
= α ∧ �enλρ(A)β,

and so, setting C = C(A) := enλρ(A), we have

�̃ = �C = C−1�.

Let (M, κ) be an almost symplectic manifold. Set

d� := (−1)r+1�d�,

on r-forms. Clearly, (d�)2 = 0 and if κ̃ is another almost symplectic structure, then

d�̃ = C−1d�C.

We have the following

Lemma 12. Let (M, κ) be an almost symplectic manifold. Set

dκ := [L, d�].
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Then the following facts are equivalent:

1. dκ = 0, i.e., κ defines a symplectic structure onM;

2. dκ = d;

3. Q := [d, �] − d� = 0;

4. [d, d�] = 0;

5. dκ is a differential, i.e., it is a derivation of parity 1 and d2
κ = 0.

Proof. Note first that 2. and 3. are obviously equivalent and that Q is C∞(M)-linear
(cf. [4]);

1. �⇒ 3. It is a basic symplectic identity (cf. [4]).
3. �⇒ 1. FromQ = 0, it follows

a. 0 = Qκn = [d, �]κn = d�κn. Now,

�κn = −�L�κn = −n!�κ = −nκn−1,

and so,
Qκn = 0 �⇒ dκn−1 = 0, i.e., d�κ = 0.

If n = 2, there is nothing else to prove, otherwise,
b. 0 = Qκ = [d, �]κ = −�dκ .
c. From [a.] we obtain,

Qκn−1 = [d, �]κn−1 − d�κn−1 = d�κn−1 − d�κn−1.

Now,
�κn−1 = −�L�κn−1 = −(n− 1)!�κ2 = −2(n− 1)κn−2.

From (8), it follows

d�κn−1 = −�d�κn−1 = −(n− 1)!�dκ = (n− 1)(n− 2)dκ ∧ κn−3.
Finally,

Qκn−1 = −2(n− 1)dκn−2 − (n− 1)(n− 2)dκ ∧ κn−3

= −3(n− 1)(n− 2)dκ ∧ κn−3,

and thus, by Lemma 10,Qκn−1 = 0 gives dκ = 0.

1. �⇒ 4.

[d, d�] = [d, [d, �]] = [[d, d],�] − [d, [d, �]] = 0.

4. �⇒ 1. Let f ∈ C∞(M). Then

Qdf = −d�df

and so
[d, d�] = 0 �⇒ Q = 0 on ∧1 (M).

Let α ∈ ∧1(M) s.t. d�α = 0 (and so �dα = 0) Thus, again using (8), we obtain:

d�dα = 0 = −�d�(dα) = (n− 2)!�(dα ∧ dκn−2),

which gives dκn−2 = 0 and so dκ = 0.
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1. �⇒ 5. It is now obvious.
5. �⇒ 2. If f ∈ C∞(M), then dκf = df − f d�κ and so

dκ is a derivation �⇒ dκ1 = 0 �⇒ d�κ = 0.

Thus if dκ is a derivation, it coincides with d on functions and, since it satisfies d2
κ = 0

it is d .

5.2 Starting deformation theory once more

Let (M, κ) be a compact symplectic manifold. Therefore,

Sym(M) := {simplectic forms on M},
is not empty. Set,

Sym
(κ)
0 (M) := {κ̃ ∈ Sym(M) | κ̃n = const.κn}.

By Moser’s lemma,

Sym(M) = Diff(M)Sym(κ)0 (M).

It is well known that (∧∗(M), d�, d) is a dGBV algebra, and so, in particular, for every
α ∈ ∧∗(M) defining,

�α : ∧∗(M) −→ ∧∗(M),

as

�αβ := (−1)|α|d�(α ∧ β)− (−1)|α|d�α ∧ β − α ∧ d�β,

we obtain

1. �α is a derivation,

2. setting [α • β] := �αβ, we obtain that (∧∗(M), [ • ], d) is an odd dGLA.

Let κ̃ now be another almost symplectic structure on M . Write κ̃(X, Y ) =
κ(AX, Y ) and κ̃n = enλκn. Then,

CdκC
−1 = C[L̃, d�̃]C−1 = [CL̃C−1, d�].

Now

CL̃C−1 = ρ(A)L̃ρ(A)−1 = e(ρ(A)κ̃),
where, for any γ ∈ ∧∗(M), we denote by e(γ ) the left multiplication by γ , i.e.,
e(γ )(α) = γ ∧ α. Note also that ρ(A)κ̃(X, Y ) = κA−1(X, Y ) = κ(A−1X, Y ).

Write ρ(A)κ̃ = κ − ε and assume d�ρ(A)κ̃ = 0, i.e., d�ε = 0. Thus

CL̃C−1 = [L, d�] − [e(ε), d�] = d + �ε .
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Consequently, defining MC : ∧∗(M) −→ ∧∗(M) as

MC(α) := dα + 1

2
[α • α],

we obtain

d2
κ̃ = 0 ⇐⇒ MC(ε) = 0 ⇐⇒ dκ̃ = 0.

Note also that {
d�ρ(A)κ̃ = 0

�⇒ λ(A) = const.
d�̃ κ̃ = 0

Vice versa, given ε ∈ Ker d�∩ ∧2(M), with det (!−1
κ (κ − ε)) �= 0, let κ̃ be defined by

the equation,

ρ(A)κ̃ = κ − ε.
If MC(ε) = 0 , then, again, d2

κ = 0 and so κ̃ ∈ Sym(κ)0 (M) .
Note once more that, given κ̃ almost symplectic, by Moser’s lemma, there exists

φ ∈ Diff(M) such that κ̂ := φ∗(κ̃) satisfies κ̂n = enλκn with λ = const .
Summarizing, let (M, κ) be a symplectic manifold and let

A =
(

Ker d�∩
⊕
p>0

∧p(M)
)

[1],

where, as usual, [1] is the degree −1 shift. Consequently,

Ap =
{

∧p+1(M) ∩ Ker d�, if 0 ≤ p ≤ 2n− 1,

0, otherwise.

Therefore, (A, [ • ], d) is the dGLA that governs the deformation theory of the sym-
plectic structure κ . In particular, if

MC(A) := {ε ∈ A1 | MC(ε) = 0},
and

MC∗(A) = {ε ∈ MC(A) | det (!−1
κ (κ − ε)) �= 0},

then,

A �→ I − A−1,

induces a bijection,

Sym
(κ)
0 (M) ←→ MC∗(A).

Note that, if

Diffκ0(M) = {φ ∈ Diff(M) |φ∗(κn) = κn , φ is isotopic to the identity},
then the action of Diffκ0(M) on ∧2(M) corresponds to the action of exp(A(0)) on
MC∗(A). In fact, given X ∈ H(M), then
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1.
d� #κ(X) = divX;

2. on ∧r (M), we have

ιX = (−1)r�e(#κ(X))�

and, consequently, on A
�LX� = �#κ (X);

3. exp(X) ∈ Diffκ0(M) sends d to ad(�ρ((exp(X)∗)�)d and so the infinitesimal action
is

α �→ �LX�α = �#κ (X)α = [#κ(X) • α].

Consequently,

MC∗(A)/ exp(A0)

is the moduli space of (infinitesimal) constant volume deformations of the symplectic
structure κ .

We want to show now that the theory is totally unobstructed.
Let (M, κ) be a compact symplectic manifold, and assume∫

M

κn = 1.

Let κ̃ be an almost symplectic form, and let

enc :=
∫
M

κ̃n > 0.

Then, ∫
M

(ecκ)n =
∫
κ̃n,

and so, by Moser’s lemma, there exists φ ∈ Diff(M) s.t.

[φ∗(κ̃)]n = encκn.

Let now α ∈ ∧2(M), dα = 0. Set κt := κ + tα. Let t �→ φt be a smooth curve in
Diff(M) s.t.

1. φ0 = idM ,

2. φt∗(κt ) has constant volume density, i.e.,

φ∗
t (κ

n
t ) = enc(t)κn.
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Now,

enc(t) =
∫
M

φ∗
t (κ

n
t ) =

∫
M

κnt = 1 + nt
∫
α ∧ κn−1 + o(t).

Write

α = −1

n
�ακ + β, with �β = 0 i.e., β ∧ κn−1 = 0.

Therefore,

enc(t) = 1 − t
∫
M

�ακn + o(t).

Now let X ∈ H(M) s.t. its associated flow {ψXt } satisfies

d

d t
(ψXt )

∗(κt )|t=0 = d

d t
φ∗
t (κt )|t=0.

Consequently,

d

d t
φ∗
t (κ

n
t )|t=0 = LXκn + nα ∧ κn−1 = −qκn,

where

q =
∫
M

�ακn,

and thus, if γ = #κ(X),

n

(
α + dγ + 1

n
qκ

)
∧ κn−1 = 0,

i.e.,

�

(
α + 1

n
qκ + dγ

)
= 0,

and so

d�(α + dγ ) = 0.

Note that, if �α = const (i.e., d�α = 0), then

�

(
α + 1

n
qκ

)
= �α −

∫
M

�ακn = 0,

and so �dγ = 0 and d�γ = 0. Finally,

d

d t
(ψXt )

∗(κt )|t=0 = α + dγ,

and so t �→ κt corresponds to a curve in MC(A), with tangent α + dγ at 0.
It is clear that, if we consider the underlying Z2-deformation theory, we are led to

the notion of supersymplectic structure.
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Definition 10. A supersymplectic structure on the 2n-dimensional differentiable man-
ifoldM is the datum of

κ ∈ ∧even(M) , κ =
n∑
p=1

κp , κp ∈ ∧2p(M) , 1 ≤ p ≤ n

such that:

1. κn �= 0, i.e., κn1 �= 0,

2. dκ = 0, i.e., dκp = 0, 1 ≤ p ≤ n,

3. d�κ = 0, i.e., d�κp = 0, 1 ≤ p ≤ n, where � is computed with respect to κ1.

Therefore, if κ is a supersymmetric structure onM , then κ1 is a simplectic structure.
Vice versa, from a symplectic structure κ1, we can always construct a supersymplectic
structure, just setting

κ :=
n∑
p=1

κ
p

1 .

Note that, in general, the DSLA (A, d) does not satisfy the condition of lemma 4
(because, in general, the dGBV algebra (A, d�, d) does not satisfy the dd�-lemma).
Therefore, in contrast with the Z-case, we cannot conclude that the theory is totally
(formally) unobstructed; this is true whenever the symplectic manifold (M, κ1) satisfies
the Hard Lefschetz Condition (cf. [2], [9], [10], [4], [13]).
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