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Summary. We present and investigate, within the general frame of deformation theory, new
Z,-constructions for generalized moduli spaces of holomorphic and symplectic structures.

1 Introduction

Deformation theories are one of the keystone settings of contemporary geometry, ap-
pearing in very different areas and providing, through moduli space constructions, a
highly powerful tool to produce new invariants (cf. [6] and [7] for recent accounts).

This paper, in the first part, describes a tuning up of a general machine for de-
formation theory, enhancing the relationships between Z and Z;-theories. Then, after
presenting equivalence classes of A°-algebras as an example of deformation space,
to show how vast the range covered by deformation theories is, it deals with com-
plex/holomorphic deformations and symplectic deformation. In the latter case, a totally
new non-naif theory is constructed.

By means of the results established in the first part, both in the complex/holomorphic
case and the symplectic case, we define and discuss the corresponding Z;-theories
(complex/holomorphic and supersymplectic structures).

2 7Z,-theory and Z-theory of deformations of DLA

2.1 Z;-theory: superstructures

We start with a quick overview of superstructures (or Z,-structures).

Definition 1. 1. A supervectorspaceisavector space V together with adecomposition
v=vO0egv®h,
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Vectors in V@ and in V) are called homogeneous of degree (or parity) 0 and 1,
respectively. The degree of the homogeneous vector v is denoted by |v|.
A vector supersubspace of V is a subspace W C V of the form

W = W(O) ey W(l),

where W) is a vector subspace of V), j =0, 1.

. A super algebra is an algebra A together with a vector space decomposition

A= A(O) @A(l),
in such a way that
AVA® AUk € T,
The bracket [, ], defined on homogeneous elements as
la, b] := ab — (—1)!1Plpg,

is called the super commutator of A and A is said to be supercommutative if its
super commutator vanishes identically.

. A super Lie algebra is a super vector space g = g(© @ g(!) together with a bilinear

map,
[,L]1:gxg — g,
such that '
a) [g, g®1 c guth, j ke Zo

b) for homogeneous elements a, b, ¢, we have:
i. [a, b] = —(=D)Pl[p 4],

ii. [a, [b, c]] = [[a, b], c]+ (=D4PI[p, [a, c]).

Note that:

given a vector space V , the exterior algebra A*V has a natural structure of super-
commutative super algebra, just setting

V(O) — Aevenv , V(l) — /\oddv;

given a super vector space V = V@ @ VD with projections p; and ps, then
End(V) has a natural structure of super algebra, just setting

End(V)© :={f € End(V)| f(VD) c VYD | j e Zy),
End(V)V .= {f € End(V)| f(VD) c vUTD | j e 7,
the relation,
f=iofopi+profopr)+(piofopr+profopi),
proves that
End(V) = End(V)© @ End(v)V;

given a super algebra A, the super commutator [, ] defines on A the structure of
super Lie algebra.
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Definition 2. Let
A=AOD pAD
be a super algebra.
1. A super derivation D of degree |D| on A is an element of End(A)PD such that
D(ab) = (Da)b + (—1)!Pllelg(Db).
This amounts to say that, for every a € A, we have
[D, Lal = Lpa =0,

L, being the left multiplication by a.
2. A differential d on A is a super derivation of degree 1 such that d> = 0. The
couple (A, d) is called a differential super algebra (DSA).

Definition 3. Let
g=g0 @ g"
be a super Lie algebra.
1. A super derivation D of degree |D| on g is an element of End(g)P" such that:
Dla, b] = [Da, bl + (—1)'Pll[a, Db].

2. A differential d on g is a super derivation of degree 1 such that > = 0. The couple
(g, d) is called a differential super Lie algebra (DSLA).

Note that, in both cases, the super commutator of the super derivations D and F
is a super derivation of degree |D| + | F| .
Let (g, [, ], d) be a DSLA. We set

7P = 7P (g d) :=taecg? |da=0), Z=20gzD,
BP = BW (g, d):=dg” "), B=B® g BD,
HP = HP (g, d) = 2P (g, d)/BP (g, d), H=H® @ HD.
Let (g =g® ®g®, [, ], d) beaDSLA.Fory € gV, set
dya = da + [y, al.
Clearly,
dyla, b] = [dya, bl + (=1)“[a, d,b]
and
dy+%[y,y]=0=>d}%=0,
ie.,

y satisfies the Maurer-Cartan (MC) equation — d)% = 0.
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Set
Mz, (g) = {y € gV |y satisfies MC}.

Given « € g, set

o0

1
ad(exp(@)) =)+~ (@d(@)"

(where, of course, @ («) (€) := [«, €]). Therefore exp(g) acts on the lefton g. exp(g(o))
acts on the d,,’s on the left as

dy, + ad(exp(a))d,ad(exp(—a))
and this induces a left action of exp(g(o)) on MCz,(g) given by

& 1
(@, y) = x(@y =y — hX:(j) m(a@(a»”(dw).

As usual, the results of the present section hold in the framework of formal power
series, i.e., modulo convergence. Convergence can be rigorously established in the class
of Artin rings and their projective limits.

Set

Defz, (g) := MCz,(g)/ exp(g®).
Definition 4. Defz, (g) is called the Z,-deformation space of the DSLA g.

Note that:
e ift — y(t) is a smooth curve in OME(g), with y(0) = y , then,

1
dy () + 5[y(r), yH1=0

and so
0=dy0) + [y, y/(0)] = dy,y(0).
Consequently,
T,meg) c zWV(g,d,).
[ ]

d

EX(“X)VIZ=O = _dya
and so,

Yy = —dya,

represents the fundamental vector field of & associated to the given action.
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e Setting
Y (@) = x (ta)y (1),
we get
7'(0) = y'(0) — dya.

Consequently, if e € Z( (g, dy) is tangent to 9€(g) at y, then any element of

el e HV(g, d, ) is tangent to 9ME(g) at y and is related to € by the action induced
by x. Therefore, if (y) € Defyz,(g) then

T\ Defz, (9) ¢ HV (g, d,).
We set the following
Definition 5. If
T;y)Detz,(9) = H (g, dy),
we say that the deformation theory of the DSLA g is totally unobstructed at (y).

We are mainly interested, as we shall see, in infinitesimal deformations at 0 or,
more precisely, formal developments of deformations.

2.2 7-theory

As a special case of superstructures we have Z-graded structures.
Definition 6. A graded vector space is a vector space V together with a decomposition,
V=@V,
pEL

with the agreement that V), = {0}, if p < 0; again vectors in the V),’s are called ho-
mogeneous and they are assigned to have degree p. In the same way, we can consider
graded algebras, graded Lie algebras, differential graded algebras (DGA), differen-
tial graded Lie algebras (DGLA) etc., with the same definitions as before (indices in
7).

In particular, if

s=op. [.1.4d

pEZ
is a DGLA, we set
MEz(g) = {y € g1 |y satisfies MC}.

Then, exactly as the Z,-case, we have a left action of exp(go) on IMCz(g) and we
set

Defz(g) := M&z(g)/ exp(go)-

Note that any graded structure has a natural underlying superstructure.
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2.3 Formal deformations

We want to describe the basic setting of formal deformations. Let (g, [, ], d) be a
DSLA and let H be its cohomology. Let H* be the super vector space dual of H and
let K := k[[H*]] be the completed supersymmetric algebra of H*.

In particular, if {vy, ..., vy} is asuper basis of H, the dual superbasis {x1, ..., xy}
satisfies [x;| = |vj| =1, 1 < j < N.
Set

g = 9® K ,dg :=d®1 etc,,
extend the structure of DSLA to gk in the standard way, i.e.,

e [a®a b®pl=(-1)"la, bl ap,
o la®al=lallal|

Finally, let mg be the maximal ideal of K.
Note that

g ® mg an ideal (and hence a subalgebra) of gg;
® € gk can be written as

o0
©=2 o
J=0

where the w;’s are homogeneous polynomials of degree j in the H*-variables;
e vy > vpxp, | <h < N, identifies H with a degree-one homogeneous polyno-
mial in (H ® mg)D.

Set
1
MCz, [[g]] := Mz, (g @ mg) = {y e @@mg)V dgy + Sy vl= o} ,

Def7,[[g]] := Def(g ® mg).

Definition 7. We say that the deformation theory of the DSLA g is formally totally
unobstructed (at (y)), if the deformation theory of g ® mg is totally unobstructed at

(v).

2.4 Z-theory versus Z,-theory

It is a very interesting fact that Z,-deformation theory fibers in a natural manner over
Z-deformation theory.

In fact, let (g = @pezgp, [,1,d)beaDGLA,letm; : g — gj, j € Zbe
the natural projections, and let § := € =183 consider on g the underlying structure
of DSLA. Then we have:

Lemma 1. 7 : ¢ —> g1 induces a surjective map

o MEz,(g) — MEz(g)
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such that:
1. for every y| € Mz (g),
7 ) = v+ M, (. dyy):
2. for every a € g©,
w0 x(a) = x(mo(er)) o7y,
and thus we obtain a surjective map
7 @ Defz,(g9) —> Defz(g)
and
7~ (v1) * Defz, 8. dy,)-
Proof. Lety € MCEyz,(g). Write y =y + 0 withy; =m(y) ando € gN g,
Then,

1
dy+5[% y1=0

1 1

1 1
=dy + E[}/l, vil+d, o+ E[U’ , ol

and thus,
mi(y) € MC7z(g), o € Mz, ().
This gives the surjectivity and 1. at once. 2. is now obvious.

At formal level, we have:

g@mgx = P mk),,
pelZ

where

@® mx), = P (@) ® (mk)s.

rts=p
In particular,
(g ® (mg)1 = go ® (mk)1g1 ® mg)o,
and
(mg)o =mpg,
where
K =K[[x1,...,x]]  with n=dim;H".

Therefore, we have a further reduction; the results are summarized in the following
lemma, which can be proved exactly as the previous one.
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Lemma 2. Let

p:(@®mg) — g1 (®mk)o
be the natural projection. Then

1. p induces a surjective map:

1
p : Mez(g@mg) — M&y[[g]] := {a € g1 ®@mg)o | da + E[a, ol = 0};

2. for every y1 € My [[gll,
1
p ') =y + €llg. dy, 11 = {a € go®@mg) [dpa + Sla. o] = 0} ;

3. pisexp(go ® (mg)o-invariant;
4. setting T := p o | we have that, for every y| € MEy[[g]],

ity =1 + 5,
where
Sy ={(B, o) | B € €zllg. dy 11, o € MEy, (9, dy1+p)};

5. we obtain a surjective map,
7 @ Defz,[lgll — Defzllgl] := Mz[[g]]/ exp(go ® (mk)o),
and 71 ((y1)) = (((B), ()}, where
(B) € €zllg, dy 11/ exp(go ® (mk)o), (o) € Defz, (@, dy,+p),

2.5 A special case

Let us begin with some general facts.

Definition 8. A differential k-vector space (V, d) is ak-vector space V equipped with
d € Homy(V, V) satisfying d>=0;set Z:=Kerd, B:=1Imd, H := Z/B.

Lemma 3. Let (V, d) be adifferential k-vector space; then there exist vector subspaces
H and S with

1 H®B=2Z (andsoH ~ H),
285NZ={0},

in such a way that
V=Ho®dS®S. ey

(1) is called a Hodge decomposition for (V, d).
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Moreover, given (1), Q € Homy(V, V) is defined in such a way that
o =mp(a) +dQ(a) + Q(da),

i.e., Q is a cohomological homotopy between I and w3 and o € g is d-exact if and
only if da = 0 and (o) = 0 and in this case o« = d Q(«). Finally, if V is a super
vector space (resp. a graded vector space) and d is compatible with the grading, then it
is possible to choose H and S to be supersubspaces (resp. graded subspaces) obtaining
a super (resp., graded) Hodge decomposition.

Proof. Let H C Z be a vector subspace such that
HeB=Z.

Let R C g be a vector subspace such that:

e g=H®R,
e BCR.

Clearly, RN Z = B.
Let S C R be a supersubspace such that R = B @ S. Then

SNZ=0 and B =4dS.
Finally, if
a =mp(a) +dB +v,

just set Q(«) = B. Then dQ(da) = da = dy and thus y = Q(dw); note also that
Q% = 0. Concerning the last statement, just observe that we can perform the whole
construction preserving the grading.

We have now the following

Lemma 4. Let (g = g© @ gV, d) be a DSLA. Then the following facts are equivalent:

1. there exists a quasi isomorphism,
¢:(.[.1,d — (HD00);
2. we have:
[g. 81NZ C B; 2)
3. there exists super Hodge decomposition g = H ® dS & S, such that
[g, 91 CdS®S. 3)
Proof. 1. = 2. Since @ is a quasi-isomorphism, we have, in particular

[g, glNZ CKer®NZ = B.
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2. = 3. Let H C Z be a supersubspace such that
HeB=2Z.

Clearly H N [g, g] = {0}. Then as in the general construction of Hodge decompo-
sition, just choose R C g to be a supersubspace such that:
e g=HO®R,
e [g,9]+BCR
3. = 1. Justset () := [T ()]

We recall that a dGBV algebra (A, A, d) satisfying the Ad-lemma is an example
of DSLA meeting the condition of lemma (4) (cf.[3] and [5][1]).
We have the following

Lemma 5. Assume the DSLA (g, [, 1, d) satisfies the conditions of lemma (4); fix
‘H, S and hence ® and Q. Let

a : Mez,[lgll — (Z@mg) D,
be defined by
1
aly) =y + EQK([V’ vD.

Then:

1. a is one-to-one with inverse map,

(0.¢] (0.¢]
b::a:Zaj — y:ZyJ-,
j=1 j=1

where:

Y=o

yj = —% Z.QK([%, s +a.

rs=j
2.
a(x(B)y) = a(y) mod((B ® mg)1)
a~!(a +de) = a~ ' (€) mod(exp((g ® mx)0))

and so

*

a® :{y) — la(y)]

establishes a bijection

Defz,[lgl] — (H ®@mg) .
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3. Let
MLz,[[g]] := {y € (MLz,llgll|y; € Ker® @ mg , j > 2}.

Then/_\_/
a) MLz, [[g]] is exp((g ® mg) ) — invariant
b) a* : Defz,[[gl] := MEz,[[gl]/ exp((g @ mx)?) — H

Proof. 1. First note that, given y € 97z, [[g]], we have that [y, y]is dk-exact and,
because of (4),

[y, yY1=dx Ok (y, vD.

Therefore
da(y) =dky + %dK Ok (y, vD =0.
Now we can first check that, given ¢ € (Z ® mg)D , we have
db(a) + %[b(a), b(a)] =0. 4)

Now (4) amounts to
1
d)/j = _E Z‘[Vr» ys],
r+s=j

and this can be shown recursively. It is certainly true for j = 1. Assume it is true
forl < j, then:

d Y v vsl= Y (dyr, vl =y, dys))

r+s=j r+s=j
1 1
=3 Y Y Wendnlts XY e il wld
r+s=j ptq=r rds=j t+u=s
== > ¥ vl vl
r+s+t=j

=0, Dby Jacobi identity.
Therefore,
b: (Z@mg)D — Mey,[[g]).

Then,

e 1
ab(a) = ) Bj=b(a)+ EQ([ga), b)) =«a.

j=1
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In fact,

1
Bi=vi+5 ) Oy %D

rts=j

1 1
=3 2 0y wD+aj+5 > Qv v =a,

r+s=j rt+s=j

o0
ba(y) =Y €j=y,
j=0

can be shown recursively. Definitely true for j = 1, assume it holds true for/ < j.
Then,

1 1
€ =—5 ) Qe &D+vj+5 Y, Oy v =v;

j i
2 rds=j r+s=j

. We can easily show by direct computation that:

a(x(my) =aly) +dQ(xmy —v).

Vice versa, given € € (g ® mx)© | we can construct recursively n € (g ® mg)©
such that,

a”(a +de) = x(ma~ (@),
ie.,
a+de=a+d0(x(ma (@) —a ().
Set n1 = €1 and assume 7; has been constructed for [ < j. Note that, in general,
Xy —y)j=A; —dnj,

where A; depends on y,, ng forO <r, s < j.
Therefore:

@dO(xmy —y)j=dQ(Aj) —dn;.
Thus choose n; = Q(A;) — ¢;.

. 1is clear.

Finally, if (g, [, ], d) is a DGLA, we have the following, easy to prove lemma:

Lemma 6. The following diagram is commutative:

Mez,[[g]] —— (Z @ mg)D

s J#

mezllgll —— (Z@mg)D

Moreover,

a*on*=a%*oa*

and analogous results hold true for 9%, provided || =0 inZ.
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Finally, note that, if we want to efficiently define a at the Z-level only, we just need
to replace (2) with
[g1, 911N Z> C Bos.

3 An example: A°°-algebras and deformation theory

As a first example of deformation space, we consider the following. Let (V = V© @
V)| d) be adifferentiable k-super vector space. We can extend d and the superstructure
to the tensor algebra T'(V). In particular,

e dR®S)=dR® S+ (-1)RIR®dS;
e if L € Homy(V®", V®5), then

dL=doL— (—D)*Lod
and
d(LoM)=dLoM + (—D)!*'L ocdM.

Set

CP(V) := Homy (V®P+D v,
and given R € CP(V), set

Rl = (IRl + p) mod 2.

Given R € CP(V), S € C4(V),1et[R, S] € CPT4(V) be defined as

p+1
[R, S]:= Z(_])P(k—l)R o (I®(k—1) ®RS® I®(([7+1—k)) +
k=1
q+1
— (—DIRISIN ™ (1yat=Dg o (10D @ R @ [O(a+1-0),
k=1
Then,
d[R, S1=[dR, S1+ (—=DIRI[R, ds]
and
cvy=crwy, 1, 14|,
PEZ
is a DSLA.

Let A(V) be the completion of C (V') and extend in an obvious way the DSLA struc-
ture to A(V). Let A*(V) be the sub DSLA of A(V) of elements with no components
in CO(V). Then,

a structure of A*-algebra on 'V is a solution of the MC equation in A*(V).

See [11] and [12] for examples of A°°-algebras related to complex and symplectic
geometry.
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4 Complex and holomorphic deformation theory

4.1 Preliminaries

Let

We consider the faithful representation,

o : glin, C) — gl(2n, R),

A+iB A-B
N = .
p ! B A

In the sequel, we shall identify
gl(n, C) with p(gl(n, C)) ={X € gl2n, R)| XJ, — J,X =0}.
Moreover,
gl@2n, R) = gl(n, C) @ s(n),
where
s(n) :={X egl@2n, R) | XJ, + J, X =0},

with projections
1
R : gl2n, R) — gl(n, C), X E(X—J,,X.In),

1
S :gl2n, R) — s(n), X — E(X—l—J,,XJn).

Let
MW(n) :={P € GLQ2n, R)| P> = —1I}.

Clearly,

e PeW(n) < P=AJA !,
e P=AJ,A"'=BJ,B"! < B 'AeGL(n, C).

Consequently,
W(n) =GL2n, R)/GL(n, C)
and
GL(2n, R) — W(n)

is a GL(n, C)-principal bundle with projection 7 (A) = AJ,A~!. In particular, there
exists a neighborhood U of J, and a section o over U, i.e, amapo : U —>
G L(2n, R) such that:
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a. o(y) =1,
b. forevery P € U, o (P)J,o(P)~! = P.

Moreover, since R(o(J,)) = I, if U is sufficiently small, then, for every P € U,
R((P)) € GL(n, C) and so 6(P) := o(P)(R(c(P)))~! is a section over U with
R((P)) = I. It is obvious that 6 is uniquely characterized by these conditions,
namely,

4 6(‘]7!) = 17

e R(O)P)=I.

In other words, every P € U can be expressed in a unique way as
P=U+L)J,I+L)~" with LJ,=—J,L. (5)

We can give a complete description of those elements in 20(n) which are expressible
as (5). Let

An) :={X € s(n) |det(I + X) # 0},
Bn) :={P € W(n) |det(I — J, P) # 0}.
Then, we have the following:
Lemma 7. Set
r(P):= (I —J,P)""(I + J,P).
Then r diffeomorphically sends P(n) into A(n)
Proof. Just note that
r(P) =2 —J,P) ' =1 =~ —PL)" '+ Py,
and that, clearly,
ri (L) = U +L)J,(I+L)"".

Note also that the elements P € 2J(n) are in one-to-one correspondence with
complex subspaces W of C2* = (R?")C, satisfying

C"=weaoWw. (6)

In fact, given P € 20(n), just set W = Vg’l; vice versa, given W satisfying (6), set
P=-ino tl_l, where

ne=pyw e W — R>,
= pyyy W — iR
Given W sufficiently close to V})n’ ! W can be described as the graph of a C-linear map
L : V})n’l — V}n’o (and so LJ, = —J,L). Consequently,
W={U+L)X+i(I+L)JX|X eR™},
and the corresponding element of W (n)is P = (I + L)J,(I + Ly~
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4.2 Starting deformation theory

Let (M, J) be a complex manifold and let (M) be the Lie algebra of smooth vector
fields on M. Given X, Y € $H(M), set

0;X)(Y) = %([Y, X1+ JJY, X1+ 1JY, JX] - JIY, JX])
1 1 ™
= 5([Y, X1+ JIJY, X)) — ZNJ(Xa Y),
where, as usual,
Ny e AV (M) @ TM,
defined as
N;X,Y)=[JX,JY]-[X, Y]-J[JX, Y]-J[X, JY],
is the Nijenhuis tensor of J and
Njy=0 <= J is integrable.
Then we have:
e XxenY oM,
o 9;JX=J03;X,ie.,0;J =0.
Note also that, given f € C*°(M, C), then

- 1
@) f(X, ¥) = _g(NJ(X» Y)—iJNj(X, Y))f.

Let (M, J) be a holomorphic manifold and set

e g=A:=rY"M)TM,

o [X,Y]=[XxY]:= %([X, Y]-[JX, JY],for X, Y € H(M).
A straightforward computation shows that [ * ] is a Lie algebra bracket (note that
for a general complex structure J , we have:

SX*x[Y*xZ]] = %G[JN, N;y(JY, 2))),
o d= 51 where, now, for X, Y € 9,
- 1
0;X)(Y) = 5([Y, X1+ J[JY, X).

Then:
1. Define | ® X| := || and so,

A=P A,

PEZ
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where

APP(M)®TM, if0<p=<n,

0, otherwise.

Apz

2. Extend [*] to A in the following way:
a) if L € /\(}’1 (M) ® TM, define [L * L] by means of the formula

[L* L)X, Y) =[L(X)* L(Y)] = L(ILX) * Y]+ [X * L(Y)]
— L([X = Y]);

b) given R, S € /\J (M)®TM define [R * S] by polarization, i.e.,
1
[R*S]:= 5([R+S>|<R+S]—[R*R]—[S*S]);

) givena € AJ(M), B € A% (M), define
[@AR*BAS]I:=(=DIaABA[R*S];

d) extend to the general case by bilinearity.

91

Note that, in terms of local complex coordinates z1, . . ., Z,, under the identification

1
™ «— T'OM, X «— E(X—iJX),

we have that, given R € A, , S € A,

R= erﬂdm@—zz ai

j=11=p
5= % s,Kda@—:Z ai
J=11K|=q Jj=1
Then,

1 ad ad ad
R x S = E ri AN —s1 — (—1 qu./\ r ® ,
[ ] 1<] 3ij ( ) / 3Zj k) 3Zk

where, of course,

0 ad _
— Sk = Z —skkdik,
K=¢ °%J

(see e.g. [8]).
3. Extend 9 to A by setting

@®X)=d;a® X+ (—D%a A d;X.
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Then (A, [*], d;) isaDGLA; note that Ay = $H(M) and, consequently, exp(Ap),
is the connected component of idy in Diff(M). Let J be another complex structure on
M with det (I — JJ) # 0. Then we can write in a unique way,

J=AJAT!,
with
A=1+L and LJ+JL =0,
ie.,
LenAY'MyeTM.
A tedious but straightforward computation yields the following
Lemma 8. Let L, A, J be as before and let
p(A) == (A ' Q@ A € Aut(T*M ® TM).

Then:

o p7NAN;=—4@sL + 3L *LD);
o pl(A)odjop(A)=20;+[Lx],

Le,onTM:

o AT'NF(AX, AY) = —4@,L + L[L x L1(X, )),
o AT'0;AX)(AY) = (3, X)(Y) + [L * X1(Y).

Proof. It is enough to consider the case
J=J,, AQ©) =1 (ie., L(0) =0),
and perform the computations at 0.

Consequently,

e (37)r =3y +[L *-] corresponds to éj ;

o LeMey(A),det(I+L)#0, <, J=I+L)JUI+L)"is a holomorphic
structure and so L +— (I 4+ L)J(I + L)~! establishes a bijection:

ME (A) :={L € MEy(A) |det (I + L) # 0}
\
{holomorphic strucures Js.t.det(I —JJ) # 0};

e two exp(Ap)-equivalent elements of M€z (A) correspond to diffeomorphic holo-
morphic structures.

We have also the following, easy to prove
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Lemma9. Let L, A, J be as before. Then, on A(;’*(M ) we have
p~H(A)odjop(A) = 8+ LAdy,
where, more generally,
0, s 0, , 0,
A AP @ T)OM) x (A (M) © A M)y — AN (M)

is defined by means of the duality pairing.

Lemma 9 suggests the possibility of considering operators on /\(J)’* (M) of the form:

o dja+ L Adja,

with

T+

("'
Len™uneTM, L L, with L,enry*"'m,

I
7+

1

=
I

possibly with L; = 0, i.e., including L; into a new J on the basis of Lemma 8.
Therefore, we can set the following:

Definition 9. A supercomplex (resp. superholomorphic) structure on M is the datum
J = (J, L) of a complex (resp. holomorphic) structure J on M and L € AD =
ASM) @ TM.
Given a superholomorphic structure 7 = (J, L), set, on /\(}’*(M ):
S, =G 4L AD.
Clearly T is a parity one derivation and

= .z l -
T —(3]L~|—2[L>kL])/\(a+L/\3J).

Moreover, T extends to A as
T=0;+[L=* -],
and it satisfies

Te®X)=Ta® X + (=)o A TX,

for X € Ay, a € A(}’*(M ). Clearly T reflects the Z,-deformation theory of A. Thus,
in particular, we have

-\ - 1
T=0 < 81L+§[L*L]=0,
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which gives by lemma 1,
= 1
asLy + E[Ll *L1] =0,

ie.,
Ji=U+L)JUI+L)"

is holomorphic. This leads to a superholomorphic structure J =(J, L)with L; = 0.
Note that:

e if n = 2, then superholomorphic structures coincide with complex structures (be-
cause L = L),
o ifn=3,thenL =L+ L, and

_ 1 - 1
3JL+§[L*L]=O = 3JL1+§[L1*L1]=0,
and so, assuming L; = 0, we obtain for
o€ A(;’*(M), a=oay+o +ar+a3, with o) € /\(}’p(M) 0<p<3:

9500 = 0,
;[Ol=0 — 5]0(1:0,

5]0(2+L2/\3]O(0 =0.

4.3 A very simple example

Let M = T?" = (C”/ZZ” and let 7 = (J, L), where

o J=Jsa,

o L=3" 0oLy, Lp=3_y > 11=2p—195;d2} ® % . aj; €C.

Clearly,

5 Symplectic deformation theory
5.1 Preliminaries

Let (V, k) be a 2n-dimensional symplectic vector space. Define the symplectic Hodge
operator

* A | VAN /\2n—r V*
by means of the relation,
Kn
a Ak B =k, ,B)F,

a, B € A"V*. Itis easy to check that *2=1.
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Consider the following endomorphisms of A*V*:

o L:ar kA«
A= —% L,
H =Y —r)p,, where

pr i AV — ATV
is the natural projection.
It is easy to check that
[L, Al=H, [L, Hl=-2L, [A, H] =2A,

and so A*V* has the natural structure of the s[(2, C)-module.
We have

Lemma 10. For 0 < p <n,
LP : A"TPVE s APV
is an isomorphism and so, in particular, for 0 < p < n,
L:APVF — APT2y
is injective.
We have also

Lemma 11. Let 0 < p < n.

o Ifa € APV™ then

K (@ AK"P) = (=1)2PP D — p)l@ + Aa A k).

p! _
=
For every A € End(V), we define T A € End(V) by means of the relation
K(Av, w) = kv, T Aw).
Let,

Sc(V):={A € End(V)|A=TA},
SHV) = Se(V) N Aut (V).

We can immediately check that

AeSHV) = Al'eSHV).

95

®)

9
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Clearly, given A € S, (V),
ka(v, w) :=k(Av, w)
defines an element of A2V * and
fe 0 Se(V) —> A2V A > ka,
is a bijection sending S, (V) into symplectic forms.

Let i now be a symplectic form on V. Then there exists a uniquely defined A €
S, (V) §2 such that:

=1
I
=

>

Consequently, if a, B € A"V*, then,
ik(a, B) =k (p(Aa, B) =«k(a, p(A)B),
where, as before,
PAYC A AG) = Ao A A (A g
Moreover,

IZ" — enAKrz

’

where A = A(A) = - log|det Al.
Therefore, if J is the symplectic Hodge operator with respect to ¥, we have

a Ak B =Kk(a, ﬁ)% =k (c, e")‘p(A),B)% =a Ak p(A)B,

and so, setting C = C(A) := " p(A), we have
*=%kC=C"%.
Let (M, k) be an almost symplectic manifold. Set
d* = (1) T kd%k,
on r-forms. Clearly, (d*)?> = 0 and if & is another almost symplectic structure, then
d* = c7la*c.
We have the following
Lemma 12. Let (M, «) be an almost symplectic manifold. Set

o =L, d¥].
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Then the following facts are equivalent:

1. dk = 0, i.e., k defines a symplectic structure on M;

2.0 =d;
3.0:=[d, Al—d*=0;
4.[d, d*]=0;

5. 0, is a differential, i.e., it is a derivation of parity 1 and O,% =0.

Proof. Note first that 2. and 3. are obviously equivalent and that Q is C°°(M)-linear
(cf. [4]);

1. = 3. It is a basic symplectic identity (cf. [4]).

3. = 1. From Q = 0, it follows

a. 0= Q/cn = [d, Alk" = dAk™. Now,
Ak = —k Lk = —nl¥x = —nx" 1,

and so,
0k =0 = A1 =0, ie., d* =0.

If n = 2, there is nothing else to prove, otherwise,
b. 0= 0« =[d, Ak = —Adk.
c. From [a.] we obtain,

Ok ' =1d, A" —d®" ' = dac" — a*e L

Now,
AR = KL = —(n = Dl = =201 — D2,
From (8), it follows
d*k" ' = —kd k" = —(n — Dlkdk = (n — 1)(n — 2)dx A k"3,
Finally,
Ok" ' = —2(n— Ddc" 2 = (n — D(n — 2)dk A" 3

=—3(n — D)(n —2)dk Ak" 7,
and thus, by Lemma 10, Qx"~! = 0 gives dx = 0.
1. —=4.
[d, d*=[d. [d, A]l = [[d. d]. A] — [d. [d, A]] =0.
4. — 1. Let f € C°°(M). Then
Qdf = —d*df

and so
[d,d*¥]=0 = Q=0o0n A' (M).

Leta € AN (M) s.t. d*a =0 (and so Ada = 0) Thus, again using (8), we obtain:
d*da =0 = —kdk(da) = (n — 2) 1% (da A d" ),

which gives dk 2 = 0 and so dx = 0.
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1. = 5. It is now obvious.
5.=2.If f € C®(M), thend, f =df — fd*k and so

0, is a derivation — 0%l=0 — d*ic = 0.
Thus if 0, is a derivation, it coincides with d on functions and, since it satisfies 0,2( =0
itisd.
5.2 Starting deformation theory once more
Let (M, k) be a compact symplectic manifold. Therefore,
Sym (M) := {simplectic forms on M},
is not empty. Set,
Sym(()K)(M) = {k € Sym(M) | k" = const.k"}.
By Moser’s lemma,
Sym(M) = Ditf(M)Sym$" (M).

It is well known that (A* (M), d* d)is adGBYV algebra, and so, in particular, for every
a € A*(M) defining,

To 1 AY(M) — A*(M),
as
ToB = (=DIa* @ A B) — (=DMd*a A B — o A d*B,
we obtain

1. Ty is a derivation,
2. setting [« @ B] := Tl B, we obtain that (A*(M), [e], d) is an odd dGLA.

Let k¥ now be another almost symplectic structure on M. Write K (X, Y) =
k(AX, Y) and &" = ™ k™. Then,

Co.C ' =C[L, &&)c~' = [CcLCc™!, a*].

Now

CLC™" = p(A)Lp(A) ™ = e(p(A)i),

where, for any y € A*(M), we denote by e(y) the left multiplication by y, i.e.,
e(y)(@) = y A a. Note also that p(A)R(X, ¥) = k,-1(X, ¥) =k (A7'X, V).
Write p(A)R = k — € and assume d*p(A)R = 0, i.e., d*e = 0. Thus

CLC™' =[L, d*] —[e(e), ¥ =d + ..
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Consequently, defining MC : A*(M) — A*(M) as
1
MC(a) :=da + E[a o],
we obtain
2=0 < MC(e)=0 < di =0.

Note also that

d*p(A)k =0

*ii =0

Vice versa, given € € Kerd*N A%(M), with det (57 (k — €)) # 0, let & be defined by
the equation,

— M(A) = const.

p(AK =Kk — €.

If MC(e) = 0, then, again, 92 = 0 and s0 k¥ € Sym(()K)(M) )
Note once more that, given k almost symplectic, by Moser’s lemma, there exists
¢ € Diff(M) such that & := ¢* (k) satisfies £" = e «" with A = const.
Summarizing, let (M, «) be a symplectic manifold and let

A= (Kerd*m ey /\p(M)> [1],
p>0
where, as usual, [1] is the degree —1 shift. Consequently,
APH(M)NKerdX if0<p<2n—1,
A, = .
0, otherwise.

Therefore, (A, [o], d) is the dGLA that governs the deformation theory of the sym-
plectic structure «. In particular, if

ME(A) :={e € A1 | MC(e) =0},
and
ME*(A) = {e € ME(A) | det (5, (k — €)) # 0},
then,
A [—AT
induces a bijection,
Symi (M) «— IME*(A).
Note that, if
Diff (M) = {¢ € Diff(M) | ¢* (k") = k" , ¢ is isotopic to the identity},

then the action of Dift[j(M) on A2(M) corresponds to the action of exp(A(O)) on
ME*(A). In fact, given X € H(M), then
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1.
d*#.(X) = div X;

2. on A" (M), we have
ix = (=1) kel (X)) %k
and, consequently, on A
*Lxkx = Ty (x);

3. exp(X) € Diffg (M) sends d to ad (3k p ((exp(X).) % )d and so the infinitesimal action
is

o = kLyka =Ty x)o = [#c(X) e ].
Consequently,
ME*(A)/ exp(Ao)

is the moduli space of (infinitesimal) constant volume deformations of the symplectic
structure «.

We want to show now that the theory is totally unobstructed.

Let (M, k) be a compact symplectic manifold, and assume

/K”:l.
M

Let i be an almost symplectic form, and let

e ::/ " > 0.
M

/ (e“x)" = /E”,

M

and so, by Moser’s lemma, there exists ¢ € Diff(M) s.t.

Then,

[¢"()]" = " k™.
Letnow o € A2(M),da = 0. Set k; := k + ta. Let t > ¢; be a smooth curve in
Diff(M) s.t.

1. ¢o =idy,
2. ¢+*(x) has constant volume density, i.e.,

o (k') = O
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Now,
e"c® =/ o/ (k] 2/ K/ =1+nt/aAK"_l +o(1).
M M
Write
1
o =——Aak + B, with AB=0 ie., BAk" 1 =0.
n
Therefore,

10 =1 —t[ Aak™ +o(1).
M
Now let X € $H(M) s.t. its associated flow {%X} satisfies

d X\* _ d *
E(% ) (ki) ji=0 = qu’ (k1) |1=0-

Consequently,

d
— ¢ (kD=0 = Lxk" + no A K" = —qi”,

dt
:/ Aak”,
M

1
n (a +dy + —q/c) A" =0,
n

where

and thus, if y = #,(X),

ie.,
1
Ala+ —gk+dy | =0,
n
and so

d*a +dy) =0.

Note that, if Ao = const (i.e., d*a = 0), then

1
A<a+—qx> =A0l—/ Aax" =0,
n M
and so Ady = 0 and d*y = 0. Finally,
d X%
_(w; ) (Kt)|t:() =o+dy,
dt
and so ¢t > k; corresponds to a curve in 9ME(A), with tangent o + dy at 0.

It is clear that, if we consider the underlying Z,-deformation theory, we are led to
the notion of supersymplectic structure.
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Definition 10. A supersymplectic structure on the 2n-dimensional differentiable man-
ifold M is the datum of

n
KGACVGH(M), KZZKP’ KPE/\ZP(M),lfpST’l
p=1

such that:

1. k" #0,1e., /ci’ #+0,
2.dk =0,ie.,dky =0,1<p <n,
3. d% = 0,ie., d*Kp =0, 1 < p < n, where % is computed with respect to «.

Therefore, if k is a supersymmetric structure on M, then « is a simplectic structure.
Vice versa, from a symplectic structure k1, we can always construct a supersymplectic
structure, just setting

n
— P
co= Yl
p=1

Note that, in general, the DSLA (A, d) does not satisfy the condition of lemma 4
(because, in general, the dGBV algebra (A, d*, d) does not satisfy the dd*—lemma).
Therefore, in contrast with the Z-case, we cannot conclude that the theory is totally
(formally) unobstructed; this is true whenever the symplectic manifold (M, k1) satisfies
the Hard Lefschetz Condition (cf. [2], [9], [10], [4], [13]).
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