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1 Curvature theory

In the scientific work of L. Vanhecke, the notion of curvature is never more than a step
away, if not studied explicitly. This is only right, since, in the words of R. Osserman,
“curvature is the central concept (in differential geometry and, more in particular, in
Riemannian geometry), distinguishing the geometrical core of the subject from those
aspects that are analytic, algebraic or topological”. The reason for this can be seen as
follows:

— if we equip a differentiable manifold M with a metric g, then its curvature is
completely determined. If the metric g has nice properties (e.g., a large group of
isometries), then this is reflected in a ‘nice’ curvature;

— conversely, we can often deduce information about the metric from special prop-
erties of the curvature. In some cases, knowledge about the curvature even suffices
to completely determine the metric (at least locally). Locally symmetric spaces are
the prime example here: they are distinguished from non-symmetric spaces by their
parallel curvature and, starting from the curvature, one can reconstruct the manifold
and its metric (locally).

The curvature information is contained in the Riemannian curvature tensorR. This is an
analytic object, a (0, 4)-tensor which is not easy to handle, in general, despite its many
symmetries. It is often very difficult to extract the geometrical information which is,
as it were, encoded within. For this reason, the famous geometer M. Gromov calls the
curvature tensor “a little monster of multilinear algebra whose full geometric meaning

Key words: geodesics, unit tangent bundle, curves with constant or vanishing curvatures.
Subject Classifications: 53C22, 53C35, 53B20.



16 E. Boeckx

remains obscure”. One therefore works not only with the curvature tensor R itself, but
with other forms of curvature or related operators as well, which have a more direct
geometric interpretation or which are easier to deal with. We mention the sectional
curvature, the Ricci curvature, the scalar curvature and the Jacobi operators. However,
not all of these contain the same amount of curvature information. Curvature theory
has as its explicit aim the shedding of light on the interplay between the curvature
of a Riemannian manifold and its geometric properties, in spite of the difficulties
mentioned before.

The study of manifolds from the point of view of curvature has two complemen-
tary aspects, roughly corresponding to the two passages: from the metric (and all the
geometry that it entails) to the curvature and from the curvature to the metric.

1. Direct theory. First, one looks at ‘simple’ manifolds. By this we mean Riemannian
manifolds with a high degree of symmetry and hence with a relatively easy curvature
tensor. In some cases, one can even write it down explicitly. As examples of such spaces,
we mention locally symmetric spaces, homogeneous spaces and two-point homoge-
neous spaces. One studies their geometric properties, which are often generalizations of
properties from classical Euclidean geometry. In particular, one also studies associated
objects like small geodesic spheres, tubes about curves and submanifolds, tangent and
unit tangent bundles, special transformations, . . .

2. Inverse theory. Next, one compares more general manifolds with one of these ‘sim-
ple’ spaces: one takes the latter as a model and investigates which of its properties (or
those of its associated objects) are characteristic for the model space. In other words:
can one recognize the model space based on those specific properties? If not, one tries
to find a complete classification of Riemannian manifolds with those properties. The
technical details at this stage differ considerably from those in the direct theory. In-
deed, for general manifolds, no explicit description of the curvature is available. Further,
quantities such as, e.g., the volume of small geodesic spheres and balls can no longer
be written down in closed form. Instead, one often uses series expansions for these
quantities, the coefficients of which depend on the curvature. Geometric information
concerning, e.g., the volumes of the small geodesic spheres then lead to restrictions
on the curvature via the series expansions. In other situations, the geometric proper-
ties considered have natural consequences for the Jacobi operators or other forms of
curvature. In this way, one collects curvature information and hopes to be able to draw
conclusions from this concerning the metric. Curvature acts here as the bridge between
the geometric properties and the metric itself.

The contributions of L. Vanhecke to the field of curvature theory in the above spirit
are too numerous to specify and his influence on geometry and on geometers worldwide,
the present one included, can readily be discerned. In this note, I only intend to illustrate
the above program using the geometry of the unit tangent bundle as a showcase. On
this topic, I have worked for some years now, often in collaboration with L. Vanhecke
and other colleagues. For a survey of earlier results, see [5]. Here, I will concentrate on
two aspects of the unit tangent bundle: its geodesics and the question of reducibility.
The presentation will be rather brief. Full statements and proofs can be found in the
articles [1] and [3].



A Case for Curvature: the Unit Tangent Bundle 17

2 The unit tangent bundle

We first recall a few of the basic facts and formulas about the unit tangent bundle of a
Riemannian manifold. A more elaborate exposition and further references can be found
in [4].

The tangent bundle TM of a Riemannian manifold (M, g) consists of pairs (x, u)
where x is a point in M and u a tangent vector to M at x. The mapping π : TM →
M : (x, u) �→ x is the natural projection from TM onto M . It is well-known that the
tangent space to TM at a point (x, u) splits into the direct sum of the vertical subspace
V TM(x,u) = ker π∗|(x,u) and the horizontal subspace HTM(x,u) with respect to the
Levi Civita connection ∇ of (M, g): T(x,u)TM = V TM(x,u) ⊕HTM(x,u).

For w ∈ TxM , there exists a unique horizontal vector wh ∈ HTM(x,u) for which
π∗(wh) = w. It is called the horizontal lift of w to (x, u). There is also a unique
vertical vector wv ∈ V TM(x,u) for which wv(df ) = w(f ) for all functions f on M .
It is called the vertical lift of w to (x, u). These lifts define isomorphisms between
TxM and HTM(x,u) and V TM(x,u) respectively. Hence, every tangent vector to TM
at (x, u) can be written as the sum of a horizontal and a vertical lift of uniquely defined
tangent vectors toM at x. The horizontal (respectively vertical) lift of a vector field X
onM to TM is defined in the same way by liftingX pointwise. Further, if T is a tensor
field of type (1, s) on M and X1, . . . , Xs−1 are vector fields on M , then we denote
by T (X1, . . . , u, . . . , Xs−1)

v the vertical vector field on TM which at (x,w) takes
the value T (X1x, . . . , w, . . . , Xs−1 x)

v , and similarly for the horizontal lift. In general,
these are not the vertical or horizontal lifts of a vector field onM .

The Sasaki metric gS on TM is completely determined by

gS(X
h, Y h) = gS(Xv, Y v) = g(X, Y ) ◦ π, gS(X

h, Y v) = 0,

for vector fields X and Y onM .
Our interest lies in the unit tangent bundle T1M , which is the hypersurface of TM

consisting of all tangent vectors to (M, g) of length 1. It is given implicitly by the
equation gx(u, u) = 1. A unit normal vector field N to T1M is given by the vertical
vector field uv . We see that horizontal lifts to (x, u) ∈ T1M are tangents to T1M ,
but vertical lifts in general are not. For that reason, we define the tangential lift wt

of w ∈ TxM to (x, u) ∈ T1M by wt = wv − g(w, u)N . Clearly, the tangent space
to T1M at (x, u) is spanned by horizontal and tangential lifts of tangent vectors to M
at x. One defines the tangential lift of a vector field X on M in the obvious way. For
the sake of notational clarity, we will use X̄ as a shorthand for X − g(X, u)u. Then
Xt = X̄v . Further, we denote by V T1M the (n−1)-dimensional distribution of vertical
tangent vectors to T1M .

If we consider T1M with the metric induced from the Sasaki metric gS of TM , also
denoted by gS , we turn T1M into a Riemannian manifold. Its Levi Civita connection ∇̄
is described completely by

∇̄Xt Y t = −g(Y, u)Xt ,

∇̄Xt Y h = 1

2
(R(u,X)Y )h, (1)
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∇̄XhY t = (∇XY)t + 1

2
(R(u, Y )X)h,

∇̄XhY h = (∇XY)h − 1

2
(R(X, Y )u)t ,

for vector fields X and Y onM . Its Riemann curvature tensor R̄ is given by

R̄(Xt , Y t )Zt = g(Ȳ , Z̄)Xt − g(Z̄, X̄) Y t ,

R̄(Xt , Y t )Zh = (R(X̄, Ȳ )Z)h + 1

4
([R(u,X), R(u, Y )]Z)h,

R̄(Xh, Y t )Zt = −1

2
(R(Ȳ , Z̄)X)h − 1

4
(R(u, Y )R(u,Z)X)h,

R̄(Xh, Y t )Zh = 1

2
(R(X,Z)Ȳ )t − 1

4
(R(X,R(u, Y )Z)u)t

+ 1

2
((∇XR)(u, Y )Z)h, (2)

R̄(Xh, Y h)Zt = (R(X, Y )Z̄)t

+ 1

4
(R(Y,R(u,Z)X)u− R(X,R(u,Z)Y )u)t

+ 1

2
((∇XR)(u, Z)Y − (∇YR)(u, Z)X)h,

R̄(Xh, Y h)Zh = (R(X, Y )Z)h + 1

2
(R(u,R(X, Y )u)Z)h

− 1

4
(R(u,R(Y,Z)u)X − R(u,R(X,Z)u)Y )h

+ 1

2
((∇ZR)(X, Y )u)t ,

for vector fields X, Y and Z onM .
From these formulas, it is clear how the curvature of the base manifold interferes

in the geometry and the curvature of the unit tangent bundle. Conversely, we will be
able to ‘translate’ information on the unit tangent bundle to the base manifold using
these formulas. This should not surprise us, as the metric structure on the base manifold
completely determines that of the bundle.

3 Geodesics on the unit tangent bundle

As a first illustration of the role of curvature in geometric problems, we are interested in
geodesics of the unit tangent bundle. Any curve γ (t) = (x(t), V (t)) in the unit tangent
bundle can be considered as a curve x(t) in the base manifoldM , together with a unit
vector field V (t) along it. The geodesic equation in (T1M,gS) can be readily deduced
from the formulas (1) for the Levi Civita connection. We find that γ (t) = (x(t), V (t))
is a geodesic of (T1M,gS), if and only if



A Case for Curvature: the Unit Tangent Bundle 19

∇ẋ ẋ = −R(V,∇ẋV )ẋ, (3)

∇ẋ∇ẋV = −c2V,

where c2 = g(∇ẋV ,∇ẋV ) is a constant along x(t). (See, e.g., [9].)
For general Riemannian manifolds, it is hopeless to try and solve the system of

differential equations (3). For ‘simple’ base spaces, however, some results can be
obtained. For two-dimensional base spaces, a full solution was given in [7]. When
the base manifold is a space of constant curvature c, the curvature can be written as
R(X, Y )Z = c (g(Y, Z)X − g(X,Z)Y ) and the equation (3) becomes much simpler.
S. Sasaki ([10]) has explicitly determined all geodesics in this setting. As a side-result
of his description, we state

Proposition 1. If (Mn, g) is a space of constant curvature and γ (t) = (x(t), V (t)) is
a geodesic of (T1M,gS), then the projected curve x(t) = π(γ (t)) inMn has constant
curvatures κ1 and κ2 and vanishing third curvature κ3.

For a locally symmetric base manifold, P. Nagy showed a result in the same spirit
in [8].

Proposition 2. If (Mn, g) is a locally symmetric space and γ (t) = (x(t), V (t)) is
a geodesic of (T1M,gS), then the curve x(t) in M has constant curvatures κi , i =
1, . . . , n− 1.

The proofs for both propositions are based on the same idea. Since both |γ̇ |2 =
|ẋ|2 + |∇ẋV |2 and |∇ẋV |2 = c2 are constant, we can reparametrize γ (t) (and x(t))
so that |ẋ| = 1. Hence we can take T = ẋ as the first vector in the Frenet frame
{T ,N1, . . . , Nn−1} along x and we have for the first three covariant derivatives of ẋ:

ẋ(1) = ∇ẋ ẋ = κ1N1,

ẋ(2) = ∇ẋ∇ẋ ẋ = −κ1
2 T + κ ′

1N1 + κ1κ2N2, (4)

ẋ(3) = ∇ẋ∇ẋ∇ẋ ẋ = −3κ1κ
′
1 T + (κ ′′

1 − κ1(κ1
2 + κ2

2))N1

+ (2κ ′
1κ2 + κ1κ

′
2)N2 + κ1κ2κ3N3,

and similar expressions for the higher order derivatives ofx. On the other hand, using (3),
we can calculate

ẋ(1) = −R(V, V̇ )ẋ,
ẋ(2) = −(∇ẋR)(V , V̇ )ẋ + R(V, V̇ )2ẋ, (5)

ẋ(3) = −(∇(2)ẋẋ R)(V, V̇ )ẋ + (∇R(V,V̇ )ẋR)(V, V̇ )ẋ
+ 2(∇ẋR)(V , V̇ )R(V, V̇ )ẋ + R(V, V̇ )(∇ẋR)(V , V̇ )ẋ
− R(V, V̇ )3ẋ,

where we have put V̇ = ∇ẋV for simplicity. Again, similar expressions can be derived
for higher order derivatives of x. In particular, for a locally symmetric base space, this
leads to the simple formula
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ẋ(k) = (−1)kR(V, V̇ )kẋ.

It is easy to see from this formula that ẋ(k) has constant length for all k. Combining this
with the corresponding formulas (4) for arbitrary ẋ(k), k = 1, . . . , n − 1, one proves
by induction that all curvatures κi are constant. The vanishing of κ3 for base spaces of
constant curvature is a consequence of the special form of the curvature tensor.

Both propositions above are examples of direct results. In [1], we have looked at
possible converses, at indirect results. We comment on the role of curvature in this
context.

As concerns the converse of Proposition 2, we note that explicit expressions can be
given for the curvatures κi in terms of the curvature tensorR and its covariant derivatives
via (4) and (5). However, these expressions quickly become rather complicated and of
little practical use. For this reason, we only consider the case where the first curvature κ1
is constant. For this function, we find the expression

κ1
2 = g(R(V, V̇ )ẋ, R(V, V̇ )ẋ). (6)

Taking the covariant derivative along x(t), we find

Proposition 3. Let (M, g) be a Riemannian manifold. Then for any geodesic γ of
(T1M,gS), the projected curve x = π ◦ γ has constant first curvature κ1 if and only if
the curvature condition

g((∇YR)(V,W)Y,R(V,W)Y ) = 0, (7)

is satisfied for all vector fields Y , V andW onM .

The curvature condition (7) is the starting point for our search for a possible converse
to Proposition 2. It implies several conditions on the Jacobi operators Rσ = R(· , σ̇ )σ̇
along geodesics σ on (M, g):

1. the eigenvalues of Rσ are constant along σ for each geodesic σ of (M, g), i.e., the
manifold (M, g) is a C-space;

2. the operator Rσ 2 is parallel along each geodesic σ of (M, g).

In the literature, a lot of results on the Jacobi operator can be found. Using those,
we can obtain converse statements to Proposition 2 for several classes of Riemannian
manifolds, but so far not for the general case. For the precise statements, we refer to [1].

Next, we consider a converse of Proposition 1. We will look more generally at
spaces (M, g) for which projections of geodesics on (T1M,gS) have vanishing curva-
ture κ1, κ2 or κ3.

The case κ1 ≡ 0 is easily dealt with. From (4) and (5) we see that the base manifold
must necessarily be flat.

Next, suppose that κ2 ≡ 0 for every projected geodesic. Comparing the two different
descriptions of ẋ(2), we find

Proposition 4. Let (M, g) be a Riemannian space. Then any geodesic γ of (T1M,gS)

projects to a curve x ofM for which κ2 ≡ 0 if and only if
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R(V,W)2Y = −|R(V,W)Y |2 Y, (8)

|R(V,W)Y |2 (∇YR)(V,W)Y = g((∇YR)(V,W)Y,R(V,W)Y )R(V,W)Y, (9)

for all vector fields V ,W and Y onM with |Y | = 1.

In this way, we have again translated the original geometric data about geodesics
of (T1M,gS) into a curvature condition on (M, g). In particular, it follows from (9)
that every Jacobi operatorRσ on (M, g) has parallel eigenspaces along the geodesic σ ,
i.e., (M, g) is a P-space. Since the only Riemannian manifolds which are both C- and
P-spaces are the locally symmetric ones (see [2]), we find

Proposition 5. Let (M, g) be a Riemannian space and suppose that any geodesic γ
of (T1M,gS) projects to a curve x of M with constant κ1 and vanishing κ2. Then
(M, g) is locally symmetric.

Restricting now to locally symmetric base spaces, we can prove

Theorem 6. Let (M, g) be a non-flat locally symmetric space and suppose that any
geodesic γ of (T1M,gS) projects to a curve x inM with vanishing second curvature κ2.
Then (M, g) is two-dimensional.

The proof of this result uses different techniques. First, one shows that the rank
of the universal covering (M̃, g̃) of (M, g) must be one. For this, we use the root
space decomposition of the Lie algebra corresponding to a representation G/H of M̃
as a homogeneous space. The condition (8) is fundamental here. In a second step, we
show easily that no four-dimensional locally irreducible symmetric spaces exist which
satisfy (8). Finally, we use the classification by B.-Y. Chen and T. Nagano of maximal
totally geodesic submanifolds of rank-one symmetric spaces ([6]) to finish the proof.

To treat the case of vanishing third curvature κ3 ≡ 0, we restrict at once to locally
symmetric spaces.

Proposition 7. Let (M, g) be a locally symmetric space. Then any geodesic γ of
(T1M,gS) projects to a curve x inM for which κ3 ≡ 0, if and only if

R(V,W)3Y + (κ1
2 + κ2

2) R(V,W)Y = 0, (10)

for all vector fields V , W and Y on M . The coefficient κ1
2 + κ2

2 only depends on V
andW , not on Y . Its value is given by

κ1
2 + κ2

2 = |R(V,W)2Y |2/|R(V,W)Y |2,
for any Y such that R(V,W)Y �= 0.

Again using a mixture of Lie group theory and results on totally geodesic sub-
manifolds in symmetric spaces, we are able to prove from this curvature condition the
following converse to Proposition 1.

Theorem 8. Let (Mn, g), n ≥ 3, be a locally symmetric space such that the projec-
tion x = π ◦ γ of any geodesic γ of (T1M,gS) has vanishing third curvature κ3. Then,
(Mn, g) is either a space of constant curvature or a local product of a flat space and
a space of constant curvature.
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4 Reducibility of the unit tangent bundle

As a second illustration of the programme set out in the first section, we consider
the question: when is the unit tangent bundle of a Riemannian manifold reducible?
In answering this question, the curvature tensor will again be the main actor, even if
completely different techniques are needed compared to the ones used in the preceding
section. On the whole, the answer to the above question requires a lot of calculations,
but the underlying ideas are very simple. We will outline the argument and refer to [3]
for the technical details.

The existence of a local decomposition implies some special behavior of the Rie-
mann curvature tensor. Indeed, any curvature operator R̄(U, V ) acting on a vector
tangent to one of the components gives again a vector tangent to the same component.
In particular, if in the expression R̄(U, V )W , one of the vectors U,V,W is tangent
to one component and another vector to the other component, then R̄(U, V )W will
necessarily be zero. This is a very simple consequence of reducibility which is by no
means equivalent to the existence of a local product decomposition. Still, it will bring
us very far, as we will see. An additional advantage is that the curvature condition is a
pointwise condition and no knowledge about covariant derivatives is needed.

Suppose first that, at a point (x, u) of T1M , the tangent space to one of the factors,
say to M1, contains a non-zero vertical vector Xt , X ∈ TxM and X orthogonal to u.
Then it holds

R̄(Y t , Xt )Xt = g(X,X) Y t − g(X, Y )Xt ∈ T(x,u)M1

for all vectors Y ∈ TxM . As a consequence, V T1M(x,u) ⊂ T(x,u)M1, andM1 is at least
(n−1)-dimensional. Hence, if at a point of T1M one of the factors contains a non-zero
vertical vector, it contains the complete vertical distribution at that point. We call the
decomposition vertical at (x, u) in such a situation. Note that this is the case as soon
as max{dimM1, dimM2} > n. So, the only possibility for the decomposition not to
be vertical at (x, u) is that dimM1 = n, dimM2 = n − 1 (or conversely) and neither
factor is tangent to a vertical vector. We call this a diagonal decomposition at (x, u).

4.1 Diagonal decomposition

Suppose for now that we have a diagonal decomposition T1M � M1 ×M2 at (x, u)
with dimM1 = n and dimM2 = n − 1. The following technical result allows us to
work with suitable bases for T(x,u)M1 and T(x,u)M2. Its proof uses the symmetries of
the curvature tensor.

Lemma 9. If T1M � M1 ×M2 is a diagonal decomposition at (x, u) with dimM1 =
n and dimM2 = n − 1, then there exist two orthonormal bases {X1, . . . , Xn} and
{Y1, . . . , Yn−1, u} of TxM and λ > 0, such that an orthogonal basis for T(x,u)M1 is
given by

X1
h + λY1

t , . . . , Xn−1
h + λYn−1

t , Xn
h

and an orthogonal basis for T(x,u)M2 is given by

λX1
h − Y1

t , . . . , λXn−1
h − Y tn−1.
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Note that the decomposition at (x, u) gives rise to two special orthonormal bases
of TxM .

Next, we express that R̄(U, V )W = 0, if U is one of the vectors in the above basis
for T(x,u)M1 and W one of the vectors in the basis for T(x,u)M2. This gives a list of
curvature conditions on (M, g). The ones we will need further on are given by

R(u, Yj )R(u, Yl)Xi + R(u, Yl)R(u, Yj )Xi = 4(δilXj − 2δjlXi + δijXl), (11)

R(u, Yj )R(u, Yl)Xn + R(u, Yl)R(u, Yj )Xn (12)

= −2g(R(u, Yj )Xn,R(u, Yl)Xn)Xn,

4R(Yl, Yj )Xi = R(u, Yj )R(u, Yl)Xi − R(u, Yl)R(u, Yj )Xi (13)

− 4(δilXj − δijXl),
4R(Yl, Yj )Xn = R(u, Yj )R(u, Yl)Xn − R(u, Yl)R(u, Yj )Xn, (14)

4R(Xi,Xj )Xl = 4(λ4 − λ2 + 1)

λ2
(δjlXi − δilXj ) (15)

+ R(u,R(Xj ,Xl)u)Xi − R(u,R(Xi,Xl)u)Xj
− 2R(u,R(Xi,Xj )u)Xl,

4R(Xn,Xj )Xl = 1

λ2
g(R(u, Yj )Xn,R(u, Yl)Xn)Xn (16)

+ R(u,R(Xj ,Xl)u)Xn − R(u,R(Xn,Xl)u)Xj
− 2R(u,R(Xn,Xj )u)Xl,

where i, j, k ∈ {1, . . . , n− 1}.
Two remarks are important here. First, if we can determine the operators R(u, Yl),

l = 1, . . . , n − 1, satisfying (11) and (12), then we can compute consecutively the
operators R(Yl, Yj ), l, j = 1, . . . , n − 1, from (13) and (14) and R(Xi,Xj ), i, j =
1, . . . , n− 1, from (15) and (16). The operators R(u, Yl) are therefore the most funda-
mental. (Note also that this gives two descriptions for the curvature operatorsR(V,W):
one in the basis {Y1, . . . , Yn−1, u} and another in the basis {X1, . . . , Xn}.) Second, the
conditions (11) and (12) remind one of the Clifford relations ei · ej + ej · ei = −2δij ,
though they are not quite right. Both remarks inspire us to study the operators R(u, Yl)
in some more detail.

From conditions (11) and (12), it follows readily that

R(u, Yl)
2Xl = 0,

R(u, Yl)
2Xi = −4Xi, i �= l,

R(u, Yl)
2Xn = −|R(u, Yl)Xn|2Xn.

Since R(u, Yj ) is skew-symmetric, the non-zero eigenvalues of R(u, Yj )2 must have
even multiplicity. Hence,

— if n is even, the eigenvalue −4 has even multiplicity n − 2 on {Xj ,Xn}⊥. Hence,
the eigenvalue corresponding to Xn must be zero. This implies R(u, Yj )Xn = 0
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for j = 1, . . . , n− 1. By (14), also R(Yj , Yk)Xn = 0 for j, k = 1, . . . , n− 1. We
conclude that Xn belongs to the nullity distribution of the curvature tensor Rx . In
this case, the conditions (12), (14) and (16) are trivially satisfied;

— if n is odd, the eigenvalue −4 has odd multiplicity n− 2 on {Xj ,Xn}⊥. The eigen-
value corresponding toXnmust then be −4 as well. So, it holds, |R(u, Yj )Xn|2 = 4,
for j = 1, . . . , n − 1. It even holds, |R(u, Y )Xn|2 = 4, for every unit vector Y
orthogonal to u and g(R(u, Y )Xn,R(u,Z)Xn) = 4g(Y, Z), for all vectors Y andZ
orthogonal to u. In particular, the right-hand side of (12) equals −8δjlXn. In this
case, conditions (12) and (14) are included in (11) and (13) if we allow the index i
to be n.

This indicates that the cases where n is even and those where n is odd will have to be
treated separately.

When n is even, consider the operators Ri , i = 1, . . . , n− 1, acting on V n = TxM
by

Ri = 1

2
R(u, Yi)− 〈Xn, · 〉Xi + 〈Xi, · 〉Xn,

where 〈 · , · 〉 = gx . One can show that they satisfy the Clifford relations

Ri ◦ Rj + Rj ◦ Ri = −2δij id. (17)

Hence, they correspond to a Clifford representation of an (n− 1)-dimensional Clifford
algebra on an n-dimensional vector space.

When n is odd, define the operators Ri , i = 1, . . . , n − 1, acting on V n+1 =
TxM ⊕ RX0 by

Ri = 1

2
R(u, Yi)− 〈X0, · 〉Xi + 〈Xi, · 〉X0,

where 〈 · , · 〉 = gx⊕g0 with g0(aX0, bX0) = ab. Again these satisfy the relations (17)
and we obtain a Clifford representation of an (n− 1)-dimensional Clifford algebra on
an (n+ 1)-dimensional vector space.

It is well-known, however, that the dimension of a Clifford algebra and that of a
module over it are closely related. (See, e.g., the table in [3].) In particular, it follows
that Clifford representations as above can only exist for dimensions n = 1, 2, 3, 4, 7
and 8. So, only for those dimensions for the base manifold (M, g) can a diagonal
decomposition exist for the unit tangent bundle. Moreover, the case n = 1 is irrelevant,
since a one-dimensional manifold is never reducible.

Finally, treating these remaining cases separately, one can show that the two de-
scriptions for the curvature tensor mentioned higher, one in the basis {Y1, . . . , Yn−1, u}
and the other in the basis {X1, . . . , Xn}, are incompatible, except when n = 2. Then,
the base manifold is necessarily flat. We conclude that diagonal decompositions for the
unit tangent bundle exist only for a flat surface as base space.

4.2 Vertical decomposition

Suppose now that we have a vertical decomposition T1M � M1 × M2 such that
V T1M(x,u) ⊂ T(x,u)M1 everywhere. In this situation, if (x, u) ∈ M1 × {q}, for some
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q ∈ M2, it holds that π−1(x) ⊂ M1 × {q}. Consequently, we have M1 × {q} =
π−1(π(M1 × {q})). So, the leaves M1 × {q}, corresponding to the product, project
under π to a foliation L1 on (M, g) and π−1(L1) = {M1 × {q}, q ∈ M2}. Let L1 be
the distribution on M tangent to L1. Define the distribution L2 to be the orthogonal
distribution to L1 onM . Then,

T(x,u)(M1 × {q}) = V TrM(x,u) ⊕ h(L1x), T(x,u)({p} ×M2) = h(L2x),

where h denotes the horizontal lift. In particular, we can describe the tangent spaces to
the factors of the (local) product using horizontal and vertical lifts. From the expressions
(1) for the Levi Civita connection, it is easy to deduce that also L2 is integrable,
with associated foliation L2 with flat leaves, and that (M, g) is locally isometric to a
Riemannian product M � M ′ × R

k where k = dimL2 ≤ n. Conversely, it is almost
immediate that a (local) decompositionM � M ′ ×R

k with k > 0 gives rise to a (local)
decomposition of (T1M,gS). This proves

Theorem 10 (Local version). The unit tangent bundle (T1M,gS) of a Riemannian
manifold (Mn, g), n ≥ 2, is locally reducible if and only if (M, g) has a flat factor,
i.e., (M, g) is locally isometric to a product (M ′, g′)× (Rk, g0) where 1 ≤ k ≤ n and
g0 denotes the standard Euclidean metric on R

k .

With a little more effort (not involving curvature), we can even show the corre-
sponding global result.

Theorem 11 (Global version). Let (Mn, g), n ≥ 3, be a Riemannian manifold and
suppose that (T1M,gS) is a global Riemannian product. Then, (M, g) is either flat or
it is also a global Riemannian product, with a flat factor.

Conversely, if (M, g) is a global product space (M ′, g′)×(F k, g0)where 1 ≤ k ≤ n
and F is a connected and simply connected flat space, then (T1M,gS) is a global
Riemannian product, also with (F, g0) as a flat factor.
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