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Oldřich Kowalski and Zdeněk Vlášek
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Summary. In this paper, we deal with 3-dimensional Riemannian manifolds where some condi-
tions are put on their principal Ricci curvatures. In Section 2 we classify locally all Riemannian
3-manifolds with prescribed distinct Ricci eigenvalues, which can be given as arbitrary real an-
alytic functions. In Section 3 we recall, for the constant distinct Ricci eigenvalues, an explicit
solution of the problem, but in a more compact form than it was presented in [17]. Finally, in
Section 4 we give a survey of related results, mostly published earlier in various journals. Last
but not least, we compare various PDE methods used for solving problems of this kind.

1 Introduction

The problem of how many Riemannian metrics exist on the open domains of R3 with
prescribed constant Ricci eigenvalues �1 = �2 �= �3 was completely solved in [15] and
[19]. The main existence theorem says that the local isometry classes of these metrics
are always parametrized by two arbitrary functions of one variable. Some non-trivial
explicit examples were presented in [15], as well. A more elegant but less rigorous
proof of the main existence theorem was given in [5].

The case of distinct constant Ricci eigenvalues is more interesting. Here, the first
examples were presented by K.Yamato in [33], namely a complete (but not locally
homogeneous) metric defined on R3 for each prescribed triplet (�1, �2, �3) of constant
distinct Ricci eigenvalues satisfying certain algebraic inequalities. Thus, these triplets
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form an open set in R3[�1, �2, �3]. This open set was essentially extended by new
examples in [13]. Finally, in [17], non-trivial explicit examples were constructed for
every choice of Ricci eigenvalues �1 > �2 > �3. These examples are not locally
homogeneous but mostly local and not complete. (There is still an open problem for
which triplets �1 > �2 > �3 a complete metric exists with such Ricci eigenvalues.)

The problem of ‘how many local isometry classes (or, more exactly, how many
isometry classes of germs) of Riemannian metrics exist for prescribed constant Ricci
eigenvalues �1 > �2 > �3’ was solved first by A. Spiro and F. Tricerri in [30], us-
ing the theory of formally integrable analytic differential systems. They proved that
this “local moduli space” depends on an infinite number of parameters. This solution
was not satisfactory enough for us and we succeeded to show in [26] that this local
moduli space is parametrized, in fact, by (the germs of) three arbitrary functions of
two variables. Moreover, the method of solution was completely “classical”, based on
the Cauchy–Kowalewski Theorem. Yet, for many mathematicians, this solution may
be not completely satisfactory for a different reason: The partial differential equations
expressing the geometric conditions are rather cumbersome (see Section 3), and one
of the main steps of the proof is not transparent enough, because it depends heavily
on a hard computer work (using Maple V) for the huge amount of routine symbolic
manipulations with the corresponding PDE system.

In this paper, we prove the same result by a different method. Here the computer
assistence (using Maple V) is also used, but in a much more transparent way. Namely,
when using the new method, some cumbersome formulas occur again. Yet, for the main
argument, we need only their qualitative properties and not the explicit expressions.

Moreover, by the new method, we are able to generalize the original result to the
situation when the prescribed distinct Ricci eigenvalues are not constants but arbitrary
functions. This is the content of Section 2.

In Section 3, we come back to the old version from [17] and [26] (with constant �i
and a complicated PDE system) to show that there is a general explicit formula involving
three parameters �1 > �2 > �3 and producing a Riemannian metric with the Ricci
principal curvatures �i . This result was essentially proved already in [17], but now it is
presented in a particularly simple form, in the spirit of the pioneering work by K.Yamato
[33]. It is obvious that the new method from Section 2 is not suitable to produce such
explicit examples and so one can compare the advantages and disadvantages of both
(very different) methods.

The last Section 4 is mainly a survey of related results which have been published
earlier (except the last subsection inspired by the work by S. Ivanov and I. Petrova
[11]). The main purpose of Section 4 is to show that there are more geometric pro-
blems concerning prescribed properties of the Ricci eigenvalues for which a com-
pletely satisfactory geometric solution was found, but where “the method of the Ricci
characteristic polynomial”, introduced in Section 2, obviously fails. Namely, from
the optics of this method, one comes to an overdetermined system of PDE. Yet,
we are still able to describe “the size” of the general solutions of such systems just
coming back from a known geometric result to the corresponding PDE system. This
might be a useful contribution to the “philosophy of PDE methods” in Riemannian
geometry.
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2 The case of arbitrary distinct Ricci eigenvalues

Let �1(x, y, z) > �2(x, y, z) > �3(x, y, z) be three real analytic functions defined
on a domain U ⊂ R3[x, y, z]. Let (M, g) be a Riemannian manifold and U ′ ⊂ M

a coordinate neighborhood. We say that the metric g restricted to U ′ has principal
Ricci curvatures �1, �2, �3, if this is valid with respect to a local chart ϕ : U ′ → U ,
i.e., when expressing g|U ′ in the local coordinates x, y, z.

The main theorem of this paper is the following:

Theorem 1. Let �1(x, y, z) > �2(x, y, z) > �3(x, y, z) be three real analytic func-
tions defined on a domain U ⊂ R3[x, y, z]. Then, the local moduli space of (local)
Riemannian metrics with the prescribed principal Ricci curvatures �1, �2, �3 can be
parametrized by three arbitrary functions of two variables.

We shall start with the hard part of the proof, which is based on the following:

Theorem 2. Let �1(x, y, z) > �2(x, y, z) > �3(x, y, z) be three real analytic func-
tions defined in a domain U ⊂ R3[x, y, z]. Then all (local) diagonal Riemannian met-
rics with the principal Ricci curvatures �1, �2 and �3 depend on six arbitrary functions
of two variables.

The following Theorem should be considered as a “folklore”, see e.g. [9].

Theorem 3. Let (M, g) be a real analytic 3-dimensional Riemannian manifold. Then,
in a neighborhood of each point p ∈ M , there is a system (x, y, z) of local coordi-
nates in which g adopts a diagonal form. All coordinate transformations for which the
diagonality of a metric is preserved depend on 3 arbitrary functions of two variables.

Thus, in the sequel, we can assume that each Riemannian metric g in consideration
has the matrix

(
gij
)

of components written in the form

(
gij
) =

⎛⎝K(x, y, z) 0 0

0 L(x, y, z) 0

0 0 M(x, y, z)

⎞⎠ , (i, j = 1, 2, 3).

Here, of course, the functions K,L and M are positive and real analytic in the corre-
sponding domain U ⊂ R3[x, y, z].

A routine calculation gives the following expression for the Ricci operator Ric
in the given local coordinates x, y, z. Here, we introduce the following abbreviated
notation: If G denotes K,L orM , evaluated at a general point (x, y, z), we write,

G1 = ∂G

∂x
, G2 = ∂G

∂y
, G3 = ∂G

∂z
,

G11 = ∂2G

(∂x)2
, G12 = ∂2G

∂x∂y
, . . . , G33 = ∂2G

(∂z)2
,

evaluated at (x, y, z), as well. Now, in the abbreviated notation, we have the following
formulas:
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Ric1
1 = − (MK22 + LK33 +ML11 + LM11) / (2KLM)+ [LM2K1L1

+ L2MK1M1 + LM2K2
2 +KM2K2L2 −KLMK2M2 + L2MK2

3

−KLMK3L3 +KL2K3M3 +KM2L2
1 +KL2M2

1 ] /(4K2L2M2),

Ric2
2 = − (MK22 +ML11 +KL33 +KM22) / (2KLM)+ [LM2K1L1

+ LM2K2
2 +KM2K2L2 −KLMK3L3 +KM2L2

1 −KLML1M1

+K2ML2M2 +K2ML2
3 +K2LL3M3 +K2LM2

2 ] /(4K2L2M2),

Ric3
3 = − (LK33 +KL33 + LM11 +KM22) / (2KLM)+ [L2MK1M1

−KLMK2L2 + L2MK2
3 +KL2K3M3 −KLML1M1 +K2ML2M2

+K2ML2
3 +K2LL3M3 +KL2M2

1 +K2LM2
2 ] /(4K2L2M2),

Ric2
1 = Ric1

2

= −(2KLMM12 − LMK2M1 −KML1M2 −KLM1M2)/(4KL
2M2),

Ric3
1 = Ric1

3

= −(2KLML13 − LMK3L1 −KML1L3 −KLL3M1)/(4KL
2M2),

Ric3
2 = Ric2

3

= −(2KLMK23 − LMK2K3 −KMK2L3 −KLK3M2)/(4K
2LM2).

We now express the above formulas in a shorter way:

Ric1
1 = − (MK22 + LK33 +ML11 + LM11) / (2KLM)+G1

1,

Ric2
2 = − (MK22 +ML11 +KL33 +KM22) / (2KLM)+G2

2,

Ric3
3 = − (LK33 +KL33 + LM11 +KM22) / (2KLM)+G3

3,

Ric2
1 = Ric1

2 = −M12/(2LM)+G2
1, (1)

Ric3
1 = Ric1

3 = −L13/(2LM)+G3
1,

Ric3
2 = Ric2

3 = −K23/(2KM)+G3
2,

where Gji are rational functions of K,L,M,K1,K2, . . . ,M3, i.e., they depend only
on the functions K,L,M and their first derivatives.

Consider now the prescribed Ricci eigenvalues �1(x, y, z), �2(x, y, z), �3(x, y, z)

(which are real analytic functions defined in the same domain as K,L and M). The
corresponding geometric conditions can be expressed, in the simplest way, through the
characteristic polynomial det (λI − Ric) = λ3 + c2λ

2 + c1λ+ c0 of the Ricci operator
Ric, in the form

c2 = −
3∑
i=1

�i, c1 =
∑

1≤i<j≤3

�i�j , c0 = −�1�1�3. (2)
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This is a system of nonlinear PDE’s of second order because

c2 = −
3∑
i=1

Ricii , c1 =
∑

1≤i<j≤3

(RiciiRicjj − (Ricij )
2), c0 = − det[Ricij ]. (3)

We can see easily from (1) that the only “non-mixed” second partial derivatives involved
in the functions Ricij are K22,K33, L11, L33,M11 and M22. Hence we cannot use the
Cauchy–Kowalewski Theorem in the basic setting. We shall try to remove this defect
by a linear transformation of independent variables (which is optimal in some sense),
namely,

u = z, v = y, w = x + y + z. (4)

The metric g, if expressed in the new variables u, v,w, is not anymore in the diagonal
form. The new Ricci components Ricαβ will become linear combinations of the original

components Ricij . Nevertheless, because, with respect to the new variables we get

[Ricαβ ] = [S][Ricij ][S
−1],

where S is a constant regular matrix, the characteristic polynomial of Ric will remain
invariant and the expression (3) have the same form for the old components Ricij as

for the new components Ricαβ . Thus, we can still use the old components Ricij in our

computations and all to be done is to transform all Ricij to the new variables u, v,w.
As the first step, the original functionsK,L,M and their partial derivatives have to be
transformed.

We now introduce new positive functions U,V,W of three variables u, v,w by

U(u, v,w) = K(w − u− v, v, u),
V (u, v,w) = L(w − u− v, v, u), (5)

W(u, v,w) = M(w − u− v, v, u).
Rewriting the old coordinates, we get,

K(x, y, z) = U(z, y, x + y + z),
L(x, y, z) = V (z, y, x + y + z), (6)

M(x, y, z) = W(z, y, x + y + z).
If F denotes U,V orW evaluated at (u, v,w) = (z, y, x + y + z), we shall write

F1 = ∂F

∂u
, F2 = ∂F

∂v
, F3 = ∂F

∂w
,

F11 = ∂2F

(∂u)2
, F12 = ∂2F

∂u∂v
, . . . , F33 = ∂2F

(∂w)2
,

evaluated at the point (u, v,w) = (z, y, x + y + z), as well.
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We get easily, in our abbreviated form,

K = U, K1 = U3, K2 = U2 + U3, K3 = U1 + U3, K11 = U33,

K12 = U23 + U33, K13 = U13 + U33, K22 = U22 + 2U23 + U33,

K23 = U12 + U13 + U23 + U33, K33 = U11 + 2U13 + U33,

L = V, L1 = V3, L2 = V2 + V3, L3 = V1 + V3, L11 = V33,

L12 = V23 + V33, L13 = V13 + V33, L22 = V22 + 2V23 + V33, (7)

L23 = V12 + V13 + V23 + V33, L33 = V11 + 2V13 + V33,

M = W, M1 = W3, M2 = W2 +W3, M3 = W1 +W3, M11 = W33,

M12 = W23 +W33, M13 = W13 +W33, M22 = W22 + 2W23 +W33,

M23 = W12 +W13 +W23 +W33, M33 = W11 + 2W13 +W33.

Hence, we obtain, for the old components Ricij evaluated at (u, v,w) = (z, y, x +
y + z),

Ric1
1 = − ((V +W)U33 +WV33 + VW33) / (2UVW)+ F 1

1 ,

Ric2
2 = − (WU33 + (U +W)V33 + UW33) / (2UVW)+ F 2

2 ,

Ric3
3 = − (VU33 + UV33 + (U + V )W33) / (2UVW)+ F 3

3 ,

Ric2
1 = Ric1

2 = −W33/(2VW)+ F 2
1 , (8)

Ric3
1 = Ric1

3 = −V33/(2VW)+ F 3
1 ,

Ric3
2 = Ric2

3 = −U33/(2UW)+ F 3
2 ,

where F ij are rational functions of U,V,W , their first partial derivatives with respect
to u, v,w, and their second partial derivatives which are different from U33, V33 and
W33.

Now, we are going to prove that, in the new variables, the standard Cauchy–
Kowalewski Theorem can be used for the solution of the PDE system (2). We only
have to keep in mind that the prescribed Ricci eigenvalues �i mean here the functions
�i(u, v,w) = �i(w − u − v, v, u), i = 1, 2, 3, defined in the same domain as U,V
andW . The system (2) can be expressed explicitly in the new variables u, v,w. We get
the first PDE in the form

c2 = ((V +W)U33 + (U +W)V33 + (U + V )W33) / (UVW)+H2

= −
3∑
i=1

�i, (9)

where H2 is a rational function of U,V,W , their first derivatives and their second
derivatives which are not of the form U33, V33 or W33. H2 is defined as a function of
the variables u, v,w in the whole definition domain of the functions U,V,W . From
here, we express
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W33 = − ((V +W)U33 + (U +W)V33) / (U + V )+ P, (10)

where P is a rational function of �1, �2, �3, U,V,W , the first derivatives of U,V,W ,
and their second derivatives except U33, V33 and W33. Anyway P is a real analytic
function of u, v,w,U, V,W and of the corresponding derivatives.

Next, we substitute the expression for W33 from (10) in the formulas (8) and we
obtain the Ricci components in the reduced form:

Ric1
1 = − ((V +W)U33 + (W − V ) V33) / (2(U + V )VW)+ P 1

1 ,

Ric2
2 = − ((W − U)U33 + (U +W)V33) / (2(U + V )UW)+ P 2

2 ,

Ric3
3 = (U33 + V33) / (2UV )+ P 3

3 , (11)

Ric2
1 = Ric1

2 = ((V +W)U33 + (U +W)V33) / (2(U + V )VW)+ P 2
1 ,

Ric3
1 = Ric1

3 = −V33/ (2VW)+ P 3
1 ,

Ric3
2 = Ric2

3 = −U33/ (2UW)+ P 3
2 ,

where P ij are functions of the same type as P introduced in (10).
So, assuming that (9) is satisfied identically, we must write down the remaining two

PDE’s where the Ricci operator is expressed in the form (11). The second equation of
(2) can be written in the form

f1(U33)
2 + f2U33V33 + f3(V33)

2 + g1U33 + g2V33 = Q, (12)

whereQ is of the same type as P and P ij . Moreover, we get explicitly

f1 = U2(3V 2 + 3VW + 2W 2)+ UV (2V 2 − VW +W 2)+ V 2(V 2 +W 2)

4(U + V )2U2V 2W 2
,

f2 = U3(V +W)+ U2(−V 2 + VW + 2W 2)+ UVW 2 + V 2W 2

2(U + V )2U2V 2W 2
, (13)

f3 = 2U3(U + V +W)+ U2(2V 2 − VW + 2W 2)+ UVW(V +W)+ V 2W 2

4(U + V )2U2V 2W 2
,

and g1, g2 are (more complicated) rational functions of the same type as H2 in (9).
The third equation of (2) can be written in the form

f30(U33)
3 + f21(U33)

2V33 + f12U33(V33)
2 + f03(V33)

3 + f20(U33)
2

+ f11U33V33 + f02(V33)
2 + f10U33 + f01V33 = S, (14)

where S is of the same type as P,Q. Moreover, we get explicitly

f30 = (V +W) [(V 2 − 2VW −W 2)U + V 3 + VW 2]/d,

f21 = [2(V 2 −W 2)U2 + (V 3 + 3V 2W − 5VW 2 − 3W 3)U − V 4

+ V 3W + V 2W 2 + 3VW 3 ] /d, (15)
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f12 = [(V −W)U3 + (V 2 + VW − 4W 2)U2

+
(

4V 2W − VW 2 − 3W 3
)
U − V 2W 2 + 3VW 3 ] /d,

f03 = (U +W) (V −W)
[
U2 + (V +W)U − VW

]
/d,

where d = 8 (U + V )2 U2V 3W 3.
The other coefficients are functions of the same type as H2 in (9) (but occupying

many pages in the explicit form).
It remains to analyze the system (12)+ (14) of PDE. If this system can be solved

in an explicit form

U33 = T1, V33 = T2, (16)

where T1 and T2 are algebraic functions of �1, �2, �3, U,V,W and of the “admisible”
derivatives of U,V,W , then the full system (10) + (16) can be solved by the use
of the Cauchy–Kowalewski Theorem, which will prove Theorem 2. Of course, the
solvability and the correctness of all calculations will depend on the initial conditions
of the corresponding Cauchy problem. (Notice that a solution in the form (16) may
have more branches but this is not too relevant for the proof of our Theorem).

First, let (u0, v0, w0)be a point from the definition domain of the functionsU,V,W .
We define six functions of two variables u, v (the Cauchy initial conditions) in a neigh-
borhood of (u0, v0) by the formulas,

F1(u, v) = U(u, v,w0), F2(u, v) = V (u, v,w0), F3(u, v) = W(u, v,w0), (17)

G1(u, v) = ∂U

∂w
(u, v,w0),G2(u, v) = ∂V

∂w
(u, v,w0), G3(u, v) = ∂W

∂w
(u, v,w0).

Further, denote for a moment u, v,w as u1, u2, u3. We shall define constants

ai = Fi(u0, v0) > 0, ai,j = ∂Fi

∂uj
(u0, v0), ai,jk = ∂Fi

∂uj ∂uk
(u0, v0),

bi,j = ∂Gi

∂uj
(u0, v0) for i = 1, 2, 3 and j, k = 1, 2. (18)

It is obvious that, for every choice of the constants in (18), we can still define functions
Fi(u, v) andGi(u, v) satisfying (18) as arbitrary real analytic functions in a neighbor-
hood of (u0, v0). (In fact, we are fixing only a finite number of initial Taylor coefficients
of such functions.)

Next, if f is any real analytic function of the variables u, u,w, U,V,W , of the
first derivatives of U,V,W , and of those second derivatives which are not of the form
U33, V33 orW33, we shall denote by f̃ the corresponding value at the point (u0, v0, w0).
Obviously, each constant f̃ depends (in a real analytic way) on the constants u0, v0, w0,
ai, ai,j , ai,jk and bi,j . In particular, we can make the substitutionu = u0, v = v0, w =
w0 in the coefficients fi, gi, fij ,Q and S of the equations (12) and (14). Let us choose
the initial constants ai > 0, ai,j , ai,jk and bi,j in such a way that the equation (12) at
the origin defines a generic real quadratic curve and the equation (14) a generic cubic
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curve, both in the coordinate plane R [X = U33, Y = V33]. Moreover, we can make our
choice in such a way that these two curves meet transversaly at some point (X0, Y0).

Now, using the real analytic version of the “implicit function theorem” for more
variables, we obtain easily the following

Lemma 1. Let P(X, Y ) and Q(X, Y ) be two polynomials of two variables X, Y and
with the coefficients which are arbitrary parameters. If, for a fixed choice of these
parameters, the equations P(X, Y ) = 0 and Q(X, Y ) = 0 have a common solution

(X0, Y0) such that the Jacobian det

[
∂P/∂x ∂P/∂y

∂Q/∂x ∂Q/∂y

]
is nonzero at (X0, Y0) then,

in a neighborhood of (X0, Y0), the variables X, Y can be expressed from the above
equations in a unique way as a real analytic function of the corresponding coefficients.

Now, consider for a moment, the coefficients fi, gi, fij ,Q and S in the equations
(12) and (14) as arbitrary parameters. Applying Lemma 1 to this situation, we see that,
in a neighborhood of the point (X0, Y0), the quantities U33 and V33 are expressed in
a unique way as real analytic functions of the above coefficients and, consequently,
as real analytic functions of u, v,w, U,V,W and their admissible derivatives in the
neighborhood of the set (u0, v0, w0, ai, ai,j , bi,j ) of initial values.

Then the Cauchy–Kowalewski Theorem can be applied to the system {(10), (12),
(14)} of PDE and the proof of Theorem 2 is completed. &'

The proof of Theorem 1 now follows at once from the second part of Theorem 3. &'
Remark 1. The same arguments which we used in the proof of Theorem 1 work also
for the proof of the first part of Theorem 3 ! In the latter case, we are looking for
a coordinate transformation x = x(u1, u2, u3), y = y(u1, u2, u3), z = z(u1, u2, u3)

taking a general metric g = ∑3
i,j=1 gij du

iduj into a diagonal form. Here, we obtain
a nonlinear PDE system of first order for 3 unknown functions. We need all the basic
steps here as well (first a linear transformation of coordinates to ensure the applicability
of the Cauchy–Kowalewski Theorem in the standard form, and, at the very end, the
elementary “geometric analysis”). Instead of ensuring intersection of one quadratic
curve and one cubic curve, we need in the latter case only to ensure intersection of two
quadratic curves. Moreover, all the computations are much more simple and a computer
aid is not needed at all.

Remark 2. The situation changes dramatically if two of the prescribed Ricci eigenvalues
are asked to be equal. Consider the characteristic matrix [λI − Ric] and substitute for
λ the prescribed double Ricci eigenvalue �1 = �2. Then, the specified matrix has rank
one and hence all sub-determinants of degree two must vanish. Because the matrix
is symmetric, these conditions are obviously reduced to three independent algebraic
conditions for the Ricci components Ricij . We obtain three new PDE, which are of
order 2 and of degree 2. Obviously, at least one of these new PDE is independent of
(2). Hence we obtain an overdetermined system of PDE and the Cauchy–Kowalewski
Theorem cannot be applied. We shall give a short survey about such kind of geometric
problems, earlier results and corresponding methods in the last section.

Recall that we are always looking for a geometrical solution, i.e., we want to
“parametrize” the local moduli space of Riemannian metrics for the given problem.
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From this point of view, we shall see that a notion “overdetermined” and “underde-
termined” PDE system has only a relative meaning, depending on the approach and
method used in the particular situation.

3 The case of constant distinct Ricci eigenvalues

In [17], the first author and F. Prüfer solved the following problem: For every prescribed
numbers �1 > �2 > �3, write down an explicit Riemannian metric g such that its
Ricci eigenvalues are constant and equal to �i . A broad family of examples (so-called
“generalized Yamato spaces”) was constructed there. Moreover, in [18], a geometrical
characterization of this family was given inside the set of all Riemannian metrics with
prescribed Ricci eigenvalues as above.

In this paper, we present, for each prescribed �1 > �2 > �3, a particularly simple
example.

Theorem 4. Consider fixed constants �1 > �2 > �3 and define the new constants α, λi
and b as follows:

α = �1 − �3

�3 − �2
< 0,

λi = (�1 + �2 + �3) /2 − �i, i = 1, 2, 3, (19)

b = 1

α + 1

{
−αλ2 + α + 2

α
((α + 1) λ3 + λ2)

}
= (�3 − �2) (�1 + �3)

�1 − �3
.

Further, define a function a1
21(w) as follows:

(i) a1
21(w) = − 1

α w
for b = 0,

(ii) a1
21(w) =

√
b

α
tan
(√
αb w

)
for b < 0, (20)

(iii) a1
21(w) =

√
b

|α| tanh
(√

|α|b w
)

for b > 0.

Let I (w) be a maximal open interval on which
(
a1

21(w)
)2
> −λ2/|α + 1|. De-

fine other functions aijk(w) for i, j, k = 1, 2, 3 on I (w) in a unique way so that

aijk(w)+ ajik(w) = 0 and

(α + 1)(a1
21)

2 + (a1
23)

2 = λ2, a1
23 > 0,

−α a1
23a

1
32 = (α + 1)λ3 + λ2, (21)

a1
22 = 0, a1

31 = 0, a2
31 = −a1

23,

a1
33 = 0, a2

32 = 0, a2
33 = (α + 1) a1

21.
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Then, the metric g =∑3
i=1

(
ωi
)2

defined on the strip I (w)× R2[x, y] ⊂ R3[w, x, y]
by the orthonormal coframe

ω1 =
[(
a1

32 − a1
23

)
y − a1

21x
]
dw + dx,

ω2 = dw, (22)

ω3 = dy +
[
(α + 1) a1

21y −
(
a1

32 + a1
23

)
x
]
dw,

has the following properties:

1) The Ricci eigenvalues of g are �1 > �2 > �3.
2) The corresponding Christoffel symbols �ijk of g are the functions aijk(w).
3) The metric g is not locally homogeneous.

Remark 3. The definition of the constant b in (19) is correct and the first equation (21)
is always solvable because α + 1 = (�1 − �2)/(�3 − �2) < 0. If b > 0 and λ2 > 0,
then we can put I (w) = (−∞,+∞) and the metric g is defined on R3.

Outline of the proof of Theorem 4. Instead of a direct check (which is a rather non-trivial
task) we shall prove our Theorem on a broader background of “generalized Yamato
spaces” as presented in [17] and [18]. (See Theorem 5 and Proposition 1 below).

Let (M, g) be a Riemannian 3-manifold of class C∞ with distinct constant Ricci
eigenvalues �1 > �2 > �3. Choose an open domain U ⊂ M and a smooth orthonormal
moving frame {E1, E2, E3} consisting of the corresponding Ricci eigenvectors at each
point of U . Denoting by Rijkl and Rij the corresponding covariant components of the
curvature tensor and of the Ricci form respectively, we obtain,

Rii = �i (i = 1, 2, 3), Rij = 0 for i �= j,
R1212 = λ3, R1313 = λ2, R2323 = λ1, where λi are constants, (23)

Rijkl = 0 if at least three indices are distinct.

Moreover, the numbers λi are related to the numbers �i by the middle formula of (19)
and we obviously get

λi − λj = −(�i − �j ), i, j = 1, 2, 3. (24)

In a neighborhood Um of any point m ∈ U , one can construct a local coordinate
system (w, x, y) such that

E3 = ∂

∂y
on Um. (25)

Consider the orthonormal coframe {ω1, ω2, ω3} which is dual to {E1, E2, E3}. Then,
the coordinate expression of the coframe {ω1, ω2, ω3} in Um must be of the form

ω1 = Adw + B dx,
ω2 = C dw +D dx, (26)

ω3 = dy +Gdw +H dx,
where A,B,C,D,G,H are unknown functions to be determined.
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Now, using the calculus of exterior forms and the standard structural equations for
the connection form and the curvature form (cf. [6, 12]) one can derive the expressions
for the components aijk of the Levi-Civita connection with respect to the given frame.
First, we introduce new functions D, E,F (where D �= 0) by

D = AD − BC, E = AH − BG, F = CH −DG. (27)

We also define a bracket of two functions f, g by

[f, g] = f ′
yg − fg′

y. (28)

Then we obtain, by a routine calculation,

a1
21 = 1

D (GB
′
y −HA′

y + A′
x − B ′

w), a
1
31 = 1

D (DA
′
y − CB ′

y),

a1
22 = 1

D (GD
′
y −HC′

y + C′
x −D′

w), a
2
32 = 1

D (AD
′
y − BC′

y),

a1
33 = 1

D (DG
′
y − CH ′

y), a
2
33 = 1

D (AH
′
y − BG′

y), (29)

a1
23 = 1

2D
{
[C,D] + [A,B] − [G,H ] + (G′

x −H ′
w)
}
,

a2
31 = 1

2D
{
[C,D] − [A,B] + [G,H ] − (G′

x −H ′
w)
}
,

a1
32 = 1

2D
{
[C,D] − [A,B] − [G,H ] + (G′

x −H ′
w)
}
.

From the structural equations for the connection form (ωij ) and for the curvature form

(�ij ), using the curvature conditions (23) and the subsequent exterior differentiation,

we obtain the following relations for the Christoffel symbols aijk:

a2
32 = α a1

31, a
2
33 = (α + 1) a1

21, a
1
33 = −

(
α + 1

α

)
a1

22, (30)

where α is the constant introduced in (19).
Now, assuming (30), the formulas (29) are equivalent to the following system of

nine PDE for six basic Christoffel symbols a1
21, a

1
22, a

1
31, a

1
23, a

2
31 and a1

32:

A′
y = Aa1

31 + C (a1
32 − a1

23),

B ′
y = B a1

31 +D (a1
32 − a1

23),

C′
y = A (a1

23 + a2
31)+ α Ca1

31,

D′
y = B (a1

23 + a2
31)+ α Da1

31, (31)

G′
y = (α + 1) Ca1

21 − α + 1

α
Aa1

22,

H ′
y = (α + 1)Da1

21 − α + 1

α
B a1

22.
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A′
x − B ′

w = Da1
21 + Ea1

31 + F(a1
32 − a1

23),

C′
x −D′

w = Da1
22 + E(a1

23 + a2
31)+ αF a1

31, (32)

G′
x −H ′

w = D(a1
32 − a2

31)−
α + 1

α
E a1

22 + (α + 1)F a1
21.

Next, we express explicitly the geometric curvature conditions (23). Using again the
structural equations for the curvature form (�ij ), we obtain after lengthy but routine
calculations the following system of nine PDE’s for all nine Christoffel symbols, still
having in mind the relations (30):

A(a1
21)

′
x − B(a1

21)
′
w + C(a1

22)
′
x −D(a1

22)
′
w +G(a1

23)
′
x −H(a1

23)
′
w

− D(U3 − λ3)− EV3 − FW3 = 0,

A(a1
21)

′
y + C(a1

22)
′
y +G(a1

23)
′
y − (a1

23)
′
w − AV3 − CW3 = 0,

B(a1
21)

′
y +D(a1

22)
′
y +H(a1

23)
′
y − (a1

23)
′
x − BV3 −DW3 = 0,

A(a1
31)

′
x − B(a1

31)
′
w + C(a1

32)
′
x −D(a1

32)
′
w +G(a1

33)
′
x −H(a1

33)
′
w (33)

− DU2 − E(V2 − λ2)− FW2 = 0,

A(a1
31)

′
y + C(a1

32)
′
y +G(a1

33)
′
y − (a1

33)
′
w − A(V2 − λ2)− CW2 = 0,

B(a1
31)

′
y +D(a1

32)
′
y +H(a1

33)
′
y − (a1

33)
′
x − B(V2 − λ2)−DW2 = 0,

A(a2
31)

′
x − B(a2

31)
′
w + C(a2

32)
′
x −D(a2

32)
′
w +G(a2

33)
′
x −H(a2

33)
′
w

− DU1 − EV1 − F(W1 − λ1) = 0,

A(a2
31)

′
y + C(a2

32)
′
y +G(a2

33)
′
y − (a2

33)
′
w − AV1 − C(W1 − λ1) = 0,

B(a2
31)

′
y +D(a2

32)
′
y +H(a2

33)
′
y − (a2

33)
′
x − BV1 −D(W1 − λ1) = 0.

Here, we put (using again only the “basic” six Christoffel symbols)

U1 = αa1
21a

2
31 − (α − 1)a1

22a
1
31 − (α + 2)a1

21a
1
32,

V1 = (α + 1)(α + 2)

α
a1

21a
1
22 − (α + 1)a1

31a
2
31 − (α − 1)a1

31a
1
23,

W1 = α + 1

α
(a1

22)
2 − (α + 1)2(a1

21)
2 − α2(a1

31)
2 + a1

23a
2
31 − a1

32a
2
31 + a1

32a
1
23,

U2 = 1

α
a1

22a
1
32 + (α − 1)a1

21a
1
31 − 2α + 1

α
a1

22a
2
31,

V2 = (α + 1)(a1
21)

2 − (a1
31)

2 −
(
α + 1

α

)2

(a1
22)

2 − a1
32a

1
23 − a1

32a
2
31 − a1

23a
2
31,

(34)
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W2 = (1 − α)a1
23a

1
31 − (α + 1)a1

32a
1
31 + (2α + 1)(α + 1)

α
a1

22a
1
21,

U3 = −(a1
21)

2 − (a1
22)

2 − α(a1
31)

2 + a1
23a

2
31 − a1

23a
1
32 + a1

32a
2
31,

V3 = 1

α
a1

22a
1
23 − (α + 2)a1

21a
1
31 − 2α + 1

α
a1

22a
2
31,

W3 = −αa1
21a

1
23 − (α + 2)a1

21a
1
32 − (2α + 1)a1

22a
1
31.

By the detailed analysis of the system of 18 PDE, (31)–(33) for 12 unknown functions
A,B, . . . , H, a1

21, a
1
22, . . . , a

1
32, the following result was obtained in [17]. (Here we

present the more convenient local version of the corresponding theorem.)

Theorem 5. Let a triplet �1 > �2 > �3 of constant Ricci eigenvalues be prescribed.
Let aijk be functions on U ⊂ R2[w, x] satisfying the following conditions:

(N1) a1
31 = 0, a1

23 + a2
31 = 0, a1

22 = 0,

(N2) a1
23 is an arbitrary function of class C∞ on U ⊂ R2[w, x] such that

(a) (a1
23)

′
w �= 0, a1

23 > 0,

(b) (a1
23)

2 > max
{
λ2, (α + 2) [(α + 1)λ3 + λ2] /α2

}
,

(N3) (α + 1)(a1
21)

2 + (a1
23)

2 = λ2, a
1
21 > 0,

(N4) −α a1
23 a

1
32 = (α + 1)λ3 + λ2.

Then, there exist smooth functions A,B,C,D,G,H on U × R[y] ⊂ R3[w, x, y]
(depending on two arbitrary functions of two variables and two arbitrary functions of
one variable) such that the basic system of partial differential equations (31)–(33) is
satisfied.

We shall now specify these functions. First, look at the function W3 defined in (34).
One can calculate explicitly from (N3) and (N4) that,

W3 = f (a1
23) =

√
(a1

23)
2 − λ2

|α + 1|

(
α a1

23 + (α + 2)
|α + 1|λ3 − λ2

α a1
23

)
. (35)

We see that the inequalities in (N2)(b) just ensure that f (a1
23) is non-zero everywhere in

our domain U (but this can be always assumed in our local case, because (a1
23)

′
w �= 0).

Define now C,D as functions on U by,

C = − (a
1
23)

′
w

f (a1
23)
, D = − (a

1
23)

′
x

f (a1
23)
. (36)

It is shown in [17], that, if the Christoffel symbols are defined by (N1)–(N4) and the
functionsC,D are defined by (36), then for arbitrary choice of the functionsA,B,G,H
all PDE’s (33) are satisfied. Further, the following was proved.
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Proposition 1. To satisfy the remaining PDE (31) and (32), it is sufficient to define the
functions A,B,G,H by

A = C(a1
32 − a1

23)y + A0(w, x), B = D(a1
32 − a1

23)y + B0(w, x),

G = (α + 1) C a1
21y +G0(w, x), H = (α + 1)D a1

21y +H0(w, x), (37)

where A0, B0,G0, H0 are functions of class C∞ on U ⊂ R2[w, x] satisfying the
equations

(A0)
′
x − (B0)

′
w = (DA0 − CB0) a

1
21 + (DG0 − CH0)

(
a1

23 − a1
32

)
, (38)

(G0)
′
x − (H0)

′
w = (DA0 − CB0)

(
a1

32 + a1
23

)
− (DG0 − CH0) (α + 1) a1

21.

To obtain the explicit examples announced in Theorem 4, let us suppose that
a1

23 depends on the variable w only and put B0 = 1, H0 = 0. Then, C =
−(a1

23)
′(w)/f (a1

23) �= 0 depends on w only and D = 0, B = 1, H = 0. For A
and G we get explicit solutions

A = C (a1
32 − a1

23)y − C a1
21x, (39)

G = (α + 1) C a1
21y − C (a1

32 + a1
23)x.

It remains to verify that the formulas (19)–(22) in Theorem 4 follow from the
previous ones and to make the final conclusions. First we see that if we solve the
differential equation (a1

23)
′(w) = −f (a1

23), then the function a1
23(w) will be specified

so that C = 1. If we pass from a1
23(w) to a1

21(w), we obtain a much simpler equation

(a1
21)

′(w) = α(a1
21)

2 + b. (40)

Hence, the formulas (20) follow at once (neglecting the integration constant here).
Further, we recall that the PDE system (33) is equivalent to the statement that �1 >

�2 > �3 are corresponding Ricci eigenvalues and the PDE system (31)+ (32) together
with (30) says that aijk(w) defined by (21) are the corresponding Christoffel symbols.

Finally, because the Christoffel symbols aijk are calculated with respect to a Ricci-
adapted frame (which is determined uniquely up to reflections at each point), and
because not all aijk are constant, the space (M, g) cannot be locally homogeneous. &'
Remark 4. For the prescribed constant Ricci eigenvalues �1, �2, �3, (even if they are
not all distinct) there is not always a locally homogeneous space with such Ricci
eigenvalues. Some necessary conditions were given in [27] and the complete answer
can be found in [16].

Remark 5. The 3-dimensional Riemannian manifolds with constant Ricci eigenvalues
belong to the broader family of so-called curvature homogeneous spaces. See, e.g.,
[1, 3, 23–25, 28, 29] and, in particular, a survey in [4]. This topic was developed with
strong participation of F. Tricerri and L. Vanhecke; it was originally motivated by a
conjecture of M. Gromov.
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We also proved the following in [26]:

Theorem 6. The general solution of the PDE system (31)–(33) depends on six arbitrary
functions of two variables and six arbitrary functions of one variable.

The proof depends strongly on the computer aid because one has to show that all
integrability conditions coming from this PDE system are consequences of the original
PDE’s. This is a hard computer work which is not very transparent and difficult to
check by hand. After showing this, one can use the Cauchy–Kowalewski Theorem in
two successive steps to obtain the result.

Now we have the following geometric existence theorem which we reproduce in
full from [17], including its short proof.

Theorem 7. The isometry classes of germs of three-dimensional (real analytic) Rie-
mannian metrics with prescribed constant Ricci eigenvalues are parametrized by
triplets of germs of arbitrary (real analytic) functions of two variables.

Proof. Let (M, g), (M, g) be two real analytic Riemannian 3-manifolds with the same
constant Ricci eigenvalues �1 > �2 > �3. Let F : U → U be an isometry between two
open domains ofM andM respectively. We construct the “Ricci adapted” orthonormal
coframes {ωi}, {ω i} and the local coordinate systems (w, x, y), (w, x, y) in the neigh-
borhoods Um ⊂ U and UF(m) = F(Um) ⊂ U respectively, such that g and g are both
of the form (26). We obviously have

F ∗(ω i) = εiωi, εi ∈ {−1, 1}, i = 1, 2, 3. (41)

Hence, we see easily that the corresponding parametrization of F in local coordinates
must be of the form,

w = �1(w, x), x = �2(w, x), y = εy +�3(w, x), (42)

where ε = ±1 and �i(w, x) are arbitrary (real analytic) functions of two variables.
Conversely, every local transformation F of the form (42) determines a local isom-
etry which preserves the formulas (26) through (41). The result now follows from
Theorem 6. &'

Let us notice that we neglect here six arbitrary functions of one variable. This
is fully justified because, for the geometric conclusions, these functions are not rele-
vant.

Remark 6. Looking at the proof carefully, we see that the same argument also works
when �i are not constants but arbitrary functions! Hence, we have an alternative way
to derive Theorem 1 from Theorem 2 where we don’t need the second part of the
“diagonalization theorem” 3.

Open problem. It is not known to the authors if an explicit construction as in Theorem 4
can be extended to non-constant Ricci eigenvalues.
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4 Related problems with curvature restrictions

4.1 The Schur’s theorem

Consider prescribed Ricci eigenvalues �1(x, y, z), �2(x, y, z), �3(x, y, z) on (M, g)
which are all equal and consider the corresponding system of partial differential equa-
tions (2). In this case, we have to add three new independent PDE’s, namely Ricij = 0
for 1 ≤ i < j ≤ 3, and the system of equations becomes strongly overdetermined.
According to the Schur’s Theorem, (M, g) must be a space of constant curvature.
Hence the local moduli space depends only on one parameter. As a consequence of
Theorem 3, the general solution of the corresponding overdetermined system depends
on three arbitrary functions of two variables (and possibly, on some functions of one
variable and some parameters – we shall not repeat this stipulation in the sequel).

4.2 The pseudo-symmetric spaces of constant type

A 3-dimensional pseudo-symmetric space of constant type is characterized by the fol-
lowing properties (cf. [7], [8], [20]–[22] and [4], Chap. 11): One of the Ricci eigenvalues
is prescribed as a constant and the other two Ricci eigenvalues are required to be equal
but arbitrary. (If the constant eigenvalue is zero, the space is said to be semi-symmetric
(see [2], [3], [14], [31]–[32], and, in particular, [4] for more information). Then, we have
only two PDE for the coefficients ci of the Ricci characteristic polynomial but there
are additional three quadratic equations for the Ricci components Ricij involving an
arbitrary function. Eliminating this arbitrary function, we are left with two additional
PDEs, which are biquadratic. This system is not easy to analyse. Yet, using a different
approach, we come to some satisfactory and surprising results.

Let us start with a 3-dimensional Riemannian manifold (M, g) whose Ricci tensor
has the eigenvalues �1 = �2 �= �3 with constant �3. One can construct easily, in
a neighborhood of any fixed pointm ∈ M , a Ricci adapted orthonormal moving frame
{E1, E2, E3} and a system (w, x, y) of local coordinates such that E3 = ∂/∂y. We
shall also consider the dual coframe {ω1, ω2, ω3}.

The Ricci tensor R̂ expressed with respect to {E1, E2, E3} has the form R̂ij =
�iδij . Because each �i is expressed through the sectional curvatureKij by the formula
�i = R̂ii = ∑j �=i Kij , there exist a function k = k(w, x, y) of the variables w, x and
y, and a constant c̃ such that

K12 = k, K13 = K23 = c̃, (43)

�1 = �2 = k + c̃, �3 = 2 c̃.

From the structural equations for the connection form (ωij ) and for the curvature form

(�ij ), using the curvature conditions (43), we obtain after a simple manipulation with

the corresponding exterior differential forms ωi, ωij the following results:

Proposition 2. In a normal neighborhood of any pointm ∈ M there exist an orthonor-
mal coframe {ω1, ω2, ω3} and a local coordinate system (w, x, y) such that
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ω1 = f dw,
ω2 = Adx + C dw, (44)

ω3 = dy +H dw.
Here f,A and C are smooth functions of the variables w, x and y, fA �= 0, and H is
a smooth function of the variables w and x.

Moreover, fA = σ/(k − c̃) for some non-zero function σ = σ(w, x).
Next, we obtain easily the following expression for the components of the connec-

tion form:

ω1
2 = −Aα dx + R dw + β dy,
ω1

3 = Aβ dx + S dw, (45)

ω2
3 = A′

y dx + T dw,
where

α = χ(A′
w − C′

x −HA′
y),

β = χ

2
(H ′
x + AC′

y − CA′
y), (46)

and

R = χff ′
x − Cα +Hβ,

S = f ′
y + Cβ, (47)

T = C′
y − fβ,

putting here χ for 1/fA. The curvature conditions (43) (when used in the structural
equations for the curvature form) then give a system of nine PDE’s for our problem:

(Aα)′y + β ′
x = 0,

R′
y − β ′

w = 0,

(Aα)′w + R′
x + SA′

y − AβT = −fAk,
A′′
yy − Aβ2 = −c̃A,

−A′′
yw + T ′

x + A(βR + αS) = c̃AH, (48)

T ′
y − Sβ = −c̃C,

(Aβ)′y + A′
yβ = 0,

S′
x − (Aβ)′w − (AαT + A′

yR) = 0,

S′
y + Tβ = −c̃f.
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This is a reasonable PDE system, because two of the equations are consequences of
the others and for the remaining equations we obtain a number of nice “first integrals”
(like formulas (49)–(51) below).

Now, an important tool how to simplify the system (48) is the notion of asymptotic
leaf. It is defined as a surface N ⊂ M generated by the principal �3-lines and such
that its tangent distribution is parallel along each principle �3-line in (M, g). (Here,
naturally, principal �3-lines are integral curves of the local vector field E3. They are
known to be geodesic lines in (M, g).)

Now, the following result can be proved with some effort:

Proposition 3. For any point p ∈ M there are just four possibilities:

a) There is no asymptotic leaf through p (“elliptic point”).
b) There are just two asymptotic leafs through p (“hyperbolic point”).
c) There is just one asymptotic leaf through p (“parabolic point”).
d) There are infinitely many asymptotic leafs through p (“planar point”).

We call a (local) space (M, g) to be of elliptic type if it consists of elliptic points
only. Similarly, we define spaces of hyperbolic, parabolic and planar type. Thus, on
such kind of spaces we can consider asymptotic foliations. If the space is not elliptic,
at least one asymptotic foliation exists and one can define a new local coordinate
system (w, x, y) such that, in addition, the integral manifolds of the equation dw = 0
are asymptotic leafs. Then a dramatic simplification of the system (48) takes place,
enabling to write down the general solution in the explicit form!

One has the following main results ([10], [14], [20]–[22] and [4]) proved by the
first author and M. Sekizawa:

A) The local moduli space of all spaces of elliptic type (or of hyperbolic type, or of
parabolic type, or of planar type respectively) is parametrized by 3 arbitrary func-
tions of 2 variables (or by 3, or by 2, or by 1 arbitrary functions of 2 variables
respectively). Hence the corresponding “overdetermined” system of PDE for the
Ricci components Ricij is not really overdetermined because it has a general solu-
tion depending on 6 arbitrary functions of 2 variables — the same result as for the
system (2) with distinct prescribed Ricci eigenvalues.

B) The local moduli space of all spaces of non-elliptic types can be expressed by a
finite number of explicit formulas involving only algebraic operations, elementary
functions, differentiation, integration, and depending explicitly on the correspond-
ing number of arbitrary functions of two variables.
This is a rare phenomenon in the theory of nonlinear PDE systems.

C) The double Ricci eigenvalue, which was supposed to be arbitrary, is in fact not
arbitrary! It must be of the form

�1 = �2 = 1

k1y2 + k2y + k3
for �3 = 0, (49)

�1 = �2 = 1

k1 cos(λy)+ k2 sin(λy)+ k3
+ 2λ2 for �3 = 2λ2 > 0, (50)

�1 = �2 = 1

k1 cos(λy)+ k2 sin(λy)+ k3
− 2λ2 for �3 = −2λ2 > 0, (51)
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where k1, k2, k3 are arbitrary functions of 2 variables w, x. We are somehow on
the “halfway” to the Schur’s Theorem.

4.3 The semi-symmetric spaces of elliptic type with the prescribed non-constant
double Ricci eigenvalue

The prescribed eigenvalue must be of the form (49). The problem was investigated in
[14], pp. 471–474. The local moduli space depends here on one arbitrary function of 2
variables.

The corresponding system of PDE’s for the Ricci components is again overdeter-
mined and its general solution depends on 4 arbitrary functions of two variables.

4.4 The case of constant Ricci eigenvalues �1 = �2 �= �3

Here we have a specialized PDE system (48) in which k is a constant. As we mentioned
in the Introduction (see [15], [5], [19]), the local moduli space of all possible metrics
depends on 2 arbitrary functions of 1 variable.

The PDE system for the Ricci components is again “strongly overdetermined” and
the general solution depends only on 3 arbitrary functions of 2 variables.

Notice that the local moduli space here is “much smaller” than in the case of
three distinct constant Ricci eigenvalues! This is obviously due to the fact that the
corresponding PDE system (2) gets overdetermined by adding new equations.

4.5 The 3-dimensional Riemannian manifolds with two zero Ricci eigenvalues
and one arbitrary Ricci eigenvalue

The corresponding PDE system for the Ricci characteristic polynomial is here rather
special. In fact, we get the conditions c1 = 0, c0 = 0 and the additional equations
saying that the 2-dimensional sub-determinants of the matrix [Ricij ] are zero. It might
be an interesting problem to solve the corresponding PDE system in order to obtain the
information about general solution.

One can also proceed like in the subsection 4.2, and to write down a system of 9
PDE’s of second order. But this system is very hard to solve and the “parametrization
problem” for the moduli space still remains open.

The problem was raised, in fact, for general dimension by S. Ivanov and I. Petrova
in [11] when the authors studied “the spaces with pointwise constant curvature eigen-
values” (in fact, eigenvalues of the skew-symmetric curvature operator R(X, Y ). The
classification problem was solved completely by the above authors in dimension 4 and
later by P. Gilkey, J. Leahy and H. Sadofsky in the higher dimensions except n = 7 and
n = 8. Yet, it still remains open in dimension 3 (which is just the case described in the
title of this paragraph – see Remark 2 and Remark 3 in the Introduction of [11]).

The only known results are isolated examples of the above spaces:

A) The group SU(3) with a special left-invariant metric (see [27] and Remark 2 in
[11]).
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B) The metrics of the form

g = 1

p2
e−2λydw2 + [p eλydx + (r eλy + s e−λy)dw]2 + dy2, (52)

where p = p(w), s = s(w), r = −λ2p2(w)s(w)x2 + p ′(w)x + ψ(w), and
p(w), s(w), ψ(w) are arbitrary functions. Here, �1 = �2 = 0, �3 = −2λ2. These
metrics are not locally homogeneous. (See [15], Example 5.8.)

C) The example by Ivanov–Petrova: (M, g) is a warped product M3 = B1 ×f N2,
where B1 = B1(y) is a real line, N2 is a space form of constant curvature K , and
the warping function f (y) is

√
Ky2 + Cy +D with constantC,D such thatC2 −

4KD �= 0. The Ricci eigenvalues are
(

0, 0, 1
2 (C

2 − 4KD)/(Ky2 + Cy +D)2
)

.

D) The new example found by V. Hájková and O. Kowalski:

g = y2pdw2 + y2(1−p)dx2 + dy2, where p is a parameter. (53)

Here, �1 = �2 = 0 and �3 = 2p(1 − p)/y2. Further, p(1 − p) is a Riemannian
invariant and the case p = 1/2 corresponds to the example C) for the particular
choice K = 0, C = 1, D = 0.

E) (Added in proof). See Y. Nikolayevsky, On Riemannian manifolds cohose skew-
symmetric curvature operator has constant curvature, preprint, to appear in Bull.
Austral. Math. Soc., 2004.
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