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1 Introduction

The aim of this exposition is to place our recent joint work on anti-self-dual Hermi-
tian surfaces in the more general context of locally conformal Kähler metrics—which
literally means that the metric is conformal to a Kähler metric, locally. From now on
we will adopt the standard notation l.c.K. for these metrics which were introduced and
studied by Vaisman in the 1970s.

We start by recalling some preliminaries. Throughout this work S will denote a
smooth complex surface—a complex manifold of complex dimension 2—with complex
structure J ∈ Aut(TM) with J 2 = −id. A Riemannian metric g on the underlining
real four-manifold S is said to be Hermitian, if it is compatible with the complex
structure in the sense that J acts as an isometry: for all tangent vectorsX and Y in TM ,

g(JX, JY ) = g(X, Y ).
In this situation, we can define a non-degenerate 2-form ω ∈ �1,1(S) usually called
the Kähler form of the Hermitian metric by prescribing

ω(X, Y ) = g(X, JY ),
and consider the linear map from one-forms to three-forms defined by taking wedge
product with ω

Ł : �1(S) −→ �3(S),

η �→ ω ∧ η.
Using the fact that ω is non-degenerate, the linear map L is always injective and
therefore is an isomorfism because S is of real dimension four. We conclude that in this
dimension there always is a unique one-form θ ∈ �1(S) such that,
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dω = ω ∧ θ.
θ is usually called the Lee form of the metric and it is easily seen to satisfy the following
properties:

1. θ = 0 – the Lee form vanishes ⇐⇒ g is a Kähler metric – i.e., dω = 0.
2. θ = df – the Lee form is exact ⇐⇒ the metric e−f g is Kähler – i.e., g is globally

conformal Kähler.
3. dθ = 0 – the Lee form is closed (locally exact) ⇐⇒ g is l.c.K.
4. We will also consider the case of parallel Lee form ∇θ = 0 where ∇ is the Levi-

Civita connection of g; this of course implies dθ = 0 and therefore it is a special
class of l.c.K. metrics also called generalized Hopf manifolds by Vaisman [36].
Notice that such surfaces must have vanishing Euler characteristic: χ(S) = 0,
when S is compact.

The main purpose of this note is to address the following question of Vaisman.

Question 1.1 ([37, p.122]) Which compact complex surfaces (S, J ) can admit l.c.K.
metrics?

We will take the natural approach of first reducing the problem to minimal surfaces
and then look at the Enriques–Kodaira classification. The rest of the section is devoted
to give a brief account of these notions.

We start by explaining the minimal model of a surface introduced by Kodaira
[16]: If one applies the classical monoidal transformation of blowing up a point on S,
the result is a new complex surface S̃ containing a smooth rational curve C of self-
intersection C2 = −1. The blown up surface S̃ is diffeomorphic to the connected
sum S#CP2. Conversely, a smooth rational curve C of self-intersection C2 = −1 on
a complex surface S̃ can always be blown down to a smooth point and the resulting
smooth surface S will have second Betti number b2(S̃)− 1; therefore if S̃ is compact,
after a finite number of blowing down we will obtain that S is minimal – i.e., without
rational curves of self-intersection −1. Such an S is called a minimal-model for the
compact complex surface S̃ and in general is not unique.

It is then enough to understand minimal complex surfaces and this is the general
philosophy of the classification which however is also very suitable to address the
geometrical problem of Question 1.1 because of the following result of Tricerri which
generalizes the analogous result in the Kähler case:

Proposition 1.2 ([34]) A complex manifold M is l.c.K. if and only if the blow up of
M at point is l.c.K.

As noticed in [34, Remark 4.3], this reduces the above question of Vaisman to
minimal surfaces, for this reason from now on we can assume that S is a minimal com-
pact complex surface and heavily rely on the famous Enriques–Kodaira classification
which is summarized in the following table taken from the book of Barth–Peters–Van
de Ven [5, p.188]. The classification divides all minimal surfaces into ten classes be-
longing to four groups according to the possible values of the Kodaira dimension,
Kod(S) = −∞, 0, 1, 2 which appears in the second column of the table, while in the
other columns we have indicated the algebraic dimension a(S), the Euler characteristic
χ(S) and the first Betti number b1(S).
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Table 1. Table of Enriques–Kodaira classification

Class of S Kod(S) a(S) χ(S) b1(S)

1) rational surfaces 2 3,4 0

2) class VII0 surfaces −∞ 0,1 ≥ 0 1

3) ruled surfaces of genus g 2 4(1 − g) 2g

4) Enriques surfaces 2 12 0

5) Hyperelliptic surfaces 2 0 2

6) Kodaira surfaces 0 1 0 1,3

7) K3-surfaces 0,1,2 24 0

8) tori 0,1,2 0 4

9) properly elliptic surfaces 1 2 ≥ 0 even

1 0 odd

10) surfaces of general type 2 2 > 0 even

2 The case b1(S) even

It is well-known from Hodge theory that any compact Kähler manifoldMmust have odd
de Rham cohomology of even dimension. Vice-versa, in the special case of surfaces,
due to the fact that H 1(S,C) = H 1,0(S) ⊕ H 0,1(S) whether b1 is even or odd [5,
p.117], we have the following result of Vaisman:

Proposition 2.1 ([35, Prop 2.3]) Every l.c.K. metric on a compact surface with even
first Betti number is actually globally conformal Kähler.

Therefore, in the case b1 even Vaisman’s question reduces to the more classical one
of finding Kähler metrics on surfaces. As conjectured by Kodaira and Morrow [17] the
answer is the following:

Theorem 2.2 ([27, 31]) A compact complex surface is Kähler if and only if b1(S) is
even.

The original proof of this result was done case by case using Enriques–Kodaira
classification of minimal surfaces. We give a brief account of the proof following the
table of the previous section.

Because every Moischezon surface S – i.e., of top algebraic dimension a(S) = 2 –
is actually projective algebraic [5, p.127] it follows that surfaces in 1), 3), 4), 5), and 10)
are certainly Kähler because they are submanifolds of CPn. Tori 8) admit flat Kähler
metrics while elliptic surfaces 9) with b1 even are Kähler by a result of Miyaoka [27].
The problem remained open for the only class left, namely for K3 surfaces, until it was
solved by Siu [31] building on preliminary work of Todorov.

It is also interesting to notice that quite recently Buchdhal and Lamari found two
unified proofs of this theorem—i.e., not using Kodaira’s classification. Their works are
independent—using different complex analytical methods – and appeared in the same
issue of the same journal [6, 18].
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3 The case b1(S) odd and χ(S) = 0

From now on we can assume that S is a minimal compact complex surface with odd
first Betti number and look for strictly l.c.K.metrics on S—i.e., not globally conformal
Kähler. We see from Kodaira’s classification of these surfaces that the Euler charac-
teristic χ(S) cannot be negative and in our treatment we distinguish two main cases:
The first one χ(S) = 0 is completely understood both from the point of view of the
classification of the complex structure [2] and the existence of l.c.K.metrics [1]; notice
that χ(S) = 0 is also a necessary condition for the metric to have parallel Lee form.

We start by presenting a brief description of the complex structure of these surfaces
in order of decreasing Kodaira dimension.

Properly elliptic surfaces with b1 odd

A surface S is said to be elliptic if it admits a holomorphic map to a curveB with generic
fiber an elliptic curve. It was shown by Kodaira [5, 16, 26] that when S is minimal with
b1(S) odd, the singular fibers can only be multiple fibers; in this situation S admits an
unbranched covering S̃ which is a (topologically non-trivial) elliptic fiber bundle over
a smooth complex curveB with b1(S̃) = b1(B)+1 and b2(S̃) = 2b1(B). In particular,
we conclude that χ(S) = 0 for any minimal elliptic surface with b1(S) odd.

Finally, an elliptic surface S is called properly elliptic if Kod(S) = 1; when b1(S)

is odd this amounts to say that the base B has genus g ≥ 2. Furthermore, every surface
of algebraic dimension 1 turns out to be elliptic [5, p.194].

Kodaira surfaces

By definition they are surfaces with b1(S) odd and Kod(S) = 0. They are divided
into primary and secondary Kodaira surfaces according to whether b1 is equal to 3
or 1. Primary Kodaira surfaces are elliptic fiber bundles over an elliptic curve and they
provide interesting examples in differential geometry and topology. In fact it is shown
in [30] that the complex structure J of a primary Kodaira surface anti-commutes with
a symplectic structure I—generating in that way an almost hypercomplex structure on
S; (S, I ) was cited by Thurston as the first example of a compact symplectic manifold,
which is not Kähler because b1 = 3 [33]; and S also represents an interesting example
in rational homotopy theory. Finally, secondary Kodaira surfaces are finite quotients of
primary ones [5, p.147].

It follows from the classification table that the remaining minimal surfaces S with
b1(S) odd and χ(S) = 0 belong to class VII0 – i.e., satisfy Kod(S) = −∞ and
b1(S) = 1. The classification of surfaces in class VII0 is known only in the special
case χ(S) = 0 and a theorem of Bogomolov [2] also proved by Yau et al. [22] and
by Teleman [32] states that a surface in this class is either a Hopf surface or a Inoue–
Bombieri surface, which we now describe briefly.

Hopf surfaces

By the work of Kodaira, a Hopf surface is the quotient of C
2 \ {0} by a discrete group

of biholomorphisms which is a finite extension of the infinite cyclic group generated
by the contraction:
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(z, w) �→ (az, bw + λzn),
where a, b, λ ∈ C and n ∈ N satisfy 0 < |a| < |b| < 1 and λ(a − bn) = 0; we say
that a Hopf surface is diagonal if λ = 0 (class 1 in the terminology used by Belgun).
A Hopf surface is elliptic exactly when λ = 0 and ap = bq for some p, q ∈ N while
an elliptic surface with b1 odd must be a Hopf surface when the base B ∼= CP1.

Bombieri–Inoue surfaces

These surfaces were independently discovered at the same time [14] and [3], their
universal cover is C × H where H denotes the upper-half plane and contrary to Hopf
surfaces which always have at least one elliptic curve (namely the image of z = 0)
Bombieri–Inoue surfaces have no complex curves at all. They come in three different
families which for simplicity we denote by Sm, S−

n and S−
n,u with u ∈ C.

Now that we have an idea of the complex structure of minimal surfaces with odd
first Betti number and zero Euler characteristic, we want to investigate which of them
admit l.c.K.metrics. This problem has been solved by Belgun [1] in his doctoral thesis
completing the work of several authors as Vaisman, Tricerri, Gauduchon–Ornea. In
fact Belgun even classified surfaces which admit metrics with parallel Lee form and
his powerful results can be summarized as follows:

Theorem 3.1 ([1]) The complete list of compact complex surfaces S with b1 odd ad-
mitting l.c.K. metrics with parallel Lee form is the following:

1. Properly elliptic surfaces – i.e., all surfaces with Kod(S) = 1.
2. Kodaira surfaces, primary or secondary – i.e., all surfaces with Kod(S) = 0.
3. Diagonal Hopf surfaces – i.e., Hopf surfaces with with λ = 0.

Belgun was also able to construct l.c.K.metrics on every non-diagonal Hopf surface
improving therefore the previous work of Gauduchon–Ornea [10] to show that:

Theorem 3.2 ([1]) Every Hopf surface admits a l.c.K. metric.

The only case left is that of Inoue–Bombieri surfaces whose geometry was first
studied by Tricerri who constructed l.c.K. metrics on all of them except for S−

n,u and
u /∈ R [34]. Then another remarkable theorem of Belgun is that Tricerri’s result is in
fact sharp.

Theorem 3.3 ([1]) The Inoue–Bombieri surfaces S−
n,u with u /∈ R do not admit l.c.K.

metrics at all.

An interesting consequence is that, contrary to the Kähler case, l.c.K. metrics are
not stable under small deformations [1].

4 Anti-self-dual Hermitian metrics on surfaces of class VII0 with
b2 > 0

As seen in the previous section, the work of Belgun completely answered the question
of Vaisman in the case of zero Euler characteristic. It follows from the classification
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that the only other possible case is that of surfaces of class VII0 with 0 < χ = b2,
because b1 = 1. There is no classification of these surfaces but only several examples
due to Inoue, Hirzebruch, Enoki, Kato, Nakamura, and Dloussky. These examples all
turn out to have small deformations which are not minimal. They are blown-up Hopf
surfaces.

On the topology of these surfaces we can therefore say that all known examples of
S are diffeomorphic to (S1 × S3)#mCP2 where m = b2(S) ≥ 1.

There are also some very basic open questions about the complex structures; for
example it is not known whether every surface S ∈ VII0 with b2(S) ≥ 1 admits a curve
[26].

As far as the Hermitian geometry of these surfaces is concerned, very little is known.
We only have examples by LeBrun [19] who constructed anti-self-dual Hermitian met-
rics with semi-free S1-action on parabolic Inoue surfaces using his hyperbolic ansatz.
The action must in fact be holomorphic by [29] and this fits well with a result of Hausen
[11] asserting that the only surfaces in this class admitting a 1-dimensional group of
biholomorphisms with fixed points are parabolic Inoue surfaces.

The crucial link here is that LeBrun’s metrics are automatically l.c.K. by the fol-
lowing result of Boyer; see also [28] for an alternative twistor proof.

Theorem 4.1 ([4]) Let S be a compact surface with b1(S) odd admitting an anti-self-
dual Hermitian metric g. Then g is l.c.K. and S belongs to class VII.

In what follows, we present a new twistor construction of anti-self-dual Hermitian
metrics on class VII surfaces; by Boyer’s result these metrics are automatically l.c.K.
and notice that all known examples of l.c.K. metrics on surfaces of class VII0 with
b2 > 0 are indeed anti-self-dual Hermitian. The details and the proofs of our construc-
tion will appear elsewhere [8].

4.1 Surfaces with positive b2, according to Nakamura

Although it is still an open question whether all the class VII0 surfaces with b2 > 0
must have a curve, it is known for example that they can only have elliptic or rational
curves; in fact at most one-elliptic curve and at most b2(S) rational curves some of
them forming a cycle C, there can be at most two cycles of rational curves in S. More
precisely, some of these surfaces can be characterized by the configuration of curves
that they contain. This is the case for Inoue and Enoki surfaces which always have
b2(S) rational curves and can be identified by the presence of an elliptic curve or by the
number of cycles and their self-intersection numbers. Rather than giving the original
definition of each specific class we will simply refer to the excellent exposition in [26]
from which we extract the useful table 2.

Our construction is very much inspired by the work of Nakamura [23, 25] on
rational degenerations of class VII surfaces. In what follows, we briefly explain how,
Inoue and Enoki surfaces can be constructed starting from a completely different class
of surfaces, namely toric surfaces which are blow-ups of CP2 over a fixed point of the
action.

Let p ∈ CP2 be a fixed point of a standard (C∗ × C
∗)-action and let H ⊂ CP2

denote the hyperplane class. We have −K = 3H for the anti-canonical class which
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Table 2. Table of Enoki and Inoue surfaces with b2 > 0.

curves surfaces

an elliptic curve on a cycle parabolic Inoue surfaces

two cycles hyperbolic Inoue surfaces

a cycle C with C2 < 0 and b2(S) = b2(C) half Inoue surfaces

a cycle C with C2 = 0 Enoki surfaces

can therefore be represented by a cycle of three rational curves—each of them having
self-intersection number +1—and let p be one of the three corners. Blowing up CP2
at the point p yields the Hirzebruch surface $1 with anti-canonical divisor −K which
is a cycle of four rational curves with self-intersection numbers −1, 0,+1, 0.

One can go on like this by always blowing up one of the two corners of the last
exceptional divisor. After m times the result is again a toric surface D̃ diffeomorphic
to CP2#mCP2 with a unique +1-rational curve denoted by H which is disjoint from
the exceptional divisor of the last blow-up, denoted by E. They are part of a cycle of
(m+ 2)-rational curves which represents the anti-canonical class of the surface D̃,

−K = E + B1 + · · · + Bi +H + Bi+1 + · · · + Bm,
the important point here is that by always blowing up one of the two corners of the
(−1)-curveE we produced an anti-canonical cycle −K , whose −1 components always
intersect E—in other words B2

j = −1 implies j = 1 or j = m. This is the property
that makes this construction produce minimal surfaces with b1 = 1.

From this smooth toric surface D̃, we now construct a singular surface D′: Take
φ : H → E to be a biholomorphism of the complex projective line sending the two
corners ofH to those ofE and consider the rational surface with ordinary double curve
given by the quotient

D′ = D̃/φ.
Notice that D′ is a singular surface with normal crossings along the double curve
F = φ(H) = φ(E) satisfying the d-semistable condition νH ⊗ νE ∼= O(+1) ⊗
O(−1) = OCP1 .

In this setting we know from a more general result of Nakamura [23, 24] that the
Kuranishi family of D′ is unobstructed, the general element Dt is a smooth surface in
class VII containing a global spherical shell and diffeomorphic to (S1 × S3)#mCP2
withm = b2(D̃)−2. In fact he shows that every class VII surface with global spherical
shell admits a rational degeneration (not necessarely toric).

Because we want to obtain VII0 surfaces with a particular configuration of curves
(as described in the table), we consider deformations of the singular pair (D′, B ′)where
D̃ is toric and B ′ = φ(B1 + · · ·Bm) ⊂ D′ is the normal crossing divisor given by the
image of the divisor −K −H − E in D̃. We then have the following result:

Theorem 4.2 The Kuranishi family of the singular pair (D′, B ′) is unobstructed, the
general member Dt is either an Inoue or an Enoki surface of class VII0 with b2 = m.
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In fact more precisely, one obtains a half Inoue surface if B ′/φ consists of just one
cycle. In other cases, φ identifies the four end-points of B ′ in order to form two cycles
of rational curves and we obtain a hyperbolic Inoue surface when i ≥ 2, or a parabolic
Inoue surface when i = 1, because in this case one of the cycles inB ′/φ consists of just
one rational curve with a double point which is deformed to a smooth elliptic curve.

Finally, in order to obtain Enoki surfaces we need i = 1 and to actually neglect
B1 so that the general member Dt has only a cycle of rational curves with zero self-
intersection number and no elliptic curve.

4.2 Twistor construction

Now that we understand the complex structure of our surfaces as smooth deformations
of the singular pair (D′, B ′), we are going to produce anti-self-dual Hermitian metrics
by imbedding (D′, B ′) into a singular twistor space Z′. The construction of Z′ is
suggested by the work of Donaldson–Friedman [7] which for our purposes fits very
well with Nakamura’s construction of surfaces in class VII.

The starting point is a result of Joyce [13] who constructed self-dual metrics on the
connected sum of m copies of CP2 (denoted by mCP2 from now on) with isometry
group S1 ×S1 and their twistor spaces were studied by Fujiki in [9]. Let t : Z → mCP2
be the twistor fibration from a Joyce twistor space to a Joyce metric, as usual each fiber
t−1(p) ∼= CP1 is a complex submanifold of Z with normal bundle O(1)⊕O(1) called
twistor line; these fibers are invariant with respect to the real structure σ : Z → Z

which is an anti-holomorphic involution which restricts to the antipodal map on each
twistor line, and is therefore fixed-point free.

What is important for our purposes is that every Joyce twistor space contains a
pair of degree-1 divisors D and D̄ (in fact a generic Z contains exactly (m + 3) such
pairs) by which we mean the following:D is an effective divisor in Z with intersection
number 1 with a twistor line and D̄ = σ(D). The generic twistor line intersects D at
one point and there is exactly one twistor line L1 ⊂ D, by reality it is also contained
in D̄ so that L1 = D ∩ D̄. The restriction of the twistor map t : D → M is orientation
reversing and shows that D is diffeomorphic to a blow-up of CP2: D ∼= CP2#mCP2
[20, prop.6].

In fact it is shown in [9] that each of this degree-1 divisors are toric surfaces with
respect to a holomorphic C

∗ × C
∗-action on Z which is a complexification of the

isometric action onM , given by the twistor correspondence.
L1 is the component of self-intersection +1 in the anti-canonical cycle −K of

the toric surface D ⊂ Z, and in order to apply the Donaldson–Friedman construc-
tion let L2 be the twistor line passing through one of the two corners of a (−1)-
component of anti-canonical cycle −K . We can then follow the prescription of [7]
and blow up the twistor space Z at L1 and L2 to obtain a smooth 3-fold Z̃ con-
taining two exceptional quadrics Q1 and Q2 each with normal bundle O(−1, 1) and
finally produce a singular twistor space Z′ by using a biholomorphism ψ : Q1 → Q2
which extends φ switching the two CP1-factors of the quadrics and taking the quotient
space

Z′ = Z̃/ψ.
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According to general theory [7], Z′ is a complex 3-fold with only normal crossing
singularities along the smooth quadric ψ(Q1) = ψ(Q2) satisfying the d-semistable
condition and we can prove that its deformation theory is unobstructed so that it always
admits smooth deformations which are twistor spaces of anti-self-dual metrics on the
self-connected sum of mCP2 (with reversed orientation) which is (S1 × S3)#mCP2 –
i.e., exactly what we want, topologically.

However, our construction gives us for free a lot more geometrical structure: The
proper transform D̃ ofD in the blown up twistor space Z̃ is exactly one of the toric sur-
faces considered in the previous section and is now disjoint from the proper transform
˜̄D of D̄. The divisors D̃ and ˜̄D are isomorphic as toric surfaces and intersect trans-

versely the two exceptional quadricsQ1 andQ2. The biholomorphism ψ : Q1 → Q2
extends the identification φ so that the singular surface D′ of the previous section is
contained inside the singular twistor spaceZ′ together with D̄′ because the construction
is compatible with real structures. In fact D′ and D̄′ are disjoint Cartier divisors in Z′
with chains of rational curves B ′ ⊂ D′ and B̄ ′ ⊂ D̄′. We then set S′ = D′ + D̄′ and
C′ = B + B̄ ′ and consider the triple of singular complex spaces with real structure.
The deformation theory of such triples was studied by Honda [12] and we are able to
prove the following result.

Theorem 4.3 The Kuranishi family of the singular triple (Z′, S′, C′) is unobstructed,
the general member Zt is smooth and contains a class VII0 surfaceDt with curves Bt .

Because the triple (Z′, S′, C′) has a real structure we know from general theory
[7, 12, 15] that for t generic and real, Zt is a twistor space with a degree-1 divisor Dt
which is disjoint from D̄t and isomorphic to one of the surfaces of 4.2. This is the key
to prove the following result.

Theorem 4.4 Every minimal hyperbolic or half Inoue surface with b2 = m admits an
m-dimensional family of anti-self-dual Hermitian metrics. The same result holds on
some Enoki and some parabolic Inoue minimal surfaces with b2 = m.

Altough it is not yet clear which parabolic Inoue surfaces admit anti-self-dual
Hermitian metrics, let us notice that our metrics on these surfaces admit an S1-action
and should therefore be conformally isometric to LeBrun’s by the general result of
[21].
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