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Summary. This essay surveys a number of results and open questions concerning the curvature
of Riemannian metrics associated to a contact form.

In 1975, when the author was on sabbatical in Strasbourg, it was an open question
whether or not the 5-torus carried a contact structure. The author, being interested in the
Riemannian geometry of contact manifolds, proved at that time ([4]) that on a contact
manifold of dimension ≥ 5, there are no flat associated metrics. Shortly thereafter,
R. Lutz [31] proved that the 5-torus does indeed admit a contact structure and hence the
natural flat metric on the 5-torus is not an associated metric. The non-flatness result of
1975 was generalized by Z. Olszak [35], who proved in 1978 that a contact metric man-
ifold of constant curvature c and dimension ≥ 5 is Sasakian and of constant curvature
+1. In dimension 3, the only constant curvature cases are of curvature 0 and 1 as we will
note below. Sometimes one has an intuitive sense that the existence of a contact form
tends to tighten up the manifold. The non-existence of flat associated metrics does raise
the question as to whether, aside from the flat 3-dimensional case, any contact metric
manifold must have some positive sectional curvature. If the manifold is compact, it is
known ([7] p. 99) that there is no associated metric of strictly negative curvature. This
follows from a deep result of A. Zeghib [48] on geodesic plane fields. Recall that a plane
field on a Riemannian manifold is said to be geodesic if any geodesic tangent to the plane
field at some point is everywhere tangent to it. Zeghib proves that a compact negatively
curved Riemannian manifold has noC1 geodesic plane field (of non-trivial dimension).
Since for any associated metric the integral curves of the characteristic vector field, or
Reeb vector field, are geodesics, the characteristic vector field determines a geodesic
line field to which we can apply the theorem of Zeghib to obtain the following result.

Theorem. On a compact contact manifold, there is no associated metric of strictly
negative curvature.

� This essay is an expanded version of the author’s lecture given at the conference “Curvature
in Geometry” in honor of Professor Lieven Vanhecke in Lecce, Italy, 11–14 June 2003.
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The author conjectures that this and a bit more is true locally, namely, that except
for the flat 3-dimensional case, any contact metric manifold has some positive sectional
curvature.

Before giving other curvature results, we must review the structure tensors of a con-
tact metric manifold. By a contact manifold we mean a C∞ manifoldM2n+1 together
with a 1-form η such that η ∧ (dη)n �= 0. It is well known that given η there exists a
unique vector field ξ such that dη(ξ,X) = 0 and η(ξ) = 1; ξ is called the charac-
teristic vector field or Reeb vector field of the contact form η. A classical theorem of
Darboux states that on a contact manifold there exist local coordinates with respect to
which η = dz−∑n

i=1 y
idxi . We denote the contact subbundle or contact distribution

defined by the subspaces {X ∈ TmM : η(X) = 0} by D. Roughly speaking the meaning
of the contact condition, η ∧ (dη)n �= 0, is that the contact subbundle is as far from
being integrable as possible. In fact, for a contact manifold the maximum dimension
of an integral submanifold of D is only n, whereas a subbundle defined by a 1-form η
is integrable if and only if η∧ dη ≡ 0. A Riemannian metric g is an associated metric
for a contact form η if, first of all,

η(X) = g(X, ξ), i.e. the characteristic vector field is orthogonal to D
and secondly, there exists a field of endomorphisms φ such that

φ2 = −I + η ⊗ ξ and dη(X, Y ) = g(X, φY ).

We refer to (φ, ξ, η, g) as a contact metric structure and toM2n+1 with such a structure
as a contact metric manifold. The productM2n+1 ×R carries a natural almost complex
structure defined by

J

(
X, f

d

dt

)
=
(
φX − f ξ, η(X) d

dt

)
and the underlying almost contact structure is said to be normal if J is integrable. The
normality condition can be expressed as N = 0 where N is defined by

N(X, Y ) = [φ, φ](X, Y )+ 2dη(X, Y )ξ,

[φ, φ] being the Nijenhuis tensor of φ. A Sasakian manifold is a normal contact metric
manifold. In terms of the curvature tensor a contact metric structure is Sasakian if and
only if

RXY ξ = η(Y )X − η(X)Y.
In terms of the covariant derivative of φ the Sasakian condition is

(∇Xφ)Y = g(X, Y )ξ − η(Y )X.
A contact metric structure for which ξ is Killing is said to be K-contact and it is
easy to see that a Sasakian manifold is K-contact. In dimension 3, a K-contact mani-
fold is necessarily Sasakian but this is not true in higher dimensions. In the theory of
contact metric manifolds there is another tensor field that plays a fundamental role,
viz. h = 1

2£ξφ where £ denotes Lie differentiation. The operator h is symmetric,
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it anti-commutes with φ, hξ = 0 and h vanishes if and only if the contact metric
structure is K-contact. The complexification of the tangent bundle of a contact metric
manifold admits a holomorphic subbundle H = {X − iφ|DX : X ∈ D} and its Levi
form is given by −dη(X, φ|DY ), X, Y ∈ D. In this way a contact metric manifold
becomes a (non-integrable) strongly pseudo-convex CR-manifold. The CR-structure
is integrable if [H,H] ⊂ H. Tanno [46] showed that the integrability is equivalent to
(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX). For later use, we mention briefly the
idea of a D-homothetic deformation of a contact metric structure. Let a be a positive
constant and define a new structure by,

η̃ = aη, ξ̃ = 1

a
ξ, φ̃ = φ, g̃ = ag + a(a − 1)η ⊗ η.

The new structure is again a contact metric structure and if the original structure is a
Sasakian, a K-contact, or a strongly pseudo-convex integrable CR-structure, so is the
new structure. For details and additional information on the above development, see
the author’s book [7].

Returning to the positivity of curvature question, we briefly mention the following.
A celebrated theorem of Myers [33] states that a complete Riemannian manifold whose
Ricci curvature satisfies Ric ≥ δ > 0 is compact. In [27] I. Hasegawa and M. Seino
generalized Myers’ theorem for a K-contact manifold by proving that a complete K-
contact manifold for which Ric ≥ −δ > −2 is compact. Note however that in the
K-contact case, all sectional curvatures of plane sections containing ξ are equal to 1
and hence there is a certain amount of positive curvature from the outset. In an attempt
to weaken the K-contact requirement in this result, R. Sharma and the author [11]
considered a contact metric manifoldM2n+1 for which ξ is an eigenvector field of the
Ricci operator. In this case if Ric ≥ −δ > −2 and the sectional curvatures of plane
sections containing ξ are ≥ ε > δ′ ≥ 0 where

δ′ = 2
√
n(δ − 2

√
2δ + n+ 2)− (δ − 2

√
2δ + 1 + 2n),

then M2n+1 is compact. The condition that ξ be an eigenvector field of the Ricci
operator is not only a natural generalization of the K-contact condition, but an important
condition in its own right. D. Perrone [40] recently showed that ξ is an eigenvector
field of the Ricci operator if and only if ξ is a harmonic vector field. Moreover, all
complete 3-dimensional contact metric manifolds for which ξ is an eigenvector of the
Ricci operator and for which the Ricci operator has constant eigenvalue are known
(Koufogiorgos [29]); these are either Sasakian or particular Lie groups.

The next curvature result to discuss is the following [5].

Theorem. A contact metric manifold M2n+1 satisfies RXY ξ = 0 if and only if it is
locally isometric to En+1 × Sn(4) for n > 1 and flat for n = 1.

This structure is the standard contact metric structure on the tangent sphere bundle
of Euclidean space; the standard normalizations give the curvature of the sphere factor
as +4. For brevity we will not discuss the contact metric structure on the tangent sphere
bundle T1M of a Riemannian manifold M; suffice it to note that the characteristic
vector field is (to within a factor of 2) the geodesic flow (again see [7], Section 9.2 for
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details). NowEn+1 ×Sn(4) is a symmetric space and one can ask first when the tangent
sphere bundle is locally symmetric and, more generally, whether one can classify all
locally symmetric contact metric manifolds. For the first question the author proved
the following result in [6].

Theorem. The standard contact metric structure on T1M is locally symmetric if and
only if either the base manifold M is flat or 2-dimensional and of constant curvature
+1.

For the more general question we have the following results of Blair-Sharma [12]
and A. M. Pastore [37] respectively.

Theorem. A 3-dimensional contact metric manifold is locally symmetric if and only if
it is of constant curvature 0 or +1.

Theorem. A 5-dimensional contact metric manifold is locally symmetric if and only if
it is locally isometric to S5(1) or E3 × S2(4).

Very early in the development of the Riemannian geometry of contact manifolds
the following had been shown.

Theorem. A locally symmetric K-contact manifold is of constant curvature +1 and
Sasakian.

This result was due to Tanno in 1967 [43] and in the Sasakian with dimension ≥ 5
case to Okumura in 1962 [34].

We now consider briefly the analog of holomorphic sectional curvature, namely
φ-sectional curvature. A plane section in TmM2n+1 is called a φ-section if there exists
a vector X ∈ TmM2n+1 orthogonal to ξ such that {X,φX} span the section and the
sectional curvature is called φ-sectional curvature. Just as the sectional curvatures of a
Riemannian manifold and the holomorphic sectional curvatures of a Kähler manifold
determine the curvature completely, on a Sasakian manifold the φ-sectional curvatures
determine the curvature completely. Moreover, on a Sasakian manifold of dimension
≥ 5, if at each point the φ-sectional curvature is independent of the choice of φ-section
at the point, it is constant on the manifold and the curvature tensor is given by,

RXYZ = c + 3

4

(
g(Y, Z)X − g(X,Z)Y )

+ c − 1

4

(
η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ

+ g(Z, φY )φX − g(Z, φX)φY + 2g(X, φY )φZ
)
.

A Sasakian manifold of constant φ-sectional curvature is called a Sasakian space form.
A well-known result of Tanno [44] is that a complete simply connected Sasakian
manifold of constant φ-sectional curvature c is isometric to one of certain model
spaces depending on whether c > −3, c = −3 or c < −3. The model space for
c > −3 is a sphere with a D-homothetic deformation of the standard structure. For
c = −3 the model space is R

2n+1 with the contact form η = 1
2 (dz −∑n

i=1 y
idxi),
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the factor of 1
2 being convenient for normalization reasons, together with the metric

ds2 = η ⊗ η + 1
4

∑n
i=1((dx

i)2 + (dyi)2). For the c < −3 case one has a canonically
defined contact metric structure on the productBn×R whereBn is a simply connected
bounded domain in C

n with a Kähler structure of constant negative holomorphic curva-
ture. In particular, Sasakian space forms exist for all values of c. In the general context
of contact metric manifolds, J. T. Cho [23] recently introduced the notion of a contact
Riemannian space form. We get at this notion in the following way. In [47] Tanno
showed that the CR-structure of the tangent sphere bundle with its standard contact
metric structure is integrable if and only if the base manifold is of constant curvature.
Cho first computes the covariant derivative of h in this case obtaining

(∇Xh)Y = g((h− h2)φX, Y )ξ + η(Y )(h− h2)φX − µη(X)hφY,
where µ is a constant. He then abstracts this idea and defines the class Q of contact
Riemannian manifolds with integrable CR-structure for which the covariant derivative
of h satisfies the above condition. We remark that in the study of contact manifolds in
general, lack of control of the covariant derivative of h is often an obstacle to further
results. Now for a contact metric manifoldM2n+1 of class Q for which the φ-sectional
curvature is independent of the choice of φ-section, Cho shows that the φ-sectional
curvature is constant on M2n+1 and computes the curvature tensor explicitly. He then
defines a contact Riemannian space form to be a complete, simply connected contact
metric manifold of class Q of constant φ-sectional curvature. Cho also gives a number
of non-Sasakian examples and shows that a contact Riemannian space form is locally
homogeneous and is strongly locally φ-symmetric (see below).

We noted above that a locally symmetric K-contact manifold is of constant curvature
+1 and Sasakian. For K-contact geometry this can be regarded as saying that the idea
of being locally symmetric is too strong. For this reason Takahashi [41] introduced the
following notion: A Sasakian manifold is said to be a Sasakian locally φ-symmetric
space if

φ2(∇V R)X YZ = 0,

for all vector fields V,X, Y,Z orthogonal to ξ . It is easy to check that Sasakian space
forms are locally φ-symmetric spaces. Note that on a K-contact manifold, a geodesic
that is initially orthogonal to ξ remains orthogonal to ξ . We call such a geodesic a φ-
geodesic. A local diffeomorphism sm ofM2n+1,m ∈ M2n+1, is a φ-geodesic symmetry
if its domain contains a (possibly) smaller domain U such that for every φ-geodesic
γ (s) parametrized by arc length with γ (0) ∈ U and on the integral curve of ξ throughm,

(sm ◦ γ )(s) = γ (−s),
for all s with γ (±s) ∈ U . Takahashi defines a Sasakian manifold to be a Sasakian
globallyφ-symmetric space by requiring that anyφ-geodesic symmetry can be extended
to a global automorphism of the structure and that the Killing vector field ξ generates
a 1-parameter group of global transformations. Among the main results of Takahashi
are the following three theorems.

Theorem. A Sasakian locally φ-symmetric space is locally isometric to a Sasakian
globally φ-symmetric space and a complete, connected, simply-connected Sasakian
locally φ-symmetric space is a globally φ-symmetric space.
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Theorem. A Sasakian manifold is locally φ-symmetric if and only if it admits a φ-
geodesic symmetry at every point which is a local automorphism of the structure.

Now suppose that U is a neighborhood on M2n+1 on which ξ is a regular vector
field, then sinceM2n+1 is Sasakian, the projection π : U −→ V = U/ξ gives a Kähler
structure on V . Furthermore if sπ(m) denotes the geodesic symmetry on V at π(m), then
sπ(m) ◦ π = π ◦ sm.

Theorem. A Sasakian manifold is locally φ-symmetric if and only if each Kähler
manifold which is the base of a local fibering is a Hermitian locally symmetric space.

Recall that a Riemannian manifold is locally symmetric if and only if the local
geodesic symmetries are isometries. From the Takahashi theorems we note that on
a Sasakian locally φ-symmetric space, local φ-geodesic symmetries are isometries.
Conversely in [13], L. Vanhecke and the author proved that if on a Sasakian manifold
the local φ-geodesic symmetries are isometries, the manifold is a Sasakian locally φ-
symmetric space. This was extended to the K-contact case by Bueken and Vanhecke
[19] and we have the following Theorem.

Theorem. If on a K-contact manifold the local φ-geodesic symmetries are isometries,
the manifold is a Sasakian locally φ-symmetric space.

Finally J. A. Jiménez and O. Kowalski [28] classified complete simply-connected
globally φ-symmetric spaces.

We now ask what is the best notion of a locally φ-symmetric space for a general
contact metric manifold? One could use the same definition, namely,

φ2(∇V R)X YZ = 0,

for all vector fields V,X, Y,Z orthogonal to ξ and this condition gives what is known
as a weakly locally φ-symmetric space. Now without the K-contact property one loses
the fact that a geodesic, initially orthogonal to ξ , remains orthogonal to ξ . However we
have just seen that in the Sasakian case local φ-symmetry is equivalent to reflections
in the integral curves of the characteristic vector field being isometries. E. Boeckx and
L. Vanhecke [17] proposed this property as the definition for local φ-symmetry in the
contact metric case and call a contact metric manifold with this property a strongly
locally φ-symmetric space. From the work of B.-Y. Chen and L. Vanhecke [22] one
can see that on a strongly locally φ-symmetric space,

g((∇2k
X···XR)X YX, ξ) = 0,

g((∇2k+1
X···XR)X YX,Z) = 0,

g((∇2k+1
X···XR)X ξX, ξ) = 0,

for all X, Y,Z orthogonal to ξ and all k ∈ N. Conversely, in the analytic case these
conditions are sufficient for the contact metric manifold to be a strongly locally φ-
symmetric space. In particular, taking k = 0 in the second condition, we note that a
strongly locally φ-symmetric space is weakly locally φ-symmetric. In [21], G. Cal-
varuso, D. Perrone and L. Vanhecke determined all 3-dimensional strongly locally
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φ-symmetric spaces. In [18] E. Boeckx, P. Bueken and L. Vanhecke gave an exam-
ple of a non-unimodular Lie group with a weakly locally φ-symmetric contact metric
structure which is not strongly locally φ-symmetric.

As a generalization of both RXY ξ = 0 and the Sasakian case, RXY ξ = η(Y )X −
η(X)Y , Th. Koufogiorgos, B. Papantoniou and the author [10] considered the (κ, µ)-
nullity condition,

RXY ξ = κ(η(Y )X − η(X)Y )+ µ(η(Y )hX − η(X)hY ),
where κ and µ are constants and gave several reasons for studying it. We refer to a
contact metric manifold satisfying this condition as a (κ, µ)-manifold. On a (κ, µ)-
manifold, κ ≤ 1. If κ = 1, the structure is Sasakian and if κ < 1, the (κ, µ)-nullity
condition determines the curvature of M2n+1 completely. When κ < 1, the non-
zero eigenvalues of h are ±√

1 − κ each with multiplicity n. Th. Koufogiorgos and
C. Tsichlias [30] considered this condition where κ and µ are functions; they showed
that in dimensions ≥ 5, κ and µ must be constants but that in dimension 3 these “gen-
eralized (κ, µ)-manifolds” exist. The standard contact metric structure on the tangent
sphere bundle T1M satisfies the (κ, µ)-nullity condition if and only if the base manifold
M is of constant curvature. In particular ifM has constant curvature c, then κ = c(2−c)
and µ = −2c. A D-homothetic deformation destroys a condition like RXY ξ = 0 or

RXY ξ = κ(η(Y )X − η(X)Y ).
However, the form of the (κ, µ)-nullity condition is preserved under a D-homothetic
deformation with

κ̃ = κ + a2 − 1

a2
, µ̃ = µ+ 2a − 2

a
.

Given a non-Sasakian (κ, µ)-manifoldM , E. Boeckx [15] introduced an invariant

IM =
1 − µ

2√
1 − κ ,

and showed that for two non-Sasakian (κ, µ)-manifolds (Mi, φi, ξi, ηi, gi), i = 1, 2,
we have IM1 = IM2 if and only if up to a D-homothetic deformation, the two spaces
are locally isometric as contact metric manifolds. Thus we know all non-Sasakian
(κ, µ)-manifolds locally as soon as we have, for every odd dimension 2n + 1 and
for every possible value of the invariant I , one (κ, µ)-manifold (M, φ, ξ, η, g) with
IM = I . For I > −1 such examples may be found from the standard contact metric
structure on the tangent sphere bundle of a manifold of constant curvature c where we
have I = (1 + c)/|1 − c|. Boeckx also gives a Lie algebra construction for any odd
dimension and any value of I ≤ −1.

Returning to the strongly locallyφ-symmetric spaces, we note that the non-Sasakian
(κ, µ)-spaces are strongly locallyφ-symmetric as was shown by E. Boeckx [14]. Special
cases of these are the non-Abelian 3-dimensional unimodular Lie groups with left-
invariant contact metric structures. To see these examples, we first note the classification
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of simply connected homogeneous 3-dimensional contact metric manifolds as given
by D. Perrone in [39]. Let τ denote the scalar curvature and

w = 1

8
(τ − Ric(ξ)+ 4),

the Webster scalar curvature. The classification of 3-dimensional Lie groups and their
left invariant metrics was given by Milnor [32].

Theorem. Let (M3, η, g) be a simply connected homogeneous contact metric mani-
fold. ThenM3 is a Lie groupG and both g and η are left-invariant. More precisely we
have the following classification: (1) IfG is unimodular, then it is one of the following
Lie groups:

1. The Heisenberg group when w = |£ξ g| = 0;
2. SU(2) when 4

√
2w > |£ξ g|;

3. the universal covering of the group of rigid motions of the Euclidean plane when
4
√

2w = |£ξ g| > 0;
4. the universal covering of SL(2,R) when −|£ξ g| �= 4

√
2w < |£ξ g|;

5. the group of rigid motions of the Minkowski plane when 4
√

2w = −|£ξg| < 0.

(2) If G is non-unimodular, its Lie algebra is given by

[e1, e2] = αe2 + 2ξ, [e1, ξ ] = γ e2, [e2, ξ ] = 0,

where α �= 0, e1, e2 = φe1 ∈ D and 4
√

2w < |£ξ g|. Moreover, if γ = 0, the structure
is Sasakian and w = −α2/4.

The structures on the unimodular Lie groups in this theorem satisfy the (κ, µ)-
nullity condition and hence they are strongly locally φ-symmetric. The weak locally
φ-symmetric contact metric structure which is not the strong locally φ-symmetric given
by Boeckx, Bueken and Vanhecke [18] is the non-unimodular case with γ = 2. Notice
also, in the unimodular case, the role played by the invariant p = (4

√
2w)/|£ξ g|.

Moreover w = (2 − µ)/4 and |£ξ g| = 2
√

2
√

1 − κ; thus p = (2 − µ)/(2√
1 − κ)

which is the above invariant IM of Boeckx.
A special case of the (κ, µ)-spaces is, of course, the case where ξ belongs to

the κ-nullity distribution, i.e. µ = 0 and we call such a contact metric manifold an
N(κ)-contact metric manifold. Using the Boeckx invariant we construct an example
of a (2n+ 1)-dimensional N(1 − ( 1

n
))-manifold, n > 1.

Example. Since the Boeckx invariant for a (1 − ( 1
n
), 0)-manifold is

√
n > −1, we

consider the tangent sphere bundle of an (n + 1)-dimensional manifold of constant
curvature c so chosen that the resulting D-homothetic deformation will be a (1 −
(1/n), 0)-manifold. That is, for κ = c(2 − c) and µ = −2c we solve

1 − 1

n
= κ + a2 − 1

a2
, 0 = µ+ 2a − 2

a
,
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for a and c. The result is

c = (
√
n± 1)2

n− 1
, a = 1 + c,

and taking c and a to be these values we obtain a N(1 − ( 1
n
))-manifold.

Now as a generalization of locally symmetric spaces, many geometers have consi-
dered semi-symmetric spaces and in turn their generalizations. A Riemannian manifold
is said to be semi-symmetric if its curvature tensor satisfiesRXY ·R = 0, whereRXY acts
on R as a derivation. In [45] Tanno showed that a semi-symmetric K-contact manifold
is locally isometric to S2n+1(1). In [38] D. Perrone began the study of semi-symmetric
contact metric manifolds and in [36] B. Papantoniou showed that a semi-symmetric
(κ, µ)-space of dimension ≥ 5 is locally isometric to S2n+1(1) or to En+1 × Sn(4).
Similarly Ch. Baikoussis and Th. Koufogiorgos [1] showed that anN(κ)-contact metric
manifold satisfying RξX · W = 0, W being the Weyl conformal curvature tensor, is
locally isometric to S2n+1(1) or to En+1 × Sn(4). In [16] E. Boeckx and G. Calvaruso
showed that the tangent sphere bundle is semi-symmetric if and only if it is locally sym-
metric and therefore the base manifold is either flat or 2-dimensional and of constant
curvature +1. With this in mind it is surprising that the concircular curvature tensor,

ZXYV = RXYV − τ

2n(2n+ 1)
(g(Y, V )X − g(X, V )Y ),

leads to other cases. Recently J.-S. Kim, M. Tripathi and the author [8] proved the
following.

Theorem. A (2n+ 1)-dimensional N(κ)-contact metric manifoldM satisfies

ZξX · Z = 0,

if and only ifM is 3-dimensional and flat, or locally isometric to the sphere S2n+1(1),
orM is locally isometric to the above example of an N(1 − 1

n
)-manifold.

We close this essay with the question of conformally flat contact metric manifolds,
a question in which there has recently been renewed interest. Early on, Okumura [34]
had shown that a conformally flat Sasakian manifold of dimension ≥ 5 is of constant
curvature +1 and in [42] and [43] Tanno extended this result to the K-contact case
and for dimensions ≥ 3. Thus a conformally flat K-contact manifold is of constant
curvature +1 and Sasakian. Recently Ghosh, Koufogiorgos and Sharma [24] have
shown that a conformally flat contact metric manifold of dimension ≥ 5 with a strongly
pseudo-convex integrable CR-structure is of constant curvature +1. As we have seen,
in dimension ≥ 5, a contact metric structure of constant curvature must be of constant
curvature +1 and is Sasakian; and in dimension 3, a contact metric structure of constant
curvature must be of constant curvature 0 or +1, the latter case being Sasakian. For
simplicity set lX = RX ξξ , then l is a symmetric operator. K. Bang [2] showed that
in dimension ≥ 5 there are no conformally flat contact metric structures with l = 0,
even though there are many contact metric manifolds satisfying l = 0, ([2] or see
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[7] p. 153). Bang’s result was extended to dimension 3 and generalized by F. Gouli-
Andreou and Ph. Xenos [26] who showed that in dimension 3 the only conformally
flat contact metric structures satisfying ∇ξ l = 0 (equivalently ∇ξ h = 0, Perrone [38])
are those of constant curvature 0 or 1. In [25] F. Gouli-Andreou and N. Tsolakidou
showed that a conformally flat contact metric manifold M2n+1 with l = −κφ2 for
some function κ is of constant curvature. In the case of the standard contact metric
structure on the tangent sphere bundle, Th. Koufogiorgos and the author [9] showed
that the metric is conformally flat, if and only if the base manifold is a surface of
constant Gaussian curvature 0 or 1. The (κ, µ)-spaces are conformally flat only in the
constant curvature cases. In dimension 3, this was shown by F. Gouli-Andreou and
Ph. Xenos [26], even when κ and µ are functions. In higher dimensions the proof is
straightforward: Let W denote the Weyl conformal curvature tensor. WXξξ = 0 with
X ⊥ ξ yields [2(n − 1)(µ − 1)/2n − 1]hX = 0; if n = 1 we have the case studied
by Gouli-Andreou and Xenos and if h = 0 we have the K-contact case. If µ = 1,
h �= 0 and n > 1, we can choose two orthogonal unit eigenvectors X and Y of h with
eigenvalue λ > 0 and set Z = φY . Then using Theorem 1 of [10], WXYZ = 0 yields
κ = 1 (λ = 0), contradicting λ > 0. In [9] Th. Koufogiorgos and the author showed
that a conformally flat contact metric manifold on which the Ricci operator commutes
with φ is of constant curvature. Then in [21] G. Calvaruso, D. Perrone and L. Vanhecke
showed that in dimension 3 the only conformally flat contact metric structures, for
which ξ is an eigenvector of the Ricci operator, are those of constant curvature 0 or
1. An attempt was made in [24] to generalize this to higher dimensions by assuming
another condition in addition to ξ being an eigenvector of the Ricci operator. However
ξ being an eigenvector of the Ricci operator is the essential condition and we now have
a recent result of K. Bang and the author [3] generalizing the Calvaruso, Perrone and
Vanhecke result to higher dimensions.

Theorem. A conformally flat contact metric manifold for which the characteristic
vector field is an eigenvector of the Ricci operator is of constant curvature.

In view of these strong curvature results, one may ask if there are any conformally
flat contact metric structures which are not of constant curvature. In [7] (pp. 108–110),
the author shows that 3-dimensional conformally flat contact metric manifolds of non-
constant curvature do exist. These examples were studied further by Calvaruso [20]; he
showed that these examples satisfy ∇ξ h = ahφ, where a is a non-constant function. He
also showed that if a is a constant �= 2, then a 3-dimensional conformally flat contact
metric manifold satisfying ∇ξ h = ahφ has constant curvature. It is not known if there
exist conformally flat contact metric manifolds of dimension ≥ 5 which are not locally
isometric to the standard Sasakian structure on the unit sphere.

References

[1] Ch. Baikoussis and Th. Koufogiorgos, On a type of contact metric manifolds, J. Geom. 46
(1993), 1–9.

[2] K. Bang, Riemannian Geometry of Vector Bundles, Thesis, Michigan State University,
1994.



Curvature of Contact Metric Manifolds 11

[3] K. Bang and D. E. Blair, On conformally flat contact metric manifolds, to appear.

[4] D.E. Blair, On the non-existence of flat contact metric structures, Tôhoku Math. J. 28
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21 (1969), 448–458.

[46] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. Amer. Math. Soc.
314 (1989), 349–379.

[47] S. Tanno, The standard CR-structure on the unit tangent bundle, Tôhoku Math. J. 44 (1992),
535–543.

[48] A. Zeghib, Subsystems of Anosov systems, Amer. J. Math. 117 (1995), 1431–1448.


