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Abstract: The three asymptotic tests, Neyman and Pearson Likehhood Ratio 
(LR), Wald's statistic (W) and Rao's score (RS)are referred to in statistical 
hterature on testing of hypotheses as the Holy Trinity. All these tests are 
equivalent to the first-order of asymptotics, but differ to some extent in the 
second-order properties. Some of the merits and defects of these tests are 
presented. 

Some applications of the score test, recent developments on refining the 
score test and problems for further investigation are presented. 
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1.1 Introduction 

The Score test was introduced in Rao (1948) as an alternative to the likelihood 
ratio test of Neyman and Pearson (1928) and Wald (1943) test. A few years 
later Aitchison and Silvey (1958) and Silvey (1959) gave an interpretation of the 
score statistic in terms of a Lagrangian Multiplier used in optimizing a function 
subject to restrictions, and called it the Lagrangian Multiplier (LM) test. 

The score (RS) test went unnoticed for a number of years after it was intro­
duced. The first application of the score test, apart from the examples given 
in Rao (1948, 1950, 1961) appeared in econometric literature [Byron (1968)). 
During the late 1970s and 1980s, the RS test was applied to a variety of prob­
lems in econometrics. Reference may be made to survey papers by Breusch 
and Pagan (1980), Engle (1984), Kramer and Sonnberger (1986). and Godfrey 
(1988). Most of the recent textbooks on econometrics also discuss the RS test. 
Some of them are by White (1984, pp. 72-74), Amemiya (1985, pp. 141-146), 
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Judge et al. (1985, pp. 182-187), Kmenta (1986, pp. 493-495), Spanos (1986, 
pp. 326-336), Maddala (1988, pp. 137-139), Green (1990, pp. 357-359), and 
Harvey (1990, pp. 169-177). 

The distributional aspects of the RS statistic are covered in books by Rao 
(1973, pp. 418-419), Serfling (1980, pp. 156-160), Godfrey (1988, pp. 13-15), 
Lehmann (1999, pp. 451, 529, 532, 534, 539, 541, 570), and Bickel and Doksum 
(2001. pp. 335-336, 399-402). 

The study of the power properties of the RS test started with a paper by 
Chandra and Joshi (1983) and continued by Chandra and Mukherjee (1984, 
1985), Chandra and Samanta (1988), Ghosh (1991) and others. Reference may 
be made to Peers (1971) for a comment on a conjecture I made about the 
local properties of the LR test, which motivated the work of others on power 
properties. 

In this chapter, a brief review is given of the RS statistic and its merits and 
demerits in terms of power properties compared to LR and W are discussed. 
Some of the recent developments and refinements and modifications of the RS 
statistic are presented and some problems for future research are indicated. 

1.2 Asymptotic Tests of a Simple Hypothesis 

1.2.1 Notat ion 

Let X = (.Ti,..., Xn) be an iid sample of size n from the density function p(x, 9) 
where ^ is a p-vector parameter, and denote the joint density by P{X, 9) = 
p{xi,9). ..p(xn.9) and the log HkeHhood by L{9\X) = logP{X,9). The score 
vector of p components, as defined by Fisher, is 

1 f)p 
s{0) = -p^ = isiie)....,s,id))', (1.1) 

1 dP 

The Fisher information matrix of order p x p is defined by 

ni{9) = m = E[s{9)s'{9)] = {irs{9)) (1.2) 

where irs[0) = E [sr{9)ss[9)]. The maximum likelihood estimate of ̂  is obtained 
as a solution of the p equations 

s,(d) = 0, 7;=1 p (1.3) 

which we represent by 9. Under suitable regularity conditions [Lehmann (1999, 
pp. 499-501)], using the multivariate cental limit theorem 

n-^/2^(eo)~iVp(0,i(^o)) (1-4) 
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where ô is the tnie vaKie, and 

n i / 2 ( ^ - e o ) ~ N p ( 0 , b W ] - ' ) (1.5) 

where Np{Q, A) is a p variate normal distribution with mean zero and covariance 
matrix A. 

1.2.2 Three possible tests of a simple hypothesis: 
The Holy Trinity 

Let H(j: 9 = Oo {a specified p-vector) be the null hypothesis to be tested. Three 
tests which are in current use are as follows. 

1. Likelihood ratio test [Neyman and Pearson (1928)] 

L{e\X) - LiOolX) (1.6) LR^2 

where L{e\X) = \ogP{X,e). 

2. Wald test [Wald (1943)] 

w^{e-eo)'ne){e-ec>). (1.7) 

3. Rao Score test [Rao (1948)] 

RS = [s{do)]'[I{eo)]-'[s{eo)]. (1.8) 

All the three statistics known as the Holy Trinity have an asymptotic chi-square 
distribution on p degrees of freedom. 

1.2.3 Motivation for the score test of a simple hypothesis 

Consider the case of a single parameter 6 and Ho : 6 = OQ. If it; C /?" is the 
critical region of size a in the sample space, then the power of the test is 

n{e) = I P{X,0)dv with TriOo) = / P{X.eo)dv = a. 

To find a locallĵ  most powerful one-sided test (̂  > ^o) we maximize 

7r'(0o)= j P\XMdv 
J w 

subject to 7r{0i)) = a. Using the Neyman-Pearson Lemma, the optimal region 
is defined bv 
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where A is chosen such that the size of the region is a, as shown in Rao and 
Poti (1946). The test can be written in the form 

.(̂ o) >,,,lf(M!>A^. 
vm) m) (1.9) 

In the multiparameter case, the slope of the power function in the direction 
a = (ai , . . . ,ap)', at ô is 

ai5i(^o) -f • • • + apSp{0o) = 0/5(̂ 0) 

and the statistic (1.9) takes the form 

a'I{ei))a ' 

Maximizing with respect to a yields the statistic 

[s{0o)]'[mr'[siOo)] 
which is the same as (1.8). 

1.2.4 Test of a composite hypothesis 

Under the same setup as in Section 1.2.1, let the hypothesis to be tested be 
Ho : h{0) = c, where /i is an r x 1 vector function of the p-vector 9 with p>r 
and c is a given r-vector of constants. The corresponding Holy Trinity is as 
follows: 

(1.10) 

(1.11) 

(1.12) 

1. Likelihood ratio test [Neyman and Pearson (1928)] 

LR = 2 i.{e\x)-mx) (1.13) 

where 9 is the ml of 9 under the restriction h{9) = c. 

2. Wald test [Wald (1943)] 

W = \h.i9) - cY \A{9) ^ [/i(i9) - c] (1.14) 

where 

A{9) = [H{9)][Ii9)]-'[H{9)]', 

H{9) = {dh,{9)/d9j),h{9) = ihi{9) hr{9))\ 

and I(9) is as defined in (1.2). 
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3. Rao Score test [Rao (1948)] 

RS=[si0)]'[m]-'[s{d)]. (1.15) 

All the three statistics have an asymptotic chi-square distribution on r degrees 
of freedom. 

An alternative way of expressing the RS statistic is as follows. Note that 9, 
the restricted ml of ^, is a solution of the equation 

s{e) + [H{9)]'X = 0, h{e) = c 

where A is an r-vector of the Lagrangian Multiplier so that [s{9)y = -'\'H{9). 
Substituting in (1.15) we have 

RS = >!H{e)[i{e)]-\H{e)^\ = >:[A{e)]\ (i.ie) 

where A{9) is as defined in (1.14). Silvey (1959) expressed the RS statistic 
(1.15) in the form (1.16) and called it the Lagrangian Multiplier (LM) test. (In 
econometric literature, the RS test is generally referred to as the LM test.) 

1.2.5 Special form of compos i te hypothes is 

In many problems, the p-vector parameter 9 consists of two parts, 9\ an r vector 
and ^2 a (p - r) vector and the null hypothesis is of the form Ho '• 9i = 9io 
(a specified vector) and 9^ (known as a nuisance parameter) is arbitrary. This 
becomes a special case of the composite hypothesis considered in Subsection 
1.2.4 if we take h{9) = ^i. Denote the unrestricted ml of (^i, ^2) by (^1, ^2) and 
its asymptotic covariance matrix by 

cov{9j) = [I{9)Y 
- 1 ^fhm ii2{e)y_(A B 

\l2l{9) l22{0)) \B' C 

where the partitions of the information matrix, / n , /12, and /22 are matrices of 
orders r x r, r x {p - r) and {p - r) x {p - r), respectively, The Wald statistic 
can be written as 

= ( ^ i - M ' A . 2 ( ^ ) ( ^ i - M (1-17) 

where 

^1.2 = / i i - /12/22 

the Schur complement of /22. 
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To compute LR and RS statistics, we need to find the restricted ml estimates 
of ^1, 2̂ under the restriction 6i = 9io. Using the Lagrangian multiplier we have 
to maximize 

L{e\x)-\{ei-eio) 

with respect to 0. The estimating equations are 

The Rao score statistic is 

RS = [si{e)\oy[iier'[si{9)\o'^ 
= A'(/i.2(^^)r^A, (1.18) 

The LR statistic is 
LR = 2 L{9)'L{e)\ (1.19) 

All the three statistics have asymptotically chi-square distribution on r d.f. 

1.3 Neyman's C{a) Test and Neyman-Rao Test 

Neyman (1959, 1979) considered the problem of testing the hypothesis Ho : 
9i = 1̂0 (given) and 92,...,9p are arbitrary (nuisance) parameters. Hall and 
Mathiason (1990) considered the more general problem of testing the composite 
hypothesis 

Ho : 9i = 9io,•",9q = 9go and ^^-^i,...,9p 

are arbitrary by generalizing Neyman's results using the type of the argument 
used in Rao (1948) as in Section 1.2.3. Consider the slope of the power curve 
in the direction (ai, — a<y, 0, . . . , 0) 

msi H h aqSq 

where Si is the derivative of the log likelihood with respect to 9i, and define the 
Neyman statistic N as 

N = ^ , (;i^i + - - + a , . , ) ^ (1.20) 
o V{aiSi H ^aqSq) 

subject to 
cov{si,aiSi + • • • 4- agSq) = 0, 7 = g + 1,... ,p. (1-21) 
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Using notation 

Si = ( 5 1 , . . . , Sg)', 52 = (5^4-1 , . . . , 5p ) \ 

a = (a i , . . . , ag) ' , 

£;(5i5l) = In. E{SiS'2) = Ii2^E{S2S'2)=^l22. 

the problem (1.20), (1.21) can be written as 

iV(eio,e2) = m a x ^ ^ (1.22) 

subject to /21a = 0, where 610 = (^lo,—^(7o)'.©2 = (^(?+i-• • ^^p)'- Using 
standard algebra, the optimum N is obtained as 

A^(eio,e2) = (5i - h2l22S2y{h.2r\Si - /l2/2-2'52) (1.23) 

where /1.2 = h\ - h2l22hv 
Neyman chose ^Jn as the consistent estimate of G2 to obtain his statistic 

iV = Â  (610 ,62) . (1.24) 

This form of the N statistic, obtained as a generalization of Neyman's single 
parameter test, is called the Neyman-Rao test by Hall and Mathiason (1990). 
The asymptotic distribution of A/' as in (1.24) is chi-square on q degrees of 
freedom. If 02 is estimated by the constrained ml method, the test reduces to 
the RS test (1.19). 

1.4 Some Examples of the RS Test 

Godfrey (1988) gives a comprehensive account of the applications of the RS test 
in econometrics. A few examples mentioned in the paper by Bera and UUah 
(1991) are as follows. 

Chi-square goodness-of-fit: Given a parametric specification of the cell 
probabilities in a multinomial distribution, Pearson developed the chi-square 
goodness-of-fit test based on observed frequencies. This test can be seen to be 
the RS test of a composite hypothesis [Rao (1948)]. 

Linear model: The analysis of the linear model yi = x'-0 -I- Ci, z = 1 , . . . ,n, 
is based on four basic assumptions: correct linear functional form, normal­
ity of the distribution of the error term, homoscedasticity and serial indepen­
dence. The RS test for normality has been derived by Bera and Jarque (1981), 
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for homoscedasticity by Breusch and Pagan (1979). for serial independence by 
Breusch (1978) and Godfrey (1978a,b) and for linearity by Byron (1968). 

For further examples and interpretation of several well-known tests in terms 
of the score functions, reference may be made to Bera and Ullah (1991) and the 
papers in the special issue on Rao's score test. Vol. 97. pp. 1-200 of Journal of 
Statistical Planning and Inference (2001). 

1.5 Some Advantages of the RS Test 

1. In general, it is simple to compute the RS statistic as it depends only on 
estimates of parameters under HQ. 

2. The test is invariant under transformation of the parameters, unlike the 
Wald test (see Section 1.6 for examples). Transformation of parameters 
may simplify the estimation of parameters without effecting the value of 
the statistic. 

3. The RS test has the same local efficiency as the Wald and LR tests. 

4. The distribution of RS is not affected by parameters being on the bound­
ary of the parameter space under Ho. In such a case the LR test, and in 
some cases the W test, is not applicable. 

5. There are situations where nuisance parameters are not identifiable under 
Ho leading to singular information matrix. In such cases the RS test can 
be suitably modified as illustrated in Davies (1977. 1987). 

1.6 Some Anomalies 

1.6.1 Behavior of the power function 

The LR, W and RS tests are consistent in the sense that for a fixed alternative 
to the null hypothesis the power tends to unity as the sample size n —* oo. 
However, for a fixed sample size, the power function may not be monotonically 
increasing with increase in the distance (defined in some sense) of the alternative 
hypothesis from the null. 

Example 1.6.1 Let : r i , . . . , ./>, be an iid sample from the Cauchy distribution 
with density Tr'^fl -f {x - 9f]-\ 
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The RS test for HQ : 6 = 60 against the alternatives 6 > 60 rejects when 

As the alternative 6 -^ oo, min(.Ti ~ OQ) -^ oo in probability, so that for fixed 
n, the left-hand side of (1.25) tends to zero. Since Ua > 0 (for a < 1/2), the 
power of the test as ^ —> oo for fixed n tends to zero. [See Lehmann (1999, p. 
532) for further details]. 

Example 1.6.2 Let xi,... ,Xn be independent binary response variables such 
that 

P{x-, = 1)=^ U+expl-^'^PiZiAl . ?; = l,...,7i, (1.26) 

where zn = 1 and Zi\,...,Ziq are observations on q covariables. To test the 
hypothesis iifo : ,5<̂  = 0 against the alternative H : !3q ^ 0, the Wald statistic is 

^V = 0lli,, (1.27) 

where 9q is the ml estimate of /3g and iqq is the estimated variance of $q. 
Hauck and Donner (1977) show that for fixed n, l^ —• 0 as /Ŝ  -^ oo for fixed 
/ ? ! , . . . , 0q-\, so that the power of the test decreases as dq increases. For further 
examples of such anamolies associated with Wald's statistic, reference may be 
made to Vaeth (1985) and Le Cam (1990). 

The above examples do not contradict the claims made about RS and W 
about the local power of the tests. Nonetheless, they suggest a caution in the 
use of these tests [see Mantel (1987)]. It would be of interest to construct an 
example of the type of anomaly noted above for the RS and W tests in the case 
of the LR test. 

1.6.2 Examples of non-invariance of the Wald test 

The Wald test is not invariant for transformations of the parameter while the LR 
and RS statistics are. Different choices of parameters using the Wald statistic 
may lead to different inferences. 

Example 1.6.3 Consider the likelihood P{X.9) based on observed data X 
and a single unknown parameter 9. Let 6 be the ml estimate of 9 and I{9), the 
estimated information. 

The Wald statistic for testing the hypothesis HQ : 9 = 0 is 

9 y/i0) (1.28) 
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which is asymptotically distributed as N{0,1). An equivalent hypothesis is 
Ho : 0^ = 0 and the Wald test based on the parameter 6^ (using the 5-method 
to compute the variance of 6^, Rao (1973, p. 388) is 

{e'/Ze')y/l0) = ^-^) (1.29) 

which is asymptotically normal as A^(0,1). The p-values based on (1.28) and 
(1.29) can be quite different. 

Example 1,6.4 [Gregory and Veal (1985)]. Consider the linear model 

y = /?x -f 72 + u, u^ iV(0, a^) (1.30) 

and tests based on n observations. Let /3 and 7 be the maximum likelihood 
estimates (MLEs) of 0 and 7 with the estimated variance-covariance matrix 

2̂ (mi u 
\W2l U 

12 

W22 

where a is the least squares estimate of a. To test the hypothesis HQ : P^y = 1, 
the Wald statistic is 

< ^ ^ - " ^ (1.31) 
. a^{^^Wu + 2P^Wi2 + 0'^W22) 

which is asymptotically chi-square on 1 d.f., while the test for the equivalent 
hypothesis /3 = 7""̂  is 

cr'^iwu + 27"2|i;j2 + 7~'*^22) a'^iy'^wn -f 2u;i2 4- 7~̂ Tî 22) 

which is different from (1.31) and is also asymptotically chi-square on 1 d.f. 

For another example of non-invariance of Wald's test, reference may be 
made to Fears, Benichow and Gail (1996) and Pawitan (2000). 

1.6.3 Weak dependence of the RS statistic on alternatives to 
the null hypothesis 

In general, when the null hypothesis is rejected, one looks for alternative stochas­
tic models for the observed data. The score test depends on the slope of the 
likelihood function at the null hypothesis. There may be different likelihoods 
all giving the same score statistic. If the score test is significant, there is no 
way of knowing what the alternative is. 
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Test for normality: Suppose we start with the Pearson family or Gram-
Charlier type of distributions and construct a test for normaUty The same RS 
statistic is obtained for both alternatives [Bera and BiHas (2001)]. 

Test for homoscedasticity: The RS statistic for testing homoscedasticity is 
the same for alternatives such as multiplicative and additive homoscedasticity 
[Breusch and Pagan (1979) and Godfrey and Wickens (1981)]. 

Testing for serial independence: The RS statistic for testing serial inde­
pendence is the same whether we consider as alternatives the pth order autore-
gressive or pth order moving average model [Breusch (1978), Godfrey (1978a)]. 

Such difficulties may exist with other test criteria and it would be of interest 
to construct some examples. 

1-7 Power Comparisons 

The following is a simimary of numerous papers devoted to power comparisons 
of LR, W and RS tests. 

Taniguchi (1988] 1991): The first-order local powers are the same for all the 
tests. The second-order local powers are different but no one dominates the 
other. 

Taniguchi (2001): In terms of Bahadur efficiency, they are the same up to the 
second order. 

Bing Li (2001): They are all sensitive to changes in the values of the nuisance 
parameters. 

Chandra and Joshi (1983): Rao's test is more powerful to the order (1/n) than 
LR, and W, when one modifies the critical regions to have the same size up to 
order (1/n). 

Ghosh and Mukherjee (2001): RS is more (or equally) efficient than LR and W 
under the criteria of maximinity and average local power. See also Mukherjee 
(1990, 1993) for results on asymptotic efficiency of Rao's Score. 

Further investigation of power properties of LR, W and RS tests would be 
of interest. 
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1.8 Some Recent Developments 

In this Section, we consider some modifications and refinements made on the 
RS statistic and indicate the need for further research in some cases. 

1. In testing a composite hypothesis the estimated score vector s{9), where 
6 is the restricted ml estimate of 0 under the hypothesis, is used in com­
puting the RS statistic. It was argued that s{9) is close to zero if the 
hypothesis is true. But E[s{9)] may not be zero unless the null hypoth­
esis is a simple one. In such a case Conniffe (1990) suggested the use of 
the quadratic form 

\^s{9) - Es{9)p{9)[s{9) - £5(^)] (1.33) 

where J is the inverse of the covariance matrix of s{9) - E[s{9)]. The 
computation of (1.33) and its improvement over the RS statistic needs 
further study. 

2. White (1982) developed score type of statistics based on estimating equa­
tions and the quasi-likehhood functions. This introduces some robustifi-
cation in inference procedures. See also Godfrey and Orme (2001). 

3. Several authors tried to adjust the RS statistic similar to a Bartlett (1937) 
type of adjustment to the LR statistic. Harris (1985) suggested an ad­
justment based on Edgeworth-type expansion. Dean and Lawless (1989) 
suggested a different type of adjustment in certain models. Ghosh and 
Mukherjee (2001) developed a method of adjustment when the RS statis­
tic is based on quasilikelihood. This is an area where further research 
is needed. R,eference may also be made to a recent contribution by Tu, 
Chen and Shi (2004) on Bartlett type correction to the Score test in the 
Cox regression model. 

4. The RS statistic (1.8) for testing a simple hypothesis ^o • ^ = ô is 

[^(^o)r[/(^o)]"M^(^o)] 
which involves the computation of the information matrix 

i{eQ) = E[s{eo)si9oy]. 
Instead of I{9o), one could use the p x p matrix of second derivatives of 
the log likelihood with a minus sign 

MO) = - -i—E- (1-34) 
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leading to the statistic 

[s{0o)]'{A{0o))-'[s{e,)]. (1.35) 

Terril (2001) suggests further simplification by using what he calls the 
gradient statistic 

F'' = [s{eo)]'{e-^eo) (i.36) 
where 6 is the ml estimate of 9. The suggestion by Terril is attractive 
as it is simple to compute. It would be of interest to investigate the 
performance of the statistic (1.36). 

5. In considering the score statistic, Rao (1948) used the ml estimates of 
parameters. A similar theory can be developed using BAN estimators. 

6. Rao (1951) suggested the use of score tests in sequential analysis for test­
ing a simple null versus a simple alternative hypothesis. Bradley (1953) 
considered a nice application of Rao's sequential test in clinical trials. An 
appUcation in quality control is given by Box and Ramirez (1992). For 
some comments on sequential score test and possible applications refer­
ence may be made to Sen (1997). 

Acknowledgments: I am gratified to see the large number of papers con­
tributed by econometricians on the application of the score statistic to prob­
lems in econometrics and the extensions and improvements they have made. 
My special thanks are due to Professor A. K. Bera whose papers provided me 
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