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Abstract . A close connection between the ordinary de Rham complex and a cor
responding elasticity complex is utilized to derive new mixed finite element methods 
for linear elasticity. For a formulation with weakly imposed symmetry, this approach 
leads to methods which are simpler than those previously obtained. For example, we 
construct stable discretizations which use only piecewise linear elements to approximate 
the stress field and piecewise constant functions to approximate the displacement field. 
We also discuss how the strongly symmetric methods proposed in [8] can be derived in 
the present framework. The method of construction works in both two and three space 
dimensions, but for simplicity the discussion here is limited to the two dimensional case. 
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1. Introduction. In this paper we discuss finite element methods 
for the equations of hnear elasticity derived from the Hellinger-Reissner 
variational principle. The equations can be written as a system of the form 

Aa — eu, divcr = / mfl. (1.1) 

The unknowns a and u denote the stress and displacement fields engendered 
by a body force / acting on a linearly elastic body that occupies a region 
n C M", where n = 2 or 3. Then a takes values in the space § = M.^^^ of 
symmetric matrices and u takes values in R". The differential operator e is 
the symmetric part of the gradient, the div operator is applied row-wise to 
a matrix, and the compliance tensor A = A{x) : S ^ § is a bounded and 
symmetric, uniformly positive definite operator reflecting the properties of 
the body. We shall assume that the body is clamped on the boundary d^ 
of fl, so that the proper boundary condition for the system (1.1) is M = 0 
on dfl. 

Alternatively, the pair {a, u) can be characterized as the unique critical 
point of the Hellinger-Reissner functional 

J{T, V) = {-^^T '• T + divr • v — f • v) dx. 
Jn 2 

(1.2) 
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The critical point is sought among all T G i?(div, fl; S), the space of square-
integrable symmetric matrix fields with square-integrable divergence, and 
all V G L^(fi; R"), the space of square-integrable vector fields. Equivalently, 
{cr,u) G i7(div, fi;§) x L^(fi;IR") is the unique solution to the following 
weak formulation of the system (1.1) 

/ {Aa : T + divT •u)dx = 0, T G ii'(div,fi;§), 
Jn 

f diva-vdx= f fvdx, v £ L^ifl-MJ"). 
(1.3) 

A mixed finite element method determines an approximate stress field 
CT/i and an approximate displacement field Uh as the critical point of J' over 
S/j X V/i where S/j C H{div, fi; S) and 14 C i^(f); M") are suitable piecewise 
polynomial subspaces. To ensure that a unique critical point exists and 
that it provides a good approximation of the true solution, the subspaces 
S/j and Vh must satisfy the stability conditions from Brezzi's theory of 
mixed methods [11, 12]. However, the construction of such elements has 
proved to be surprisingly hard, and most of the known results are limited 
to two space dimensions. In this family of stable finite elements was 
presented in [8]. For the lowest order element, the space S^ is composed 
of piecewise cubic functions, while the space Vh consists of piecewise linear 
functions. Another approach that has proved successful in finding stable 
elements is the use of composite elements, in which V/, consists of piecewise 
polynomials with respect to one triangulation of the domain, while S/i 
consists of piecewise polynomials with respect to a different, more refined, 
triangulation [3, 15, 17, 23]. 

In the search for low order stable elements, several authors have re
sorted to the use of Lagrangian functionals that are modifications of the 
Hellinger-Reissner functional given above [1, 2, 4, 19, 20, 21, 22], in which 
the symmetry of the stress tensor is enforced only weakly or abandoned 
altogether. In order to discuss these methods, we extend the compliance 
tensor A{x) to a symmetric and positive definite operator mapping M into 
M, where M is the space of n x n matrices. In the isotropic case, the 
mapping a H^ Aa has the form 

Aa = —(a- tr(o-)/), 
2/i^ 2/i + nA ^ ^ '" 

where X{x),^{x) are positive scalar coefficients, the Lame coefficients. A 
modification of the variational principle discussed above is obtained if we 
consider the extended Hellinger-Reissner functional 

Je{T,v,q) ^ J{T,V) + T-.qdx (1.4) 

over the space i7(div,n;M) x L'^{Q.\W) x L'^{9.]K), where K denotes the 
space of skew symmetric matrices. We note that the symmetry condition 
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for the space of matrix fields is now enforced through the introduction 
of a Lagrange multiplier. A critical point {a,u,p) of the functional J7e is 
characterized as the unique solution of the system 

/ {Aa : T + d i v r - u + r •.p)dx = 0, r S H{div,Q;M), 
Jn 

f diva-vdx= [ fvdx, v e L^(n;R''), (1.5) 
JQ Jn 

a:qdx = 0, qeL'^{n;K). 

In fact, it is clear that if {a,u,p) is a solution of this system, then a is 
symmetric, i.e., a G i7(div, r2;S), and the pair {cr,u) S i^(div, fi;S) x 
^•^(QjM") solves the corresponding system (1.3). In this respect, the two 
systems (1.3) and (1.5) are equivalent. However, the extended system (1.5) 
leads to new possibilities for discretization. Assume that we choose finite 
element spaces S/̂  x V,, x Q/̂  c F(div,fi;M) x 1^(0;M") x L'^{n;K) and 
consider a discrete system corresponding to (1.5). If {ah, Uh,Ph) G S?i x 14 x 
Qh is a discrete solution, then a^ will not necessary inherit the symmetry 
property of a. Instead, ah will satisfy the weak symmetry condition 

/ ah : qdx = 0, for all q £ Qh-
Jn 

Therefore, these solutions will in general not correspond to solutions of the 
discrete system obtained from (1.3). 

Discretizations based on the system (1.5) will be referred to as mixed 
finite element methods with weakly imposed symmetry. For two space 
dimensions, such discretizations were already introduced by Praejis de 
Veubeke in [15] and further developed in [2]. In particular, the so-called 
PEERS element proposed in [2] used an augmented Cartesian product of 
the Raviart-Thomas finite element space to approximate the stress a, piece-
wise constants to approximate the displacements, and continuous piecewise 
linear functions to approximate the Lagrange multiplier p, as suggested in 
the element diagram depicted in Fig. 1. In this paper we use homological 

FIG. 1. Approximation of stress, displacement, and multiplier for PEERS. 

techniques to construct a new family of stable mixed finite elements for 
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elasticity with weakly imposed symmetry, the lowest order case of which is 
depicted in Fig. 2. The stresses are approximated by the Cartesian prod
uct of two copies of the Brezzi-Douglas-Marini finite element space, which 
means that the shape functions are simply all linear matrix fields and that 
there are four degrees of freedom per edge. The displacements are approx
imated by piecewise constants, as for PEERS, but the multipliers are as 
well, which means that, in contrast to PEERS, the multipliers can be elim
inated by static condensation. We will also introduce a reduced version of 
the element with the same displacement and multiplier spaces, but only 
three degrees of freedom per edge for the stress. Let us also mention that 
there exist other mixed elements for elasticity with weakly imposed sym
metry, although perhaps none as simple as those presented here. Prior to 
the PEERS paper, Amara and Thomas [1] developed methods with weakly 
imposed symmetry using a dual hybrid approach. Other elements based 
on the formulation in [2], including rectangular elements and elements in 
three space dimensions, have been developed in [20], [21], [22] and [18]. 

F I G . 2. Approximation of stress, displacement, and multiplier for an element in
troduced below. 

Just as there is a close connection between mixed finite elements for 
Poisson's problem and discretization of the de Rham complex, there is 
also a close connection between mixed finite elements for elasticity and 
discretization of another differential complex, the elasticity complex. The 
importance of this complex was already recognized in [8], where mixed 
methods for elasticity in two space dimensions were discussed. However, 
the new ingredient here is that we utilize a close connection between the 
elasticity complex and the ordinary de Rham complex. This connection is 
described in Eastwood [13] and is based on a general construction given 
in [10], the Bernstein-Gelfand-Gelfand resolution. By mimicking this con
struction in the discrete case, we will be able to derive new mixed finite 
elements for elasticity in a systematic manner from known discretizations 
of the de Rham complex. The discussion here will be limited to two space 
dimensions. However, in a forthcoming paper [7], we will carry out the 
analogous construction and so obtain mixed finite element methods in three 
space dimensions. 

An outline of the paper is as follows. In Section 2, we describe the 
notation to be used and recall some standard results about the stability 
of mixed finite element methods. In Section 3, we give two complexes 
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related to the two mixed formulations of elasticity given by (1.3) and (1.5). 
In Section 4, we use the framework of differential forms to show how the 
elasticity complex can be derived from the de Rham complex (basically 
following the work of Eastwood [13]). In Section 5, we derive discrete 
analogues of these elasticity complexes beginning from discrete analogues 
of the de Rham complex, identify the required properties of the discrete 
spaces necessary for this construction, and explain how a discrete elasticity 
complex leads to stable finite element methods. In Section 6, we provide 
examples of finite element spaces that satisfy these conditions. The PEERS 
element is also discussed in this context. Finally, in Section 7, we show how 
an element with strongly imposed symmetry, previously obtained in [8], 
can be derived from discrete de Rham complexes using the methodology 
introduced in this paper. 

2. Nota t ion and preliminaries. We begin with some basic nota
tion and hypotheses. We denote by M the space of all 2 x 2 real ma
trices and by S and K the subspaces of symmetric and skew symmetric 
matrices, respectively. The operators sym : M ^ S and skw : M —» K 
denote the symmetric and skew symmetric parts, respectively. We assume 
that n is a simply connected domain in M.'^ with boundary F. We shall 
use the standard function spaces, like the Lebesgue space L^(r2) and the 
Sobolev space H^{Q,). For vector-valued functions, we include the range 
space in the notation following a semicolon, so L'^{Q;Y) denotes the space 
of square integrable functions mapping U into a normed vector space V. 
The space i/(div, fi;]R^) denotes the subspace of (vector-valued) functions 
in L^(ri;M^) whose divergence belongs to L^(r2). Similarly, iJ(div,f2;M) 
denotes the subspace of (matrix-valued) functions in L^(fi;M) whose di
vergence (by rows) belongs to L^((7;R^). 

Assuming that V is an inner product space, then L^(f2; V) has a nat
ural norm and inner product, which will be denoted by || • || and (•, •), 
respectively. For a Sobolev space H^{Q;Y), we denote the norm by || • \\s 
and for ^(div, fi; V), the norm is denoted by ||t;||div := ( l l ^ f + || div v f )i/2. 
The space •pfc(f2) denotes the space of polynomial functions on Q, of total 
degree < k. Usually we abbreviate this to just Vk-

We recall that the mixed finite element approximation derived from 
(1.5) takes the form: 

Find {ah,Uh,Ph) &^h xVh x Qh such that 

{A(Th,r) + (divT,u/j) -f- {T,ph) = 0 , T e T,h, 

{divah,v) = {f,v) vGVh, (2.1) 

(cr/i,g)=0, qGQh, 

where S/j C F(div,fi;M), Vh C L'^{Q;R^), and Qh £ L^{Q.;K) are finite 
element spaces with h a mesh size parameter. Following the general theory 
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of mixed methods, cf. [11, 12], the stabihty of the saddle-point system (2.1) 
is ensured by the following conditions: 

(Al) llTJÎ jy < CI{AT,T) wheneverr G S^ satisfies {divT,v) = 0 \/v £ Vh 
and {T,q) = 0\/qG Qh, 

(A2) for all nonzero {v,q) E Vh x Qh, there exists nonzero r G S/j with 
(divT,z;) + {r,q) > C2||r||div(||«|| + H^H), 

where ci and C2 are positive constants independent of h. 
If we instead derive the mixed finite element method from the weak 

formulation (1.3), we need to construct finite element subspaces E/j C 
H{diY, fi; S), i.e., with the symmetry condition strongly imposed, and Vh C 
L^(f2;]R^). The discrete system then determines {(Th,Uh) G S/i x V/j by the 
equations 

{Aah,T) + {div T,Uh) =0, TG'Eh, 
(2.2) 

{div ah,v) = {f,v) v£Vh. 

In this case, the stability condition is that E/j and Vh must satisfy (Al) and 
(A2) with Qh = 0. As we shall see below, it is much harder to construct 
stable elements for elasticity with strongly imposed symmetry than it is 
with weakly imposed symmetry. 

In the preceding paper [6], we have seen the close connection between 
the construction of stable mixed finite element methods for the approxima
tion of the Poisson problem 

Ap = f in fi, p = 0 on dQ, (2.3) 

and discrete versions of the de Rham complex. In this paper, we pursue 
an analogous approach for the elasticity problem. 

3. The elasticity complex. We now proceed to a description of two 
elasticity complexes, corresponding to strongly and weakly imposed sym
metry of the stress tensor. For the case of strongly imposed symmetry, 
corresponding to the mixed elasticity system (1.3), we require a characteri
zation of the divergence-free symmetric matrix fields. In order to give such 
a characterization, define J : C°°{n) -^ C°°(f2;S) by 

/ d'^q/dxl -d'^q/dxidx2\ 

^ ~ \-d'^q/dxidx2 d^q/dxj J ' 

It is easy to check that div o J = 0. In other words, 

P i -^ C°° ^ C°°(§) - ^ C°°(]R2) _ 0, (3.1) 

is a complex. Here, and frequently in the sequel, the dependence of the 
domain Q is suppressed, i.e., C°°(S) is short for C°°(fi;S). When D, is 
simply connected, then (3.1) is an exact sequence, a fact which will follow 
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from the discussion below. The complex (3.1) will be referred to as the 
elasticity complex. If we followed the program that has been outlined 
in [6] for mixed methods for scalar second order elliptic equations, the 
construction of stable mixed finite elements for elasticity would be based 
on extending the sequence (3.1) to a complete commuting diagram of the 
form 

Vi 

V, 

c° 

WH 

C°°(§) 

^h 

div 

div 

C°°(M?) -^ 0 

Vh 0 

where WH C H'^{9), T,h C ff(div,fi;S) and Vh C 1^(0; M )̂ are suitable 
finite element spaces and ZI^, 11^, and 11° are corresponding interpolation 
operators. This is exactly the construction performed in [8]. In particular, 
since the finite element space W^. is required to be a subspace of iJ^(fi), 
we can conclude that the piecewise polynomial space Wh must contain 
quintic polynomials, and therefore the lowest order space S/i will at least 
involve piecewise cubics. In fact, for the lowest order elements discussed in 
[8], Wh is the classical Argyris space, while E/i consists of piecewise cubic 
symmetric matrix fields with a linear divergence. In Section 7 we shall 
show how the element proposed in [8] arises naturally from the general 
construction outlined below. 

If instead we consider methods with weakly imposed symmetry, i.e., 
finite element methods based on the mixed formulation (1.5), we are led to 
study the complex 

Vi c= c° 
(skw,div) 

C°°(Kx 0. (3.2) 

Observe that there is a close connection between (3.1) and (3.2). In 
fact, (3.1) can be derived from (3.2) by performing a projection step. To 
see this, consider the diagram 

Pi 

Vi 

c° 
id 

c° 

C°°(M) 

C°°(S) 

(skwjdiv) 

div 

C°°(Kx 

C° ') 

0 

0, 

(3.3) 

where 7r(q', u) = u — divq. The vertical maps are projections onto subspaces 
and the diagram commutes. It follows by a simple diagram chase that if 
the first row is exact, so is the second. 

As we shall see below, the complexes (3.1) and (3.2) are closely con
nected to the standard de Rham complex. In two space dimensions, the 
de Rham complex is equivalent to the complex 

C° grad 
c° c° 0, (3.4) 
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which is exact when Q is simply connected. Here rot v, where u is a vector 
field, is defined as the scalar field rotf = dvijdx2 — dv^jdxx. 

An alternative identification of the de Rham complex in two space 
dimensions, that we shall use below, is the sequence 

M ^ (7°° ^ ^ C^^i^^) iil> C°° ^ 0, (3.5) 

where curl^ is the vector field defined by curl^ = {—d(j)/dx2id(j)/dxi)^. 
The two complexes (3.4) and (3.5) are equivalent. To see this just note 
that curli^ = (grad</>)"'- and rotf = div(i;"'-), where v^ denotes the vector 
perpendicular to v given by v^ = {—V2,viY'. 

4. From the de Rham complex to Unear elasticity. In this sec
tion we demonstrate the connection between the de Rham complex (3.4) 
and the elasticity complexes (3.1) and (3.2). Later, we will give an analo
gous construction to derive discrete elasticity complexes from correspond
ing discrete de Rham complexes. 

We follow the notations of [6] for differential forms. Thus for fi a do
main in E", A*̂  = A'=(fi) = C°°(f2; Alt''(R")) denotes the space of smooth 
differential fc-forms on Q.. Any u £ h!^ can be represented as 

^x= Y. fn...iMdx''^---^dx'" =:Y,fi{x)dx' (4.1) 

with coefficients / / G C°°(fi). In particular, 0-forms can be identified with 
scalar functions, 1-forms with vector fields under the identification fidx'^ <-» 
fiBi, and n-forms can be identified with the scalar function fi2...n- The 
spaces Z/-^A'̂ (fi), i7^A''(fi), . . . , consist of those to which can be represented 
as in (4.1) with the / / G L^{n), H'^{n), . . . . 

The exterior derivative d : A'' —> A'̂ +'̂  satisfies 

dio = \^ ——dx^ A dx , 
dxj 

and the de Rham complex is simply 

R ^ A° ^ Ai i . . . ^ A" ^ 0. (4-2) 

When n = 2, (4.2) becomes (3.4) under the identifications mentioned above. 
If we instead identify the 1-form w = fidx^ + f^dx"^ with the vector field 
( - / 2 , / i ) ^ , we obtain (3.5). 

A differential A;-form u; on fi, admits a natural trace, Trw, which is a 
differential fc-form on F = dO,. Namely, given k vectors wi, • • • , ffc tangent 
to r at a point x, we have 

(Trw)^(wi,--- ,i>fc) =LO^{vi,--- ,Vk). 
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Denoting by dr : A'^(r) —» A'^+^(r) the exterior derivative operator associ
ated with r , we have a commuting diagram relating the de Rham complexes 
on fl and T 

A°{n) ^ A\n) S ••• ^ A"- i (n) - i A"(Q) ^ 0 

Tr Tr 

dr 1 1 /T-tx <ir ^r 

Tr (4.3) 

AO(r) ^ Ai(r) - ^ ... ^ A"-i(r) -̂  o. 

The extension to vector-valued differential forms will be important in 
the sequel. If V is a vector space, then A'̂ (V) = A'^(fl; V) refers to the k-
forms with values in V, i.e., all elements of the form (4.1), but where / / £ 
C°°(fi;V), i.e., A'=(V) = C°°(f2; Alt'=(V)), where Alt''(V) are alternating 
fc-linear forms R" x • • • x E" -» V. 

The exactness of the V-valued de Rham complex 

V ^ A°(V) ^ Ai(V) ^ . . . ^ A"(V) ^ 0, (4.4) 

for Q contractible is an obvious consequence of the exactness of (4.2). 
We now specialize to the case n = 2 and fi C K^, and derive the 

elasticity complex from the de Rham complex with values in the three-
dimensional vector space V = M x M .̂ Define a map K from A'̂ (]R )̂ to 
A'=(R) by 

If (w, fi) G A'=(R) x A'=(R2) = A'=(V), then the map $(a;, fi) := (w + K^, JJL) 

is an automorphism of A'^(V), with inverse $~^(w, /i) = {uj — Kji, jj). Define 
the operator A : A''(V) -^ A''+^(V) by ^ = $c!$~^ Then the complex 

$(V) -^ AO(V) ^ Ai(V) ^ A2(V) ^ 0 (4.5) 

is exact when Q. is simply connected, since (4.4) is. The operator A has 
the simple form A{u), n) = {duj - Sfi, d^), where S = dK - Kd : A''(]R^) -^ 
A'=+i(K). Since (iod = 0, 

dS = d^K-dKd = -{dK-Kd)d = -Sd. (4.6) 

Furthermore, S is purely algebraic. In fact, an easy calculation shows that 
if u! is represented as in (4.1) then 

Siv = 2.ift ' ^2dx^ A dx — fj • Eidx^ A dx ) . 
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More specifically the action of S = Sk : A'=(R2) ^ A'=+i(]R), fc = 0,1 
is given by 

5 -* -5 

/ l 2 

/22 
dx^ - (^^^\ dx^ 3 U (/i2 - f2i)dx^ A dx^ 

It is important to note that So is invertible (with SQ ^{fidx^ + /2<ix^) = 
( - /2 , / i ) ^ ) - The map Si is surjective but not invertible. If we identify 
A1(M2) wi thC~(f i ,M) by 

dx' - •;" dx' ^ ifij), (4.7) J. ] dx — J. ] dx ^-^ \jijj, 

then the kernel of Si corresponds to the symmetric matrices. 
Note that 

$(V) ^{{io + ^l•x^,^l)\iueR,^xeR^} = {{p,s-^dp)\pe Vi}^Vu 

so (4.5) may be viewed as a resolution of Vi-

We now consider a projection of (4.5) onto a subcomplex. Let 

r ° = { {LO,^l) e A°(V) : dw = Sofi}, r^ = {(w,/x) e Ai(V) : w = 0} 

and define projections 7r° : A°(V) -» r ° , TT̂  : A^{Y) -^ T^ by 

n°{uj,fj,) = {uj,SQ^doj), 7r^(w,//) = (0,/i + c?S'^^w). 

Then the diagram 

$(V) c_̂  A°(V) ^ Ai(V) - ^ A2(V) ^ 0 

n-0 id (4.8) 

$(v) ^ r ° A r i - ^ A2(V) ^ 0, 

commutes, and so when the first row is exact, the second is EIS well. Making 
the obvious correspondences {u>,SQ^dui) <-̂  to and (0,/x) <-» fx, we may 
identify r ° and T^ with A°(K) and A1(]R2), respectively. Thus the bottom 
row of (4.8) is equivalent to 

Vi ^ AO(E) ^ ^ ^ ^ Ai(M2) ± : ^ 1 ^ A2(V) ^ 0. (4-9) 

But this is just another way to write (3.2). In fact, A°(E) = C°° and we 
may identify A1(R2) with C°°(M) as in (4.7). Also, we may identify A 2 ( V ) 
wi thC°° (KxR2) by 

/ . (Q).x. . . .^„-((_;/ , /f).(;;)). ,4.10) 
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It is easy to check that, modulo these identifications, (4.9) coincides with 
(3.2). 

Let us summarize the above construction. We began with the V-
valued de Rham complex (4.4) and introduced the automorphisms A to 
get (4.5). We then projected onto a subcomplex in (4.8) and made some 
simple identifications to obtain the elasticity complex with weakly imposed 
symmetry, (3.2). (Of course, we can make the further projection in (3.3) 
to obtain the elasticity complex with strongly imposed symmetry.) 

5. The construction of a discrete elasticity complex. In this 
section we mimic the above construction on a discrete level to derive dis
cretizations of the elasticity complex from discretizations of the de Rham 
complex, and use these to derive stable mixed finite elements for elasticity 
with weakly imposed symmetry. 

As explained in [6], there exist a number of discrete de Rham com
plexes, i.e., complexes of the form 

E ^ AO ^ Ai ^ A2 ^ 0. (5.1) 

Here the spaces A^ are spaces of piecewise polynomial differential forms 
and there exist projections II/i = 11^ : A*̂  —> A^ such that the diagram 

AO A Ai ^ A2 

n^ (5.2) 

A° i^ Ai ^ A? - . 0 h h h 

commutes. 
Our discrete construction begins by taking two discretizations of the 

de Rham complex, one scalar-valued and one vector-valued. The Cartesian 
product of these then gives a discretization of the V-valued complex (4.4) 
which we write 

V ^ AO(V) - i Ai(V) ^ A^(V) ^ 0. (5.3) 

Next we define a discrete analog of the operator K, Kh '• A^(]R^) —» A^(R) 
by Kh = H/jii', where II/j is the projection onto A^(]R) and set Sh = 
dKh - Khd : A^(IR2) ^ A^+^(E). Observe that the discrete version of 
(4.6), 

dSh = -Shd (5.4) 

follows exactly as in the continuous case, and in light of the commutativity 
(5.2), we find that Sh is simply given by 

Sh = dliuK - lihKd = Iih{dK - Kd) = UhS. 
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In analogy with the continuous case, we define automorphisms $/; on A^(V) 
by $h('^, /n) = (w + Khfi, fj.) and obtain the exact sequence 

$,(V) ^ AO(V) ^ Ai(V) ^ A2(V) ^ 0, (5.5) 

where A = ^hd^n^ : A^(V) ^ A^+i(V), so A ( C ^ , M ) = (o^^ " Shli,dfi). 
We now make some requirements on the choice of spaces used in the 

discrete de Rham complexes. A minor requirement is that the global linear 
polynomials are contained in the space A^(R) and the constant forms dx^ 
and dx'^ are contained in Ajj(R). The key requirement is that the operator 
Sfi = 5o,/i : A°(]R^) —> Aĵ (M) is onto, and so admits a right inverse 5^ : 
A^(R) -4 A ^ ( R 2 ) . We can then define the subspaces T^ of A^(V), fc = 0,1, 
by 

r^ = { iuj,fx) G A°(V) : du; = 5; .^}, TJ, = {(a;,/.) € Ai{Y) : a. = 0} , 

and define projections TT̂  : A^(V) -^ T^, TT;̂  : A^(V) -^ r\ by 

7r^(w,M) - ( a ; ,M-4^ / . / i + ^/i^'^). T ^ ' K / ^ ) - (0,M + ^^^^w). 

It is easy to check that these are indeed projections onto the relevant sub-
spaces and that the following diagram commutes: 

$(V) ^ AO(V) ^ Ai(V) ^ A2(V) - . 0 

i(i (5.6) 

•Ah T i l . ^ h $(v) ^ r" ^ r;, ^ AliY) -. 0 

Here we have used the fact that A^(M) contains the linears to see the 
$;j(V) = $(V) and the fact that Ajj(R) contains the constants to see that 
$(V) c r°. 

The diagram (5.6) is the desired discrete analogue of (4.8), and the 
bottom row is a discrete analogue of the elasticity complex with weakly 
imposed symmetry. Under the identification (4.7), F^ = A^(M^) corre
sponds to a finite element space T,h C jF/"(div,r2;M), while under the iden
tification (4.10), A^(V) corresponds to a finite element space Qh x Vh C 
L^{Q,;K) X L'^{'[l;M.'^), and the mapping 

corresponds to 

n - ^ Â ( 

(-n«skw,div) 
S/i > Qh X Vh, 

which is the key operator for the stability of a mixed method with weakly 
imposed symmetry (2.1). The fact that divE/j C Vh, built into our con
struction, ensures the stabihty condition (Al), since then we need only 
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show that | |r |p < CI{AT,T). It is straightforward to check this condition 
for fixed A and fi This condition is also true with ci independent of A for r 
satisfying divr = 0 and /^ tr(T) = 0. Note this latter condition is implied 
by the first equation in the mixed method (choosing r = / ) , and a simple 
reformulation of the problem and slight modification of the analysis allows 
this extra constraint to be easily handled (cf. [3]). The surjectivity of the 
operator Ah implies the inequality in (A2), but only for a constant C2 de
pending on the mesh size h. Just as in the last section of [6], to obtain a 
constant independent of h requires a more technical argument, using the 
properties of the continuous de Rham sequence, the commuting diagram, 
the approximation properties of an appropriately chosen interpolation op
erator, and elliptic regularity results. This can be done for all the spaces 
we consider in the next section. A detailed proof for the three-dimensional 
case will be provided in a forthcoming paper [7]. 

Before closing this section, we establish a sufficient condition for the 
key requirement that S^ = So^h be surjective which we shall use in the next 
section. First note that the surjectivity of Sh follows from the commuta-
tivity of the diagram 

A°{n,R^) ^ Ai(fi,E) 

Alim -^ A a/ 
Indeed, since 11^ is surjective and S is surjective (even invertible), this 
certainly implies that Sh is surjective. Recalling that Sh = 11^5, the com-
mutativity condition 5/111^ = TLj^S may be rewritten 

n^S ' ( / -n^ )==0onA°( f i ,R2) . (5.7) 

Now (/ - n^)A°(fi,R2) is exactly the null space of n ° . Thus we may 
summarize the condition as follows: 

Whenever the projection of w G A°(0,R^) into A°(]R^) vanishes, 
then the projection of Suj = u)2dx^ — cuidx"^ into Ajj(R) vanishes. 

We close with a summary of the main conclusion of this section. In 
order to construct stable mixed finite elements for the formulation (2.1), 
we begin with a discrete de Rham complex 

R ^ AO(R) ^ Ai(R) ^ Aim -^ 0, 

and a discrete vector-valued de Rham complex 

R2 ^ A^(R2) ^ Ai(R2) ^ A^(R2) ^ o. 

If these choices satisfy the boxed condition, then the finite element spaces 
S/i corresponding to Ajj(R^), Vh corresponding to A^(R^), and Qh corre
sponding to A^(R) can be expected to furnish a stable choice of spaces. 
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6. Examples of stable finite elements. In this section, we apply 
the construction just presented to derive stable finite element methods for 
the approximation of the Hellinger-Reissner formulation of linear elasticity 
with weakly imposed symmetry. The simplest example of such a method 
will require only piecewise linear functions to approximate stresses and 
piecewise constants to approximation displacements and multiplier. 

Let T denote a triangular mesh of Q, one of a shape regular family of 
meshes with mesh size decreasing to zero. We need to select a scalar-valued 
and a vector-valued discrete de Rham complex, both of which will be based 
on piecewise polynomials with respect to T, for which we can verify the 
boxed condition of the previous section. Starting with the simplest case, 
we use the Whitney forms for the scalar-valued complex, i.e., 

R->7 ' iA°(T;R) ^ V^A^T;R) -^ VQA^{T-R)-^ Q, 

which is the complex (5.3) of [6] in the case n = 2 and r = 0. For the 
vector-valued de Rham complex, we use instead the sequence (5.4) of [6] in 
the case n — 2 and r = 0, i.e., 

These choices lead to the element choice E/i = V\h^{T\'E?) for the stress, 
Vh ^ VoA?{T;M?) for the displacement, and Qu ^ Voh^{T;R) for the 
multiplier, depicted in Fig. 2 above. 

The boxed condition requires that whenever w is a smooth vector field 
on Q. whose projection into the Lagrange space V2^{T\B?) of continuous 
piecewise quadratic vector fields vanishes, then the projection of uj2dx^ — 
ujidx^ into the Raviart-Thomas space VQA^ ( T ; M) vanishes. The vanishing 
of the projection into the vector-valued quadratic Lagrange space implies 
that 

/ • 
,ide = 0, 1 = 1,2, e e A i ( T ) , (6.1) 

since the edge integrals are among the degrees of freedom (Ai(T) denotes 
the set of edges of the mesh). We then require that 

ITreioj2dx^-u>idx^) = 0, e G Ai(T) , 

since the quantities J Tre(T) determine the projection of a 1-form r into 
P Q + A H T I R ) . Now, for any 1-form r = ndx^ + T2dx'^, 

jTre{T)= f{nt'+T2t^)de, 

where {t^,t'^) is the unit tangent to e. Thus we need to show that 

l{u2t^-iOit^)de = 0, e £ A i ( T ) , 



DIFFERENTIAL COMPLEXES AND STABILITY OF FEM II 61 

whenever (6.1) holds, which is obvious. 
A similar argument can be used to verify the boxed condition for the 

choice of discrete de Rham sequences 

and 

P,+2A°(T;]R2) ^ Vr+iA\T;R^) ^ PrA' (T; 

for any r > 0. Thus we obtain a family of stable finite element methods 
with S^ ^ P,+iAi(T;R2), Vh = PrA\T;R^), and Qh = PrA2(T;M). 

We also remark that it is possible to reduce the space Ti^ without 
changing V/^ or Qh and still maintain stability. Returning to the case 
r = 0, we see that we did not use the vanishing of the edge integrals of 
both components Wj, but only of the combination uj2t^ — u)it^ (the normal 
component). Hence, instead of the vector-valued quadratic Lagrange space 
•p2A°(T; R^) we can use the reduced space obtained from it by imposing the 
constraint that the tangential component on each edge vary only linearly 
on that edge. This space of vector fields, which we denote "P;̂  A°(T; R'^), is 
well-known as a possible discretization of the velocity field for Stokes flow 
[9, 14]; see also [16, p. 134 ff., 153 ff.]. An element in it is determined by 
its vertex values and the integral of its normal component on each edge. 
In order to complete the construction, we must provide a vector-valued 
discrete de Rham complex in which the space of 0-forms is V2 A^{T]M?). 
This will be the complex 

R 2 ^ 7 ' 2 " A ° ( T ; R 2 ) ^ PfAi(T;R2) ^ VoK^{T;B?) ^Q, 

where it remains to define 'Pf A^(T;R^). This will be the set of r G 
•piA^(T; R^) for which Tre(T) • t is constant on any edge e with unit tan
gent t and unit normal n. (In more detail: for r s •PiA^(T;R^), Tre(r) 
is a vector-valued 1-form on e of the form g ds with /u : e —> R-̂  linear 
and ds the volume form—i.e., length form—on e. If /x • t is constant, then 

"Ai(T;R2).) The natural de grees of freedom for this space are the 
integral and first moment of Tre(T) • n and the integral of Tre(T) • t. It is 
straightforward to verify the commutativity of the diagram 

R2 ^ A°(fi;R2) ^ Ai(^;R^) ^ A2(fi;R2) -> 0 

R2 ^ p2"A°(T;R2) ^ P f A 1 ( T ; M 2 ) J ^ VoA^iJ-R?) -^ 0 

and so the construction may precede. If we use (4.7) to identify vector-
valued 1-forms and matrix fields, then the condition for a piecewise linear 
matrix field F to correspond to an element of V^h^{T\R?) is that on 
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each edge e with tangent t and normal n, Fn • t must be constant on e. 
This defines the reduced space E/j, with three degrees of freedom per edge. 
Together with piecewise constant for displacements and multipliers, this 
furnishes a stable choice of elements. 

We end this section by outlining how the original PEERS element, 
described in Section 1, cf. Fig. 1, can be derived from a slightly mod
ified version of the theory outlined in Section 5. For this element, the 
scalar sequence is chosen to be a discrete de Rham sequence with reduced 
smoothness. The subscript in the spaces defined below indicates this re
duced smoothness. Consider the sequence 

R^ViA°_{T;R) ^ VoM{T;R) ^ ViA°{T;R)* ^ 0. (6.2) 

Here •PiA*^(T;M) is the space of piecewise linear 0-forms with con
tinuity requirement only with respect to the zero order moment on each 
edge, i.e., 'PiA^(T;R) is the standard nonconforming Vi space. Similarly, 
P O A L ( T ; M ) consists of piecewise constant 1-forms, while the space of 2-
forms ViA°{T;Ry is the dual of PiA°(T;E) with respect to the pairing 
J^UJAH. The operator d = do : PiA°_{T;R) -^ VoA}_{T;R) is defined lo
cally on each triangle, and d ^ di : PoAl{T;R) -» ViA°{T;R)* is defined 
hy J^duj A1^ = - J^Lo Adu for to G VoA\_(T;R) and /z e PiA°(T;R). The 
orthogonal decomposition implied by the exact sequence (6.2) has been 
used previously (e.g., see [5]). 

The corresponding vector-valued sequence needed for the PEERS ele
ment is dictated by the element itself. We consider the sequence 

R^^ViA''{T-R^) + B ^ V^A\T;R^) + dB ^ VoA^{T;R^)-^ 0, 

which is exact. Here B denotes the space of vector-valued cubic bub
bles, i.e., piecewise cubic vector fields which vanish on the element edges. 
Note the spaces V^A^{T;R'^)+dB, VoA^{T;R^), and ViA°{T;R)* can be 
identified with the finite element spaces used in PEERS. If we choose the 
interpolation operator Hh onto VoA^_{T;R) to be the L^ projection, then 
clearly 

So,h = lihSo : ViA\T-R^)+B^ VoA\{T-R) 

is onto. Hence, the theory from Section 5 can be applied. 

7. An element with strongly imposed symmetry. In this sec
tion, we shall discuss finite elements with strongly imposed symmetry, i.e., 
we consider the system (2.2). A family of stable elements was derived in [8], 
where, in the lowest degree case, the stress space E/j C i7(div, Q; §) consists 
of piecewise cubics with linear divergence, while the space Vh C L'̂ (f2; R?) 
consists of discontinuous linears. The purpose here is to show how this el
ement can be derived from discrete de Rham complexes using the method
ology introduced above. 
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As in the previous section, we start with one scalar-valued and one 
vector-valued discrete de Rham complex, which we denote here 

R ^ P5AJ(T;R) ^ ViAliTiR) S P3A?(T;R) ^ 0 (7.1) 

and 

R2 ^ P4A0(T;12) A, P3Ai(T;E2) ^ P 2 A 2 ( T ; R 2 ) ^ o. (7.2) 

On a single triangle, the scalar-valuded complex will be simply 

M ^ V^K°{T) ^ Vik\T) ^ PsA^T) ^ 0, 

but the degrees of freedom we use will impose extra smoothness on the 
assembled spaces. This extra smoothness appears to be necessary for the 
final construction. 

For the quintic 0-form space, 7'5A?(T;R), we determine a form on a 
triangle T by the following 21 values: 

./.(x), grad0(x), grad2 0(x), x G Ao(T), J ^ , e G Ai(T). (7.3) 

The resulting space, 'P5A?(T;E), is then the well-known Argyris space, a 
subspace of C^{Q.). 

An element u) G V4A^{T) of the form ui = —g2dx^+gidx'^ is determined 
by the 30 degrees of freedom given as 

gi(x), giadgi^x), x G Ao(r) , / gi, / pdivg, p G 'Pi{e),e G Ai(T), 

and these determine the assembled space ViAj{T]M.). Here div5 is the 
divergence of the vector field 5 = (51,52). It is straightforward to check 
that these conditions determine an element of •P4A^(T) uniquely. For if all 
of them are zero, then the cubic polynomial div g is zero on the boundary, 
and by the divergence theorem, the mean value of div g over T is zero. 
Hence, divg, or duj, is zero, and therefore u = d(f>, where (f) G VsiT), and 
where we can assume that 4> is zero at one of the vertices. However, it 
now follows that all the degrees of freedom for (p given by (7.3) vanish, 
and hence oj = dcp is zero. If w G P4AQ{T;M.), then u) is continuous, and, 
moreover, doj = div 5 is also continuous. 

We complete the description of the desired scalar discrete de Rham 
complex, by letting P3A?(T;R) denote the space of continuous piecewise 
cubic 2-forms, with standard Lagrange degrees of freedom, i.e., if w = 
gdxi A dx2, we specify 

g{x), xeAo{T), fgp, p G Pi(e), e G Ai(T), and /" 5. 
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It is easy to check that d[r5A°^{T;R)] C P4Aj(T;R) and d[P4Al{T;R)] 
= P3A?(T;R). Further, the complex (7.1) is exact. To check this, it is 
enough to show that 

dim:PsAj(T;R) +dimP3A^(T;R) - dimP4Aj(T;R) + 1, 

and this is a direct consequence of Euler's formula. 
We now turn to the description of the spaces entering the vector-valued 

de Rham complex (7.2). The space 'P4A°(T;R^) consists of continuous 
piecewise quartic vector valued 0-forms w = {fi,f2)'^- The degrees of 
freedom are taken to be 

fi{x), gvad fi{x), X e Ao(T), j fi, [pdivf, peVi{e), e e Ai(T). 

Note that the space •P4A°(T;R^) is not simply the Cartesian product of 
two copies of a space of scalar-valued of 0-forms. However, the spaces 
are constructed exactly such that the operator So (defined in Section 4) 
maps P4AJ(T;R) isomorphically onto ' P 4 A ^ ( T ; R 2 ) . Thus SQ^H is simply 
the restriction of ^o in this case. It is invertible, and, certainly the key 
requirement of Section 5, that it is surjective, is satisfied. 

The space •P3Aj(T;R^) corresponds to a non-symmetric extension of 
the stress space used in [8]. On each triangle, the elements consist of cubic 
1-forms 

/ l2^ j„ i ffn , ,dx^-{ ';' dx' (7.4) 
722/ V/21/ 

such that d ivF is linear, where F = (fij). This space has dimension 
40 — 6 = 34. In fact, 34 unisolvent degrees of freedom are given by F{x) 
for X S Ao(T), Jj, F and basis elements for the spaces of moments 

/ 
(Fn) -p , pe7 ' i (e ;R2) , f pskw{F), p G Pi(e;K), e G Ai(T). 

If all these degrees of these degrees of freedom vanish, then skw(i^) = 0 
on the triangle T, and the corresponding unisolvence argument given in [8] 
implies w = 0 on T. 

Finally, the space PiA^(T; R^) = Vih^{T\ R?) is the standard space of 
discontinuous linear vector-valued 2-forms, with degrees of freedom Jj,u>Afi 
for /u in a basis for •PiA°(T, R^). By definition, we have the inclusion 
d[V3Al{T;M.'^)] C P I A ^ ( T ; R 2 ) , and from [8] we know that the symmetric 
subspace of P 3 A 1 ( T ; R 2 ) is mapped onto ViA'^{T;R^) by d. Therefore, 
d[p3Aj(T;R2)] = PiA2(T;R2). Furthermore, clearly d[V4A^{T;R'^)] c 
P 3 A J ( T ; R 2 ) . Hence, as above we can use a dimension count to show that 
the complex (7.2) is exact. 

Since we have already noted that So,h is surjective, it follows from 
the general theory of Section 5, that the bottom row of diagram (5.6) 
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is exact. Furthermore, since SQ^ is invertible, we can identify the space 
r ^ with A^(]R). Now, if w given by (7.4) belongs to PgAjCTiR^), then 
SiLO = (/i2 — f2i)d^^ A dx"^ belongs to •p3A^(T;R). Hence Si^h is just the 
restriction to 'P3Aj(T;R^) of Si in this case, and the bottom row of (5.6) 
can be identified with 

-p^ ^ AO(E) ^ ^ ^ ^ Ai(R2) Sz^l^ A2(V) - . 0, (7-5) 

which, in the present case and notation, takes the form 

Vi ^ P5A°(T;R) - ^ ^ ^ ^ P3AJ(T;R2) 

- ^ ^ ^ ^ P3A2(T;R) X P I A 2 ( T ; R 2 ) ^ 0. (7.6) 

Identifying the spaces of differential forms with spaces of piecewise polyno
mial scalar, vector, and matrix fields as usual, the form space •P3Aj(T;R) 
corresponds to the space Qh of all continuous piecewise cubic skew matrix 
fields, 7^iA^(T;R) corresponds to the space Vh of all piecewise linear vec
tor fields, and P5A?(T;R) corresponds to the Argyris space of piecewise 
quintic scalar fields. The space P3Aj(T;R^) corresponds to a space Eh 
consisting of all piecewise cubic matrix fields in iJ(div, fi; M) which have 
piecewise linear divergence, are continuous at the vertices, and for which 
the skew part is continuous. With these identifications, the sequence (7.6) 
is equivalent to 

„ „ , J „ (skw.div) ^ ^ xr „ 
Vi ^ Wh ^ ^h > Qh^Vh ^ 0, 

which is a discrete version of (3.2). 
In order to derive the desired discrete version of (3.1), we develop a 

discrete analogue of the projection done in (3.3). Observe that of the 34 
degrees of freedom determining an element F G S/j on a given triangle 
T, there are 10 that only involve skw(F), i.e., skw(F) at each vertex, 
JrpSk.w(F), and / pskw(F) for p € 7^i(e;K). Moreover, these are exactly 
tihe degrees of freedom of skw(i^) in Q^- Let L^ denote this set of degrees 
of freedom, and Ljj the remaining 24 degrees of freedom. Then we can 
define an injection ih • Qh -^ ^/D determining ihQ on T by 

Kihq)=Kq), leLh, l{ihq) = 0, I & Lf,. 

By construction, skwf;,^ = q for all q £ Qh- The operator ih may be 
considered a discrete analogue of the inclusion of C°°{ft; K) '—^ C°°(n, M). 
(However Qh is not contained in H/j, and ihq need not be skew-symmetric.) 
The operator sym^ := / — ihskw is a projection of Eh onto the subspace 
T,h consisting of the symmetric matrix fields in S/j. That is, 

E,, := sym;,(Sh) = H,, n i7(div, Q; S). 
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A discrete version of the diagram (3.3) is now given by 

Vi 

where Ilh.{q,v) = v — dWihq. It is straightforward to check this diagram 
commutes and hence the bottom row is exact. This is exactly the discrete 
sequence utihzed in [8]. 
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