
CHAPTER 3 

Prediction of Protein Function: 
Two Basic Concepts and One Practical Recipe 

Frank Eisenhaber'" 

Abstract 

The analysis of uncharacterized biomolecular sequences obtained as a result of genetic 
screens, expression profile studies, etc. is a standard task in a life science research 
environment. The understanding of protein function is typically the main difficulty. 

This chapter intends to give practical advise to students and researchers that have only intro
ductory knowledge in the field of protein sequence analysis. 

Applicable theoretical approaches range from (1) textual analyses, interpretation in terms of 
patterns of physical properties of amino acid side chains and (2) the extrapolation of empiri
cally established relationships between local sequence motifs with known structural and ftmc-
tional properties to the collection of sequence segment families with sequence distance metrics 
and protein function derivation with annotation transfer (concept of homologous families). 
Here, the impact of different techniques for the biological interpretation of targets is discussed 
from the practitioner s point of view and illustrated with examples from recent research re
ports. Although sequence similarity searching techniques are the most powerful instruments 
for the analysis of high-complexity regions, other techniques can supply important additional 
evaluations including the assessment of applicability of the sequence homology concept for the 
given target segment. 

Introduction 
The genome has become the integrating principle for the various fields of biology and the 

clarification of pathways that lead to the realization of genome information into phenotypes 
under varying environmental conditions has become the central task for life sciences. As a first 
step, it is critical to understand the function of genes at least in qualitative terms; i.e., to name 
the molecular function of encoded proteins and to uncover the topology of interactions of 
networks involving them. Given that, currendy, the molecular function of at least two thirds of 
all genes in completely sequenced eukaryote genomes remains more or less clouded, this would 
represent a dramatic progress. At the same time, it should be noted that real theoretical predict
ability of biological systems above the level of educated guesses (for example, for drug engineer
ing) typically requires quantitative characterization of gene and protein activity and modeling 
of biological networks, which will be, in most cases, not a matter of the coming handful of 
years. Possibly, this is even an optimistic assessment. 

With the central role of the genome in the functioning of biological systems, it is not 
surprising that experimental screens for genes relevant for the processes investigated are a stan
dard approach in todays experimental biology; for example, expression profiling with DNA 
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microarrays, yeast two hybrid screens, etc. If the biological phenomenon has not been well 
described in already published research, the screens lead typically to sequence tags of yet 
uncharacterized genes. Their sequence information has then to be interpreted in functional 
terms within the given physiological context. Stereotypically, the sequence is submitted to a 
similarity search in sequence databases. As a rule, the amount of insight produced by such a 
direct approach is indirecdy proportional to the novelty of the gene target. In this tractate, we 
want to discuss the few fundamental principles that underlie state-of-the-art protein sequence 
analysis approaches. Then, we propose a general recipe for the practitioner who looks for re
search hints in his target sequences. We will give interpretation guides for sequence analytic 
findings and emphasize limitations where appropriate. 

The Beginning: Deriving the Protein Sequence and the Definition 
of Protein Function 

Typically, the starting point is a partial nucleic acid sequence representing a piece of mRNA. 
Whereas the experimental extension of the sequence to a full transcript was mandatory before 
the era of large-scale sequencing, this step can often be avoided now. In this case, it is necessary 
to find (1) a longer expressed sequence tag (EST), (2) a cluster of ESTs with a consensus 
sequence or, luckily, (3) a complete cDNA in the databases that obviously contains the reliably 
sequenced segment of the partial sequence obtained in the screen. The completeness of the 
putative transcript sequence can be investigated by mapping relevant ESTs onto the genome 
sequence. Especially in the case of incomplete transcripts involving only 3' untranslated re
gions, searching for the closest predicted gene upstream in the genome might yield the desired 
gene. ̂  '̂  Searches for ESTs that bridge the distance between the detected gene and the mapped 
site are a possible reliability check and can also discriminate cases of alternative splicing. Fur
ther, the possibility of stumbling onto a pseudogene must be ruled out.^' 

Whereas all the steps leading to the protein sequences possibly encoded in the given tran
script (in this essay, we do not consider untranslated RNAs) are sometimes complicated by 
sequencing errors (frameshifts, single point exchanges, genome fusion errors) but, in most 
cases, are just a technical exercise, the insufficient understanding of biological function for 
proteins known only as conceptual translations has become the major botdeneck in sequence 
data interpretation. 

A few words on protein function: Protein function requires a hierarchical concept for the 
description of its many aspects that reflects the complexity of living systems. The proteins 
function at the molecular level is rather a list of potential capabilities determined by its primary 
and tertiary structure. Molecular junction description includes qualitative and quantitative as
pects of diffusion properties in solution and membrane environments, conformational flexibil
ity, allosteric conformational changes, possible ligand-binding (or catalytic) activities and abil
ity for posttranslational modifications. Depending on cellular context (subcellular localization), 
different features of the molecular ftinction may become important. A set of many cooperating 
proteins is responsible for a cellular junction (metabolic pathway, signal transduction cascade, 
cytoskeletal complex, etc.). Since gene expression is regulated in a time- and tissue-dependent 
manner, regulatory sequences in the genomic environment of the gene considered come addi
tionally into play at this level. Finally, the presence and activity of a gene product may be 
direcdy associated with 2. phenotypic junction at the organism or population level. Typically, 
only some aspects of molecular or cellular function are in the reach of sequence analytic studies. 

Concept No. 1: Function Inheritance from a Common Ancestor Gene 
The most widely known, the evolutionary (historic) approach for inferring protein func

tion with nonexperimental means is based on the frequent observation of similarity between 
biomolecular sequences coding proteins with similar molecular function. Since the early ex
amples were typically metabolic enzymes or transporters (such as hemoglobin) for which the 
3D structure was available, the insight materialized soon in the paradigm of both equal/similar 
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three-dimensional structural fold and molecular function as a consequence of similarity of 
protein sequence. Within this concept, a family of homologous gene/protein sequences is hy
pothesized to appear evolutionary during radiation of species (rarely via horizontal gene trans
fer) from an ancestor gene in the founding species via multiple mutations and, sometimes, 
gene duplications. In this context, the closest homologue of a gene in another organism ("the 
same gene") with most likely the same function is called orthologue, more distandy related 
homologues that, probably, arise from gene duplications and might assume new functions are 
named paralogues. Nevertheless, distant sequence similarity as a result of functional pressure or 
physicochemical constraints (analogous sequences in a scenario of convergent evolution) can
not always be excluded but, from the viewpoint of protein function prediction, the evolution
ary pathway is not the major issue. 

Functional annotation available from experimental studies of one family member is thought 
to be fully or partially transferable to all other members in the family. Therefore, considerable 
research effort has been focused on method development for more and more distandy related 
homologue detection to increase the likelihood of having experimentally studied family mem
bers. Except for obvious alignments with high sequence identity, it is not trivial to decide 
whether the similarity between sequences is significant in a statistical sense. The sequence ho
mology approach is unthinkable without a mathematical function for measuring the similarity 
of two sequences quantitatively; i.e., a distance metric for the sequence space. 

At the level of nucleic acids (genes and transcripts), the only possible measure is the count of 
identical positions in an optimal alignment. In this way, only relatively close sequence neigh
bors can be detected. Whereas the transcript sequence itself is just a redundant four-letter text, 
the translation into an amino acid sequence yields a more informative 20-letter message that 
often can be direcdy interpreted in physical and structural terms. Matrices of likelihood of 
amino acid type exchanges have been determined from experimentally established sequence 
families of globular proteins including some representatives with known tertiary structure. For 
example, amino acid type exchanges without changes of residue polarity/hydrophobicity or 
secondary structural preference impair protein structures less and are, therefore, more likely. 
Typically, such an exchange matrix enters the pairwise sequence similarity score function to
gether with an empirical expression for the evaluation of evolutionary costs of deletions/inser
tions. For convenience of statistical evaluation, the score is recalculated into the probability 
(E-value) of incidentally reaching an alignment with the same or better score with a sequence 
taken randomly from a database of the same size. If this E-value is low, the predicted alignment 
is considered statistically significant. As probabilities, E-values should be always smaller than or 
equal to unity but analytically simplified computations of E-values, for example in the BLAST 
suite, may lead to meaningless results above one for nonsignificant alignments with a low 
similarity score. 

When a group of related proteins is known, then profiles that describe the likelihood of 
amino acid type occurrence at alignment positions can be extracted (see Step 5 in the Recipe 
below for detail). In turn, they allow the determination of ever more distantly related homo
logues in iterative cycles of profile extraction from growing alignments. Modern sequence pro
file techniques are the 'super-weapon' for collecting families of distandy related homologues 
and for assigning functions to globular domains via annotation transfer. Application of this 
technique lead to a number of breakthroughs in biology essentially with theoretical data analy
sis alone; (e.g., see refs. 7-14). 

Limitations of the Homology Search Concept 
The deduction of the sequence distance metric has consequences for the applicability of 

homology searches in databases, for example with the BLAST/PSI-BLAST suite: '̂ ^ 
1. The sequence distance metrics have been derived from alignments of globular proteins; 

more accurately, from alignments of secondary structural elements (e.g., BLOSUM62^ '̂̂ '̂ ). 
Obviously, such similarity functions may fail for other types of sequences; for example, for 
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cases having amino acid compositions that differ drastically from those of globular proteins. 
For example, long hydrophobic stretches with many transmembrane regions regardless of 
origin have a general tendency to appear similar. The same problem create long polar nms, 
sequences with systematic periodicities (coiled coils, collagen, etc.) as well as sequence seg
ments with many cysteines, prolines or tryptophanes, amino acid types that are typically rare 
in globular proteins and the match of which is given high weight in the similarity measure. 
Thus, a sequence needs to be preprocessed to filter out all probable nonglobular segments 
before its submission to homology searches in sequence databases. Essentially, the term "dis-
tandy related sequence homologue" is not really applicable for nonglobular regions. 

2. Each alignment position contributes a summand in the total score independent of all other 
position. Thus, the mutual independence of sequence positions in their mutation ability is 
assumed in contrast to well-known examples of correlated mutations not only in globular 
proteinŝ '̂̂ ® but also in some shorter motifs.̂ *'̂ "̂  Thus, sequences that fit alignments some
how at all positions but do not comply with yet hidden inter-positional constraints may 
nevertheless pass the sequence similarity significance criterion. This effect is practically not 
important for long regions of homology since the number of correlating sites is small com
pared with the length. In contrast, this is one of the reasons why hits with shorter alignment 
length are often false. 

3. Yet another problem is created by the modular structure of proteins that results from se
quence segment recombination at the genomic level. Often, the homology relationship exists 
rather at the level sequence segments than for whole proteins. Therefore, it becomes impor
tant to delineate these homology segments and collect their families individually. 

4. Alignment length and sequence identity are of critical importance for the transferability of 
functional annotation. Only about 50 positions and more allow reliably assuming simi
larity in 3D structure.^^ With decreasing sequence identity (especially below 40%), at
tributes such as enzyme class, binding sites or cellular function can be transferred only 
with caution.-̂ "̂  

Concept No. 2: Lexical Analysis, Physical Interpretation 
and Sequence Motif-Function Correlations 

A biomolecidar sequence may be analyzed in the same way as a text in a foreign language by 
studying occurrences/absences of certain letters (amino acid types) in the total sequence and in 
subsegments, by analyzing combinations of letters as well as their relative order, especially the 
repetitions of clusters of letters. As simple as the arithmetics of pure letter occurrences may 
appear, important conclusions can be drawn from such a study. The results receive a biological 
interpretation with the knowledge of physicochemical properties of amino acids and 
oligopeptides. For example, long stretches of hydrophobic amino acids may indicate secondary 
structural elements buried intramolecuJarly, within protein complexes or in lipid membranes. 
Runs with many polar residues are likely not to have the potential to form a hydrophobic core 
for a tertiary, native structure. The general relationship of hydrophobic and hydrophilic resi
dues in larger segments might be, at least qualitatively, informative with respect to solubility 
and total charge. Such information can be helpful for the design of deletion mutants since 
those consisting mostly of hydrophobic segments are likely to produce false positive hits in a 
yeast two-hybrid screen and to aggregate after over-expression. 

The concept of compositional bias towards certain amino acid types can be generalized 
with the notion of sequence complexity (information content, sequence entropy) as imple
mented, for example, in the SEG program."^^ Low complexity regions (LCRs) are common in 
sequence database proteins (-25% of all residues in sequence databases).^ '̂ '̂  Sometimes, LCRs 
compose almost the whole protein as in the case of brakeless, a protein important for optical 
axon guidance in D. melanogaster?^ Despite their wide spread and expected functional impor
tance, the characterization of many LCRs, especially of those with many polar residues, still 
remains poor. 



Prediction of Protein Function 43 

LCRs are almost absent in known 3D structures of globular proteins ( -0 .5% of all residues 
in the protein structure database).2^'^^Thus, the concept of sequence complexity is a powerful 
quantitative measure for the distinction between globular (typically high complexity) and 
nonglobular (low complexity) regions (see ref. 29 for review). Only the high complexity re
gions represent good targets for sequence homology searches in database. 

Many biological properties (helical transmembrane regions, coiled coils, N-terminal target
ing signals, several posttranslational modifications, etc.; see Step 3 in the Recipe) are predicted 
from sequence with knowledge-based predictors: From a learning set of protein sequences, 
which are known to possess a biological feature, the encoding sequence pattern is extracted in 
a mathematically formalized way. Then, this pattern is searched for in query sequences, a con
cordance score is calculated and, in the most advanced techniques, the probability of false 
positive prediction is calculated. The quality of the predictor depends, first of all, on the learn
ing set. Sometimes, it is small and does not reflect the true sequence variability in the pattern. 
Also, the various proteins in the learning set are typically not of the same quality with respect to 
their experimental verification status. 

When the number of known sequences was small, a number of properties encoded in pro
tein sequences could be associated with short amino acid type motifs ('sequence words'), which 
have been collected in databases, for example in PROSITE. Todays sequence databases populate 
the available sequence space much more evenly. Therefore, short sequence motifs have a dra
matically reduced predictive power (for example, the N-terminal myristoylation, see also 
Step 2 in the Recipe). 

A Recipe for Analyzing Protein Sequences 
The following section is a description of a series of steps that, if executed sequentially, will 

typically lead to insight into structural and functional features associated with an otherwise 
uncharacterized protein sequence if this is achievable with existing techniques at all. With our 
comments below, we want to show what is generally possible but also where are the today's 
limits and where we have to settle for lesser goals until methodical advances move the horizons 
further. As practical illustration of the recipe, we invite the reader to repeat the analysis of the 
pds5p sequence together with us (see also Fig. 1). To avoid spoiling of the text with many 
W W W links that change anyhow with time, this information has been collected in a regularly 
maintained WWW-page associated with this article (http://mendel.imp.univie.ac.at/RECIPE/). 

The basic paradigm in protein sequence analysis requires the dissection of the total se
quence into segments (regions, domains), each of which has its own molecular functional 
features. The function of the whole protein is then obtained as superposition of the segments' 
elementary functions. 

Functional sequence regions of a protein can be classified with respect to their intrinsic 
structural preference in a physiological environment. Some segments have a native structure 
(globular domains, nonglobular helical regions in coiled coil and transmembrane regions, col-
lagens etc.); others have not. This distinction is critical for assessing interaction capabilities: 
Segments with intrinsic structural preference can supply specific, stable surface recognition 
sites for interactions with ligands (therefore, they have a large variety of specific functions); 
unstructured regions cannot. As we have seen above, various types of segments require different 
methods for their analysis. First, nonglobular regions (phase one, steps 1-3) and, then, seg
ments belonging to already known families of globular domains (phase two, step 4) are deter
mined. Finally, the remaining segments are expected to represent yet unknown globular do
mains and are subjected to sequence family search procedures (phase three, step 5). The final 
step involves analysis and synthesis of the sequence analytic findings. 

Step 1: Linguistic Analysis 
At the beginning, it is necessary to check for linguistic particularities in the query protein 

sequence or its fragments. Such a textual analysis can be carried out by visual inspection or with 
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Sequence of PdsSp 
VlAK(iAVIKl KFNSPIlSISIX^LlSTNh:LI,I)RlKAl.llKhl.ASLIX^DNIDI.r(U.I)KYRlUI,VSRKI.LKIlKI)V(imAKTACCI.SI)ILRl,YAPI)APYIl)A 
(A'llIWIYI.IIKl I hYRSIVI.I A()ll'SSNNLLir;i.H{(KYI)l'NKSKPARrr\VKKiir(iKVrSKhl>SVPrr:VI Rl.irNKKI.rYNPNJ;iIM.(H.N 
Sr;inn;AlNI)UNNSRLl.IA'VVKl.nKLVLRLW[nA'Pia,lNAVIGIlYnLLSSr;Ni;LFRKLATKlJOQILTSYSDLNrVSTIISDrFKAWISKIADISPDVRVi:wrtSl^ 
yAIAKI>II)SDPRVRRTSVVIIhNKVPVrHlWK\n>;KAIYrSl.l.HLARKKIIKKVRhl.CINTMAKKYSNSl.NKli:RrYQNKKIWHllDni>Sn YNLYYI^ 

PI)NI)KRVHRI I IVI SMKI)KKAKISFKAFNAROKISFAlSKYII)KSKFl.NNQHSMSSS(XiPIVMNKYNQII.yWI ASGI.SDSTKAIIMI.HTIKQKNDKRIKYI I NACV^I^ 
NFI.VSKI QFPtH FKKYNISr(;ASIMPRl)IAKViyll I.FRASPIIYNVSSISVl l.NFSNNSDAKyi 1)1 KRRII.l)l)ISKVNPri FKIX^IRIl KrnKI)FI)I)PI)AFKNI)\I.SI HFAl KF 
KIFKWVI)FI)mrFFTKI.YWAVFSKPFFrKYArKLIAFSPKAFiriKKIKIRIFPFDLQKDKYFTSMIIVlV«F;iFKKFPIIVFNI)nsnMISYl IKFVl I.S^ 
S|yrKYSAl(iNKVFTI.KLKI>iKFRSIAPI)VPRl)FI.AFSFn;KTMKIFFYLlASCKaLISFFNKFFYPri>SNYOFKlRCVAC;igVFKl,ARISNl,NNFIKI>SmiKI.INI,Vi;iM^^^ 
yFKI)YVANFFISIKFFPI VFFFAYFPnVFLK 1 FI KIWINF FFCM.KSFKKĈ I IFFRALPRLIllAlAIIHPI)IVCi(;i.l)SF,Cil)AYl,NAF Fl All)YFI.FYFI)SIAAyF;NFSI.FYYl.SFRVKNYy 
l)KFVII)FII)FIFtil\)KFFAPKKllRPY(K^KMYlKa;FSOMIFFNI.KFKKNWOIlSAYKiKFNFPSI)FFKPFAl\QF:AQFSFKrYlPF;SFrF;KIONNIKAk:it.Rll^^ 

AllKNNFSyKICKKi;villlARSQAOI)FKCilXiDRFSDSDDDSYSI>SNICNHTKKCillFMVMKKFRVRKKVDYKOI)KDDDIFMr 

1. Linguistic analysis 

Only 2.7% glycine; i.e., rigid backbone 
Segment 1190-1277: charged low 
complexity region (with 44 DEKR, shown 
as blue ellipsoid) 

2. Known functional motifs 
and 3. Non-globular structured regions 
None hit to PROSITE motifs, none known 
cellular localization targeting signals or 
posttranslational modification site 
Non-significant hits for helical TM regions 

4. Libraries of known domains 
Four hits to HEAT repeat HMM model 
with positive score 
Diffuse spread over sequence 

5.1 Sequence Database Searches 
Segment 1-620 shows significant similarity 
to > 100 helical repeat proteins 
Example: regulatory subunit of PP2A 

query segment • 

5.2 Secondary structure 
More than 60% a-helix content, helices are 
distributed over whole sequence length 
Repeated occurrence of sections long helix 
- short loop - long helix interconnected 
with a long loop 

6.1 Interpretation of domain architecture 
' Pds5p seems a repeat protein with up to 26 

HEAT-repeats of ca. 40 A A length 
' The C-terminus is charged and may support 

a non-specific interaction. 

• MM i l l ! I l l I N 

6.2 3D-structural model 
The three-dimensional structure of lb3u has 
been used as template. Pds5p is hypothesized to 
have the form of a super-helical band. 

6.3 Hypothesis for function 
Pds5p may function as molecular docking 
station for the spatial organization/interaction 
of globular domains of other proteins having a 
role in chromosome segregation. 

^̂^̂ %̂% 

Figure 1. Sequence analysis of yeast pds5p. When the sequence-analytic study of yeast pds5p was started, only 
its sequence (top of the figure, 1277 amino acid residues) and its knock-out phenotype in mitosis were 
known.̂ "̂  Searches for nonglobular regions detected only a strongly charged region at the C-terminus. Com
positional studies revealed a surprisingly low content of glycines indicating a generally rigid backbone. Three 
arguments (comparison with known domain profiles of helical repeats, distant similarity with the regulatory 
subunit of PP2A and predicted helical secondary structure including also the pattern of two helices intercon
nected by a short loop and a long loop between helix pairs) support the view that FiEAT-repeats occupy the 
major part of the sequence. The reliability of these predictions decreases towards the C-terminal part. The 
FiEAT-repeat region is suggested to fold into a super-helical band with interaction sites for other proteins, the 
charged C-terminal region has, apparently, a role for unspecific amplification of some binding reaction. 
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computerized tools such as SAPS. This program incorporates also rigorous statistical criteria 
for finding significant differences of the query's lexical properties from averages of SWISS-Prot 
sequences. 

Regions of low sequence complexity, another important lexical property, can be determined 
with tools such as SEG or CAST. The SEG program has three recommended parametrizations 
with sequence windows of w = Xl^l'b or 45 residues. In standard applications, only the smallest 
window, the most stringent criterion, is applied. Personal experience shows that the larger 
window (w = 25) helps detecting less obvious LCRs, although SEG marks sometimes also 
globular regions as LCRs if applied with maximal window size (w = 45). The final output of 
SEG should be preprocessed for further analysis: (1) Sometimes, SEG leaves a small segment 
(with length below window size) between two neighboring LCRs unassigned. Such a segment 
can often be fused with the two LCRs into a single larger LCR. (2) Evaluation of polarity of 
LCRs is helpful for their functional assessment. Hydrophobic LCRs (rarely longer than 30 
residues) often have a role in membrane attachment or are buried internally in protein com
plexes. Functional assignment of polar LCRs, especially those with more than 100 residues 
length, is more problematic. Polar LCRs are thought to be intrinsically unstructured and in 
contact with the aqueous phase. Some serve as mechanical linkers between domains, have a 
role in electrostatic interactions or carry sites for posttranslational modifications. The specific 
molecular function of polar LCRs is typically unclear except for rare cases.̂ '̂ '̂"^^ 

Step 2: Motifs for Subcellular Targeting and Posttranslational 
Modifications 

A number of functional motifs for posttranslational modifications or targeting to subcellu
lar localizations are located within sequence regions without intrinsic structural preference. 
Specialized predictors can test the occurrence of these motifs. Several N-terminal signals in
volving typically 20-40 residues encode targeting to organelles: SIGNALP recognizes the 
signal leader peptide for export to the endoplasmic reticulum. CHLOROP^^ searches for chlo-
roplast- and another tool^ for mitochondrion-targeted proteins. SIGNALP in its recent ver
sion has very reasonable prediction accuracy above 80% for true predictions for large sequence 
sets and a low rate (--14-19%) for false-positive hits and compares favorably with alternative 
tools. ̂ ^ Prediction of chloroplast- and mitochondrial targeting are not comparable in this re
spect, first of all, because the available sets of experimentally learning sequences are less com
prehensive and reliable. TARGETP represents a unified version of all three predictors. A new 
predictor for the C-terminal PTSl signal (with a length of about 12 residues) that encodes 
pex5-dependent peroxysomal localization has a sensitivity >95% and a selectivity below 0.5%. 

Several lipid posttranslational modifications of proteins can now be reliably predicted from 
sequence. (1) N-terminal N-myristoylation is encoded by a signal of about 17 residues. It is 
recognized with >95% for true sites and with less than 0.5% for unrelated sequences by a 
recently developed tool.^ '̂̂ ^ In some cases of posttranslational processing, internal glycines 
become N-terminal and myristoylated. This program analyzes also a number of such scission 
patterns. N-terminal N-myristylation with subsequent palmytoylation (if there are cysteines 
close to the N-terminus) might hint at a noncanonical export mechanism. (2) 
Glycosylphosphatidylinositol (GPI) lipid anchoring is a posttranslational modification of pro
tein C-termini carrying the respective recognition signal of ca. 40 residues. The anchor is at
tached after proteolytic scission of a propeptide. The big-II predictor predicts GPI lipid anchor 
attachment (-80% accuracy for truly anchored animal proteins with --0.2% false positives) and 
computes also the one or two most probable attachment sites.^^' (3) A recently released 
predictor for farnesylation and geranylgeranylation, the two types of prenylation at protein 
C-termini, is accessible from the WNJC'W-page associated with this article. 

The localization and lipid modification signals discussed above involve 12-50 residues from 
the respective termini. Typically, they are not characterized by amino acid type preferences 
alone but also by sequence context involving a strong pattern of physical properties and, par
tially, by some inter-positional correlations within the motif. Only this additional information 
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allows reliable motif detection in uncharacterized sequences and the assessment of the possible 
prediction error in tests involving dozens of thousands of sequences. ^ 

It shoidd be emphasized that conservation of a handful of residues in a short motif alone 
does not imply function correlation and, barely, supports more than a working hypothesis. 
Typically, short, polar oligopeptides do not have intrinsic structural preferences; they cannot 
supply a stable interface for intermolecular interactions. Even in the case of true function em
bedding into an unstructured region of a protein that interacts with a globidar domain of 
another protein, a functional motif requires a sequential environment involving residues for 
less specific interactions and linker function. ' ' 

To illustrate, a number of short PROSITE motifs^^ are also used for characterizing post-
translational modification sites (for example, for phosphorylation, N-glycosylation and 
myristoylation) but with a high rate of false hits.^^ Other arguments (e.g., experimental data) 
are needed to support the relevance of predicted sites. There are alternative neural network 
based predictors for phosphorylation,^^ O- and N-glycosylation^ ̂ '̂ ^ but their prediction accu
racy is not yet sufficient for unsupervised sequence annotation. 

Similarly, many other, scarcely described and yet insufficiently understood sequence sig
nals, e.g., for nuclear import and export or the PEST degradation signature, circulate 
widely in the literature but their predictive significance for sequence analysis is still low since 
the correlation between protein sequence variability and function remains ambiguous. Often, 
the biological mechanisms for read-out of these signals are poorly understood. 

Step 3: Nonglohular Regions with Intrinsic Structural Preference 
At early stages of sequence studies, it is important to recognize a-helical transmembrane 

regions and coiled coil segments. Both have compositional bias, which is often not recognized 
by sequence complexity computing programs, and, consequently, these segments should also 
be removed from the sequence before submission to searches for distant relatives in sequence 
databases. 

Coiled coil regions can be predicted from sequence with the updated COILS algorithm of 
Lupas.5^ Typically, WWW- server versions run COILS only with standard parametrization and, 
sometimes, predict coiled coils wrongly in regions with many polar residues without any hy
drophobic amino acids in *a and *d' positions of the heptade repeat. A second COILS run with 
a changed weighting for polar residues as recommended in the manual diagnoses many of 
those doubtful assignments. To notify, there are also versions of COILS in the public domain 
erroneously deviating from the original implementation of algorithm and resulting in fewer 
and shorter predicted coiled coil segments for some proteins. 

There may be other fibrillar segments in proteins. For example, collagen segments are rec
ognized by typical glycine- and proline-rich repeats and this property is incorporated in an 
HMM of the PFAM domain PF01391.^^ 

The prediction of membrane attachment of integral membrane proteins via protein seg
ments immersed into the lipid bilayer is still problematic. If transmembrane helical regions are 
present, they are readily recognized by prediction tools like TMHMM or DAS-TMfilter, a 
recent update of DAS, as well by a number of other programs. With less accuracy, the 
protein topology with respect to the membrane is predicted (mostly based on the 
positive-inside-rule ). Since the motif description rests almost entirely on the requirement of 
long hydrophobic stretches (except for a minimum length), false positive prediction, especially 
of single membrane-pass proteins is frequent. TMHMM and DAS-TMfilter have a better 
selectivity than the competing programs but they also fail for proteins with long helical, hydro
phobic repeats (for example, ARM/HEAT repeat proteins such as tis7 (gi321269) or inscuteable 
(gil079094)). 

The architectural diversity of proteins attached to membranes involves more than just 
transmembrane helical regions but these configurations cannot be predicted with available 
TM region prediction tools. For example, there is an interesting class of amphipatic helices 
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embedded into the membrane parallel to the bilayer surface (monotopic membrane pro
teins). Further, transmembrane helix formation is not entirely determined locally by the 
hydrophobic stretch itself but may depend on the rest of the protein sequence or even 
complex formation. 

Step 4: Knoum Sequence Families of Globular Domains 
Globular domains are the main structural and functional building blocks of proteins. Vari

ous defmitions of the notion 'domain' differ but their content is overlapping. From the view
point of three-dimensional structure, a domain is a compact, spatially distinct unit with its 
own hydrophobic core, the fundament of its native tertiary structure. In the kinetic sense, a 
native structure implies that conformational fluctuations are locally confined (i.e., are smaller 
than the size of the three-dimensional structure). Thus, globular domains can supply stable 
interfaces and recognition sites for other molecules, even for those without intrinsic structural 
preference. Thermodynamically, a domain is melting independendy. Often, a domain is con
sidered an autonomous folding unit. At the same time, a structural unit might not be continu
ous in the sequence. In the evolutionary perspective and in sequence comparisons, a domain is 
a family of significandy similar sequences that are related by their mutational history. From the 
functional viewpoint, domains may be promiscuous with different active sites and binding 
capabilities for various sequence family members but the degree of diversity is uneven among 
domains. A typical globular domain involves 100-150 amino acid residues; thus, much 
longer segments can be supposed to involve several independent domains. To avoid confti-
sions, it is advised to use the term "domain" in the sense of globular domain and to apply 
sequence region or segment in other context. 

At this stage of analysis, it is a good decision to compare the target sequence with entries in 
public domain databases. There are traditional profile-based (PROSITE,^^ BLOCKS,^^ 
PRINTS^^); hidden Markov model (HMM)-based (PFAM,^^ SMART,^^ significance thresh
old typically E-0.1); combined tools (PANAL^^) and RPS-BLAST profile-based (CDD 
search, significance threshold typically E-O.Ol) collections. There are at least two reasons: 
The given sequence might be so distandy related to a known family that a simple pairwise 
similarity search with the query or any of the family members would not detect that relation
ship. Profiles describing whole families are much more sensitive. Second, one domain in 
multi-domain targets may have so many close relatives in the sequence database that the 
output list from a BLAST search with the full sequence would be obliterated with those hits 
alone. It makes sense to compare a query with all available domain libraries since definitions 
of even actually the same domain may slightly differ and numerical noise can lead to hits in 
one but not in another library. 

Currendy, there are two major primary domain libraries. PFAM is unprecedented in se
quence coverage. At the same time, the domain definitions may contain slight inconsisten
cies mosdy concerning boundaries of domains. Sometimes, signal peptides, fibrillar protein 
segments or helical transmembrane regions are included into the profile or the domain defini
tion contains actually several domains. SMART is a very carefully curated but much smaller 
domain databases that focuses on certain classes of signaling, nuclear and extracellular pro
teins. SMART domain boundaries typically define the core of a single globular domain. 

There are two modes for searching the occurrence of domains in query sequences with 
HMMs and profiles. In the so-called global mode, the presence of only complete domains is 
assumed and the optimal alignment of a query segment with the complete domain profile is 
searched. This mode is typically more sensitive that the fragmented domain search where also 
partial hits of the domain profile in the query are reported. In the ideal case, both regimes 
deliver the same result. Most hits from the fragmented domain search are meaningless in the 
absence of full-domain matches but if they coincide with known binding sites for ligands or 
otherwise functionally relevant parts of the domain, careful sequence inspection may lead to a 
discovery of very distandy related sequence homologues. 
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A fragmented domain search with the profile of the histone acetyitransferase family has hit 
ecolp, a yeast protein for the establishment of cohesion between chromatids during mitosis, in 
the region of the acetyl-CoA binding site. The partial hit was extended with arguments based 
on secondary structure prediction and the conservation of a hydrophobic pattern. This finding 
stimulated experimental analysis and finally led to the discovery of a new family of acetyl-CoA 
binding and acetyl-transferring enzymes with a role in cohesion.^ 

The domains with multiple internal structural repeats are difficult to detect; therefore, this 
domain class requires special attention."^ Such repeats are known as closed structures (e.g., 
p-propellers) or as semi-closed forms, for example the superhelical armadillo or heat repeats. 
Many repeat proteins have scaffolding functions for protein-protein interactions. For repeat 
detection, the query should be cleaned from compositionally biased regions in accordance with 
steps 1-3 of the recipe. The PROSPERO tooF^ is designed for recognizing even subde internal 
sequence repeats. Since it operates with rigorous statistical criteria, the validity of the finding can 
be assessed in probabilistic terms. The REP tooF^ compares the query sequence with an HMM 
library of known repeats. Unfortunately, the evolutionary pressure for sequence conservation 
within repeats is typically low and reduced to the requirement of packing and maintenance of 
the hydrophobic core. Therefore, even hits with low statistical significance deserve attention. 

Step 5: Sequence Database Searches 
Searches for similar sequences in databases can be applied in two different contexts. Full 

sequence searches are reasonably aimed only at finding closely related sequential neighbors 
where the methodical details of deriving the sequence distance metric do not have a major 
impaa on the search result (typically, log {E - value) < - 10 for BLAST). 

A search in sequence databases for similar but distandy related proteins with the target 
under study is in fact the last step of sequence analysis. Only sequence segments without low 
complexity, transmembrane and coiled coil regions, peptide segments for f)osttranslational modi
fications and cellular targeting, and known domains can routinely be subjected to such searches. 
Now, the effort is aimed at collecting the complete sequence family. The larger the family, the 
higher is the probability of hitting a fiinctionally annotated family member. Additionally, it is 
necessary to understand the sequence variability within the sequence. 

Traditionally, this a process of repeated application of pairwise sequence comparison tech
niques such as BLAST and general profile-searching techniques relying on manually or auto
matically constructed alignments (PSI-BLAST with inclusion E-values up to --0.01, 
SAM-T99,'^^'^^ or a combination of Clustalx^^'^^ with a profile searching technique). Both the 
primary query as well as any new family members is subjected to such searches. The optimal 
search heuristics are a matter of continued scientific discussion. Large sequence families have 
an internal structure consisting of clusters of sequentially (and, often, functionally) more simi
lar proteins with statistically significant links between them. 

Three aspects deserve additional comments: First, borderline hits require visual inspection 
before inclusion into the family or their final rejection. An excellent review of physical and 
structural criteria for nonstatistical evaluation of alignment significance (based on consider
ations of protein structural architecture) has been supplied by Bork and Gibson.^^ Reoccur
rence of some motif conserved within the family might indicate correct assignment. Finally, 
the correct inclusion into the family should be verified by a reciprocal database search (started 
with the doubtful sequence segment) that collects already verified family members with statis
tical significance. It must be noted that many database search programs are not 100% commu
tative with respected to starting and hit sequences due to algorithmic simplifications that save 
computing time. Second, manually constructed alignments may be superior over those auto
matically generated, especially if 3D structural information for at least one family member is 
available. In the case of the pleckstrin homology (PH) domain sequences, sequence identities 
had been very low but reliable alignments applicable for further rounds of profile searches were 
obtained with manual adjustment emphasizing the conserved hydrophobic patterns and a 
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conserved tryptophane position. ' Third, the probability of finding hits can be increased if 
EST and genome databases are six-frame translated on the fly and included into the search for 
relatives.^ In a few cases, some relaxation of search thresholds leads to the necessary intermedi
ate sequence hits during family collection. Fourth, since most amino acid substitution matrices 
give high weights to matches of rare residues such as cysteine, database searches with such a 
sequence segment to database searches may result in spurious hits with underestimated E-values, 
which may become close to standard selection thresholds. This has happened in the case of the 
C-terminal domain of wingless/wnt-1 that was incorrectly suggested to be related to the 
lipid-binding domain of phospholipase A2.^^ This possibility was later ruled out by structural 
arguments (completeness of the hydrophobic core, satisfaction of disulphid bonds).^^ 

Until recendy, it was very difficult to find routinely so distantly related family members 
with known 3D structures that have no recognizable sequence similarity with pure 
sequence-based approaches but, nevertheless, have the same fold. Higher sensitivity is achieved 
in comparisons of two profiles, one extracted from the query's sequence family and the other 
from a family of proteins of similar 3D structure and their sequential homologues. In addition 
to information from amino acid letter comparison, some structural information can be mobi
lized: The alignment of query sequences with structural templates, the mapping of sequence 
positions to structural positions, allows, for example, scoring of the agreement between pre
dicted secondary structure of the query with the secondary structure of the template or the 
polarity of amino acid residues of the query with the accessibility of template sites. Different 
strategies have been implemented in 3D-PSSM,^^ bioinbqu,^ DOE FOLD predictor,^^ FFAS,^^ 
PSIPRED,^^ SAMP SDSCl^^ and SUPERFAMILY,^^ ^^^^i^ ^^ available as WWW-servers. 
Generally, their predictions have to be viewed with caution. Similar predictions for various 
sequence family members are indicative for higher significance. Some of these techniques have 
been equipped with methods for assessing the probability of false positive prediction. There are 
cases where the prediction of the 3D-structure with fold predictors has produced the decisive 
hint. For example, the predicted P-propeller structure of the globular domain of PIG-T can 
explain its molecular fiinction as gate mechanism for protein substrates of the transamidase 
PIG-K in the GPI lipid anchor biosynthesis pathway.^ 

Yet another approach for enlarging the sequence family focuses on sequence architecture, 
the linear order of functional segments in a protein. Sub-threshold similarity in some sequence 
segment combined with similar length and order of other architectural elements can indicate 
on the existence of homologues in other species, even if the evolutionary divergence has be
come high.^ '̂98 

After having the sequence family completed, the family sequence alignment, known struc
tures of family members, the available sequence annotation and the scientific literature for all 
family members have to be studied. First, conservation patterns of hydrophilic/hydrophobic 
residues and of secondary structural elements (indicating fold conservation), or of motifs with 
fiinctional residues (giving a hint at conserved ligand binding and active sites) have to be taken 
into account.^^ The secondary structure predicted with JPRED^^^ or PSIPRED^^ for the se
quence family can help in the interpretation of the data. Second, details of known structures of 
family members that do not depend on the sequence-variable positions should be searched for. 
For example, the distribution of the electrostatic potential at the protein surface is sometimes 
invariant within a family and may explain the binding behavior. Searches for proteins with the 
same fold^^^ can give lead to functional information on other proteins with the same fold. 
Third, the taxonomic distribution^^^ of the family is informative with respect to the evolution 
of the cellular processes involving the sequence domain studied. Sometimes, evolutionary trees 
constructed from all family members may yield additional insight. 

The scientific literature must be searched for experimental evidence of biological function 
that can be linked with the sequence segment in some family members. The degree of possible 
annotation transfer from family members to the target under consideration depends on many 
aspects. As a rule, the similarity with respect to the 3D fold can be determined with greater 
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reliability but molecular and, the more, cellular functional descriptors cannot always be trans
ferred with the same confidence due to considerable plasticity of protein fUnction.5'103 For 
example, a large family of proteins has in common a domain responsible for ras-binding in the 
case of many family members.^ This information was extrapolated to the whole family in
cluding the Rho-GTPase-activating protein myr-5. For the latter one, it turned out that the 
presence of this domain and its fold was predicted correctly, but the actual function was not.^^ 

Step 6: Analysis of Sequence Analytic Findings and Synthesis 
of Molecular Function 

First, it is necessary to evaluate the reliability of predictions and annotations for overlapping 
sequence segments and to resolve possible contradictions. Then, the prediction results should 
allow segmentation of the query sequence into sequence regions, to which the collected struc
tural and functional annotation can be attached. Often, some experimental data for the protein 
analyzed is available from the cooperating experimental researchers, which has to be discussed 
now in context with the sequence-analytic findings. Synthesis of the segments* functions into the 
protein function is the most creative step in the whole procedure where the biological knowledge 
of the researcher and his experience in using sequence analytic methods come together. It is 
possible that the collected evidence is so strong that there is no doubt (see ref 106 for discussion). 
In most cases, the thought concentrates on consequences for the further experimental strategy. 
For example, clear directives can be given for mutant design: Deletion mutants should follow the 
derived segmental structure; point mutation should focus on conserved sequence positions. 

Protein structure and function are encrypted in the protein sequence; thus, they can be pre
dicted relying on amino acid sequence information in principle. Sometimes, molecular and cel
lular properties can be predicted. Phenotypic functions are usually outside the predictive power 
of sequence analytic studies (only in cases of clear homology). It should be emphasized that there 
are aspects of molecular function that strongly resist theoretical treatment. It is highly unlikely 
that theoretical methods will predict biological features without any analogy to experimentally 
studied cases since all procedures finally rely on observed sequence-function correlation. 

Even if the 3D structures of two individual subunit proteins are known, it is still not pos
sible to reliably predict the specific protein-protein interaction in a complex. In the general 
case, there is no way to predict even the fact of complex formation from sequence alone. Poten
tial hints can be obtained from homology considerations but, as in the case of the putative 
ras-binding activity of myr-5, with low reliability. Sometimes, conservation of gene order 
or regulatory genomic neighborhood, gene fusion events or the conserved cooccurrence of 
genes in different genomes might be supportive for interaction^^^'^^^ but not more. With 
large-scale mass spectrometric analysis, list of proteins in complexes have been compiled that 
can be looked up as well as interactions from two-hybrid screens.^^ '̂̂ ^ 

Concluding Remarks 
The development of high-throughput experimental technologies and its first major break

through, the complete sequencing of the genomes of organisms ranging from viruses over 
bacteria, lower eukaryotes to human, has changed life science research qualitatively. For the 
first time, the biological object can be studied in its totality at the molecular level. The imme
diate task for the coming decade consists in assigning functions to all genes known by se
quence. Since the new data are so large and their the biological interpretation require complex 
approaches, theoretical science can and must contribute decisively to the research progress. The 
research success in life sciences depends increasingly on the ability of researchers in experimen
tal and theoretical biology to joindy focus on relevant questions. 

Modern protein sequence analysis relies on two major approaches: protein homology searches 
based on the concept of statistically significant sequence similarity and textual analysis with 
physical interpretation and the extrapolation of empirical relationships established between 
local sequence motifs and patterns with structural and functional properties. 
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