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Natural Language and Text Processing 
in Biomedicine

CAROL FRIEDMAN AND STEPHEN B. JOHNSON

After reading this chapter, you should know the answers to these questions:

● Why is natural language processing (NLP) important?
● What are the potential uses for NLP in the biomedical domain?
● What forms of knowledge are used in NLP?
● What are the principal techniques of NLP?
● What are the challenges for NLP in the clinical domain?
● What are the challenges for NLP in the biological domain?

8.1 Motivation for NLP

Natural language is the primary means of human communication. In biomedical areas,
knowledge and data are disseminated in written form through articles in the scientific
literature, technical and administrative reports, and patient charts used in health care
(Johnson, 2000). Information is also disseminated verbally through scientific interac-
tions in conferences, lectures, and consultations, although, in this chapter we focus on
the written form. Increasingly, computers are being employed to facilitate this process
of collecting, storing, and distributing biomedical information. Textual data are now
widely available in an electronic format, through the use of transcription services, word
processing, and speech recognition technology (see Chapter 5). Important examples
include articles published in the biomedical literature (see Chapter 19) and reports
describing particular processes of patient care (e.g., radiology reports and discharge
summaries; see Chapter 12).

While the ability to access and review narrative data is highly beneficial to researchers,
clinicians, and administrators, the information is not in a form amenable to further
computer processing, for example, storage in a structured database to enable subsequent
retrievals. Narrative text is difficult to access reliably because the variety of expression
is vast; many different words can be used to denote a single concept and an enormous
variety of grammatical structures can be used to convey equivalent information. At
present, the most significant impact of the computer in medicine is seen in processing
structured data, information represented in a regular, predictable form. This information
is often numeric in nature (e.g., measurements recorded in a scientific study) or made up
of discrete data elements (e.g., elements selected from a predefined list of biomedical
terms, such as the names of diseases or genes). The techniques of NLP provide a means
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● Information retrieval helps users to access documents in very large collections, such as
the scientific literature. This is a crucial application in biomedicine, due to the explo-
sion of information available in electronic form. The essential goal of information
retrieval is to match a user’s query against the collection and return the most similar
documents. Because matching is approximate, the process is usually iterative, requir-
ing several rounds of refinement. The most basic form of indexing isolates simple
words and terms. More advanced approaches use methods similar to those employed
in information extraction, identifying complex noun phrases and determining their
relationships in order to improve the accuracy of retrieval. For example, it is impor-
tant to distinguish between a journal article that discusses the use of a drug to treat a
medical condition from an article that discusses a medical condition being a side effect
of a drug.

● Text generation formulates natural language sentences from a given source of infor-
mation, usually structured data. These techniques can be used to generate text from a
structured database, such as summarizing trends and patterns in laboratory data.
Another important application is the generation of small summaries from large
texts. This may involve summarization of a single document (e.g., a single clinical
report such as a discharge summary), or of multiple documents (e.g., multiple journal
articles).

● User interfaces (see Chapter 12) enable humans to communicate more effectively with
computer systems. Tools that facilitate data entry are an important application in bio-
medicine. Data can be captured by keyboard (e.g., using templates or macros) or by
speech recognition technology that enables users to enter words directly into com-
puter systems by speaking. Additional examples (somewhat less common) include
issuing commands or querying a database using natural language.

● Machine translation converts text in one language (e.g., English) into another (e.g.,
Spanish). These applications are important in multilingual environments in which
human translation is too expensive or time consuming. Examples include translat-
ing medication instructions to assist patients, translating consent forms to enroll
diverse subjects in a study, and translating journal articles to reach an international
audience.
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8.3 Knowledge Used in NLP

While current linguistic theories differ in certain details, there is broad consensus that
linguistic knowledge consists of multiple levels: morphology (parts of words), lexicography
(words and terms), syntax (phrases and sentences), semantics (words, phrases and sen-
tences), and pragmatics (paragraphs and documents). Human language processing may
appear deceptively simple, because we are not conscious of the effort involved in learn-
ing and using language. However, a long process of acculturation is necessary to attain
proficiency in speaking, reading, and writing, with further intensive study to master the
language of biological science or medicine. The sections below briefly describe the
nature of the knowledge in each of these levels.

Morphology concerns the combination of morphemes (roots, prefixes, suffixes) to
produce words. Free morphemes can occur as separate words, while bound morphemes
cannot, e.g., de-in detoxify, -tion in creation, -s in dogs. Inflectional mor-
phemes express grammatically required features or indicate relations between different
words in the sentence, but do not change the basic syntactic category, thus big,
bigg-er, bigg-est are all adjectives. Derivational morphemes change the part of
speech or the basic meaning of a word, thus -ment added to a verb forms a noun
(judg-ment); re-activate means activate again. Compared with other languages,
English does not exhibit complex morphology, and therefore many NLP systems for
general English do not incorporate morphological knowledge. However, biomedical
language has a very rich morphological structure especially for chemicals (e.g., Hydr-
oxy-nitro-di-hydro-thym-ine) and procedures (hepatico-cholangio-
jejuno-stom-y). Recognizing morphemes enables an NLP system to handle words
much more flexibly, especially in dealing with new words. However, determining the cor-
rect separation can be difficult. In the previous chemical example, the first split must be
made after hydr- (because the -o- is part of –oxy) while the fifth split occurs after
hydro-. In the procedure example, the system must distinguish stom (mouth) from
tom (cut) in -stom.

Lexicography concerns the categorization of lexemes, the words and atomic terms of
the language. Each lexeme belongs to one or more parts of speech in the language, such
as noun (e.g., chest), adjective (e.g., mild), or tensed verb (e.g., improves), which
are the elementary components of the English grammar. Lexemes may also have sub-
categories, depending on the basic part of speech, which are usually expressed by inflec-
tional morphemes. For example, nouns have number (e.g., plural or singular as in
legs, leg), person (e.g., first, second, third as in I, you, he, respectively), and
case (e.g., subjective, objective, possessive as in I, me, my, respectively). Lexemes can
consist of more than one word as in foreign phrases (ad hoc), prepositions (along
with), and idioms (follow up, on and off). Biomedical lexicons tend to con-
tain many multiword lexemes, e.g., lexemes in the clinical domain include congestive
heart failure and diabetes mellitus, and in the biomolecular domain
include the gene named ALL1-fused gene from chromosome 1q.

Syntax concerns the structure of the phrases and sentences. Lexemes combine
(according to their parts of speech) in well-defined ways to form phrases such as noun
phrases (e.g., severe chest pain), adjectival phrases (e.g., painful to touch),



or verb phrases (e.g., has increased). Each phrase generally consists of a main part
of speech and modifiers, e.g., nouns are frequently modified by adjectives while verbs
are frequently modified by adverbs. The phrases then combine in well-defined ways to
form sentences (he complained of severe chest pain). General English
imposes many restrictions on the formation of sentences, e.g., every sentence requires a
subject, and count nouns (like cough) require an article (e.g., a or the). Clinical lan-
guage is often telegraphic, relaxing many of these restrictions to achieve a highly com-
pact form. For example, clinical language allows all of the following as sentences: the
cough worsened; cough worsened; cough. Because the community widely
uses and accepts these alternate forms, they are not considered ungrammatical but con-
stitute a sublanguage (Kittredge and Lehrberger 1982; Grishman and Kittredge, 1986;
Friedman, 2002). There is a wide variety of sublanguages in the biomedical domain,
each exhibiting specialized content and linguistic forms.

Semantics concerns the meaning or interpretation of words, phrases, and sentences.
Each word has one or more meanings or word senses (e.g., capsule, as in renal
capsule or as in vitamin B12 capsule), and the meanings of the words combine
to form a meaningful sentence, as in there was thickening in the renal
capsule). Representing the semantics of general language is an extremely difficult
problem, and an area of active research. Biomedical sublanguages are easier to interpret
than general languages because they exhibit highly restrictive semantic patterns that can
be represented more easily (Harris et al., 1989, 1991; Sager et al., 1987). Sublanguages
tend to have a relatively small number of semantic types (e.g., medication, gene, dis-
ease, body part, or organism) and a small number of semantic patterns: medication-
treats-disease, gene-interacts with-gene.

Pragmatics concerns how sentences combine to form discourse (paragraphs, docu-
ments, dialogues, etc.), and studies how this context affects the interpretation of the
meaning of individual sentences. For example, in a mammography report, mass gener-
ally denotes breast mass, in a radiological report of the chest it denotes mass in
lung whereas in a religious journal it is likely to denote a ceremony. Similarly, in a
health care setting, he drinks heavily is assumed to be referring to alcohol and
not water. Another pragmatic consideration is the interpretation of pronouns and other
referential expressions (there, tomorrow). For example, in An infiltrate was
noted in right upper lobe; it was patchy, it refers to infiltrate
and not lobe. Other linguistic devices are used to link sentences together, for example
to convey a complex temporal sequence of events.

8.4 NLP Techniques

NLP involves three major tasks: (1) representing the various kinds of linguistic knowl-
edge discussed in Section 8.3, (2) using the knowledge to carry out the applications
described in Section 8.2, and (3) acquiring the necessary knowledge in computable
form. The field of computer science provides a number of formalisms that can be used
to represent the knowledge (task 1). These include symbolic or logical formalisms (e.g.,
finite state machines and context-free grammars) and statistical formalisms (e.g., Markov
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models and probabilistic context-free grammars). The use of these representations to
analyze language is generally called text parsing, while their use to create language is
called text generation. Traditionally, the acquisition of linguistic knowledge (task 3) has
been performed by trained linguists, who manually construct linguistically based rule
systems, or grammars. This process is extremely time intensive. Increasingly, there is
interest in using methods of machine learning to acquire the knowledge with less effort
from linguists. However, machine learning generally requires the creation of training
data, which also requires extensive manual annotation.

Most NLP systems are designed with separate modules that handle different func-
tions. The modules typically coincide with the linguistic levels described in Section 8.3.
In general, the output from lower levels serves as input to higher levels. For example, the
result of lexical analysis is input to syntactic analysis, which in turn is input to seman-
tic analysis. Each system packages these processing steps somewhat differently. At each
stage of processing, the module for that stage regularizes the data in some aspect while
preserving the informational content as much as possible.

8.4.1 Morphology
The first step in processing generally consists of reading the electronic form of a text
(usually it is initially one large string), and separating it into individual units called
tokens (the process is called tokenization), which include morphemes, words (really mor-
pheme sequences), numbers, symbols (e.g., mathematical operators), and punctuation.
The notion of what constitutes a word is far from trivial. The primary indication of a
word in general English is the occurrence of white space before and after a word; how-
ever, there are many exceptions. A word may be followed by certain punctuation marks
without an intervening space, such as by a period, comma, semicolon, or question
mark, or may have a “-” in the middle. In biomedicine, periods and other punctuation
marks can be part of words (e.g., q.i.d. meaning four times a day in the clin-
ical domain or M03F4.2A, a gene name that includes a period), and are used inconsis-
tently, thereby complicating the tokenization process. Chemical and biological names
often include parentheses, commas, and hyphens, for example (w)adh-2.

Symbolic approaches to tokenization are based on pattern matching. Patterns are
conveniently represented by the formalism known as a regular expression or equiva-
lently, a finite state automata (Jurafsky and Martin, 2000, pp. 21–52). For example, the
following regular expression will identify the tokens contained in the sentence
patient’s wbc dropped to 12:

[a-z]+(‘s)?|[0-9]+|[.]

The vertical bar (|) separates alternative expressions, which in this case specify three dif-
ferent kinds of tokens (alphabetic, numeric, and punctuation). Expressions in square
brackets represent a range or choice of characters. The expression [a-z] indicates a
lower case letter, while [0-9] indicates a digit. The plus sign denotes one or more
occurrences of an expression. The question mark indicates an optional expression
(apostrophe -s). Finally [.] indicates a period. This regular expression is very limited,
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because it does not deal with capital letters (e.g., Patient), numbers with a decimal
point (3.4), or abbreviations terminated by a period (mg.).

More complex regular expressions can handle many of the morphological phenom-
ena described above. However, situations that are locally ambiguous are more challeng-
ing. For example, in the sentence “5 mg. given.” the period character is used in two
different ways: (1) to signal an abbreviation, and (2) to terminate the sentence. There is
also the significant issue that we may not have anticipated all the possible patterns.
Probabilistic methods such as Markov models provide a more robust solution. Markov
models can be represented as a table (transition matrix). For this simple example, the
table might appear as shown in Table 8.1. The rows represent the current symbol in the
sentence, and the columns represent the words that can follow. Each cell indicates
the probability that a given word can follow another.

In mathematical notation this can be written as P(following|current). The probability
of a given sequence of tokens can be approximated by multiplying the probabilities of
the individual transitions. Thus,

P(5 mg. given) = P(mg.|5)P(given|mg.)P(given|.) = 0.9 × 0.9 × 0.7 = 0.567
P(5 mg. given) = P(mg|5)P(.|mg)P(given|mg)P(.|given) = 0.8 × 0.4 × 0.8 × 0.7 = 0.1792

To find the best tokenization of a given sequence of characters, it is necessary to deter-
mine all possible ways of dividing the tokens and then to select the one that yields the
maximum probability. For long sequences, a more efficient method known as the Viterbi
algorithm is used, which considers only a small proportion of the possible sequences
(Jurafsky and Martin 2000, pp. 177–180). In practice, the transition matrix would be very
large to accommodate the wide range of possible tokens found in biomedical text. The
transition probabilities are typically estimated from training sets in which linguists have
verified the correct tokenization. However, for accuracy, it is important that the training
set be typical for the intended text and that the training set is sufficiently large.

8.4.2 Lexicography
Once text is tokenized, an NLP system needs to perform lexical look up to identify the
words or multiword terms known to the system, and determine their categories and
canonical forms. Many systems carry out tokenization on complete words and perform
lexical look up immediately afterwards. This requires that the lexicon contains all the
possible combinations of morphemes. Each lexical entry assigns a word to one or more
parts of speech, and a canonical form. For example, abdominal is an adjective where
the canonical form is abdomen, and activation is a noun that is the nominal form
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Table 8.1. Transition probabilities for morphemes.
5 mg mg. given .

5 0.1 0.8 0.9 0.4 0.6
mg 0.3 0.1 0.1 0.9 0.4
mg. 0.3 0.1 0.1 0.9 0.2
given 0.7 0.6 0.6 0.2 0.7
. 0.6 0.4 0.4 0.8 0.1



of the verb activate. A few systems perform morphological analysis during tok-
enization. In that case, the lexicon only needs entries for roots, prefixes, and suffixes,
with additional entries for irregular forms. For example, the lexicon would contain
entries for the roots abdomen (with variant abdomin-) the adjective suffix -al, and
activat-, verb suffix -e, and noun suffix -ion.

Lexical look up is not straightforward because a word may be associated with more
than one part of speech. For example, stay may be a noun (as in her hospital
stay) or a verb (as in refused to stay). Without resolution, these ambiguities
could cause inaccuracies in parsing and interpretation, and must be addressed in subse-
quent stages of processing, using syntactic and semantic information. Alternatively, var-
ious methods for part of speech tagging may be used to resolve ambiguities by
considering the surrounding words. For example, when stay follows the or her it is
usually tagged as a noun, but after to it is usually tagged as a verb. A symbolic
approach to this problem is the use of transformation rules that change the part of
speech tag assigned to a word based on previous or following tags. The meaning of some
part of speech tags are provided in Table 8.2.

The following are the rules that might be applied to clinical text.

Change NN to VB if the previous tag is TO
Change NN to JJ if the following tag is NN
Change IN to TO if the following tag is VB

Examples of applying these rules are shown in Table 8.3.
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Table 8.2. Meanings of part of speech tags.
Tag Meaning

NN Singular noun

NNS Plural noun
NNP Proper noun singular
IN Preposition
VB Infinitive verb
VBD Past-tense verb
VBG Progressive verb form
VBN Past participle
VBZ Present-tense verb
JJ Adjective
DT Article
PP$ Possessive pronoun

Table 8.3. Application of transformation rules to part of speech tags.
Before rule application After rule application

total/NN hip/NN replacement/NN total/JJ hip/NN replacement/NN
a/DT total/NN of/IN four/NN units/NNS (no change)
refused/VBD to/TO stay/NN refused/VBD to/TO stay/VB
her/PP$ hospital/NN stay/NN (no change)
unable/JJ to/IN assess/VB unable/JJ to/TO assess/VB
allergy/NN to/IN penicillin/NN (no change)



Rules for part of speech tagging can be created by hand or constructed automatically
using transformation-based learning, based on a sample corpus where the correct parts
of speech have been manually annotated (Jurafsky and Martin 2000, pp. 307–312).
Statistical approaches to part of speech tagging are based on Markov models (as
described above for morphology). The transition matrix specifies the probability of one
part of speech following another (see Table 8.4):

The following sentence shows the correct assignment of part of speech
tags: Rheumatology/NN consult/NN continued/VBD to/TO follow/VB
patient/NN.

This assignment is challenging for a computer, because consult can be tagged
VB (Orthopedics asked to consult), continued can be tagged VBN 
(penicillin was continued), and to can be tagged IN. However, probabilities
can be calculated for these sequences using the matrix in Table 8.4 (these were estimated
from a large corpus of clinical text). By multiplying the transitions together, a proba-
bility for each sequence can be obtained (as described above for morphology), and is
shown in Table 8.5. Note that the correct assignment has the highest probability.

8.4.3 Syntax
Many NLP systems perform some type of syntactic analysis. A grammar specifies how
the words combine into well-formed structures, and consists of rules where categories
combine with other categories or structures to produce a well-formed structure with
underlying relations. Generally, words combine to form phrases consisting of a head
word and modifiers, and phrases form sentences or clauses. For example, in English
there are noun phrases (NP) that contain a noun and optionally left and right modifiers,
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Table 8.4. Transition probabilities for part of speech tags.
NN VB VBD VBN TO IN

NN 0.34 0.00 0.22 0.02 0.01 0.40
VB 0.28 0.01 0.02 0.27 0.04 0.39
VBD 0.12 0.01 0.01 0.62 0.05 0.19
VBN 0.21 0.00 0.00 0.03 0.11 0.65
TO 0.02 0.98 0.00 0.00 0.00 0.00
IN 0.85 0.00 0.02 0.05 0.00 0.08

Table 8.5. Probabilities of alternative part of speech tag sequences.
Part of speech tag sequence Probability

NN NN VBD TO VB NN 0.001149434
NN NN VBN TO VB NN 0.000187779
NN VB VBN TO VB NN 0.000014194
NN NN VBD IN VB NN 0.000005510
NN NN VBN IN VB NN 0.000001619
NN VB VBD TO VB NN 0.000000453
NN VB VBN IN VB NN 0.000000122
NN VB VBD IN VB NN 0.000000002



such as definite articles, adjectives, or prepositional phrases (i.e., the patient, lower
extremities, pain in lower extremities, chest pain), and verb phrases
(VP), such as had pain, will be discharged, and denies smoking.

Simple phrases can be represented using regular expressions (as shown above for tok-
enization). In this case, syntactic categories are used to match the text instead of char-
acters. A regular expression (using the tags defined in Table 8.2) for a simple noun
phrase (i.e., a noun phrase that has no modifiers on the right side) is:

DT? JJ* NN* (NN|NNS)

This structure specifies a simple noun phrase as consisting of an optional determiner
(i.e., a, the, some, no), followed by zero or more adjectives, followed by zero or
more singular nouns, and terminated by a singular or plural noun. For example, the
above regular expression would match the noun phrase no/AT usual/JJ conges-
tive/JJ heart/NN failure/NN symptoms/NNS but would not match heart/
NN the/AT unusual/JJ, because in the above regular expression the cannot occur
in the middle of a noun phrase.

Some systems perform partial parsing using regular expressions. These systems deter-
mine local phrases, such as simple noun phrases (i.e., noun phrases without right
adjuncts) and simple adjectival phrases, but do not determine relations among the
phrases. These systems tend to be robust because it is easier to recognize isolated
phrases than it is to recognize complete sentences, but typically they lose some infor-
mation. For example, in amputation below knee, the two noun phrases amputa-
tion and knee would be extracted, but the relation below might not be.

More complex structures can be represented by context-free grammars (Jurafsky and
Martin 2000, pp. 325–344). A complete noun phrase cannot be handled using a regular
expression because it contains nested structures, such as nested prepositional phrases or
nested relative clauses. A very simple grammar of English is shown in Figure 8.2.

Context-free rules use part of speech tags (see Table 8.2) and the operators found in
regular expressions, for optionality (?), repetition (*), and alternative (|). The differ-
ence is that each rule has a nonterminal symbol on the left side (S, NP, VP, PP), which
consists of a rule that specifies a sequence of grammar symbols (nonterminal, and ter-
minal) on the right side. Thus, the S (sentence) rule contains an NP followed by a VP.
Additionally, other rules may refer to these symbols or to the atomic parts of speech.
Thus, the NP rule contains PP, which in turn contains NP.

Applying the grammar rules to a given sentence is called parsing, and if the grammar
rules can be satisfied, the grammar yields a nested structure that can be represented
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S  → NP  VP .
NP → DT? JJ *      (NN|NNS) CONJN* PP* | NP and NP
VP →(VBZ |VBP) NP? PP* 
PP → IN NP 
CONJN →and (NN|NNS)

Figure 8.2. A simple syntactic context-free grammar of English. A sentence is represented by the
rule S, a noun phrase by the rule NP, a verb phrase by VP, and a prepositional phrase by PP.
Terminal symbols in the grammar, which correspond to syntactic parts of speech, are underlined
in the figure.



graphically as a parse tree. For example, the sentence the patient had pain in
lower extremities would be assigned the parse tree shown in Figure 8.3.

Alternatively, brackets can be used to represent the nesting of phrases instead of a
parse tree. Subscripts on the brackets specify the type of phrase or tag:

[S [NP [DT the] [NN patient]] [VP [VBD had]
[NP [NN pain] [PP [IN in] [NP [JJ lower] [NNS extremities]]]]]]

The following shows an example of a parse in the biomolecular domain for the sentence
Activation of Pax-3 blocks Myod phosphorylation:

[S [NP [NN Activation] [PP [IN of] [NP [NN Pax-3]]]]
[VP [VBZ blocks] [NP [NNP Myod] [NN phosphorylation]]]]

Grammar rules generally give rise to many possible structures for a parse tree (struc-
tural ambiguity). If a word has more than one part of speech, the choice of part of
speech for the word can result in different structures for the sentence. For example, when
swallowing occurs before a noun, it can be an adjective (JJ) that modifies the noun,
or a verb (VBG) that takes the noun as an object:

Swallowing/JJ evaluation/NN showed/VBD no/DT dysphagia/NN
Swallowing/VBG food/NN showed/VBD no/DT dysphagia/NN

Additionally, the sequence of alternative choices of rules in the grammar can yield
different groupings of phrases. For example, sentence 1a below corresponds to a parse
based on the grammar rules shown in Figure 8.2, where the VP rule contains a PP (e.g.,
denied in the ER) and the NP rule contains only a noun (e.g., pain). Sentence 1b
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The patient had pain in lower extremities

S 

NP 

DT NN 

VP

VBD NN

NP

PP 

IN 

NP

JJ NNS

Figure 8.3. A parse tree for the sentence the patient had pain in lower extremities according to the
context-free grammar shown in Figure 8.2. Notice that the terminal nodes in the tree correspond
to the syntactic categories of the words in the sentence.



corresponds to the same atomic sequence of syntactic categories but the parse is differ-
ent because the VP rule contains only a verb (e.g., denied) and the NP contains a noun
followed by a PP (e.g., pain in the abdomen). Prepositions and conjunctions are
also a frequent cause of ambiguity. In 2a, the NP consists of a conjunction of the head
nouns so that the left adjunct (e.g., pulmonary) is distributed across both nouns (i.e.,
this is equivalent to an interpretation pulmonary edema and pulmonary effu-
sion), whereas in 2b the left adjunct pulmonary is attached only to edema and is not
related to effusion. In 3a, the NP in the prepositional phrase PP contains a conjunc-
tion (i.e., this is equivalent to pain in hands and pain in feet) whereas in 3b
two NPs are also conjoined but the first NP consists of pain in hands and the
second consists of fever.

1a. Denied [pain] [in the ER]
1b. Denied [pain [in the abdomen]]

2a.Pulmonary [edema and effusion]
2b.[Pulmonary edema] and anemia

3a.Pain in [hands and feet]
3b.[Pain in hands] and fever

More complex forms of ambiguity do not exhibit differences in parts of speech or in
grouping, but require determining deeper syntactic relationships. For example, when a
verb ending in –ing is followed by of, the following noun can be either the subject or
object of the verb.

Feeling of lightheadedness improved.
Feeling of patient improved.

Statistical approaches provide one method of addressing ambiguity. The essential
idea is to exploit the fact that some choices in the grammar are more likely than
others. This can be represented using a probabilistic context-free grammar, which
associates a probability with each choice in a rule (Jurafsky and Martin 2000,
pp. 448–458). The grammar above can be annotated with probabilities for each
choice by placing a numerical superscript after each symbol. The number indicates
the probability of including the given category in the parse tree. For example, the
probability of having a determiner (DT) is 0.9, while not having one has a probabil-
ity of 0.1. The probability of a present tense verb (VBZ) is 0.4, while a past tense
verb (VBD) is 0.6.

S → NP VP.
NP → DT?.9 JJ*.8 (NN|.6 NNS) PP*.8

VP → (VBZ|.4 VBD) NP?.9 PP*.7

PP → IN NP

The probability of a given parse tree is the product of the probabilities of each
grammar rule used to make it. For example, there are two ways to parse X-ray shows
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patches in lung using this grammar (shown below). The first interpretation in
which shows is modified by lung has probability 3.48 × 10−8, while the second
interpretation in which patches is modified by lung has probability 5.97 × 10−8.

[S [NP NN 0.1 × 0.2 × 0.6 × 0.2] [VP VBZ [NP NN 0.1 × 0.2 × 0.6 × 0.2] [PP IN [NP NN 0.1
× 0.2 × 0.6 × 0.2]] 0.4 × 0.9 × 0.7]]

[S [NP NN 0.1 × 0.2 × 0.6 × 0.2] [VP VBZ [NP [PP IN [NP NN 0.1 × 0.2 × 0.6 × 0.2] NN 0.1
× 0.2 × 0.6 × 0.8] 0.4 × 0.9 × 0.3]]

8.4.4 Semantics
Semantic analysis involves steps analogous to those described above for syntax. First,
semantic interpretations must be assigned to individual words. Then, these are com-
bined into larger semantic structures (Jurafsky and Martin 2000, pp. 510–512).
Semantic information about words is generally maintained in the lexicon. A semantic
type is usually a broad class that includes many instances while a semantic sense distin-
guishes individual word meanings (Jurafsky and Martin 2000, pp. 592–601). For exam-
ple, aspirin, ibuprofen and Motrin all have the same semantic type
(medication), ibuprofen and Motrin have the same semantic sense (they are syn-
onymous), which is distinct from the sense of aspirin (a different drug).

A lexicon may be created manually by a linguist, or be derived from external knowl-
edge sources, such as the Unified Medical Language System (UMLS) (Lindberg et al.,
1993; see Chapter 7) or GenBank (Benson et al., 2003). While external sources can save
a substantial effect, the types and senses provided may not be appropriate for the text
being analyzed. Narrow categories may be too restrictive, and broad categories may
introduce ambiguities. Morphological knowledge can be helpful in determining seman-
tic types in the absence of lexical information. For example, in the clinical domain, suf-
fixes like – itis and -osis indicate diseases, while -otomy and ectomy indicate
procedures. However, such techniques cannot determine the specific sense of a word.

As with parts of speech, many words have more than one semantic type, and the NLP
system must determine which of these is intended in the given context. For example,
growth can be either an abnormal physiologic process (e.g., for a tumor) or a normal
one (e.g., for a child). The word left can indicate laterality (pain in left leg)
or an action (patient left hospital). This problem is much harder than syn-
tactic disambiguation because there is no well-established notion of word sense, differ-
ent lexicons recognize different distinctions, and the space of word senses is
substantially larger than that of syntactic categories. Words may be ambiguous within
a particular domain, across domains, or with a general English word. Abbreviations are
notoriously ambiguous. For example, the abbreviation MS may denote multiple
sclerosis or mitral stenosis or it may denote the general English usage (i.e.,
as in Ms White). The ambiguity problem is particularly troublesome in the biomolec-
ular domain because gene symbols in many model organism databases consist of three
letters, and are ambiguous with other English words, and also with different gene sym-
bols of different model organisms. For example, nervous and to are English words
that are also the names of genes. When writing about a specific organism, authors use
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alias names, which may correspond to different genes. For example, in articles associ-
ated with the mouse, according to the Mouse Genome Database (MGD) (Blake et al.,
2003), authors may use the term fbp1 to denote three different genes.

Semantic disambiguation of lexemes can be performed using the same methods
described above for syntax. Rules can assign semantic types using contextual knowledge
of other nearby words and their types. For example, discharge from hospital
and discharge from eye can be disambiguated depending on whether the noun
following discharge is an institution or a body location. As illustrated in Table 8.6, a
rule may change the hospitalization action sense (e.g., HACT) that denotes dis-
charge to the body substance sense discharge (e.g., BSUB) if the following seman-
tic category is a body part (e.g., PART).

Statistical approaches, such as Markov models, can be used to determine the most
likely assignment of semantic types (Jurafsky and Martin 2000, pp. 636–645). As with
methods for morphology and syntax, large amounts of training data are required to
provide sufficient instances of the different senses for each ambiguous word. This is
extremely labor intensive because a linguist must manually annotate the corpus,
although in certain cases automated annotation is possible.

Larger semantic structures consisting of semantic relations can be identified using
regular expressions, which specify patterns of semantic types. The expressions may be
semantic and look only at the semantic categories of the words in the sentence. This
method may be applied in the biomolecular domain to identify interactions between
genes or proteins. For example, the regular expression

[GENE|PROT] MFUN [GENE|PROT]

will match sentences consisting of very simple gene or protein interactions (e.g., Pax-
3/GENE activated/MFUN Myod/GENE). In this case, the elements of the pattern
consist of semantic classes: GENE (gene), molecular function (MFUN), and PROT
(protein). This pattern is very restrictive because any deviation from the pattern will
result in a failed match. Regular expressions that skip over parts of the sentence when
trying to find a match are much more robust, and can be used to detect relevant patterns
for a broader variety of text, thus incurring some loss of specificity and precision while
achieving increased sensitivity. For example, the regular expression

[GENE|PROT] .* MFUN .* [GENE|PROT]

can be satisfied by skipping over intermediate tags in the text. The dot (.) matches
any tag, and the asterisk (*) allows for an arbitrary number of occurrences. For
example, using the above expression, the interaction, Pax-3 activated Myod would
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Table 8.6. Application of transformation rules to semantic tags. HACT denotes an action (e.g.,
admission, discharge), PART denotes a body part (e.g., eye, abdomen), and BSUB denotes a body
substance (e.g., sputum).
Before rule application After rule application

Discharge/HACT from hospital/HORG (no change)
Discharge/HACT from eye/PART Discharge/BSUB from eye/PART



be obtained for the sentence Pax-3/GENE, only when activated/MFUN by
Myod/GENE, inhibited/MFUN phosphorylation/MFUN. In this example, the
match does not capture the information correctly because the relation only when was
skipped. The correct interpretation of the individual interactions in this sentence should
be Myod activated Pax-3, and Pax-3 inhibited phosphorylation. Note
that the simple regular expression shown above does not provide for the latter pattern
(i.e., GENE-MFUN-MFUN), for the connective relation, or for the passive structure.

An alternate method of processing sentences with regular expressions, which is cur-
rently the most widely employed in general English because it is very robust, uses cas-
cading finite state automata (FSA) (Hobbs et al., 1996). In this technique, a series of
different FSAs are employed so that each performs a special tagging function. The
tagged output of one FSA becomes the input to a subsequent FSA. For example, one
FSA may perform tokenization and lexical look up, another may perform partial pars-
ing to identify syntactic phrases, such as noun phrases and verb phrases, and the next
may determine semantic relations. In that case, the patterns for the semantic relations
will be based on a combination of syntactic phrases and their corresponding semantic
classes, as shown below. The pattern for biomolecular interactions might then be repre-
sented using a combination of tags:

NP[GENE|PROT] .* VPMFUN .* NP[GENE|PROT]

The advantage of cascading FSA systems is that they are relatively easy to adapt to
different information extraction tasks because the FSAs that are domain independent
(tokenizing and phrasal FSAs) remain the same while the domain-specific components
(semantic patterns) change with the domain and or the extraction task. These types of
systems have been used to extract highly specific information, such as detection of ter-
rorist attacks, identification of joint mergers, and changes in corporation management
(Sundheim 1991, 1992, 1994, 1996; Chinchor 1998). However, they may not be accurate
enough for clinical applications.

More complex semantic structures can be recognized using a semantic grammar that
is a context-free grammar based on semantic categories. As shown in Figure 8.4, a sim-
ple grammar for clinical text might define a clinical sentence as a Finding, which
consists of optional degree information and optional change information followed by a
symptom.
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S →  Finding . 
Finding → DegreePhrase?  ChangePhrase? SYMP
ChangePhrase → NEG ? CHNG
DegreePhrase → DEGR | NEG

Figure 8.4. A simple semantic context-free grammar for the English clinical domain. A sentence
S consists of a FINDING, which consists of an optional DEGREEPHRASE, an optional
CHANGEPHRASE and a Symptom. The DEGREEPHRASE consists of a degree type word or a nega-
tion type word; the CHANGEPHRASE consists of an optional negation type word followed by a
change type word. The terminal symbols in the grammar correspond to semantic parts of speech
and are underlined.



This is particularly effective for domains where the text is very compact, and where
typical sentences consist primarily of noun phrases because the subject (i.e., patient)
and verb have been omitted. For example, increased/CHNG tenderness/SYMP is
a typical sentence in the clinical domain where both the subject and verb are omitted.
For the simple grammar illustrated in Figure 8.4, the parsed sentence would be a FIND-
ING that consists of a CHANGEPHRASE (e.g., increased) followed by a SYMP-
TOM (e.g., tenderness). Note that ambiguity is possible in this grammar because a
sentence such as No/NEG increased/CHNG tenderness/SYMP could be parsed
in two ways. In the incorrect parse shown in Figure 8.5, the DEGREEPHRASE (e.g.,
no) and the CHANGEPHRASE (e.g., increased) both modify tenderness,
whereas in the correct parse (see Figure 8.6) only the CHANGEPHRASE (e.g., no
increased) modifies tenderness, and within the CHANGEPHRASE, no modi-
fies CHANGE (e.g., increased); in this case only the change information is negated
but not the symptom.

NLP systems can handle more complex language structures by integrating syntactic
and semantic structures into the grammar (Friedman et al., 1994). In that case, the
grammar would be similar to that shown in Figure 8.4, but the rules would also include
syntactic structures. Additionally, the grammar rule may also specify the representa-
tional output form, which represents the underlying interpretation of the relations. For
example, in Figure 8.4, the rule for FINDING would specify an output form denoting
that SYMP is the primary finding and the other elements are the modifiers.

More comprehensive syntactic structures can be recognized using a broad-coverage
context-free grammar of English, which is subsequently combined with a semantic
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No     increased  tenderness  .

  S 

     FINDING 

DEGREE- 
PHRASE 

SYMP

  . 

NEG 

CHANGE- 
PHRASE

CHNG 

Figure 8.5. A parse tree for the sentence
no increased tenderness according to
the grammar shown in Figure 8.4.
In this interpretation, which is incor-
rect, no and increased each modify
tenderness.



component (Sager et al., 1987). After the syntactic structures are recognized, they are
followed by syntactic rules that regularize the structures. For example, passive sentences,
such as the chest X-ray was interpreted by a radiologist, would be
transformed to the active form (e.g., a radiologist interpreted the chest
X-ray). Another set of semantic rules would then operate on the regularized syntactic
structures to interpret their semantic relations.

8.4.5 Pragmatics
Syntactic and semantic components of NLP systems evaluate each sentence in isolation.
Complete analysis of a text (e.g., a clinical note or journal article) requires analysis of
relationships between sentences and larger units of discourse, e.g., paragraphs and
sections (Jurafsky and Martin, 2000, pp. 669–696). One of the most important
mechanisms in language for creating linkages between sentences is the use of referential
expressions, which include pronouns (he, she, her, himself), proper nouns
(Dr. Smith, Atlantic Hospital), and noun phrases modified by the definite
article or a demonstrative (the left breast, this medication, that day,
these findings).

Each referential expression has a unique referent that must be identified in order to
make sense of the text. The following text contains several examples. The proper noun
Dr. Smith refers to the physician treating the patient. In clinical text, proper nouns
can also refer to patients, family members, and departments and patient care institu-
tions. In scientific discourse, proper nouns typically refer to scientists and research
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No   increased   tenderness   .

  S 

     FINDING 

SYMP

  . 

NEG 

CHANGE-
PHRASE

CHNG 

Figure 8.6. Another parse tree for the
sentence no increased tenderness
according to the grammar shown in
Figure 8.4. This shows the correct
interpretation because no modifies
increased, which modifies tenderness.



institutions. In the first two sentences, his and he refer to the patient, while he refers
to the physician in the fourth sentence. There are several definite noun phrases (e.g., the
epithelium, the trachea, and the lumen), which have to be resolved. In this
case, the referents are parts of the patient’s body.
His laboratory values on admission were notable for a chest

X-ray showing a right upper lobe pneumonia. He underwent upper
endoscopy with dilatation. It was noted that his respiratory
function became compromised each time the balloon was dilated.
Subsequently, Dr. Smith saw him in consultation. He performed
a bronchoscopy and verified that there was an area of tumor.
It had not invaded the epithelium or the trachea. But it did
partially occlude the lumen.

Automatic resolution of referential expressions can draw on both syntactic and
semantic information in the text. Syntactic information for resolving referential expres-
sions includes:

● Agreement of syntactic features between the referential phrase and potential referents
● Recency of potential referents (nearness to referential phrase)
● Syntactic position of potential referents (e.g., subject, direct object, object of preposition)
● The pattern of transitions of topics across the sentences

Syntactic features that aid in resolution include such distinctions as singular/plural,
animate/inanimate, and subjective/objective/possessive. For example, pronouns in the
above text carry the following features: he (singular, animate, subjective), his (singu-
lar, animate, possessive), and it (singular, inanimate, subjective/objective). Animate
pronouns (he, she, her) almost always refer humans. The inanimate pronoun it
usually refers to things (e.g., it had not invaded), but sometimes does not refer
to anything when it occurs in “cleft” constructions: it was noted, it was
decided to and it seemed likely that.

Referential expressions are usually very close to their referents in the text. In it had
not invaded, the pronoun refers to the immediately preceding noun phrase area
of tumor. The pronoun in it did partially occlude has the same referent,
but in this case there are two intervening nouns: epithelium or trachea. Thus, a
rule that assigns pronouns to the most recent noun would work for the first case, but not
for the second.

The syntactic position of a potential referent is an important factor. For example, a
referent in subject position is a more likely candidate than the direct object, which in
turn is more likely than an object of a preposition. In the fifth sentence of the text
above, the pronoun he could refer to the patient or to the physician. The proper
noun Dr. Smith is the more likely candidate, because it is the subject of the preceding
sentence.

Centering theory accounts for reference by noting how the center (focus of attention)
of each sentence changes across the discourse (Grosz et al., 1995). In the above text, the
patient is the center of the first three sentences, the physician is the center of the fourth
and fifth sentence, and the area of tumor is the center of the last sentence. In this
approach, resolution rules attempt to minimize the number of changes in centers. Thus,
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in the above text it is preferable to resolve he in sentence five as the physician rather
than the patient because it results in smoother transition of centers.

Semantic information for resolving referential expressions involves consideration of
the semantic type of the expression, and how it relates to potential referents (Hahn
et al., 1999).

● Semantic type is the same as the potential referent.
● Semantic type is a subtype of the potential referent.
● Semantic type has a close semantic relationship with the potential referent.

For example, in the following text, the definite noun phrase the density must be
resolved. If the phrase a density occurred previously, this would be the most likely
referent. Instead, the phrase a spiculated nodule is selected since nodule and
density have closely related semantic types. In the previous text, the noun phrase the
balloon is also definite and requires resolution. Since there is no previous noun of
similar type, it is necessary to establish a semantic relationship with a preceding noun.
The word dilation is the best candidate because a balloon is a medical device used
by that procedure.
The patient’s gynecologist palpated a mass in the left breast

on September 10, 1995. The patient had a mammogram, which showed
a spiculated nodule at the two to three o’clock position in the
left breast, which was not present in 1994. There were also
microcalcifications medial and inferior to the density.

Temporal expressions are another important linguistic mechanisms for connecting the
events in a discourse (Sager et al., 1987, pp. 175–194). For example, in the above text the
mammogram occurs after the palpation event, and we are told that the nodule was not
present before the palpation. There are many different kinds of temporal expressions.
The dates in the above example locate an event at a point or interval in time. Other exam-
ples include at 7:30am, on Tuesday, August 1, 2003, in Fall 1998.
Additional expressions can be used to position an event relative to a position in time,
e.g., yesterday, this morning, last summer, and two years ago, a
few days before admission, several weeks later and since age 12.

In the absence of temporal expressions, time in a narrative tends to flow forward. This
rule enables one to determine that the mammogram occurred at or after the palpation
in the above text. Temporal conjunctions (e.g., before, after, while, and when)
are used to directly relate two events in time. Temporal modifiers are used to specify the
duration of an event (e.g., 4 hours, all week, half a year), and frequency
(e.g., twice, every hour, and 1 pack per day).

8.5 Challenges of Clinical Language

NLP is challenging for general language, but there are issues that are particularly ger-
mane in the clinical domain, which are discussed below.

Good performance: If the output of an NLP system is to be used to help manage and
improve the quality of clinical care and to facilitate research, it must have high enough
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sensitivity, accuracy, and specificity for the intended clinical applications. Different
applications require varying levels of performance; however, generally, the performance
should not be significantly worse than that of medical experts or the model organism
database curators. This requirement means that before an application involving NLP
can be used for a practical application, it would have to be evaluated so that the
adequacy of performance can be measured. Additionally, since there is typically a trade-
off between sensitivity and specificity, a system should be flexible to maximize the
appropriate measure that is needed by the application.

Recovery of implicit information: Many health care reports are very compact and
often omit information that can be assumed by other experts. An automated system
may need to capture the implicit information in order to perform a particular task,
necessitating that either the NLP system itself or the application using the output of the
NLP system contains enough medical knowledge to make the appropriate inferences
that are necessary in order to capture implicit information. For example, in one evalua-
tion study we performed, medical experts when reading the sentence in an obstetrical
report she had been ruptured times 25 1/2 hours inferred that rupture
meant rupture of membranes because they related their domain knowledge to the
context.

Intraoperability: In order to be functional in a clinical environment, an NLP system
has to be seamlessly integrated into a clinical information system, and generate output
that is in a form usable by other components of the system. This generally means that:

● The system will have to handle many different interchange formats (i.e., Extensible
Markup Language (XML), HL7).

● The system will have to handle different formats that are associated with the different
types of reports. Some reports often contain tables with different types of configura-
tions. For example, Figure 8.7 shows portions of a cardiac catheterization report.
Some of the sections contain text (i.e., procedures performed, comments, general con-
clusions), some consist of structured fields (i.e., height, weight) that are separated
from each other by white space, and some consist of tabular data (i.e., pressure). The
structured fields are easy for a human to interpret but are problematic for a general
NLP program, because white space and indentation rather than linguistic structures
determine the format of the table.

● The NLP system has to generate output that can be stored in an existing clinical
repository. However, the output often has complex and nested relations, and it may be
complicated or impossible to map the output to the database schema without sub-
stantial loss of information. Depending on the database schema loss of information
may be unavoidable. An alternative approach would involve designing a complex
database that can store nested data and data with a wide range of modifiers to accom-
pany the NLP system. Such a database has been in use at Columbia Presbyterian
Medical Center (CPMC) since the early 1990s (Friedman et al., 1990; Johnson et al.,
1991), and has been critical for the effective use of NLP technology at CPMC.

● The underlying clinical information system may require a controlled vocabulary for
data that are used for subsequent automated applications. This necessitates that
the output of the NLP system be mapped to an appropriate controlled vocabulary;
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sometimes the vocabulary is homegrown and sometimes it is a standard vocabulary,
such as the UMLS (Lindberg et al., 1993), Systematized Nomenclature of Medicine
(SNOMED) (Côté, et al., 1993), or International Classification of Diseases (ICD-9),
ninth edition (World Health Organization, 1990). Since natural language is very
expressive and varied, most likely, there will be important terms that will have no cor-
responding controlled vocabulary concept, and a method for handling this type of
situation will have to be designed. Additionally, the NLP system has to be capable
of mapping to different controlled vocabularies, depending on the application.

Interoperability: NLP systems are time consuming and difficult to develop, and in
order to be operational for multiple institutions and diverse applications, they would
minimally have to generate output containing a controlled vocabulary. It would be ideal
if the controlled vocabulary were one of the “standard” vocabularies. Otherwise, explicit
definitions of the controlled vocabulary terms would be needed for each institution or
application. In addition to a controlled vocabulary, a standard representational model
for medical language is needed in order to represent important relations, such as nega-
tion, certainty, severity, change, and temporal information that are associated with the
clinical terms. Since there is no standardized language model currently, an understand-
ing of the model generated by each NLP is necessary in order for automated applica-
tions to use NLP output appropriately. An effort to merge different representational
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Procedures performed: Right Heart Catheterization 
Pericardiocentesis 

Complications: None
Medications given during procedure: None 
Hemodynamic data
Height (cm.): 180                   Weight (kg): 74.0 
Body surface area (sq. m 93): 1.    Hemoglobin (gm/dl): 
Heart rate:  102 

Pressure (mmHg) 
Sys     Dias   Mean   Sat 

RA         14     13     8 
RV         36     9      12 
PA         44     23     33     62% 
PCW     25     30     21 

Conclusions: Postoperative cardiac transplant 
Abnormal hemodynamics 
Pericardial effusion 
Successful pericardiocentesis 
General comments:
1600cc of serosanguinous fluid were drained from the pericardial sac with
improvement in hemodynamics. 

Figure 8.7. A portion of an actual cardiac catheterization report.



models of medical language to create a widely used model for medical language was
undertaken by a large number of researchers called The Canon group (Evans et al.,
1994). That effort resulted in a common model for radiological reports of the chest
(Friedman et al., 1995), but the model was not actually utilized by the different
researchers.

Training sets for development: Development of NLP systems is based on analysis
(manual or automated) of samples of the text to be processed. In the clinical domain,
this means that large collections of online patient records in textual form must be avail-
able for training the NLP systems. This is very problematic because many NLP
researchers do not have direct ties to clinical information systems. Access to online
patient records is confidential, requires the approval of institutional review boards (IRB),
and generally necessitates removal of identifying information. Removal of identifying
information from structured fields is straightforward; however, identifying information
occurring in the text itself, such as names, addresses, phone numbers, unique character-
istics (i.e., Mayor of New York) make this task extremely difficult. Ideally, for transfer-
ability among different health care institutions, data from a large number of different
institutions is desirable so that the NLP system is not trained for a particular institution,
but because of patient confidentiality, the data is difficult, if not impossible, to obtain.
The problem is slightly different when processing the literature. For example, the
abstracts can be obtained through the Medline database and are available to the public.
Additionally, Pubmed Central (Wheeler et al., 2002) and other electronic journals pro-
vide full text articles.

Evaluation: Evaluation of an NLP system is critical but difficult in the health care
domain because of the difficulty of obtaining a gold standard and because it is difficult
to share the data across institutions. A fuller discussion on evaluation of NLP systems
can be found in (Friedman et al., 1997; Hripcsak and Wilcox, 2002). Generally, there
is no gold standard available that can be used to evaluate the performance of an NLP
system. Therefore, for each evaluation, recruitment of subjects who are medical experts
is generally required to obtain a gold standard for a test set. There are several ways an
evaluation can be carried out. One way involves having experts determine if all the infor-
mation and relations are correctly extracted and encoded based on the test set of text
reports. Obtaining a gold standard for this type of evaluation is very time consuming and
costly, since medical experts would have to structure and encode the information in the
reports manually. For example, in a study that was performed associated with SNOMED
encoding, it took a physician who was experienced in coding 60 hours to encode all the
clinical information in one short emergency room report (Lussier et al., 2001).

Another way to carry out an evaluation would be to evaluate performance of a clini-
cal application that uses the output generated by an NLP system. This type of evalua-
tion would not only evaluate the information and relations captured by the system, but
would also evaluate the accessibility and practical utility of the structured information
for use with other clinical applications. An advantage of this type of evaluation is that
it is generally easier for experts to provide a gold standard for this type of evaluation
because they would not have to encode all the information in the report, but would only
be required to detect particular clinical conditions in the reports. This is a much less
time-consuming task than encoding all the data, and generally does not necessitate
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special training because medical experts routinely read patient reports and interpret the
information in them. To perform this type of evaluation, knowledge engineering skills
as well as clinical expertise would be required in order to formulate the queries that will
be needed to retrieve the appropriate information generated by the NLP system, and to
make the appropriate inferences. Formulation of the query can be relatively straightfor-
ward or complex depending on the particular task. For example, to determine whether
a patient experienced a change in mental status based on information in the discharge
summary, many different terms associated with that concept must be searched for,
such as hallucinating, confusion, Alzheimer’s disease, decreased
mental status. In addition, over 24 different modifier concepts, such as rule
out, at risk for, family history, negative, previous admission
for, and work up may modify the relevant terms, signifying that the change in men-
tal status should be disregarded because the modifiers denote that the patient did not
currently experience a change in mental status, but may have in the past, a family
member may have experienced it, or a work up was being performed.

When evaluating a particular application using NLP output, the performance meas-
urements would be associated with the particular application, and performance would
constitute the performance of both the NLP system and the automated query. For exam-
ple, if the NLP system correctly extracted the finding confusion from the report but
the query did not include that condition, there could be a loss of sensitivity; similarly, if
the query did not filter out modifier conditions, such as negative, there could be a loss
of precision. When analyzing results for this type of evaluation study, it would be impor-
tant to determine whether errors occurred within the NLP system or by the query that
retrieved the reports. Additionally, it would be important to ascertain how to fix the error
and how much effort would be involved. In the above examples, simple corrections would
be involved: one correction would involve adding a new term, confusion, to the query;
the second would involve adding a modifier term to the filter. Corrections to the NLP
system could involve adding entries to a lexicon, which is also very straightforward.
However, a more complex change would involve revising the grammar rules.

In order to obtain a better understanding of the underlying methods used by differ-
ent NLP systems, an evaluation effort that is carried out by a third party, in which NLP
systems can participate, is needed to allow for comparison of performance across the
different systems. In the general English domain, this was accomplished for a number
of years by the Message Understanding Conferences (Sundheim, 1991, 1992, 1994,
1996; Chinchor, 1998), which were supported with funding from DARPA. These inter-
system evaluations not only allowed for comparison of systems but also substantially
fostered the growth, improvement, and understanding of NLP systems in the general
English domain. Presently, similar efforts are occurring for NLP systems in the biolog-
ical community, as  evidenced by the KDD Challenge, the TREC Genomics Track, the
BioCreAtIvE Assessment of Information Extraction systems in Biology (e.g., the folow-
ing web sites are associated with NLP evaluation efforts within the bioinformatics
community—http://www.biostat.wisc. edu/~craven/kddcup/, http://ir.ohsu.edu/genomics/,
and http://www.pdg.cnb.uam.es/ BioLINK/BioCreative. eval.html).

Determining types of information to capture: Determining which information an NLP
system should capture is an important decision. Some NLP systems may process partial
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information in the report, such as admission diagnoses or chief complaints, but not
the complete report. Other NLP systems may be highly specialized and may also include
expert medical knowledge (i.e., knowledge to determine whether a patient has community-
acquired pneumonia).

Granularity of the information: NLP systems may capture the clinical information at
many different levels of granularity. One level of coarse granularity consists of classifi-
cation of reports. For example, several systems (Aronow et al., 1999) classified reports
as positive or negative for specific clinical conditions, such as breast cancer. Another
level of granularity, which is useful for information retrieval and indexing, captures rel-
evant terms by mapping the information to a controlled vocabulary, such as the UMLS
(Aronson et al., 2001; Nadkarni et al., 2001), but modifier relations are not captured.
A more specific level of granularity also captures positive and negative modification
(Mutalik et al., 2001; Chapman et al., 2001), but not other types of modification (e.g.,
severity, time of event, duration, and frequency). An even more specific level of granu-
larity captures all modifiers associated with the term, facilitating reliable retrieval.

Expressiveness versus ease of access: Natural language is very expressive. There are
often several ways to express a particular medical concept and also numerous ways
to express modifiers of the concept. For example, severity information may be
expressed in more than 200 different expressions, with terms such as faint, mild,
borderline, 1+, 3rd degree, severe, extensive, and mild to mod-
erate. These modifiers make it more complex to retrieve reports based on NLP-
structured output since such a wide variety has to be accounted for. In addition, nesting
of information also adds complexity. For example, a change type of modifier, such
as improvement (as in no improvement in pneumonia), would be represented
using nesting: the change modifier improvement would modify pneumonia and the
negation modifier, no, would modify improvement. In this situation, a query that
detects changes concerned with pneumonia would have to look for primary findings
associated with pneumonia, filter out cases not associated with a current episode, look
for a change modifier of the finding, and, if there is one, make sure there is no negation
modifier on the change modifier. Another form of representation would facilitate
retrieval by flattening the nesting. In this case, some information may be lost but ideally
only the information that is not critical. For example, slightly improved may not
be clinically different from improved depending on the application. Since this type of
information is fuzzy and imprecise, the loss of information may not be significant.
However, the loss of a modifier no would be significant, and those cases should be
handled specially.

Heterogeneous formats: There is no standardized structure for clinical reports, or for
the format of the text within the report. Frequently, there is no period (i.e., “.”) to
demarcate the end of a sentence, but a new line or a tabular format is used instead. This
is easy for humans to manually interpret but difficult for computers. In addition, the
sections and subsections of the reports are not standardized. For example, in CPMC,
there are many different section headers for reporting diagnostic findings (e.g.,
Diagnosis, Diagnosis on admission, Final Diagnosis, Preoperative Diagnosis, and
Medical Diagnosis). In addition, section headers are frequently omitted or several
sections are merged into one. For example, past clinical history and family history may
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be reported in the history of present illness section. In addition, there is a lack of uni-
formity for specifying subsections. For example, surgical pathology reports often refer
to findings for different specimens, which are mentioned throughout the report, but are
not uniformly identified (e.g., the same specimen may be called specimen A, slide
A, or just A within the same report).

Lack of a standardized set of domains: Knowledge of the domain being processed is
important for NLP systems since a domain provides context that is often needed by the
NLP system. For example, knowledge of the domain would facilitate recovery of
implicit information (e.g., mass in a mammogram denotes mass in breast), or to
resolve an ambiguous word or abbreviation (e.g., pvc in a chest X-ray denotes pul-
monary vascular congestion whereas in an electrocardiogram it denotes pre-
mature ventricular complexes). Currently, there are no standard domains for
naming different types of clinical documents. For example, at CPMC, there is a domain
called cardiology report, which can correspond to an echocardiogram, catheter-
ization diagnostic report, electrocardiography report, or stress test. Additionally,
although individual radiology reports are coded, the different areas within radiology
(e.g., abdomen, musculoskeletal system, etc.) have not been classified.

Large number of different clinical domains: There are a large number of different clin-
ical domains, and a lexicon has to be developed for each domain. Each domain may be
associated with its own lexicon but maintaining separate lexicons would be inefficient
and error prone, since there is a significant amount of overlap among the terms.
However, if one lexicon is maintained for all the domains, ambiguity increases because
more terms become associated with multiple senses. For example, the term discharge
may refer to discharge from institution, discharge from eye, or
electrical discharge from lead (seen in a few electrocardiogram reports).

Interpreting clinical information: The interpretations of the findings may vary accord-
ing to the type of report. For example, when retrieving information from the
Diagnosis Section of a discharge summary, the interpretation will generally be
more straightforward than when extracting information from radiological reports.
Radiological reports generally do not contain definitive diagnoses, but contain a con-
tinuum of findings that range from patterns of light (e.g., patchy opacity), to
descriptive findings (e.g., focal infiltrate) to interpretations and diagnoses (e.g.,
pneumonia). In some types of clinical reports, the descriptive findings may be
expressed without further interpretation (e.g., a finding pneumonia may not be pres-
ent in a radiological report; instead, findings consistent with pneumonia, such as
consolidation or infiltrate may occur), or the interpretation may be included
along with the descriptive findings. Therefore, in order to use an NLP system to detect
pneumonia based on chest X-ray findings, the NLP system or application using the sys-
tem would have to contain medical knowledge. The knowledge needed to detect a par-
ticular condition may be quite complex. In order to develop such a component, machine
learning techniques could be used that involve collecting training instances, which
would then be used to develop rules automatically (Wilcox and Hripcsak, 1999) or to
train a Bayesian network (Christensen et al., 2002), but this may be costly since per-
formance is impacted by sample size (McKnight et al., 2002), and, for many conditions,
a large number of instances would have to be obtained for satisfactory performance. An
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alternative would involve manually writing the rules by observing the target terms that
the NLP system can generate along with sample output. For that situation, the rules will
generally consist of combinations of Boolean operators (e.g., and, or, and not) and
findings. For example, a rule, which detects a comorbidity of neoplastic disease based
on information in a discharge summary, could consist of a Boolean combination of
over 200 terms (Chuang et al., 2002).

Compactness of text: Generally, clinical reports are very compact, contain abbrevia-
tions, and often omit punctuation marks. Some abbreviations will be well known but
others may be defined uniquely. An example of a typical resident sign-out note, which
is full of abbreviations and missing punctuation, is shown in Figure 8.8. Lack of punc-
tuation means that sentence boundaries are poorly delineated, thereby making it more
difficult for NLP systems because they generally depend on recognition of well-defined
sentences. Abbreviations cause problems because they are highly ambiguous and not
well defined.

Interpretation depends on context: Contextual information must be included in the
findings since it often affects the interpretation. The section of the report and the type
of report is important for the interpretation. For example, pneumonia in the Clinical
Information Section of a chest X-ray report may mean rule out pneumonia or
patient has pneumonia, whereas the occurrence of pneumonia in the Diagnosis
Section is not ambiguous. Similarly, history of asthma in the Family History
Section does not mean that the patient has asthma.

Rare events: Natural language systems require a sufficient number of training exam-
ples, which are needed to refine or test the system. Certain occurrences of interest, such
as medical errors and adverse events, are not always reported frequently. Thus, it may
be difficult to find a large number of reports necessary for training and testing an NLP
system for certain applications. For those cases, terminological knowledge sources may
be helpful for providing lexical knowledge related to rare terms that may occur in text
associated with the events of interest.

Occurrence of typographic and spelling errors: Clinical reports occasionally contain
typographic errors, which may cause the system to lose information or to misinterpret
information. Automated correction of spelling errors is difficult and could create addi-
tional errors. For example, a typographic error hyprtension will cause a loss of clin-
ical information; it is not trivial to correct this error automatically without additional
knowledge because it may refer to hypertension or hypotension. A particularly
serious error could involve substitution of a similar sounding medical term. For
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Admit 10/23
71 yo woman h/o DM, HTN, Dilated CM/CHF, Afib s/p embolic event,
chronic diarrhea, admitted with SOB.  CXR pulm edema.  Rx’d Lasix.
All:  none
Meds Lasix 40mg IVP bid, ASA, Coumadin 5, Prinivil 10, glucophage
850 bid, glipizide 10 bid, immodium prn
Hospitalist = Smith  PMD = Jones  Full Code, Cx >101   

Figure 8.8. An example of a resident sign-out note.



example, the drug Evista may be misspelled E-Vista, which is a different drug. This
type of error is troublesome not only for automated systems but also for medical experts
when reading the information manually.

Limited availability of electronic records: Not all clinical documents are in electronic
form. At many hospitals daily clinical notes (such as nursing notes and progress notes)
are recorded in the paper chart but are not available online; however, the information
they contain is critical for patient care. NLP systems must have the documents available
electronically in textual form in order to process them. A scanner could be used to
obtain the documents in electronic form as image files, but then optical character recog-
nition (OCR) technology would have to be used to obtain textual versions of the docu-
ments. However, OCR technology is generally not accurate enough for this purpose,
especially since human experts often find the documents difficult to read.

8.6 Challenges for Biological Language Processing

Dynamic nature of domain: The biomolecular domain is very dynamic, continually cre-
ating new names for biomolecular entities and withdrawing older names. For example,
for the week ending July 20, 2003, the Mouse Genome Informatics Web site (Blake
et al., 2003) reported 104 name changes, representing changes related only to the mouse
organism. If the other organisms being actively sequenced were also considered, the
number of name changes during that week would be much larger.

Ambiguous nature of biomolecular names: Short symbols consisting of two to three
letters are frequently used that correspond to names of biomolecular entities. Since the
number of different combinations consisting of only a few letters is relatively small, it is
highly likely that this would lead to names that correspond to different meanings. For
example, to, which is a very frequent English word, corresponds to two different
Drosophila genes and to the mouse gene tryptophan 2,3-dioxygenase. Another
situation that contributes to the amount of ambiguity in gene names is that the differ-
ent model organism groups name genes and other entities independently of each other,
leading to names which are the same but which represent different entities. The
ambiguity problem is actually worse if the entire biomedical domain is considered. For
example, cad represents over 11 different biomolecular entities in Drosophila and the
mouse but it also represents the clinical concept coronary artery disease. Another
contributing factor to the ambiguity problem is due to the different naming conventions
for the organisms. These conventions were not developed for NLP purposes but for con-
sistency within the individual databases. For example, Flybase states that “Gene names
must be concise. They should allude to the gene’s function, mutant phenotype or other
relevant characteristic. The name must be unique and not have been used previously for
a Drosophila gene.” This rule is fairly loose and leads to ambiguities.

Large number of biomolecular entities: The number of entities in this domain is very
large. For example, there are about 70,000 genes when considering only humans, fly,
mouse, and worm, and the number of corresponding proteins is over 100,000.
Additionally, there are over 1 million species as well as a large number of cell lines and
small molecules. Having such a large number of names means the NLP system has to
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keep a very large knowledge base of names or be capable of dynamically recognizing the
type by considering the context. When entities are dynamically recognized without use
of a knowledge source, it would be very difficult to identify them within an established
nomenclature system.

Variant names: Names are created within the model organism database communities,
but they are not always exactly the same as the names used by authors when writing
articles. There are many ways authors may vary the names (particularly long names),
which leads to difficulties in name recognition. This is also true in the medical domain,
but the problem is exacerbated in the biomolecular domain because of the frequent
use of punctuation, and other special types of symbols. Some of the more common
types of variations are due to punctuation and use of blanks (bmp-4, bmp 4, bmp4),
numerical variations (syt4, syt IV), variations containing Greek letters (iga, ig
alpha), and word order differences (phosphatidylinositol 3-kinase, cat-
alytic, alpha polypeptide, catalytic alpha polypeptide phos-
phatidylinositol 3-kinase).

Nesting of names: The names of many biomolecular entities are long and contain
substrings that are also names. For example, caspase recruitment domain 4
and caspase both correspond to gene names; if a variant form of caspase
recruitment domain 4 occurs in an article and the entire name is not recognized
by the NLP system, the substring caspase would be recognized in error.

Lack of a standard nomenclature: The different model organism communities have
different nomenclatures, each of which are standard for a particular organism. Each of
the communities maintains a database that names the entities, provide unique identi-
fiers, and list synonyms and preferred forms. However, each community maintains dif-
ferent databases that have different schemas and taxonomies; therefore, an NLP system
has to obtain the knowledge needed from a diverse set of resources. Although Gene
Ontology (GO) (Gene Ontology Consortium, 2003) is a consortium that aims to pro-
duce a uniform controlled vocabulary that can be applied to all organisms (even as
knowledge of gene and protein roles in cells accumulates and changes), it applies only
to biological functions, processes, and structures.

Heterogeneity of the text: Many abstracts can be obtained from Medline. These are
easy to process because they can be obtained in the form of plain text. However, a sub-
stantial portion of biomolecular information occurs only in the full journal articles,
which have different file formats. They may occur as Portable Document Format (PDF),
Hypertext Markup Language (HTML), or XML files, which must first be converted to
plain text. PDF file formats cannot be easily converted to text; although there is soft-
ware that is commercially available to perform the conversion, it is currently error prone.
Additionally, HTML files are suitable for presentation of the file in a browser, but can-
not be relied on for specifying the semantics of the information. For example, it may be
possible to recognize a section such as “Introduction” because it is enclosed in a tag
consisting of a large bold font. An additional problem is that some of the important
information may be in a figure which is in graphic format, and therefore not accessible
as text. For example, in chemical journals, the names of chemical compounds often
appear as a single letter followed by the full name and the diagram. In the text of the
article, the single letter appears in place of the name, causing a loss of information. An
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additional problem is that the journals are often available only through subscriptions,
which can be costly.

Complexity of the language: The structure of the biological language is very chal-
lenging. In clinical text, the important information is typically expressed as noun
phrases, which consists of descriptive information such as findings and modifiers. In
biomolecular text, the important information usually consists of interactions and rela-
tions, which are expressed as verbs or noun phrases that are frequently highly nested.
Verb phrases are generally more complex structures than noun phrases. The arguments
of a verb are important to capture as well as the order of the arguments (e.g., Raf-1
activates Mek-1 has a different meaning than Mek-1 activates Raf-1). A
typical sentence usually contains several nested interactions. For example, the sentence
Bad phosphorylation induced by interleukin-3 (IL-3) was inhib-
ited by specific inhibitors of phosphoinositide 3-kinase (PI
3-kinase) consists of four interactions (and also two parenthesized expressions spec-
ifying abbreviated forms). The interaction and the arguments are illustrated in Table 8.7.
The nested relations can be illustrated more clearly as a tree (see Figure 8.9). Notice that
the arguments of some interactions are also interactions (i.e., the second argument of
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Table 8.7. Nested interactions extracted from the sentence Bad phosphorylation induced by inter-
leukin-3 (IL-3) was inhibited by specific inhibitors of phosphoinositide 3-kinase (PI 3-kinase).
A “?” denotes that the argument was not present in the sentence.
Interaction Argument 1 (agent) Argument 2 (target) Interaction id

Phosphorylate ? Bad 1
Induce Interleukin-3 1 2
Inhibit ? Phosphoinositide 3-kinase 3
Inhibit 3 1

? 

   Il-3  

Inhibit 

Inhibit 

?    PI3 
kinase

Induce

Phosphorylate

      ? Bad

Figure 8.9. A tree showing the nest-
ing of biomolecular interactions
that are in the sentence Bad phos-
phorylation induced by interleukin-
3 (IL-3) was inhibited by specific
inhibitors of phosphoinositide 
3-kinase (PI 3-kinase).



induce is phosphorylate). Also note that an argument which is not specified in the
sentence is represented by a “?”.

Multidisciplinary nature: In order for NLP researchers to work on biological text to
extract the appropriate information, they need some knowledge of the domain. This is
a big challenge because the understanding requires knowledge of biology, chemistry,
physics, mathematics, and computer science.

8.7 Biomedical Resources for NLP

A number of controlled vocabularies provide terminological knowledge for NLP
systems in the biomedical domain:

● UMLS (including the Metathesaurus, Semantic Network, the Specialist Lexicon; see
Chapter 7)—can be used as a knowledge base and source for a medical lexicon. The
Specialist Lexicon provides detailed syntactic knowledge for words and phrases, and
includes a comprehensive medical vocabulary. It also provides a set of tools to assist
in NLP, such as a lexical variant generator, an index of words corresponding to
UMLS terms, a file of derivational variants (e.g., abdominal, abdomen), spelling
variants (e.g., fetal, foetal), and a set of neoclassical forms (e.g., heart,
cardio). The UMLS Metathesaurus provides the concept identifiers, and the
Semantic Network specifies the semantic categories for the concepts. The UMLS also
contains the terminology associated with various languages (e.g., French, German,
Russian).

● Other controlled vocabularies (e.g., SNOMED, ICD-9, Laboratory Observations,
Identifiers, Names and Codes (LOINC)) can also be used as sources of lexical knowl-
edge for NLP. These vocabularies are also valuable as multilingual resources. For
example, SNOMED was used as a lexical resource for French (Zweigenbaum and
Courtois, 1998), and ICD was used as a resource for development of an interlingua
(Baud et al., 1998).

● Biological databases. These include Model Organism Databases, such as Mouse Genome
Informatics (Blake et al., 2003), the Flybase Database (Flybase Consortium, 2003), the
WormBase Database (Todd et al., 2003), and the Saccharomyces Database (Issel-
Tarver et al., 2001), as well as more general databases GenBank (Benson et al., 2003),
Swiss-Prot (Boeckmann et al., 2003), LocusLink (Pruitt et al., 2001).

● GENIA corpus (Ohta et al., 2002). This corpus currently contains over 2,500
abstracts taken from Medline, which are related to transcription factors in human
blood cells. It has over 100,000 hand-annotated terms marked with syntactic and
semantic information appropriate for the biological domain, and is valuable for use as
a gold standard for evaluation and training data for machine learning techniques. It
also has an accompanying ontology.
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Questions for Discussion

1. Develop a regular expression to regularize the tokens in lines 4–9 of the cardiac
catheterization report shown in Figure 8.7 (Complications through Heart
Rate).

2. Create a lexicon for the last seven lines of the cardiac catheterization report shown in
Figure 8.7 (Conclusions through the last sentence). For each word, determine all
the parts of speech that apply, using the tags in Table 8.2. Which words have more
than one part of speech? Choose eight clinically relevant words in that section of the
report, and suggest appropriate semantic categories for them that would be consistent
with the SNOMED axes and with the UMLS semantic network.

3. Using the grammar in Figure 8.3, draw all possible parse trees for each of the sample
sentences 1a, 2a, and 3a discussed in Section 8.4.3. For each sentence, indicate which
parse represents the correct structure.

4. Using the grammar in Figure 8.3, draw a parse tree for the last sentence of cardiac
catheterization report shown in Figure 8.7.

5. Using the grammar in Figure 8.4, draw parse trees for the following sentences: no
increase in temperature; low grade fever; marked improvement
in pain; not breathing. (Hint: some lexemes have more than one word.)

6. Identify all the referential expressions in the text below and determine the correct ref-
erent for each. Assume that the computer attempts to identify referents by finding the
most recent noun phrase. How well does this resolution rule work? Suggest a more
effective rule.

The patient went to receive the AV fistula on December 4.
However, he refuses transfusion. In the operating room it was
determined upon initial incision that there was too much edema
to successfully complete the operation and the incision was
closed with staples. It was well tolerated by the patient.
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