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Markov Processes on Banach Spaces
on Cycles

The problem of defining denumerable Markov chains by a countable infinity
of weighted directed cycles is solved by using suitable Banach spaces lp on
cycles and edges. Furthermore, it is showed that the transition probabilities
of such chains may be described by Fourier series on orthonormal collections
of homologic ingredients.

9.1 Banach Spaces on Cycles

9.1.1 Euclidean spaces associated with infinite graphs

Now we shall consider an irreducible and positive-recurrent Markov chain
ξ = (ξn)n, whose state space S is a denumerable set. The corresponding
graph G is usually required to satisfy the local finiteness condition, that is,
for each i ∈ S there are finitely many j ∈ S such that pij > 0 or pji > 0.
We now explain that the local finiteness condition is necessary for the
existence of topologies of Euclidean spaces comparable with the topology
of l2(R) (according to Hilton and Wylie (1967) p.45).

Let G = (N, E) be an infinite directed graph where N = {nu} are the
vertices (nodes) of G and E = {enunk

} are the oriented edges of G. To fix
the ideas, we shall consider that N and E are denumerable sets.
The graph G may be viewed as an infinite abstract simplicial complex,
noted also by G, where

(i) the vertices nu of G are called 0-simplexes,
(ii) the oriented edges enunk

of G (which are completely determined by
the ordered pairs (nu, nk) of vertices) are called 1-simplexes.
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Accordingly, the graph G is an oriented complex of dimension 1. To the
1-dimensional complex G we may attach a topological space, symbolized
by (|G| ,�) and called the polyhedron of G, as follows. First, to define the
space-elements of the set |G|, and then the topology �, we introduce an
ordering on the set N. This is equivalent, by a homeomorphic translation
in Euclidean spaces, with a choice of a system of orthogonal axes. Since N
is denumerable, we may use the index set I = {0, 1, . . .}, which particularly
is totally ordered. Accordingly, N = {n0, n1, . . .} becomes a totally ordered
set with respect to the ordering-relation “ ¡ ”defined as

ni < nj if and only if i < j.

With this preparation we give now the definition of the polyhedron (|G| ,�)
as follows. To define the set |G|, we first consider a family Wof weight-
functions on the vertices and edges of G in the following way:

W = {0w : {0 − simplexes} → {1} : 0w(ni) ≡ 1, for anyni ∈ N} ∪
{1w : {1 − simplexes = (nik , nim)} → [0, 1] × [0, 1] : 1w(nik , nim)

= (1w1(nik), 1w2(nim)),where
(i) 1w1(nik), 1w2(nim) vary in [0, 1],
(ii) 1w1(nik) + 1w2(nim) = 1}.

Or, better we may consider the family W defined as

W = {wi, i ∈ N : wi : N → [0, 1], wi(nj) ≡ 1, if j = i; or 0, if j �= i} ∪
{wij , (ni, nj) ∈ E : wij : N → [0, 1], wij(nk) > 0 if k = i, j;
wij(nk) = 0, if k �= i, j; and wij(ni) + wij(nj) = 1}.

Then the family W involves a weighting procedure according to which we
attach to each vertex ni of G one nonnegative real weight w̃i such that

(i) if (ni) is a 0-simplex of G, w̃i may be chosen to be equal to wi(ni) = 1;
(ii) if ni is a vertex of an 1-simplex (ni, nj), then w̃i may be chosen,

along with w̃j , to be the nonnegative real number given by wij , that
is, w̃i ≡ wij(ni) > 0, w̃j ≡ wij(nj) > 0, and w̃i + w̃j = 1}.

In this way, the images of the weight-functions of W provide a collection
of sequences which have either the form

(α) (1, 0, 0, . . .), (0, 1, 0, . . .), . . . for the case (i) above,
or, the form
(β) (0, . . . , 0, w̃i, 0, . . . , w̃j , 0, . . .), for the case (ii) above if i < j, with

w̃i, w̃j > 0, and with w̃i + w̃j = 1, where (ni, nj) varies in the set E
of oriented edges of G.

Then the set |G| is that whose elements are all the sequences of the form
(α) and (β).
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An equivalent way to describe the set |G| is as follows: associate the
0-simplex n1 to the sequence (1, 0, . . .), the 0-simplex n2 to the sequence
(0, 1, 0, . . .), and so on.

Furthermore, to each 1-simplex (ni, nj), i < j, associate the subsets bij
and bij of |G| defined as

bij = {(0, . . . , 0, w̃i, 0, . . . , w̃j , 0, . . .) : w̃i, w̃j ≥ 0, w̃i + w̃j = 1},
bij = {(0, . . . , 0, w̃i, 0, . . . , w̃j , 0, . . .) : w̃i, w̃j > 0,with w̃i + w̃j = 1}.

Then

|G| = {(1, 0, 0, . . .), (0, 1, 0, . . .), . . . } ∪ (∪(ni,nj) bij)
= {(1, 0, 0, . . .), (0, 1, 0, . . .), . . . } ∪ (∪(ni,nj) bij).

Now let us see how to define the topology � of |G|. Consider the pro-
jection pri associated to the 0-simplex ni and which associates the se-
quence (0, 0, . . . , 1, 0, . . .) (where 1 has the rank i in the sequence) with
the number 1. Analogously we may consider the projection prij : bij →
R2 for any edge (ni, nj) of G, that is, prij associates any sequence
(0, 0, . . . , 0, w̃i, 0, . . . , w̃j , 0, . . .) ∈ bij with the ordered pair (wi, wj).

Next, for any edge (ni, nj) ∈ G we topologize the subset bij by requiring
that prij be a homeomorphism in R2. Then, we topologize |G| by specifying
its closed sets: A ⊆ |G| is closed if and only if A ∩ bij is closed in bij for
every 1-simplex (ni, nj) of G.

The topology � of |G| may be in some cases (involving conditions on the
configuration of the graph G) compatible with the topology of Euclidean
spaces defined by the metric ρ((xi), (yi)) =

√∑
(xi − yi)2. Such a case is

given by the graphs which are locally finite (i.e., each vertex belongs only
to finitely many edges) and contain denumerable sets of vertices and edges.

Let G = (N, E) be such a graph. Then G can be realized in l2(R) =
{(xn)n: xn ∈ R,

∑
n

(xn)2 < ∞ } by the inclusion (see Hilton and Wylie

(1967), p.45).

9.1.2 Banach spaces on cycles

Let N = {n1, n2, . . . } and let C = {c1, c2, . . . } be a sequence of overlapping
directed circuits or cycles in N as those corresponding to an irreducible
and positive-recurrent Markov chain. Then the Vertex-set C and Arc-set
C will symbolize the sets of all vertices and edges of C, respectively.
Throughout the paragraph we shall assume the collection C of directed
circuits in N such that Vertex-set C = N, and we shall consider arbitrary
orderings on N and Arc-set C. For instance, without any loss of generality,
we shall assume that the first p(c1) points and pairs of N and Arc-set
C will belong to the circuit c1, the next p(c2) to c2, and so on. Also we
shall assume that any circuit c = (i1, i2, . . . , is, i1) of C has all points
i1, i2, . . . , is distinct each from the other.
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Now let G = (N, E) be the oriented graph associated with C, that is,
N =Vertex-set C and E = Arc-set C, and assume that G is locally finite.
With every pair (i, j) ∈ E we associate the symbol b(i,j). Then, since
a directed circuit c = (i1, i2, . . . , is, i1), s ≥ 1, is completely defined by
the sequence (i1, i2), (i2, i3), . . . , (is, i1) of directed edges, we may further
associate c with the sequence of symbols b(i1,i2), b(i2,i3), . . . , b(is,i1). An
equivalent version is to associate any circuit c of C with the formal
expression c = b(i1,i2) + b(i2,i3) + · · · + b(is,i1) = Σ(i,j)Jc(i, j) b(i,j), where
Jc(i, j) is the passage-function which equals 1 or 0 according to whether
or not (i, j) is an adge of c.
Then the sets B = {b(i,j), (i, j) ∈ E} = {b1, b2, . . . } and C = {c1, c2, . . . }
will be ordered according to the chosen orderings on E and C, respectively.

With these preparations we shall now define certain Banach spaces by
using the sets C, N = Vertex-set C and E = Arc-set C. In this direction
we first introduce the vector spaces generated by N = {n1, n2, . . . },B =
{b1, b2, . . . } and C = {c1, c2, . . . }, respectively. Let

N = {n =
s∑

k=1

xknk : s ∈ N,nk ∈ N, xk ∈ R},

E = {b =
r∑

k=1

akbk : r ∈ N, ak ∈ R, bk ∈ B},

C = {c =
m∑

k=1

wkck : m ∈ N,wk ∈ R, ck ∈ C},

where n, b and c are formal expressions on N, B and C, and N and R
denote as usual the sets of natural and real numbers, respectively.
Then the sets N , E , and C may be organized as real vector spaces with
respect to the operations + and scalar-multiplicity defined as follows. For
the formal expressions of N , we define

s∑
k=1

xknk +
r∑

k=1

xk
′ nk =

∑
k

(xk + xk
′)nk,

λ
s∑

k=1

xknk =
s∑

k=1

(λxk)nk, λ ∈ R.

Then N will become, except for an equivalence relation, a real vector space,
which is isomorph with

σ(N) = {(x1, x2, . . . , xs, 0, 0, . . .) : s ∈ N, xk ∈ R, k = 1, . . . , s}.
Analogously, the set E becomes, except for an equivalence relation, a real
vector space whose base is B, if we shall not adhere to the notational
convention: b(j,i) = −b(i,j), (i, j) ∈ E.
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Then E is isomorph with

σ(E) = {(w(i1, j1), . . . , w(in, jn), 0, 0, . . .) :
n ∈ N,w(ik, jk) ∈ R, (ik, jk) ∈ E, k = 1, . . . , n}.

Here the index k of (ik, jk), k = 1, . . . , n, means the k-th rank according to
the ordering of E, that is, b(ik,jk) = bk , k = 1, 2, . . . .

As concerns the set C we define analogously the vector space opera-
tions and note that some vectors ck ∈ C may perhaps be linear expressions
of other vectors of C. To avoid this, we shall assume that C contains only
directed circuits ck whose generated vectors ck in C ⊂ C are linear indepen-
dent. This assumption may be always achieved by applying Zorn’s lemma
to any countable collection C, which perhaps contains linear dependent
vectors. Then C may be correspondingly organized (except for an equiv-
alence relation) as a real vector space whose base is C. Furthermore C is
isomorph with

σ(C) = {(wc1 , . . . , wcm , 0, 0, . . .) : m ∈ N,wck ∈ R, ck ∈ C, k = 1, . . . ,m}.
Since C is a vector subspace of E , it is isomorph with the following subspace
of σ(E) :

C(E)= {(
m∑

k=1

wck Jck(i1,j1), . . . ,
m∑

k=1

wck Jck(in, jn), 0, 0, . . .):m∈N,wck ∈R,

ck ∈ C, k = 1, . . . ,m; (iu, ju) ∈ Arcset{c1, . . . , cm}, u = 1, . . . , n}.
We proceed by introducing certain norms on the vector spaces N , E , and

C. For instance, we define the functions |·|k : E → R, k = 1, 2, as follows:

|
r∑

k=1

ak bk|1 =
r∑

k=1

|ak|,

|
r∑

k=1

ak bk|2 =

(
r∑

k=1

ak
2

)1/2

. (9.1.1)

Analogously, we define the functions ‖·‖k : C → R, k = 1, 2, as follows:

‖
m∑

k=1

wk ck‖1 =
m∑

k=1

|wk|,

‖
m∑

k=1

wk ck‖2 =

(
m∑

k=1

wk
2

)1/2

. (9.1.2)

In an analogous way we may define similar norms on N . Then N , E , and
C will become normed spaces with respect to the above norms, and con-
sequently we may compare them with the following classic Banach spaces
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associated with the original collection C of circuits:

l1(N2) = {w = (w(i, j), (i, j) ∈ N2) : w(i, j) ∈ R,Σ(i,j)|w(i, j)| < ∞},
l2(N2) = {w = (w(i, j), (i, j) ∈ N2) : w(i, j) ∈ R,Σ(i,j)(w(i, j))2 < ∞},
l1(C) = {(wc, c ∈ C) : wc ∈ R,Σc|wc| < ∞},
l2(C) = {(wc, c ∈ C) : wc ∈ R,Σc(wc)2 < ∞},

where the corresponding norms for the spaces l1(N2) and l2(N2) are re-
spectively given by:

/w/1 = Σ(i,j)|w(i, j)|,
/w/2 = (Σ(i,j)(w(i, j))2)1/2,

and for the spaces l1(C) and l2(C), by

//(wc)c//1 = Σc|wc|,
//(wc)c//2 = (Σc(wc)2)1/2.

Consequently, the normed vector spaces (E , | |k), k = 1, 2, are isomorph
with (σ(E), //k) (viewed included in (lk(N2), //k)), k = 1, 2.
Analogously, the normed vector spaces (C, ‖ ‖k), k = 1, 2, are isomorph
with (σ(C), // //k), k = 1, 2. Similar reasonings may be repeated for the
space N as well.

All previous normed vector spaces are incomplete with respect to the
corresponding topologies induced by the norms above. Then we may fur-
ther consider the corresponding topological closures of (C(E), //k) and
(C, ‖ ‖k), k = 1, 2, which, except for an isomorphism, provide Banach sub-
spaces in lk(N2), k = 1, 2, and the Banach spaces lk(C), k = 1, 2, respec-
tively.

Let us now consider c =
∑m

k=1 wckck ∈ C. Then, the isomorph of c in
σ(C) will be denoted by c′, and in C(E) by c′′. Throughout the paragraph
we shall adhere to this notation for any vector of cl C , where cl symbolizes
the topological closure of C with respect to ‖‖k, k = 1, 2.
Correspondingly we have

//c′//1 =
m∑

k=1

|wck |,

//c′//2 =
( m∑

k=1

(wck)2
)1/2

,

/c′′/1 = Σ(i,j)

∣∣∣∣∣
m∑

k=1

wckJck(i, j)

∣∣∣∣∣
/c′′/2 =

(
Σ(i,j)

( m∑
k=1

wckJck(i, j)
)2)1/2

.



9.1 Banach Spaces on Cycles 151

Consider the vector spaces E and C. Define the function < · , · >: E × E → R
as follows :

<

r∑
k=1

akbk,

m∑
k=1

a′k bk >=
min(r,m)∑

k=1

aka
′
k.

Then (E , < · , · >) is an inner product space. Analogously, define the inner
product space (C, < · , · >′). Then the corresponding norms induced by the
inner products < · , · > and < · , · >′ are given by the relations (9.1.1) and
(9.1.2).

Since E and C are incomplete metric spaces, we may further consider
their completions H(E) and H(C) along with the corresponding exten-
sions of < · , · > and < · , · >′ . Also, since the sets B = {b1, b2, . . . } and
C = {c1, c2, . . . } are orthonormal bases of H(E) and H(C), we may con-
sequently write any x ∈ H(E) and any y ∈ H(C) as the following Fourier
series

x =
∞∑
k=1

akbk,

y =
∞∑
k=1

αkck,

where ak =< x, bk > and αk=<y, ck >′, k = 1, 2, · · ·, are the corresponding
Fourier coefficients.
Furthermore, according to the Riesz-Fischer representation theorem, we
may write

H(E) =

{
x =

∞∑
k=1

akbk : ak ∈ R,

∞∑
k=1

(ak)2 < ∞
}
,

and

H(C) =

{
y =

∞∑
k=1

αckck : αck ∈ R,

∞∑
k=1

(αck)2 < ∞
}
.

Since B and C are denumerable orthonormal bases, the Hilbert spaces
H(E) and H(C) are, respectively, isomorph (as normed vector spaces) with
l2(E) and l2(C).
Finally, a Hilbert space H(N ) may also be defined, by developing a similar
approach to the vector space N .
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9.2 Fourier Series on Directed Cycles

One problem to be solved in this section has the following abstract formu-
lation:

Find the class of all sequences w = (w(i, j) ∈ R, (i, j) ∈ N2), N =
{1, 2, . . .}, which satisfy the following conditions:

(i) There is a countable collection (C,wck) of directed cycles in N
and real numbers wck such that the Vertex set C = N and

w(i, j) =
∞∑
k=1

wckJck(i, j), (i, j) ∈ ArsetC, (9.2.1)

= 0, otherwise,

where the series occurring in (9.2.1) is absolutely convergent for
any (i, j), and all involved sets as N2, C, etc., are endowed with
certain orderings.

(ii) There is p ≥ 1 such that w ∈ lp(N2).

If sequence w = (w(i, j), (i, j) ∈ N2) verifies the above conditions (i) and
(ii), then we shall say that w satisfies the cycle formula for p and (C,wc).
In this case, collection (C,wc) is called a cycle representation for w.
Throughout this paragraph we shall consider a collection C = {c1, c2, . . .} of
independent homologic cycles associated with a collection C = {c1, c2, . . .}
of overlapping directed circuits with Vertex set C = N . Also, we shall as-
sume (without any loss of generality) that the corresponding graph-sets
associated with C are symbolized and ordered as mentioned in the previ-
ous section.
The spaces to be considered here are the Banach spaces lk(C) and cl C(E)
(in lk(N2)), k = 1, 2, where C will be identified by an isomorphism of vector
spaces either with σ(C) or with C(E).

We shall now answer the question of whether or not the Fourier series∑∞
k=1 wck ck may define a sequence (w(i, j), (i, j) ∈ N2) which satisfies the

cycle formula following Kalpazidou and Kassimatis (1998). Namely, we have

Theorem 9.2.1. Let the Fourier series
∞∑
k=1

wckck ∈ H(C),

where wck , k = 1, 2, . . ., are positive numbers.
Then the following statements are pairwise equivalent:

(i) Except for an isomorphism of vector spaces, the sequence
{∑n

k=1 wck ck}n converges coordinate-wise, as n → ∞, to a sequence
w = (w(i, j), (i, j) ∈ N2), which satisfies the cycle formula for p = 1
and with respect to (C,wc). Furthermore, /w/1 =

∑∞
k=1 p(ck)wck ;
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(ii)
∑∞

k=1 p(ck)wck < ∞;

(iii) Except for an isomorphism of vector spaces, the sequence
{∑n

k=1 wck ck}n converges in l1(N2), as n → ∞.

Proof. First we shall prove that (i) implies (ii). Let wm =∑m
k=1 wckc k,m = 1, 2, . . . , with wck > 0, k,= 1, . . . ,m. Then the isomorph

wm
′′ of wm in C(E) is given by

wm
′′ =

(
m∑

k=1

wckJck(i1, j1), . . . ,
m∑

k=1

wck Jck(in, jn), 0, 0, . . .

)
;m = 1, 2, . . . ,

where (i1, j1), . . . , (in, jn), are the first n edges of Arc-set {c1, . . . , cm} in-
dexed according to the ordering of Arcs-set C ≡ E. If (i) holds, then for
any (i, j) ∈ N2 there exists a positive number w(i, j) defined as follows:

w(i, j) = lim
m→∞

m∑
k=1

wckJck (i, j), if (i, j) ∈ E,

= 0, otherwise.

Denote w = (w(i, j), (i, j) ∈ N2). Then

∞∑
k=1

p(ck)wck =
∞∑
k=1

∑
(i,j)

wckJck(i, j) =
∑
(i,j)

|w(i, j)| < ∞.

The proof of (ii) is complete.
Let us now prove the converse implication. Accordingly, assume that

relation (ii) holds. Then, for any (i, j) ∈ E the limit

lim
m→∞

m∑
k=1

wck Jck(i, j)

exists, since
∞∑
k=1

p(ck)wck =
∑
(i,j)

∞∑
k=1

wckJck(i, j) < ∞.

Define w = (w(i, j), (i, j) ∈ N2) with

w(i, j) =
∞∑
k=1

wckJck(i, j), if (i, j) ∈ E,

= 0, otherwise.

Then w satisfies the cycle formula for p = 1 and with respect to (C,wc).
Furthermore, we note that w is the coordinate-wise limit of {∑m

k=1 wckck}m
viewed isomorphically in C(E). The proof of (i) is complete.
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Let us now prove that (ii) implies (iii). From the relation (ii) we obtain
that

∞∑
k=1

wck Jck(i, j) < ∞,

for any (i, j) ∈ E. Then we may accordingly define the following sequence
w = (w(i, j), (i, j) ∈ N2) in l1(N2):

w(i, j) =
∞∑
k=1

wckJck(i, j), if (i, j) ∈ E,

= 0, otherwise.

Consider w n
′′ = (wn

′′(i, j), (i, j) ∈ N2) with

wn
′′(i, j) =

n∑
k=1

wckJck(i, j).

Then w n
′′ ∈ C(E) and

/w − w n
′′/1 =

=
∑

(i,j)∈E

|
∞∑
k=1

wckJck (i, j) −
n∑

k=1

wckJck (i, j)|

=
∑

(i,j)∈E

( ∞∑
k=n+1

wckJck(i, j)

)
=

∞∑
k=n+1

p(ck)wck < ∞.

Furthermore

lim
n→∞ /w − w n

′′/1 = lim
n→∞

∞∑
k=n+1

p(ck)wck = 0.

Therefore, the sequence of w n
′′, n = 1, 2, . . ., which are the isomorphs of

w n =
∑n

k=1 wckc k in C(E), converges in l1(N2) to w = (w(i, j), (i, j) ∈
N2), as n → ∞. The proof of (iii) is complete.

Now we shall prove the converse, that is, from (iii) we shall obtain relation
(ii). Let w = (w(i, j), (i, j) ∈ N2) be the

lim
n→∞

n∑
k=1

wckck in l1(N2),

where wn =
∑n

k=1 wckck is isomorphically viewed in C(E).
Since for every n ≥ 1 and any (i, j) ∈ N2\E we have

∑n
k=1 wckJck (i, j) =

0, then w(i, j) = 0 outside E. Therefore

w(i, j) =
∞∑
k=1

wckJck (i, j),

for any (i, j) ∈ E and /w/1 =
∞∑
k=1

p(ck)wck < ∞.
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Furthermore, from convergence

lim
n→∞ /w − wn

′′/1 = 0,

where w n
′′ is the isomorph of w n in C(E), we may write

/w − wn
′′/1 =

∑
(i,j)∈E

|w(i, j) −
n∑

k=1

wckJck(i, j)|

=
∑

(i,j)∈E

( ∞∑
k=n+1

wckJck(i, j)

)
=

∞∑
k=n+1

p(ck)wck

and

lim
n→∞

∞∑
k=n+1

p(ck)wck = 0.

The proof of Theorem is complete. �

Now we shall investigate the relations between the Hilbert spaces H(N ),
H(E), H(C), and the sequences that satisfy the cycle formula. We have:

Theorem 9.2.2. Let Fourier series
∞∑
k=1

wckck ∈ H(C),

with wck > 0, k = 1, 2, . . .
Then the following statements are pairwise equivalent:

(i) Except for an isomorphism of vector spaces, the sequence
{∑n

k=1 wckck}n converges coordinate-wise, as n → ∞, to a sequence
w = (w(i, j), (i, j) ∈ N2), which satisfies the cycle formula for p = 2
and with respect to (C,wc);

(ii)
∞∑
k=1

(wck)2p(ck) + 2
∞∑

k,s=1;k �=s

wckwcscard{(i,j) :Jck(i,j)Jcs(i,j)=1}<∞
where Jck (i,j) is the passage-function associated with
ck, k = 1, 2, . . .;

(iii) Except for an isomorphism of vector spaces, the sequence
{∑n

k=1 wckck}n converges in H(E) to
∑

(i,j)(
∑∞

k=1 wckJck (i, j))
b(i,j), as n → ∞.

Proof. Let us assume that (i) holds. We shall now prove that relation (ii) is
valid. Let wm = {∑m

k=1 wckc k}, m = 1, 2, . . . Then wm ∈ C and sequence
{wm}m converges in H(C) to

∑∞
k=1 wckc k. Consider the isomorph wm

′′ of
wm in C(E). Then

wm
′′ =

(
m∑

k=1

wckJck(i1, j1), . . . ,
m∑

k=1

wckJck(in, jn), 0, 0, . . .

)
,m = 1, 2, . . . ,



156 9. Markov Processes on Banach Spaces on Cycles

where (i1, j1), . . . , (in, jn) are the first n edges of Arcset{c1, . . . , cm} accord-
ing to the ordering of E. Since (i) holds, for any (i, j) ∈ N2 there exists a
positive number w(i, j) given by

w(i, j) =
∞∑
k=1

wckJck(i, j), if (i, j) ∈ E,

= 0, otherwise,

and sequence w = (w(i, j), (i, j) ∈ N2) belongs to l2(N2).
On the other hand, we have

∑
(i,j)

w2(i, j) =
∑
(i,j)

( ∞∑
k=1

wckJck(i, j)

)2

=
∑
(i,j)

⎛
⎝ ∞∑

k=1

(wck)2Jck(i, j) + 2
∞∑

k,s=1;k �=s

wckwcsJck(i, j)Jcs(i, j)

⎞
⎠

=
∞∑
k=1

(wck)2p(ck) + 2
∞∑

k,s=1;k �=s

wckwcs card{(i, j) : Jck(i, j)Jcs(i, j) = 1}.

The relation (ii) holds.
Let us now prove the converse: assuming (ii), we shall prove that (i)

holds. First, we have

∑
(i,j)

( ∞∑
k=1

wckJck(i, j)

)2

< ∞.

Define the sequence w = (w(i, j), (i, j) ∈ N2) as follows:

w(i, j) =
∞∑
k=1

wckJck(i, j), if (i, j) ∈ E,

= 0, otherwise.

Then sequence w satisfies the cycle formula for p = 2 and with respect to
(C,wc). Furthemore w is the coordinate-wise-limit of the sequence {wm

′′}
of isomorphs of wm =

∑m
k=1 wckc k in C(E), given by

w′′
m =

(
m∑

k=1

wckJck(i1, j1), . . . ,
m∑

k=1

wckJck(in, jn), 0, 0, . . .

)
,m = 1, 2, . . . ,

where (i1, j1), . . . , (in, jn) are the edges of c1, . . . , cm. The proof of (i) is
complete.
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Let us now prove (iii) from (ii). In this direction, we define by using (ii)
the sequence w = (w(i, j), (i, j) ∈ N2) in l2(N2) with

w(i, j) =
∞∑
k=1

wckJck(i, j), if (i, j) ∈ ArcsetC,

= 0, otherwise.

Furthermore, the sequence

wm
′′ =

(
m∑

k=1

wckJck(i1, j1), . . . ,
m∑

k=1

wckJck(in, jn), 0, 0, . . .

)
,m = 1, 2, . . . ,

where (i1, j1), . . . , (in, jn) are the edges of c1, . . . , cm, converges coordinate-
wise to w. Now we prove that we have more: namely, sequence {wm

′′}m
converges in l2(N2) to w, as m → ∞. In this direction, we first write

/w − wm
′′/2 =

⎡
⎣ ∑

(i,j)∈E

(w(i, j) −
m∑

k=1

wckJck(i, j))2

⎤
⎦

1/2

=

⎡
⎣ ∑

(i,j)∈E

( ∞∑
k=m+1

wckJck(i, j)

)2
⎤
⎦

1/2

=

[ ∞∑
k=m+1

(wck)2p(ck)+2

×
∞∑

k,s=m+1;k �=s

wckwcscard{(i,j) :Jck(i,j)Jcs(i,j)=1}
⎤
⎦

1/2

.

Since (ii) holds, both last series occurring in the expression of /w −
wm

′′/2 converge to zero, as m → ∞. Finally, the isomorphs of wm
′′

and w in H(E) are, respectively,
∑

(i,j) (
∑m

k=1 wckJck(i, j)) b(i,j) and∑
(i,j) (

∑∞
k=1 wckJck(i, j)) b(i,j).

The proof of (iii) is complete.
To prove the converse, assume that the sequence of isomorphs of∑m
k=1 wckck,m = 1, 2, . . . , in l2(N2) converge to w = (w(i, j), (i, j) ∈ N2),

as m → ∞, where w(i, j) =
∑∞

k=1 wckJck(i, j), for any (i, j) ∈ N2. Then,
since series occurring in (ii) is related to the norm /w/2, relation (ii) holds.
The proof of theorem is complete. �

9.3 Orthogonal Cycle Transforms for Finite
Stochastic Matrices

Let S = {1, 2, . . . , n}, n > 1, and let P = (pij , i, j = 1, 2, . . . , n) be an irre-
ducible stochastic matrix whose probability row-distribution is π = (πi, i =
1, . . . , n). Let G = G(P ) = (S,E) be the oriented graph attached to P,
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where E = {b1, . . . , bτ} denotes the set of directed edges endowed with an
ordering. The orientation of G means that each edge bk is an ordered pair
(i, j) of points of S such that pij > 0, where i is the initial point and j is
the endpoint. Sometimes we shall prefer the symbol b(i,j) for bk when we
need to point out the terminal points.

As we have already mentioned in section 4.2.1, irreducibility of P means
that the graph G is strongly connected, that is, for any pair (i, j) of states
there exists a sequence b(i,i1), b(i1,i2), . . . , b(is,j) of edges of G connecting i
to j. When i = j then such a sequence is called a directed circuit of G.
Throughout this chapter, we shall consider directed circuits c =
(i, i1, i2, . . . , is, i) where the points i, i1, i2, . . . , is are all distinct.

Let C denote the collection of all directed circuits of G. Then according
to Theorem 4.1.1 the matrix P is decomposed by the circuits c ∈ C as
follows:

πipij =
∑
c∈C

wcJc(i, j), (9.3.1)

where each wc is uniquely defined by a probabilistic algorithm and Jc is
the passage-matrix of c introduced in the previous section. Furthermore,
equations (9.3.1) are independent of the ordering of C.

Now we shall look for a suitable Hilbert space where the cycle decompo-
sition (9.3.1) is equivalent with a Fourier-type decomposition for P. In this
direction we shall consider as in section 4.4 two-vector spaces C0 and C1

generated by the collections S and E, respectively. Then any two elements
c0 ∈ C0 and c1 ∈ C1 have the following expressions:

c0 =
n∑

h=1

xhnh = x′n, xh ∈ R, nh ∈ S,

c1 =
τ∑

k=1

ykbk = y′b, yk ∈ R, bk ∈ E,

where R denotes the set of reals. The elements of C0 and C1 are, re-
spectively, called the zero-chains and the one-chains associated with the
graph G.

Let δ : C1 → C0 be the boundary linear transformation defined as

δc1 = y′η n,

where

ηbjns
= +1, if ns is the endpoint of the edge bj ;

−1, if ns is the initial point of the edge bj ;
0, otherwise.

Let

C̃1 ≡ Ker δ = {z ∈ C1 : z′η = 0},
where 0 is the neutral element of C1.
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Then C̃1 is a linear subspace of C1 whose elements are called one-cycles.
One subset of C̃1 is given by all the elements c = bi1 + · · · + bik ∈ C1 whose
edges bi1 , . . . , bik form a directed circuit c in the graph G. In general, the
circuits occurring in the decomposition (9.3.1) of P determine linearly
dependent one-cycles in C̃1. In Lemma 4.4.1, it is proved that there are B
one-cycles γ

1
, . . . , γ

B
, which form a base for the linear subspace C̃1, where

B is the Betti number of G. When γ
1
, . . . , γ

B
, are induced by genuine

directed circuits γ1, . . . ,γB of the graph G, then we call γ1, . . . ,γB the
Betti circuits of G.

With these preparations, we now prove

Lemma 9.3.1. The vector space C̃1 = Ker δ of one-cycles is a Hilbert
space whose dimension is the Betti number of the graph.

Proof. Let Γ = {γ
1
, . . . , γ

B
} be the set of Betti one-cycles of G, endowed

with an ordering. Then

C̃1 =

{
B∑

k=1

akγk
, ak ∈ R

}
.

Consider the inner product < ,>: C̃1 × C̃1 → R as follows:

<

B∑
k=1

akγk
,

B∑
k=1

bkγk
>=

B∑
k=1

akbk.

Then C̃1 is metrizable with respect to the metric

d

(
B∑

k=1

akγk
,

B∑
k=1

bkγk

)
=

√√√√ B∑
k=1

(ak − bk)2.

Therefore (C̃1, <,>) is an inner product space where Γ is an orthonor-
mal base. Accordingly, to any one-cycle z =

∑B
k=1 akγk

there correspond
the Fourier coefficients ak =<z, γ

k
>,k = 1, . . . ,B, with respect to the or-

thonormal base Γ.
Define the mapping f : C̃1 → RB as follows:

f

(
B∑

k=1

akγk

)
= (a1, . . . , aB).

Then f preserves inner-product-space structures, that is, f is a linear bi-
jection which preserves inner products. In particular, f is an isometry.
Then (C̃1, <,>) is a Hilbert space, whose dimension is B. The proof is
complete. �

The previous result may be generalized to any finite connected graph G.
Now we shall focus on graphs G(P ) associated with irreducible stochastic
matrices P. Denote by B the Betti number of G(P ). Consider the collection
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C of cycles occurring in the decomposition (9.3.1), endowed with an order-
ing, that is, C = {c1, . . . , cs}, s > 0. Then we have

Theorem 9.3.2. Let P = (pij , i, j = l, . . . , n) be an irreducible stochas-
tic matrix whose invariant probability row-distribution is π = (π1, . . . , πn).
Assume that {γ1, . . . , γB} is a collection of Betti circuits. Then πP
has a Fourier representation with respect to Γ = {γ

1
, . . . , γ

B
}, where the

Fourier coefficients are identical with the probabilistic-homologic cycle-
weights wγ1 , . . . , wγB

, that is,

∑
(i,j)

πipijb(i,j) =
B∑

k=1

wγk
γ
k
, wγk

∈ R, (9.3.2)

with

wγk
=< πP, γ

k
>, k = 1, . . . , B .

In terms of the (i, j)-coordinate, equations (9.3.2) are equivalent to

πipij =
B∑

k=1

wγk
Jγk

(i, j), wγk
∈ R; i, j ∈ S. (9.3.3)

If P is a recurrent stochastic matrix, then a similar representation to
(9.3.2) holds, except for a constant, on each recurrent class.

Proof. Denote w(i, j) = πipij , i, j = 1, . . . , n. Then πP may be viewed as
a one-chain w = Σ(i,j)w(i, j)b(i,j).
Since πP is balanced, w is a one-cycle, that is, w ∈ C̃1 = Ker δ. Then,
according to Lemma 9.3.1, w may be written as a Fourier series with respect
to an orthonormal base Γ = {γ

1
, . . . , γ

B
} of Betti circuits of G, that is,

w =
B∑

k=1

< w, γ
k
> γ

k
, (9.3.4)

where < w, γ
k
>, k = 1, . . . , B, are the corresponding Fourier coefficients.

On the other hand, the homologic-cycle-formula proved by Theorem 4.5.1
asserts that w may be written as

w =
B∑

k=1

wγk
γ
k
, (9.3.5)

where wγk , k = 1, . . . , B, are the probabilistic-homologic cycle-weights
given by a linear transformation of the probabilistic weights wc, c ∈ C, oc-
curring in (9.3.1), that is,

wγk
=
∑
c∈C

A(c, γ
k
)wc, A(c, γ

k
) ∈ Z,

where Z denotes the set of integers.
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Since representation (9.3.5) is unique, it follows that it coincides with the
Fourier representation (9.3.4), that is,

wγk
=< w, γ

k
>, k = 1, 2, . . . , B.

Accordingly, since c = ΣκA(c, γ
k
) γ

k
, then

A(c, γ
k
) =< c, γ

k
>, k = 1, . . . , B,

and therefore

wγk
=
∑
c∈C

< c, γ
k
> wc. (9.3.6)

Let us now suppose that P has more than one recurrent class e in S =
{1, . . . , n}. Then we may apply the previous reasonings to each recurrent
class e and to each balanced expression

πe(i)pij =
B∑

k=1

wγk
Jγk

(i, j), i, j ∈ e,

where B = Be is the Betti number of the connected component of the graph
G(P ) corresponding to e, and πe = {πe(i)} (with πe(i) > 0, for i ∈ e, and
πe(i) = 0 outside e) is the invariant probability distribution associated to
each recurrent class e. The proof is complete. �

Remark. Let w = (w(k), k = 1, 2, . . . , B) be defined as

w(k) = wγk
, k = 1, . . . , B,

where wγk
, k = 1, . . . , B, are the probabilistic-homologic weights occurring

in (9.3.5). Then equations

w(k) =
∑
c∈C

< c, γ
k
> wc

may be interpreted as the inverse Fourier transform of the probabilistic
weight-function wc, c ∈ C, associated with P.

9.4 Denumerable Markov Chains on Banach
Spaces on Cycles

Now we are prepared to show how to define a denumerable Markov chain
from a countable infinity of directed cycles by using the Banach spaces on
cycles investigated in the previous sections. Namely we have

Theorem 9.4.1. Let C = {c1, c2, . . .} be a countable set of overlapping di-
rected circuits in N that verify the assumptions mentioned in section 9.2.

If sequence w = (w(i, j), (i, j) ∈ N2) satisfies the cycle formula for
p = 1 and with respect to (C,wc), with wc > 0, c ∈ C, then pij ≡
w(i, j)/(Σjw(i, j)), i, j ∈ N , define a stochastic matrix of an N -state
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cycle Markov chain ξ = (ξn)n, that is,

pij =

∑
c∈C

wcJc(i, j)∑
c∈C

wcJc(i)
, if (i, j) ∈ ArcsetC,

= 0, otherwise,

where Jc(i) = ΣjJc(i, j), i ∈ N, c ∈ C. Furthermore, μ =
( ∞∑

k=1

wckJck(i),

i = 1, 2, . . .

)
is an invariant finite measure for the Markov chain ξ.

Proof. Let w = (w(i, j), (i, j) ∈ N2) be a sequence of l1(N2), which sat-
isfies the cycle formula with respect to a collection (C,wc), with wc > 0,
that is,

w(i, j) =
∞∑
k=1

wckJck(i, j), if (i, j) ∈ ArcsetC,

= 0, otherwise.

We may always find such a sequence if we choose the sequence {wck , k =

1, 2, . . .} of positive numbers such that
∞∑
k=1

p(ck)wck < ∞ (as in condition

(ii) of Theorem 9.2.1).
Define

w(i) =
∑
j

w(i, j), i ∈ N.

Then w(i) > 0, i ∈ N , and

w(i) =
∞∑
k=1

wckJck(i),

where Jck(i) =
∑
j

Jck(i, j) for any i ∈ N .

Define

pij =
w(i, j)
w(i)

, i, j ∈ N.

Then P = (pij , i, j ∈ N) is a stochastic matrix that defines an N-state cycle
Markov chain ξ = (ξn)n whose cycle representation is (C,wc). Also,∑

i

w(i) =
∞∑
k=1

p(ck)wck < ∞

and ∑
i

w(i)pij =
∑
i

w(i, j) =
∞∑
k=1

wckJck(j) = w(j),

for any j ∈ N . Then μ = (w(i), i = 1, 2, . . .) is an invariant finite measure
for the Markov chain ξ. The proof is complete. �


