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Cycloid Markov Processes

As we have already seen, finite homogeneous Markov chains ξ admitting
invariant probability distributions may be defined by collections {cκ, wk} of
directed circuits and positive weights, which provide linear decompositions
for the corresponding finite-dimensional probability distributions. The aim
of the present chapter is to generalize the preceding decompositions to more
relaxed geometric entities occurring along almost all the sample paths of
ξ such as the cycloids, which are closed chains of edges with various ori-
entations. Then ξ is called a cycloid Markov chain. Correspondingly, the
passage-functions associated with the algebraic cycloids have to express the
change of the edge-direction, while the linear decompositions in terms of
the cycloids provide shorter descriptions for the finite-dimensional distri-
butions, called cycloid decompositions.

A further development of the cycloid decompositions to real balance func-
tions is particularly important because of the revelation of their intrinsic
homologic nature. Consequently, the cycloid decompositions enjoy a
measure-theoretic interpretation expressing the same essence as the known
Chapman–Kolmogorov equations for the transition probability functions.
The development of the present chapter follows S. Kalpazidou (1999a, b).

8.1 The Passages Through a Cycloid

Let S be a finite set and let G = (S,E) be any connected oriented graph G =
(S,E), where E denotes the set of all directed edges (i, j), which sometimes
will be symbolized by b(i,j).
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If c̃ is a sequence (e1, . . . , em) of directed edges of E such that each edge
er, 2 ≤ r ≤ m− 1, has one common endpoint with the edge er−1(�= er) and
a second common endpoint with the edge er+1(�= er), then c̃ is called the
chain which joins the free endpoint u of e1 and the free endpoint v of em.
Both u and v are called endpoints of the chain. If any endpoint of the edges
e1, . . . , em appears once when we delete the orientation, then c̃ is called an
elementary chain.

Definition 8.1.1. A cycloid is any chain of distinct oriented edges whose
endpoints coincide.

From the definition of the elementary chain, we correspondingly obtain
the definition of an elementary cycloid. Consequently, a directed circuit or
cycle c is any cycloid whose edges are oriented in the same way, that is,
the terminal point of any edge of c is the initial point of the next edge.
Accordingly, we also obtain the definition of the elementary cycle.

To describe the passages along an arbitrary cycloid c̃, we need a much
more complex approach than that given for the directed circuits in Chapter
1. It is this approach that we introduce now.

Let c̃ be an elementary cycloid of G. Then c̃ is defined by giving its edges
e1, e2, . . . , es, which are not necessarily oriented in the same way, that is,
the closed chain (e1, e2, . . . , es) does not necessarily define a directed circuit
in S. However, we may associate the cycloid c̃ with a unique directed circuit
(cycle) c and with its opposite c made up by the consecutive points of c̃.
Note that certain edges of both c and c may eventually be not in the
graph G.

We shall call c and c the directed circuits (cycles) associated with the
cycloid c̃. For instance, consider the cycloid c̃ = ((1, 2), (3, 2), (3, 4), (4, 1)).
Then the associated directed circuits are c = (1, 2, 3, 4, 1) and c = (1, 4, 3,
2, 1). With these preparations we now introduce the following definitions.

The passage-function associated with a cycloid c̃ and its associated di-
rected circuit c is the function Jc̃,c : E → {−1, 0, 1} defined as

Jc̃,c(i, j) = 1, if (i, j) is an edge of c̃ and c,
= −1, if (i, j) is an edge of c̃ and c , (8.1.1)
= 0, otherwise.

Analogously, the passage-function associated with the pair (c̃, c ) is the
function Jc̃,c : E → {−1, 0, 1} defined as

Jc̃,c (i, j) = 1, if (i, j) is an edge of c̃ and c ,

= −1, if (i, j) is an edge of c̃ and c,
= 0, otherwise.

Then we have

Jc̃,c(i, j) = −Jc̃,c (i, j), i, j ∈ S,
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and

Jc̃,c(i, j) �= Jc̃,c(j, i), i, j ∈ S.

In particular, if the cycloid c̃ coincides with the cycle c, then

Jc̃,c(i, j) = Jc(i, j), i, j ∈ S,

where Jc(i, j) is the passage-function of c, which is equal to 1 or 0 according
to whether or not (i, j) is an edge of c.

The passage-functions associated with the cycloids enjoy a few simple,
but basic properties.

Lemma 8.1.2. The passage-functions Jc̃,c(i, j) and Jc̃,c (i, j) associated
with the elementary cycloid c̃ are balanced functions, that is,∑

j∈S

Jc̃,c(i, j) =
∑
k∈S

Jc̃,c(k, i), (8.1.2)

∑
j∈S

Jc̃,c (i, j) =
∑
k∈S

Jc̃,c (k, i), (8.1.3)

for any i ∈ S.

Proof. We shall prove equations (8.1.2). Consider i ∈ S. If i does not lie
on c̃, then i does not lie on both c and c . Then both members of (8.1.2)
are equal to zero.

Now, let i be a point of c̃. Then i is a point of c and c as well. Accord-
ingly, we distinguish four cases.

Case 1: The edges of c̃, which are incident at i, have the orientation of c.
Then ∑

j∈S

Jc̃,c(i, j) = Jc̃,c(i, u) = +1,

∑
k∈S

Jc̃,c(k, i) = Jc̃,c(v, i) = +1,

where (i, u) and (v, i) are the only edges of c̃ and c, which are incident at
i.

Case 2: The point i is the terminal point of both edges of c̃, which are
incident at i. Then, we have∑

j∈S

Jc̃,c(i, j) = 0,

∑
k∈S

Jc̃,c(k, i) = Jc̃,c(v, i) + Jc̃,c(u, i) = (+1) + (−1) = 0,

where (v, i) and (u, i) are the only edges of c̃, one lying on c and the other
on c , which have i as a terminal point.
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Case 3: The point i is the initial point of both edges of c̃ which are incident
at i. Accordingly, we write∑

j∈S

Jc̃,c(i, j) = (+1) + (−1) = 0,

∑
k∈S

Jc̃,c(k, i) = 0.

Case 4: The edges of c̃, which are incident at i, have the orientation of c .
Then ∑

j∈S

Jc̃,c(i, j) = −1,

∑
k∈S

Jc̃,c(k, i) = −1.

Finally, relations (8.1.3) may be proved by similar arguments. The proof is
complete. �

Now we shall investigate how to express the passages of a particle moving
along the cycloids c̃ of G in terms of the passage-functions.

First, let us assume that the cycloid c̃ coincides with the directed circuit
c. Then the motion along the circuit c is characterized by the direction of
c, which, in turn, allows the definition of an algebraic analogue c in the real
vector space C1 generated by the edges {b(i,j)} of the graph G. Specifically,
as in paragraph 4.4 any directed circuit c = (i1, i2, . . . is, i1), occurring in
the graph G, may be assigned to a vector c ∈ C1 defined as follows:

c =
∑
(i,j)

Jc(i, j)b(i,j),

where Jc is equal to 1 or 0 according to whether or not (i, j) is an edge
of c. Let us now consider a cycloid c̃, which is not a directed circuit. To
associate c̃ with a vector c̃ in C1, we choose a priori a direction for the
passages along c̃, that is, we shall consider either the pair (c̃, c) or the pair
(c̃, c ) where c and c are the directed circuits associated with c̃. Then we
may assign the graph-cycloid c̃ with the vectors c̃ and −c̃ in C1, defined as
follows:

c̃ =
∑
(i,j)

Jc̃,c(i, j)b(i,j),

(8.1.4)
−c̃ =

∑
(i,j)

Jc̃,c (i, j)b(i,j).

In other words, any cycloid c̃ of the graph G may be assigned, except for the
choice of a direction, with a vector c̃ in C1. The vector c̃ will be called a cy-
cloid, as well. If c̃ is elementary, then c̃ is called an elementary cycloid in C1.

On the other hand, it turns out that all the cycloids c̃, associated with the
connected oriented graph G, generate a subspace C̃1 of C1. The dimension
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B of the vector space C̃1 is called the Betti number of the graph G. One
method to obtain a base for C̃1 consists in considering a maximal (oriented)
tree of G. A maximal tree is a connected subgraph of G without cycloids
and maximal with this property. This may be obtained by deleting B suit-
able edges e1, . . . , eB ∈ E, which complete B uniquely determined elemen-
tary cycloids λ̃1, . . . , λ̃B , each of λ̃k being in T ∪ {ek} and associated with
the circuit λk orientated according to the direction of ek, k = 1, . . . , B. Then
the vector-cycloids λ̃1, . . . , λ̃B ∈ C̃1, associated to (λ̃1, λ1), . . . , (λ̃B , λB) as
in (8.1.4), form a base for C̃1 and are called Betti cycloids. Furthermore,
the number B is independent of the choice of the initial maximal tree.

Now we turn back to our original point to express the dynamical status
of the passages of a particle moving along a cycloid c̃ of G in terms of the
passage-functions.

First, let us consider that the cycloid c̃ is an elementary directed circuit
c of G. Then, if i is a point of c = (i1, . . . , ik, . . . , is, i1), say i = ik, we have

Jc(i) =
∑
j∈S

Jc(i, j) =
∑
k∈S

Jc(k, i) �= 0. (8.1.5)

Specifically, there are only two edges of c that make nonzero both mem-
bers of (8.1.5): (ik−1, i) and (i, ik+1). Then relations (8.1.5) become:
Jc(ik−1, i) = Jc(i, ik+1) = 1 = Jc(i) and consequenty we have the follow-
ing simple intuitive interpretation: a particle moving along c is passing
through i if and only if it is passing through the edges of c preceding and
succeeding i. This interpretation allows us to say that a directed circuit c
passes through a point i if and only if the corresponding passage-function
Jc satisfies relations (8.1.5).

Now let us consider a cycloid c̃ that is not a directed circuit. Then it
may happen that a point i belongs to c̃, but the last inequality of (8.1.5)
may eventually be not verified by the passage-functions Jc̃,c(i, j), that is,∑

j∈S

Jc̃,c(i, j) =
∑
k∈S

Jc̃,c(k, i) = 0.

Consequently, to describe intuitively the passage along an arbitrary cycloid
c̃, we have to take into account the associated directed circuit (cycle) c;
namely, we say that a cycloid c̃ passes through the point i if and only if
the associated directed circuit c passes through the point i, that is, relations
(8.1.5) hold for c.

8.2 The Cycloid Decomposition of Balanced
Functions

We present the following theorem:

Theorem 8.2.1. Let S be a nonvoid set. Assume w is a real function de-
fined on S × S whose oriented graph G is connected, satisfying the folowing
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balance equations: ∑
j∈S

w(i, j) =
∑
k∈S

w(k, i), i ∈ S. (8.2.1)

Then there exists a finite collection C∗ = {c̃1, . . . , c̃B} of independent
elementary cycloids in G and a set {α1, . . . , αB} of real nonnull numbers
such that

w(i, j) =
B∑

k=1

αkJc̃k,ck(i, j), i, j ∈ S, αk ∈ R, (8.2.2)

where B is the Betti number of the graph G, αk ≡ w(ik, jk) with (ik, jk) the
chosen Betti edge for c̃k, and Jc̃k,ck are the passage-functions associated
with the cycloids c̃k, k = 1, . . . , B. Furthermore, the decomposition (8.2.2)
is independent of the ordering of C∗.

Proof. Let G = (S,E) be the oriented connected graph of w. That is,
(i, j) ∈ E if and only if w(i, j) �= 0. With the graph G we associate the
vector spaces C1 and C̃1 generated by the edges and cycloids of G, respec-
tively.

Consider now an arbitrary maximal tree � = (S, T ) of G. Then there
are edges of E, say e1 = (i1, j1), . . . , eB == (iB , jB), such that E = T ∪
{e1, . . . eB}. Hence, B is the Betti number G. Because � is a tree, any
two points of S may be joined by a chain in T. In addition, that � is a
maximal tree means that each directed edge of E\T = {e1, . . . , eB}, say
ek = (ik, jk), determines a unique elementary cycloid c̃k in T ∪ {ek} and a
unique associated circuit ck with the orientation of ek, k = 1, . . . , B. Then,
by using (8.1.4), we may assign the unique vector-cycloid c̃k to the pair
(c̃k, ck), k = 1, . . . , B.

Define

α1 = α1(e1) ≡ w(i1, j1).

Put

w1(i, j) ≡ w(i, j) − α1Jc̃1,c1(i, j), i, j ∈ S.

Then w1 is a new real balanced function on S. If w1 ≡ 0, then equations
(8.2.2) hold for C∗ = {c̃1} and B = 1. Otherwise, w1 remains different from
zero on fewer edges than w (because w1 is zero at least on the edge (i1, j1)).

Further, we repeat the same reasonings above for all the edges e2 =
(i2, j2), . . . , eB = (iB , jB), and define

wB(i, j) ≡ w(i, j) −
B∑

k=1

αkJc̃k,ck(i, j), i, j ∈ S.

where αk ≡ w(ik, jk), k = 1, . . . , B. From the previous construction of the
elementary cycloids c̃k and circuits ck, k = 1, . . . , B, there follows that the
associated vector-cycloids c̃1, . . . , c̃B form a base for C̃1.
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Also, wB(ik, jk) = 0, k = 1, . . . , B, and the reduced function wB remains
a balance function on the tree T, as well. Then wB ≡ 0 (see Lemma 4.4.1).
Consequently, we may write

w(i, j) =
B∑

k=1

αkJc̃k,ck(i, j), i, j ∈ S.

The proof is complete. �
Corollary 8.2.2. Assume the oriented strongly connected graph G =
(S,E) associated with a positive balanced function on a finite set S × S.
If {c̃1, . . . , c̃B} is a base of elementary Betti cycloids, then for any i ∈ S
we have ∑

j∈S

B∑
k=1

Jc̃k,ck(i, j) =
∑
u∈S

B∑
k=1

Jc̃k,ck(u, i) ≥ 1. (8.2.3)

Proof. Let i ∈ S and let c be an elementary directed circuit of G that
passes through i, that is,∑

j∈S

Jc(i, j) =
∑
u∈S

Jc(u, i) = 1.

Then we may apply the cycloid decomposition formula (8.2.2) to the bal-
ance function Jc(·, ·) on the set E of the edges of G and correspondingly
we write

Jc(i, j) =
B∑

k=1

Jc(ik, jk)Jc̃k,ck(i, j), i, j ∈ S,

where (i1, j1), . . . , (iB , jB) are the Betti edges of G that uniquely determine
the elementary Betti cycloids c̃1, . . . , c̃B by the method of maximal tree.
Consequently, we have

1 =
∑
j∈S

Jc(i, j) =
∑
j∈S

B∑
k=1

Jc(ik, jk)Jc̃k,ck(i, j)

=
∑
u∈S

B∑
k=1

Jc(ik, jk)Jc̃k,ck(u, i)

≤
∑
j∈S

B∑
k=1

Jc̃k,ck(i, j) =
∑
u∈S

B∑
k=1

Jc̃k,ck(u, i).

The proof is complete. �

8.3 The Cycloid Transition Equations

Let S be a finite set. Consider the connected oriented graph G = (S,E)
and denote by C∗ the collection of all overlapping cycloids occurring in G
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(whose edge-set is identical to E). Then each maximal tree of G provides a
collection B of Betti edges in E. Denote by P(E) the power set of E.

Define the function μ: C∗ × P(E) → R as follows:

μ(c̃, A) =
∑

(i,j)∈A

Jc̃,c(i, j), if A ∈ P(E), A �= ∅, and c̃ ∈ C∗, (8.3.1)

= 0, otherwise.

Plainly, for each (i, j) ∈ E, the numbers μ(c̃, (i, j)), c̃ ∈ C∗, are the coordi-
nates of the algebraic cycloid c̃ in C1 defined as

c̃ =
∑

(i,j)∈E

Jc̃,c(i, j)b(i,j).

Furthermore, the function μ enjoys some interesting properties given by
the following.

Proposition 8.3.1. Consider G = (S,E) a connected oriented graph on a
finite set S, and the measurable space (E,P(E)).
Then the function μ: C∗ × P(E) → R defined by (8.3.1) enjoys the following
properties:

(i) For any c̃ ∈ C∗ the set function μ(c̃, ·): P(E) → R is a signed mea-
sure;

(ii) For any A ∈ P(E), the function μ(·, A) is P(C∗)-measurable;
(iii) For arbitrary c̃ ∈ C∗ and A ∈ P(E), the following equations hold

μ(c̃, A) =
∑

u∈B μ(c̃, {u})μ(c̃u, A), (8.3.2)

where B denotes a base of Betti edges of G, and for each u ∈ B, c̃u denotes
the unique elementary Betti cycloid associated with u by the maximal-tree-
method.

Proof. (i) We have μ(c̃,∅ ) = 0, c̃ ∈ C∗, and

μ(c̃,
∞⋃

n=1

An) =
∞∑

n=1

μ(c̃, An), c̃ ∈ C∗,

for all pairwise disjoint sequences {An}n of subsets of E. Hence μ(c̃, ·) is a
signed measure on P(E) for any c̃ ∈ C∗.

(ii) That μ(·, A) is P(C∗)-measurable is immediate.
(iii) Let B be the set of Betti edges associated with an arbitrarily chosen

maximal tree of G. Then by applying the cycloid decomposition formula
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(8.2.2) to Jc̃,c(i, j), we have

∑
u∈B μ(c̃, {u}) μ(c̃u, A) =

∑
u∈B

∑
(i,j)∈A

Jc̃,c(u)Jc̃u,cu(i, j)

=
∑

(i,j)∈A

Jc̃,c(i, j)

= μ(c̃, A).

The proof is complete. �

Remark. Conditions (i)–(iii) of Proposition (8.3.1) may be paralleled with
those defining a stochastic transition function from C∗ to P(E). The basic
differentiations appear in property (i) where the set function μ(c̃, ·) is a
signed measure instead of a probability on P(E), and in (iii), where equa-
tions (8.3.2) replace the known Chapman–Kolmogorov equations. How-
ever, equations (8.3.2) keep the essence of a transition as in the classical
Chapman–Kolmogorov equations: a transition from a point to a set presup-
poses a passage via an intermediate point. Specifically, in equations (8.3.2)
the role of the intermediate is played by a Betti cycloid c̃u, which is isomor-
phically identified with the Betti edge u. Consequently, Proposition (8.3.1)
allows us to introduce the following:

Definition 8.3.2. Given an oriented connected graph G = (S,E) on a fi-
nite set S and a collection C∗ of overlapping cycloids whose edge-set is E,
a cycloid transition function is any function π: C∗ × P(E) → R with the
properties:

(i) For any c̃ ∈ C∗, π(c̃, {(i, j)}) defines a balance function on S × S,
that is,

∑
j

π(c̃, {(i, j)}) =
∑
k

π(c̃, {(k, i)}), i ∈ S;

(ii) For any c̃ ∈ C∗, π(c̃, ·) is a signed measure on P(E);
(iii) For any c̃ ∈ C∗, A ∈ P(E) and for any collection B of Betti edges,

the following equation holds:

π(c̃, A) =
∑

u∈B π(c̃, {u})π(c̃u, A). (8.3.3)

Relations (8.3.3) are called the cycloid transition equations.

Plainly, they express a homologic rule characterizing the balanced func-
tions.
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A further interpretation of the cycloid decomposition formula (8.2.2)
may continue with the study of the cycloid transition equations (8.3.3) as
follows.

Consider π: C∗ × P(E) → R the cycloid transition function introduced
by (8.3.1) and assign with each c̃ ∈ C∗ the balanced function

w(i, j) = π(c̃, (i, j)), (i, j) ∈ E,
= 0, (i, j) ∈ S2\E.

Then equations (8.3.3) written for w become

w(i, j) =
∑

u∈B w(u)Jc̃u,cu(i, j), (i, j) ∈ S2, (8.3.4)

where B denotes the set of Betti edges of G associated with a maximal tree.
Consider further the measurable space (S2,P(S2)).

Denote by B the vector space of all bounded real-valued functions v on
S2 whose graphs are subgraphs of G. Then B is a Banach space with respect
to the norm of supremum.

Define the linear operator U : B → B as follows:

(Uv)(·, ·) =
∑

u∈B v(u) π(c̃u, {(·, ·)}).
Let now S be the space of all signed finite and aditive set-functions on the
power-set P(S2). A norm on S is given by the total variation norm.

Consider the linear operator V : S → S defined as follows:

(V λ)({u}) =
∑

(i,j)∈S2

λ({(i, j)}) π(c̃u, {(i, j)}), if u ∈ B,

= 0, otherwise.

Set

〈λ, v〉 =
∑

(i,j)∈S2

v(i, j)λ({(i, j)}),

for λ ∈ S, v ∈ B.
Let E(1) be the subspace of all eigenvectors v of U corresponding to the

eigenvalue 1, that is, Uv = v. Then we have the following theorem.

Theorem 8.3.3.
(i) The functions Jc̃1,c1 , . . . , Jc̃B ,cB , associated with the elementary

Betti cycloids c̃1, . . . , c̃B of the connected graph G, form a base for
the space E(1).

(ii) The space of all solutions to the cycloid formula (8.2.2) coincides
with E(1).

(iii) For any v ∈ B and for any λ ∈ S, we have

〈λ, Uv〉 = 〈V λ, v〉.
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Proof. (i) From Proposition 8.3.1, we have that the passage-functions
Jc̃1,c1 , . . . , Jc̃B ,cB belong to E(1). In addition, these functions are in-
dependent. Also, if v ∈ E(1), then v satisfies equation (8.3.4), that is,
Jc̃1,c1 , . . . , Jc̃B ,cB are generators for E(1).
(ii) This property is an immediate consequence of the definition of U.
(iii) For any λ ∈ S and any v ∈ B we have

〈λ, Uv〉 =
∑

(i,j)∈S2

λ({(i, j)})
∑

u∈B v(u)π(c̃u, {(i, j)})

=
∑

u∈B v(u)(V λ)({u}),

and

〈V λ, v〉 =
∑

(i,j)∈S2

v(i, j) (V λ)({(i, j)})

=
∑

u∈B v(u) (V λ)({u}).

The proof is complete. �

8.4 Definition of Markov Chains by Cycloids

Let S be a finite set and let G = (S,E) be an oriented strongly connected
graph. Let B be the Betti number of G, and consider a base of elementary
Betti algebraic cycloids C∗ = {c̃1, . . . , c̃B}, which correspond to a maximal
tree in G and to a set of Betti edges (i1, j1), . . . , (iB , jB). Consider also
B strictly positive numbers w1, . . . , wB such that the following relations
hold

w(i, j) ≡
B∑

k=1

wkJc̃k,ck(i, j) > 0, (i, j) ∈ E, (8.4.1)

w(i) ≡
∑
j∈S

w(i, j) =
∑
m∈S

w(m, i) > 0, i ∈ S, (8.4.2)

where Jc̃k,ck(·, ·), k = 1, . . . , B, denote the passage-functions of the Betti
cycloids c̃1, . . . , c̃B .

If we denote

Jc̃k,ck(i) ≡
∑
j∈S

Jc̃k,ck(i, j) =
∑
m∈S

Jc̃k,ck(m, i), i ∈ S,

then

w(i) =
B∑

k=1

wkJc̃k,ck(i), i ∈ S.



142 8. Cycloid Markov Processes

Define

pij =
∑B

k=1 wkJc̃k,ck(i, j)∑B
k=1 wkJc̃k,ck(i)

, if (i, j) ∈ E,

(8.4.3)
= 0, if (i, j) ∈ S2\E.

Then P = (pij , i, j ∈ S) is the stochastic matrix of an irreducible Markov
chain on S whose invariant probability distribution p = (pi, i ∈ S) has the
entries

pi =
w(i)∑

i∈S

w(i)
, i ∈ S.

Conversely, given a homogeneous irreducible Markov chain ξ on a finite
set S, the cycloid decomposition formula applied to the balance function
w(i, j) = Prob(ξn = i, ξn+1 = j), i, j ∈ S, n = 1, 2, . . . , provides a unique
collection {{c̃k}, {wk}} of cycloids and positive numbers, so that, except
for a choice of the maximal tree the correspondence ξ → {{c̃k}, {wk}} is
one-to-one.
Then we may summarize the above results in the following statement.

Theorem 8.4.1.
(i) Let S be any finite set and let G = (S,E) be an oriented strongly

connected graph on S. Then for any choice of the Betti base
C∗ = {c̃1, . . . , c̃B} of elementary cycloids and for any collection
{w1, . . . , wB} of strictly positive numbers such that relations (8.4.1)
and (8.4.2) hold, there exists a unique irreducible S-state Markov
chain ξ whose transition probability matrix P = (pij , i, j ∈ S) is de-
fined as

pij =
∑B

k=1 wkJc̃k,ck(i, j)∑B
k=1 wkJc̃k,ck(i)

, if (i, j) ∈ E.

(ii) Given a finite set S and an irreducible homogeneous S-state Markov
chain ξ = (ξn), for any choice of the maximal tree in the graph of
ξ there exists a unique minimal collection of elementary cycloids
{c̃1, . . . , c̃B} and strictly positive numbers {w1, . . . , wB} such that
we have the following cycloid decomposition:

Prob(ξn = i, ξn+1 = j) =
B∑

k=1

wkJc̃k,ck(i, j), i, j ∈ S.
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Figure 8.4.1.

Example. We now apply the cycloid representation formula of Theorem
(8.4.1) to the stochastic matrix

P =

⎛
⎜⎝

1/2 1/2 0
1/2 0 1/2
1 0 0

⎞
⎟⎠ ,

whose invariant distribution is the row-vector π = (4/7, 2/7, 1/7). The
graph of P is given in Figure 8.4.1 below.
Consider the vector w =

∑
w(i, j)b(i,j), with w(i, j) = πipij , i, j ∈ {1, 2, 3}.

The set of edges of the graph is {(1, 1), (3, 1), (2, 1)(1, 2), (2, 3)}.

Consider the maximal tree T = {(2, 1), (2, 3)} associated with the Betti
edges B = {(1, 1), (3, 1), (1, 2)}. Accordingly, the base of Betti algebraic cy-
cloids is as follows:

c̃1 = 1 · b(1,1), c̃2 = 1 · b(3,1) + (−1) · b(2,1) + 1 · b(2,3),
c̃3 = 1 · b(2,1) + 1 · b(1,2),

and they correspond to the graph-cycloids c̃1 = ((1, 1)), c̃2 = ((3, 1),
(2, 1), (2, 3)), and c̃3 = ((2, 1), (1, 2)) associated with the directed circuits
c1 = (1, 1), c2 = (3, 1, 2, 3), and c3 = (2, 1, 2).

Then according to Theorem 8.4.1 (ii), the cycloid decomposition of P
corresponding to the maximal tree T is as follows:

πipij =
2
7
Jc̃1,c1(i, j) +

1
7
Jc̃2,c2(i, j) +

2
7
Jc̃3,c3(i, j), i, j ∈ {1, 2, 3}.


