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Spectral Theory of Circuit Processes

Spectral theory of Markov processes was developed by D.G. Kendall
(1958, 1959a, b) and W. Feller (1966a). The present chapter relies on
Kendall’s Fourier representation for transition-probability matrices and
for transition-matrix functions defining discrete and continuous parame-
ter Markov processes, respectively. A specialization of the spectral theory
to circuit Markov processes is particularly motivated by the essential rôle
of the circuit-weights when they decompose the finite-dimensional distri-
butions. For this reason we shall be consequently interested in the spec-
tral representation of the circuit-weights alone. This approach is due to S.
Kalpazidou (1992a, b).

6.1 Unitary Dilations in Terms of Circuits

A preliminary element of our investigations is an N
∗-state irreducible

Markov chain ξ = (ξn)n≥0 whose transition matrix P = (pij , i, j ∈ N
∗) ad-

mits an invariant probability distribution π = (πi, i ∈ N
∗), with all πi > 0,

where N
∗ = {1, 2, . . .}. That the denumerable state space is N

∗ does not
restrict the generality of our approach. Let (C∞, wc) be the probabilistic
representative class of directed circuits and weights which decompose P as
in Theorem 3.3.1. The typical result of the present section is that the sum
of the probabilistic weights wc of the circuits passing through the edge (i, j)
has a Fourier representation.

Let l2 = l2(N∗) be as usual the Hilbert space of all sequences x = (xi)i∈N∗

with xi a complex number such that ‖x‖2 = (x, x) =
∑

i |xi|2 < ∞. The
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conjugate of any complex number z will be symbolized by z̄. Further, let
T be the linear transformation on l2 whose kth component of Tx, x ∈ l2,
is given by the absolutely convergent series

(Tx)k =
∑
i

xi(w(i)w(k))−1/2
∑
c∈C∞

wcJc(i, k), (6.1.1)

where

w(i) =
∑
c∈C∞

wcJc(i), i ∈ N
∗.

Then we may write

‖Tx‖2 =
∑
k

∣∣∣∣∣∣
∑
i

xi(w(i)w(k))−1/2
∑
c∈C∞

wcJc(i, k)

∣∣∣∣∣∣
2

≤
∑
k

⎡
⎣∑

u

|xu|2(1/(w(u)))
∑
c∈C∞

wcJc(u, k)

⎤
⎦

·
⎡
⎣∑

j

(1/(w(k)))
∑
c∈C∞

wcJc(j, k)

⎤
⎦

≤ ‖x‖2,

so that T is a contraction on l2.
With these preparations, we now prove

Theorem 6.1.1. If (C∞, wc) is the probabilistic representative class
of weighted circuits for an irreducible Markov chain whose transition
matrix P = (pjk, j, k ∈ N

∗) admits an invariant probability distribution
π = (πj , j ∈ N

∗), with all πj > 0, then

πjpjk =
∑
c∈C∞

wcJc(j, k) = (w(j)w(k))1/2
∮

eiθμjk(dθ),

where the complex-valued Borel measures μjk are supported by the circum-
ference of unit radius and satisfy the Hermitian condition μ̄jk = μkj.

Proof. We shall follow D.G. Kendall’s (1959a) approach to the integral
representations for transition-probability matrices. Accordingly, we use a
theorem of B.Sz. Nagy (see B.Sz. Nagy (1953), F. Riesz and B.Sz. Nagy
(1952), and J.J. Schäffer (1955)) according to which, if T is a linear con-
traction on a Hilbert space H, then it is always possible to embed H as a
closed subspace in an eventually larger Hilbert space H+ in such a way that
Tmx = JUmx and (T ∗)mx = JU−mx, for all x ∈ H and m ≥ 0, where U
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is a unitary operator on H+ and J is the projection from H+ onto H. P.R.
Halmos called U a unitary dilation of T.T ∗ denotes as usual the adjoint
operator of T.

We here apply Nagy’s theorem to the contraction T defined by (6.1.1)
and to the space H = l2. Accordingly, there exists a unitary dilation U
defined on a perhaps larger Hilbert space H+ such that

JUmJ = TmJ,

JU−mJ = (T ∗)mJ,

for any m = 0, 1, 2, . . . , where J is the orthogonal projection from H+ onto
H. From the proof of the Nagy theorem the space H+ is defined as the
direct sum of countably many copies of H.

Let us consider u(j) the element of H defined by

(u(j))k = δjk,

where δ denotes Kronecker’s delta. Then we have

(Tmu(j), u(k)) = (Umu(j), u(k)),
(u(j), Tmu(k)) = (U−mu(j), u(k)).

Hence ∑
c∈C∞

wcJc(j, k) = (w(j)w(k))1/2(Uu(j), u(k)).

We now apply Wintner’s theorem (see F. Riesz and B.Sz. Nagy (1952))
according to which the unitary operator U is uniquely associated with a
(strongly) right-continuous spectral family of projections {Eθ, 0 ≤ θ ≤ 2π}
with E0 = O and E2π = I such that

U =
∫ 2π

0

eiθdEθ.

Finally,

∑
c∈C∞

wcJc(j, k) = (w(j)w(k))1/2
∫ 2π

0

eiθd(Eθu(j), u(k))

= (w(j)w(k))1/2
∮

eiθμjk(dθ),

where μjk are complex-valued measures satisfying the properties referred
to in the statement of the theorem. The proof is complete. �
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6.2 Integral Representations of the Circuit-Weights
Decomposing Stochastic Matrices

This section is a sequel to the previous one. We shall be concerned with
the same irreducible Markov chain ξ = (ξn)n introduced at the beginning of
Section 6.1, save for the state space which is now considered to be the finite
set N

∗
v = {1, 2, . . . , v}, v > 1. Then the deterministic-circuit-representation

theorem (Theorem 4.2.1) asserts that the transition probabilities pjk, j, k ∈
N

∗
v, of ξ have the following decomposition in terms of the directed cir-

cuits of a finite ordered class C = {c1, . . . , cm},m ≥ 1, and of their positive
weights wc:

πjpjk =
∑
c∈C

wcJc(j, k), j, k ∈ N
∗
v, (6.2.1)

where π = (πj , j ∈ N
∗
v) denotes the invariant probability distribution of ξ.

The directed circuits c = (i1, . . . , ip, i1), p > 1, to be considered will have
distinct points i1, . . . , ip.

The principal theorem asserts that an integral representation can be
found for the deterministic circuit weights wc occurring in the decomposi-
tion (6.2.1). More specifically, we have

Theorem 6.2.1. For any circuit c occurring in the decomposition (6.2.1)
there exist a finite sequence (j1, k1), . . . , (jm, km) in the edge-set of C and
a Hermitian system {νj1k1 , . . . , νjmkm

} of Borel measures supported by the
circumference of unit radius such that wc = wcr , for some r = 1, . . . ,m,
has the expression

wc1 = (w(j1)w(k1))1/2
∮

eiθνj1k1(dθ) if r = 1,

wcr = (w(jr)w(kr))1/2
∮

eiθνjrkr
(dθ)

−
r−1∑
s=1

wcsJcs(jr, kr) if r = 2, . . . ,m m > 1.

Proof. We shall use the arguments of Theorems 1.3.1 and 4.2.1.
In this direction, let j0 be arbitrarily fixed in N

∗
v. Since w(j, k) ≡

πjpjk is balanced and
∑

k w(j0, k) > 0, we can find a sequence
(j0, u0), (u0, u1), . . . , (un−1, un), . . . of pairs, with ul �= um for l �= m, on
which w(·, ·) is strictly positive. Choosing the um,m = 0, 1, 2, . . . , from the
finite set N

∗
v, we find that there must be repetitions of some point, say

j0. Let n be the smallest nonnegative integer such that un = j0. Then, if
n ≥ 1, c1 : (j0, u0), (u0, u1), . . . , (un−1, j0) is a circuit, with distinct points
j0, u0, . . . , un−1 in N

∗
v, associated to w.
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Let (j1, k1) be the pair where w(j, k) attains its minimum over all the
edges of c1, that is,

w(j1, k1) = min
c1

w(j, k).

Put

wc1 = w(j1, k1)

and define

w1(j, k) ≡ w(j, k) − wc1Jc1(j, k).

The number of pairs (j, k) for which w1(j, k) > 0 is at least one unit
smaller than that corresponding to w(i, j). If w1 ≡ 0 on N

∗
v, then w(j, k) ≡

wc1Jc1(j, k). Otherwise, there is some pair (j, k) such that w1(j, k) > 0.
Since w1 is balanced we may repeat the same reasoning above, according
to which we may find a circuit c2, with distinct points (except for the
terminals), associated to w1.

Let (j2, k2) be the edge where w1(j, k) attains its minimum over all the
edges of c2, that is,

w1(j2, k2) = min
c2

w1(j, k).

Put

wc2 = w1(j2, k2)

and define

w2(j, k) ≡ w1(j, k) − wc2Jc2(j, k)
= w(j, k) − wc1Jc1(j, k) − wc2Jc2(j, k).

Then w2(j1, k1) = w2(j2, k2) = 0. Since N
∗
v is finite, the above process will

finish after a finite number m = m(j0) of steps, providing both a finite or-
dered class C = {c1, . . . , cm} of directed circuits, with distinct points (ex-
cept for the terminals), in N

∗
v and an ordered collection of positive numbers

{wc1 , . . . , wcm} such that

w(j, k) =
m∑

k=1

wckJck(j, k), j, k ∈ N
∗
v.

Moreover, the strictly positive numbers wck , called as always circuit
weights, are described by a finite sequence of edges (j1, k1), . . . , (jm, km)
and the recursive equations

wc1 = w(j1, k1)
wc2 = w(j2, k2) − w(j1, k1)Jc1(j2, k2), (6.2.2)

...

wcm = w(jm, km) −
m−1∑
s=1

wcsJcs(jm, km).
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Consider now the operator V mapping x ∈ l2(N∗
v) into the vector Vx,

where the kth component of Vx is given by the sum

(V x)k =
∑
j

xj(w(j)w(k))−1/2
∑
c∈C

wcJc(j, k),

with w(j) ≡∑c wcJc(j).
Then, following the proof of Theorem 6.1.1 we can extend V to a uni-

tary operator U for which there exists a Hermitian collection of spectral
measures {νjk} such that

w(j, k) = (w(j)w(k))1/2
∮

eiθνjk(dθ),

for all (j, k), and so, for (j1, k1), . . . , (jm, km) occurring in (6.2.2). Accord-
ingly, the weights given by equations (6.2.2) have the desired integral rep-
resentation. The proof is complete. �

6.3 Spectral Representation of Continuous
Parameter Circuit Processes

6.3.1. Consider an N
∗-state irreducible positive-recurrent Markov process

ξ = (ξt)t≥0 whose transition matrix function P (t) = (pij(t), i, j ∈ N
∗) is

stochastic and standard, that is,

pij(t) ≥ 0,
∑
j

pij(t) = 1,

pij(t + s) =
∑
k

pik(t)pkj(s),

lim
t→0−

pij(t) = pij(0) = δij ,

for all i, j ∈ N
∗ and all t, s ≥ 0. Let Ξt = (ξnt)n≥0 be the discrete t-skeleton

chain of ξ, where t > 0.
Consider the (weakly continuous) semigroup {Tt, t ≥ 0} of contractions

associated with P = (P (t))t≥0. Then this semigroup may be expressed in
terms of the probabilistic circuit representative (C, wc(t))t≥0, provided in
Theorem 5.5.2, as follows:

(Ttx)k =
∑
i∈N∗

xi(w(i)w(k))−1/2
∑
c∈C

wc(t)Jc(i, k), k ∈ N
∗, (6.3.1)

for all x ∈ l2(N∗), where w(i) =
∑

c∈C wc(t)Jc(i) for any i ∈ N
∗.

Theorem 6.3.1. Let P (t) = (pij(t), i, j ∈ N
∗) be a standard stochastic

transition matrix function defining an irreducible positive-recurrent Markov
process ξ = (ξt)t≥0 whose invariant probability distribution is denoted by
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π = (πi, i ∈ N
∗). Then for each t ≥ 0 the transition probabilities pjk(t) can

be written in the form:

πjpjk(t) = (w(j)w(k))1/2
∫ +∞

−∞
eiλtμjk(dλ),

where {μjk, i, k ∈ N
∗} is a Hermitian collection of complex-valued totally

finite Borel measures carried by the real line.

Proof. The main argument of the proof is due to D.G. Kendall (1959b).
Correspondingly, we apply a theorem of B.Sz. Nagy according to which we
can embed H ≡ l2(N∗) as a closed subspace in an eventually larger Hilbert
space H+ in such a way that for all t ≥ 0

JUtJ = TtJ,

JU−tJ = T ∗
t J,

where J is the orthogonal projection from H+ onto H,T ∗
t is the adjoint

operator of Tt, and {Ut,−∞ < t < ∞} is a strongly continuous group of
unitary operators on H+. (The smallest such collection {H+, Ut, H} is
unique up to isomorphisms). Further we apply a theorem of M.H. Stone
(see F. Riesz and B.Sz. Nagy (1952), p. 380) according to which there
exists a right-continuous spectral family {Eλ,−∞ < λ < ∞} of projection
operators such that

(Utx, y) =
∫ +∞

−∞
eiλtd(Eλx, y), x, y ∈ H+,

for all real t.
We have

(Ttx, y) = (JUtx, y) = (Utx, Jy) = (Utx, y), x, y ∈ H ≡ l2.

Furthermore,

πjpjk(t) = (w(j)w(k))1/2(Utu(j), u(k))

= (w(j)w(k))1/2
∫ +∞

−∞
eiλtd(Eλu(j), u(k)), t ≥ 0,

where the vector u(j) lies in l2(N∗) and is defined by

(u(j))k = δjk.

Then, by virtue of Theorem II of D.G. Kendall (1959b), we may write

πjpjk(t) = (w(j)w(k))1/2
∫ +∞

−∞
eiλtμjk(dλ), t ≥ 0,

where the complex-valued totally finite Borel measures μjk, j, k ∈ N
∗, are

supported by the real line and satisfy the Hermitian condition μkj = μ̄jk.
The proof is complete. �
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6.3.2. Consider the semigroup {Tt, T ≥ 0} of contractions associated to
P = (P (t))t≥0 by (6.3.1), with P (t) = {pij(t), i, j ∈ N

∗} satisfying the hy-
potheses of the previous paragraph. D.G. Kendall (1959b) called this semi-
group self-adjoint if for each t ≥ 0 the operator Tt is a self-adjoint one, that
is, if the following “reversibility” condition

πjpjk(t) = πkpkj(t), j, k = 1, 2, . . . , (6.3.2)

is satisfied, where (π = πj , j = 1, 2, . . .) denotes the invariant probability
distribution of P (t).

On the other hand, the existence of the probabilistic circuit-coordinates
wc(t), c ∈ C, in the expression (6.3.1) of the contractions Tt, t ≥ 0, inspires
the conversion of the edge-reversibility condition (6.3.2) into a circuit-
reversibility condition as follows:

Theorem 6.3.2. The semigroup {Tt, t ≥ 0} of contractions defined by
(6.3.1) is self-adjoint if and only if the probabilistic weight functions wc(·)
satisfy the consistency equation

wc(t) = wc-(t), t ≥ 0,

for all directed circuit c ∈ C, where c- denotes the inverse circuit of c.

Proof. The proof follows combining Theorem 5.5.2, Minping Qian et al.
(1979, 1982), and Corollary 6 of S. Kalpazidou (1990a) (see also Theorem
1.3.1 of Part II). �

6.3.3. An integral representation for the circuit-weight functions wc(t)
that decompose the transition matrix function P (t) can be found if pre-
liminarily we express all wc(t) in terms of the pij(t)’s. So, applying the
argument of Theorems 6.3.1 and 6.2.1 to each t-skeleton chain, we obtain

Theorem 6.3.3. For any t > 0 and any circuit c occurring in the decom-
position (6.2.1) of the matrix P (t) indexed by N

∗
v = {1, . . . , v} there exist

a finite sequence (j1, k1), . . . , (jm, km) of edges and a Hermitian system
{νjnkn , n = 1, . . . ,m} of complex-valued totally finite Borel measures sup-
ported by the real line such that wc(t) = wcr (t), for some r = 1, . . . ,m, has
the expression

wc1(t) = (w(j1)w(k1))1/2
∫ +∞

−∞
eiλtνj1k1(dλ) if r = 1,

wcr (t) = (w(jr)w(kr))1/2
∫ +∞

−∞
eiλtνjrkr (dλ)

−
r−1∑
s=1

wcs(t)Jcs(jr, kr) if r = 2, . . . ,m, m > 1.


