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Cycle Representations of Recurrent
Denumerable Markov Chains

This chapter deals with the cycle generating equations defined by the tran-
sition probabilities of denumerable Markov chains ξ which are recurrent.
The solutions (C, wc) of cycles and weights to these equations will be called
cycle representations of ξ.

A natural idea to define a cycle (circuit) weight wc is similar to that
providing an “edge-weight” πipij , that is, the wc will be the mean number
of the appearances of c along almost all the sample paths. This will argue for
a probabilistic criterion assuring the uniqueness of the cycle representation,
that is, for a probabilistic algorithm with a unique solution of cycles and
weights which decompose the finite-dimensional distributions of ξ.

An alternate method of development is a deterministic approach accor-
ding to which the circuit weights are given by a sequence of nonprobabilistic
algorithms.

Our exposition follows the results of the Peking school of Qians (1978–
1991), S. Kalpazidou (1990a, 1992e, 1993c, 1994b), and Y. Derriennic
(1993).

3.1 The Derived Chain of Qians

As we have already seen in Theorem 1.3.1, the representative collection
(C, wc) of circuits and weights is not, in general, unique. It depends on
the choice of the ordering of the representative circuits in the algorithm of
Theorem 1.3.1.
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In general, there are many algorithms of cycle decompositions for the
finite-dimensional distributions of Markov chains which admit invariant
probability distributions. Some of them provide a unique solution (C, wc)
as a representative class, and some others have many solutions of represen-
tative classes (as the algorithm of Theorem 1.3.1). So, when we say that
we look for the uniqueness of the representative class (C, wc), we under-
stand that we shall refer to a definite algorithm with a unique solution
(C, wc).

Expectedly, such an algorithm can be defined involving a probabilistic
argument. It is Qians’s school that first introduced probabilistic arguments
to a unique cycle representation using, as a basic tool, a Markov process
whose state space consists of the ordered sequences (i1, . . . , in) of distinct
points of a denumerable set S. Here we shall present Qians’s approach in the
contexts of our formalism exposed in Chapter 1. So, preliminary elements
of our exposition are the directed cycles with distinct points as introduced
by Definition 1.1.3. Accordingly, a cycle is an equivalence class with respect
to the equivalence relation defined by (1.1.1); for instance, to the circuit
c = (i1, . . . , in, i1) is assigned the cycle ĉ = (i1, . . . , in) which represents the
cycle-class {(i1, . . . , in), (i2, i3, . . . , in, i1), . . . , (in, i1, . . . , in−1)}. This pre-
supposes that all further entities which rely on cycles should not depend
on the choice of the representatives while the circuits to be considered will
have distinct points (except for the terminals).

The idea of taking directed cycles arises from the topological prop-
erty of the trajectories of certain Markov chains providing directed cycles
along with directed circuits, that is, the chains pass through the states
i1, i2, . . . , in, i1, or any cyclic permutation (see Figure 3.1.1).

So, the occurrence of a cycle (i1, . . . , in) along a trajectory of these chains
presupposes the appearance of the corresponding circuit (i1, . . . , in, i1).
Such a chain is any homogeneous, irreducible, aperiodic, and positive-
recurrent Markov chain ξ = (ξn, n ≥ 0) with a countable state space S.
Namely, if a typical realization of a sample path (ξn(ω))n is (i1, i2, i3, i2,
i3, i4, i1, i3, i5, . . .), ik ∈ S, k = 1, 2, . . . , then the sequence of the cycles is
(i2, i3), (i2, i3, i4, i1), (see Figure 3.1.1).

The interpretation of a cycle ĉ = (i1, . . . , ir) in terms of the chain
ξ is that it appears on a sample path (ξn(ω))n (and then on almost

Figure 3.1.1.
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all the sample paths as we shall see below), that is, the chain passes
through the states i1, i2, . . . , ir, i1 (or any cyclic permutation). For in-
stance, if the values of (ξn(ω))n≥0 are given by (1, 4, 2, 3, 2, 6, 7, 6, 1, . . .),
then the sequence of cycles occurring on this trajectory is given by
(2, 3), (6, 7), (1, 4, 2, 6), . . . , while the corresponding tracks of the remain-
ing states are (1, 4, 2, 6, 7, 6, 1, . . .)(1, 4, 2, 6, 1, . . .) (S. Kalpazidou (1990a,
1994b)). The previous decycling procedure can be found in various fields
under different versions. For instance, S. Alpern (1991) introduced a sim-
ilar decycling method in game theory. This leads naturally to a new
chain y = (yn(ω))n≥0 whose value at time k is the track of the remain-
ing states, in sequence, after discarding the cycles formed up to k along
(ξn(ω))n≥0.

In the following table we give the trajectory (1, 4, 2, 3, 2, 6, 7, 6, 1, . . .) of
(ξn(ω))n along with the attached trajectory (yn(ω))n as well as the cycles
occurring along (ξn(ω))n:

n 0 1 2 3 4

ξn(ω) 1 4 2 3 2
yn(ω) [1] [1, 4] [1, 4, 2] [1, 4, 2, 3] [1, 4, 2]
Cycles (2, 3)

n 5 6 7 8 . . .

ξn(ω) 6 7 6 1 . . .
yn(ω) [1, 4, 2, 6] [1, 4, 2, 6, 7] [1, 4, 2, 6] [1] . . .
Cycles (6, 7) (1, 4, 2, 6) . . .

It turns out that each cycle ĉ = (i1, . . . , ir) is closed by the edge (ir, i1)
which occurs either after ĉ, or before completing ĉ, as (i1, i2) in the cycle
(i2, i3, i4, i1) of Figure 3.1.1, or as (1, 4) in the cycle (1, 4, 2, 6) of the table
above, where the time unit is the jump-time of (ξn(ω))n.

Let wc,n(ω) be the number of occurrences of the cycle ĉ up to time n
along the trajectory ω of ξ. The rigorous definition of wc,n(ω) is due to
Minping Qian et al. (1982). It is this definition that we describe further. If
tn(ω) denotes the nth jump time of (ξn(ω))n, then introduce

τ1(ω) = min{tn(ω) : ∃m < n such that ξtn(ω)(ω) = ξtm(ω)(ω)},
τ∗1 (ω) = tm(ω), if tm(ω) < τ1(ω) and ξtm(ω)(ω) = ξτ1(ω)(ω).

Define

ξ(1)
n (ω) =

{
ξn(ω), if n < τ∗1 (ω) or n > τ1(ω);
ξτ1(ω)(ω) = ξτ∗

1 (ω)(ω), if τ∗1 (ω) ≤ n ≤ τ1(ω).
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Further we continue the same procedure of discarding cycles by considering
the nth jump-time t

(1)
n (ω) of (ξ(1)

n (ω))n. Then we put

τ2(ω) = min{t(1)n (ω) : ∃m < n such that ξ(1)

t
(1)
n (ω)

(ω) = ξ
(1)

t
(1)
m (ω)

(ω)}
and so on, obtaining the sequence:

τ1(ω) < τ2(ω) < · · · < τn(ω) < · · ·
and

τ∗1 (ω) < τ∗2 (ω) < · · · < τ∗n(ω) < · · · .
Now, denote an ordered sequence of distinct points i1, . . . , ir by
[i1, . . . , ir] and identify the ordered union [[i1, . . . , im], [im+1, . . . , im+n]]
with [i1, . . . , im, im+1, . . . , im+n]. The set [S] of all finite ordered sequences
[i1, . . . , ir], r ≥ 1, of points of S is denumerable.

Set t0(ω) = 0. Define

y0(ω) = [ξ0(ω)],
yn(ω) = [ξ0(ω)], if n < t1(ω)
yn(ω) = [ξ0(ω), ξt1(ω)(ω), . . . , ξn(ω)], if t1(ω) ≤ n < τ1(ω),

yτ1(ω)(ω) = [ξ0(ω), ξt1(ω)(ω), . . . , ξτ∗
1 (ω)(ω)],

yn(ω) = [yτ1(ω)(ω), [ξts(ω)(ω)]τ1(ω)<ts(ω)≤n], if τ1(ω) < n < τ2(ω),

and so on. It is easy to see that y = {yn}n≥0 is an [S]-state Markov chain
called by Minping Qian the derived chain associated to ξ.

Furthermore, it is seen in S. Kalpazidou (1990a) that if for a cycle ĉ =
(i1, . . . , ir) the sum

n∑
m=1

r∑
k=1

1{ω:ym−1(ω)=[ym(ω),[ik,ik−1,...,ik+r−1]]}(ω)

is meant modulo r the cyclic permutations (i.e., it is independent of the
cyclic permutations of ik, ik+1, . . . , ik+r−1), then it equals

wc,n(ω) =
n∑

m=1

1{the class-cycle ĉ occurs}(ω). (3.1.1)

If pjk, j, k ∈ S, denote the transition probabilities of ξ, then for E =
[k1, k2, . . . , ks] and F = [j1, j2, . . . , jr] the transition probabilities pFE of
y are given as follows:

pFE =

⎧⎨
⎩
pjrks

, if either r ≥ s and k1 = j1, k2 = j2, . . . , ks = js,
or r = s− 1 and k1 = j1, k2 = j2, . . . , kr = jr;

0, otherwise.
(3.1.2)

Since ξ is recurrent, we have

Prob(ξn returns to i/ξ0 = i) = 1,
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and then

Prob(yn returns to [i]/y0 = [i]) = Prob(ξn returns to i/ξ0 = i) = 1.

Let now [E]i be the subset of all ordered sequences in [S] whose first
element is i. Then [E]i is a stochastically closed class of y. Therefore y is
recurrent on each irreducible class [E]i. The invariant probability distribu-
tion π̃ is given on the point sets [i] by

π̃([i]) = π(i), (3.1.3)

where π = (πi, i ∈ S) denotes the invariant probability distribution of ξ.
The general definition of π̃([i1, i2, . . . , is]) has a much more complex al-

gebraic expression in terms of the transition probabilities pij of ξ as we see
in the following theorem due to Minping Qian and Min Qian (1982):

Theorem 3.1.1.

(i) The invariant probability distribution of the chain y on the recurrent
class [E]i is given by

π̃([i1, i2, . . . , is]) = pi1i2pi2i3 · · · pis−1is · πi1N(i2, i2/i1)
×N(i3, i3/i1, i2) · · ·N(is, is/i1, . . . , is−1) (3.1.4)

where i1 = i and N(i, j/i1, . . . , ik), 1 ≤ k ≤ s− 1, denotes the taboo
Green function

N(i, j/i1, . . . , ik) =
∞∑

n=0

Prob(ξn = j, ξm �= i1, . . . , ik;

for 1 ≤ m < n/ξ0 = i).

(ii)

π̃([i1, i2, . . . ,is])pisi1 =
s∑

k=1

∑
j2,...,jr

π̃([j1, . . . , jr,ik,ik+1, . . . ,ik−1])piκ−1iκ,

(3.1.5)

where j1 is fixed in the complement set of {i1, i2, . . . , is} and
the inner sum is taken over all distinct choices j2, j3, . . . , jr ∈
S\{j1, i1, . . . , is}. The sums k + 1, k + 2, . . . , k + s− 1 are under-
stood to be modulo s.

(iii) For any fixed points i and j we write

πj =
∑

j2,...,jr

π̃([i, j2, . . . , jr, j]), (3.1.6)

where the sum is taken over all distinct choices j2, j3, . . . , jr ∈
S\{i, j}.
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Proof. According to T.E. Harris (1952) we have the following identities:

πiN(j, j/i) = πjN(i, i/j), (3.1.7)
π̃(E1) q̃(E1, E2) = π̃(E2) q̃(E2, E1), (3.1.8)

for any E1, E2 states in [E]i, where q̃(Ei, Ej) denotes the probability that
the derived chain y starting at Ei enters Ej before returning to Ei. Then,
for E1 = [i1, i2, . . . , is−1] and E2 = [i1, i2, . . . , is−1, is] we have that

q̃(E1, E2) = pis−1is ,

q̃(E2, E1) = 1 −H(is, is/i1, i2, . . . , is−1),

where H(is, is/i1, i2, . . . , is−1) denotes the probability that the original
chain ξ starting at is returns to is before entering the states i1, i2, . . . , is−1.
Hence relation (3.1.8) becomes

π̃([i1, i2, . . . , is−1])pis−1is = π̃([i1, . . . , is])(1 −H(is, is/i1, . . . , is−1))
(3.1.9)

and

π̃([i1, i2, . . . , is]) = π̃([i1, i2, . . . , is−1])pis−1isN(is, is/i1, i2, . . . , is−1).
(3.1.10)

Now we may appeal to a theorem of K.L. Chung (1967) (see p. 48), and
write accordingly

N(is, is/i1, . . . , is−1)N(is+1, is+1/i1, . . . , is−1, is)
= N(is+1, is+1/i1, . . . , is−1)N(is, is/i1, . . . , is−1, is+1). (3.1.11)

Then equation (3.1.4) follows from (3.1.3) and (3.1.10). It is to be noticed
that the product

πi1N(i2, i2/i1)N(i3, i3/i1, i2) . . . N(is, is/i1, i2 . . . , is−1) (3.1.12)

is unaffected by any permutation of the indices i1, i2, . . . , is because of
(3.1.7) and (3.1.11).

To prove relation (3.1.5) we first show that

1 =
s∑

k=1

∑
j2,...,jr

N(j1, j1/i1, . . . , is)

·N(j2, j2/i1, . . . , is, j1)N(j3, j3/i1, . . . , is, j1, j2) . . .
·N(jr, jr/i1, . . . , is, j1, . . . , jr−1)pj1j2pj2j3 · · · pjriκ , (3.1.13)

where j1 /∈ {i1, . . . , is} is fixed and the inner sum is taken over all distinct
j2, . . . , jr /∈ {i1, . . . , is, j1}. Let p(i, j/H/n) be the taboo probability

p(i, j/H/n) = Prob(ξn = j, ξm /∈ H for 1 ≤ m < n/ξ0 = i).
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For k, j2, j3, . . . , jr fixed, the sum over n1, . . . , nr of

p(j1, j1/i1, . . . , is/n1)pj1j2p(j2, j2/i1, . . . , is, j1/n2)pj2j3
. . . p(jr, jr/i1, . . . , is, j1, . . . , jr−1/nr)pjriκ

is the probability for the chain ξ starting at j1 to enter the set {i1, . . . , is}
for the first time at the state ik while the value of the derived chain y is
[j1, j2, . . . , jr, ik]. Thus we get the summand of (3.1.13). Then the desired
equation (3.1.5) follows by multiplying both sides of (3.1.13) with

pisi1pi1i2 . . . pis−1isπi1N(i2, i2/i1) ·N(i3, i3/i1, i2) . . . N(is, is/i1, . . . , is−1),

and using the symmetry of (3.1.12). Finally, equation (3.1.6) follows from
(3.1.13) when taking s = 1, j1 = i, and i1 = j, and multiplying by πj . �

3.2 The Circulation Distribution of a
Markov Chain

A step closer to a probabilistic criterion for the uniqueness of the rep-
resentative cycle-weights of a Markov chain ξ, under the assumptions of
the previous section, is to find a definite algorithm whose quantities enjoy
probabilistic interpretations in terms of the sample paths. The idea is to
generalize to cycles the definition of the “edge-weight” w(i, j) = πipij in
terms of sample paths; namely, as is well known the w(i, j) is the mean
number of the consecutive passages of (ξn(ω))n through the points i and
j. That is, πipij is the almost sure limit of

1
n

card{m ≤ n : ξm−1(ω) = i, ξm(ω) = j},
as n → ∞.

Accordingly, the revealing question for us will be whether or not we can
analogously argue for the expression

1
n

card{m ≤ n : the cycle ĉ occurs on (ξk(ω))k} =
1
n
wc,n(ω),

where m counts the appearances of ĉ on (ξk(ω))k. (Recall that a cycle
ĉ = (i1, i2, . . . , ir), r > 1, appears on (ξk(ω))k if the chain passes through
the points i1, i2, . . . , ir, i1, or any cyclic permutation.)

In this direction, we first need to prove that (1/n)wc,n(ω) has a limit
independent of ω. Namely, we have

Theorem 3.2.1. Let ξ = (ξn)n be an aperiodic, irreducible, and positive-
recurrent Markov chain defined on a probability space (Ω,K, P) and with
a countable state space S, and let Cn(ω), n = 0, 1, 2, . . . , be the class of all
cycles occurring until n along the sample path (ξn(ω))n.
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Then the sequence (Cn(ω), wc,n(ω)/n) of sample weighted cycles associ-
ated with the chain ξ converges almost surely to a class (C∞, wc), that is,

C∞ = lim
n→∞Cn(ω), a.s. (3.2.1)

wc = lim
n→∞(wc,n(ω)/n), a.s. (3.2.2)

Furthermore, the cycle-weights wc are independent of the choice of an
ordering on C∞.

Proof. Let p̂j ≡ P(ξ0 = j), j ∈ S. Following S. Kalpazidou (1990a), we
can assign to each ω the class limn→∞ Cn(ω) of directed cycles that
occur along (ξn(ω))n, since the sequence (Cn(ω)) is increasing. Denote
C∞(ω) ≡ limn→∞ Cn(ω) =

⋃
n Cn(ω).

On the other hand, applying the law of large numbers to the Markov
chain y we have

lim
n→∞(wc,n(ω)/n) = E1{the class-cycle ĉ occurs},

where ĉ is any class-cycle having the representative (ik, ik+1, . . . , is, i1, . . . ,
ik−1). Put

wc ≡ lim
n→∞(wc,n(ω)/n).

That wc is finite and independent of ω follows from (3.1.5) and the following
equalities due to Minping Qian et al. (1982):

wc =
s∑

k=1

E(1{yn−1=[yn,[ik,ik+1,...,is,i1,...,ik−1]]})

=
∑
j1

p̂j1

s∑
k=1

∑
j2,...,jr

π̃([j1, j2, . . . , jr, ik, ik+1, . . . , ik−1]) · pik−1ik , (3.2.2′)

where j1, . . . , jr /∈ {i1, . . . , is}, r ≥ 0, are distinct from one another. From
here it results that C∞(ω) ≡ C∞ is independent of ω as well, and this
completes the proof. �

We now introduce the following nomenclature:

Definition 3.2.2. The items occurring in Theorem 3.2.1 are as follows:
the sequence {wc,n(ω)/n}ĉ∈C∞ , which is called the circulation distribution
on ω up to time n, the wc, which is called the cycle skipping rate on ĉ or c,
and {wc, ĉ ∈ C∞}, which is called the circulation distribution of ξ.

Remarks
(i) Theorems 3.1.1 and 3.2.1 remain valid for periodic and positive-

recurrent Markov chains as well. In general, convergence of averages along
Markov chain trajectories is required (even if there is no finite-invariant
measure). Recent investigations to this direction are due to Y. Derriennic
(1976), and Y. Derriennic and M. Lin ((1989), (1995)).
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(ii) The wc’s verify the consistency equation wc = wc ◦ ti , for all i ∈ S,
where {ti} is the group of translations on Z occurring in (1.1.1).

As an immediate consequence of Theorem 3.2.1 one obtains from (3.2.2′)
the exact algebraic expression for the cycle skipping rate wc as follows:

Corollary 3.2.3. If π = (πi, i ∈ S) is the invariant probability distribution
of an S-state irreducible positive-recurrent Markov chain ξ = (ξn)n and ĉ =
(i1, i2, . . . , is) is a cycle, then the cycle skipping rate wc is given by equation

wc = πi1pi1i2pi2i3 . . . pis−1ispisi1

·N(i2, i2/i1)N(i3, i3/i1, i2) . . . N(is, is/i1, i2, . . . , is−1), (3.2.3)

where (pij , i, j ∈ S) is the transition matrix of ξ, and N(ik, ik/i1, . . . , ik−1)
denotes the taboo Green function introduced in (3.1.4).

3.3 A Probabilistic Cycle Decomposition
for Recurrent Markov Chains

We are now prepared to answer our original question on the existence of a
unique cycle decomposition, provided by a probabilistic algorithm, for the
finite-dimensional distributions of the recurrent Markov chains. Namely, the
probabilistic algorithm to be considered is that occurring in Theorem 3.2.1
while the desired decomposition follows from Theorem 3.1.1 (see Minping
Qian and Min Qian (1982), and S. Kalpazidou (1990a)).

Consequently, we may state

Theorem 3.3.1 (The Probabilistic Cycle Representation). Let S be any
denumerable set. Then any stochastic matrix P = (pij , i, j ∈ S) defining
an irreducible and positive-recurrent Markov chain ξ is decomposed by the
cycle skipping rates wc, ĉ ∈ C∞, as follows:

πipij =
∑
ĉ∈C∞

wcJc(i, j), i, j ∈ S, (3.3.1)

where C∞ is the class of cycles ĉ occurring in Theorem 3.2.1, c denotes the
circuit corresponding to the cycle ĉ, π = (πi, i ∈ S) is the invariant prob-
ability distribution of P and Jc(i, j) = 1 or 0 according to whether or not
(i, j) is an edge of c.

The above cycle-weights wc are unique, with the probabilistic interpreta-
tion provided by Theorem 3.2.1, and independent of the ordering of C∞.

If P defines a positive-recurrent Markov chain, then a similar decompo-
sition to (3.3.1) holds, except for a constant, on each recurrent class.

The representative class (C∞, wc) provided by Theorem 3.3.1 is called
the probabilistic cycle (circuit) representation of ξ and P while ξ is called a
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circuit chain. The term “probabilistic” is argued by the algorithm of Theo-
rem 3.2.1 whose unique solution {wc} enjoys a probabilistic interpretation
in terms of the sample paths of ξ.

The terms in the equations (3.3.1) have a natural interpretation using
the sample paths of ξ as follows (S. Kalpazidou (1990a)). Consider the
functions σn(·; i, j) defined as

σn(ω; i, j) =
1
n

card{m ≤ n : ξm−1(ω) = i, ξm(ω) = j}
for any i, j ∈ S. Consider Cn(ω) to be, as in Theorem 3.2.1, the class of
all the cycles occurring up to n along the sample path (ξn(ω))n. We recall
that a cycle ĉ = (i1, . . . , ir), r ≥ 2, occurs along a sample path if the chain
passes through states i1, i2, . . . , ir, i1 (or any cyclic permutation). Notice
that the sample sequence

k(ω) = (ξm−1(ω), ξm(ω))

occurs up to n whenever either k(ω) is passed by a cycle of Cn(ω) in the
sense of Definition 1.2.2 or k(ω) is passed by a circuit completed after time
n on the sample path (ξn(ω)). Therefore for i �= j and n > 0, great enough,
we have

σn(ω; i, j) =
∑

ĉ∈Cn(ω)

1
n
wc,n(ω)Jc(i, j) + εn(ω; i, j)/n, (3.3.2)

where

εn(ω; i, j) = 1{the last occurrence of (i, j) does not happen
together with the occurrence of a cycle of Cn(ω)}

(ω). (3.3.3)

Then the left side of (3.3.2) converges to πipij and each summand of the
right side converges to wcJc(i, j).

From the present standpoint a natural way of proving a cycle-
decomposition-formula is to observe that the a.s. limit of the sums∑

ĉ∈C∞

(wc,n(ω)/n)Jc(i, j)

when n tends to infinity is related with the sum occurring in equations
(3.3.1). This inspires a direct proof of the decomposition (3.3.1) as in the
following theorem due to Y. Derriennic (1993).

Theorem 3.3.2. Let S be a denumerable set and let P = (pij , i, j ∈ S) be
any stochastic matrix defining an irreducible and positive-recurrent Markov
chain ξ. Then

πipij = lim
n→∞

∑
ĉ∈C∞

(wc,n(ω)/n)Jc(i, j) a.s.

=
∑
ĉ∈C∞

wcJc(i, j), (3.3.4)
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where (C∞, wc) and wc,n(ω) have the same meaning as in Theorem 3.2.1,
π = (πi, i ∈ S) is the invariant probability distribution of P and Jc(i, j) =
1 or 0 according to whether or not (i, j) is on edge of c.

Proof. Consider the derived chain y associated to ξ and an arbitrarily
chosen irreducible class [E]i. Then the restriction of y to [E]i is a positive-
recurrent chain whose invariant probability distribution is given by (3.1.4).
Let [E]ij be the subset of [E]i which consists of all the cycles starting with
the consecutive points i and j. Then, applying the Birkhoff ergodic theorem
to the number of the visits of y in the set [E]ij , one obtains relations (3.3.4).
The proof is complete. �

If ξ is an irreducible null-recurrent Markov chain, then a cycle-
decomposition-formula may be obtained using a similar argument where
Birkhoff’s theorem is replaced by the Hopf ergodic theorem for ratios. Ac-
cordingly, the limit of (wc,n(ω)/wc′,n(ω)) exists a.s. as n → ∞ for any cir-
cuits c and c′.

3.4 Weak Convergence of Sequences of Circuit
Chains: A Deterministic Approach

We introduced two types of circuit representations of Markov chains ac-
cording to whether or not the corresponding algorithms define the circuit-
weights by a random or a nonrandom choice. In the spirit of Kolmogorov
we may call such algorithms probabilistic (randomized) and deterministic
(non-randomized) algorithms, respectively.

In the present section the deterministic algorithm of Theorem 1.3.1 is
generalized to infinite classes of directed circuits such that the correspon-
ding denumerable circuit Markov chain ξ can be defined as a limit of a
certain sequence (mξ)m of finite circuit chains. The convergence of this
sequence is weak convergence in the sense of Prohorov, that is, the finite-
dimensional distributions of mξ converge as m → ∞ to the corresponding
ones of ξ.

The approach we are ready to follow will rely on the idea of circuit gen-
erating equations exposed in Section 1.3. In this direction we shall consider
denumerable reversible Markov chains which are of bounded degree, that
is, from each state there are finitely many passages to other states. Then a
parallel to Tychonov’s theorem for infinite products of compact topological
spaces can be conceived along with the matching Hall-type theorem for
infinite bipartite graphs (see P. Hall (1935) and K. Menger (1927)).

The preliminary element will be a stochastic matrix P = (pij , i, j ∈ S)
on a denumerable set S, that defines a reversible, irreducible, aperiodic,
and positive-recurrent Markov chain ξ = (ξn)n, whose invariant probability
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distribution is denoted by π = (πi, i ∈ S). The main theorem is that a cir-
cuit decomposition for P can be given using a deterministic algorithm
according to which the directed circuits c ∈ C and their weights wc are
solutions to certain recursive balance equations where the “edge-weights”
πipij , i, j ∈ S, are used without any probabilistic meaning. The represen-
tative class (C, wc) will be called a deterministic circuit representation of
ξ and of P.

One reason for choosing a deterministic algorithm is that the correspon-
dence P → C becomes nearly one-to-one, that is, the class C approximates
the probabilistic one. It is proved below that the class C may be the limit
of an increasing sequence nC of finite classes of overlapping directed cir-
cuits. The one-to-one correspondences P → C are particularly important
for plenty of problems arising in various fields. For example, we may refer
here to the so-called coding problem arising in the context of dynamical
systems, that in turn leads to the problem of mapping stochastic matrices
into partitions. A detailed exposition of this argument is given in Section
3.5 of Part II.

The relation P → (C, wc) for transient Markov chains is still an open
problem and may be connected in particular with certain questions arising
in network theory. One of them is concerned with the existence of unique
cycle-currents in infinite resistive networks made up by circuits. Interesting
results in this direction for edge-networks are due to H. Flanders (1971),
A.H. Zemanian (1976a, 1991) and P.M. Soardi and W. Woess (1991). For
instance, Flanders’s condition for a current I to be the unique solution to
a network-type problem (in the class of all currents with finite energy)
consists of the existence of a sequence of currents in finite subnetworks
approaching I.

We begin our investigations by considering a countable set S and a
stochastic matrix P = (pij , i, j ∈ S) of bounded degree, that is, for each
i ∈ S there are finitely many j ∈ S such that pij > 0 or pji > 0. Assume P
defines a reversible, irreducible, and aperiodic Markov chain ξ admitting
an invariant probability distribution π = (πi, i ∈ S), with all πi > 0.

We say ξ defines a directed circuit c = (i1, . . . , in, i1) where n ≥ 2, and
ik �= im for distinct k,m ≤ n, if and only if pi1i2 , pi2i3 , . . . pin−1inPini1 > 0.
Throughout this section the directed circuits will be considered to have dis-
tinct points (except for the terminals). The irreducibility condition amounts
to the existence for each pair (i, j), with i �= j, of a directed finite sequence
σ(i, j) connecting i to j, that is,

σ(i, j) : i0 = i, i1, . . . , in = j, n ≥ 1 with ik �= im for k �= m; k,m ≤ n,

such that pii1 . . . pin−1j > o. (3.4.1)

The following property characterizes, in general, irreducibility:

Proposition 3.4.1. Any two points of S are cyclic-edge-connected in S.
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Proof. Let i �= j. If pij > 0, the proof is immediate. Otherwise, there exist
two directed paths σ1(i, j) and σ2(j, i) connecting i to j and j to i, respec-
tively. If j1 �= i, j denotes the first point of σ1 belonging to σ2, then there
exists the directed circuit

c1 = (σ1(i, j1), σ2(j1, i)),

such that the points j1 and j are mutually connected by the directed paths
σ1(j1, j) and σ2(j, j1). By repeating the previous reasonings, we obtain a
sequence of directed circuits connecting i to j such that any two consecutive
circuits have at least one common point. �

Consider the shortest-length-distance introduced in Section 2.2, that is,

d(i, j) =

⎧⎨
⎩

0, if i = j;
the shortest length n
of the paths σ(i, j) defined by (3.4.1), if i �= j;

(3.4.2)

where the connections are expressed by the forward–backward passage
functions introduced by relation (2.2.1). Then, for any finite subgraph of P
define its diameter as the maximal distance. Since any point of S is cyclic-
edge-connected with all the others, we may choose an arbitrary point O ∈ S
as the origin of the spheres S(O,m) of radius m,m = 0, 1, . . . with respect
to the distance d above.

We are now prepared to prove a deterministic circuit decomposition of
P following S. Kalpazidou (1993c). As was already mentioned, we are in-
terested in representing the chain ξ by a class (C, wc) provided by a de-
terministic algorithm such that the correspondence P → C becomes nearly
one-to-one, that is, C will approximate the collection of all the circuits oc-
curring along almost all the sample paths. Then the trivial case of the class
containing only the circuits of period two will be avoided. We have

Theorem 3.4.2. Consider S a denumerable set and ξ = (ξn)n≥0 an S-
state Markov chain which is irreducible, aperiodic, reversible, and positive-
recurrent. Assume the transition matrix P = (pij , i, j ∈ S) of ξ is of
bounded degree.

Then there exists a sequence (mξ)m of finite circuit Markov chains, asso-
ciated with a sequence of deterministic representative classes (mC,mwc)m,
which converges weakly to ξ as m → ∞ such that C = limm→∞ mC appro-
ximates the collection of all the circuits occurring along the sample paths
of ξ. The chain ξ becomes a circuit chain with respect to the class (C, wc)
where

wc =
∑

m→∞

mwc.

Proof. Consider the balls B(O, n) =
⋃n

k=0 S(O, n), n = 0, 1, . . . . Then for
each n and for any i, j ∈ B(O, n) the restriction nξ of ξ to the ball B(O, n)
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has the transition probability

npij = pij/

⎛
⎝ ∑

j∈B(O,n)

pij

⎞
⎠ .

Correspondingly, if π = (πi, i ∈ S) is the invariant probability distribution
of ξ then that of nξ in B(O, n) is given by the sequence nπ = (nπi, i ∈
B(O, n)) where

nπi =

⎛
⎝πi

∑
j∈B(O,n)

pij

⎞
⎠/

⎛
⎝ ∑

i,j∈B(O,n)

πipij

⎞
⎠ .

Put
npi = πi

∑
j∈B(O,n)

pij , i ∈ B(O,n), n = 1, 2, . . . .

It is to be noticed that if pij > 0 there exists an n0 such that for any n ≥ n0

we have i, j ∈ B(O,n) and
npij ≥ n+1pij ≥ · · · ≥ pij ,

0 < npi ≤ n+1pi ≤ · · · ≤ πi,

such that
npi

npij = n+1pi
n+1pij = · · · = πipij . (3.4.3)

Since any function nw(i, j) ≡ nπi
npij , n ≥ 0, is balanced in B(O,n), we can

appeal to Theorem 1.3.1 and find accordingly a class (nC, nwc) such that

nπi
npij =

∑
c∈nC

nwcJc(i, j), i, j ∈ B(O,n), (3.4.4)

where the Jc is the backward–forward passage function given by (2.2.1). For
n = 0, the constrained process to B(O, 0) = {O} has an absorbtion state
O and is represented by the class 0C = {c = (O,O)} where c = (O,O) is
the loop-circuit at point O and wc = 1.

Let us further consider n great enough such that the ball B(O, n) com-
prises all the circuits with periods larger than or equal to some k ≥ 1.
Applying as above Theorem 1.3.1 to nw(i, j) and B(O, n) we choose a se-
quence nc1, . . . .

nck1 of circuits such that some of them are the loops in
B(O, n) and some others are certain circuits of the subgraphs in B(O, n)
with diameters larger than one. Particularly, we may choose these circuits
such that they occur along almost all the sample paths of nξ.

The irreducibility hypothesis implies that
∑

j∈B(O,n) pbj < 1 for cer-
tain points b ∈ B(O, n). We shall call these points the boundary points of
B(O, n). On the other hand, since the matrix P is of bounded degree, per-
haps there are points i ∈ B(O, n) which satisfy equation

∑
j∈B(O,n) pij = 1.

These points will be called the interior points of B(O, n).
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Let us denote n1 = n and
1C ≡ n1C = {n1c1, . . . ,

n1ck1}.
Then (3.4.4) becomes

n1πi
n1pij =

∑
c∈1C

n1wcJc(i, j), i, j ∈ B(O, n1). (3.4.5)

For each boundary point b ∈ B(O, n1) there is a point j /∈ B(O, n1) such
that pbj > 0. Let n2 > n1 such that all the boundary points of B(O, n1)
will become interior points in B(O, n2).

Put
n2w(i, j) ≡ n2πi

n2pij = (πipij)/
∑

i,j∈B(O,n2)

πipij , i, j ∈ B(O, n2).

Note that because of (3.4.3) both n1w(·, ·) and n2w(·, ·) attain their mini-
mum over the Arcset of c1 ≡ n1c1 at the same edge, say (i1, j1), that is,

n1wc1 ≡ n1w(i1, j1) = min
c1

n1w(i, j),

n2w(i1, j1) = min
c1

n2w(i, j).

The latter equations enable us to choose n2c1 ≡ n1c1 ≡ c1 and n2wc1 ≡
n2w(i1, j1). We have

n1wc1 ≥ n2wc1 ≥ πi1pi1j1 > 0.

Further put
n2w1(i, j) ≡ n2w(i, j) − n2wc1Jc1(i, j), i, j ∈ B(O, n2).

Then n2w1(i1, j1) = 0 and the function n2w1(·, ·) is also balanced in
B(O, n2).

Appealing to the algorithm of Theorem 1.3.1 in B(O, n2), we find an
edge (i2, j2) of c2 ≡ n1c2 (n1 = n) where both n1w1 and n2w1 attain their
minimum, that is,

n1wc2 =n1 w1(i2, j2) ≡ min
c2

n1w1(i, j)

=

⎛
⎝1
/⎛⎝ ∑

i,j∈B(O,n1)

πipij

⎞
⎠
⎞
⎠ (πi2pi2j2 − πi1pi1j1

Jc1(i2, j2)),

and
n2w1(i2, j2) ≡ min

c2

n2w1(i, j)

=

⎛
⎝1
/⎛⎝ ∑

i,j∈B(O,n2)

πipij

⎞
⎠
⎞
⎠ (πi2pi2j2 − πi1pi1j1Jc1(i2, j2)).
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Then we may choose n2c2 ≡ c2 and n2wc2 ≡ n2w1(i2, j2). Hence
n1wc2 > n2wc2 ≥ πi2pi2j2 − πi1pi1j1Jc1(i2, j2) > 0.

Repeating the same reasonings above, we conclude that all the circuits in
B(O, n1) are circuits in B(O, n2) as well, that is,

n1c1 = n2c1 ≡ c1,
n1c2 = n2c2 ≡ c2,

...
n1ck1 = n2ck1 ≡ ck1 .

Then the n2w(i, j) is decomposed in B(O, n2) by a class (2C, n2wc) where
2C = {c1, . . . , ck1 , ck1+1, . . . , ck2}, k2 > k1,

may particularly contain circuits which occur along the sample paths of
the restriction n2ξ of ξ to B(O, n2).

Hence
n2w(i, j) ≡ n2πi

n2pij =
∑
c∈2C

n2wcJc(i, j).

Continuing the previous reasonings, we shall find a sequence {sC}s≥1 of
finite classes of directed circuits which is increasing. Then there exists the
limiting class

C ≡ lim
s→∞

sC = {c1, c2, . . . , ck1 , . . .}.

On the other hand, for any circuit c ∈ C, we find a sequence {nswc}s≥1

of positive numbers which is decreasing, and so convergent to a number
wc ∈ [0, 1], that is, lims→∞, nswc = wc. Moreover, there is some σ ≥ 1 such
that c ∈ σC. Then

nswc ≥ πirpirjr −
r−1∑
k=1

πiκpiκjκJcκ(ir, jr) > 0,

for all s ≥ σ and some i1, . . . , ir and j1, . . . , jr where r = 1, . . . , kσ. Thus,
wc > 0, for all c ∈ C.

Now consider any i, j in S such that pij > 0. Then there exists σ ≥ 1
such that i, j are interior points of B(O, nσ) and (i, j) ∈ Arcset σC. Hence

nσw(i, j) ≡ nσπi
nσpij =

kσ∑
r=1

nσwcrJcr (i, j),

and

nsw(i, j) =
kσ∑
r=1

nswcrJcr (i, j), for all s ≥ σ.
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Finally, we have

πipij = lim
s→∞

nsπi
nspij

= lim
s→∞

kσ∑
r=1

nswcrJcr (i, j)

=
kσ∑
r=1

wcrJcr (i, j)

=
∑
c∈C

wcJc(i, j).

The proof is complete. �

Remark. As was shown in the previous proof, there is a definite algebraic-
topological property of a directed circuit c = (i1, . . . , is, i1) defined by
w(i, j) = πipij , i, j ∈ S. Namely, we have

Lemma 3.4.3. Let f1 and f2 be two positive functions defined on S2. In
order that equations ∑

j

f1(i, j) =
∑
j

f2(j, i), i ∈ S,

be circuit-generating ones it is necessary that for some i1, . . . , is ∈ S the
inequalities

f1(i1, i2)f1(i2, i3) · · · f1(is−1, is)f1(is, i1) > 0,
f2(i1, i2)f2(i2, i3) · · · f2(is−1, is)f2(is, i1) > 0,

imply each other.

3.5 Weak Convergence of Sequences of Circuit
Chains: A Probabilistic Approach

A denumerable reversible positive-recurrent Markov chain is a weak limit
of finite circuit Markov chains whose representative circuits and weights are
algorithmically given according to Theorem 3.4.2. It might be interesting to
investigate the same asymptotics when the representatives enjoy probabilis-
tic interpretations. For instance, we may consider that the cycle-weights are
provided by the probabilistic algorithm of Theorem 3.3.1. In this section
we give a more detailed argument following S. Kalpazidou (1992a, b, e)
and Y. Derriennic (1993).

Consider S a denumerable set and ξ = (ξn)n≥0 an irreducible
and positive-recurrent Markov chain (not necessarily reversible) whose
transition matrix and invariant probability distribution are, respectively,
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P = (pij , i, j ∈ S) and π = (πi, i ∈ S). Let (ξm(ω))m≥0 be a sample path
of ξ and let n be any positive integer chosen to be a sufficiently great
number. Put

Cn(ω) = the collection of all circuits with distinct points
(except for the terminals) occurring along (ξm(ω))m
until time n;

Sn(ω) = the set of the points of Cn(ω).

Throughout this section the circuits will be considered to have distinct
points (except for the terminals).

Consider

wc,n(ω) = the number of occurrences of the circuit c along
(ξm(ω))m up to time n,

and the functions

wn(i, j) = ωwn(i, j) ≡
∑

c∈Cn(ω)

(wc,n(ω)/n)Jc(i, j),

wn(i) = ωwn(i) ≡
∑

c∈Cn(ω)

(wc,n(ω)/n)Jc(i),

for all i, j ∈ Sn = Sn(ω). Since the constrained passage-function Jc(·, ·),
with c ∈ Cn(ω), to the set Sn is still balanced, the function wn(·, ·) does
as well. Therefore the collection {wn(i), i ∈ Sn} plays the rôle of an invari-
ant measure for the stochastic matrix nP = nPω ≡ (ωwn(i, j)/ωwn(i), i, j ∈
Sn), n = 1, 2, . . . .

Accordingly, we may consider a sequence (nξ)n of Markov chains nξ =
n
ωξ = {nωξm,m = 1, 2, . . .} whose transition probabilities in Sn are defined
as

npij = n
ωpij ≡

{
(ωwn(i, j))/(ωwn(i)), if (i, j) is an edge of a circuit inCn(ω);

0, otherwise.

Put

nπi = n
ωπi = cn(ω) ωwn(i), i ∈ Sn,

where cn(ω) = 1/(
∑

i ωwn(i)).
It is to be noticed that, since

nπi
npij = cn(ω)ω wn(i, j) �= (πipij)/

⎛
⎝ ∑

i,j∈Sn

πipij

⎞
⎠ ,

the above chain nξ, n = 1, 2, . . . , is not the restriction of ξ to Sn. So, the
investigations up to this point disclose differences between the weak conver-
gence of (nωξ), as n → ∞, and that of deterministic circuit representations
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occurring in Theorem 3.4.2. It is the following theorem that shows a spe-
cial nature of the weak convergence of (nωξ) to ξ, as n → ∞ (S, Kalpazidou
(1992e)).
Namely, we have

Theorem 3.5.1. For almost all ω the sequence (nωξ)n converges weakly, as
n → ∞, to the chain ξ. Moreover the sequence of the circuit representations
associated with (nωξ)n converges, as n → ∞, to the probabilistic circuit rep-
resentation (C, wc) of ξ, where C is the collection of the directed circuits
occurring along almost all the sample paths.

Proof. First note that we can regard the process n
ωξ in Sn as a circuit chain

with respect to the collection (Cn(ω), wc,n(ω)/n). Accordingly, we have

nπi
npij = n

ωπi
n
ωpij = cn(ω)

∑
c∈Cn(ω)

(wc,n(ω)/n)Jc(i, j),

when (i, j) is an edge of a circuit of Cn(ω), where Jc(i, j) = 1 or 0 according
to whether or not (i, j) is an edge of c. Then, as in Theorem 3. 2.1 we may
find a limiting class (C, wc) defined as

C = lim
n→∞Cn(ω), a.s.,

wc = lim
n→∞(wc,n(ω)/n), a.s.

The equations (3.3.2) and the same argument of Theorem 3.3.1 enables us
to write

πipij = lim
n→∞

n
ωπi

n
ωpij a.s.

=
∑
c∈C

wcJc(i, j),

since limn→∞ cn(ω) = 1 a.s.
(Here we have replaced the index-set C∞, which contains all the cycles,

in Definition 3.2.2 of the circulation distribution by the set C of the corre-
sponding circuits.) This completes the proof. �

3.6 The Induced Circuit Chain

Y. Derriennic (1993) has defined the denumerable circuit Markov chains as
limits of weakly convergent sequences of induced chains. In particular, it
is seen that the induced chain of a circuit chain is a new type of “circuit
chain.”

To this direction, let S be any denumerable set and let ξ = (ξn)n be
an S-state irreducible and positive-recurrent Markov chain defined on a
probability space (Ω,F, P ). For a given nonvoid subset A of S, the induced
chain of ξ on the set A, denoted by Aξ, is the Markov chain whose transition
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probabilities Apij , i, j ∈ A, are defined as follows:

Apij = P (ξ enters first A at state j, if ξ starts at i)

=
∞∑

n=1

⎛
⎝ ∑

ji,...,jn−1∈S\A
pij1 pj1j2 . . . pjn−1j

⎞
⎠ .

Therefore, the induced transition probability Apij , i, j ∈ A, is the expected
number of times that the Markov chain ξ is in the state j before being in
the set S/A, given that ξ starts from the state i:

Apij =
∞∑

n=0

Ap
(n)
ij , i, j ∈ A, (3.6.1)

where Ap
(0)
ij ≡ 0, and Ap

(n)
ij , n = 1, 2, . . . , is the n-step transition probability

with taboo set of states A, that is,

Ap
(n)
ij =P (ξn(ω) = j, ξn−1(ω) �∈ A, ξn−2(ω) �∈ A, . . . , ξ1(ω) �∈ A/ξ0(ω) = i).

We have

Proposition 3.6.1. If ξ = (ξn)n is a positive-recurrent Markov chain then
AP = (Apij , i, j ∈ A) is a stochastic matrix.

Proof. Following Chung’s Theorem 3 (1967, p. 45) when j ∈ A we have

Ap
(n)
ij ≤ jp

(n)
ij = f

(n)
ij ≡ P (ξn(ω) = j, ξn−1 �= j, . . . , ξ1 �= j|ξ0(ω) = i) ≤ 1.

Hence Apij ≤ jpij = fij ≤ 1, where fij ≡
∑
n≥1

f
(n)
ij , i, j ∈ A.

Also, if ξ is positive-recurrent then fii =
∑
n≥1

f
(n)
ii = 1, for any i ∈ A. There-

fore ∑
j∈A

Apij =
∑
j∈A

P (ξ enters first A at state j/ξ0(ω) = i)

=
∑
n≥1

P (ξ enters first A at time n/ξ0(ω) = i)

= P

⎛
⎝⋃

n≥1

{ξn ∈ A}/ξ0(ω) = i

⎞
⎠

≥ P

⎛
⎝⋃

n≥1

{ξn = i}/ξ0(ω) = i

⎞
⎠ = fii ≡ 1.

The proof is complete. �
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Furthermore, we prove

Proposition 3.6.2. If ξ is an irreducible and positive-recurrent Markov
chain, then Aξ is irreducible.

Proof. We first write

Apij = pij +
∑
n≥2

∑
j1,...,jn−1∈S\A

pij1 pj1j2 . . . pjn−1j , (3.6.2)

for any i, j ∈ A. Then

Apij > 0 (3.6.3)

if either pij > 0, or there are j1, . . . , jn−1 ∈ S\A,n ≥ 2, such that

pij1 pj1j2 . . . pjn−1j > 0.

To prove that the induced Markov chain Aξ is irreducible, we have to show
that for any pair (i, j) ∈ A×A either

(i)

Apij > 0, (3.6.4)

(ii) or, there exist k1, . . . , km ∈ A, m ≥ 1, such that

Apik1 Apk1k2 . . .Apkmj > 0.

So, let us consider an arbitrary pair (i, j) of states in A. Then irreducibility
of ξ allows us to write that either pij > 0, or, there exist k1, . . . , km ∈
S,m ≥ 1, such that

pik1 pk1k2 . . . pkmj > 0. (3.6.5)

If pij > 0 then Apij > 0. Otherwise we may distinguish the following cases:

Case 1: Relations (3.6.5) hold with all k1, . . . , km ∈ A. Then, according to
(3.6.2), we have

Apik1 Apk1k2 . . . Apkmj > 0,

and therefore relation (3.6.4)(ii) holds.
Case 2: Relations (3.6.5) hold with all k1, . . . , km ∈ S\A. Then by using
(3.6.3), we have ∑

ji,...,jn−1∈S\A
pij1 pj1j2 . . . pjn−1j > 0,

with n = m + 1 and for j1 = k1, . . . , jn−1 = km. Accordingly,

Apij =
∑
n≥1

∑
ji,...,jn−1∈S\A

pij1 pj1j2 . . . pjn−1j > 0,

and relation (3.6.4)(i) holds.
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Case 3: Relations (3.6.5) hold with some kt ∈ S\A and some others
mk ∈ A.
For the sake of simplicity, let us consider all k1, . . . , km ∈ S\A except for
some kt ∈ A, 1 ≤ t ≤ m. Then i, kt, j ∈ A and we may apply case 1 to the
pairs (i, kt), (kt, j) of states in A. Hence

Apikt Apktj > 0,

and relation (3.6.4)(ii) holds for m = 2.

Next, if k1, . . . , km ∈ S\A except for some kt, kt+s ∈ A, 1 ≤ t, t + s ≤ m,
then we may apply again case 1 to the pairs (i, kt), (kt, kt+s), and (kt+s, j)
of states in A. Accordingly, we get

Apikt Apktkt+s Apkt+sj > 0,

and relation (3.6.4)(ii) holds for m = 3. Finally, case 3 may be extended
for general situations m ≥ 3 by repeating the previous reasonings. Then,
we conclude that the irreducibility of the original chain ξ implies the same
property for Aξ. The proof is complete. �

Now we are prepared to prove the following:

Theorem 3.6.3. Let S be a denumerable set and let ξ = (ξn)n≥0 be an
S-state irreducible and positive-recurrent Markov chain. Then there exists
a sequence (nη)n of finite induced circuit chains, which converges weakly to
ξ, as n → ∞.

Proof. Let (An)n be an increasing sequence of finite subsets of S such that
lim An = S, as n → ∞. Then 1η, 2η, . . . , nη, . . . are taken to be the induced
chain of ξ on A1, A2, . . . , An, . . . , that is, nη ≡ An

ξ, n = 1, 2, . . . . Then,
following Propositions 3.6.1 and 3.6.2, any induced chain nη, n = 1, 2, . . . ,
is an irreducible finite Markov chain. Therefore, the induced transition
probability Anpij of any nη accepts a circuit representation {Cn, wcn},
that is,

Anpij =

∑
cn∈Cn

wcnJcn(i, j)∑
cn∈Cn

wcnJcn(i)
, i, j ∈ An, n = 1, 2, . . . ,

where Jc(i, j) = 1 or 0 according to whether or not (i, j) is an edge of c,
and (nη)n converges weakly to ξ. The proof is complete. �

Further, it will be interesting to define a natural procedure of inducing
a circuit representation {CA, wA} for the induced chain Aξ on the finite
subset A ⊂ S, starting from an original circuit representation C of ξ.

Note that, Apij > 0 if and only if Ap
(n)
ij > 0, for certain n = 1, 2, . . . . Then

a natural procedure of inducing the circuits of C into A is due to Derriennic
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(1993) and consists in the following: any circuit c = (i1, i2, . . . , is, i1) ∈ C,
which contains at least one point in A may induce a circuit cA in A as the
track of the remaining points of c in A, written with the same order and
cyclically, after discarding the points of c which do not belong to A. In this
manner the representative collection C of directed circuits in S determines
a finite collection CA = {c1, c2, . . . , cN} of induced circuits into the finite
subset A ⊂ S.

Furthermore, by choosing suitably the circuits in C, we may use the
induced circuits c1, . . . , cN of CA to partition the original collection C into
the subcollections C0, C1, . . . , CN defined as

Ck = {c ∈ C: c induces the circuit ck in A}, k = 1, . . . , N,

C0 = {c ∈ C: c induces no circuit in A},
such that no circuit of C0 passes through A.
Then

C = C0

⋃(
N⋃

k=1

Ck

)
. (3.6.6)

Let us now consider a collection of circuit-weights {wc} which decomposes
ξ, that is,

P (ξn = i, ξn+1 = j) =
∑
c∈C

wc Jc(i, j), i, j ∈ S, (3.6.7)

for any n = 0, 1, . . .
Then we may decompose the induced transition probability Apij by using
the induced circuits of CA. Specifically, we may write

Apij = pij + Ap
(2)
ij + · · · + Ap

(n)
ij + · · ·

=
P{ξ1 = j, ξ0 = i}

P{ξ0 = i}
+

P{ξ2 = j, ξ1 ∈ S\A, ξ0 = i}
P{ξ0 = i} + · · ·

+
P{ξn = j, ξn−1 ∈ S\A, . . . , ξ1 ∈ S\A, ξ0 = i}

P{ξ0 = i} + · · ·

The denumerator P (ξ0 = i), i ∈ A, occurring in the expression of Apij is
decomposed by the representative class CA as follows:

P (ξ0 = i) =
∑
c∈C

wcJc(i) =
N∑

k=1

∑
c∈Ck

wcJc(i)

=
N∑

k=1

(
∑
c∈Ck

wc)Jck(i),
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where {wc, c ∈ C} are the weights occurring in 3.6.7. Then by defining the
“induced” circuit-weights νcA , cA ∈ CA, as

νck ≡
∑
c∈Ck

wc, k = 1, . . . , N,

we have

P (ξ0 = i) =
N∑

k=1

νck , Jck(i), i ∈ A.

Let us now calculate the numerator of Apij , i, j ∈ A, in terms of CA:

P (ξ1 = j, ξ0 = i) +
∑

j1∈S\A
P (ξ2 = j, ξ1 = j1, ξ0 = i)

+
∑

j1j2∈S\A
P (ξ3 = j, ξ2 = j2, ξ1 = j1, ξ0 = i)

+ · · ·+
∑

j1,...,jn−1∈S\A
P (ξn=j,ξn−1 =jn−1,. . .,ξ1 =j1,ξ0 = i)

+ · · ·
We have

P (ξ0 = i, ξ1 = j) =
∑
c∈C

wcJc(i, j)

=
N∑

k=1

(∑
c∈Ck

wcJc (i, j)

)
Jck(i, j)

=
N∑

k=1

1νck(i, j)Jck(i, j),

for any i, j ∈ A, where

1νck(i, j) =
∑
c∈Ck

wcJc(i, j), i, j ∈ A.

Let

2w(i, j) ≡
∑

j1∈S\A
P (ξ2 = j, ξ1 = j1, ξ0 = i), i, j ∈ A.

Then, if ξ is reversible then 2w(i, j) is symmetric. Also, 2w(i, j) > 0 implies
Apij > 0. Accordingly, the representative circuits of 2w will belong to CA,
and we may find 2νck ≥ 0, k = 1, . . . , N, such that

2w(i, j) =
N∑

k=1

2νck Jck(i, j), i, j ∈ A.
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By repeating the same reasoning for any

nw(i, j) ≡
∑

j1,...,jn−1∈S\A
P (ξn = j, ξn−1 = in−1, . . . , ξ1 = i1, ξ0 = i0),

where i, j ∈ A, n = 3, 4, . . . we may find nνck ≥ 0, k = 1, . . . , N, such that

nw(i, j) =
N∑

k=1

nνck Jck(i, j), i, j ∈ A.

Then the numerator of Apij is given by

N∑
k=1

νck(i, j) Jck(i, j)

where

νck(i, j) = 1νck(i, j) + ν̃ck

with

ν̃ck =
∑
n≥2

nνck , k = 1, . . . , N.

Therefore,

Apij =
∑N

k=1 νck(i, j)Jck(i, j)∑N
k=1 νckJck(i)

, i, j ∈ A. (3.6.8)

In conclusion, when the positive-recurrent chain ξ is irreducible then the
induced chain Aξ is also irreducible with respect to the invariant probability
distribution Aπ = (Aπi, i ∈ A) defined as

Aπi =

∑
cA∈CA

νcA JcA(i)∑
cA∈CA

p(cA)νcA
, i ∈ A,

where p(cA) denotes as always the period of the circuit cA in A.
Finally, if ξ is reversible then Aξ is also reversible and the corresponding

induced transition probability Apij admits a “circuit representation” given
by (3.6.8).


