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Lévy’s Theorem Concerning
Positiveness of Transition
Probabilities

Paul Lévy investigated “the allure” of the sample paths of general Markov
processes ξ = {ξt}t≥0 with denumerable state space S by using the prop-
erties of the so-called i-intervals, that is the sets I(i) = {t: ξt = i}. Lévy’s
study concludes with a very fine property of the transition probabilities
pij(t) of ξ, known as the Lévy dichotomy:

for any pair (i, j) of states and t ∈ (0,+∞), pij(t) is either identically
zero or everywhere strictly positive.

(See P. Lévy (1951, 1958).)
D.G. Kendall, introducing a classification for Markovian theorems in the

spirit of the swallow/deep classification of Kingman, pointed out that the
Lévy dichotomy belongs to the class of theorems relying on the Chapman–
Kolmogorov equations (see D.G. Kendall and E.F. Harding (1973), p. 37).

D.G. Austin proved Lévy’s property by a probabilistic argument, using
the right separability of the process and Lebesgue’s theorem on differen-
tiation of monotone functions. Another proof, more analytic, was latter
given by D. Ornstein (see K.L. Chung (1967) for details on these results).
Recently, K.L. Chung (1988)) proved Lévy’s theorem by using some infor-
mation from the corresponding Q-matrix: he assumes the states are stable.

In this section we shall show that Lévy’s theorem has an expression
in terms of directed cycles or circuits, when the state space is at most a
countable set and the process admits an invariant probability distribution
π = (πi, i ∈ S). Our approach relies on the circuit representation theory
exposed in Part I according to which, for each t, the transition probabilities
pij(t) are completely determined by a class {C(t), wc(t)}, where C(t) and
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wc(t) denote, respectively, a collection of directed circuits occurring in the
graph of (pij(t), i, j ∈ S) and strictly positive numbers. Specifically, the
pij(t)’s are expressed as

πipij(t) =
∑

c∈C(t)

wc(t)Jc(i, j), wc(t) > 0, t ≥ 0, i, j ∈ S,

where Jc is the passage function associated with c. Throughout this chap-
ter the circuits will be considered to have distinct points (except for the
terminals). Then for t > 0

w(i, j, t) ≡ πipij(t) > 0
if and only if (i, j) is an edge of some circuit c ∈ C(t).

Accordingly, we may say that Lévy’s theorem expresses a qualitative prop-
erty of the process ξ. This will then inspire a circuit version of Lévy’s
theorem according to which the representative circuits are time-invariant
solutions to the circuit generating equations∑

j

w(i, j, t) =
∑
k

w(k, i, t), i ∈ S, t > 0.

Finally, we shall discuss a physical interpretation of Lévy’s theorem when
the elements of C(t) are considered resistive (electric) circuits, the πi, i ∈
S, represent node (time-invariant) currents and the w(i, j, t), i, j ∈ S, are
branch currents.

2.1 Lévy’s Theorem in Terms of Circuits

Given a countable set S, let P = {P (t), t ≥ 0} be any homogeneous stochas-
tic standard transition-matrix function with P (t) = (pij(t), i, j ∈ S). As-
sume P defines an irreducible positive-recurrent Markov process ξ =
{ξt, t ≥ 0} on a probability space (Ω,K,P). Suppose further that P (t), t >
0, is of bounded degree (that is, for any i ∈ S there are finitely many
states j and k such that pij(t) > 0 and pki(t) > 0). For any t > 0 consider
the discrete t-skeleton Ξt = {ξnt, n ≥ 0} of ξ, that is, the S-state Markov
chain whose transition probability matrix is P (t). The above assumptions
on P imply that any skeleton-chain Ξt is an irreducible aperiodic positive-
recurrent Markov chain.

Now we shall appeal to the circuit representation Theorems 3.3.1 and
5.5.2 of Part I according to which, there exists a probabilistic algorithm
providing a unique circuit representation {Ct, wc(t)} for each P (t), that is,

πipij(t) =
∑
c∈Ct

wc(t)Jc(i, j), t ≥ 0, i, j ∈ S, (2.1.1)
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where π = (πi, i ∈ S) denotes the invariant probability distribution of
P (t), t > 0,Ct is the collection of the directed circuits occurring on almost
all the trajectories of Ξt, t > 0, and wc(t), c ∈ Ct, are the cycle skipping
rates defined by Theorem 3.2.1. Then the wc(t)’s are strictly positive on
(0,+∞).

On the other hand, if we suppose that ξ is reversible, that is, for each
t > 0 the condition πipij(t) = πjpji(t) is satisfied for all i, j ∈ S, we may
apply the deterministic algorithm of Theorem 3.4.2 for defining a circuit
representation (C(t), w̃c(t)) of each P (t) with all w̃c(t) > 0 on (0,+∞). As
already mentioned we shall consider directed circuits (with distinct points
except for the terminals) as representatives. Furthermore, we shall distin-
guish the probabilistic collection of representative circuits from the deter-
ministic ones using the notation Ct for the first and C(t) for the second
ones. Also, the theorems quoted below belong to Part I. Denote by sgn x
the signum, that is, the function on [0,+∞) defined as sgn x = 1 if x > 0,
and sgn x = 0 if x = 0.

We are now in a position to apply to Lévy’s property the argument of
the circuit decomposition above, and to show that this property has an
expression in terms of the directed circuits.

Theorem 2.1.1. Let S be any finite set. Then for any S-state irreducible
Markov process ξ = {ξt}t≥0 defined either by a standard matrix function
P (t) = (pij(t), i, j ∈ S), t ≥ 0, or by a probabilistic or deterministic collec-
tion of directed circuits and weights, the following statements are equivalent:

(i) Lévy’s property: for any pair (i, j) of states, the sgn(pij(t)) is time
invariant on (0,+∞).

(ii) Arcset C(t) = Arcset C(s), for all t, s > 0 and for all the determin-
istic classes C(t) and C(s) of directed circuits occurring in Theorem
4.2.1 when representing Ξt, and Ξs, respectively, where Arcset C(u)
denotes the set of all directed edges of the circuits of C(u), u > 0.

(iii) Ct = Cs, for all t, s > 0, where Ct and Cs denote the unique proba-
bilistic classes of directed circuits occurring in Theorem 4.1.1 when
representing Ξt and Ξs, respectively.

If S is countable, then the above equivalence is valid for reversible pro-
cesses. In any case, we always have (i) ⇔ (iii).

Proof. First, consider that S is a finite set. The equivalence (i) ⇔ (ii)
follows immediately. Let us prove that (iii) ⇒ (i). Consider t0 > 0. Then
for any pair (i, j) of states we have

pij(t0) =
∑
c∈Ct0

1
πi

wc(t0)Jc(i, j), (2.1.2)

where π = (πi, i ∈ S) is the invariant probability distribution of ξ and
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wc(t0), c ∈ Ct0 , are the cycle skipping rates (introduced by Theorem 3.2.1).
If pij(t0) > 0, it follows from (2.1.2) that there is at least one circuit c0 ∈ Ct0

such that wc0(t0) > 0 and Jc0(i, j) = 1. Then, by hypothesis c0 ∈ Ct for all
t > 0. As a consequence, the pij(·), written as in (2.1.2), will be strictly
positive on (0,+∞). Therefore (iii) ⇒ (i).

To prove that (i) ⇒ (iii) we first note that the Chapman–Kolmogorov
equations and standardness imply that Cs ⊆ Ct for s ≤ t. It remains to show
the converse inclusion. Let c be a circuit of Ct, that is, c = (i1, . . . , ik, i1)
has the points i1, . . . , ik distinct from each other when k > 1 and

pi1i2(t)pi2i3(t) · . . . · piki1(t) > 0.

Then, from hypothesis (i) we have

pi1i2(s)pi2i3(s) · . . . · piki1(s) > 0.

Therefore c ∈ Cs, so that Cs ≡ Ct for all s, t > 0.
Finally, for the countable state space case we have to appeal to the

representation Theorems 3.3.1 and 3.4.2, and to repeat the above reasoning.
The proof is complete. �

As an immediate consequence of Theorem 2.1.1, the circuit decomposi-
tion (2.1.1), or the cycle decomposition (5.5.2) of Chapter 5 (Part I) should
be written in terms of a single class C ≡ Ct, independent of the parameter-
value t > 0, that is,

πipij(t) =
∑
c∈C

wc(t)Jc(i, j), t ≥ 0, i, j ∈ S.

Accordingly, (C, wc(t))t≥0 will be the probabilistic circuit (cycle) represen-
tation of ξ.

2.2 Physical Interpretation of the Weighted
Circuits Representing a Markov Process

One of the physical phenomena which can be modeled by a circuit pro-
cess is certainly that of a continuous electrical current flowing through a
resistive network. Accordingly, the circuits and the positive circuit-weights
representing a recurrent Markov process should be interpreted in terms of
electric networks. Then certain stochastic properties of circuit processes
may have analogues in some physical laws of electric networks.

Let S be a finite set and ξ = {ξt}t≥0 be an irreducible reversible Markov
process whose transition matrix function and invariant probability distri-
bution are P (t) = (pij(t), i, j ∈ S) and π = (πi, i ∈ S), respectively. Denote
by C0 the collection of all the directed circuits with distinct points (except
for the terminals) occurring in the graph of P (t). Since C0 is symmetric,
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we may write it as the union C ∪ C− of two collections of directed circuits
in S such that C− contains the reversed circuits of those of C.

Then the probabilistic circuit representation Theorem 4.1.1 and Lévy’s
theorem enable us to write the equations

πipij(t) =
∑
c∈C

wc(t)Jc(i, j) +
∑

wc−∈C−

wc−(t)Jc−(i, j), (2.2.1)

for any i, j ∈ S, t > 0, where the wc(t)’s and wc−(t)’s denote the cycle
skipping rates for all the circuits c and c with period greater than 2 and
the halves of the skipping rates for all the circuits c with periods 1 and 2.
The passage functions Jc and Jc− occurring in (2.2.1) are those introduced
by Definition 1.2.2 of Part I.

Consider w(i, j, t) ≡∑c∈C wc(t)Jc(i, j). Then, applying Theorem 1.3.1
of Part II, we have

1
2πi =

∑
j w(i, j, t) =

∑
k w(k, i, t), i ∈ S, t > 0. (2.2.2)

If we relate each circuit c ∈ C0 with a resistive circuit, we may interpret the
w(i, j, t), i, j ∈ S, as a branch current flowing at time t from node i to node
j. Suppose Ohm’s law is obeyed. Then equations (2.2.1) express Kirchhoff’s
current law for the resistive network associated with C.

Invoking the Lévy theorem in terms of circuits, equations (2.2.2) may
be interpreted in the electrical setting above as follows: if at some moment
t > 0 there exist currents wc(t) flowing through certain electric circuits c
according to the law of a circuit Markov process, then this happens at any
time and with the same circuits. But, using an argument from the electrical
context, the same conclusion arises as follows. The time invariance of the
node currents πi, i ∈ S, and the equilibrium Kirchhoff equations (2.2.2)
enable one to write∑

j

w(j, i, t− Δt) =
∑
k

w(i, k, t + Δt) = 1
2πi, i ∈ S, t > 0. (2.2.3)

Then, π being strictly positive at the points of every circuit c =
(i1, . . . , is, i1) at any time t > 0, the existence of a branch current
w(ik, ik+1, t− Δt) requires the existence of w(ik+1, ik+2, t + Δt), and vice
versa. Therefore the time invariance of the node currents πi and the
equilibrium equations (2.2.3) require the existence of the branch currents
w(j, i, t− Δt) > 0 and w(i, k, t + Δt) > 0 entering and leaving i. Then the
collection Ct of electrical circuits through which the current flows at time
t > 0 should be time-invariant, and this is in good agreement with Lévy’s
theorem.

In general, when interpreting a circuit Markov process, the diffusion of
electrical currents through the corresponding resistive network can be re-
placed by the diffusion of any type of energy whose motion obeys rules
similar to the Kirchhoff current law. For instance, relations (2.2.2) have
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a mechanical analogue as long as Kirchhoff current law has a full anal-
ogy in Newton’s law of classical mechanics. To review briefly some basic
mechanical elements of a mechanical system, we can recall any free-body
diagram where a body is accelerated by a net force which equals, according
to Newton’s law, the derivative of the momentum. This equality becomes,
when replacing, respectively, forces, velocity, friction, mass, and displace-
ment by currents, voltage, resistor, capacitor, and flux, formally equivalent
to Kirchhoff’s current law. The previous analogy enables us to consider cir-
cuit processes associated to mechanical systems which obey Newton’s laws.
For instance, let us observe the motion of a satellite at finitely many points
i1, i2, . . . , im of certain time-invariant overlapping closed orbits c (where
Newton’s laws are always obeyed). Then the passages of the satellite at
time t > 0 through the points i1, i2, . . . , im under the traction forces wc(t),
follow a Markovian trajectory of a circuit process with transition matrix
function

p̃ij(t) =
w(i, j, t)

π̃i
for all t > 0 and i, j ∈ {i1, i2, . . . , im},

where w(i, j, t) ≡∑c wc(t)Jc(i, j) and π̃i ≡
∑

j w(i, j, t). When a trajectory
correction is necessary at some instant of time, this will correspond to a
perturbation of either the Markov property or strict stationarity. Then we
have to change the stochastic model into another circuit process where the
corrected orbits will play the rôle of the new representative circuits for the
process.


