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To my father



Preface to the Second Edition

The cycle representations of Markov processes have been advanced after
the publication of the first edition to many directions. One main purpose of
these advances was the revelation of wide-ranging interpretations of the cy-
cle decompositions of Markov processes such as homologic decompositions,
orthogonality equations, Fourier series, semigroup equations, disintegra-
tions of measures, and so on, which altogether express a genuine law of real
phenomena.

The versatility of these interpretations is consequently motivated by the
existence of algebraic–topological principles in the fundamentals of the cy-
cle representations of Markov processes, which eliberates the standard view
on the Markovian modelling to new intuitive and constructive approaches.
For instance, the ruling role of the cycles to partition the finite-dimensional
distributions of certain Markov processes updates Poincare’s spirit to de-
scribing randomness in terms of the discrete partitions of the dynamical
phase state; also, it allows the translation of the famous Minty’s painting
lemma (1966) in terms of the stochastic entities.

Furthermore, the methods based on the cycle formula of Markov pro-
cesses are often characterized by minimal descriptions on cycles, which
widely express a philosophical analogy to the Kolmogorovean entropic com-
plexity. For instance, a deeper scrutiny on the induced Markov chains into
smaller subsets of states provides simpler descriptions on cycles than on the
stochastic matrices involved in the “taboo probabilities.” Also, the recur-
rence criteria on cycles improve previous conditions based on the stochastic
matrices, and provide plenty of examples.



viii Preface to the Second Edition

The second edition unifies all the interpretations and trends of the cycle
representations of Markov processes in the following additional chapters:

Chapter 8: Cycloid Markov Processes,
Chapter 9: Markov Processes on Banach Spaces on Cycles,
Chapter 10: The Cycles Measures,
Chapter 11: Wide Ranging Interpretations of the Cycle Representations.

Apart of that, it contains the new section 3.6 of Part I devoted to the
induced circuit chains, and the section 1.4 of Part II devoted to “the recur-
rence criterions in terms of the weighted circuits for unidimensional random
walks in random environment.”

Also, some improvements are introduced along the lines of the initial
edition.

I would like to thank Professor Y. Derriennic for his persevering contri-
butions to the present edition expressed especially by his prototypes on the
recurrence of unidimensional random walks in random environment.

Interesting ideas and results to Banach spaces on cycles are due to my
collaboration with N. Kassimatis, Ch. Ganatsiou, and Joel E. Cohen.

Also, the Chinese School of Peking (Qian Minping, Qian Gong, Qian
Min, Qian Cheng, Gong Guang, Jiang Da-Quan, Guang-Lu Gong, Hong
Qian, and others) have been in parallel advanced the cycle representations
to interesting applications in biomathematics and physics.

Finally, we all hope that the second edition will further encourage the
research on the cycle theory and its impetus to Probability Theory, Measure
Theory, Algebraic Topology, Mathematical Analysis, and related fields.

Thessaloniki Sophia L. Kalpazidou



Preface

Unrevealed harmony is superior to the visible one.

Heraclitos

The purpose of the present book is to give a systematic and unified ex-
position of stochastic processes of the Markovian type, homogeneous and
with either discrete or continuous parameter, which, under an additional
assumption concerning the existence of invariant measures, can be defined
by directed cycles or circuits. These processes are called cycle (or circuit)
processes, and the corresponding collections of weighted cycles are called
cycle representations.

The descriptions of the Markov transition law in terms of the cycles
disclose new and special properties which have given an impetus to very
intensive research concentrated on the connections between the geometric
properties of the trajectories and the algebraic characterization of Markov
processes.

Let us start with a few heuristic motivations for this new topic. The sim-
plest example leading to a cycle process arises when modeling the motion of
a particle on a closed curve. Observe the particle’s motion through p (≥ 1)
points of this curve at moments one unit of time apart. This amounts
to a discretization of the curve into an ordered sequence c = (c(n), c(n +
1), . . . , c(n + p− 1), c(n)), n = 0,±1,±2, . . . , called a directed circuit with
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period p(c) = p. The subsequence ĉ = (c(n), c(n + 1), . . . , c(n + p− 1)) will
be called a directed cycle (associated with the circuit c). Assign a positive
number wc to c. Then, a normalized measure of the passage from state
i = c(n) to j = c(n + 1) is given by wc/wc = 1. Therefore, if no influences
occur, the passages from i to j can be codified by an infinite binary sequence
y(i,j) = (0, 1, 0, . . . , 0, 1, . . .) where 1 or 0 means that at some moment n the
particle passes through or does not pass through (i, j).

The sequence y(i,j) is understood as a “nonrandom” sequence in the con-
text of Kolmogorov’s theory of complexities since both 1 and 0 appear pe-
riodically after each p steps. This happens because of the small complexity
of the particle’s trajectory which consists of a circuit c alone. Then, when
some “chaos” arises, it necessarily presupposes some complexity in the form
of the particle’s trajectory. So, let us consider a further two, or even more
than two, overlapping directed circuits c1, . . . , cr, r ≥ 2, each associated
with some positive number wcl , l = 1, . . . , r. Imagine that the particle ap-
pears sometime at the incident point i of certain circuits, say for simplicity,
c1, . . . , cl, l ≤ r. Then, the particle can continue its motion to another point
j through which some circuits cm1 , . . . , cms , s ≤ l,m1, . . . ,ms ∈ {1, . . . , l},
pass. A natural measure for the particle’s transition when moving from i
to j can be defined as

(wcm1
+ wcm2

+ · · · + wcms
)/(wc1 + wc2 + · · · + wcl) . (1)

Accordingly, the binary sequence codifying as above the appearances of
the pair (i, j) along a trajectory is given by a “more chaotic” sequence like
y(i,j) = (0, 0, 0, 1, 0, 1, 0, 0, 1, 0, . . .), where 1 means that at some moment of
time the particle passes through certain circuits containing (i, j). Further-
more, since expression (1) provides transition probability from i to j of a
Markov chain ξ = (ξn, n = 0, 1, . . .) we conclude that:

there exist deterministic constructions to a Markov chain ξ which rely on
collections C of directed circuits endowed with certain measures W =
(wc, c ∈ C). The pairs (C,W ) completely determine the process ξ.

But the same conclusion can be conversely viewed as:

there are Markov chains ξ which are defined by two distinct entities:
a topological entity given by a collection C of directed circuits, and an
algebraic entity given by a measure W = (wc, c ∈ C ).

Plainly, both topological and algebraic components C and W are not
uniquely determined, and this is motivated by the algebraic nature of
our construction. To assure the uniqueness, we should look for an-
other approach which can express the definite characteristic of the finite-
dimensional distributions of ξ.

A natural way to obtain a uniqueness criterion for (C,W ) can be given
by a behavioral approach. It is this approach that we shall further use.
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Let S be a finite set, and let ξ = (ξn)n≥0 be a homogeneous and irre-
ducible S -state Markov chain whose transition matrix is P = (pij , i, j ∈ S).
Denote by π = (πi, i ∈ S) the invariant probability distribution of P, that is,
πi > 0,

∑
i πi = 1, and∑

j

πipij =
∑
j

πjpji, i ∈ S. (2)

It turns out that system (2) of the “balance equations” can be equiva-
lently written as follows:

πipij =
∑
c

wcJc(i, j), i, j ∈ S, (3)

where c ranges over a collection C of directed cycles (or circuits) in S,wc

are positive numbers, and Jc(i, j) = 1 or 0 according to whether or not
(i, j) is an edge of c.

The equivalence of the systems (2) and (3) pressupposes the existence of
an invertible transform of the “global coordinates” expressed by the cycle-
weights wc, c ∈ C, into the “local coordinates” given by the edge-weights
πipij , i, j ∈ S. That is, geometry (topology) enters into equations (2) and
(3). The inverse transform of the edge-coordinates πipij , i, j ∈ S, into the
cycles ones wc, c ∈ C, is given by equations of the form

wc = (πi1pi1i2) · · · (πis−1Pis−1is)(πispisi1)ψ, (4)

where c = (i1, i2, . . . , is, i1), s > 1, with il �= ik, l, k = 1, . . . , s, l �= k, and ψ
is a function depending on i1, . . . , is, P , and π. The wc’s have frequently
physical counterparts in what are called “through-variables.”

To conclude, any irreducible (in general, recurrent) Markov chain ξ ad-
mits two equivalent definitions. A first definition is given in terms of a
stochastic matrix P = (pij) which in turn provides the edge-coordinates
(πipij), and a second definition is given in terms of the cycle-coordinates
(wc, c ∈ C ).

To see how the edges and cycles describe the random law, we shall ex-
amine the definitions of the πipij and wc in the context of Kolmogorov’s
theory of complexities as exposed in his last work with V.A. Uspensky “Al-
gorithms and Randomness” (see also A.N. Kolmogorov (1963, 1968, 1969,
1983a, b) and V.A. Uspensky and A.L. Semenov (1993)).

Kolmogorov defined the entropy of a binary sequence using the concept of
complexity as follows: Given a mode (method) M of description, the com-
plexity KM (yn) of any finite string yn = (α0, α1, . . . , αn−1), n ≥ 1, under
the mode M is defined to be the minimal (space) length of a description of
yn in this mode (since there can be several descriptions with respect to M ).
(We have to note here that there are two types of lengths: the time length
and the space length; see A.N. Uspensky and A.L. Semenov (1993), pp.
52–53). Then, considering the class M of all computable modes of descrip-
tion of a set Y of objects (to which yn belongs), Kolmogorov proved that
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there is an optimal mode O of description, not necessarily unique, which
provides the shortest possible descriptions, that is, KO(yn) ≤ KM (yn) +
constant, for all M ∈ M. The complexity KO(yn) is called the entropy of
yn.

Now, turning back to our question of how the edges and cycles provide
descriptions of the probability distribution Prob(ξk = i, ξk+1 = j), i, j ∈ S,
we shall examine the binary sequences assigned to this distribution. To this
end let us fix a pair (i, j) of states. Then for any k the probability

Prob(ξk = i, ξk+1 = j)

= lim
n→∞

1
n

card {m ≤ n− 1: ξm(ω) = i, ξm+1(ω) = j} a.s. (5)

can be assigned to an infinite binary sequence y(i, j) = y(i, j)(ω) ≡
(y(0), y(1), . . . , y(m), . . .) whose coordinates are defined as

y(m) =
{

1, if the directed pair (i, j) occurs onω at the time m;
0, otherwise; (6)

where ω is suitably chosen from the convergence set of (5). A directed pair
(i, j) occurs on trajectory ω at moment m if ξm−1(ω) = i and ξm(ω) = j.

On the other hand, it turns out that the recurrent behavior of ξ de-
termines the appearances of directed circuits c = (i1, i2, . . . , is, i1), s ≥ 1,
with distinct points i1, i2, . . . , is when s > 1, along the sample paths, whose
weights wc are given by

wc = lim
n→∞

1
n

card{m ≤ n− 1: the cycle ĉ appears, modulo the cyclic
permutations, along ω}, (7)

almost surely, where m counts the appearances of the cycle ĉ.
Equations (5) and (7) are connected by the following relation:

1
n

card{m ≤ n− 1: ξm(ω) = i, ξm+1(ω) = j}

=
∑
c

1
n
wc,n(ω)Jc(i, j) +

εn(ω)
n

, (8)

where ĉ ranges over the set Cn(ω) containing all the directed cycles occur-
ring until n along ω,wc,n(ω) denotes the number of the appearances of ĉ
up to n along ω, and εn(ω) = 0 or 1 according to whether or not the last
step from i to j corresponds or does not correspond to an edge of a circuit
appearing up to n. Then, we may assign the y(i,j)(ω) above to another de-
scription, say, (0, 0, 0, 0, 1, 0, 0, 1, 0, . . . ), where 1 codifies the appearances
of a circuit passing through (i, j) along (ξk(ω))k at certain moments.

Now we shall appeal to Kolmogorov’s theory of complexities which,
as we have already seen, uses an object-description relation. Accord-
ingly, the object to be considered here will be the binary sequence yn =
(y(0), y(1), . . . , y(n− 1)) whose coordinates are defined by (6), while the
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corresponding descriptions will be expressed in terms of two modes of de-
scription as follows.

One mode of description for the yn will use the edges and will be de-
noted by E. The corresponding description in the mode E for each finite
string yn = (y(0), y(1), . . . , y(n− 1)) is given by the binary sequence x =
(x(0), x(1), . . . , x(n− 1)) whose coordinates are defined as

x(m) = y(m), m = 0, 1, . . . , n− 1.

The second mode of description, denoted by C, is based on the directed
cycles, and the corresponding description of yn above in the mode C is
given by the sequence z = (z(0), . . . , z(n− 1)) where

z(m) =
{

1, if a cycle passing through (i, j) occurs along ω at moment m;
0, otherwise;

for all m = 0, 1, . . . , n− 1.
Nevertheless, it seems that another mode of description would be given

by the k -cells, k = 0, 1, 2, were we to extend the graph of ξ to the next
higher topological structure which is the corresponding 2-complex. But in
this case a serious drawback would arise: the descriptions in terms of the
k -cells would comprise surface elements (the 2-cells) so that no reason-
able algorithmic device would be considered. This motivates the choice of
the mode C of description in preference to that provided by the k -cells,
k = 0, 1, 2, and in this direction we find another two strengthening argu-
ments. First, the replacement of the 2-cells by their bounding circuits leaves
invariant the orthogonality equation of the boundary operators which act
on the k -cells, k = 0, 1, 2; that is, the boundary operators connecting the
homology sequence circuits–edges–points will still satisfy the orthogonal-
ity equation. Then the use of the 2-cells instead of the circuits becomes
superfluous.

Second, the circuit-weights wc given by (7) enjoy a probabilistic inter-
pretation: wc is the mean number of occurrences of c along almost all the
sample paths of ξ. Furthermore, the circuits (cycles) used in mode C can
be determined by suitable equations called cycle generating equations.

To conclude, the cycles and edges provide two methods of description
connected by equation (8). Under this light, cycle representation theory of
Markov processes is devoted to the study of the interconnections between
the edge-coordinates and cycle-coordinates along with the corresponding
implications for the study of the stochastic properties of the processes. Only
after the definition of the cycle representations for continuous parameter
Markov processes can the idea of separating the geometric (topological)
ingredients from their algebraic envelope become clear and lead to the in-
vestigations of fine stochastic properties such as Lévy’s theorem concerning
the positiveness of the transition probabilities.
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A systematic development of the fundamentals of the cycle theory, in the
spirit of Kolmogorov’s algorithmic approach to chaos, started in the 1980s
at Thessaloniki from the idea of interconnecting the principles of algebraic
topology (network theory), algebra, convex analysis, theory of algorithms,
and stochastic processes. For instance, the resulting cycle-decomposition-
formula provides the homological dimension of Betti, the algebraic dimen-
sion of Carathéodory, and the rotational dimension as new revelations of
the Markov processes.

Another school, which developed independently the cycle representa-
tions, is that of Qians in Peking (Qian Gong, Qian Minping, Qian Min, Qian
Cheng, Gong Guang, Guang-Lu Gong, and others). The Chinese school, us-
ing mainly a behavioral approach, defined and explored with exceptional
completeness the probabilistic analogues of certain basic concepts which
rule nonequilibrium statistical physics such as Hill’s cycle flux, Schnaken-
berg’s entropy production, the detailed balance, etc. For instance, conceived
as a function on cycles, the entropy production can be regarded as a mea-
sure for characterizing how far a process is from being reversible.

In France, Y. Derriennic advanced the cycle representation theory to the
study of ergodic problems on random walks in random environment.

Finally, a fourth trend to cycle theory is based on the idea of Joel E.
Cohen under the completion of S. Alpern, and this author, for defining a
finite recurrent stochastic matrix by a rotation of the circle and a partition
whose elements consist of finite unions of the circle-arcs. Recent works of the
author have given rise to a theoretical basis, argued by algebraic topology,
for developing the rotational idea into an independent setting called the
rotational theory of Markov processes. This monograph exposes the results
of all the authors who contributed to this theory, in a separate chapter.

The present book is a state-of-the-art survey of all these principal trends
to cycle theory, unified in a systematic and updated, but not closed, ex-
position. The contents are divided into two parts. The first, called “Fun-
damentals of the Cycle Representations of Markov Processes,” deals with
the basic concepts and equations of the cycle representations. The second
part, called “Applications of the Cycle Representations,” is the application
of the theory to the study of the stochastic properties of Markov processes.

Sophia L. Kalpazidou
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1

Directed Circuits

A circuit or a cycle is a geometric (really topological) concept that can be
defined either by geometric or by algebraic considerations.

The geometric approach views a circuit with distinct points as an image
of a circle. Namely, such a circuit is a discretization of a Jordan curve (a
homeomorph of a circle), that is, a Jordan curve made up by closed arcs,
where by closed arcs we understand the closed 1-cells (in general a closed
n-cell, n > 0, is the homeomorph of the Euclidean set x′x = x2

1 + x2
2 + · · · +

x2
n ≤ 1).
A first step in dealing with algebra is to introduce orientation. This

means distinguishing the two endpoints of each arc as an initial point and
a terminal (final) point. When the arcs of a circuit have the same orientation
we call it a directed circuit.

A definite property of a directed circuit is a canonical return to its points,
that is, a periodic conformation. This argues for a functional version of the
definition of a directed circuit expressing periodicity. Namely, a circuit will
be defined to be any periodic function on the set of integers.

The algebraic approach provides the definition of a directed circuit as a
finite sequence of arc-indexed connected vectors satisfying again the defi-
nite property of having identical endpoints, that is, the boundary is zero.
Equivalently, the same property can be expressed as a system of balance
equations.

In the present chapter we introduce the concept of a directed circuit
either as a periodic function, or implicitly by balance equations.
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1.1 Definition of Directed Circuits

Definition 1.1.1. A directed circuit-function in a denumerable set S is a
periodic function c from the set Z of integers into S.

The values c(n), n ∈ Z, are called either points or vertices, or nodes of
c while the pairs (c(n), c(n + 1)), n ∈ Z, are called either directed edges or
directed branches, or directed arcs of c.

The smallest integer p = p(c) ≥ 1 that satisfies the equation c(n + p) =
c(n), for all n ∈ Z, is called the period of c. A directed circuit-function c
with p(c) = 1 is called a loop.

With each directed circuit-function c we can associate a whole class of
directed circuit-functions c′ obtained from c by using the group of transla-
tions on Z. Specifically, if for any fixed i ∈ Z we put ti(n) ≡ n + i, n ∈ Z,
then we define a new directed circuit-function c′ as c′ = c ◦ ti, that is,
c′(n) = c(n + i), n ∈ Z.

Clearly c and c′ do not differ essentially (they have the same vertices)
and this suggests the following definition:

two directed circuit-functions c and c′ are called equivalent if and
only if there is some i ∈ Z such that c′ = c ◦ ti. (1.1.1)

Note that (1.1.1) defines an equivalence relation in the class of all directed
circuit-functions in S. It is obvious that for any equivalence class {c ◦ ti, i ∈
Z} the direction and the period are class features, that is, c ◦ ti and c ◦ tj
have the same period and direction as c for any i, j ∈ Z. This remark leads
to the following definition introduced by S. Kalpazidou (1988a).

Definition 1.1.2. A directed circuit in a denumerable set S is an equiva-
lence class according to the equivalence relation defined in (1.1.1).

According to the previous definition the nonterminal points of a directed
circuit are not necessarily distinct. The definite property of a circuit c
consists of a canonical return of all its points after the same number of
steps, and this does not exclude repetitions. This is particularly argued by
the existence of functions depending on circuits whose properties do not
require distinct points (see, for instance, Theorems 1.3.1 and 2.1.2 below).
Correspondingly, in the latter expositions of the present book we shall point
out cases where only circuits with distinct points are used.

A directed circuit c in the above sense is determined either by:

(i) the period p = p(c); and
(ii) any (p + 1)-tuple (i1, i2, . . . , ip, ip+1), with ip+1 = i1;

or by
(i′) the period p = p(c); and
(ii′) any p ordered pairs (i1, i2), (i2, i3), . . . , (ip−1, ip), (ip, ip+1), with

ip+1 = i1, where il = c(n + l − 1), 1 ≤ l ≤ p, for some n ∈ Z.
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Definition 1.1.3. The directed cycle associated with a given directed cir-
cuit c = (i1, i2, . . . , ip, i1), p ≥ 1, with the distinct points i1, . . . , ip (when
p > 1) is the ordered sequence ĉ = (i1, . . . , ip).

According to Definition 1.1.2 a (class-) cycle is invariant with respect to
any cyclic permutation of its points.

Definition 1.1.4. The reverse c− of a circuit c = (i1, i2, . . . , ip, i1), p > 1,
is the circuit c− = (i1, ip, . . . , i2, i1).

Let us look more closely at the invariance property of a circuit with
respect to translations on Z. The latter correspond manifestly to a geo-
metrical image of rotations as follows.

If we identify the elements of a circuit c = (i1, . . . , ip, i1), p > 1, as dis-
tinct points in a plane, then we obtain a directed closed curve λc which,
according to the Jordan curve theorem, separates the plane into an inte-
rior and exterior region (the interior one is a 2-cell). (For details see the
1904 Chicago thesis of Oswald Veblen.) Let us choose an arbitrary point
0 inside the interior region bounded by λc, and connect 0 to i1, . . . , ip by
segments. Then the system {0, λc} is homeomorphic with a circle such that
each directed edge (ik, ik+1) corresponds to a rotation around 0. Therefore,

any directed circuit c of period p > 1, and with distinct p points, provides
a collection of p rotations summing to 2π.

Let us enrich this geometrical view by a group-theoretic argument.
Namely, we view {α, 2α, . . . , pα} with α = 2π/p as a collection of rotations
that can be mapped by an isomorphic mapping onto the cyclic group of the
pth roots of unity (see A.G. Kurosh (1960), p. 46). On the other hand, if
we partition the collection of all circuits in S into equivalence classes each
consisting of those circuits with the same period, we find that such a class
of circuits can be associated to a cyclic group of roots of unity.

Clearly we cannot define a directed circuit as a cyclic group since the
first one requires two definite elements: the period and the vertices (corre-
sponding to a unique radius), while the second one is only determined by
the period. Figure 1.1.1 represents a p-order group of rotations generated
by the angle α = 2π/p. Therefore,

a directed circuit of period p is assigned to a p-order cyclic group of
rotations.

Next it would be interesting to see if a rotation can be used to define
N (>1) overlapping circuits in a set of n points. An answer is inspired by
the 1983 paper of S. Alpern. Namely, we first introduce the ingredients of
a rotation as follows: let n > 1 and let N ≤ n2 − n + 1. Then the rotation
of the circle that is to be considered is generated by the angle 2π/(NM),
where M = n!.
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Figure 1.1.1.

Divide the circumference of the circle in Figure 1.1.2 into NM equal
directed arcs symbolized by the elements of the following matrix:

A =

⎛
⎜⎜⎝

a1 1 a1 2 . . . a1M

a2 1 a2 2 . . . a2M

. . .
aN 1 aN 2 . . . aNM

⎞
⎟⎟⎠ .

For each row k of A, associate the initial points of the directed arcs
ak1, ak2, . . . , aks, 2s < M , with certain distinct points i1, i2, . . . , is of the
set S = {1, 2, . . . , n}, and then associate the initial points of ak,s+1,
ak,s+2, . . . , ak,2s with the same points i1, i2, . . . , is. If s is chosen to divide

Figure 1.1.2.
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M , we may continue the previous procedure M/s times, so that the ini-
tial point of akM will be is. In this way, the kth row of A is assigned to
the M/s copies of the directed cycle ĉk = (i1, . . . , is) corresponding to the
circuit ck = (i1, . . . , is, i1) (in Figure 1.1.2 this is shown for k = 1). Particu-
larly, the circuits c1, . . . , cN can be chosen to have certain common points.
Then we conclude that a rotation of angle (2π)/(Nn!) generates a collection
of N directed circuits in S.

Example 1.1.1. Let n = 3,M = 3! = 6, and N = 3. Associate the initial
points of a11, . . . , a16 with 1, the initial points of a21, a22, . . . , a26 with 1, 2,
1, 2, . . . , 1, 2, and those of a31, a32, . . . , a36 with 1, 2, 3, . . . , 1, 2, 3. Then
the rotation defined by the angle 2π/18 is attached to the collection of the
following three overlapping circuits: (1, 1), (1, 2, 1), and (1, 2, 3, 1).

So far our arguments are geometric and the proposed construction is not
the simplest one. However, it is a natural link to the main object of the
present book: the stochastic matrices.

In Section 3.4 of Part II we shall show that the converse of the previ-
ous relation arcs → circuits is vastly superior to other similar relations,
especially if we are interested in the definition of a partition of the circle
which can in turn be involved in the definition of a stochastic matrix. It
is therefore a matter of some considerable theoretical and practical impor-
tance to obtain in a usable form a necessary and sufficient condition for a
relation circuits → arcs to be used in the definition of a stochastic matrix
(see Kalpazidou (1994a, 1995)). As a first step in this direction we have to
find a special partition {Ãkl} of the circle such that the starting point of
each Ãkl is suitably labeled by some point i, i = 1, . . . , n.

Further we have to involve an algebraic argument according to which we
shall assign the partition {Ãkl} to a positive row vector (wk, k = 1, . . . , N),
with

∑
wk = 1, and to consider suitable homeomorphs Akl of Ãkl in a line

of unit length such that the Lebesgue measure of each Akl is given by
(1/n!)wk. Then the sets

Si =
⋃

the arcÃkl
starts at i

Akl, i = 1, . . . , n,

will partition the interval [0, 1) (see Section 3.4 of Part II).
Let λ denote Lebesgue measure and let ft, t = 1/n!, be the λ-preserving

transformation of [0, 1) onto itself defined by ft(x) = (x + t) (mod 1). Then
the expression

λ(Si ∩ f−1
t (Sj))/λ(Si), i, j = 1, . . . , n, (1.1.2)

defines a stochastic matrix on {1, 2, . . . , n}. Notice that stochastic matrices
of the form (1.1.2) can be defined by any partition (Si, i = 1, 2, . . . , n) of
[0, 1).
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The converse is more difficult and was proposed by Joel E. Cohen (1981)
as a conjecture that we shall call the rotational problem. Under the re-
cent completions of S. Alpern (1983) and S. Kalpazidou (1994a, 1995), the
rotational problem can be formulated as follows:

Given n > 1 and any stochastic matrix (pij , i, j = 1, . . . , n) that admits
an invariant probability distribution, find a rotational system consisting
of a λ-preserving transformation ft, t ≥ 0, on [0, 1) and a partition of
[0, 1) into sets Si, i = 1, . . . , n, each consisting of a finite union of arcs,
such that

pij = λ(Si ∩ f−1
t (Sj))/λ(Si).

The solutions to the rotational problem along with a detailed presenta-
tion of the corresponding theoretical basis are given in Chapter 3 of Part II.
As already seen, an intrinsic step to the above rotational problem consists
of defining a stochastic matrix in terms of the directed circuits.

1.2 The Passage Functions

Given a denumerable set S and a directed circuit c in S, we are interested in
expressing the passages of a particle through the points of c. The simplest
way is to use the indicator function of the “event”: a point k ∈ S of the
particle’s trajectory lies on c. Notice that, according to Definition 1.1.2 the
subsequent definitions and properties should not be affected by the choice
of the representative of a class-circuit.

Now we introduce the following definition due to J. MacQueen (1981)
and S. Kalpazidou (1988a):

Definition 1.2.1. Assuming c to be determined by (i1, . . . , ip(c), i1), define
Jc(k) as the number of all integers l, 0 ≤ l ≤ p(c) − 1, such that il+1 = k.
We say that c passes through k if and only if Jc(k) �= 0 and then Jc(k) is
the number of times k is passed by c.

Clearly

Jc ◦ tj (k) = Jc(k), (1.2.1)

for any j ∈ Z. When all the points of c are distinct, except for the terminals,
then

Jc(k) =
{

1, if k is a point of c;
0, otherwise.

If we consider r > 1 consecutive points k1, . . . , kr ∈ S on a particle’s tra-
jectory, then to express the passage of the circuit c through the r-tuple
(k1, . . . , kr) we need the following generalization of Definition 1.2.1:
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Definition 1.2.2. Assuming c is a directed circuit of period p(c), define
Jc(k1, . . . , kr) as the number of distinct integers l, 0 ≤ l ≤ p(c) − 1, such
that c ◦ tl(m) = km,m = 1, 2, . . . , r.

We say that c passes through (k1, . . . , kr) if and only if Jc(k1, . . . , kr) �= 0
and then Jc(k1, . . . , kr) is the number of times c passes through (k1, . . . , kr).

The functions Jc : Sr → N, r ≥ 1, are called the rth order passage func-
tions associated with c.

Note that we can have Jc(k1, . . . , kr) �= 0 even if r > p(c). For example,
if c = (1, 2, 1), then Jc(1, 2, 1, 2) = 1. Obviously

Jc ◦ tj (k1, . . . , kr) = Jc(k1, . . . , kr),

for all j ∈ Z. In what follows for any r-tuple k = (k1, . . . , kr) ∈ Sr we shall
use the notation (k, i) and (l, k) for the (r + 1)-tuples (k1, . . . , kr, i) and
(l, k1, . . . , kr), respectively. Also, k will denote the r-tuple (kr, . . . , k1).

We now give a few simple but basic properties of the passage function Jc.

Lemma 1.2.3. The passage function Jc satisfies the following balance
properties:

Jc(k) =
∑
i∈S

Jc(k, i) =
∑
l∈S

Jc(l, k),(β1)

Jc(k) = Jc (k ),(β2)

for an arbitrarily given r ≥ 1 and for any k = (k1, . . . , kr) ∈ Sr, where c
symbolizes as always the reverse of c.

Proof. We start by proving (β2). This follows from the fact that, by the
very definitions of c and k , the c and c do or do not simultaneously pass
through the r-tuples k and k , respectively. Next, for proving (β1) note first
that c does not pass through k if and only if c does not pass through (k, i)
(respectively, (l, k)) for any i (respectively, l) ∈ S. Consequently, in this
case

Jc(k) =
∑
i∈S

Jc(k, i) =
∑
l∈S

Jc(l, k) = 0.

Second, if c passes through k, then looking at the point of c immediately
succeeding (respectively, preceding) k we conclude that Jc(k), the number
of times c passes through k, equals the sum over all i (respectively, l) ∈ S
of the number of times c passes through (k, i) (respectively, (l, k)). Thus
the proof of (β1) is complete. �

For a fixed r ≥ 1, the balance property (β1) asserts that the r-tuple
(k1, . . . , kr) lies on c, that is, (k1, . . . , kr) = (c(n), . . . , c(n + r − 1)) for some
n ∈ Z, (an equilibrium status) if and only if c passes through (k1, . . . , kr) to
(from) an element i (l) of c, that is, (k1, . . . , kr, i) = (c(n), . . . , c(n + r − 1,
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c(n + r)) ((l, k1, . . . , kr) = (c(n− 1), c(n), . . . , c(n + r − 1))) (a dynamical
status).

1.3 Cycle Generating Equations

Let S be a finite set and consider a collection C of overlapping circuits in
S. Then the passage-functions occurring in the balance equations (β1) of
Lemma 1.2.3 depend upon the circuits.

In general, both practice and theory provide balance equations where the
passage function Jc is replaced by an arbitrary positive function w defined
on S2, that is, ∑

i∈S

w(k, i) =
∑
j∈S

w(j, k) (1.3.1)

for all k ∈ S.
In this section we propose to answer the following inverse question:

Do equations (1.3.1) provide directed circuits that describe the
balance function w? (1.3.2)

We shall follow the usual argument according to which properties in terms
of the indicator functions are generalized to linear combinations of the
indicator functions. Consequently, we ask:

Can any balance function w(i, j) (i.e., that satisfying (1.3.1)) be
expressed as a linear positive combination of the passage functions
associated with certain circuits c, that is, (1.3.3)

w(i, j) =
∑
c

wcJc(i, j), i, j ∈ S, wc > 0? (1.3.4)

The following theorem answers both questions (1.3.2) and (1.3.3) in the
affirmative (S. Kalpazidou (1988a)):

Theorem 1.3.1. Let S be a nonvoid finite set and let two nonnegative
functions w and w be defined on S × S. Assume w and w satisfy the
balance equations ∑

i

w(k, i) =
∑
i

w(i, k), k ∈ S,

∑
i

w (k, i) =
∑
i

w (i, k), k ∈ S,
(1.3.5)

such that each sum of (1.3.5) is strictly positive, and

w(k, i) = w (i, k),

for all i, k ∈ S.
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Then there exist two finite ordered collections C and C of directed circuits
in S, with C = {c , c is the reversed circuit of c, c ∈ C }, and two ordered
sets {wc, c ∈ C } and {wc , c ∈ C } of strictly positive numbers, depending
on the ordering of C and C and with wc = wc , such that

w(k, i) =
∑
c∈C

wcJc(k, i),

w (i, k) =
∑
c ∈C

wc Jc (i, k),
(1.3.6)

for all k, i ∈ S, where Jc(i, j)(Jc (j, i)) is 1 or 0 according to whether or
not (i, j)((j, i)) is an edge of c (c ).

Proof. Starting from an arbitrarily fixed point k ∈ S, on account of the
strict positiveness of the sums in (1.3.5), there exists at least one element
j ∈ S such that w(k, j) = w (j, k) > 0. Let i1 = k, i2 = j. Repeating the
same argument for i2 instead of k, there exists i3 ∈ S such that w(i2, i3) >
0. Finally the balance equations (1.3.5) provide a sequence of pairs
(i1, i2), (i2, i3), . . . for which w(ik, ik+1) and w (ik+1, ik) are strictly pos-
itive. Since S is finite, there is a smallest integer n ≥ 2 such that in = ik for
some k, 1 ≤ k < n. Then the sequence (ik, ik+1), (ik+1, ik+2), . . . , (in−1, ik)
determines a directed circuit c1 with distinct points (except for the termi-
nals). Let

wc1 = minw(i, j) = w(i1, j1)

where the minimum is taken over the edges of c1.
Consider

w1(i, j) ≡ w(i, j) − wc1Jc1(i, j),

where Jc(i, j) is 1 or 0 according to whether or not (i, j) is an edge of c.
By the very definition of wc1 , the new function w1(·, ·) is nonnegative.

Also, since Jc1 is balanced, w1 is also. If w1 ≡ 0, equations (1.3.6) hold for
C = {c1}. Otherwise, w1 remains strictly positive on fewer pairs than w
and we may repeat the same arguments above for w1 instead of w to define
a new directed circuit c2 with distinct points (except for the terminals).
Accordingly, we further define

wc2 = min
c2

w1(i, j) = w1(i2, j2) = w(i2, j2) − wc1Jc1(i2, j2)

and

w2(i, j) ≡ w1(i, j) − wc2Jc2(i, j)
= w(i, j) − wc1Jc1(i, j) − wc2Jc2(i, j).

Continuing the procedure, we find a sequence w1, w2, . . . of balanced
functions such that each wk+1 remains strictly positive on fewer pairs
than wk. Then after finitely many steps, say n, we have wn+1 ≡ 0. Put
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Figure 1.3.1.

C = (c1, c2, . . . , cn}. Then

w(i, j) =
∑
c∈C

wcJc(i, j),

for all i, j ∈ S. By arguing analogously for w and choosing as representative
class of circuits to be C = {c : c is the reversed circuit of c, c ∈ C }, we
obtain wc = wc for any c ∈ C , and the decomposition of w by (C , wc ).
The proof is complete. �

Equations (1.3.5) are called, by Kalpazidou ((1993a), (1994a)), cycle gen-
erating equations. They can be used as an implicit definition of the directed
circuits. Accordingly, we shall say that the functions w and w are respec-
tively represented by (C, wc) and (C , wc ). It is useful to notice that, in
defining the decomposing weights, the algorithm occurring in the course of
the proof of Theorem 1.3.1 depends upon the choice of the ordering of the
representative circuits.

Example 1.3.1. Let S = {1, 2} and let w(i, j), i, j ∈ S, be defined by the
entries of the matrix (

1/13 3/13
3/13 6/13

)
.

According to the Theorem 1.3.1, w is decomposed by the follow-
ing circuits and weights: c1 = (1, 1), c2 = (1, 2, 1), c3 = (2, 2), and wc1 =
1/13, wc2 = 3/13, wc3 = 6/13 (see Figure 1.3.1).

Example 1.3.2. Let S = {1, 2, 3, 4} and let w(i, j), i, j ∈ S, be given by
the matrix ⎛

⎜⎜⎝
3/12 1/12 1/12 1/12

0 0 1/12 0
0 0 0 2/12

3/12 0 0 0

⎞
⎟⎟⎠ .

Then the balance function w is decomposed by the circuits c1 =
(1, 1), c2 = (1, 2, 3, 4, 1), c3 = (1, 3, 4, 1), and c4 = (1, 4, 1), and by the
weights wc1 = 3/12, wc2 = 1/12, wc3 = 1/12, and wc4 = 1/12 (Figure
1.3.2).
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Figure 1.3.2.

Theorem 1.3.1 asserts that the balance equations (1.3.1) are equivalent
to the explicit representations (1.3.4). Both systems have topological equiv-
alents in equations (β1) of Lemma 1.2.3, where we recognize two types of
connections:

(i) the connections of the directed edges b1, b2, . . . , bλ1 with the points
n1, n2, . . . , nλ0 ; and

(ii) the connections of the directed edges b1, b2, . . . , bλ1 with the directed
circuits c1, c2, . . . , cλ2 (here we consider that the circuits have distinct
points (excepts for the terminals)).

Namely, the connectivity (which is a topological property) of the directed
edges and points in the graph of w may be expressed by a matrix operator
η defined as follows:

η = (ηedge, point) = (ηbjns
) (1.3.7)

with

ηbjns
=

⎧⎨
⎩

+1, if the jth edge is positively incident on the sth point;
−1, if the jth edge is negatively incident on the sth point;

0, otherwise.

Notice that the columns of η are linearly dependent. When we do not need
this linear dependence we can choose a reference point of the graph of w,
and then delete the corresponding column in the matrix η.

The interconnections between edges and circuits in the graph of w can
be described by another matrix operator ζ defined as follows:

ζ = (ζedge, circuit) = (ζbjcκ), (1.3.8)

where

ζbjcκ =

⎧⎨
⎩

+1, if the jth edge is positively included in the kth circuit;
−1, if the jth edge is negatively included in the kth circuit;

0, otherwise.

Since the Jc(k, i) plays the rôle of the (k, i)-coordinate of the circuit c
viewed in the vector space generated by the edges {bj}, equation (β1) of
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Lemma 1.2.3 is related to the equation

ηtζ = 0,

where ηt is the transposed matrix of η. An additional argument to the
previous equation is given in Chapter 4.

The cycle generating equations (1.3.1) and (1.3.4) are in fact an al-
gebraization of (β1) occurring in Lemma 1.2.3, since the edges and cir-
cuits are respectively assigned with the edge values w(k, i) and the circuit
values wc. Correspondingly, the cycle generating equations have a double
solution:

(i) a topological solution specified by the representative class C of di-
rected circuits in the graph of w; and

(ii) an algebraic solution {wc, c ∈ C } of strictly positive circuit-weights.

It is to be noticed that the only operations involving the edge values
and circuit values in Theorem 1.3.1 are addition and subtraction. This
explains why these elements may belong to any additive group. The reason
for considering vector spaces instead of groups arises when a co-theory is
intended to be developed on a dual graph, where a transform connects the
edge values of the original graph to those of the dual graph (in particular,
this transform can be linear (ohmic)). (Dual graphs were introduced by
R.J. Duffin (1962).) As a consequence, certain associative and distributive
laws have to be obeyed.

Remarks
(i) The circuit decomposition (1.3.6) of Theorem 1.3.1 implies that all

the points of S lie on circuits with strictly positive weights. This amounts
to the existence of circuits (in the graph of w) which pass through each
point, that is, w(i) ≡∑j w(i, j) can be written as w(i) =

∑
c wcJc(i) with

Jc(i) �= 0 for some c.
It is the positiveness of the sums occurring in the balance equations

(1.3.5) that, along with the latter, argues for the concept of circuit gener-
ating equations. For instance, if w ≡ 0 then w can be written as w = 0 · Jc
for any circuit c in S, in which case the balance equations do not play the
rôle of circuit generating equations. In other words, the balance equations
without the positiveness assumption lose their topological rôle (specified by
the connectivity of the graph of w) and keep only the algebraic one. This
explains why, when we do not assume the positiveness condition in the
balance equation (1.3.5), the decomposition (1.3.6) may contain, among its
terms, null circuit-weights. (For instance, when w(i) above is zero then w(i)
can be written as w(i) = wcJc(i) for any wc > 0 and any circuit c which
does not contain i. Another version would be to choose any circuit c and
wc = 0.)

(ii) The circuit decompositions (1.3.6) allow interpretations in probabilis-
tic terms (see Theorem 3.3.1 below), and in physical terms (for instance,
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every point is neither a source nor a sink of an eletrical fluid—in Chapter
2 of Part II we shall give a sequel to this argument).

(iii) The circuits occurring in the decomposition (1.3.4) have not
necessarily distinct points. In this light, there exist particular solutions (to
the balance equations) given by those classes which contain only circuits
with distinct points (except for the terminals). The latter can be also
obtained by a convex analysis argument which relies on a version of the
celebrated Carathéodory dimensional theorem. A detailed exposition of
this argument is developed in Chapter 4.

For particular cases when w is provided by a doubly stochastic matrix
P another convex analysis argument for a cycle decomposition is given by
the Birkhoff theorem according to which P can be written as a convex
combination of permutation matrices. A permutation matrix is any matrix
whose entries are either 0 or 1, and with only one 1 for each row and for
each column. Here is a proof due to Y. Derriennic.

Consider a doubly stochastic matrix P and write it as a convex combina-
tion

∑
αiMi, where Mi are permutation matrices. Since each permutation

determines circuits, we can assign the weight 1 to each circuit. Then we
obtain a collection of circuits and weights associated with Mi.

On the other hand, since all the matrices Mi admit a common invariant
measure (the “uniform” measure), then P, as a convex combination of Mi,
will be decomposed by the corresponding weighted circuits.

(iv) The consideration of the two functions w and w in the statement
of Theorem 1.3.1 is motivated by our further developments. Namely, in
Chapters 2 and 7 we shall show that w and w may enjoy a probabilistic
interpretation according to which they will define the transition laws of two
distinct Markov chains, with reversed parameter-scale, such that one chain
is not the inverse of the other.

Also equations w(k, i) = w (i, k) give a sufficient condition in order that
w and w admit inverse representative circuits. In general, when we disso-
ciate the function w from this context, Theorem 1.3.1 may refer to a single
balance function.

(v) As will be shown in Chapter 4, a general circuit decomposition for-
mula, with real circuit-weights, can be proved by an algebraic topological
argument according to which the balanced function w, considered in the
vector space generated by the edges of the graph of w, may be decomposed
into a sum by a minimal number of circuits.

The balanced function w is known in the literature under different names:
in convex analysis w is called a flow (see C. Berge (1970), R.T. Rockafellar
(1972), and M. Gondran and M. Minoux (1984)), in algebraic topology w
is called a one-cycle of the corresponding graph (see S. Lefschetz (1975),
pp. 51–52, B. Bollobás (1979)), while in network theory w is a current
obeying the first Kirchhoff law (see A.H. Zemanian (1991)).

If S has m points, then the matrix η associated with the graph of w by
(1.3.7) has m− 1 independent columns. The remaining column corresponds
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to a reference point of the graph of w called the datum. Let us choose a
maximal tree T in the graph of w, and then let us arrange properly the rows
of η so that η is partitioned into a submatrix ηT , whose edges belong to the
tree only, and a submatrix ηL, whose edges belong to the tree-complement.
Note that each of the nondatum points of the tree can be connected by
a unique path-in-tree to the datum point. F.H. Branin, Jr. (1959, 1966)
introduced another connectivity matrix βT expressing the connections of
the edges of T with the point-to-datum paths. Specifically, βT is defined as
follows:

βT = (βedge, point) = (βbjns
),

where

βbjns =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+1, if the jth edge is positively included in the
sth point-to-datum path;

−1, if the jth edge is negatively included in the
sth point-to-datum path;

0, otherwise.

Then βT is an invertible matrix, that, according to F.H. Branin, Jr. (1959),
satisfies the equation η−1

T = βT . However, connectivity of the elements of
the graph of w is completely described by the matrices η and ζ.

The equation ηtζ = 0, whose proof has long been known from O. Veblen
(1931), implies that

ζT = −βT η
t
L.

The latter expresses that the path-in-tree from the final point to the initial
point of each edge in the tree-complement may be determined by adding the
converse of the (initial point)-to-datum path to the (final point)-to-datum
path.

Comments

The exposition of Sections 1.1 and 1.2 follows J. MacQueen (1981) and
S. Kalpazidou (1988a, 1990a, 1993a, b). Section 1.3 is written according to
S. Kalpazidou (1988a, 1993a, e, 1994a), F.H. Branin, Jr. (1959, 1966), and
A.H. Zemanian (1991).



2

Genesis of Markov Chains by
Circuits: The Circuit Chains

In this chapter we shall show how Markovian dependence can arise from
at most countable collections of overlapping weighted directed circuits.
The corresponding processes are Markov chains, that is, discrete parameter
Markov processes which, generated by circuits, will be called circuit chains.

2.1 Finite Markov Chains Defined by
Weighted Circuits

2.1.1. Observe the passages of a particle through the points of a finite set
S = {a, b, c, d, e, f, g} at moments one unit of time apart, always moving
along one of the overlapping directed circuits {c1, c2, c3} as in Figure 2.1.1.
Each circuit ci has its points in S and is assigned to a strictly positive
weight wci . Suppose there is a camera which registers the passages of the
particle along one directed arc chosen at random. If we project the states
through which the particle was passing until the nth moment, we shall get
a random sequence . . . , ξn−1, ξn, of observations with values in S.

Following J. MacQueen (1981) and S. Kalpazidou (1988a) we may define
transition probabilities of such a stochastic sequence in terms of circuit
weights. To make clear the presentation let us consider histories of one-
steps. For instance, if such a history is k = b, we are interested in defining
the transition probabilities from ξn = k to ξn+1 = x, x ∈ S, where n belongs
to the set Z of all integers. Thus, to calculate these transition probabilities
we follow the steps below:



18 2. Genesis of Markov Chains by Circuits: The Circuit Chains

Figure 2.1.1.

(i) We look for the set C(k) of all circuits which pass through k. In case
C(k) is not empty, then the passages to other states are allowed and
we may go on with the following steps.

(ii) We consider the C(k, x) of all circuits which pass through (k, x). In
case C(k, x) is empty then no passage to x will take place.

(iii) The transition probabilities from k(=b) to x are expressed in terms
of the weights of the circuits in C(k) and C(k, x) by the relations:

P(ξn+1 = d/ξn = b) =
∑

c′∈C(b,d)

wc′/
∑

c′∈C(b)

wc′

= (wc1 + wc3)/(wc1 + wc2 + wc3),

P(ξn+1 = c/ξn = b) =
∑

c′∈C(b,c)

wc′/
∑

c′∈C(b)

wc′

= wc2/(wc1 + wc2 + wc3),
P(ξn+1 = x/ξn = b) = 0, x ∈ S\{c, d},

for all n ∈ Z.

Then the above probability law leads us to a Markov chain ξ = (ξn)n∈Z

which will be called a circuit chain.
Let us now recall the definition of a Markov chain. Let S be at most a de-

numerable set (i.e., S is either finite or denumerable). An S-valued sequence
X = (Xn)n≥0 of random variables on the probability space (Ω,K,P) is said
to be a homogeneous Markov chain (or a homogeneous discrete parameter
Markov process) with state space S if for any n ≥ 0 and i0, i1, . . . , in+1 ∈ S
we have

P(Xn+1 = in+1/Xn = in, Xn−1 = in−1, . . . , X0 = i0)
= P(Xn+1 = in+1/Xn = in),
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whenever the left member is defined, such that the right member is inde-
pendent of n. The previous equality is called the Markov property and it
can occur even if the right member depends on parameter value n (it is
non-homogeneous). Moreover, the probability

P(Xn+1 = j/Xn = i)

is called the transition probability of the chain from state i to state j and is
usually designated by pij . Then the P = (pij)i,j∈S is a stochastic matrix,
called the transition matrix of the Markov chain, that is, a matrix whose
elements satisfy

pij ≥ 0,
∑
j

pij = 1. i ∈ S.

Therefore any Markov chain determines a stochastic matrix. The converse,
which is much deeper, is given by the well-known existence theorem of
Kolmogorov and establishes a basic relationship between nonnegative
matrices and Markov chains. The reader may find a comparative study of
nonnegative matrices and Markov chains in E. Seneta (1981).

On the other hand, there exists a large class of Markov processes that
can be defined as the Markov chain ξ related to Figure 2.1.1, that is, their
finite-dimensional distributions are completely determined by collections of
weighted directed circuits. This will then motivate the definition and the
general study of the Markovian dependence in terms of collections (C, wc)
of directed circuits and weights, which in turn leads to a link between non-
negative matrices and (C, wc). As a consequence, related fields to probabil-
ity theory as ergodic theory, harmonic analysis and potential theory may
be developed in terms of the cycles.

Turning to the particular case of Figure 2.1.1, we see that the Markov
chain ξ is irreducible, that is, for any pair (i, j) of states either pij > 0, or
there exists a path (i, i1), (i1, i2), . . . , (in, j) such that pii1pi1i2 . . . pinj > 0.
The oriented graph G associated with an irreducible Markov chain is
strongly connected. (Recall that (i, j) is an edge of G if and only if
pij > 0). In the case of a circuit Markov chain associated with a collection
(C, wc) irreducibility has a complete expression in terms of the circuits
of C as follows: any two states i and j are circuit-edge-connected, that
is, there exists a sequence of directed circuits c1, . . . , cm, cm+1, . . . , cn of C
such that i lies on c1 and j on cn, and any pair of consecutive circuits cm
and cm+1 have at least one point in common (see also Proposition 3.4.1).
Then we shall say that C satisfies the irreducibility-condition.

Let us now change the time-sense, seeing the retroversion of the film
of observations along the reversed circuits of Figure 2.1.1 until the nth
moment, namely, . . . , χn+1, χn. Note that the circuits which are entering
a vertex are the same as those which are leaving it in the corresponding
reversed circuits. Then we find that transition probabilities from state b to
x ∈ S satisfy the equations:

P(ξn+1 = x/ξn = b) = P(χn = x/χn+1 = b) , (2.1.1)
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for all n ∈ Z, where the transition probability from state b to x in chain χ =
(χn, χn+1, . . .) is defined by using, instead of the classes C(b) and C(b, x)
occurring at steps (i) and (ii) above, the classes C−(b) and C−(x, b) which
contain all the inverse circuits c′− of the circuits c′ ∈ C passing through b
and (x, b), respectively. Namely,

P(χn = x/χn+1 = b) =
∑

c′−∈C−(x,b)

wc′−/
∑

c′−∈C−(b)

wc′− ,

where wc′− = wc′ , c
′ ∈ C. Plainly, in general, χ is not the inverse chain of ξ

as long as the circuits are directed. The inverse chain of ξ is given by the
class C(x, b) when defining the transition probability from state b to x.

In conclusion, equation (2.1.1) argue for a dichotomy into two sequences
ξ = (ξn) and χ = (χn) with reversed parameter-scale, which keep not only
the Markovian nature of the transition laws, but also the transition laws
are related numerically by equation (2.1.1).

In this light we have to study the behavior of the pair (ξ, χ) as a whole
(see Kalpazidou (1988a)).

2.1.2. Let us now give a rigorous presentation of the heuristic introduction
above.

Consider a nonvoid finite set S and a finite collection C of overlapping
directed circuits in S. Suppose further that all the points of S can be reached
from one another following paths of circuit-edges, that is, for each two
distinct points i and j of S there exists a sequence c1, . . . , ck, k ≥ 1, of
circuits of C such that i lies on c1 and j on ck, and any pair of consecutive
circuits (cn, cn+1) have at least one point in common. In general, we may
assume that C contains, among its elements, circuits whose periods are
greater than 2. Another version would be to assume that all the circuit
periods are equal to 2.

Let C− be the collection of the reverses c− of all circuits c ∈ C as in-
troduced in Definition 1.1.4. Associate a strictly positive number wc with
each c ∈ C. Since the numbers wc must be independent of the choice of
the representative of c (according to Definition 1.1.2), suppose that they
satisfy the following consistency condition:

wc ◦ ti = wc, i ∈ Z, (2.1.2)

where ti is the translation of length i occurring in (1.1.1).
Put

wc− = wc, c− ∈ C−. (2.1.3)

Define

w(k, i) =
∑
c∈C

wcJc(k, i), k, i ∈ S, (2.1.4)

w−(v, i) =
∑

c−∈C−

wc−Jc−(v, i), v, i ∈ S, (2.1.5)
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w(k) =
∑
c∈C

wcJc(k), k ∈ S, (2.1.6)

w−(v) =
∑

c−∈C−

wc−Jc−(v), v ∈ S, (2.1.7)

where Jc(·, ·) and Jc(·) are the passage-functions of c introduced by Defi-
nition 1.2.2.

From Lemma 1.2.3 we have

Proposition 2.1.1. The functions w(·, ·), w(·), w−(·, ·) and w−(·) defined
by (2.1.4)–(2.1.7) satisfy the following balance properties:

(i) w(k) =
∑
i∈S

w(k, i) =
∑
j∈S

w(j, k),(β1)

(ii) w−(v) =
∑
i∈S

w−(i, v) =
∑
j∈S

w−(v, j),

w(k, v) = w−(v, k),(β2)

for any k, v ∈ S.

We now recall a standard result (S. Kalpazidou (1988a)) which relates
the pair (w,w−) with Markov chains.

Theorem 2.1.2. Suppose we are given a finite class C of overlapping di-
rected circuits in a finite set S, and a set of positive weights {wc}c∈C satis-
fying the assumptions stated at the beginning of Subparagraph 2.1.2.

Then there exists a pair ((ξn), (χn))n∈Z of irreducible S-state Markov
chains on a suitable probability space (Ω,K,P) such that

P(ξn+1 = i/ξn) = w(ξn, i)/w(ξn),
P(χn = i/χn+1) = w−(i, χn+1)/w−(χn+1),

P(ξn+1 = i/ξn = j) = P(χn = i/χn+1 = j),

P-almost surely, for any n ∈ Z and i, j ∈ S.

Proof. By Daniell–Kolmogorov’s theorem there exist two S-valued Markov
chains ξ = (ξn)n and χ = (χn)n on a suitable probability space (Ω,K,P)
and with transition probabilities given by

P(ξn+1 = i/ξn = k)

=

⎧⎨
⎩

w(k, i)
w(k)

, if there is c ∈ C such thatJc(k) · Jc(k, i) �= 0;

0, otherwise;
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P(χn = i/χn+1 = v)

=

⎧⎨
⎩

w−(i, v)
w−(v)

, if there is c− ∈ C− such thatJc−(v) · Jc−(i, v) �= 0;

0, otherwise;

for any n ∈ Z and k, v, i ∈ S. The chains ξ and χ are irreducible since
by hypotheses each two distinct points of S are circuit-edge-connected.
Moreover, since w(k, i) = w−(i, k), then

P(ξn+1 = i/ξn = k) = P(χn = i/χn+1 = k),

for any n ∈ Z. Also, according to the balance equation (β1), the chains ξ
and χ above have unique stationary distributions p and p− defined as

p(k) = p−(k) = w(k)/
∑
k

w(k) = w−(k)/
∑
k

w−(k), k ∈ S.

This completes the proof. �

The following theorem asserts the existence of the inverse chains of ξ and
χ in terms of circuits:

Theorem 2.1.3. Assume a finite class C of overlapping directed circuits
in a finite set S is given together with a set of positive weights {wc}c∈C as
in Theorem 2.1.2.

(i) Then there exists a pair ((ξ′n)n, (χ′
n)n) of irreducible S-state Markov

chains defined on a suitable probability space (Ω,K,P) such that

P(ξ′n = i/ξ′n+1) = w(i, ξ′n+1)/w(ξ′n+1),
P(χ′

n+1 = i/χ′
n) = w−(χ′

n, i)/w−(χ′
n),

P(ξ′n = i/ξ′n+1 = j) = P(χ′
n+1 = i/χ′

n = j),

P-almost surely for any n ∈ Z and i, j ∈ S.
(ii) The chains (ξ′n)n∈Z and (χ′

n)n∈Z are Doob versions of the inverse
chains of the chains given by Theorem 2.1.2.

Definition 2.1.4. The Markov chains ξ and χ occurring in Theorems 2.1.2
and their inverse chains occurring in Theorem 2.1.3 are called circuit chains
associated with the finite classes C and C− of circuits in S and with the
positive weights wc = wc− , c ∈ C.

In general, Theorem 2.1.2 may be extended to any collection C of directed
circuits in which case the corresponding circuit chains are recurrent Markov
chains.

The stochastic behavior of a circuit chain generated by a collection
(C, wc) of directed circuits and weights depends on the choice of C and
{wc}. Sometimes one may express certain stochastic properties in terms
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of the circuits alone. For instance, as we have already seen the irreducibil-
ity of the S-valued chain ξ provided by Theorem 2.1.2 follows from the
irreducibility-condition on C, namely, any two points of S are circuit-edge-
connected. Also, periodicity (or aperiodicity) of the same irreducible circuit
chain ξ can be given in terms of the circuits as follows. Suppose C satisfies
the irreducibility-condition and let G denote the graph associated with C.
We say that C satisfies the periodicity (or aperiodicity) condition if there is
a point i of S such that the greatest common divisor of the periods of all
the directed circuits occurring in G and passing through i equals a natural
number d > 1 (or d = 1). Then the Markov chains generated as in Theorem
2.1.2 by C endowed with any collection {wc} of weights are said to be peri-
odic with period d or aperiodic according as C satisfies the above periodicity
or aperiodicity condition. For instance, if C contains a loop (i, i), then ξ is
aperiodic.

In Chapters 1 and 2 of Part II we shall deal with other stochastic prop-
erties that can be expressed in terms of the directed circuits.

2.2 Denumerable Markov Chains
Generated by Circuits

A natural extension of finite circuit chains to a countable infinity of circuits
is particularly important in connection with the study of special problems
concerning denumerable Markov chains, countable nonnegative matrices,
infinite electrical networks, and others. For instance, a main question we
are faced with in Markov chain theory is the so-called type problem, that
is, the problem of determining if these processes are recurrent or transient
(the geometrical correspondent is to decide whether a surface is parabolic
or hyperbolic (see L.V. Ahlfors (1935), H.L. Royden (1952), L.V. Ahlfors
and L. Sario (1960), and J. Milnor (1977), and also, G. Pòlya (1921)).

Let us now recall briefly the definition of recurrent (or transient) Markov
chains. Let S be a denumerable set and let ξ = (ξn)n≥0 be an S-state
Markov chain. Denote further by fij , i, j ∈ S, the probability that the chain
ξ, starting in state i, reaches state j at least once. A state i ∈ S is said to be
recurrent or transient according as fii = 1 or fii < 1. Usually these prop-
erties are expressed in terms of the n-step transition probabilities p

(n)
ij of

ξ as follows. A state i ∈ S is recurrent or transient according as the series∑
n≥1 p

(n)
ii diverges or converges (see E. Seneta (1981)). On the other hand,

we have the dichotomy positive states and null states. A state i ∈ S is said
to be positive or null according as the mean frequency of passage from state
i to i is strictly positive or zero. Since recurrence (or transience) is a class
property then ξ may have recurrent (or transient) classes. Analogously, ξ
may have positive (or null) classes. Here a class is either a set of mutually
communicating states or consists of a single state.
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The Markovian dependence related to electrical networks was studied in
many works like C.St.J.A. Nash-Williams (1959), G.J. Minty (1960), G.K.
Kemeny, J.L. Snell, and A.W. Knapp (1976), F. Kelly (1979), D. Griffeath
and T.M. Liggett (1982), T. Lyons (1983), P.G. Doyle and J.L. Snell (1984),
and others. Recent valuable contributions to stochastics on networks are
due to Y. Derriennic (1973–1993), Y. Guivarc’h (1980a, b, 1984), W. Woess
(1986–1994), M.A. Picardello et al. (1987–1994), P.M. Soardi (1990, 1994a,
b), L. DeMichele et al. (1990), and others.

A detailed and updated exposition of infinite electrical networks is due
to A.H. Zemanian (1991) (see also A.H. Zemanian (1965–1992), A.H.
Zemanian and P. Subramanian (1983)). An infinite resistive network is
a pair consisting of an unoriented connected infinite graph and a nonnega-
tive function defined on the set of edges. Arguing the extension to infinite
networks, Zemanian (1991) points out that questions which are meaning-
less for finite networks crop up about infinite ones, for example, Kirchhoff’s
current law need not hold at a node with an infinity of incident edges, and
Kirchhoff’s voltage law may fail around an “infinite” circuit.

On the other hand, Markov chain analysis does not always agree with
that of electrical networks—we here refer the reader to a recent work of
S. McGuinness (1991) according to which Nash-Williams’s theorem con-
cerning recurrence of locally finite networks can be generalized to networks
without the local finiteness condition. Recent results of E. Schlesinger
(1992), and P.M. Soardi and M. Yamasaki (1993) show recurrence–
transience criterions for networks satisfying weaker finiteness conditions
than the local finiteness.

Our approach to countable circuit chains follows S. Kalpazidou (1989b,
1990b, 1991a). Consider an infinite denumerable class C of overlapping
directed circuits with distinct points (except for the terminals) in a denu-
merable set S.

Let C− = {c−, c− is the reversed of c, c ∈ C }.
Assume the following hypotheses are satisfied:

(c1) The circuits determine an infinite oriented graph of bounded degree,
that is, there is some integer n0 ≥ 1 such that the number of circuits
that pass through any point of S is at most n0.

(c2) maxc∈C p(c) = R < ∞, where p(c) denotes the period of c.
(c3) (Connectedness). For every two points k and u of S there ex-

ist a finite sequence of circuits c1, . . . , cm and a finite path k0 =
k, k1, . . . , km = u of points on c1, . . . , cm that connect k to u, that
is, (kn, kn+1) is passed by cn+1, n = 0, . . . ,m− 1, in the sense of
Definition 1.2.2.

In general, the collection C may contain infinitely many circuits with peri-
ods greater than 2. (There are contexts where it is more suitable to consider
only circuits of period 2 (see Y. Derriennic (1993).)
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Associate a strictly positive number wc with each c ∈ C and, as-
suming the same conventions (2.1.2) and (2.1.3), define the functions
w(·, ·), w(·), w−(·, ·), and w−(·) by relations (2.1.4)–(2.1.7). Then there
exist two irreducible S-state Markov chains ξ = (ξn)n and χ = (χn)n
with the transition laws given, respectively, by (w(k, i)/w(k), k, i ∈ S) and
(w−(i, k)/w−(k), k, i ∈ S). Both processes ξ and χ are called denumer-
able circuit chains generated by (C, wc) and (C−, wc−), respectively. Fur-
thermore, these processes admit the collection (w(k), k ∈ S) as an invari-
ant measure (since w−(k) = w(k), k ∈ S). The reader may find results
on Markov processes admitting invariant measures in T.E. Harris and
R. Robins (1953), T.E. Harris (1956, 1957), C. Derman (1954, 1955), R.G.
Miller, Jr. (1963), E. Seneta (1981), and others.

When either C or {wc} varies, we may define a collection of circuit chains
as above. Furthermore, one may obtain a recurrent or transient behavior
for each circuit chain according to the additional constraints imposed on
(C, wc). One way to investigate the type problem for the above circuit chain
ξ is to relate the representative collection (C, wc) of directed circuits and
weights with an infinite electrical network in order to apply a variant of the
Rayleigh short-cut method (see J.W.S. Rayleigh (1870)), which phrased
in probabilistic term leads to the Nash-Williams recurrence criterion for
reversible Markov chains; that in turn leads to Ahlfors’s criterion (see L.V.
Ahlfors (1935)).

A condition for characterizing recurrence (or transience) of Markov pro-
cesses will be called an Ahlfors-type criterion if it involves the growth func-
tion of the state space. In Chapter 1 of Part II we shall give an Ahlfors-type
sufficient condition, in terms of the circuits, for a reversible circuit chain
to be recurrent.

Now we shall show a Nash-Williams-type sufficient condition on the
weights wc for a circuit chain to be recurrent (S. Kalpazidou (1989b, 1990d,
1991a, e)). The Nash-Williams theorem asserts the following. Let S be a
countable set and let ξ = (ξn)n≥0 be an S-state Markov chain whose tran-
sition probabilities are the pij , i, j ∈ S. Suppose that the chain ξ is re-
versible with respect to a measure π = (πi, i ∈ S), with πi, > 0, that is,
πipij = πjpji. Let w(i, j) denote πipij for all i, j ∈ S. Assume further that
there exists a partition {Sk, k = 0, 1, . . .} of S such that u ∈ Sk, k ≥ 1, and
w(u, u′) > 0 together imply u′ ∈ Sk−1 ∪ Sk ∪ Sk+1, and that for each k the
sum

∑
u∈Sκ,u′∈S w(u, u′) < ∞. Denote αk =

∑
u∈Sκ

∑
u′∈Sκ+1

w(u, u′), k =
0, 1, 2, . . . .

If
∑∞

κ=0(αk)−1 = ∞, then the chain ξ is recurrent. For a simple proof
of Nash-Williams’s criterion we refer the reader to T. Lyons (1983) and S.
McGuinness (1991).

However, there is an essential difference between our network and those
to which the classical Rayleigh method refers: here the circuits are di-
rected. Consequently, to apply the Rayleigh–Ahlfors–Nash-Williams recur-
rence criterion, it is necessary to reconsider the definition of the passages
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along the circuits in such a way that reversible chains result. This is
achieved by a suitable definition of the passage-functions (see S. Kalpazidou
(1989b)).

Define the function Jc : S × S → {0, 1
2}, c ∈ C, as follows:

Jc(k, u) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 , if there exists j such that k = c ◦ tj(s) and either :

(i)u = c ◦ tj(s + 1) or (ii)u = c ◦ tj(s− 1)
for some integer s;

0, otherwise;

(2.2.1)

where tj and c ◦ tj are given in relation (1.1.1). Then Jc is symmetric.
Analogously define Jc−(u, k) for the inverse circuit c−.

Definition 2.2.1. The functions Jc(·, ·) and Jc−(·, ·) are called backward–
forward passage functions associated with c and c−, respectively.

From now on the passage in condition (c3) is understood to be a
backward–forward passage, that is, a circuit c passes through (k, u) if and
only if the backward–forward passage function Jc has a nonzero value at
either (k, u) or (u, k). Put

Jc(k) =
∑
u

Jc(k, u), k ∈ S.

Then

Jc(k) =
{

1, if k is a point of c;
0, otherwise.

Condition (c3) asserts that any two points are cyclic-edge-connected, and
enables us to introduce a distance d in S defined as

d(k, u) =

⎧⎨
⎩

0, if k = u;
the shortest length of the paths
along the edges of C connecting k tou, if k �= u;

where the passages through the edges are understood to be the backward–
forward passages.

Fix 0, an arbitrary point in S called the origin. Let Sm,m = 0, 1, 2, . . . ,
be the “sphere” of radius m about the origin, that is, those points of S that
are exactly m edges distant from the origin. Then {Sm,m = 0, 1, 2, . . .} is
a partition of S. With the backward–forward passage functions in the def-
inition of the functions w(i, j), w(i), w−(i, j), w−(i) (according to relations
(2.1.4)–(2.1.7)), the corresponding processes ξ and χ become reversible with
respect to the measure (w(i), i ∈ S) = (w−(i), i ∈ S). Put

αk =
∑
u∈Sκ

∑
u′∈Sκ+1

w(u, u′), k = 0, 1, 2, . . . .
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We now prove

Theorem 2.2.2. If
∞∑
κ=0

(αk)−1 = ∞, (2.2.2)

the reversible circuit chains (ξn)n and (χn)n are recurrent.

Proof. If u belongs to the sphere Sk for some k and w(u, u′) > 0, then
u′ ∈ Sk−1 ∪ Sk ∪ Sk+1. On the other hand, condition (c1) implies that∑

u

w(k, u) < ∞, k ∈ S.

Hence ∑
u∈Sκ
u′∈S

w(u, u′) < ∞. (2.2.3)

Then relations (2.2.2) and (2.2.3) imply that the hypotheses of
Nash-Williams’s recurrence criterion are satisfied, and thus the chain
ξ is recurrent. The proof for the chain χ may be done in a similar
manner. �

Remark. (i) Y. Derriennic proposed another way for defining a passage
function associated with a reversible Markov chain. The idea consists of
considering a “symmetric” class C of directed circuits, that is, if c ∈ C then
c− ∈ C as well. Accordingly, one may introduce a passage function Jc(i, j)
by the same Definition 1.2.2.

(ii) A new scrutiny of the proof of Theorem 2.2.2 leads us to the question
of whether or not there exists a necessary and sufficient criterion of Ahlfors-
type for characterizing recurrence of the circuit chains.

A sufficient condition of Ahlfors-type is given by S. Kalpazidou (1989b)
using the Royden–Lyons criterion in terms of flows (see T. Lyons (1983)).
However, a counterexample of Varopoulos (1991) shows that, in general, a
necessary and sufficient condition of Ahlfors-type for recurrence of contin-
uous parameter Markov processes is bound to fail. Specifically, Varopou-
los’s example consists of a Brownian motion on a two-dimensional manifold
which is recurrent even though the volume grows exponentially. Plainly, the
discretization of Varopoulos’s counterexample (an open problem) would an-
swer the question above.

(iii) The constructive approach of this chapter to circuit chains relies
upon algebraic considerations. The algebraic constraints given by the bal-
ance equations do not ensure the uniqueness of the circuit weights cor-
responding to a circuit process, that is, there are many collections of
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circuits and weights generating the same process. In Chapter 3 we shall
show the existence of a probabilistic argument for the representative cir-
cuits and weights that ensures their uniqueness—in this case, the gener-
ative class {C, wc} will express certain probabilistic characteristics of the
process.



3

Cycle Representations of Recurrent
Denumerable Markov Chains

This chapter deals with the cycle generating equations defined by the tran-
sition probabilities of denumerable Markov chains ξ which are recurrent.
The solutions (C, wc) of cycles and weights to these equations will be called
cycle representations of ξ.

A natural idea to define a cycle (circuit) weight wc is similar to that
providing an “edge-weight” πipij , that is, the wc will be the mean number
of the appearances of c along almost all the sample paths. This will argue for
a probabilistic criterion assuring the uniqueness of the cycle representation,
that is, for a probabilistic algorithm with a unique solution of cycles and
weights which decompose the finite-dimensional distributions of ξ.

An alternate method of development is a deterministic approach accor-
ding to which the circuit weights are given by a sequence of nonprobabilistic
algorithms.

Our exposition follows the results of the Peking school of Qians (1978–
1991), S. Kalpazidou (1990a, 1992e, 1993c, 1994b), and Y. Derriennic
(1993).

3.1 The Derived Chain of Qians

As we have already seen in Theorem 1.3.1, the representative collection
(C, wc) of circuits and weights is not, in general, unique. It depends on
the choice of the ordering of the representative circuits in the algorithm of
Theorem 1.3.1.
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In general, there are many algorithms of cycle decompositions for the
finite-dimensional distributions of Markov chains which admit invariant
probability distributions. Some of them provide a unique solution (C, wc)
as a representative class, and some others have many solutions of represen-
tative classes (as the algorithm of Theorem 1.3.1). So, when we say that
we look for the uniqueness of the representative class (C, wc), we under-
stand that we shall refer to a definite algorithm with a unique solution
(C, wc).

Expectedly, such an algorithm can be defined involving a probabilistic
argument. It is Qians’s school that first introduced probabilistic arguments
to a unique cycle representation using, as a basic tool, a Markov process
whose state space consists of the ordered sequences (i1, . . . , in) of distinct
points of a denumerable set S. Here we shall present Qians’s approach in the
contexts of our formalism exposed in Chapter 1. So, preliminary elements
of our exposition are the directed cycles with distinct points as introduced
by Definition 1.1.3. Accordingly, a cycle is an equivalence class with respect
to the equivalence relation defined by (1.1.1); for instance, to the circuit
c = (i1, . . . , in, i1) is assigned the cycle ĉ = (i1, . . . , in) which represents the
cycle-class {(i1, . . . , in), (i2, i3, . . . , in, i1), . . . , (in, i1, . . . , in−1)}. This pre-
supposes that all further entities which rely on cycles should not depend
on the choice of the representatives while the circuits to be considered will
have distinct points (except for the terminals).

The idea of taking directed cycles arises from the topological prop-
erty of the trajectories of certain Markov chains providing directed cycles
along with directed circuits, that is, the chains pass through the states
i1, i2, . . . , in, i1, or any cyclic permutation (see Figure 3.1.1).

So, the occurrence of a cycle (i1, . . . , in) along a trajectory of these chains
presupposes the appearance of the corresponding circuit (i1, . . . , in, i1).
Such a chain is any homogeneous, irreducible, aperiodic, and positive-
recurrent Markov chain ξ = (ξn, n ≥ 0) with a countable state space S.
Namely, if a typical realization of a sample path (ξn(ω))n is (i1, i2, i3, i2,
i3, i4, i1, i3, i5, . . .), ik ∈ S, k = 1, 2, . . . , then the sequence of the cycles is
(i2, i3), (i2, i3, i4, i1), (see Figure 3.1.1).

The interpretation of a cycle ĉ = (i1, . . . , ir) in terms of the chain
ξ is that it appears on a sample path (ξn(ω))n (and then on almost

Figure 3.1.1.
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all the sample paths as we shall see below), that is, the chain passes
through the states i1, i2, . . . , ir, i1 (or any cyclic permutation). For in-
stance, if the values of (ξn(ω))n≥0 are given by (1, 4, 2, 3, 2, 6, 7, 6, 1, . . .),
then the sequence of cycles occurring on this trajectory is given by
(2, 3), (6, 7), (1, 4, 2, 6), . . . , while the corresponding tracks of the remain-
ing states are (1, 4, 2, 6, 7, 6, 1, . . .)(1, 4, 2, 6, 1, . . .) (S. Kalpazidou (1990a,
1994b)). The previous decycling procedure can be found in various fields
under different versions. For instance, S. Alpern (1991) introduced a sim-
ilar decycling method in game theory. This leads naturally to a new
chain y = (yn(ω))n≥0 whose value at time k is the track of the remain-
ing states, in sequence, after discarding the cycles formed up to k along
(ξn(ω))n≥0.

In the following table we give the trajectory (1, 4, 2, 3, 2, 6, 7, 6, 1, . . .) of
(ξn(ω))n along with the attached trajectory (yn(ω))n as well as the cycles
occurring along (ξn(ω))n:

n 0 1 2 3 4

ξn(ω) 1 4 2 3 2
yn(ω) [1] [1, 4] [1, 4, 2] [1, 4, 2, 3] [1, 4, 2]
Cycles (2, 3)

n 5 6 7 8 . . .

ξn(ω) 6 7 6 1 . . .
yn(ω) [1, 4, 2, 6] [1, 4, 2, 6, 7] [1, 4, 2, 6] [1] . . .
Cycles (6, 7) (1, 4, 2, 6) . . .

It turns out that each cycle ĉ = (i1, . . . , ir) is closed by the edge (ir, i1)
which occurs either after ĉ, or before completing ĉ, as (i1, i2) in the cycle
(i2, i3, i4, i1) of Figure 3.1.1, or as (1, 4) in the cycle (1, 4, 2, 6) of the table
above, where the time unit is the jump-time of (ξn(ω))n.

Let wc,n(ω) be the number of occurrences of the cycle ĉ up to time n
along the trajectory ω of ξ. The rigorous definition of wc,n(ω) is due to
Minping Qian et al. (1982). It is this definition that we describe further. If
tn(ω) denotes the nth jump time of (ξn(ω))n, then introduce

τ1(ω) = min{tn(ω) : ∃m < n such that ξtn(ω)(ω) = ξtm(ω)(ω)},
τ∗1 (ω) = tm(ω), if tm(ω) < τ1(ω) and ξtm(ω)(ω) = ξτ1(ω)(ω).

Define

ξ(1)
n (ω) =

{
ξn(ω), if n < τ∗1 (ω) or n > τ1(ω);
ξτ1(ω)(ω) = ξτ∗

1 (ω)(ω), if τ∗1 (ω) ≤ n ≤ τ1(ω).
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Further we continue the same procedure of discarding cycles by considering
the nth jump-time t

(1)
n (ω) of (ξ(1)

n (ω))n. Then we put

τ2(ω) = min{t(1)n (ω) : ∃m < n such that ξ(1)

t
(1)
n (ω)

(ω) = ξ
(1)

t
(1)
m (ω)

(ω)}
and so on, obtaining the sequence:

τ1(ω) < τ2(ω) < · · · < τn(ω) < · · ·
and

τ∗1 (ω) < τ∗2 (ω) < · · · < τ∗n(ω) < · · · .
Now, denote an ordered sequence of distinct points i1, . . . , ir by
[i1, . . . , ir] and identify the ordered union [[i1, . . . , im], [im+1, . . . , im+n]]
with [i1, . . . , im, im+1, . . . , im+n]. The set [S] of all finite ordered sequences
[i1, . . . , ir], r ≥ 1, of points of S is denumerable.

Set t0(ω) = 0. Define

y0(ω) = [ξ0(ω)],
yn(ω) = [ξ0(ω)], if n < t1(ω)
yn(ω) = [ξ0(ω), ξt1(ω)(ω), . . . , ξn(ω)], if t1(ω) ≤ n < τ1(ω),

yτ1(ω)(ω) = [ξ0(ω), ξt1(ω)(ω), . . . , ξτ∗
1 (ω)(ω)],

yn(ω) = [yτ1(ω)(ω), [ξts(ω)(ω)]τ1(ω)<ts(ω)≤n], if τ1(ω) < n < τ2(ω),

and so on. It is easy to see that y = {yn}n≥0 is an [S]-state Markov chain
called by Minping Qian the derived chain associated to ξ.

Furthermore, it is seen in S. Kalpazidou (1990a) that if for a cycle ĉ =
(i1, . . . , ir) the sum

n∑
m=1

r∑
k=1

1{ω:ym−1(ω)=[ym(ω),[ik,ik−1,...,ik+r−1]]}(ω)

is meant modulo r the cyclic permutations (i.e., it is independent of the
cyclic permutations of ik, ik+1, . . . , ik+r−1), then it equals

wc,n(ω) =
n∑

m=1

1{the class-cycle ĉ occurs}(ω). (3.1.1)

If pjk, j, k ∈ S, denote the transition probabilities of ξ, then for E =
[k1, k2, . . . , ks] and F = [j1, j2, . . . , jr] the transition probabilities pFE of
y are given as follows:

pFE =

⎧⎨
⎩
pjrks

, if either r ≥ s and k1 = j1, k2 = j2, . . . , ks = js,
or r = s− 1 and k1 = j1, k2 = j2, . . . , kr = jr;

0, otherwise.
(3.1.2)

Since ξ is recurrent, we have

Prob(ξn returns to i/ξ0 = i) = 1,
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and then

Prob(yn returns to [i]/y0 = [i]) = Prob(ξn returns to i/ξ0 = i) = 1.

Let now [E]i be the subset of all ordered sequences in [S] whose first
element is i. Then [E]i is a stochastically closed class of y. Therefore y is
recurrent on each irreducible class [E]i. The invariant probability distribu-
tion π̃ is given on the point sets [i] by

π̃([i]) = π(i), (3.1.3)

where π = (πi, i ∈ S) denotes the invariant probability distribution of ξ.
The general definition of π̃([i1, i2, . . . , is]) has a much more complex al-

gebraic expression in terms of the transition probabilities pij of ξ as we see
in the following theorem due to Minping Qian and Min Qian (1982):

Theorem 3.1.1.

(i) The invariant probability distribution of the chain y on the recurrent
class [E]i is given by

π̃([i1, i2, . . . , is]) = pi1i2pi2i3 · · · pis−1is · πi1N(i2, i2/i1)
×N(i3, i3/i1, i2) · · ·N(is, is/i1, . . . , is−1) (3.1.4)

where i1 = i and N(i, j/i1, . . . , ik), 1 ≤ k ≤ s− 1, denotes the taboo
Green function

N(i, j/i1, . . . , ik) =
∞∑

n=0

Prob(ξn = j, ξm �= i1, . . . , ik;

for 1 ≤ m < n/ξ0 = i).

(ii)

π̃([i1, i2, . . . ,is])pisi1 =
s∑

k=1

∑
j2,...,jr

π̃([j1, . . . , jr,ik,ik+1, . . . ,ik−1])piκ−1iκ,

(3.1.5)

where j1 is fixed in the complement set of {i1, i2, . . . , is} and
the inner sum is taken over all distinct choices j2, j3, . . . , jr ∈
S\{j1, i1, . . . , is}. The sums k + 1, k + 2, . . . , k + s− 1 are under-
stood to be modulo s.

(iii) For any fixed points i and j we write

πj =
∑

j2,...,jr

π̃([i, j2, . . . , jr, j]), (3.1.6)

where the sum is taken over all distinct choices j2, j3, . . . , jr ∈
S\{i, j}.
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Proof. According to T.E. Harris (1952) we have the following identities:

πiN(j, j/i) = πjN(i, i/j), (3.1.7)
π̃(E1) q̃(E1, E2) = π̃(E2) q̃(E2, E1), (3.1.8)

for any E1, E2 states in [E]i, where q̃(Ei, Ej) denotes the probability that
the derived chain y starting at Ei enters Ej before returning to Ei. Then,
for E1 = [i1, i2, . . . , is−1] and E2 = [i1, i2, . . . , is−1, is] we have that

q̃(E1, E2) = pis−1is ,

q̃(E2, E1) = 1 −H(is, is/i1, i2, . . . , is−1),

where H(is, is/i1, i2, . . . , is−1) denotes the probability that the original
chain ξ starting at is returns to is before entering the states i1, i2, . . . , is−1.
Hence relation (3.1.8) becomes

π̃([i1, i2, . . . , is−1])pis−1is = π̃([i1, . . . , is])(1 −H(is, is/i1, . . . , is−1))
(3.1.9)

and

π̃([i1, i2, . . . , is]) = π̃([i1, i2, . . . , is−1])pis−1isN(is, is/i1, i2, . . . , is−1).
(3.1.10)

Now we may appeal to a theorem of K.L. Chung (1967) (see p. 48), and
write accordingly

N(is, is/i1, . . . , is−1)N(is+1, is+1/i1, . . . , is−1, is)
= N(is+1, is+1/i1, . . . , is−1)N(is, is/i1, . . . , is−1, is+1). (3.1.11)

Then equation (3.1.4) follows from (3.1.3) and (3.1.10). It is to be noticed
that the product

πi1N(i2, i2/i1)N(i3, i3/i1, i2) . . . N(is, is/i1, i2 . . . , is−1) (3.1.12)

is unaffected by any permutation of the indices i1, i2, . . . , is because of
(3.1.7) and (3.1.11).

To prove relation (3.1.5) we first show that

1 =
s∑

k=1

∑
j2,...,jr

N(j1, j1/i1, . . . , is)

·N(j2, j2/i1, . . . , is, j1)N(j3, j3/i1, . . . , is, j1, j2) . . .
·N(jr, jr/i1, . . . , is, j1, . . . , jr−1)pj1j2pj2j3 · · · pjriκ , (3.1.13)

where j1 /∈ {i1, . . . , is} is fixed and the inner sum is taken over all distinct
j2, . . . , jr /∈ {i1, . . . , is, j1}. Let p(i, j/H/n) be the taboo probability

p(i, j/H/n) = Prob(ξn = j, ξm /∈ H for 1 ≤ m < n/ξ0 = i).
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For k, j2, j3, . . . , jr fixed, the sum over n1, . . . , nr of

p(j1, j1/i1, . . . , is/n1)pj1j2p(j2, j2/i1, . . . , is, j1/n2)pj2j3
. . . p(jr, jr/i1, . . . , is, j1, . . . , jr−1/nr)pjriκ

is the probability for the chain ξ starting at j1 to enter the set {i1, . . . , is}
for the first time at the state ik while the value of the derived chain y is
[j1, j2, . . . , jr, ik]. Thus we get the summand of (3.1.13). Then the desired
equation (3.1.5) follows by multiplying both sides of (3.1.13) with

pisi1pi1i2 . . . pis−1isπi1N(i2, i2/i1) ·N(i3, i3/i1, i2) . . . N(is, is/i1, . . . , is−1),

and using the symmetry of (3.1.12). Finally, equation (3.1.6) follows from
(3.1.13) when taking s = 1, j1 = i, and i1 = j, and multiplying by πj . �

3.2 The Circulation Distribution of a
Markov Chain

A step closer to a probabilistic criterion for the uniqueness of the rep-
resentative cycle-weights of a Markov chain ξ, under the assumptions of
the previous section, is to find a definite algorithm whose quantities enjoy
probabilistic interpretations in terms of the sample paths. The idea is to
generalize to cycles the definition of the “edge-weight” w(i, j) = πipij in
terms of sample paths; namely, as is well known the w(i, j) is the mean
number of the consecutive passages of (ξn(ω))n through the points i and
j. That is, πipij is the almost sure limit of

1
n

card{m ≤ n : ξm−1(ω) = i, ξm(ω) = j},
as n → ∞.

Accordingly, the revealing question for us will be whether or not we can
analogously argue for the expression

1
n

card{m ≤ n : the cycle ĉ occurs on (ξk(ω))k} =
1
n
wc,n(ω),

where m counts the appearances of ĉ on (ξk(ω))k. (Recall that a cycle
ĉ = (i1, i2, . . . , ir), r > 1, appears on (ξk(ω))k if the chain passes through
the points i1, i2, . . . , ir, i1, or any cyclic permutation.)

In this direction, we first need to prove that (1/n)wc,n(ω) has a limit
independent of ω. Namely, we have

Theorem 3.2.1. Let ξ = (ξn)n be an aperiodic, irreducible, and positive-
recurrent Markov chain defined on a probability space (Ω,K, P) and with
a countable state space S, and let Cn(ω), n = 0, 1, 2, . . . , be the class of all
cycles occurring until n along the sample path (ξn(ω))n.
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Then the sequence (Cn(ω), wc,n(ω)/n) of sample weighted cycles associ-
ated with the chain ξ converges almost surely to a class (C∞, wc), that is,

C∞ = lim
n→∞Cn(ω), a.s. (3.2.1)

wc = lim
n→∞(wc,n(ω)/n), a.s. (3.2.2)

Furthermore, the cycle-weights wc are independent of the choice of an
ordering on C∞.

Proof. Let p̂j ≡ P(ξ0 = j), j ∈ S. Following S. Kalpazidou (1990a), we
can assign to each ω the class limn→∞ Cn(ω) of directed cycles that
occur along (ξn(ω))n, since the sequence (Cn(ω)) is increasing. Denote
C∞(ω) ≡ limn→∞ Cn(ω) =

⋃
n Cn(ω).

On the other hand, applying the law of large numbers to the Markov
chain y we have

lim
n→∞(wc,n(ω)/n) = E1{the class-cycle ĉ occurs},

where ĉ is any class-cycle having the representative (ik, ik+1, . . . , is, i1, . . . ,
ik−1). Put

wc ≡ lim
n→∞(wc,n(ω)/n).

That wc is finite and independent of ω follows from (3.1.5) and the following
equalities due to Minping Qian et al. (1982):

wc =
s∑

k=1

E(1{yn−1=[yn,[ik,ik+1,...,is,i1,...,ik−1]]})

=
∑
j1

p̂j1

s∑
k=1

∑
j2,...,jr

π̃([j1, j2, . . . , jr, ik, ik+1, . . . , ik−1]) · pik−1ik , (3.2.2′)

where j1, . . . , jr /∈ {i1, . . . , is}, r ≥ 0, are distinct from one another. From
here it results that C∞(ω) ≡ C∞ is independent of ω as well, and this
completes the proof. �

We now introduce the following nomenclature:

Definition 3.2.2. The items occurring in Theorem 3.2.1 are as follows:
the sequence {wc,n(ω)/n}ĉ∈C∞ , which is called the circulation distribution
on ω up to time n, the wc, which is called the cycle skipping rate on ĉ or c,
and {wc, ĉ ∈ C∞}, which is called the circulation distribution of ξ.

Remarks
(i) Theorems 3.1.1 and 3.2.1 remain valid for periodic and positive-

recurrent Markov chains as well. In general, convergence of averages along
Markov chain trajectories is required (even if there is no finite-invariant
measure). Recent investigations to this direction are due to Y. Derriennic
(1976), and Y. Derriennic and M. Lin ((1989), (1995)).
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(ii) The wc’s verify the consistency equation wc = wc ◦ ti , for all i ∈ S,
where {ti} is the group of translations on Z occurring in (1.1.1).

As an immediate consequence of Theorem 3.2.1 one obtains from (3.2.2′)
the exact algebraic expression for the cycle skipping rate wc as follows:

Corollary 3.2.3. If π = (πi, i ∈ S) is the invariant probability distribution
of an S-state irreducible positive-recurrent Markov chain ξ = (ξn)n and ĉ =
(i1, i2, . . . , is) is a cycle, then the cycle skipping rate wc is given by equation

wc = πi1pi1i2pi2i3 . . . pis−1ispisi1

·N(i2, i2/i1)N(i3, i3/i1, i2) . . . N(is, is/i1, i2, . . . , is−1), (3.2.3)

where (pij , i, j ∈ S) is the transition matrix of ξ, and N(ik, ik/i1, . . . , ik−1)
denotes the taboo Green function introduced in (3.1.4).

3.3 A Probabilistic Cycle Decomposition
for Recurrent Markov Chains

We are now prepared to answer our original question on the existence of a
unique cycle decomposition, provided by a probabilistic algorithm, for the
finite-dimensional distributions of the recurrent Markov chains. Namely, the
probabilistic algorithm to be considered is that occurring in Theorem 3.2.1
while the desired decomposition follows from Theorem 3.1.1 (see Minping
Qian and Min Qian (1982), and S. Kalpazidou (1990a)).

Consequently, we may state

Theorem 3.3.1 (The Probabilistic Cycle Representation). Let S be any
denumerable set. Then any stochastic matrix P = (pij , i, j ∈ S) defining
an irreducible and positive-recurrent Markov chain ξ is decomposed by the
cycle skipping rates wc, ĉ ∈ C∞, as follows:

πipij =
∑
ĉ∈C∞

wcJc(i, j), i, j ∈ S, (3.3.1)

where C∞ is the class of cycles ĉ occurring in Theorem 3.2.1, c denotes the
circuit corresponding to the cycle ĉ, π = (πi, i ∈ S) is the invariant prob-
ability distribution of P and Jc(i, j) = 1 or 0 according to whether or not
(i, j) is an edge of c.

The above cycle-weights wc are unique, with the probabilistic interpreta-
tion provided by Theorem 3.2.1, and independent of the ordering of C∞.

If P defines a positive-recurrent Markov chain, then a similar decompo-
sition to (3.3.1) holds, except for a constant, on each recurrent class.

The representative class (C∞, wc) provided by Theorem 3.3.1 is called
the probabilistic cycle (circuit) representation of ξ and P while ξ is called a
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circuit chain. The term “probabilistic” is argued by the algorithm of Theo-
rem 3.2.1 whose unique solution {wc} enjoys a probabilistic interpretation
in terms of the sample paths of ξ.

The terms in the equations (3.3.1) have a natural interpretation using
the sample paths of ξ as follows (S. Kalpazidou (1990a)). Consider the
functions σn(·; i, j) defined as

σn(ω; i, j) =
1
n

card{m ≤ n : ξm−1(ω) = i, ξm(ω) = j}
for any i, j ∈ S. Consider Cn(ω) to be, as in Theorem 3.2.1, the class of
all the cycles occurring up to n along the sample path (ξn(ω))n. We recall
that a cycle ĉ = (i1, . . . , ir), r ≥ 2, occurs along a sample path if the chain
passes through states i1, i2, . . . , ir, i1 (or any cyclic permutation). Notice
that the sample sequence

k(ω) = (ξm−1(ω), ξm(ω))

occurs up to n whenever either k(ω) is passed by a cycle of Cn(ω) in the
sense of Definition 1.2.2 or k(ω) is passed by a circuit completed after time
n on the sample path (ξn(ω)). Therefore for i �= j and n > 0, great enough,
we have

σn(ω; i, j) =
∑

ĉ∈Cn(ω)

1
n
wc,n(ω)Jc(i, j) + εn(ω; i, j)/n, (3.3.2)

where

εn(ω; i, j) = 1{the last occurrence of (i, j) does not happen
together with the occurrence of a cycle of Cn(ω)}

(ω). (3.3.3)

Then the left side of (3.3.2) converges to πipij and each summand of the
right side converges to wcJc(i, j).

From the present standpoint a natural way of proving a cycle-
decomposition-formula is to observe that the a.s. limit of the sums∑

ĉ∈C∞

(wc,n(ω)/n)Jc(i, j)

when n tends to infinity is related with the sum occurring in equations
(3.3.1). This inspires a direct proof of the decomposition (3.3.1) as in the
following theorem due to Y. Derriennic (1993).

Theorem 3.3.2. Let S be a denumerable set and let P = (pij , i, j ∈ S) be
any stochastic matrix defining an irreducible and positive-recurrent Markov
chain ξ. Then

πipij = lim
n→∞

∑
ĉ∈C∞

(wc,n(ω)/n)Jc(i, j) a.s.

=
∑
ĉ∈C∞

wcJc(i, j), (3.3.4)
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where (C∞, wc) and wc,n(ω) have the same meaning as in Theorem 3.2.1,
π = (πi, i ∈ S) is the invariant probability distribution of P and Jc(i, j) =
1 or 0 according to whether or not (i, j) is on edge of c.

Proof. Consider the derived chain y associated to ξ and an arbitrarily
chosen irreducible class [E]i. Then the restriction of y to [E]i is a positive-
recurrent chain whose invariant probability distribution is given by (3.1.4).
Let [E]ij be the subset of [E]i which consists of all the cycles starting with
the consecutive points i and j. Then, applying the Birkhoff ergodic theorem
to the number of the visits of y in the set [E]ij , one obtains relations (3.3.4).
The proof is complete. �

If ξ is an irreducible null-recurrent Markov chain, then a cycle-
decomposition-formula may be obtained using a similar argument where
Birkhoff’s theorem is replaced by the Hopf ergodic theorem for ratios. Ac-
cordingly, the limit of (wc,n(ω)/wc′,n(ω)) exists a.s. as n → ∞ for any cir-
cuits c and c′.

3.4 Weak Convergence of Sequences of Circuit
Chains: A Deterministic Approach

We introduced two types of circuit representations of Markov chains ac-
cording to whether or not the corresponding algorithms define the circuit-
weights by a random or a nonrandom choice. In the spirit of Kolmogorov
we may call such algorithms probabilistic (randomized) and deterministic
(non-randomized) algorithms, respectively.

In the present section the deterministic algorithm of Theorem 1.3.1 is
generalized to infinite classes of directed circuits such that the correspon-
ding denumerable circuit Markov chain ξ can be defined as a limit of a
certain sequence (mξ)m of finite circuit chains. The convergence of this
sequence is weak convergence in the sense of Prohorov, that is, the finite-
dimensional distributions of mξ converge as m → ∞ to the corresponding
ones of ξ.

The approach we are ready to follow will rely on the idea of circuit gen-
erating equations exposed in Section 1.3. In this direction we shall consider
denumerable reversible Markov chains which are of bounded degree, that
is, from each state there are finitely many passages to other states. Then a
parallel to Tychonov’s theorem for infinite products of compact topological
spaces can be conceived along with the matching Hall-type theorem for
infinite bipartite graphs (see P. Hall (1935) and K. Menger (1927)).

The preliminary element will be a stochastic matrix P = (pij , i, j ∈ S)
on a denumerable set S, that defines a reversible, irreducible, aperiodic,
and positive-recurrent Markov chain ξ = (ξn)n, whose invariant probability
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distribution is denoted by π = (πi, i ∈ S). The main theorem is that a cir-
cuit decomposition for P can be given using a deterministic algorithm
according to which the directed circuits c ∈ C and their weights wc are
solutions to certain recursive balance equations where the “edge-weights”
πipij , i, j ∈ S, are used without any probabilistic meaning. The represen-
tative class (C, wc) will be called a deterministic circuit representation of
ξ and of P.

One reason for choosing a deterministic algorithm is that the correspon-
dence P → C becomes nearly one-to-one, that is, the class C approximates
the probabilistic one. It is proved below that the class C may be the limit
of an increasing sequence nC of finite classes of overlapping directed cir-
cuits. The one-to-one correspondences P → C are particularly important
for plenty of problems arising in various fields. For example, we may refer
here to the so-called coding problem arising in the context of dynamical
systems, that in turn leads to the problem of mapping stochastic matrices
into partitions. A detailed exposition of this argument is given in Section
3.5 of Part II.

The relation P → (C, wc) for transient Markov chains is still an open
problem and may be connected in particular with certain questions arising
in network theory. One of them is concerned with the existence of unique
cycle-currents in infinite resistive networks made up by circuits. Interesting
results in this direction for edge-networks are due to H. Flanders (1971),
A.H. Zemanian (1976a, 1991) and P.M. Soardi and W. Woess (1991). For
instance, Flanders’s condition for a current I to be the unique solution to
a network-type problem (in the class of all currents with finite energy)
consists of the existence of a sequence of currents in finite subnetworks
approaching I.

We begin our investigations by considering a countable set S and a
stochastic matrix P = (pij , i, j ∈ S) of bounded degree, that is, for each
i ∈ S there are finitely many j ∈ S such that pij > 0 or pji > 0. Assume P
defines a reversible, irreducible, and aperiodic Markov chain ξ admitting
an invariant probability distribution π = (πi, i ∈ S), with all πi > 0.

We say ξ defines a directed circuit c = (i1, . . . , in, i1) where n ≥ 2, and
ik �= im for distinct k,m ≤ n, if and only if pi1i2 , pi2i3 , . . . pin−1inPini1 > 0.
Throughout this section the directed circuits will be considered to have dis-
tinct points (except for the terminals). The irreducibility condition amounts
to the existence for each pair (i, j), with i �= j, of a directed finite sequence
σ(i, j) connecting i to j, that is,

σ(i, j) : i0 = i, i1, . . . , in = j, n ≥ 1 with ik �= im for k �= m; k,m ≤ n,

such that pii1 . . . pin−1j > o. (3.4.1)

The following property characterizes, in general, irreducibility:

Proposition 3.4.1. Any two points of S are cyclic-edge-connected in S.
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Proof. Let i �= j. If pij > 0, the proof is immediate. Otherwise, there exist
two directed paths σ1(i, j) and σ2(j, i) connecting i to j and j to i, respec-
tively. If j1 �= i, j denotes the first point of σ1 belonging to σ2, then there
exists the directed circuit

c1 = (σ1(i, j1), σ2(j1, i)),

such that the points j1 and j are mutually connected by the directed paths
σ1(j1, j) and σ2(j, j1). By repeating the previous reasonings, we obtain a
sequence of directed circuits connecting i to j such that any two consecutive
circuits have at least one common point. �

Consider the shortest-length-distance introduced in Section 2.2, that is,

d(i, j) =

⎧⎨
⎩

0, if i = j;
the shortest length n
of the paths σ(i, j) defined by (3.4.1), if i �= j;

(3.4.2)

where the connections are expressed by the forward–backward passage
functions introduced by relation (2.2.1). Then, for any finite subgraph of P
define its diameter as the maximal distance. Since any point of S is cyclic-
edge-connected with all the others, we may choose an arbitrary point O ∈ S
as the origin of the spheres S(O,m) of radius m,m = 0, 1, . . . with respect
to the distance d above.

We are now prepared to prove a deterministic circuit decomposition of
P following S. Kalpazidou (1993c). As was already mentioned, we are in-
terested in representing the chain ξ by a class (C, wc) provided by a de-
terministic algorithm such that the correspondence P → C becomes nearly
one-to-one, that is, C will approximate the collection of all the circuits oc-
curring along almost all the sample paths. Then the trivial case of the class
containing only the circuits of period two will be avoided. We have

Theorem 3.4.2. Consider S a denumerable set and ξ = (ξn)n≥0 an S-
state Markov chain which is irreducible, aperiodic, reversible, and positive-
recurrent. Assume the transition matrix P = (pij , i, j ∈ S) of ξ is of
bounded degree.

Then there exists a sequence (mξ)m of finite circuit Markov chains, asso-
ciated with a sequence of deterministic representative classes (mC,mwc)m,
which converges weakly to ξ as m → ∞ such that C = limm→∞ mC appro-
ximates the collection of all the circuits occurring along the sample paths
of ξ. The chain ξ becomes a circuit chain with respect to the class (C, wc)
where

wc =
∑

m→∞

mwc.

Proof. Consider the balls B(O, n) =
⋃n

k=0 S(O, n), n = 0, 1, . . . . Then for
each n and for any i, j ∈ B(O, n) the restriction nξ of ξ to the ball B(O, n)
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has the transition probability

npij = pij/

⎛
⎝ ∑

j∈B(O,n)

pij

⎞
⎠ .

Correspondingly, if π = (πi, i ∈ S) is the invariant probability distribution
of ξ then that of nξ in B(O, n) is given by the sequence nπ = (nπi, i ∈
B(O, n)) where

nπi =

⎛
⎝πi

∑
j∈B(O,n)

pij

⎞
⎠/

⎛
⎝ ∑

i,j∈B(O,n)

πipij

⎞
⎠ .

Put
npi = πi

∑
j∈B(O,n)

pij , i ∈ B(O,n), n = 1, 2, . . . .

It is to be noticed that if pij > 0 there exists an n0 such that for any n ≥ n0

we have i, j ∈ B(O,n) and
npij ≥ n+1pij ≥ · · · ≥ pij ,

0 < npi ≤ n+1pi ≤ · · · ≤ πi,

such that
npi

npij = n+1pi
n+1pij = · · · = πipij . (3.4.3)

Since any function nw(i, j) ≡ nπi
npij , n ≥ 0, is balanced in B(O,n), we can

appeal to Theorem 1.3.1 and find accordingly a class (nC, nwc) such that

nπi
npij =

∑
c∈nC

nwcJc(i, j), i, j ∈ B(O,n), (3.4.4)

where the Jc is the backward–forward passage function given by (2.2.1). For
n = 0, the constrained process to B(O, 0) = {O} has an absorbtion state
O and is represented by the class 0C = {c = (O,O)} where c = (O,O) is
the loop-circuit at point O and wc = 1.

Let us further consider n great enough such that the ball B(O, n) com-
prises all the circuits with periods larger than or equal to some k ≥ 1.
Applying as above Theorem 1.3.1 to nw(i, j) and B(O, n) we choose a se-
quence nc1, . . . .

nck1 of circuits such that some of them are the loops in
B(O, n) and some others are certain circuits of the subgraphs in B(O, n)
with diameters larger than one. Particularly, we may choose these circuits
such that they occur along almost all the sample paths of nξ.

The irreducibility hypothesis implies that
∑

j∈B(O,n) pbj < 1 for cer-
tain points b ∈ B(O, n). We shall call these points the boundary points of
B(O, n). On the other hand, since the matrix P is of bounded degree, per-
haps there are points i ∈ B(O, n) which satisfy equation

∑
j∈B(O,n) pij = 1.

These points will be called the interior points of B(O, n).
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Let us denote n1 = n and
1C ≡ n1C = {n1c1, . . . ,

n1ck1}.
Then (3.4.4) becomes

n1πi
n1pij =

∑
c∈1C

n1wcJc(i, j), i, j ∈ B(O, n1). (3.4.5)

For each boundary point b ∈ B(O, n1) there is a point j /∈ B(O, n1) such
that pbj > 0. Let n2 > n1 such that all the boundary points of B(O, n1)
will become interior points in B(O, n2).

Put
n2w(i, j) ≡ n2πi

n2pij = (πipij)/
∑

i,j∈B(O,n2)

πipij , i, j ∈ B(O, n2).

Note that because of (3.4.3) both n1w(·, ·) and n2w(·, ·) attain their mini-
mum over the Arcset of c1 ≡ n1c1 at the same edge, say (i1, j1), that is,

n1wc1 ≡ n1w(i1, j1) = min
c1

n1w(i, j),

n2w(i1, j1) = min
c1

n2w(i, j).

The latter equations enable us to choose n2c1 ≡ n1c1 ≡ c1 and n2wc1 ≡
n2w(i1, j1). We have

n1wc1 ≥ n2wc1 ≥ πi1pi1j1 > 0.

Further put
n2w1(i, j) ≡ n2w(i, j) − n2wc1Jc1(i, j), i, j ∈ B(O, n2).

Then n2w1(i1, j1) = 0 and the function n2w1(·, ·) is also balanced in
B(O, n2).

Appealing to the algorithm of Theorem 1.3.1 in B(O, n2), we find an
edge (i2, j2) of c2 ≡ n1c2 (n1 = n) where both n1w1 and n2w1 attain their
minimum, that is,

n1wc2 =n1 w1(i2, j2) ≡ min
c2

n1w1(i, j)

=

⎛
⎝1
/⎛⎝ ∑

i,j∈B(O,n1)

πipij

⎞
⎠
⎞
⎠ (πi2pi2j2 − πi1pi1j1

Jc1(i2, j2)),

and
n2w1(i2, j2) ≡ min

c2

n2w1(i, j)

=

⎛
⎝1
/⎛⎝ ∑

i,j∈B(O,n2)

πipij

⎞
⎠
⎞
⎠ (πi2pi2j2 − πi1pi1j1Jc1(i2, j2)).
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Then we may choose n2c2 ≡ c2 and n2wc2 ≡ n2w1(i2, j2). Hence
n1wc2 > n2wc2 ≥ πi2pi2j2 − πi1pi1j1Jc1(i2, j2) > 0.

Repeating the same reasonings above, we conclude that all the circuits in
B(O, n1) are circuits in B(O, n2) as well, that is,

n1c1 = n2c1 ≡ c1,
n1c2 = n2c2 ≡ c2,

...
n1ck1 = n2ck1 ≡ ck1 .

Then the n2w(i, j) is decomposed in B(O, n2) by a class (2C, n2wc) where
2C = {c1, . . . , ck1 , ck1+1, . . . , ck2}, k2 > k1,

may particularly contain circuits which occur along the sample paths of
the restriction n2ξ of ξ to B(O, n2).

Hence
n2w(i, j) ≡ n2πi

n2pij =
∑
c∈2C

n2wcJc(i, j).

Continuing the previous reasonings, we shall find a sequence {sC}s≥1 of
finite classes of directed circuits which is increasing. Then there exists the
limiting class

C ≡ lim
s→∞

sC = {c1, c2, . . . , ck1 , . . .}.

On the other hand, for any circuit c ∈ C, we find a sequence {nswc}s≥1

of positive numbers which is decreasing, and so convergent to a number
wc ∈ [0, 1], that is, lims→∞, nswc = wc. Moreover, there is some σ ≥ 1 such
that c ∈ σC. Then

nswc ≥ πirpirjr −
r−1∑
k=1

πiκpiκjκJcκ(ir, jr) > 0,

for all s ≥ σ and some i1, . . . , ir and j1, . . . , jr where r = 1, . . . , kσ. Thus,
wc > 0, for all c ∈ C.

Now consider any i, j in S such that pij > 0. Then there exists σ ≥ 1
such that i, j are interior points of B(O, nσ) and (i, j) ∈ Arcset σC. Hence

nσw(i, j) ≡ nσπi
nσpij =

kσ∑
r=1

nσwcrJcr (i, j),

and

nsw(i, j) =
kσ∑
r=1

nswcrJcr (i, j), for all s ≥ σ.
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Finally, we have

πipij = lim
s→∞

nsπi
nspij

= lim
s→∞

kσ∑
r=1

nswcrJcr (i, j)

=
kσ∑
r=1

wcrJcr (i, j)

=
∑
c∈C

wcJc(i, j).

The proof is complete. �

Remark. As was shown in the previous proof, there is a definite algebraic-
topological property of a directed circuit c = (i1, . . . , is, i1) defined by
w(i, j) = πipij , i, j ∈ S. Namely, we have

Lemma 3.4.3. Let f1 and f2 be two positive functions defined on S2. In
order that equations ∑

j

f1(i, j) =
∑
j

f2(j, i), i ∈ S,

be circuit-generating ones it is necessary that for some i1, . . . , is ∈ S the
inequalities

f1(i1, i2)f1(i2, i3) · · · f1(is−1, is)f1(is, i1) > 0,
f2(i1, i2)f2(i2, i3) · · · f2(is−1, is)f2(is, i1) > 0,

imply each other.

3.5 Weak Convergence of Sequences of Circuit
Chains: A Probabilistic Approach

A denumerable reversible positive-recurrent Markov chain is a weak limit
of finite circuit Markov chains whose representative circuits and weights are
algorithmically given according to Theorem 3.4.2. It might be interesting to
investigate the same asymptotics when the representatives enjoy probabilis-
tic interpretations. For instance, we may consider that the cycle-weights are
provided by the probabilistic algorithm of Theorem 3.3.1. In this section
we give a more detailed argument following S. Kalpazidou (1992a, b, e)
and Y. Derriennic (1993).

Consider S a denumerable set and ξ = (ξn)n≥0 an irreducible
and positive-recurrent Markov chain (not necessarily reversible) whose
transition matrix and invariant probability distribution are, respectively,
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P = (pij , i, j ∈ S) and π = (πi, i ∈ S). Let (ξm(ω))m≥0 be a sample path
of ξ and let n be any positive integer chosen to be a sufficiently great
number. Put

Cn(ω) = the collection of all circuits with distinct points
(except for the terminals) occurring along (ξm(ω))m
until time n;

Sn(ω) = the set of the points of Cn(ω).

Throughout this section the circuits will be considered to have distinct
points (except for the terminals).

Consider

wc,n(ω) = the number of occurrences of the circuit c along
(ξm(ω))m up to time n,

and the functions

wn(i, j) = ωwn(i, j) ≡
∑

c∈Cn(ω)

(wc,n(ω)/n)Jc(i, j),

wn(i) = ωwn(i) ≡
∑

c∈Cn(ω)

(wc,n(ω)/n)Jc(i),

for all i, j ∈ Sn = Sn(ω). Since the constrained passage-function Jc(·, ·),
with c ∈ Cn(ω), to the set Sn is still balanced, the function wn(·, ·) does
as well. Therefore the collection {wn(i), i ∈ Sn} plays the rôle of an invari-
ant measure for the stochastic matrix nP = nPω ≡ (ωwn(i, j)/ωwn(i), i, j ∈
Sn), n = 1, 2, . . . .

Accordingly, we may consider a sequence (nξ)n of Markov chains nξ =
n
ωξ = {nωξm,m = 1, 2, . . .} whose transition probabilities in Sn are defined
as

npij = n
ωpij ≡

{
(ωwn(i, j))/(ωwn(i)), if (i, j) is an edge of a circuit inCn(ω);

0, otherwise.

Put

nπi = n
ωπi = cn(ω) ωwn(i), i ∈ Sn,

where cn(ω) = 1/(
∑

i ωwn(i)).
It is to be noticed that, since

nπi
npij = cn(ω)ω wn(i, j) �= (πipij)/

⎛
⎝ ∑

i,j∈Sn

πipij

⎞
⎠ ,

the above chain nξ, n = 1, 2, . . . , is not the restriction of ξ to Sn. So, the
investigations up to this point disclose differences between the weak conver-
gence of (nωξ), as n → ∞, and that of deterministic circuit representations
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occurring in Theorem 3.4.2. It is the following theorem that shows a spe-
cial nature of the weak convergence of (nωξ) to ξ, as n → ∞ (S, Kalpazidou
(1992e)).
Namely, we have

Theorem 3.5.1. For almost all ω the sequence (nωξ)n converges weakly, as
n → ∞, to the chain ξ. Moreover the sequence of the circuit representations
associated with (nωξ)n converges, as n → ∞, to the probabilistic circuit rep-
resentation (C, wc) of ξ, where C is the collection of the directed circuits
occurring along almost all the sample paths.

Proof. First note that we can regard the process n
ωξ in Sn as a circuit chain

with respect to the collection (Cn(ω), wc,n(ω)/n). Accordingly, we have

nπi
npij = n

ωπi
n
ωpij = cn(ω)

∑
c∈Cn(ω)

(wc,n(ω)/n)Jc(i, j),

when (i, j) is an edge of a circuit of Cn(ω), where Jc(i, j) = 1 or 0 according
to whether or not (i, j) is an edge of c. Then, as in Theorem 3. 2.1 we may
find a limiting class (C, wc) defined as

C = lim
n→∞Cn(ω), a.s.,

wc = lim
n→∞(wc,n(ω)/n), a.s.

The equations (3.3.2) and the same argument of Theorem 3.3.1 enables us
to write

πipij = lim
n→∞

n
ωπi

n
ωpij a.s.

=
∑
c∈C

wcJc(i, j),

since limn→∞ cn(ω) = 1 a.s.
(Here we have replaced the index-set C∞, which contains all the cycles,

in Definition 3.2.2 of the circulation distribution by the set C of the corre-
sponding circuits.) This completes the proof. �

3.6 The Induced Circuit Chain

Y. Derriennic (1993) has defined the denumerable circuit Markov chains as
limits of weakly convergent sequences of induced chains. In particular, it
is seen that the induced chain of a circuit chain is a new type of “circuit
chain.”

To this direction, let S be any denumerable set and let ξ = (ξn)n be
an S-state irreducible and positive-recurrent Markov chain defined on a
probability space (Ω,F, P ). For a given nonvoid subset A of S, the induced
chain of ξ on the set A, denoted by Aξ, is the Markov chain whose transition
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probabilities Apij , i, j ∈ A, are defined as follows:

Apij = P (ξ enters first A at state j, if ξ starts at i)

=
∞∑

n=1

⎛
⎝ ∑

ji,...,jn−1∈S\A
pij1 pj1j2 . . . pjn−1j

⎞
⎠ .

Therefore, the induced transition probability Apij , i, j ∈ A, is the expected
number of times that the Markov chain ξ is in the state j before being in
the set S/A, given that ξ starts from the state i:

Apij =
∞∑

n=0

Ap
(n)
ij , i, j ∈ A, (3.6.1)

where Ap
(0)
ij ≡ 0, and Ap

(n)
ij , n = 1, 2, . . . , is the n-step transition probability

with taboo set of states A, that is,

Ap
(n)
ij =P (ξn(ω) = j, ξn−1(ω) �∈ A, ξn−2(ω) �∈ A, . . . , ξ1(ω) �∈ A/ξ0(ω) = i).

We have

Proposition 3.6.1. If ξ = (ξn)n is a positive-recurrent Markov chain then
AP = (Apij , i, j ∈ A) is a stochastic matrix.

Proof. Following Chung’s Theorem 3 (1967, p. 45) when j ∈ A we have

Ap
(n)
ij ≤ jp

(n)
ij = f

(n)
ij ≡ P (ξn(ω) = j, ξn−1 �= j, . . . , ξ1 �= j|ξ0(ω) = i) ≤ 1.

Hence Apij ≤ jpij = fij ≤ 1, where fij ≡
∑
n≥1

f
(n)
ij , i, j ∈ A.

Also, if ξ is positive-recurrent then fii =
∑
n≥1

f
(n)
ii = 1, for any i ∈ A. There-

fore ∑
j∈A

Apij =
∑
j∈A

P (ξ enters first A at state j/ξ0(ω) = i)

=
∑
n≥1

P (ξ enters first A at time n/ξ0(ω) = i)

= P

⎛
⎝⋃

n≥1

{ξn ∈ A}/ξ0(ω) = i

⎞
⎠

≥ P

⎛
⎝⋃

n≥1

{ξn = i}/ξ0(ω) = i

⎞
⎠ = fii ≡ 1.

The proof is complete. �
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Furthermore, we prove

Proposition 3.6.2. If ξ is an irreducible and positive-recurrent Markov
chain, then Aξ is irreducible.

Proof. We first write

Apij = pij +
∑
n≥2

∑
j1,...,jn−1∈S\A

pij1 pj1j2 . . . pjn−1j , (3.6.2)

for any i, j ∈ A. Then

Apij > 0 (3.6.3)

if either pij > 0, or there are j1, . . . , jn−1 ∈ S\A,n ≥ 2, such that

pij1 pj1j2 . . . pjn−1j > 0.

To prove that the induced Markov chain Aξ is irreducible, we have to show
that for any pair (i, j) ∈ A×A either

(i)

Apij > 0, (3.6.4)

(ii) or, there exist k1, . . . , km ∈ A, m ≥ 1, such that

Apik1 Apk1k2 . . .Apkmj > 0.

So, let us consider an arbitrary pair (i, j) of states in A. Then irreducibility
of ξ allows us to write that either pij > 0, or, there exist k1, . . . , km ∈
S,m ≥ 1, such that

pik1 pk1k2 . . . pkmj > 0. (3.6.5)

If pij > 0 then Apij > 0. Otherwise we may distinguish the following cases:

Case 1: Relations (3.6.5) hold with all k1, . . . , km ∈ A. Then, according to
(3.6.2), we have

Apik1 Apk1k2 . . . Apkmj > 0,

and therefore relation (3.6.4)(ii) holds.
Case 2: Relations (3.6.5) hold with all k1, . . . , km ∈ S\A. Then by using
(3.6.3), we have ∑

ji,...,jn−1∈S\A
pij1 pj1j2 . . . pjn−1j > 0,

with n = m + 1 and for j1 = k1, . . . , jn−1 = km. Accordingly,

Apij =
∑
n≥1

∑
ji,...,jn−1∈S\A

pij1 pj1j2 . . . pjn−1j > 0,

and relation (3.6.4)(i) holds.
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Case 3: Relations (3.6.5) hold with some kt ∈ S\A and some others
mk ∈ A.
For the sake of simplicity, let us consider all k1, . . . , km ∈ S\A except for
some kt ∈ A, 1 ≤ t ≤ m. Then i, kt, j ∈ A and we may apply case 1 to the
pairs (i, kt), (kt, j) of states in A. Hence

Apikt Apktj > 0,

and relation (3.6.4)(ii) holds for m = 2.

Next, if k1, . . . , km ∈ S\A except for some kt, kt+s ∈ A, 1 ≤ t, t + s ≤ m,
then we may apply again case 1 to the pairs (i, kt), (kt, kt+s), and (kt+s, j)
of states in A. Accordingly, we get

Apikt Apktkt+s Apkt+sj > 0,

and relation (3.6.4)(ii) holds for m = 3. Finally, case 3 may be extended
for general situations m ≥ 3 by repeating the previous reasonings. Then,
we conclude that the irreducibility of the original chain ξ implies the same
property for Aξ. The proof is complete. �

Now we are prepared to prove the following:

Theorem 3.6.3. Let S be a denumerable set and let ξ = (ξn)n≥0 be an
S-state irreducible and positive-recurrent Markov chain. Then there exists
a sequence (nη)n of finite induced circuit chains, which converges weakly to
ξ, as n → ∞.

Proof. Let (An)n be an increasing sequence of finite subsets of S such that
lim An = S, as n → ∞. Then 1η, 2η, . . . , nη, . . . are taken to be the induced
chain of ξ on A1, A2, . . . , An, . . . , that is, nη ≡ An

ξ, n = 1, 2, . . . . Then,
following Propositions 3.6.1 and 3.6.2, any induced chain nη, n = 1, 2, . . . ,
is an irreducible finite Markov chain. Therefore, the induced transition
probability Anpij of any nη accepts a circuit representation {Cn, wcn},
that is,

Anpij =

∑
cn∈Cn

wcnJcn(i, j)∑
cn∈Cn

wcnJcn(i)
, i, j ∈ An, n = 1, 2, . . . ,

where Jc(i, j) = 1 or 0 according to whether or not (i, j) is an edge of c,
and (nη)n converges weakly to ξ. The proof is complete. �

Further, it will be interesting to define a natural procedure of inducing
a circuit representation {CA, wA} for the induced chain Aξ on the finite
subset A ⊂ S, starting from an original circuit representation C of ξ.

Note that, Apij > 0 if and only if Ap
(n)
ij > 0, for certain n = 1, 2, . . . . Then

a natural procedure of inducing the circuits of C into A is due to Derriennic
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(1993) and consists in the following: any circuit c = (i1, i2, . . . , is, i1) ∈ C,
which contains at least one point in A may induce a circuit cA in A as the
track of the remaining points of c in A, written with the same order and
cyclically, after discarding the points of c which do not belong to A. In this
manner the representative collection C of directed circuits in S determines
a finite collection CA = {c1, c2, . . . , cN} of induced circuits into the finite
subset A ⊂ S.

Furthermore, by choosing suitably the circuits in C, we may use the
induced circuits c1, . . . , cN of CA to partition the original collection C into
the subcollections C0, C1, . . . , CN defined as

Ck = {c ∈ C: c induces the circuit ck in A}, k = 1, . . . , N,

C0 = {c ∈ C: c induces no circuit in A},
such that no circuit of C0 passes through A.
Then

C = C0

⋃(
N⋃

k=1

Ck

)
. (3.6.6)

Let us now consider a collection of circuit-weights {wc} which decomposes
ξ, that is,

P (ξn = i, ξn+1 = j) =
∑
c∈C

wc Jc(i, j), i, j ∈ S, (3.6.7)

for any n = 0, 1, . . .
Then we may decompose the induced transition probability Apij by using
the induced circuits of CA. Specifically, we may write

Apij = pij + Ap
(2)
ij + · · · + Ap

(n)
ij + · · ·

=
P{ξ1 = j, ξ0 = i}

P{ξ0 = i}
+

P{ξ2 = j, ξ1 ∈ S\A, ξ0 = i}
P{ξ0 = i} + · · ·

+
P{ξn = j, ξn−1 ∈ S\A, . . . , ξ1 ∈ S\A, ξ0 = i}

P{ξ0 = i} + · · ·

The denumerator P (ξ0 = i), i ∈ A, occurring in the expression of Apij is
decomposed by the representative class CA as follows:

P (ξ0 = i) =
∑
c∈C

wcJc(i) =
N∑

k=1

∑
c∈Ck

wcJc(i)

=
N∑

k=1

(
∑
c∈Ck

wc)Jck(i),
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where {wc, c ∈ C} are the weights occurring in 3.6.7. Then by defining the
“induced” circuit-weights νcA , cA ∈ CA, as

νck ≡
∑
c∈Ck

wc, k = 1, . . . , N,

we have

P (ξ0 = i) =
N∑

k=1

νck , Jck(i), i ∈ A.

Let us now calculate the numerator of Apij , i, j ∈ A, in terms of CA:

P (ξ1 = j, ξ0 = i) +
∑

j1∈S\A
P (ξ2 = j, ξ1 = j1, ξ0 = i)

+
∑

j1j2∈S\A
P (ξ3 = j, ξ2 = j2, ξ1 = j1, ξ0 = i)

+ · · ·+
∑

j1,...,jn−1∈S\A
P (ξn=j,ξn−1 =jn−1,. . .,ξ1 =j1,ξ0 = i)

+ · · ·
We have

P (ξ0 = i, ξ1 = j) =
∑
c∈C

wcJc(i, j)

=
N∑

k=1

(∑
c∈Ck

wcJc (i, j)

)
Jck(i, j)

=
N∑

k=1

1νck(i, j)Jck(i, j),

for any i, j ∈ A, where

1νck(i, j) =
∑
c∈Ck

wcJc(i, j), i, j ∈ A.

Let

2w(i, j) ≡
∑

j1∈S\A
P (ξ2 = j, ξ1 = j1, ξ0 = i), i, j ∈ A.

Then, if ξ is reversible then 2w(i, j) is symmetric. Also, 2w(i, j) > 0 implies
Apij > 0. Accordingly, the representative circuits of 2w will belong to CA,
and we may find 2νck ≥ 0, k = 1, . . . , N, such that

2w(i, j) =
N∑

k=1

2νck Jck(i, j), i, j ∈ A.
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By repeating the same reasoning for any

nw(i, j) ≡
∑

j1,...,jn−1∈S\A
P (ξn = j, ξn−1 = in−1, . . . , ξ1 = i1, ξ0 = i0),

where i, j ∈ A, n = 3, 4, . . . we may find nνck ≥ 0, k = 1, . . . , N, such that

nw(i, j) =
N∑

k=1

nνck Jck(i, j), i, j ∈ A.

Then the numerator of Apij is given by

N∑
k=1

νck(i, j) Jck(i, j)

where

νck(i, j) = 1νck(i, j) + ν̃ck

with

ν̃ck =
∑
n≥2

nνck , k = 1, . . . , N.

Therefore,

Apij =
∑N

k=1 νck(i, j)Jck(i, j)∑N
k=1 νckJck(i)

, i, j ∈ A. (3.6.8)

In conclusion, when the positive-recurrent chain ξ is irreducible then the
induced chain Aξ is also irreducible with respect to the invariant probability
distribution Aπ = (Aπi, i ∈ A) defined as

Aπi =

∑
cA∈CA

νcA JcA(i)∑
cA∈CA

p(cA)νcA
, i ∈ A,

where p(cA) denotes as always the period of the circuit cA in A.
Finally, if ξ is reversible then Aξ is also reversible and the corresponding

induced transition probability Apij admits a “circuit representation” given
by (3.6.8).
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Circuit Representations of Finite
Recurrent Markov Chains

In Chapter 2 we have investigated the genesis of finite Markov chains from
a collection {C, wc} of directed circuits and positive numbers. We are now
interested in the inverse problem: find a class {C, wc} of directed circuits
(or cycles) c and positive numbers wc which can describe by either linear or
convex expressions the transition probabilities of two finite Markov chains
ξ and χ, with reversed parameter-scale and admitting a common invariant
probability distribution. The solutions {C, wc} to this problem will be called
the circuit (cycle) representation of ξ. In addition, the class {C, wc} will be
called either “probabilistic” or “deterministic” (“nonrandomized ”) accord-
ing to whether or not the circuits and their weights enjoy or do not enjoy
probabilistic interpretations in terms of the chain ξ.

The present chapter deals with both probabilistic and deterministic ap-
proaches to the circuit representations of finite recurrent Markov chains.
The probabilistic circuit representation relies on an algorithm whose solu-
tion (of circuits and weights) is uniquely determined under a probabilistic
interpretation in terms of the sample paths.

The deterministic circuit representations will be investigated by three
different approaches. The first uses a combinatorial algorithm, having more
than one solution, which was originated by J. MacQueen (1981) for a single
chain ξ, and by S. Kalpazidou (1987b, 1988a) for a pair (ξ, χ) of chains
as above. The second deterministic approach to the circuit representation
problem above belongs to Convex Analysis and arises as a corollary of the
Carathéodory dimensional theorem. Finally, the third deterministic setting
to the same problem relies on algebraic–topological considerations, and is
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due to S. Kalpazidou (1995). Plenty of other circuit decompositions can be
found if we combine the previous approaches.

An important question associated with the above circuit representations
and with further considerable applications (for instance, to the rotational
representations exposed in Chapter 3 of Part II) consists of the estimation of
the number S of the representative circuits of C. According to the context
that we shall use, we shall give two estimations for S. One, of algebraic
nature, will be provided by the Carathéodory dimension, while the other
will be a homologic number identified as the Betti dimension of the space
of one-cycles associated with the graph of the transition matrix.

The results presented in this chapter will then argue for a version of
the existence theorem of Kolmogorov for finite recurrent Markov chains
in terms of the weighted circuits, and will establish a general connection
between cycle theory and Markov-chain theory.

4.1 Circuit Representations by Probabilistic
Algorithms

A randomized algorithm to a circuit decomposition can be furnished by
the sample-path-approach of Theorem 3.2.1 specialized to finite recurrent
Markov chains. Then a circuit decomposition can be directly proved us-
ing the sample equations (3.3.2) where the sample circuits are always un-
derstood to have distinct points except for the terminals (S. Kalpazidou
(1992e)). Namely, we have

Theorem 4.1.1. (The Probabilistic Circuit Representation). Let S be a
finite set. Then any stochastic matrix P = (pij , i, j ∈ S) defining an ir-
reducible Markov chain ξ is decomposed by the circulation distribution
{wc}c∈C as follows:

πipij =
∑
c∈C

wcJc(i, j), i, j ∈ S, (4.1.1)

where π = (πi, j ∈ S) denotes the invariant probability distribution of P,C
is the collection of all the directed circuits c occurring along almost all the
sample paths, and Jc is the (second-order) passage function associated with
c. The above circuit-weights wc are unique, with the probabilistic interpre-
tation provided by Theorem 3.2.1, and independent of the ordering of C.

If P defines a recurrent Markov chain, then a similar decomposition to
(4.1.1) holds, except for a constant, on each recurrent class.

Proof. Let σn(·; i, j), i, j ∈ S, be the function

σn(ω; i, j) =
1
n

card {m ≤ n : ξm−1(ω) = i, ξm(ω) = j} .
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Consider nC (ω) as the collection of all the directed circuits c occurring
up to n along the sample path (ξn(ω))n, and wc,n(ω) as the number of
the appearances of the circuit c along the same sample path. A circuit
c = (i1, i2, . . . , ir, i1), r ≥ 2, with distinct points, except for the terminals,
occurs along (ξn(ω))n when the chain passes through i1, i2, . . . , ir, i1 (or
any cyclic permutation). Further, the revealing equations will be

σn(ω; i, j) =
∑

c∈nC(ω)

(wc,n(ω)/n)Jc(i, j)

+ εn(ω; i, j)/n. (4.1.2)

where

Jc(i, j) =
{

1, if (i, j) is an edge of c,
0, otherwise,

and

εn(ω; i, j) = 1 {the last occurrence of (i,j) does not happen
together with the occurrence of a circuit of nC(ω)}

(ω) (4.1.3)

for all i, j ∈ S. Then the decomposition (4.1.1) follows from (4.1.2) when
taking the limit as n → ∞, and applying Theorem 3.2.1.

Finally, if P defines a recurrent Markov chain on S, then there is a
probability row-distribution π = (πi, i ∈ S) such that all πi > 0 and πP =
π. Then, the proof is completed by using the same approach above adapted
to each recurrent class. �

4.2 Circuit Representations by Nonrandomized
Algorithms

One nonprobabilistic approach to the problem of representing Markov
chains by weighted directed circuits reduces to solving a suitable system
of cycle generating equations, introduced by Theorem 1.3.1, in terms of
the entries of a recurrent stochastic matrix. (A recurrent stochastic matrix
P is any matrix defining a recurrent Markov chain. This is equivalent to
the existence of a probability row-vector v > 0 satisfying vP = v.) Now, we
shall give a detailed argument for this, following S. Kalpazidou (1988a).

Let Z denote, as always, the set of all the integers. We now prove

Theorem 4.2.1. (The Deterministic Circuit Representation). Let S be a
nonvoid finite set. Consider (ξ, χ) a pair of homogeneous recurrent S-state
Markov chains defined on a probability space (Ω,K,P), with the common
invariant probability distribution π = (πi, i ∈ S), such that equation

P(ξn+1 = i/ξn = j) = P(χn = i/χn+1 = j) (4.2.1)

holds for all n ∈ Z and i, j ∈ S.
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Then there exist two finite ordered classes C and C− = {c− : c− is the
reversed circuit of c, c ∈ C } of directed circuits in S and two ordered sets
{wc, c ∈ C} and {wc− , c− ∈ C−} of strictly positive numbers, depending on
the ordering of C and C− and with wc− = wc, such that

P(ξn = i/ξn−1 = j) = w(j, i)/w(j), i, j ∈ S,

P(χn = i/χn+1 = j) = w−(i, j)/w−(j), i, j ∈ S,

for all n ∈ Z, where

w(j, i) =
∑
c∈C

wcJc(j, i),

w−(i, j) =
∑

c−∈C−

wc−Jc−(i, j),

w(j) =
∑
c∈C

wcJc(j),

w−(j) =
∑

c−∈C−

wc−Jc−(j),

and Jc(j, i), Jc(j), Jc−(i, j), and Jc−(j) denote the second-order and the
first-order passage functions associated with c and c−, respectively.

Proof. Consider first the case of two irreducible chains ξ and χ. If P =
(pji, j, i ∈ S) and P− = (p−ij , i, j ∈ S) denote the transition matrices of ξ
and χ, define

w(j, i) = πjpji, j, i ∈ S, (4.2.2)
w−(i, j) = πjp

−
ji, j, i ∈ S. (4.2.3)

Then, letting

w(j) ≡
∑
i∈S

w(j, i),

w−(j) ≡
∑
i∈S

w−(i, j),

we obtain

w(j) = w−(j) = πj , j ∈ S.

Therefore

pji = w(j, i)/w(j),
p−ji = w−(i, j)/w−(j), (4.2.4)

for any j, i ∈ S.
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From equations (4.2.1), since w(j) = w−(j) for all j ∈ S, we obtain that

w(j, i) = w−(i, j),

for any j, i ∈ S. Then we may apply the algorithm of Theorem 1.3.1 to the
balanced functions w(·, ·) and w−(·, ·) defined by (4.2.2) and (4.2.3). Thus,
there exist two finite ordered classes C and C− = {c− : c− is the reversed
circuit of c, c ∈ C} of directed circuits in S (with distinct points except for
the terminals) and positive weights wc and wc− , c ∈ C, with wc = wc− , such
that

w(j, i) =
∑
c∈C

wcJc(j, i),

w−(i, j) =
∑

c−∈C−

wc−Jc−(i, j),

for any j, i ∈ S, where

Jc(i, j) =
{

1, if (i, j) is an edge of c,
0, otherwise. .

The algorithm of Theorem 1.3.1 shows that the definitions of the weights wc

depend on the chosen ordering of the circuits of C. Furthermore, relations
(4.2.4) become

pji =

⎛
⎝∑

c∈C

wcJc(j, i)

⎞
⎠/

⎛
⎝∑

c∈C

wcJc(j)

⎞
⎠ .

p−ji =

⎛
⎝ ∑

c−∈C−

wc−Jc−(i, j)

⎞
⎠/

⎛
⎝∑

c ∈C

wc−Jc−(j)

⎞
⎠ ,

for any j, i ∈ S.
Now, let us consider that ξ has more than one recurrent class E in S.

Then, the previous proof can be repeated for the balanced function w̃(j, i) =∑
E αEπE(j)pji, j, i ∈ S, instead of w(j, i) given by (4.2.2), where πE =

(πE(i)) (with πE(i) > 0, for i ∈ E, and πE(i) = 0 outside E) is the invariant
probability distribution associated with each recurrent class E, and αE is
a positive number assigned to E.

Reasoning analogously for the chain χ and choosing the class {C−, wc−}
as in Theorem 1.3.1, the proof is complete. �

The ordered collections {C, wc} and {C−, wc−} occurring in Theorem
4.2.1 are called the deterministic representative classes of ξ and χ, and of
the corresponding transition matrices P and P−. Accordingly, the algo-
rithmic genesis of the circuits and weights, without any probabilistic inter-
pretation, motivates the name deterministic for the corresponding circuit
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decomposition of P:

πipij =
∑
c∈C

wcJc(i, j), wc > 0, i, j ∈ S, (4.2.5)

where the circuit-weights wc depend on the chosen ordering in C.

4.3 The Carathéodory-Type Circuit
Representations

An estimation of the number of the representatives in a circuit decom-
position of a finite recurrent stochastic matrix can be given using convex
analysis. Alpern (1983) showed that a natural way to achieve this is to
appeal to the celebrated Carathéodory convex decomposition when char-
acterizing the dimension of a convex hull in a finite-dimensional Euclidean
space (see R.T. Rockafeller (1972), J.R. Reay (1965), V.L. Klee (1951)–
(1959)). Carathéodory’s dimensional theorem asserts the following: if M is
a set in R

n, then any element of the convex hull of M can be written as
convex combinations of (n + 1)-elements of M.

In this direction let n > 1 be any natural number and let S =
(1, 2, . . . , n}. Let further P = (pij , i, j ∈ S) be any stochastic matrix defin-
ing an S-state homogeneous recurrent Markov chain ξ = (ξm,m ≥ 0) whose
invariant probability distribution is denoted by π = (πi, i ∈ S). In S.
Kalpazidou (1994b, 1995) it is shown the connection of the decomposi-
tions of P in terms of the passage functions with the convex Carathéodory-
type decompositions. Namely, to relate the decomposition (4.2.5) to a
Carathéodory-type decomposition we first point out that the coefficients
wc do not sum to unity. However, we may overcome this inconvenience by
“normalizing” the passage function Jc into J̃c(i, j) = (1/p(c))Jc(i, j), where
p(c) denotes as always the period of c.

Then, considering representative circuits with distinct points (except for
the terminals), we have

J̃c(i, j) =
{

1/p(c), if (i, j) is an edge of c;
0, otherwise.

The matrix (J̃c(i, j), i, j ∈ S) is called the circuit (cycle) matrix associated
with c. Then, taking w̃c = p(c)wc, we have

πipij =
∑
c∈C

w̃cJ̃c(i, j), w̃c > 0,
∑
c∈C

w̃c = 1, i, j ∈ S. (4.3.1)

On the other hand, viewing the normalized passage functions {J̃c} as the
extreme points of a convex set in an (n2 − n)-dimensional Euclidean space,
we may write the following Carathéodory-type decomposition

πipij =
N∑

k=1

w̃ck J̃ck(i, j), w̃ck > 0,
N∑

k=1

w̃ck = 1, i, j ∈ S, (4.3.2)
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where C = {c1, . . . , cN}, with N ≤ (n2 − n) + 1, is an ordered collection of
directed circuits with distinct points except for the terminals.

We call the ordered class (C, w̃c) occurring in the decomposition (4.3.2)
the Carathéodory-type representation of P and of ξ. Furthermore, equations
(4.3.2) are called the Carathéodory-type decomposition of P.

4.4 The Betti Number of a Markov Chain

In the next section we shall investigate a more refined dimension than that
of Carathéodory occurring in the decomposition (4.3.2). Since our approach
will arise from algebraic–topological reasonings, we shall introduce in the
present section a few basic homologic concepts following S. Kalpazidou
(1995).

The primary element of our exposition will be the strongly connected
oriented graph G = G(P ) of an irreducible finite stochastic matrix P. A
stochastic matrix P is called irreducible if for any row i and any column
j �= i there exists a positive integer k, which may depend on i and j, such
that the (i, j)-entry of P k is not zero. In general, one can dissociate the
graph from any matrix, in which case the concepts below are related to the
graph alone.

Let G = (B0, B1) be a finite strongly connected oriented graph, where
B0 = {n1, . . . , nτ0} and B1 = {b1, . . . , bτ1} denote, respectively, the nodes
and directed edges. The orientation of G means that each edge bj is an
ordered pair (nh, nk) of points, that is, bj is assigned with two points
(terminals) nh, nk, where nh is the initial point, and nk is the endpoint.
When nh = nk, we may choose any direction for the corresponding edge.
To each edge bj of G with distinct terminals nh and nk as above, we
may associate an ordered pair with initial point nk and endpoint nh. De-
note this pair −bj . Then −bj may occur or may not occur in the original
graph G.

Strong connectedness will mean that for any two points ni and nj there
exist an oriented polygonal line in G from ni to nj and an oriented polyg-
onal line from nj to ni. A polygonal line L of an oriented graph G is a
subgraph given by a finite sequence, say, b1, . . . , bm,m > 1, of edges of G,
eventually with different orientation, such that consecutive edges bk, bk+1

have a common terminal point and no edge appears more than once in it.
Accordingly, we shall write L = {b1, . . . , bm}. Then each of b1 and bm will
have a free terminal. When these free terminals of b1 and bm coincide and
all the points of L are distinct from each other, then the polygonal line L is
called a loop. Then circuit-edge-connectedness introduced at paragraphs 2.1
and 2.2 it is usually called strong connectedness (see C. Berge (1970), p. 25).

A polygonal line {b1, . . . , bm}, where for each k = 1, . . . ,m− 1 the com-
mon point of bk and bk+1 is the endpoint of bk and the initial point of
bk+1, is called an oriented polygonal line from the initial point of b1 to the
endpoint of bm. Both B0 and B1 can be viewed as the bases of two real
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vector spaces C0 and C1. Then any two elements c0 ∈ C0 and c1 ∈ C1 have
the following formal expressions:

c0 =
τ0∑
k=1

xhnh = x′n, xh ∈ R,

c1 =
τ1∑
k=1

ykbk = y′b, yk ∈ R,

where, by convention, yk(−bk) = −ykbk for all (−bk) (with distinct termi-
nals) which do not belong to B1, and R denotes the set of reals. The ele-
ments of C1 are called one-chains. The orienting process described by the
edges bj determines a formal boundary relation δ defined as δbj = nk − nh if
nh and nk are the initial point and the endpoint of the edge bj . To express
δ in the general form and in vector space setting we need the incidence
matrix η = (ηedge, point) = (ηbjns , bj ∈ B1, ns ∈ B0) of the graph G which
is defined as:

ηbjns =

⎧⎨
⎩

+1, if ns is the endpoint of the edge bj ;
−1, if ns is the initial point of the edge bj ;

0, otherwise.

Then

δbj =
τ0∑
s=1

ηbjns
ns.

One can extend δ to the whole space C1 as a linear transformation by the
relation

δy′b = y′ηn.

Let

C̃1 = Ker δ = {z ∈ C1 : z′η = 0} ,
where 0 is the neutral element of C1. The vectors of C̃1 are called one-cycles.

As we have already seen in Chapter 1, a directed circuit-function c in
B0 is completely determined by a natural number p ≥ 1 and a sequence
of p ordered pairs (ns1 , ns2), (ns2 , ns3), . . . , (nsp , nsp+1) with ns1 = nsp+1 .
Throughout this section we shall consider circuit-functions c with distinct
points ns1 , . . . , nsp , and the corresponding graphs will be called directed
circuits. The latter will be symbolized by c as well. Then any c is an oriented
loop (see the definition of the oriented polygonal line above).

Consider now any directed circuit c of the graph G, with distinct points
except for the terminals, given by a sequence, say, b1, . . . , bk of directed
edges of B1. Then c may be assigned to a vector c ∈ C1 defined as follows:

c = 1 . b1 + · · · + 1 . bk +
∑

l �=1,...,k

0 . bl.

Since δc = 0, c ∈ C̃1.
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Notation. For the sake of simplicity, the one-cycle attached as above to a
directed circuit c (with distinct points except for the terminals) of G will
be denoted by c as well.

In general, when there are edges (−bj) which do not belong to B1,
one may assign any directed circuit c whose edge-set is a subset of
B1 ∪ {(−bj) ∈ B0 ×B0 : bj ∈ B1, (−bj) �∈ B1} to a one-chain c as follows.
The formal expression of c in C1 contains (by definition) terms of the form
(+1)bj and (−1)br, where the coefficient (+ 1) is assigned to those bj of
B1 occurring in c, while (−1) is assigned to those br of B1 for which (−br)
occurs in c but not in B1. Furthermore, one may prove that c is a one-cycle.

Conversely, one can prove that the graph of any one-cycle c ∈ C̃1 always
contains a loop, if we extend convention yk(−bk) = −ykbk to the edges
(−bk) of B1. The graph of a vector of C1 is given by the union of the closed
edges actually present in its expression.

We are now prepared to define the Betti number of the graph G which,
when it corresponds to a transition matrix P of a Markov chain ξ, will be
called the Betti number of P or of ξ.

Consider first any maximal tree T of G. (Recall here that a tree
of G is any connected subgraph without loops.). Then T comprises all
the points of G, but there is a certain number B of edges, whose set
is denoted by B̃1, i.e., B̃1 = {β1, β2, . . . , βB}, that do not belong to
the set of the edges of T, denoted B1(T ). That is B̃1 = B1\B1(T ).
Although T (and then β1, . . . , βB) may not be unique, the number
B is a characteristic of G (it is independent of the choice of T ).
The number B will be called the Betti number of the graph G and
the edges β1, β2, . . . , βB will be called the Betti edges of G associated with
the maximal tree T.

Accordingly, we have

B1 = B̃1 ∪B1(T ). (4.4.1)

and

B = dimC1 − cardB1(T )
= τ1 − τ0 + 1

since G is connected. (Here card B1(T ) symbolizes as always the number
of the elements of B1(T ).)

Let βj be an edge of B̃1 and let nk and nh denote the endpoint and the
initial point of βj , respectively. Consider for a moment the unoriented edge
β̃j associated to βj and the unoriented maximal tree T̃ associated to T.
Then β̃j may correspond to one or two oriented edges of B̃1. Since T̃ is
connected there is a unique polygonal line σ̃j in T̃ made up of closed edges
joining nh and nk. When β̃j is added to σ̃j we obtain an unoriented loop
symbolized by λ̃j . This loop is the only one which can be made using T̃
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and the edge β̃j . Now, denote by σj and λj the corresponding polygonal
lines of σ̃j and λ̃j made up by the edges of G, which eventually may have
different orientations. Associate λj with the orientation cj of the originally
chosen Betti edge βj . If B̃1 contains two edges with the same terminals but
with opposite orientation then we shall obtain by the previous procedure
two versions (σj , λj).

Let λj and σj be the one-chains associated to λj and σj , respectively, that
is, the formal expression of λj(σj) in C1 is the linear combination where the
edges of B1 occurring in λj(σj) with the orientation cj have the coefficient
(+1) and the edges of B1 occurring in λj(σj) with opposite orientation −cj
have the coefficient (−1) (while all the other edges of B1 are considered to
have the coefficient 0). Then

λj = σj + βj . (4.4.2)

One may prove that λ1, . . . , λB are one-cycles. We call λ1, . . . , λB the Betti
one-cycles of G associated with the Betti edges β1, β2, . . . , βB .

Put

Λ = {λ1, . . . , λB}.

Then Λ depends on the choice of the original maximal tree T.
We now prove the

Lemma 4.4.1 The set Λ of Betti one-cycles of G is a base of C̃1 = Ker δ.

Proof. Let 0 be the neutral element of C1. Since the graph of a one-cycle
always contains a loop, if a one-chain is defined by certain edges of B1(T )
and is a one-cycle, then it is necessarily identical to 0. Let further c1 be
any vector of C̃1. Because of (4.4.1) we can write

c =
B∑

k=1

αkβk +
∑

bκ∈B1(T )

ykbk, αk, yk ∈ R.

Since λk = βk + σk as in (4.4.2), we have

c1 =
B∑

k=1

αk(λk − σk) +
∑

bκ∈B1(T )

ykbk

=
B∑

k=1

αkλk +
∑

bκ∈B1(T )

ykbk −
B∑

k=1

αkσk.
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Note that c1 −
B∑

k=1

αkλk ∈ C̃1 and
∑

bκ∈B1(T )

ykbk −
B∑

k=1

αkσk is a vector of

the subspace generated by B1(T ). Then the difference

∑
bκ∈B1(T )

ykbk −
B∑

k=1

αkσk

should be 0. Hence, any one-cycle can be written as a linear combination
of λ1, . . . , λB .

Finally, the independence of λ1, . . . , λB follows immediately. �

In general, any base of B elementary one-cycles will be called a base
of Betti one-cycles. From Berge (1970) (p. 26, Theorem 9) we know that
for any strongly connected graph G there exists a base of B independent
algebraic directed circuits.

When γ1, . . . , γB are certain directed circuits with distinct points (except
for the terminals) of the graph G such that the associated one-cycles
γ

1
, . . . , γ

B
form a base of one-cycles, then we call {γ

1
, . . . , γ

B
} a base of

circuits.
Let us now examine the concepts of Betti one-cycles and indepen-

dent circuits, introduced before, in the context of a concrete exam-
ple. Consider the directed graph G = (B0, B1) with the set of the
points B0 = {1, 2, 3, 4, 5} and with the set of oriented edges B1 =
{b(1,2), b(2,3), b(3,1), b(1,3), b(3,4), b(4,5), b(5,1)}, with this ordering, where b(i,j)
designates the edge with the initial point i and the endpoint j.

The graph G is illustrated in Figure 4.4.1. This graph provides four
directed circuits with distinct points (except for the terminals): c1 =
(1, 2, 3, 1), c2 = (1, 3, 4, 5, 1), c3 = (1, 3, 1), and c4 = (1, 2, 3, 4, 5, 1). One can
easily see that the one-chains

λ1 = b(1,2) + b(2,3) + b(3,4) + b(4,5) + β(5,1),

λ2 = b(1,2) + b(2,3) + β(3,1),

λ3 = β(1,3) − b(2,3) − b(1,2),

form a base of Betti one-cycles corresponding to the Betti edges β(5,1), β(3,1)

and β(1,3). Furthermore,

λ1 = c4, λ2 = c1, λ3 = c2 − c4,

and

c3 = λ2 + λ3.

Then the one-cycles γ
1
≡ λ1, γ2

≡ λ2, and γ
3
≡ λ1 + λ3, associated with

the directed circuits c4, c1, and c2, form a base for the one-cycles as well.
Therefore Γ = {γ

1
, γ

2
, γ

3
} is a base of circuits of G.
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Figure 4.4.1.

As we have seen the graph G contains certain circuits generating a base Γ
for the one-cycles. Then any directed circuit of G can be written as a linear
combination of the circuits of such a collection Γ when they are viewed in
the vector space of all the one-cycles.

Remarks. The definitions of the Betti number and of the related concepts
introduced in this section are different from those given by S. Lefschetz
(1975). One basic difference arises from the definition of the basis B1 of the
vector space C1 of all the one-chains. Namely, in Lefschetz’s definition B1

does not contain the inverses −bij of the edges bji even if −bij appear in the
graph G. As a consequence the one-cycles of certain circuits which appear
in the graph are confused with 0, so these circuits are not considered. For
instance the circuit c3 of Figure 4.4.1 corresponds in Lefschetz’s approach
to the one-cycle c3 = 0.

Our preference for the approach used in this section is motivated by the
necessity to obtain a homologic description for all the circuits of the graph
G since they are identical to the circuits appearing along the trajectories
of all the Markov chains whose transition matrices have the graph G.

In the next section we shall further develop this argument, revealing
thereby an important link between the homologic description of the circuits
and the theory of Markov chains.

4.5 A Refined Cycle Decomposition of Finite
Stochastic Matrices: A Homologic Approach

This section is a sequel to the preceding one; the corresponding notations
will be employed here without further comment, save for the attached ho-
mologic one-cycles to the directed circuits ck: they will be denoted here
by ck in order to avoid confusion. We shall be concerned with a Markov
chain ξ which is homogeneous and irreducible (or recurrent), and which
describes the stochastic motion of a system capable of being in any state of
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the finite set S = {1, . . . , n}, n > 1. Let P = (pij , i, j ∈ S) be the transition
matrix of ξ and let π = (πi, i ∈ S) denote the invariant probability (row)
distribution of P. Then the probabilistic circuit decomposition given by
Theorem 4.1.1 assigns ξ to a unique positive vector (wck .ck ∈ C), where C
denotes the class of all directed circuits with distinct points (except for the
terminals) occurring along almost all the sample paths of ξ, endowed with
an ordering. Accordingly, the expression

w =
∑
ck∈C

wcκck

uniquely determines a vector in the space C̃1 of all the one-cycles associated
with the graph G of P. On the other hand, using equations (4.1.1) and
considering some orderings for the points and edges of the graph G of P,
we see that the coordinates w(i, j) of w with respect to the base of all the
edges of G are identical to πipij , i, j ∈ S. Thus the πP can be viewed as a
one-cycle.

With this interpretation, we shall prove in the present section that P can
admit a minimal linear decomposition, with real coefficients, in terms of
the independent circuits of the graph of P. As an immediate consequence
one may extend this circuit decomposition to general recurrent stochastic
matrices P by repeating the same argument to each strongly connected
component of the graph G(P ). Recall here that the strong connectivity
relation introduced in Section 4.4 defines an equivalence relation in B0

according to which the subgraphs induced by the equivalence classes are
called the strongly connected components of G.

Let us introduce the

Notation. According to the definitions of the preceding section, let
G = G(P ) = (B0(P ), B1(P )), η = η(P ), B = B(P ) = B(η(P )), and Γ =
Γ(P ) denote, respectively, the graph of P, the edge-point incidence ma-
trix of G, the corresponding Betti number of G, and a base of independent
circuits of G, where B0(P ) and B1(P ) denote the set of points and the set
of edges endowed with an ordering, respectively. Denote further by C the
ordered collection of all the directed circuits with distinct points (except for
the terminals) occurring in G(P ). The one-cycle associated with a circuit
γ will be symbolized by γ.

We now establish another circuit-decomposition-formula for P due to S.
Kalpazidou (1995).

Theorem 4.5.1. (The Homologic Cycle Decomposition). Let P =
(pij , i, j = 1, . . . , n) be an irreducible stochastic matrix whose invariant
probability distribution is π = (π1, . . . , πn). Let Γ = {γ

1
, . . . , γ

B
} be a base
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of directed circuits of the graph G(P ), where B is the corresponding
Betti number. Then πP can be written as a linear expression of the cir-
cuits γ1, . . . , γB whose coefficients depend on the circulation distribution
(wc, c ∈ C), that is,

∑
(i,j)

πipijb(i,j) =
B∑

k=1

w̃γκ
· γ

k
, b(i, j) ∈ B1(P ), w̃γκ

∈ R, (4.5.1)

with

w̃γκ =
∑
c∈C

A(c, γk)wc, A(c, γk) ∈ Z, k = 1, . . . , B.

In terms of the (i, j)-coordinate, equations (4.5.1) are equivalent to

πipij =
B∑

k=1

w̃γκ
Jγκ

(i, j), w̃γκ
∈ R; i, j = 1, 2, . . . , n, (4.5.2)

where Jγκ is the passage-function of the circuit γk, k = 1, . . . , B. Further-
more the decomposition (4.5.1) is invariant to the ordering-changes of the
circuits of C.

If P is a recurrent stochastic matrix, then a similar decomposition to
(4.5.1) (or (4.5.2)) holds, except for a constant, on each recurrent class.
(Here Z and R denote as always the sets of integers and reals.)

Proof. Suppose first P is irreducible. Denote w(i, j) ≡ πipij , and let b(i,j)
be the directed edge of B1(P ) whose initial point and endpoint is i and j,
respectively. Then according to the formalism of the previous section, the
vector w =

∑
(i,j) w(i, j)b(i,j) is an element of the vector space C1 whose

base is B1(P ). Moreover, the decomposition (4.1.1) in terms of the circu-
lation distribution {wc}c∈C enables us to write

w =
∑
(i,j)

∑
c∈C

wcJc(i, j)b(i,j)

=
∑
c∈C

wc

⎛
⎝∑

(i,j)

Jc(i, j)b(i,j)

⎞
⎠

=
∑
c∈C

wc · c,

where the last equality follows from the vector expression c of c in C1

(since Jc(i, j) is the (i, j)-coordinate of c with respect to the base B1(P )).
Then w is a one-cycle. Note that all the representatives of the class-circuit
c according to Definition 1.1.2 define one-cycles with the same coefficients
with respect to the base B1(P ) since, according to equation (1.2.1), the
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passage function Jc is invariant to translations. Then it makes sense to say
that any class-circuit c determines a unique vector c in C̃1. Consequently,
for any (class-) circuit c we may write the corresponding vector c as a linear
combination of the Betti one-cycles γ

1
, . . . , γ

B
of G(P ), and so

c =
B∑

k=1

A(c, γk)γ k
, A(c, γk) ∈ Z.

Hence the original vector w has the expression

w =
B∑

k=1

⎛
⎝∑

c∈C

A(c, γk)wc

⎞
⎠ γ

k
,

that in terms of the (i, j)-coordinates becomes

w(i, j) = πipij =
B∑

k=1

⎛
⎝∑

c∈C

A(c, γk)wc

⎞
⎠ Jγk

(i, j).

Defining the weights of the independent circuits as

w̃γκ
=
∑
c∈C

A(c, γk)wc, k = 1, . . . , B,

we obtain

w =
B∑

k=1

w̃γκ
· γ

k
.

Furthermore, from Theorem 4.1.1 we know that the circuit-weights wc, c ∈
C, of the circulation distribution do not depend on the ordering of the
circuits in C. Then the coefficients w̃γ1 , . . . , w̃γB

, will be independent of the
ordering chosen in C.

Finally, one may extend the decomposition (4.5.1) to any recurrent
stochastic matrix P by repeating the previous arguments for each strongly
connected component of the graph G(P ). Accordingly, the Betti number
of G(P ) will be equal to card B1 – card B0 + p, where p is the number of
the connected components of G(P ). The proof is complete. �

Any decomposition of P in terms of the B independent circuits is
called a Betti-type circuit decomposition of P. Furthermore, if such a
decomposition is given by the class (Γ, w̃γ), then we call (Γ, w̃γ) the
Betti-type representation of P. For instance, the class (Γ, w̃γ) occurring in
equations (4.5.2) is such a representation.

Remark 4.5.2. The coefficients w̃γκ , k = 1, . . . , B, of the decompo-
sitions (4.5.1) and (4.5.2) can be negative numbers. When we can find
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a base Γ = {γ
1
, . . . , γ

B
} of B independent circuits such that the circuit-

weights wγκ
are greater than or equal to the sum of wc for all the circuits

c �∈ Γ, then the corresponding weights w̃γκ
will be nonnegative numbers.

For an example, let us turn to the circuits c1 = (1, 2, 3, 1), c2 =
(1, 3, 4, 5, 1), c3 = (1, 3, 1), and c4 = (1, 2, 3, 4, 5, 1) of Figure 4.4.1. Let P
be a stochastic matrix whose graph is illustrated in Figure 4.4.1. As-
sign to these circuits the positive probabilistic weights wc1 , wc2 , wc3 , wc4

of the corresponding circulation distribution. If wc3 ≥ wc4 , then we may
choose the independent circuits to be γ1 = c1, γ2 = c2, γ3 = c3, while c4 =
γ

1
+ γ

2
− γ

3
, if we do not adhere to the convenction b(j,i) = (−1)b(i,j).

It is to be noticed that for any edge (i, j) of c4 we have

Jc4(i, j) = Jγ1(i, j) + Jγ2(i, j) − Jγ3(i, j)

=
{
Jγ1(i, j), if (i, j) ∈ {(1, 2), (2, 3)};
Jγ2(i, j), if (i, j) ∈ {(3, 4), (4, 5), (5, 1)}.

Therefore the circuit c4 passes through an edge if and only if a single circuit
of Γ = {γ

1
, γ

2
, γ

3
} does. Then the weights of the decomposition (4.5.2)

are as follows: w̃γ1 = wγ1 + wc4 , w̃γ2 = wγ2 + wc4 and w̃γ3 = wγ3 − wc4 ≥
0. Hence the decomposition (4.5.2) becomes:

πipij = (wγ1 + wc4)Jγ1(i, j) + (wγ2 + wc4)Jγ2(i, j) + (wγ3 − wc4)Jγ3(i, j),

for all i, j.
If wc4 ≥ wc3 , we may choose γ

1
= c1, γ2

= c2, γ3
= c4 as independent

circuits, while c3 = γ
1

+ γ
2
− γ

3
, and then the following decomposition has

positive coefficients:

πipij = (wγ1 + wc3)Jγ1(i, j) + (wγ2 + wc3)Jγ2(i, j) + (wγ3 − wc3)Jγ3(i, j),

for all i, j.
Finally, one can easily see that any collection of three circuits of Figure

4.4.1 determines the remaining fourth circuit. This means that the corre-
sponding vector of the latter is a linear expression of the one-cycles attached
with the other three circuits.

Definition 4.5.3. Given a finite irreducible or recurrent stochastic matrix
P, we call the dimension of a circuit decomposition C of P the number
of the circuits of C. Accordingly, the number n2 − n + 1 occurring in the
Carathéodory-type representation is called the Carathéodory dimension,
while B occurring in (4.5.2) is called the Betti dimension. (The latter should
be accordingly modified when P has more than one recurrent class.)

Remark 4.5.4. After normalizing the passage functions, the Betti-type
decomposition (4.5.2) can be viewed as a refinement of the Carathéodory-
type decomposition (4.3.2). Beyond the improved dimension, the decom-
position (4.5.2) relies on an algorithm providing the circuit weights. In
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Sections 3.6 and 3.7 of Part II we shall show that the dimensions of Betti
and Carathéodory are concerned with a new dimensional characteristic of
a recurrent matrix, called the rotational dimension.

Remark 4.5.5. In analogy to the sequence {circuits, edges, points} of the
linear graph (1-complex) of the function w occurring in Theorem 4.5.1, we
have the sequence 2-cells (surface elements), 1-cells (line segments), 0-cells
(points) of the corresponding 2-complex. Here by a “2-cell” we mean the
genuine closed 2-cell, that is the closed interior region of a circuit. The
2-cells can be analogously oriented as the 1-cells (edges) are in the linear
graph. For instance, associate a definite orientation of a 2-cell e with each
of the two possible orientations of its bounding circuit. The 2-cell with the
opposite orientation is denoted by (−e).

In Section 1.4 (of Chapter 1) we introduced two transformations η and
ζ by (1.3.7) and (1.3.8) in the sequence {circuits, edges, points} such that

circuits
ζ→ edges

ηt

→ points, (4.5.3)

where ηt is the transposed matrix of η.
Now, consider the boundary operators δ1 and δ2 for the sequence of

k-cells, that is,

C2 δ2

→ C1 δ1

→ C0, (4.5.4)

where Ck denotes the vector space generated by the k-cells, k = 0, 1, 2,
except for those with opposite orientation, δ1 is given by an expression
similar to δ of the previous section and δ2 is the linear operator assigning
each 2-cell to its bounding circuit. The elements of Ck are called k-chains,
k = 0, 1, 2.

Notice that the linear operator δ2 can be expressed by an incidence
matrix ν defined as follows:

ν = (νcell,edge) = (νeibj ),

where

νeibj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+1, if the j th edge is positively included in the
bounding circuit of the ith 2-cells;

−1, if the j th edge is negatively included in the
bounding circuit of the ith 2-cell;

0, otherwise.

(Here we assume given orderings for the k-cells, k = 0, 1, 2.)
A k-cycle, k = 1, 2, is a k-chain with δk-boundary zero. Since Im δ2 ⊂

Ker δ1, it makes sense to define the factor group H1 ≡ Ker δ1/Im δ2, called
the first homology group.

It is to be noticed that the boundary operator δ1 corresponds to the
transformation ηt in the sequence (4.5.3), while δ2 does not correspond
to ζ. Even if sequences (4.5.3) and (4.5.4) are distinct however there is a
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common link: both sequences are ruled by an orthogonality equation, which
is either ηtζ = 0 or δ1δ2 = 0, expressing the essence of a known theorem:
“the boundary of the boundary is zero.”

Remark 4.5.6. An analogue of Theorem 4.5.1 may be obtained when the
probabilistic algorithm is replaced by a nonrandomized algorithm like that
of Theorem 4.2.1. But in this case the circuit decomposition (4.5.1) (or
(4.5.2)) will depend on the ordering of the representative circuits.

4.6 The Dimensions of Carathéodory and Betti

The previous investigations of the circuit decompositions of finite recurrent
stochastic matrices lead to certain natural classifications.

A first classification of the circuit decompositions can be given according
to the nature of the methods which are used when solving the corresponding
cycle generating equations. Consequently, we have either nonprobabilistic
or probabilistic approaches arguing for the following classification:

Deterministic circuit representations
(provided by Theorem 4.2.1, the Carathéodory dimensional theorem,
and Theorem 4.5.1 (see Remark 4.5.6)).

Probabilistic circuit representations
(provided by Theorem 4.1.1).

A second classification can be considered according to the dimension of
the circuit decomposition as introduced by Definition 4.5.4. For instance,
the Carathéodory-type circuit representation (4.3.2) of an irreducible or
recurrent stochastic matrix P = (pij , i, j = 1, 2, . . . , n), with n > 1, pro-
vides the dimension N which is concerned with the Carathéodory dimension
n2 − n + 1.

On the other hand Theorem 4.5.1 provides the Betti dimension B. The
next table shows all the above classifications:

Classification of the Circuit Representations

Criterion: Representation method Dimension

Deterministic representations Carathéodory-type representations
Probabilistic representations Betti-type representations

Other representations



5
Continuous Parameter Circuit
Processes with Finite State Space

Discrete parameter circuit processes, called circuit chains, were defined in
the previous chapters as Markov chains whose transition probabilities are
expressed by linear combinations in terms of directed circuits and weights.
A natural development of these processes is the consideration of the con-
tinuous parameter case. One significant aspect, manifesting itself more evi-
dently in the continuous parameter case, is the conversion of the dichotomy
circuit-weight into qualitative–quantitative stochastic properties. The ap-
proach of this chapter is due to S. Kalpazidou (1991c).

5.1 Genesis of Markov Processes
by Weighted Circuits

In this section we shall show that, given a class C of overlapping directed
circuits in a finite set S, and nonnegative functions wc(·), c ∈ C, defined
on [0,∞) and satisfying natural topological and algebraic relations, we
can define an S-state continuous parameter Markov process (for short
Markov process) whose transition probabilities are completely determined
by (C, wc(·)). We shall call such a process a circuit Markov process, or
simply a circuit process.

Let us recall the definition of a Markov process. Let S be at most a
de-numerable set. An S-valued stochastic process ξ = (ξt)t≥0 on the prob-
ability space (Ω,K,P) is said to be a Markov process (or a continuous
parameter Markov process) with state space S if for any n ∈ {1, 2, . . .}
and for all i1, . . . , in, in+1 ∈ S and tk ∈ [0,+∞), 1 ≤ k ≤ n + 1, such that
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t1 < · · · < tn < tn+1, we have

P(ξtn+1 = in+1/ξtn = in, ξtn−1 = in−1, . . . , ξtn = i1)
= P(ξtn+1 = in+1/ξtn = in)

whenever the left member is defined.
A Markov process ξ = (ξt)t≥0 with state space S is called homogeneous

if, for every i, j ∈ S and for all s ≥ 0, t > 0, the conditioned probability
P(ξs+t = j/ξs = i) does not depend on s. Furthermore, for such a process
the probability P(ξs+t = j/ξs = i), t > 0, denoted by pij(t), is called the
transition probability from state i to state j after an interval of time of length
t. Then the collection P = (P (t))t≥0 given by P (t) = (pij(t), i, j ∈ S), with
pij(0) = δij , is a stochastic transition matrix function, that is, the elements
pij(·) satisfy

pij(t) ≥ 0,
∑
j

pij(t) = 1, i ∈ S, t ≥ 0,

and the Chapman–Kolmogorov equations

pij(t + s) =
∑
k∈S

pik(t)pkj(S), i, j ∈ S, t, s ≥ 0.

In turn P determines a homogeneous stochastic transition function (see
K.L. Chung (1967)). As in the discrete parameter case, following the ex-
istence theorem of Kolmogorov, one may define Markov processes from
stochastic transition matrix functions (in general, from transition func-
tions).

Let us now see how a Markov process can be defined using a collection of
directed circuits c and a collection of nonnegative functions wc(·). Consider
a finite set S consisting of m > 1 elements and a collection C of overlapping
directed circuits in S containing all the loop-circuits (i, i), i ∈ S. Suppose
that the circuits of period greater than 1 have distinct points except for
the terminals. The directed circuits and the related ingredients are defined
according to Chapter 1.

Let MS×S({0, 1}) be the class of all m×m matrices whose entries belong
to the set {0, 1}. Associate each circuit c ∈ C with the matrix (Jc(i, j)i, j ∈
S) ∈ MS×S({0, 1}) defined as

Jc(i, j) =
{

1, if (i, j) is an edge of c;
0, otherwise. (5.1.1)

We call (Jc(i, j), i, j ∈ S) the second-order passage-matrix of c (see Defi-
nition 1.2.2). Then Lemma 1.2.3 enables us to write∑

j

Jc(i, j) =
∑
j

Jc(j, i) ≡ Jc(i), i ∈ S. (5.1.2)
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Let {wc(·), c ∈ C} be a collection of real functions defined on [0,∞). For
any i, j ∈ S and any t ≥ 0 introduce

w(i, j, t) =
∑
c∈C

wc(t)Jc(i, j). (5.1.3)

Then on account of the balance equations (5.1.2) we may write∑
j

w(i, j, t) =
∑
j

w(j, i, t) ≡ w(i, t), t ≥ 0. (5.1.4)

Introduce the following conditions:

(w1) (i) Every function wc(·), c ∈ C, is nonnegative on [0,+∞).
(ii) For any loop-circuit c = (i, i), i ∈ S, we have

wc(0) = lim
t→0+

wc(t) > 0.

(iii) For any circuit c �= (i, i), i ∈ S, we have

wc(0) = lim
t→0+

wc(t) = 0.

(w2) The collection {wc(·), c ∈ C} is a solution to the equations

w(i, j, t + s)/w(i, t + s)

=
∑
k

(w(i, k, t)/w(i, t))(w(k, j, s)/w(k, s)), i, j ∈ S,

for any t, s ≥ 0.
(w3) The function w(i, t) introduced by (5.1.4) satisfies the equation

w(i, t) = w(i, 0) for any i ∈ S, t ≥ 0.

(w4) The limit limt→∞ wc(t) exists and is finite, for all c ∈ C.

Let us now interpret condition (w1) above. We have

lim
t→0+

(w(i, i, t)/w(i, t)) = lim
t→0+

⎡
⎣
⎛
⎝∑

c∈C

wc(t)Jc(i, i)

⎞
⎠/

⎛
⎝∑

c∈C

wc(t)Jc(i)

⎞
⎠
⎤
⎦

=
w(i,i)(0)J(i,i)(i, i)
w(i,i)(0)J(i,i)(i)

= w(i, i, 0)/w(i, 0) = 1.

For i �= j we have

lim
t→0+

(w(i, j, t)/w(i, t)) = 0.

Thus

w(i, j, 0)/w(i, 0) = δij ,
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where δ is Kronecker’s symbol. Hence

w(i, j, 0) =
{
w(i,i)(0), if i = j;
0, otherwise.

Definition 5.1.1. Suppose conditions (w2)–(w4) are satisfied. Then any
continuous parameter S-state Markov process whose transition matrix func-
tion (pij(t), i, j ∈ S) is defined as

pij(t) = w(i, j, t)/w(i, t), i, j ∈ S, t ≥ 0,

is called a circuit Markov process or, for short, a circuit process, associated
with the collection {C, wc(·)}.

5.2 The Weight Functions

Given S and C as in the previous section, the functions wc(·), c ∈ C, that
satisfy conditions (w2)–(w4) will be called the weight functions associated
with C. If the weight functions satisfy conditions (w1)(ii) and (w1)(iii),
then they will be called standard weight functions. The name is motivated
by Definition 5.1.1 according to which the standard weight functions may
define a standard transition matrix function. A transition matrix function
P (t) = (pij(t), i, j ∈ S), t ≥ 0, is called standard if limt→0+ pij(t) = δij , for
all i, j ∈ S (see K.L. Chung (1967)). If P (t) is standard, then every pij(·)
is measurable (with respect to Lebesgue measure).

In this section we shall prove the existence of weight functions, that is,
the existence of a nonnull solution to equations (w2). For this purpose, we
say that a directed circuit c = (i1, . . . , is, i1) is associated with a positive
matrix (αij , i, j ∈ S) if and only if αi1i2 · . . . ·αisi1 > 0.

We now prove

Theorem 5.2.1 (The Existence of the Weight Functions). There exists a
non-void class C of directed circuits in S and a collection {wc(·), c ∈ C } of
nonnegative standard weight functions, that is, the wc(·)’s satisfy conditions
(w1), (w2), (w3), and (w4).

Proof. Let P (t) = (pij(t), i, j ∈ S), t ≥ 0, be an arbitrary irreducible
stochastic transition matrix function and let π = {πii ∈ S} be the corre-
sponding invariant probability distribution, that is,

(i) pij(·) ≥ 0, πi > 0, i, j ∈ S;

(ii)
∑
j∈S

pij(t) = 1,
∑
i∈S

πi = 1, i ∈ S, t ≥ 0;

(iii) pij(s + t) =
∑
k

pik(s)pkj(t), i, j ∈ S and s, t ≥ 0;

(iv)
∑
i∈S

πipij(t) = πj , j ∈ S, t ≥ 0.
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Suppose {P (t), t ≥ 0} is a standard transition matrix function. Then the
function w(·, ·, ·) : S × S × [0,∞} → [0,∞) defined as

w(i, j, t) ≡ πipij(t)

satisfies the following balance equations:∑
j∈S

w(i, j, t) =
∑
j∈S

w(j, i, t) = πi, i ∈ S, t ≥ 0. (5.2.1)

For each loop-circuit (i, i) define

w(i,i)(·) = πipii(·).
Then the w(i,i)(·)’s are functions satisfying conditions (w1) (ii) and (w4).
Let us now fix an arbitrary t1 in (0,+∞) and i1 ∈ S. Since πil > 0, we have∑

j

w(i1, j, t1) > 0.

On account of the balance equations (5.2.1) and the irreducibility of P (t1)
there exists a sequence of pairs (i1, i2), (i2, i3), . . . , (in−1, in), . . . of distinct
points such that for each (ik, ik+1) we have w(ik, ik+1, t1) > 0.

Since S is finite, there exists a smallest integer s = s(t1) ≥ 2 such that
is = ik for some k, 1 ≤ k < s. Then

w(ik, ik+1, t1)w(ik+1, ik+2, t1) . . . w(is−1, ik, t1) > 0.

Therefore the directed circuit

c1 = (ik, ik+1, . . . , is−1, ik),

is associated with the matrix (pij(t1), i, j ∈ S). Define the function

wc1(t) = min {w(ik, ik+1, t), w(ik+1, ik+2, t), . . . , w(is−1, ik, t)}
for t ≥ 0. Then wc1(0) = 0. Moreover, wc1(·) satisfies condition (w1)(iii).

On the other hand, according to a theorem of Lévy, the following limits
are finite:

lim
t→∞w(ik, ik+1, t) = likik+1 , . . . , lim

t→∞w(is−1, ik, t) = lis−1ik .

If lc1 = min {likik+1 , . . . , lis−1ik} = limim+1 for some m = k, . . . , s− 1, then

|wc1(t) − lc1 | ≤ |w(im, im+1, t) − limim+1 |,
and therefore limwc1(t) = lc1 as t → ∞. Thus the function wc1(·) satisfies
condition (w4). Introduce now

w1(i, j, t) ≡ w(i, j, t) − wc1(t)Jc1(i, j)

−
∑
u∈S

w(u,u)(t)J(u,u)(i, j), i, j ∈ S, t ≥ 0.
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Then by the definition of wc1(·) and w(u,u)(·), the function w1(·, ·, ·) is non-
negative. Moreover, the functions Jc1(·, ·), J(u,u)(·, ·) and w(i, j, ·) satisfy
the balance equations, and so does w1(i, j, ·). Hence two cases are possible.
First, we may have

w1(i, j, t) = 0

for all i, j ∈ S and any t ≥ 0. Then

w1(i, j, t) ≡ wc1(t)Jc1(i, j) +
∑
u∈S

w(u,u)(t)J(u,u)(i, j),

and therefore {wc1(·), w(i,i)(·), i ∈ S} is a solution to the equations (w2).
Second, there exist a pair (j1, j2), j1 �= j2, and t2 > 0 such that
w1(j1, j2, t2) > 0. Then, following the same reasonings above for the func-
tion w1(i, j, ·) instead of w(i, j, ·), we obtain a circuit

c2 = (j1, j2, . . . , jr, j1).

with r ≥ 2 and with distinct points j1, j2, . . . , jr, such that c2 is associated
with the matrix (w1(i, j, t2), i, j ∈ S). Define further

wc2(t) = min{w1(j1, j2, t), . . . , w1(jr, jt, t)}
for t ≥ 0. Then wc2(·) is not everywhere zero. Moreover, wc2(·) is right-
continuous at zero and wc2(0) = 0. As for wc1(·), the function wc2(·) satisfies
condition (w4). Introduce now

w2(i, j, t) ≡ w(i, j, t) − wc1(t)Jc1(i, j) − wc2(t)Jc2(i, j)

−
∑
u∈S

w(u,u)(t)J(u,u)(i, j).

The function w2 is balanced and consequently, if it is nonnull, we may
continue the process above. Accordingly, since S is finite, we obtain a fi-
nite ordered class C = {c1, . . . , cm} of directed circuits in S (containing all
the loop circuits) and a collection {wc(·), c ∈ C } of nonnegative functions
defined on [0,+∞) and depending upon the ordering of C such that

w(i, j, t) ≡
∑
c∈C

wc(t)Jc(i, j).

Furthermore, the wc(·)’s satisfy conditions (w1) and (w4). Also, the hy-
pothesis (iv) implies that the function

w(i, t) =
∑
j∈S

w(i, j, t)

is given by π, and consequently condition (w3) is fulfilled.
Finally, the Chapman–Kolmogorov equations (iii) show that {wc(·), c ∈

C } is a solution to equations (w2). This completes the proof. �
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One may prove an analogue of Theorem 5.2.1 using the homologic decom-
position of Theorem 4.5.1. In this case condition (w1) (i) is not necessary,
that is, there exist real-valued standard weight functions. On the other
hand, in the subsequent Section 5.5 we shall show the existence of strictly
positive standard weight functions.

5.3 Continuity Properties of the Weight Functions

In this section we shall concentrate on continuity properties of the weight
functions wc(·), c ∈ C. Moreover, we shall show that, even when we begin
with a more general class C̃ of time-dependent circuits c(t), t ≥ 0, satisfying
natural conditions, the corresponding weight functions still enjoy continu-
ity properties. However, continuity of the passage functions necessarily re-
stricts C̃ to a class of circuits independent of t, what motivates our original
considerations on circuits which are independent of parameter value.

Let S be a finite set. Consider C a collection of directed circuits in S
satisfying the following conditions:

(c1) C contains all the loop circuits (i, i), i ∈ S; any circuit, whose period
is greater than 1, has distinct points except for the terminals; and

(c2) through each pair (i, j) of points of S there passes at most one circuit
of C.

Any function c : [0,+∞) → C is called a circuit function. Consider a finite
set C̃ of circuit functions containing the loop functions c(t) ≡ (i, i), i ∈ S.
Suppose further that the circuit functions of C̃ satisfy the following condi-
tions:

(c) (i) Each circuit function c(·) is right-continuous.
(ii) For each pair (i, j) of points of S and for any t > 0 there is at

most one circuit c(t) passing through (i, j), which is given by one
circuit function c(·) ∈ C̃.

Given a circuit function c(·) ∈ C̃, define the function (Jc(·)(i, j))i,j∈S :
[0,+∞) → MS×S({0, 1}) by the relation

Jc(t)(i, j) =
{

1, if (i, j) is an edge of c(t);
0, otherwise. (5.3.1)

Any function (Jc(·)(i, j))i,j∈S defined as in (5.3.1) is called the passage ma-
trix function associated to the circuit function c(·). According to Lemma
1.2.3 the passage matrix functions (Jc(·)(i, j))i,j satisfy the following bal-
ance equations:∑

j

Jc(t)(i, j) =
∑
j

Jc(t)(j, i) ≡ Jc(t)(i), i ∈ S, (5.3.2)

for any t ≥ 0.
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Now associate each c ∈ C̃ with a real function wc(·)(·) defined on [0,+∞).
Define further

w(i, j, t) =
∑
c∈C̃

wc(t)(t)Jc(t)(i, j), i, j ∈ S, t ≥ 0, (5.3.3)

Then by applying relations (5.3.2), we have∑
j

w(i, j, t) =
∑
j

w(j, i, t) ≡ w(i, t), i ∈ S, t ≥ 0. (5.3.4)

Introduce the following conditions:

(w′
1) (i) For any circuit function c ∈ C̃, the corresponding function wc(·)(·)

is nonnegative on [0,+∞).
(ii) For any circuit function c ∈ C̃ with c(0) = (i, i), i ∈ S, we have

wc(0)(0) = lim
t→0+

wc(t)(t) > 0.

(iii) For any circuit function c ∈ C̃ with c(0) �= (i, i), i ∈ S, we have

wc(0)(0) = lim
t→0+

wc(t)(t) = 0.

(w′
2) The collection {wc(·)(·)} is a solution to the equations

w(i, j, t + s)
w(i, t + s)

=
∑
k

w(i, k, t)
w(i, t)

w(k, j, s)
w(k, s)

, i, j ∈ S,

for any t, s ≥ 0.
(w′

3) The function w(i, t) introduced by relation (5.3.4) satisfies the equa-
tion w(i, t) = w(i, 0), for any i ∈ S and t ≥ 0.

(w′
4) For any circuit function c ∈ C̃, the limit limt→∞ wc(t)(t) exists and is

finite.

The functions wc(·)(·), c ∈ C̃, which satisfy conditions (w′
2)–(w′

4) are
called the weight functions associated with C̃. If the weight functions satisfy
condition (w′

1), then they are called nonnegative standard weight functions.
Further, we shall consider a collection {wc(·)(·), c ∈ C̃} of nonnegative

standard weight functions. We now investigate some of the continuity prop-
erties of these weight functions. Namely, we first prove

Theorem 5.3.1. For any c ∈ C̃ the weight function wc(·)(·) is uniformly
continuous on [0,+∞).

Proof. Let c ∈ C̃ be arbitrarily fixed. Consider t > 0 and an h > 0 small
enough. Let i, j be two consecutive points of the circuit c(t + h). Thus we
have

Jc(t+h)(i, j) = 1.



5.3 Continuity Properties of the Weight Functions 81

Then according to condition (c)(ii) there exists only the circuit c(t + h)
that passes through (i, j) at time t + h.

Since the circuit function c(·) is right continuous together with the func-
tion Jc(·)(i, j), from condition (c)(ii), we know that c(t) is the only circuit
passing through (i, j) at time t, that is,

Jc(t)(i, j) = 1.

Then

wc(t+h)(t + h) − wc(t)(t)
= wc(t+h)(t + h)Jc(t+h)(i, j) − wc(t)(t)Jc(t)(i, j)

=

(∑
c

wc(t+h)(t + h)Jc(t+h)(i)

)
wc(t+h)(t + h)Jc(t+h)(i, j)∑
c wc(t+h)(t + h)Jc(t+h)(i)

−wc(t)(t)Jc(t)(i, j)

=

(∑
c

wc(t+h)(t + h)Jc(t+h)(i)

)

×
∑
k

(
∑

c wc(h)(h)Jc(h)(i, k))(
∑

c wc(t)(t)Jc(t)(k, j))
(
∑

c wc(h)(h)Jc(h)(i))(
∑

c wc(t)(t)Jc(t)(k))
− wc(t)(t)Jc(t)(i, j)

= −
(
wc(t)(t)Jc(t)(i, j) −

(
∑

c wc(h)(h)Jc(h)(i, i))(
∑

c wc(t)(t)Jc(t)(i, j))∑
c wc(h)(h)Jc(h)(i)

)

+

(∑
c

wc(t+h)(t + h)Jc(t+h)(i))

×
∑
k �=i

(
∑

c wc(h)(h)Jc(h)(i, k))(
∑

c wc(t)(t)Jc(t)(k, j))
(
∑

c wc(h)(h)Jc(h)(i))(
∑

c wc(t)(t)Jc(t)(k))

⎞
⎠.

Then

−
(

1 −
∑

c wc(h)(h)Jc(h)(i, i)∑
c wc(h)(h)Jc(h)(i)

)
wc(t)(t)Jc(t)(i, j)

≤ wc(t+h)(t + h) − wc(t)(t) ≤
∑
k �=i

∑
c

wc(h)(h)Jc(h)(i, k).

Hence

|wc(t+h)(t + h) − wc(t)(t)| ≤
∑
k �=i

∑
c

wc(h)(h)Jc(h)(i, k).

Then

|wc(t+h)(t + h) − wc(t)(t)| ≤
∑
c

wc(h)(h)Jc(h)(i) −
∑
c

wc(h)(h)Jc(h)(i, i).

(5.3.5)
Let us now take h < 0 and τ = |h|. Replacing t in (5.3.5) by t− τ = t + h
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and using the same reasoning as above, it follows that

|wc(t+h)(t+h)−wc(t)(t)|≤
∑
c

wc(|h|)(|h|)Jc(|h|)(i)−
∑
c

wc(|h|)(|h|)Jc(|h|)(i, i).
(5.3.6)

Therefore (5.3.6) is valid for any h ∈ R with t + h ≥ 0 and the proof is
complete. �

Proposition 5.3.2. If Jc(·)(i, j) is continuous on (0,+∞) for all i, j ∈ S,
then c(·) is a constant function.

Proof. It follows from the proof of Theorem 5.3.1 that wc(·)(·)Jc(·)(i, j)
is uniformly continuous on (0,+∞), where (i, j) is an edge of a circuit
c(t), with t > 0. The same proof can be used for proving that, in general∑

c wc(·)(·)Jc(·)(i, j) is uniformly continuous on (0,+∞).
Let c be a circuit function of C̃. Consider an arbitrarily fixed t0 > 0 and

the circuit

c(t0) = (i1, i2, . . . , is, i1),

where s > 1 and i1, i2, . . . , is are distinct points. Since Jc(t)(i1, i2) = 1, for
any t > 0, all the circuits c(t), t > 0, contain the edge (i1, i2).

Analogously Jc(t)(i2, i3) = 1, for all t > 0, implies that (i2, i3) is an edge
of all c(t), t > 0. By repeating the above reasoning for all the edges of c(t0),
we obtain that c(t) ≡ (i1, i2, . . . , is, i1). Therefore the circuit function c is
constant. �

Restrict further C̃ to the class C of all constant circuit functions satisfying
conditions (c1) and (c2). Then the above assumptions (w′

1)–(w′
4) reduce to

conditions (w1)–(w4) mentioned in Section 5.1. We now prove

Proposition 5.3.3. For all i, j ∈ S, the function

w(i, j, t) =
∑
c∈C

wc(t)Jc(i, j),

is uniformly continuous on [0,+∞) and its modulus of continuity does not
exceed that of w(i, i, ·) at zero.

Proof. The uniform continuity of the functions w(i, j, ·), i, j ∈ S, follows
from Theorem 5.3.1 and the converse of Proposition 5.3.2. To evaluate the
modulus of continuity of w(i, j, ·) let us consider for any t > 0 and h > 0
(small enough) the difference

w(i, j, t + h) − w(i, j, t)

= w(i, t + h)
∑
k

w(i, k, h)
w(i, h)

· w(k, j, t)
w(k, t)

− w(i, j, t)

= −
(

1 − w(i, i, h)
w(i, h)

)
w(i, j, t) + w(i, t + h)

∑
k �=i

w(i, k, h)
w(i, h)

· w(k, j, t)
w(k, t)

.
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Then

−
(

1 − w(i, i, h)
w(i, h)

)
w(i, j, t) ≤ w(i, j, t + h) − w(i, j, t)

≤
∑
k �=i

w(i, k, h) = w(i, h) − w(i, i, h).

Hence

|w(i, j, t + h) − w(i, j, t)| < w(i, h) − w(i, i, h).

In general, for all h ∈ R with t + h ≥ 0 we have

|w(i, j, t + h) − w(i, j, t)| < w(i, |h|) − w(i, i, |h|),
and the proof is complete. �

Recall that the class C is restricted by condition (c2). In case we drop this
condition, we should assume that the functions w(i, j, ·), i, j ∈ S, satisfy the
continuity property of Proposition 5.3.3. We have

Theorem 5.3.4. Suppose the weight functions are strictly positive on
(0,+∞). Then for any i, j ∈ S, the function w(i, j, ·) is either identically
zero or always strictly positive on (0,+∞).

Proof. For an arbitrary t0 > 0 we have either

w(i, j, t0) > 0 (5.3.7)

or

w(i, j, t0) = 0. (5.3.8)

If (5.3.7) holds, then there exists a constant circuit function c(t) ≡ c of C
such that Jc(t)(i, j) ≡ 1 for all t > 0. Therefore w(i, j, t) > 0 for all t > 0.
If (5.3.8) holds, then for all constant functions c ∈ C we have Jc(i, j) = 0.
Then (i, j) is an edge of no circuit of C and the proof is complete. �

Remark. Theorem 5.3.4 says that the function w(i, j, ·) is either strictly
positive or identically zero on (0,+∞) according to whether (i, j) is or is
not an edge of a circuit in S. Therefore the previous property is independent
of the magnitude of the values of the weight functions. For this reason we
say that Theorem 5.3.4 expresses a qualitative property.

5.4 Differentiability Properties of the
Weight Functions

Suppose the collection (C, wc(·)) is defined as in the preceding section.
According to a well-known result of Kolmogorov we have:
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Theorem 5.4.1. For all i and j, the limit

lim
t→0+

∑
c

wc(t)
t

Jc(i, j)

exists and is finite.

We now give the version of another theorem of Kolmogorov (see K.L.
Chung (1967), p. 126) in terms of the weight functions corresponding to
the circuits c = (i, i), i ∈ S.

Theorem 5.4.2. For any i ∈ S,

−w′
(i,i)(0) = lim

t→0+

w(i,i)(0) − w(i,i)(t)
t

exists and is finite.

Proof. From conditions (w1)(ii) and (w2) we have that w(i, i, t) > 0 for all
t ≥ 0. Recall that

w(i, i, t) =
∑
c

wc(t)Jc(i, i) = w(i,i)(t).

Consider

ϕ(t) = − log(w(i,i)(t)/w(i,i)(0)).

According to condition (w1)(ii) we have w(i,i)(0) > 0. Hence ϕ is finite-
valued. By using relations (w2) we deduce that

w(i, i, t + s) ≥ w(i, i, t)w(i, i, s)
w(i,i)(0)

.

Then

− logw(i,i)(t + s) ≤ − logw(i,i)(t) − logw(i,i)(s) + logw(i,i)(0).

The last inequality implies that the function ϕ(·) is subadditive, that is,
ϕ(t + s) ≤ ϕ(t) + ϕ(s). According to a theorem of Kolmogorov (see K.L.
Chung (1967), Theorem 4, p. 126), we find that there exists

lim
t→0+

ϕ(t)
t

=
w′

(i,i)(0)

w(i,i)(0)
.

Therefore w′
(i,i)(0) exists and is finite. �

We continue with a version of a theorem of D.G. Austin and K.L. Chung
(see K.L. Chung (1967), Theorems 1 and 2, p. 130) in terms of the weight
functions.
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Theorem 5.4.3. The function w(i, j, ·)/w(i, ·) has a continuous derivative
on (0,+∞) which satisfies the following equations:(

w(i, j, s + t)
w(i, s + t)

)′
=
∑
k

(
w(i, k, s)
w(i, s)

)′
w(k, j, t)
w(k, t)

, s > 0, t ≥ 0, (5.4.1)

(
w(i, j, s + t)
w(i, s + t)

)′
=
∑
k

w(i, k, s)
w(i, s)

(
w(k, j, t)
w(k, t)

)′
, s ≥ 0, t > 0. (5.4.2)

If all the weight functions wc(·), c ∈ C, have continuous derivatives, then∑
c

w′
c(t)Jc(i) = 0. (5.4.3)

Proof. Equations (5.4.1) and (5.4.2) follow from Theorems 1 and 2 of K.L.
Chung ((1967), pp. 130–132). Equation (5.4.3) follows from the relation∑

j

p′ij(t) = 0, t > 0, (5.4.3′)

where (pij(·), i, j ∈ S) is the transition matrix function of the circuit process
generated by the given weight functions. Then, in terms of the weight
functions, the equation (5.4.3′) becomes∑

c

w′
c(t)

∑
j

Jc(i, j) = 0.

Thus, because of the balance equation (5.1.2), we deduce equation (5.4.3)
and the proof is complete. �

Theorems 5.4.1 and 5.4.2 enable us to introduce the matrix Q = (qij)i,j∈S

defined as

qii =
w′

(i,i)(0)

w(i,i)(0)
= lim

t→0+

w(i,i)(t) − w(i, 0)
tw(i, 0)

, i ∈ S, (5.4.4)

qij =
w′(i, j, 0)
w(i, 0)

= lim
t→0+

w(i, j, t)
tw(i, 0)

, i, j ∈ S, i �= j. (5.4.5)

We call the matrix Q the weighted transition intensity matrix associated
with the transition matrix function (w(i, j, t)/w(i, t))i,j introduced by Def-
inition 5.1.1.

5.5 Cycle Representation Theorem for
Transition Matrix Functions

In this section the inverse problem of representing a finite Markov process
by a collection of directed circuits and weight functions is solved (gener-
alizing the corresponding results for discrete parameter processes given in



86 5. Continuous Parameter Circuit Processes with Finite State Space

Chapter 4). A deterministic solution to this problem was already given
in Section 5.2 using the nonrandomized algorithm of Theorem 4.2.1. Now
we shall be concerned with a probabilistic approach to the representation
problem above.

Let ξ = (ξt)t≥0 be a homogeneous irreducible Markov process on a
probability space (Ω,K,P), with a finite state space S and with a stan-
dard stochastic transition function determined by the stochastic transi-
tion matrix function P (t) = (pij(t))i,j∈S , t ≥ 0. Associate with each h >
0 the discrete skeleton Ξh = (ξhn)n≥0, with scale parameter h. Then
any Ξh is an aperiodic irreducible Markov chain with transition matrix
P (h) = (pij(h))i,j∈S . Let πi(t) = P(ξt = i), i ∈ S, t ≥ 0. Then πi = πi(0) =
πi(t), i ∈ S, t > 0, define the stationary probability distribution of the pro-
cess ξ. Consider a circuit c = (c(n), . . . , c(n + p− 1), c(n)), n ∈ Z, of pe-
riod p > 1 and with distinct points c(n), . . . , c(n + p− 1). Then the passage
function of order k ≥ 1 assigned to the circuit c is defined as

Jc(i1, . . . , ik) =
{

1, if i1, . . . , ik are consecutive points of c;
0, otherwise.

(See Definition 1.2.2.)
Associate the circuit c above with the ordered sequence ĉ =

(ĉ(n), . . . , ĉ(n + p− 1)), where c(n) = ĉ(n), . . . , c(n + p− 1) = ĉ(n + p−
1), called, as in Chapter 1, the cycle of c. (Both c and ĉ mean equiva-
lence classes with respect to the equivalence relation (1.1.1).)

Definition 5.5.1. For any cycle ĉ = (i1, . . . , is) define the function wc:
[0,+∞) → [0,+∞), called the cycle weight function, by

wc(t) = πi1pi1i2(t)pi2i3(t) . . . pis−1is(t)pisi1(t)
·Nt(i2, i2/i1) . . . Nt(is, is/i1, . . . , is−1), (5.5.1)

where (πi)i∈s is the stationary distribution of the process ξ and

Nt(ik, ik/i1, . . . , ik−1)

=
∞∑

n=1

P(ξnt = ik, ξmt �= i1, . . . , ik−1, for 1 ≤ m < n/ξ0 = ik)

is the taboo Green function.

Here we have to note that the right-hand side of (5.5.1) is invariant to
cyclic permutations, so that the expression of wc(·) is independent of the
choice of the representative c. For n ≥ 0 and t > 0, let Cnt(ω) be the class
of all directed cycles occurring along the sample path Ξt(ω) until time nt
and let wc,nt(ω) denote the number of occurrences of the cycle ĉ along the
path Ξt(ω) until time nt.

Now we are ready to prove
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Theorem 5.5.2. (Cycle Representation Theorem). Let P (t) =
(pij(t))i,j∈S , t ≥ 0, be a homogeneous standard stochastic transition
matrix function on a finite set S. If (P (t))t≥0 defines an irreducible
Markov process, then the following assertions hold:

(i) For any t > 0 and any circuit c of the graph of P (t), the sequences
{Cnt(ω)}n≥0 and {wc,nt(ω)/n}n≥0 converge almost surely, as n →
∞, to a class Ct and to the cycle weight wc(t) defined by (5.5.1),
respectively.

(ii) Any discrete skeleton Ξt, t > 0, is a circuit chain associated with the
class (Ct, wc(t)), that is,

πi =
∑
ĉ∈Ct

wc(t)Jc(i), πipij(t) =
∑
ĉ∈Ct

wc(t)Jc(i, j), i, j ∈ S, (5.5.2)

where π = (πi, i ∈ S) is the invariant probability distribution of
P (t), t > 0. Moreover, (Ct, wc(t)) is the unique representative class
with the probabilistic interpretation given at (i) and is independent
of the ordering of Ct.

If (P (t))t≥0 defines a recurrent Markov process, then a similar decompo-
sition to (5.5.2) holds, except for a constant, on each recurrent class.

Proof.
(i) It follows from the definition of the sequence (Cnt(ω))n that (Cnt(ω))n

is increasing for any t > 0. Hence there exists a finite class Ct(ω) of cycles
in S with

Ct(ω) = lim
n→∞Cnt(ω).

On the other hand, equations (3.2.2) and (3.2.3) enable us to write

lim
n→∞

wc,nt(ω)
n

= E1{the cycle ĉ occurs along Ξt(ω) modulo cyclic permutations}

= wc(t) (5.5.3)

almost surely, where wc(·) is defined by (5.5.1). Then, arguing as in Theo-
rem 3.2.1, the collection Ct(ω) is independent of ω, so that we may denote
Ct(ω) by Ct.

(ii) Since any discrete skeleton Ξt, t > 0, is an irreducible (aperiodic)
Markov chain, we may apply the representation Theorem 4.1.1, from which
we obtain that equations (5.5.2) hold.

Finally, the same Theorem 4.1.1 refers to the recurrent case. The proof
is complete. �

Denote C =
⋃

t≥0 Ct. The collection (C, wc(t))t≥0 occurring in Theorem
5.5.2 (including the loops (i, i) and their weights πipii(t), i ∈ S) is called the
probabilistic cycle representation of ξt and (P (t))t≥0. Then, for each t > 0
the class (Ct, wc(t)) is a probabilistic cycle representation of Ξt and P (t). In
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Chapter 2 of Part II we shall prove that the collection Ct of representative
cycles is independent of the parameter-value t > 0, that is,

Ct ≡ C.

As a consequence, for any t > 0,Ξt will be represented by (C, wc(t)).

Remarks
(i) One may extend the cycle-decomposition-formulas (5.5.2) to denu-

merable irreducible or recurrent Markov processes by using Theorem 3.3.1
instead of Theorem 4.1.1. Furthermore, for both finite and denumerable re-
current Markov processes the representative cycles may be replaced by the
corresponding directed circuits. In this case, as we shall show in Chapter 2
of Part II, the time-invariance of the representative circuits will express a
version of the well-known theorem of Lévy concerning the positiveness of
the transition probabilities.

(ii) If we appeal to the representation Theorem 4.2.1 for each t-skeleton
Ξt, then it is possible to construct a finite ordered class C of overlapping di-
rected circuits and deterministic nonnegative weight functions wc(t), c ∈ C,
such that equations (5.5.2) hold as well (see the proof of Theorem 5.2.1).
Here the name “deterministic” has, as in the preceding chapters, the mean-
ing that the corresponding weight functions wc(t) do not enjoy a probabilis-
tic interpretation, that is, the wc(t)’s are provided by a deterministic algo-
rithm. Moreover, the algorithm of representation given in the above men-
tioned theorem shows that the deterministic representative class (C, wc(·))
is not uniquely determined. In conclusion, the Markov process (ξt)t≥0 may
be represented either by deterministic circuit weight functions or by prob-
abilistic cycle (circuit) weight functions.

5.6 Cycle Representation Theorem for Q-Matrices

Usually the process ξ of the previous section is defined by using Kol-
mogorov’s limits qij = p′ij(0

+), i, j ∈ S. The matrix Q = (qij , i, j ∈ S) is
called the transition intensity matrix associated with P (·) = (pij(·), i, j ∈
S). In this case, we are confronted with the problem of describing any
matrix Q, whose entries qij , i, j ∈ S, verify the relations

qij

{≥ 0, if i �= j,
≤ 0, if i = j,

∑
j

qij = 0, i ∈ S, (5.6.1)

in terms of directed circuits and their weight functions. Recall that any
matrix satisfying conditions (5.6.1) is called a conservative Q-matrix.

We thus wish to investigate how the qij ’s can be written as expressions
of qualitative and quantitative ingredients. To this end, we introduce the
following irreducibility condition for the collection {qij , i, j ∈ S}:
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(Y ) For each pair (i, j) of distinct states i and j there exists a finite chain
(i, k1, . . . , km,j) of states with m ≥ 0 and satisfying

qik1qk1k2 . . . qkmj > 0.

It is obvious that in checking (Y ) it will suffice to consider distinct states
i, k1, . . . , km, j (when m = 0, the chain reduces to (i, j)).

We now prove

Theorem 5.6.1. (Cycle Representation for Q-Matrices). Let S be a fi-
nite set and let Q be a matrix whose entries qij , i, j ∈ S, satisfy conditions
(5.6.1) and (Y ). Assume that the probability distribution {πi, i ∈ S} satis-
fies the relations πi > 0 and

∑
k πkqki = 0, i ∈ S.

(i) Then there exists a finite class C of directed cycles in S and a sequence
of positive weight functions wc(·), ĉ ∈ C, defined on [0,+∞) such that
(C, wc(t))t≥0 determines a circuit process (in the sense of Defini-
tion 5.1.1) whose transition matrix function P (·) satisfies P ′(0) = Q.
Moreover,

q
(n)
ij =

⎧⎪⎪⎨
⎪⎪⎩

1
w(i, 0)

w(n)(i, j, 0), if i �= j;

1
w(i, 0)

w
(n)
(i,i)(0), if i = j;

(5.6.2)

for all n ≥ 1, where w(n)(i, j, ·), w(n)
(i,i)(·) and q

(n)
ij , respectively, denote

the nth derivative of w(i, j, ·) = πipij(·), w(i,i)(·) and the (i, j)-element
of Qn(q(1)

ij ≡ qij), while w(i, t) ≡∑j w(i, j, t) = πi.
(ii) The representation (5.6.2) is unique if the representative cycles and

weight functions have the probabilistic interpretation stated in Theo-
rem 5.5.2. Moreover, up to a positive constant, the series

1 +
∑
n≥1

tnq
(n)
ii

n!
, t > 0,

and ∑
n≥1

tnq
(n)
ij

n!
, t > 0, i �= j,

yield, respectively, the mean number of appearances of the circuit (i, i)
along almost all trajectories of the discrete skeleton Ξt and the mean
number of appearances of the circuits having i and j as consecutive
points along almost all trajectories of the discrete skeleton Ξt.

Proof. (i) For the given Q-matrix we first apply the well-known Feller
theorem concerning the existence of a transition matrix function P (·) such
that P ′(0) = Q. The specialization to our case is that the only (stochas-
tic) transition matrix function P (·) = (pij(·))i,j∈S such that P ′(0) = Q is
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given by

P (t) = exp(tQ) = I +
∑
n≥1

tnQn

n!
, t ≥ 0,

that is,

pij(t) = δij +
∑
n≥1

tnq
(n)
ij

n!
, i, j ∈ S, t ≥ 0, (5.6.3)

where q
(n)
ij denotes the (i, j)-entry of Qn with q

(1)
ij = qij .

Then, for each t ≥ 0 we may apply Theorem 5.5.2, according to which
there exists a finite class Ct of overlapping directed cycles and positive
numbers wc(t), ĉ ∈ Ct, such that

πi =
∑
ĉ∈Ct

wc(t)Jc(i), i ∈ S,

πipij(t) =
∑
ĉ∈Ct

wc(t)Jc(i, j), i, j ∈ S,

where (πi, i ∈ S) is the stationary probability distribution of P (·). (Here c
and ĉ designate circuits and their associated cycles, respectively.)

Denote C =
⋃

t≥0 Ct (in Chapter 2 of Part II we shall show that C ≡ Ct,
t > 0). Then (C, wc(t))t≥0 is the probabilistic cycle representation of an
S-state Markov process ξ = (ξt)t≥0 with transition matrix function P (·)
defined as in (5.6.3) and having Q as transition intensity matrix. The al-
gorithm of representation and (5.6.3) imply that all the weight functions
w(i,i)(·) are infinitely differentiable. Then

1
πi

w(i,i)(t)J(i,i)(i, i) = 1 +
∑
n≥1

tnq
(n)
ii

n!
, t ≥ 0. (5.6.4)

Consequently,

1
πi

w(i,i)(t) = 1 +
∑
n≥1

tnq
(n)
ii

n!
.

Since the transition matrix function P (·) is standard, we have

w(i,i)(0) = w(i, 0). (5.6.5)

Thus we have

1 +
1
πi

∑
n≥1

tn
w

(n)
(i,i)(0)

n!
= 1 +

∑
n≥1

tnq
(n)
ii

n!
,

where w
(n)
(i,i)(·) denotes the nth derivative of w(i,i)(·), n ≥ 1.

Hence

q
(n)
ii =

1
w(i, 0)

w
(n)
(i,i)(0), n ≥ 1.
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On the other hand,

1
πi

∑
n≥1

tn
w(n)(i, j, 0)

n!
=
∑
n≥1

tnq
(n)
(ij)

n!
, i �= j, t ≥ 0, (5.6.6)

where w(n)(i, j, t) denotes the nth derivative of w(i, j, t) ≡ πipij(t). Let
w(i, t) =

∑
j w(i, j, t), i ∈ S, t ≥ 0. Then w(i, t) = πi, i ∈ S, for all t ≥ 0. For

i �= j, from (5.6.5) and (5.6.6) we deduce that

1
w(i, 0)

w(n)(i, j, 0) = q
(n)
ij , n ≥ 1.

which proves point (i).
(ii) If we represent the circuit process (ξt)t≥0 introduced in (i) by the

class (C, wc(t))t≥0 defined in Theorem 5.5.2, the representative weighted
circuits have the probabilistic interpretation given in this theorem. Then
the series

1 +
∑
n≥1

tnq
(n)
ii

n!
,

and

∑
n≥1

tnq
(n)
ij

n!
, i �= j,

are equal respectively to w(i,i)(t)/w(i, 0) and⎛
⎝∑

ĉ∈Ct

wc(t)Jc(i, j)

⎞
⎠/w(i, 0).

Therefore the series above have the probabilistic interpretations stated in
the theorem and the proof is complete. �

Remark. (i) If we take n = 1 in (5.6.2), we obtain

qij ∼= 1
w(i, 0)

∑
ĉ∈Ch

wc(h)
h

Jc(i, j), i �= j, (5.6.7)

for h small enough. Thus relation (5.6.7) says that up to a constant (that
depends on i) the qij ’s, i �= j, are approximated in the interval (0, h) by
the mean increments of the wc(h)Jc(i, j), ĉ ∈ Ch, each of them being the
mean number of occurrences of a circuit c, containing the edge (i, j), along
almost all sample paths (ξhn(ω))n≥0.

(ii) The circuit process constructed in Theorem 5.6.1 is, in fact, the
so-called minimal process corresponding to the given Q-matrix (see K.L.
Chung (1967)).
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Spectral Theory of Circuit Processes

Spectral theory of Markov processes was developed by D.G. Kendall
(1958, 1959a, b) and W. Feller (1966a). The present chapter relies on
Kendall’s Fourier representation for transition-probability matrices and
for transition-matrix functions defining discrete and continuous parame-
ter Markov processes, respectively. A specialization of the spectral theory
to circuit Markov processes is particularly motivated by the essential rôle
of the circuit-weights when they decompose the finite-dimensional distri-
butions. For this reason we shall be consequently interested in the spec-
tral representation of the circuit-weights alone. This approach is due to S.
Kalpazidou (1992a, b).

6.1 Unitary Dilations in Terms of Circuits

A preliminary element of our investigations is an N
∗-state irreducible

Markov chain ξ = (ξn)n≥0 whose transition matrix P = (pij , i, j ∈ N
∗) ad-

mits an invariant probability distribution π = (πi, i ∈ N
∗), with all πi > 0,

where N
∗ = {1, 2, . . .}. That the denumerable state space is N

∗ does not
restrict the generality of our approach. Let (C∞, wc) be the probabilistic
representative class of directed circuits and weights which decompose P as
in Theorem 3.3.1. The typical result of the present section is that the sum
of the probabilistic weights wc of the circuits passing through the edge (i, j)
has a Fourier representation.

Let l2 = l2(N∗) be as usual the Hilbert space of all sequences x = (xi)i∈N∗

with xi a complex number such that ‖x‖2 = (x, x) =
∑

i |xi|2 < ∞. The
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conjugate of any complex number z will be symbolized by z̄. Further, let
T be the linear transformation on l2 whose kth component of Tx, x ∈ l2,
is given by the absolutely convergent series

(Tx)k =
∑
i

xi(w(i)w(k))−1/2
∑
c∈C∞

wcJc(i, k), (6.1.1)

where

w(i) =
∑
c∈C∞

wcJc(i), i ∈ N
∗.

Then we may write

‖Tx‖2 =
∑
k

∣∣∣∣∣∣
∑
i

xi(w(i)w(k))−1/2
∑
c∈C∞

wcJc(i, k)

∣∣∣∣∣∣
2

≤
∑
k

⎡
⎣∑

u

|xu|2(1/(w(u)))
∑
c∈C∞

wcJc(u, k)

⎤
⎦

·
⎡
⎣∑

j

(1/(w(k)))
∑
c∈C∞

wcJc(j, k)

⎤
⎦

≤ ‖x‖2,

so that T is a contraction on l2.
With these preparations, we now prove

Theorem 6.1.1. If (C∞, wc) is the probabilistic representative class
of weighted circuits for an irreducible Markov chain whose transition
matrix P = (pjk, j, k ∈ N

∗) admits an invariant probability distribution
π = (πj , j ∈ N

∗), with all πj > 0, then

πjpjk =
∑
c∈C∞

wcJc(j, k) = (w(j)w(k))1/2
∮

eiθμjk(dθ),

where the complex-valued Borel measures μjk are supported by the circum-
ference of unit radius and satisfy the Hermitian condition μ̄jk = μkj.

Proof. We shall follow D.G. Kendall’s (1959a) approach to the integral
representations for transition-probability matrices. Accordingly, we use a
theorem of B.Sz. Nagy (see B.Sz. Nagy (1953), F. Riesz and B.Sz. Nagy
(1952), and J.J. Schäffer (1955)) according to which, if T is a linear con-
traction on a Hilbert space H, then it is always possible to embed H as a
closed subspace in an eventually larger Hilbert space H+ in such a way that
Tmx = JUmx and (T ∗)mx = JU−mx, for all x ∈ H and m ≥ 0, where U
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is a unitary operator on H+ and J is the projection from H+ onto H. P.R.
Halmos called U a unitary dilation of T.T ∗ denotes as usual the adjoint
operator of T.

We here apply Nagy’s theorem to the contraction T defined by (6.1.1)
and to the space H = l2. Accordingly, there exists a unitary dilation U
defined on a perhaps larger Hilbert space H+ such that

JUmJ = TmJ,

JU−mJ = (T ∗)mJ,

for any m = 0, 1, 2, . . . , where J is the orthogonal projection from H+ onto
H. From the proof of the Nagy theorem the space H+ is defined as the
direct sum of countably many copies of H.

Let us consider u(j) the element of H defined by

(u(j))k = δjk,

where δ denotes Kronecker’s delta. Then we have

(Tmu(j), u(k)) = (Umu(j), u(k)),
(u(j), Tmu(k)) = (U−mu(j), u(k)).

Hence ∑
c∈C∞

wcJc(j, k) = (w(j)w(k))1/2(Uu(j), u(k)).

We now apply Wintner’s theorem (see F. Riesz and B.Sz. Nagy (1952))
according to which the unitary operator U is uniquely associated with a
(strongly) right-continuous spectral family of projections {Eθ, 0 ≤ θ ≤ 2π}
with E0 = O and E2π = I such that

U =
∫ 2π

0

eiθdEθ.

Finally,

∑
c∈C∞

wcJc(j, k) = (w(j)w(k))1/2
∫ 2π

0

eiθd(Eθu(j), u(k))

= (w(j)w(k))1/2
∮

eiθμjk(dθ),

where μjk are complex-valued measures satisfying the properties referred
to in the statement of the theorem. The proof is complete. �
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6.2 Integral Representations of the Circuit-Weights
Decomposing Stochastic Matrices

This section is a sequel to the previous one. We shall be concerned with
the same irreducible Markov chain ξ = (ξn)n introduced at the beginning of
Section 6.1, save for the state space which is now considered to be the finite
set N

∗
v = {1, 2, . . . , v}, v > 1. Then the deterministic-circuit-representation

theorem (Theorem 4.2.1) asserts that the transition probabilities pjk, j, k ∈
N

∗
v, of ξ have the following decomposition in terms of the directed cir-

cuits of a finite ordered class C = {c1, . . . , cm},m ≥ 1, and of their positive
weights wc:

πjpjk =
∑
c∈C

wcJc(j, k), j, k ∈ N
∗
v, (6.2.1)

where π = (πj , j ∈ N
∗
v) denotes the invariant probability distribution of ξ.

The directed circuits c = (i1, . . . , ip, i1), p > 1, to be considered will have
distinct points i1, . . . , ip.

The principal theorem asserts that an integral representation can be
found for the deterministic circuit weights wc occurring in the decomposi-
tion (6.2.1). More specifically, we have

Theorem 6.2.1. For any circuit c occurring in the decomposition (6.2.1)
there exist a finite sequence (j1, k1), . . . , (jm, km) in the edge-set of C and
a Hermitian system {νj1k1 , . . . , νjmkm

} of Borel measures supported by the
circumference of unit radius such that wc = wcr , for some r = 1, . . . ,m,
has the expression

wc1 = (w(j1)w(k1))1/2
∮

eiθνj1k1(dθ) if r = 1,

wcr = (w(jr)w(kr))1/2
∮

eiθνjrkr
(dθ)

−
r−1∑
s=1

wcsJcs(jr, kr) if r = 2, . . . ,m m > 1.

Proof. We shall use the arguments of Theorems 1.3.1 and 4.2.1.
In this direction, let j0 be arbitrarily fixed in N

∗
v. Since w(j, k) ≡

πjpjk is balanced and
∑

k w(j0, k) > 0, we can find a sequence
(j0, u0), (u0, u1), . . . , (un−1, un), . . . of pairs, with ul �= um for l �= m, on
which w(·, ·) is strictly positive. Choosing the um,m = 0, 1, 2, . . . , from the
finite set N

∗
v, we find that there must be repetitions of some point, say

j0. Let n be the smallest nonnegative integer such that un = j0. Then, if
n ≥ 1, c1 : (j0, u0), (u0, u1), . . . , (un−1, j0) is a circuit, with distinct points
j0, u0, . . . , un−1 in N

∗
v, associated to w.
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Let (j1, k1) be the pair where w(j, k) attains its minimum over all the
edges of c1, that is,

w(j1, k1) = min
c1

w(j, k).

Put

wc1 = w(j1, k1)

and define

w1(j, k) ≡ w(j, k) − wc1Jc1(j, k).

The number of pairs (j, k) for which w1(j, k) > 0 is at least one unit
smaller than that corresponding to w(i, j). If w1 ≡ 0 on N

∗
v, then w(j, k) ≡

wc1Jc1(j, k). Otherwise, there is some pair (j, k) such that w1(j, k) > 0.
Since w1 is balanced we may repeat the same reasoning above, according
to which we may find a circuit c2, with distinct points (except for the
terminals), associated to w1.

Let (j2, k2) be the edge where w1(j, k) attains its minimum over all the
edges of c2, that is,

w1(j2, k2) = min
c2

w1(j, k).

Put

wc2 = w1(j2, k2)

and define

w2(j, k) ≡ w1(j, k) − wc2Jc2(j, k)
= w(j, k) − wc1Jc1(j, k) − wc2Jc2(j, k).

Then w2(j1, k1) = w2(j2, k2) = 0. Since N
∗
v is finite, the above process will

finish after a finite number m = m(j0) of steps, providing both a finite or-
dered class C = {c1, . . . , cm} of directed circuits, with distinct points (ex-
cept for the terminals), in N

∗
v and an ordered collection of positive numbers

{wc1 , . . . , wcm} such that

w(j, k) =
m∑

k=1

wckJck(j, k), j, k ∈ N
∗
v.

Moreover, the strictly positive numbers wck , called as always circuit
weights, are described by a finite sequence of edges (j1, k1), . . . , (jm, km)
and the recursive equations

wc1 = w(j1, k1)
wc2 = w(j2, k2) − w(j1, k1)Jc1(j2, k2), (6.2.2)

...

wcm = w(jm, km) −
m−1∑
s=1

wcsJcs(jm, km).
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Consider now the operator V mapping x ∈ l2(N∗
v) into the vector Vx,

where the kth component of Vx is given by the sum

(V x)k =
∑
j

xj(w(j)w(k))−1/2
∑
c∈C

wcJc(j, k),

with w(j) ≡∑c wcJc(j).
Then, following the proof of Theorem 6.1.1 we can extend V to a uni-

tary operator U for which there exists a Hermitian collection of spectral
measures {νjk} such that

w(j, k) = (w(j)w(k))1/2
∮

eiθνjk(dθ),

for all (j, k), and so, for (j1, k1), . . . , (jm, km) occurring in (6.2.2). Accord-
ingly, the weights given by equations (6.2.2) have the desired integral rep-
resentation. The proof is complete. �

6.3 Spectral Representation of Continuous
Parameter Circuit Processes

6.3.1. Consider an N
∗-state irreducible positive-recurrent Markov process

ξ = (ξt)t≥0 whose transition matrix function P (t) = (pij(t), i, j ∈ N
∗) is

stochastic and standard, that is,

pij(t) ≥ 0,
∑
j

pij(t) = 1,

pij(t + s) =
∑
k

pik(t)pkj(s),

lim
t→0−

pij(t) = pij(0) = δij ,

for all i, j ∈ N
∗ and all t, s ≥ 0. Let Ξt = (ξnt)n≥0 be the discrete t-skeleton

chain of ξ, where t > 0.
Consider the (weakly continuous) semigroup {Tt, t ≥ 0} of contractions

associated with P = (P (t))t≥0. Then this semigroup may be expressed in
terms of the probabilistic circuit representative (C, wc(t))t≥0, provided in
Theorem 5.5.2, as follows:

(Ttx)k =
∑
i∈N∗

xi(w(i)w(k))−1/2
∑
c∈C

wc(t)Jc(i, k), k ∈ N
∗, (6.3.1)

for all x ∈ l2(N∗), where w(i) =
∑

c∈C wc(t)Jc(i) for any i ∈ N
∗.

Theorem 6.3.1. Let P (t) = (pij(t), i, j ∈ N
∗) be a standard stochastic

transition matrix function defining an irreducible positive-recurrent Markov
process ξ = (ξt)t≥0 whose invariant probability distribution is denoted by
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π = (πi, i ∈ N
∗). Then for each t ≥ 0 the transition probabilities pjk(t) can

be written in the form:

πjpjk(t) = (w(j)w(k))1/2
∫ +∞

−∞
eiλtμjk(dλ),

where {μjk, i, k ∈ N
∗} is a Hermitian collection of complex-valued totally

finite Borel measures carried by the real line.

Proof. The main argument of the proof is due to D.G. Kendall (1959b).
Correspondingly, we apply a theorem of B.Sz. Nagy according to which we
can embed H ≡ l2(N∗) as a closed subspace in an eventually larger Hilbert
space H+ in such a way that for all t ≥ 0

JUtJ = TtJ,

JU−tJ = T ∗
t J,

where J is the orthogonal projection from H+ onto H,T ∗
t is the adjoint

operator of Tt, and {Ut,−∞ < t < ∞} is a strongly continuous group of
unitary operators on H+. (The smallest such collection {H+, Ut, H} is
unique up to isomorphisms). Further we apply a theorem of M.H. Stone
(see F. Riesz and B.Sz. Nagy (1952), p. 380) according to which there
exists a right-continuous spectral family {Eλ,−∞ < λ < ∞} of projection
operators such that

(Utx, y) =
∫ +∞

−∞
eiλtd(Eλx, y), x, y ∈ H+,

for all real t.
We have

(Ttx, y) = (JUtx, y) = (Utx, Jy) = (Utx, y), x, y ∈ H ≡ l2.

Furthermore,

πjpjk(t) = (w(j)w(k))1/2(Utu(j), u(k))

= (w(j)w(k))1/2
∫ +∞

−∞
eiλtd(Eλu(j), u(k)), t ≥ 0,

where the vector u(j) lies in l2(N∗) and is defined by

(u(j))k = δjk.

Then, by virtue of Theorem II of D.G. Kendall (1959b), we may write

πjpjk(t) = (w(j)w(k))1/2
∫ +∞

−∞
eiλtμjk(dλ), t ≥ 0,

where the complex-valued totally finite Borel measures μjk, j, k ∈ N
∗, are

supported by the real line and satisfy the Hermitian condition μkj = μ̄jk.
The proof is complete. �
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6.3.2. Consider the semigroup {Tt, T ≥ 0} of contractions associated to
P = (P (t))t≥0 by (6.3.1), with P (t) = {pij(t), i, j ∈ N

∗} satisfying the hy-
potheses of the previous paragraph. D.G. Kendall (1959b) called this semi-
group self-adjoint if for each t ≥ 0 the operator Tt is a self-adjoint one, that
is, if the following “reversibility” condition

πjpjk(t) = πkpkj(t), j, k = 1, 2, . . . , (6.3.2)

is satisfied, where (π = πj , j = 1, 2, . . .) denotes the invariant probability
distribution of P (t).

On the other hand, the existence of the probabilistic circuit-coordinates
wc(t), c ∈ C, in the expression (6.3.1) of the contractions Tt, t ≥ 0, inspires
the conversion of the edge-reversibility condition (6.3.2) into a circuit-
reversibility condition as follows:

Theorem 6.3.2. The semigroup {Tt, t ≥ 0} of contractions defined by
(6.3.1) is self-adjoint if and only if the probabilistic weight functions wc(·)
satisfy the consistency equation

wc(t) = wc-(t), t ≥ 0,

for all directed circuit c ∈ C, where c- denotes the inverse circuit of c.

Proof. The proof follows combining Theorem 5.5.2, Minping Qian et al.
(1979, 1982), and Corollary 6 of S. Kalpazidou (1990a) (see also Theorem
1.3.1 of Part II). �

6.3.3. An integral representation for the circuit-weight functions wc(t)
that decompose the transition matrix function P (t) can be found if pre-
liminarily we express all wc(t) in terms of the pij(t)’s. So, applying the
argument of Theorems 6.3.1 and 6.2.1 to each t-skeleton chain, we obtain

Theorem 6.3.3. For any t > 0 and any circuit c occurring in the decom-
position (6.2.1) of the matrix P (t) indexed by N

∗
v = {1, . . . , v} there exist

a finite sequence (j1, k1), . . . , (jm, km) of edges and a Hermitian system
{νjnkn , n = 1, . . . ,m} of complex-valued totally finite Borel measures sup-
ported by the real line such that wc(t) = wcr (t), for some r = 1, . . . ,m, has
the expression

wc1(t) = (w(j1)w(k1))1/2
∫ +∞

−∞
eiλtνj1k1(dλ) if r = 1,

wcr (t) = (w(jr)w(kr))1/2
∫ +∞

−∞
eiλtνjrkr (dλ)

−
r−1∑
s=1

wcs(t)Jcs(jr, kr) if r = 2, . . . ,m, m > 1.
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Higher-Order Circuit Processes

Higher-order circuit processes are homogeneous discrete parameter Markov
processes with either at most a countable set of states or an arbitrary set
of states, where the length of the past in the Markovian dependence is ex-
tended from 1 to m > 1, and the transition law can be decomposed by a col-
lection of geometrical elements, the “circuits”, into certain positive weights.

Our presentation will first introduce the concept of a higher-order Markov
chain with finite state space which is often called a multiple Markov chain.
Then, we shall see how to construct multiple Markov chains by collections
of directed circuits and positive weights. In this case, the multiple Markov
chains will be called multiple circuit chains or higher-order circuit chains.
The converse direction gives rise to a cycle representation theory for higher-
order Markov chains.

7.1 Higher-Order Markov Chains

Let S be a finite set which contains r > 1 elements. An S-valued sequence

ξ−1, ξ0, ξ1, . . . , ξn, . . .

of random variables is called a homogeneous Markov chain of order two (for
short double Markov chain) with state space S if for any n = 0, 1, 2, . . . and
i−1, . . . , in+1 ∈ S we have

Prob(ξn+1 = in+1/ξn = in, . . . , ξ−1 = i−1)
= Prob(ξn+1 = in+1/ξn = in, ξn−1 = in−1),
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whenever the left member is defined, such that the right member is indepen-
dent of n. As we see, the previous equations express the Markov property
where the length of the past m is equal to 2. The above definition may
be extended to any length of the past m > 2, but in what follows, with-
out any loss of generality, we shall be concerned with the case m = 2. The
probability

Prob(ξn+1 = k/ξn = j, ξn−1 = i)

is called the one-step transition probability from the pair (i, j) of states
to state k. It is easily seen that if ξ = (ξn)n≥−1 is a double Markov chain
then

(ξ−1, ξ0), (ξ0, ξ1), . . . , (ξn, ξn+1), . . .

is a simple Markov chain.
On the other hand, a first glance at the chains ξ and ζ = (ζn)n≥0 with

ζn = (ξn−1, ξn), can mislead to the impression that higher-order Markov
chains reduce to simple Markov chains. It is Gh. Mihoc (1935, 1936) who
first pointed out that the theory of higher-order Markov chains differs from
that of simple Markov chains. M. Iosifescu (1973) strengthened this stand-
point by showing that the stochastic properties of ξ and ζ above are not
identical. For instance, if a state (i, j) is recurrent in chain ζ, so are its
components i and j in chain ζ, but a state i can be recurrent in chain ξ
without being a component of a recurrent compound state (i, j) in chain ζ.
As we shall see below, there are a few cases when the higher-order Markov
chains can be studied by making use of properties of the attached simple
chains.

Another context for investigating higher-order Markov chains is that of
random systems with complete connections (see M. Iosifescu (1963a, b)–
(1990), M.F. Norman (1968a, b) and (1972), T. Kaijser (1972–1986), M.
Iosifescu and P. Tăutu (1973), S. Kalpazidou (1986a, b, c), (1987a), and
others. The reader may find extended references on this type of stochastic
processes in M. Iosifescu and S. Grigorescu (1990).

Formally, a random system with complete connections is a particular
chain of infinite order. Chains of infinite order have been considered by
W. Doeblin and R. Fortet (1937), J. Lamberti and P. Suppes (1959), M.
Iosifescu and A. Spătaru (1973), S. Kalpazidou (1985), P. Ney (1991),
S. Kalpazidou, J. and A. Knopfmacher (1990), P. Ney and E. Nummelin
(1993), Ch. Ganatsiou (1995a, b, c), and others.

In 1935, O. Onicescu and Gh. Mihoc generalized the Markovian depen-
dence of order m to chains with complete connections, i.e., those chains
(Xn) for which the conditioned probability

Prob(Xn+1 = in+1/Xn = in, . . . , X0 = i0)
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is a given function ϕinin+1 of the conditioned probabilities

Prob(Xn = i/Xn−1 = in−1, . . . , X0 = i0), i ∈ S,

for every i0, . . . , in+1 ∈ S, n ≥ 0. (The simple Markov chains are obtained
when the functions ϕij , i, j ∈ S, are constant, namely ϕij = pij .) The reader
can find more details in O. Onicescu and G. Mihoc (1943), O. Onicescu,
G. Mihoc and C.T. Ionescu Tulcea (1956), G. Mihoc and G. Ciucu (1973),
M. Iosifescu and P. Tăutu (1973). A. Leonte (1970), and others.

Let pij,k, i, j, k ∈ S, denote the one-step transition probabilities of the
double Markov chain ξ, that is,

pij,k = P(ξ1 = k/ξ0 = j, ξ−1 = i), i, j, k ∈ S,

where S contains r elements. Let also p
(n)
ij,k denote the n-step transition

probability from pair (i, j) of states to state k in chain ξ, that is,

p
(n)
ij,k = P(ξn = k/ξ0 = j, ξ−1 = i), n ≥ 1,

with p
(0)
ij,k = δjk, i, j, k ∈ S, where δ symbolizes Kronecker’s delta.

As already seen, the chain ζ = (ξn−1, ξn)n≥0 is a simple S × S-state
Markov chain whose transition probabilities are symbolized by qij,xy, that
is,

qij,xy = P(ξ1 = y, ξ0 = x/ξ0 = j, ξ−1 = i),

for all (i, j), (x, y) ∈ S × S.
Then, if q

(n)
ij,xy, with (i, j), (x, y) ∈ S × S, denotes the n-step transition

probability in chain ζ, we have

qij,xy = pij,yδjx

and

p
(n+s)
ij,k =

∑
(x,y)∈S×S

q
(n)
ij,xyp

(s)
xy,k, i, j, k ∈ S, n ≥ 1, s ≥ 0. (7.1.1)

Denote P (n) = (p(n)
ij,k, i, j, k ∈ S), n ≥ 0, and let Qn = (q(n)

ij,xy; (i, j, (x, y) ∈
S × S). Then relations (7.1.1) are written in terms of matrices as follows:

P (n+s) = QnP (s), n ≥ 1, s ≥ 0. (7.1.2)

In particular, we have

P (n) = QnP (0),

with P (0) = (Ir, . . . , Ir)′ where Ir is the unit matrix of order r (= card S)
which is repeated r times in the expression of P (0).

I. Vladimirescu (1982–1990) introduced the following definitions:
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Definition 7.1.1. A state j is accessible from state i(i → j) if for any
u ∈ S there is n = n(u, i, j) such that p(n)

ui,j > 0. If i → j and j → i, we say
that states i and j communicate and write i ↔ j.

The relation ↔ divides the set {i ∈ S/i ↔ i} into (equivalence) classes,
called classes of states.

Introduce

T (i, j) = {n ≥ 1/p(n)
ui,j > 0 for any u ∈ S}, i, j ∈ S,

T (i) = T (i, i), i ∈ S.

Definition 7.1.2. A state j is fully accessible from state i if T (i, j) �= ∅.
If T (i) �= ∅ and the greatest common divisor di of all natural numbers n
which belong to T (i) is larger than one, then we say that i is a periodic
state of period dj . When either T (i) = ∅ or di = 1, we say that i is an
aperiodic state.

Vladimirescu (1984) proved that if s ∈ T (i, j) and n ∈ T (j, k), then s +
n ∈ T (i, k).

Definition 7.1.3. A double Markov chain ξ = (ξn)n≥−1 satisfies the con-
dition of full accessibility if for any states i, j ∈ S such that i → j we have
T (i, j) �= ∅.

Definition 7.1.4. The double Markov chain ξ = (ξn)n≥−1 is irreducible if
the set of all states of ξ is the unique (equivalence) class. If there exists
n0 ≥ 1 such that P (n0) > 0, we say that the chain ξ is regular.

The following theorem gives a necessary and sufficient condition for a
double Markov chain to be regular (I. Vladimirescu (1985)):

Theorem 7.1.5. The double Markov chain ξ = (ξn)n≥−1 is regular if and
only if the following conditions are fulfilled:

(i) irreducibility;
(ii) full accessibility; and
(iii) all states are aperiodic.

Proof. If the chain ξ is regular then conditions (i)–(iii) follow immediately.
Let us prove the converse. From (i) we have that j → j for any j ∈ S.
The latter along with (ii) implies that T (j) �= ∅, j ∈ S. Since all states are
aperiodic, dj = 1 for all j ∈ S.

On the other hand, for any pair v, s ∈ T (i) we have

p
(v+s)
ui,i =

∑
(x,t)∈S×S

q
(v)
ui,xtp

(s)
xt,i ≥

∑
x∈S

q
(v)
ui,xip

(s)
xi,i

≥ q
(v)
ui,zip

s
zi,i > 0
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for some z ∈ S (since for any u ∈ S, 0 < p
(s)
ui,i =

∑
x∈S q

(s)
ui,xi, that is, there

exists z = z(u, i, s) ∈ S for which q
(s)
ui,zi > 0). Therefore v + s ∈ T (i) (T (i)

is closed with respect to addition). Then there is an ni such that n ∈ T (i)
for any n ≥ ni. Taking into account (i) and (ii), we see that T (i, j) �= ∅ for
any i, j ∈ S.

Let mij be arbitrarily fixed in T (i, j). Then mij + nj ∈ T (i, j). Also, if
n0 ≡ maxi,j∈S(mij + nj), then n0 −mij ≥ nj for any i, j ∈ S. Thus, by the
very definition of nj , we have n0 −mij ∈ T (j) for any i ∈ S. Then, from
relations: mij ∈ T (i, j) and n0 −mij ∈ T (j) we deduce that mij + (n0 −
mij) ∈ T (i, j), that is, n0 ∈ T (i, j) for any i, j ∈ S. Finally, the definition
of T (i, j), i, j ∈ S, shows that p(n0)

ui,j > 0 for any u ∈ S. Hence the chain ξ is
regular. �

That conditions (i)–(iii) of Theorem 7.1.5 are independent follows from
the following examples:

Example 7.1.1. Let ξ be the double Markov chain whose state space
is S = {1, 2} and transition probabilities are given by p11,1 = 1, p12,1 =
1
2 , p21,1 = 1

3 , p22,2 = 1. Then ξ is aperiodic (d1 = d2 = 1) and satisfies the
full accessibility condition. However the chain ξ is not irreducible (there
are two classes C1 = {1} and C2 = {2}).

Example 7.1.2. The double Markov chain ξ whose state space is S =
{1, 2} and with transition probabilities p11,2 = p12,1 = p21,1 = 1 is irre-
ducible and satisfies the full accessibility condition, but ξ is periodic
(d1 = d2 = 2).

Example 7.1.3. Let ξ be the double Markov chain with states in S =
{1, 2, 3}, whose transition probabilities are as follows: p11,3 = p12,3 =
p13,3 = p21,2 = p22,1 = p23,1 = p31,2 = p32,3 = p33,2 = 1. Then ξ is irre-
ducible and aperiodic but it does not satisfy the full accessibility condition
(for instance, 1 → 1 while T (1) = ∅)

We have

Proposition 7.1.6. If the chain ζ = (ζn)n≥0 is regular, then the chain
ξ = (ξn)n≥−1 is regular as well.

Proof. If ζ is regular, there exists n0 ≥ 1 such that Qn0 > 0. Then equation
P (n0) = Qn0P (0) = Qn0(Ir, . . . , Ir)′ (where Ir, is repeated r times) implies
that Pn0 > 0. �

As I. Vladimirescu (1985) pointed out, the converse of Proposition 7.1.6
is not in general valid. For instance, the double Markov chain on S = {1, 2}
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whose transition probabilities are p11,1 = a, p12,2 = p21,2 = 1 and p22,1 = b,
where a, b ∈ (0, 1), is regular (P (3) > 0) but the attached simple Markov
chain ζ is not regular. The same author proved that if ξ = (ξn) is regular,
then there exists a probability (row) distribution p∗ = (p1, . . . , pr) > 0 such
that

lim
n→∞P (n) = up∗, (7.1.3)

where u is the (column) vector whose components are all equal to 1, and r
is the cardinal number of the state space of ξ.

Furthermore, if ζ is regular, then (7.1.2) implies that

lim
n→∞P (n) = HP (0),

where H is the positive matrix of order r2 given by the equation H =
limn→∞ Qn.

Definition 7.1.7. The distribution p∗ provided by (7.1.3) is called the
limiting distribution of the S-state double Markov chain ξ. When p1 =
p2 = · · · = pr = 1/r(r = card S), we say that p∗ is the uniform limiting
distribution.

7.2 Higher-Order Finite Markov Chains Defined
by Weighted Circuits

7.2.1. Consider the set S = {a, b, c, d, e, f, g} and the directed circuits c1, c2,
and c3 as in Figure 2.1.1 of Chapter 2. Observe the passages of a particle
through the points of c1, c2, and c3 at moments one unit of time apart.
Assign each circuit ci to a strictly positive weight wci . Then we may define
transition probabilities of a chain ξ, from a past history with a given length
m ≥ 1 to some state of S using the circuits ci, i = 1, 2, 3, and the positive
weights wci .

For instance, if such a history is k = (g, a, b), (m = 3), that is, ξn−2 =
g, ξn−1 = a, ξn = b with n = 1, 2, . . . , we are interested in defining the tran-
sition probabilities from k to x ∈ S. Namely, to calculate these conditioned
probabilities we follow the steps below:

(i) We look for the set C(k) of all circuits which pass through k, i.e.,
those circuits which comprise g, a, and b as consecutive points. In
case C(k) is not empty, then the passages to other states are allowed
and we may go on with the following steps.

(ii) We consider the set C(k, x) of all circuits which pass through
(k, x), x ∈ S, according to Definition 1.2.2 (of Chapter 1). In case
C(k, x) is empty then no passage to x will take place.
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(iii) The transition probabilities from k to x ∈ S are expressed in terms
of the circuit-weights assigned to the circuits of C(k) and C(k, x) by
the relations

P(ξn+1 = d/ξn = b, ξn−1 = a, ξn−2 = g)

=

∑
c′∈C(k,d) wc′∑
c′∈C(k) wc′

=
wc1

wc1 + wc2

,

P(ξn+1 = c/ξn = b, ξn−1 = a, ξn−2 = g)

=

∑
c′∈C(k,c) wc′∑
c′∈C(k) wc′

=
wc2

wc1 + wc2

,

P(ξn+1 = x/ξn = b, ξn−1 = a, ξn−2 = g) = 0, x ∈ S\{c, d}.

Let us now change the time-sense, seeing the retroversion of the film
of observations along the reversed circuits of Figure 2.1.1 until the nth
moment, that is, . . . , χn+1, χn. Note that the circuits which enter a vertex
are the same as those which leave it in the corresponding reversed circuits.
Then we find that the transition probabilities of the chain (χn) from k− =
(b, a, g) to state x ∈ S satisfy the equations

Prob(ξn =x/ξn−1 = b, ξn−2 = a, ξn−3 = g)
= Prob(χn = x/χn+1 = b, χn+2 = a, χn+3 = g), (7.2.1)

for all n = 1, 2, . . . , where the transition probability from k− to x in chain
χn, χn+1, . . . is defined by using, instead of the classes C(k) and C(k, x)
occurring at steps (i) and (ii) above, the classes C−(k−) and C−(x, k−)
which contain all the reverses c′− of the circuits c′ ∈ C passing through k−
and (x, k−), respectively. Namely,

Prob(χn =x|χn+1 = b, χn+2 = a, χn+3 = g) =
∑

c′−∈C−(x,k−)

wc′−/
∑

c′−∈C−(k−)

wc′−

where wc′− = wc′ , c
′ ∈ C.

The latter equation reveals that instead of a reversible random sequence
of observations we have a dichotomy into two sequences ξ = (ξn)n and
χ = χn)n, called circuit chains of order three, which keep not only the
Markovian nature of the transition law, but also the transition law is main-
tained numerically. In this regard we have to study the behavior of the pair
(ξ, χ) as a whole (see S. Kalpazidou (1988a)).

We note that the “balance” of the “past” and the “future” with respect
to the “present” requires a formal expression in terms of certain functions
wl(·) and wr(·) on the “left” sequences k = (k1, k2, k3) and on the “right”
sequences k− = (k3, k2, k1), respectively, such that the following equations
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are verified:

: wl(k) ≡
∑
i∈S

wl(k, i) =
∑
i∈S

wl(i, k),(β1)

wr(k−) ≡
∑
i∈S

wr(i, k−) =
∑
i∈S

wr(k−, i),

: wl(k) = wr(k−).(β2)

We call (β1) and (β2) the balance properties for the functions {w1, wr}. As
pointed out in S. Kalpazidou (1988a), the properties (β1) and (β2) cannot
be confused since the first property is mainly concerned with the existence
of invariant measures while the second one with equations (7.2.1).

7.2.2. Now, we shall give a rigorous presentation of the above heuristics
following S. Kalpazidou (1988a).

Let m > 1. Let S be any finite set consisting of more than m elements and
C a collection of overlapping directed circuits in S which contains, among
its elements, circuits with periods greater than m− 1. Suppose that there
exist circuits which intersect each other in at least m consecutive points.
The previous assumptions are not necessary; by them, we only avoid simple
cases for our future models.

Associate a strictly positive number wc to each c ∈ C. Suppose the
circuit-weights wc, c ∈ C, satisfy the following consistency conditions:

wc ◦ ti = wc, i ∈ Z,

where ti is the translation of length i on Z as defined in Section 1.1 of
Chapter 1. Denote by C− the collection of all the inverse circuits c−, when
c ∈ C. Put

wc− = wc, c ∈ C.

A sequence of length m is understood to be any ordered sequence
k = (k(ν −m + 1), . . . , k(ν − 1), k(ν)) ∈ Sm, ν ∈ Z. Put k− = (k(ν), k(ν −
1), . . . , k(ν −m + 1)).

Let Jc(k, i)(Jc−(i, k)), and Jc(k)(Jc−(k−)) be the passage functions
associated with c(c−) according to Definition 1.2.2. Then according to
Lemma 1.2.3 the passage functions Jc and Jc− satisfy the following balance
equations:

(i) Jc(k) =
∑
i∈S

Jc(k, i) =
∑
j∈S

Jc(j, k),(β1)

(ii) Jc−(k−) =
∑
i∈S

Jc−(k−, i) =
∑
j∈S

Jc−(j, k−), (7.2.2)

Jc(k) = Jc−(k−),(β2)

for any k = (i1, . . . , im), k− = (im, . . . , i1), where i1, . . . , im ∈ S.



7.2 Higher-Order Finite Markov Chains Defined by Weighted Circuits 109

Define

wt(k, i) =
∑
c∈C

wcJc(k, i),

wr(i, k−) =
∑

c−∈C−

wc−Jc−(i, k−),

wl(k) =
∑
c∈C

wcJc(k),

wr(k−) =
∑

c−∈C−

wc−Jc−(k−),

for any k = (i1, . . . , im), k− = (im, . . . , i1) and i ∈ S, where i1, . . . , im ∈ S.
Then we have

Lemma 7.2.1. The functions wl(·, ·) wl(·), wr(·, ·), wr(·), satisfy the bal-
ance equations (7.2.2) (β1) and (β2).

Let us now introduce the sets

Wl = {k : k = (k(ν −m + 1), . . . , k(ν − 1), k(ν)) ∈ Sm, ν ∈ Z and
Jc(k) �= 0 for some c ∈ C } (7.2.2′)

and

Wr = {k− ∈ Sm : k ∈ Wl}. (7.2.2′′)

Consider the functions ul and hl defined as

ul(k, i) = ul((k(ν −m + 1), k(ν −m + 2), . . . , k(ν)), i)
= (k(ν −m + 2), . . . , k(ν), i), (7.2.3)

hl(j, k) = hl(j, (k(ν −m + 1), . . . , k(ν − 1), k(ν)))
= (j, k(ν −m + 1), . . . , k(ν − 1)) (7.2.4)

for any k ∈ Wl, and any i, j ∈ S. Also, consider the functions ur and hr

defined as

ur(k−, i) = ur((k(ν), . . . , k(ν −m + 2), k(ν −m + 1)), i)
= (i, k(ν), . . . , k(ν −m + 2)), (7.2.5)

hr(j, k−) = hr(j, (k(ν), k(ν − 1), . . . , k(ν −m + 1)))
= (k(ν − 1), . . . , k(ν −m + 1), j) (7.2.6)

for any k− ∈ Wr, and any i, j ∈ S.
With these preparations we are now ready to perform our original task

which is the definition of the mth order Markov chains using weighted
circuits. To this end, assume that Wl and Wr are disjoint sets. Let
N = {1, 2, . . .}. We appeal to the Kolmogorov theorem according to which
there exist two Markov chains ζ = (ζn)n and η = (ηn)n whose transition
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probabilities are defined as

P1(ζn+1 = ul(k, i)/ζn = k)

=

⎧⎨
⎩

wl(k, i)
wl(k)

, if there is c ∈ C such thatJc(k) · Jc(ul(k, i)) �= 0;

0, otherwise;
(7.2.7)

P2(ηn = ur(k−, i)/ηn+1 = k−)

=

⎧⎨
⎩

wr(i, k−)
wr(k−)

, if there is c− ∈ C− such thatJc−(k−) ·Jc−(ur(k−, i)) �= 0;

0, otherwise;
(7.2.8)

for all n ∈ N, k ∈ Wl, k− ∈ Wr, and i ∈ S.

Remarks
(i) The definitions of the Markov chains ζ and η rely upon the classical

Kolmogorov construction. The reader may follow another approach using a
common probability space for both chains ζ and η. Also, one may consider
the general case where the sets Wl and Wr have common elements.

(ii) Equations (7.2.7) show that (one-step) transitions from state k =
(k(ν −m + 1), k(ν −m + 2), . . . , k(ν)) ∈ Wl to states ul(k, i) = (k(ν −
m + 2), . . . , k(ν), i), i ∈ S, are allowed only if there exists a circuit of C
which passes simultaneously through k and ul(k, i), or equivalently through
(k, i). On the other hand, it follows from the proof of Lemma 1.2.3 that
c passes through (k, i) if and only if c− passes through (i, k−). Therefore
equations (7.2.7), (7.2.8) and the balance property (β2) imply that the
transition probability from k to ul(k, i) in chain ζ is equal to the transition
probability from k− to ur(k−, i) in chain η.

Let us now consider a recurrent class E of the chain ζ = (ζn)n Then,
from the above remark (ii) the set

E− = {k− ∈ Wr : k ∈ E} (7.2.9)

is a recurrent class for the chain (ηn)n. Moreover, from definition (7.2.7) of
transition probabilities of ζ it follows that if k ∈ E and Jc(k) �= 0, i.e., k =
(c(ν −m + 1), . . . , c(ν)) (we may equivalently consider c ◦ tj , j ∈ Z, instead
of c—see Definition (1.1.1)) then k′ = (c(ν −m + s + 1), . . . , c(ν), c(ν +
1), . . . , c(ν + s)), s = 1, . . . ,m− 1, are states of E, too.

Furthermore, we can prove

Proposition 7.2.2.
(i) The restrictions of the Markov chains ζ = (ζn)n and η = (ηn)n to

the recurrent classes E and E−, respectively, have unique stationary
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distributions pE and pE− , respectively, defined by

pE(k) =

⎧⎪⎨
⎪⎩

wl(k)∑
k∈E wl(k)

, if k ∈ E;

0, if k /∈ E;

pE−(k−) =

⎧⎪⎨
⎪⎩

wr(k−)∑
k−∈E− wr(k−)

, if k− ∈ E−;

0, if k− /∈ E.

(7.2.10)

(ii) pE(k) = pE−(k−), for all k ∈ E.

Proof. (i) We give the proof for the chain (ζn)n, since that concerning the
chain (ηn)n is completely similar. Thus, we shall show that the distribution
PE is the unique solution of the equation

pE(u) =
∑
k∈E

pE(k)P (k, u), u ∈ E, (7.2.11)

where u = (u(ν −m + 1), . . . , u(ν)), for some integer ν, and

P (k, u) =

⎧⎨
⎩

wl(k, u(ν))
wl(k)

,
if k ∈ E, u = ul(k, u(ν)) and there is c ∈ C
such thatJc(k) · Jc(ul(k, u(ν))) �= 0;

0, otherwise.

When u �= ul(k, u(ν)) for all k, both members of equation (7.2.11) are zero.
Otherwise,∑

k∈E

pE(k)P (k, u) =
1∑

k∈E wl(k)

∑
k∈E

ul(k, u(ν))=u

wl(k)
wl(k, u(ν))

wl(k)

=
1∑

k∈E wl(k)

∑
k∈E

ul(k, u(ν))=u

wl(k, u(ν)).

Let us now calculate the sum
∑

k∈E,ul(k,u(ν))=u wl(k, u(ν)). If k = (k(ν −
m + 1), . . . , k(ν)) then from ul(k, u(ν)) = u it follows that k = (k(ν −m +
1), u(ν −m + 1), . . . , u(ν − 1)). Therefore in view of the balance property
(7.2.2) (β1)(i), we have∑

k∈E
ul(k,u(ν))=u

wl(k,u(ν))

=
∑

k(ν−m+1)

wl((k(ν−m+1),u(ν−m+1),. . . ,u(ν−1)),u(ν))

= wl(u(ν −m + 1), . . . , u(ν − 1), u(ν))
= wl(u).
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Thus, pE = (pE(u))u∈E is a solution of equation (7.2.11). The uniqueness
of pE is an immediate consequence of the ergodicity of the Markov chain
(ζn)n restricted to the recurrent class E.

Finally, (ii) follows from the balance property (β2). �

Remark. Proposition 7.2.2 shows that the balance property (β1) is neces-
sary for existence of stationary distributions on symmetrical sets connected
by (7.2.9) while the balance property (β2) is necessary for their numerical
equality.

Let us further consider two Markov chains (ξ′n)n and (η′n)n with transi-
tion probabilities

P1(ζ ′n = hl(j, k)/ζ ′n+1 = k)

=

⎧⎪⎨
⎪⎩

wl(j, k)
wl(k)

, if there is c ∈ C such thatJc(k) · Jc(hl(j, k)) �= 0;

0, otherwise;

(7.2.12)
P2(η′n+1 = hr(j, k)/η′n = k−)

=

⎧⎪⎨
⎪⎩

wr(k−, j)
wr(k−)

, if there is c ∈ C such thatJc−(k−) · Jc−(hr(j, k−)) �= 0;

0, otherwise;

(7.2.13)

for any n ∈ N, k ∈ Wl, k− ∈ Wr, and i ∈ S.
Thus we may notice from equation (7.2.12) that transitions from state

k = (k(ν −m + 1), . . . , k(ν − 1), k(ν)) ∈ Wl to states hl(j, k) = (j, k(ν −
m + 1), . . . , k(ν − 1)), j ∈ S, are allowed only if there exists a circuit in
S which pass simultaneously through k and hl(j, k). Connections between
(ζn)n and (ζ ′n)n, and (ηn)n, and (η′n)n, respectively, are revealed in the
following statement:

Proposition 7.2.3. The restrictions of the Markov chains (ζ ′n)n∈N and
(η′n)n∈N to the recurrent classes E and E−, respectively, are the inverse
chains of (ζn)n∈N and (ηn)n∈N correspondingly restricted.

Proof. The transition probabilities of (ζ ′n)n∈N are

P̄ (k, h) =

⎧⎪⎨
⎪⎩

wl(j, k)
wl(k)

,
if there are j ∈ S, c ∈ C such thath = hl(j, k) and
Jc(k) · Jc(hl(j, k)) �= 0;

0, otherwise;
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for any k ∈ E. On the other hand, the transition probability of the inverse
chain of (ζn)n, from state k to state h is given by the known formula

pE(h)
pE(k)

P (h, k), (7.2.14)

where P (h, k) is defined by (7.2.7) and pE is the stationary distribution of
(ζn)n∈N defined by (7.2.10).

The expression (7.2.14) is furthermore equal to

pE(hl(j, k))
pE(k)

P (hl(j, k), k)

=
pE(hl(j, (k(ν −m + 1), . . . , k(ν − 1), k(ν))))

pE(k(ν −m + 1), . . . , k(ν))
·P (hl(j, (k(ν −m + 1), . . . , k(ν − 1), k(ν))),

(k(ν −m + 1), . . . , k(ν − 1), k(ν)))

=
wl(j, k(ν −m + 1), . . . , k(ν − 1))

wl(k(ν −m + 1), . . . , k(ν))
·P ((j, k(ν −m + 1), . . . , k(ν − 1)),
ul((j, k(ν −m + 1), . . . , k(ν − 1)), k(ν)))

=
wl(j, k(ν −m + 1), . . . , k(ν − 1))

wl(k(ν −m + 1), . . . , k(ν))

·wl(j, k(ν −m + 1), . . . , k(ν − 1), k(ν))
wl(j, k(ν −m + 1), . . . , k(ν − 1))

=
wl(j, k)
wl(k)

= P̄ (k, h).

Analogously, by using (7.2.6) and (7.2.13), we see that (η′n)n∈N , is the
inverse chain of (ηn)n∈N . �

A straightforward consequence of Proposition 7.2.3 is that the Markov
chains (ζ ′n)n∈N and (η′n)n∈N restricted to E and E−, respectively, are irre-
ducible and their stationary distributions pE and pE− are given by (7.2.10).

For the sake of simplicity we shall further consider that the recurrent
classes mentioned previously are the entire sets Wl and Wr, respectively,
(all the elements of Wl can be reached from one another by long sequences
of m points on circuits). Also, we shall denote the invariant probability
distributions on Wl and Wr by pl and pr, respectively. Now, following S.
Kalpazidou (1988a), we prove

Theorem 7.2.4 (The Existence of Higher-Order Circuit Chains).
Assume we are given a natural number m > 1, a finite class C of over-
lapping circuits in a finite set S which satisfy the conditions quoted at the
beginning of Subparagraph 7.2.2, and a set of positive weights {wc}c∈C.
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Then there exists a pair of finite strictly stationary Markov chains
(ξn)n, (χn)n) of order m such that

P1(ξn+m = i/ξn+m−1, . . . , ξn) =
wl((ξn, . . . , ξn+m−1), i)
wl(ξn, . . . , ξn+m−1)

, (7.2.15)

P2(χn = i/χn+1, . . . , χn+m) =
wr(i, (χn+1, . . . , χn+m))
wr(χn+1, . . . , χn+m)

, (7.2.16)

P1(ξn+m= i/ξn+m−1 = im, . . . , ξn= i1)
= P2(χn= i/χn+1 = im, . . . , χn+m= i1), (7.2.17)

for any n ≥ m, i ∈ S, (i1, . . . , im) ∈ Wl.

Proof. By (7.2.7) and (7.2.8) we have proved the existence of two irre-
ducible Markov chains (ζn)n and (ηn)n whose state spaces are Wl and Wr

respectively (Wr being connected with Wl by (7.2.9)), and with transition
probabilities given by

P1(ζn+1 = ul(k, i)/ζn = k) =
wl(k, i)
wl(k)

,

P2(ηn = ur(k−, i)/ηn+1 = k−) =
wr(i, k−)
wr(k−)

,

for any k = (k(ν −m + 1), . . . , k(ν − 1), k(ν)) ∈ Wl and k− = (k(ν), k(ν −
1), . . . , k(ν −m + 1)) ∈ Wr (with ν ∈ Z), i ∈ S. Moreover,

P1(ζn+1 = ul(k, i)/ζn = k) = P2(ηn = ur(k−, i)/ηn+1 = k−)

for any k ∈ Wl and i ∈ S.
The stationary distributions p1 = pwl

and pr = pwr
of the chains above

are given by Proposition 7.2.2. Further, if ζn = (k(ν −m + 1), . . . , k(ν −
1), k(ν)) ∈ Wl and ηn = (u(ν), u(ν − 1), . . . , u(ν −m + 1)) ∈ Wr, define

ξn = pr−1ζn = k(ν)

and

χn = pr1ηn = u(ν),

for any n ≥ m, where pr−1 and pr1 denote projections.
On account of Lemma 7.2.1 for any n ≥ m we get

P1(ξn+1 = ul(ζn, ξn+1)) =
∑
i∈S

P1(ζn+1 = ul(ζn, i))

=
∑
i∈S

∑
k∈Wl

P1(ζn+1 = ul(k, i)/ζn = k)pl(k)

=
∑
k∈Wl

pl(k)
∑
i∈S

wl(k, i)
wl(k)

= 1.
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Similarly,

P2(ηn = ur(ηn+1, χn)) = 1.

Therefore

P1(ζn+m=(ξn+1, . . . , ξn+m))=P1(ζn+1 =ul(ζs,ξs+1),n≤s ≤ n+m− 1)=1,

and analogously

P2(ηn = (χn, χn+1, . . . , χn+m−1)) = 1.

Then for n ≥ m

P1(ξn+m = i/ξn+m−1, . . . , ξn, . . .)

= P1(ζn+m = ul(ζn+m−1, i)/ζn+m−1 = (ξn, . . . , ξn+m−1))

=
wl((ξn, . . . , ξn+m−1), i)
wl(ξn, . . . , ξn+m−1)

.

Also

P2(χn = i/χn+1, χn+2, . . .) = P2(ηn =ur(ηn+1, i)/ηn+1 =(χn+1, . . . , χn+m))

=
wr(i, (χn+1, . . . , χn+m))
wr(χn+1, . . . , χn+m)

.

Moreover, making use of the balance property and Proposition 7.2.2, for
any s > m, i1 ∈ S, we obtain

P1(ξs = i1) = P1(ζs = ul(ζs−1, i1)) =
∑
k

P1(ζs = ul(k, i1)/ζs−1 = k)p1(k)

=
∑
k∈Wl

wl(k, i1)
wl(k)

p1(k).

Furthermore, for any i2 ∈ S,

P1(ξs = i1, ξs+1 = i2) =
∑
k∈Wl

P1(ξs+1 = i2, ξs = i1/ζs−1 = k) · pl(k)

=
∑
k∈Wl

P1(ξs+1 = i2/ξs = i1, ζs−1 = k)

·P1(ξs = i1/ζs−1 = k) · pl(k)

=
∑
k∈Wl

P1(ζs+1 = ul(ul(k, i1), i2)/ζs = ul(k, i1))

·P1(ζs = ul(k, i1)/ζs−1 = k) · pl(k)

=
∑
k∈Wl

wl(ul(k, i1), i2)
wl(ul(k, i1))

· wl(k, i1)
wl(k)

pl(k).
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Let us now define recursively the functions u
(t)
l : Sm × St → Sm, t =

0, 1, 2, . . . , by

u
(t+1)
l (k, i(t+1)) =

{
ul(k, i), if t = 0;

ul(u
(t)
l (k, i(t)), it+1), if t = 1, 2, . . . ;

where ul is given by (7.2.3) and i(t) = (i1, . . . , it) ∈ St, t = 1, 2, . . . . Then,
by induction, we deduce that the probability

P1(ξs = i, ξs+1 = i2, . . . , ξs+t−1 = it) =
∑
k∈Wl

wl(u
(t−1)
l (k, i(t−1)), it)

wl(u
(t−1)
l (k, i(t−1))

· · · ·

· wl(ul(k, i1), i2)
wl(ul(k, i1))

· wl(k, i1)
wl(k)

pl(k)

(7.2.18)

does not depend upon s, for any t = 1, 2, . . . and i1, . . . , it ∈ S. In a similar
manner we get

P2(χs = i1) = P2(ηs = ur(ηs+1, i1))

=
∑

k−∈Wr

P2(ηs = ur(k−, i1)/ηs+1 = k−)pr(k−)

=
∑

k−∈Wr

wr(i1, k−)
wr(k−)

pr(k−)

and

P2(χs = i2, χs+1 = i1) =
∑

k−∈Wr

P2(χs = i2, χs+1 = i1/ηs+2 = k−)pr(k−)

=
∑

k−∈Wr

P2(χs = i2/χs+1 = i1, ηs+2 = k−)

·P2(χs+1 = i1/ηs+2 = k−)pr(k−)

=
∑

k−∈Wr

P2(ηs = ur(ur(k−, i1), i2)/ηs+1 = ur(k−, i1))

·P2(ηs+1 = ur(k−, i1)/ηs+2 = k−)pr(k−)

=
∑

k−∈Wr

wr(i2, ur(k−, i1))
wr(ur(k−, i1))

· wr(i1, k−)
wr(k−)

pr(k−).

In general we have

P2(χs = it, χs+1 = it−1, . . . , χs+t−1 = i1)

=
∑

k−∈Wr

wr(it, u
(t−1)
r (k−, i(t−1)))

wr(u
(t−1)
r (k−, i(t−1)))

· wr(i2, ur(k−, i1))
wr(ur(k−, i1))

· wr(i1, k−)
wr(k−)

pr(k−),

(7.2.19)
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where u
(t)
r is defined similarly to u

(t)
l using the function ur introduced by

(7.2.5).
Then, from the balance property (β2) and Proposition 7.2.2, it follows

that (ξn)n and (χn)n satisfy equations (7.2.15), (7.2.16) and (7.2.17). Also,
equations (7.2.18) and (7.2.19) show that the circuit-weights completely
determine the finite-dimensional distributions of (ξn)n and (χn)n. Then,
by the uniqueness of pl and pr, the proof is complete. �

Reasoning as in the proof of Theorem 7.2.4 and starting from the inverse
chains of (ζn)n and (ηn)n, and then using the functions hl and hr instead of
ul and ur, on account of Proposition 7.2.3 we are led to the inverse chains
of (ξn)n and (χn)n. Therefore we can state

Theorem 7.2.5. Assume we are given a natural number m > 1, a finite
class of overlapping directed circuits in a finite set S which satisfy the hy-
potheses of Theorem 7.2.4, and a set of positive weights {wc}c∈C.

(i) Then there exists a pair ((ξ′n)n, (χ′
n)n) of finite strictly stationary

Markov chains of order m in such that

P1(ξ′n = i/ξ′n+1, . . . , ξ
′
n+m) =

wl(i, (ξ′n+1, . . . , ξ
′
n+m))

wl(ξ′n+1, . . . , ξ
′
n+m)

,

P2(χ′
n+m = i/χ′

n+m−1, . . . , χ
′
n) =

wr((χ′
n, . . . , χ

′
n+m−1), i)

wr(χ′
n, . . . , χ

′
n+m−1)

,

P1(ξ′n= i/ξ′n+1 = i1, . . . , ξ
′
n+m = im)

= P2(χ′
n+m = i/χ′

n+m−1 = i1, . . . , χ
′
n = im),

for any n ≥ m, i ∈ S, (i1, . . . , im) ∈ Wi.
(ii) The chains (ξ′n)n and (χ′

n)n are Doob versions of the inverse chains
of the chains given by Theorem 7.2.4.

Definition 7.2.6. The Markov chains (ξn)n and (χn)n of order m occur-
ring in Theorem 7.2.4 and their inverse chains occurring in Theorem 7.2.5
are called circuit chains of order m (or multiple circuit chains) associated
with the number m, the finite class C of circuits in S, and the positive
weights wc, c ∈ C.

7.3 The Rolling-Circuits

As has already been mentioned, there are good reasons for differentiating
between two kinds of processes defined by directed circuits: the S-state
Markov chains of order m(m > 1) as ξ and χ given by Theorem 7.2.4, and
the simple Markov chains ζ and η whose transition probabilities are defined
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by (7.2.7) and (7.2.8), respectively. We shall call the latter simple circuit
processes associated to ξ and χ.

Conversely, following the same reasonings of Chapters 3 and 4, it
might be interesting to investigate whether a circuit representation theory
can be developed for higher order Markov chains. Namely, we propose
the following problem: given a pair (ξ, χ) of m-order strictly stationary
Markov chains on a finite set S, if equations (7.2.17) are verified, then
define a class C of directed circuits in S and a collection {wc, c ∈ C } of
positive numbers which express the transition laws of ξ and χ by a linear
combination of the passage-functions Jc, c ∈ C.

The answer to this question is not easy. For instance we have to determine
the kind of dynamics from sequences (i1, . . . , im) ∈ Sm to points of S. To
this end, we shall investigate the geometry of the sample paths of the chains
ξ and χ via the sample paths of the associated simple Markov chains, which
will be symbolized by ζ and η, respectively.

It turns out that the trajectories of the chains ζ and η provide “circuits”
whose points are the long sequences (i1, . . . , im) of m points as new points.
We shall call these circuits rolling-circuits (S. Kalpazidou (1988a)). It is
this kind of circuit that we study in the present section. Let us start with
the following:

Definition 7.3.1. Assume S is any nonvoid finite set and m > 1.

(i) A circuit in Sm is any periodic function γ:Z → Sm with the property
that for each t ∈ Z there exists i = i(t) ∈ S such that

γ(t + 1) = ul(γ(t), i),

where ul is defined by (7.2.3).
(ii) The inverse circuit of γ defined at (i) is the periodic function δ:Z →

Sm with the property that for each t ∈ Z there exists i = i(t) ∈ S
such that

δ(t + 1) = ur(δ(t), i),

where (γ(t + 1))−, (γ(t))−, (γ(t− 1))−, . . . , t ∈ Z, are consecutive
values of δ and ur is defined by (7.2.5).

We shall write δ = γ−. Define the period of γ (or γ−) as the smallest pos-
itive integer p = p(γ)(p(γ−)) such that γ(t + p) = γ(t)(γ−(t + p) = γ−(t))
for all t ∈ Z. Obviously p(γ) = p(γ−). In the following we shall only refer
to definitions and properties concerning circuits γ, since those regarding
circuits γ− are completely analogous. The exposition follows the investiga-
tions of J. MacQueen (1981) and S. Kalpazidou (1988a).

Define for j ∈ Z the circuit γj by the relation

γj(t) = γ(t + j), t ∈ Z;
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that is, if γ(t) = (k(t−m + 1), . . . , k(t)) and j < m, then in view of (1.1.1)
(Chapter 1)

γ(t + j) = (k(t−m + j + 1), . . . , k(t), i1, i2, . . . , ij)

where i1, i2, . . . , ij ∈ S. If for γ(t) = (k(t−m + 1), . . . , k(t−m +
i), . . . , k(t)) we set

γ(t)(i) = the ith projection counting from the left
= k(t−m + i),

then

γ(t) (i) = γj(t)(i− j), 1 ≤ j < i ≤ m.

In particular,

γ(t) (i) = γi−1(t)(1), 1 ≤ i ≤ m.

Let the relation ∼ be defined by γ ∼ γ′ if and only if there exists j ∈ Z such
that γ′ = γj . This is an equivalence relation which enables us to consider
further the classes instead of the elements.

Let C be a finite set of directed circuits in the originally given set S, and
define Wl as in (7.2.2′). Let us consider the set C ∗

l of all circuits γ in Wl

which are defined by

γ(t) = (c(t), c(t + 1), . . . , c(t + m− 1)),

for all t ∈ Z, where c ∈ C.
Since intuitively the elements c(i) of γ(t) are obtained “by rolling” the

circuit c, we call γ ∈ C ∗
l the rolling-circuit associated to c. Analogously,

C ∗
r will denote the set of all rolling-circuits in Wr. Plainly, if γ ∈ C ∗

l then
γ− ∈ C ∗

r . Let γ be a circuit in Sm. Then, there is exactly one circuit c in
S such that

γ(t) = (c(t), c(t + 1), . . . , c(t + m− 1)), t ∈ Z, (7.3.1)

Indeed, if we define c(t) = γ(t)(1), then by virtue of Definiton 7.3.1 we get
(7.3.1). Moreover, c is a circuit in S and its period p(c) is exactly that of γ
as we shall show in a moment.

First, we prove that p(γ) ≤ p(c), that is,

p(c) ∈ {s: γ(t + s)(i) = γ(t)(i), i = 1, . . . ,m}. (7.3.2)

We have c(t + p(c)) = c(t), for all t ∈ Z, or

c(t + p(c) + i− 1) = c(t + i− 1), t ∈ Z, i = 1, . . . ,m. (7.3.3)

On the other hand,

γ(t)(i) = γi−1(t)(1) = γ(t + i− 1)(1) = c(t + i− 1)
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and

γ(t + p(c))(i) = γi−1(t + p(c))(1) = γ(t + p(c) + i− 1)(1)
= c(t + p(c) + i− 1).

In view of (7.3.3), (7.3.2) holds.
Second, the inequality p(c) ≤ p(γ) follows from the relations

c(t) = γ(t)(1) = γ(t + p(γ))(1) = c(t + p(γ)), t ∈ Z.

Furthermore, we define an elementary circuit in Sm to be a circuit γ for
which the p(γ) elements γ(t), γ(t + 1), . . . , γ(t + p(γ) − 1), for some t (and
therefore for all t), are all different from one another. Also, an m-elementary
circuit c in S is any circuit with the following property: the smallest in-
teger k ≥ 1 such that for each t we have c(t + k + i) = c(t + i), for all
i = 1, . . . ,m, is exactly the period p = p(c). For instance, the circuit de-
fined by (7.3.1) is an m-elementary one if γ is elementary.

To conclude we may state

Proposition 7.3.2. Let C ∗
l , be a set of elementary circuits in Sm. Then,

there are a set C of m-elementary circuits in S and a bijection τ : C ∗
l → C

defined as

τ(γ) = c if and only if c(t) = γ(t)(1), t ∈ Z, (7.3.4)

and

τ−1(c) = γ if and only if γ(t)(i) = c(t+ i−1), t ∈ Z, i= 1, . . . ,m,

(7.3.5)

which keeps the period invariant. The latter property is valid for τ−1 only
for m-elementary circuits in S.

Analogously, we define a bijection τ− from the set C ∗
r of all elementary

circuits in Wr onto the set C− of m-elementary circuits in S, where C− =
{c−: c− is the inverse of c, c ∈ C }. Then (τγ)− = τ−γ−.

7.4 The Passage-Function Associated with a
Rolling-Circuit

A passage-function associated with a rolling-circuit in Sm,m > 1, is defined
as follows. Let C be a collection of directed circuits in S as in Subparagraph
7.2.2 and let Wl and Wr be the subsets of Sm defined by (7.2.2′) and
(7.2.2′′). Consider further γ, with γ(t) = (c(t), . . . , c(t + m− 1)), t ∈ Z, an
elementary rolling-circuit described by an m-elementary circuit c ∈ S.
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For any k = (k(t−m + 1), . . . , k(t)) and ul(k, i) in Wl, where i ∈ S, de-
fine

J∗
γ (k, ul(k, i)) =

⎧⎨
⎩

1, if for some 1 ≤ t ≤ p(γ) − 1, γ(t) = k and
γ(t + 1) = ul(k, i);

0, otherwise.
(7.4.1)

Then

J∗
γ (k, ul(k, i)) = J∗

γ ((k(t−m + 1), . . . , k(t)), (k(t−m + 2), . . . , k(t), i))

=

{
1, if Jτγ(k) = Jτγ(ul(k, i)) = 1;
0, otherwise;

where ul is defined by (7.2.3), and τ is the bijection occurring in Proposition
7.3.2. Here Jτγ(·) is the mth order passage function associated with the
m-elementary circuit c in S (see Definition 1.2.2) which defines γ.

In view of the equalities τ(γj) = (τγ)j , j ∈ Z, and relation (1.2.1), it
follows that the definition of the J∗

γ does not depend upon the choice of
the element that represents the class-circuit γ.

Definition 7.4.1. The function J∗
γ defined by (7.4.1) is called the passage-

function associated with the elementary rolling-circuit γ.

Definition 7.4.2. If J∗
γ (k, ul(k, i)) = 1, we say γ passes through

(k, ul(k, i)).

Thus the rolling-circuit y = τ−1c passes through (k, ul(k, i)) exactly
when c passes simultaneously through k and ul(k, i); namely k is passed
by c, and ul(k, i) by c ◦ t1 (see Definition 1.2.2).

We define in an analogous manner J∗
γ−(ur(k−, i), k−) =

J∗
γ−(i, k(t), . . . , k(t−m + 2)), (k(t), . . . , k(t−m + 1))) for k =

(k(t−m + 1), . . . , k(t)) ∈ Wl and i ∈ S.
Now we prove

Lemma 7.4.3. For an elementary rolling-circuit γ in Wl we have

(i) J∗
γ (k, ul(k, i)) = Jτγ(k, i),

J∗
γ−(ur(v, i), v) = Jτ−γ−(i, v) ;

(ii) J∗
γ (hl(i, k), k) = Jτγ(i, k), (7.4.2)

J∗
γ−(v, hr(i, v)) = Jτ−γ−(v, i),

for any k ∈ Wl, v ∈ Wr, and i ∈ S.

Proof. Let γ(t) = (τ−1c)(t) = (c(t), . . . , c(t + m− 1)), t ∈ Z. Sup-
pose i = c(t + m). If for k ∈ Wl, k = (k(t), . . . , k(t + m− 1)), we have
J∗
γ (k, ul(k, i)) = 1, then from the definition of J∗

γ above, it follows
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equivalently that

Jτγ(k) = Jτγ(k(t + 1), . . . , k(t + m− 1), i) = 1

or

Jτγ(k, i) = 1.

If i �= c(t + m), then both members occurring in the first relation of
(7.4.2) (i) are equal to 0. Hence the first equality of (7.4.2)(i) holds. The
other relations of the lemma follow in a similar manner. �

Lemma 7.4.3 has the following immediate consequences (see S. Kalpazi-
dou (1988a)). Let C ∗

l be a class of overlapping elementary circuits in Sm

and let C ∗
r be the class of the reverses of C ∗

l . Then we have

Proposition 7.4.4. Let γ ∈ C∗
l . Then the functions J∗

γ and J∗
γ− satisfy

the balance properties:

: (i)
∑
i∈S

J∗
γ (k, ul(k, i)) =

∑
j∈S

J∗
γ (hl(j, k), k);(β∗

1)

(ii)
∑
i∈S

J∗
γ−(ur(v, i), v) =

∑
j∈S

J∗
γ−(v, hr(j, v));

: (i) J∗
γ (k, ul(k, i)) = J∗

γ−(ur(k−, i), k−);(β∗
2)

(ii) J∗
γ (hl(j, k), k) = J∗

γ−(k−, hr(j, k−)).

Theorem 7.4.5. Associate with each γ ∈ C ∗
l and γ− ∈ C ∗

r a strictly pos-
itive number w ∗

γ = w ∗
γ− . Let

(i) w∗
l (k, ul(k, i)) =

∑
γ∈C ∗

l

w∗
γJ

∗
γ (k, ul(k, i)),

w∗
r(ur(v, i), v) =

∑
γ−∈C ∗

r

w∗
γ−J∗

γ−(ur(v, i), v);

(ii) w∗
l (hl(i, k), k) =

∑
γ∈C ∗

l

w∗
γJ

∗
γ (hl(i, k), k),

w∗
r(v, hr(i, v)) =

∑
γ−∈C ∗

r

w ∗
γ−J∗

γ−(v, hr(i, v)),

for any k, v ∈ Sm, and i ∈ S. Then letting

C = τC ∗
l , C− = τ−C ∗

r ,

wc ≡ w∗
τ−1c = w∗

τ−1
− c−

≡ wc− ,

where τ and τ− are the bijections on C ∗
l and C ∗

r , given by Proposition 7.3.2,
we have, respectively,
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(i) w∗
l (k, ul(k, i)) = wl(k, i), where wl(k, i) =

∑
c∈C

wcJc(k, i),

w∗
r(ur(v, i), v) = wr(i, v), where wr(i, v) =

∑
c−∈C−

wc−Jc−(i, v);

(ii) w∗
l (hl(i, k), k) = wl(i, k), where wl(i, k) =

∑
c∈C

wcJc(i, k),

w∗
r(v, hr(i, v)) = wr(v, i), where wr(v, i) =

∑
c−∈C−

wc−Jc−(v, i),

for any k, v ∈ Sm, and i ∈ S. Also
(iii) The functions w∗

l and w∗
r satisfy the balance properties (β∗

1) and
(β∗

2).

7.5 Representation of Finite Multiple Markov
Chains by Weighted Circuits

Let N = {1, 2, . . .},m > 1, and S be a finite set which contains more than
m elements. Let ξ = (ξn)n and χ = (χn)n be two homogeneous strictly
stationary Markov chains of order m > 1 with finite state space S and with
equal values of the invariant probability distributions such that

P(ξn = i/ξn−1 = im, . . . , ξn−m = i1) = P2(χn = i/χn+1 = im, . . . , χn+m = i1)
(7.5.1)

for any n > m and i, i1, i2, . . . , im ∈ S. Consider the simple Markov chains
ζ = (ζn) and η = (ηn) associated, respectively, with ξ and χ, and having
transition probabilities given by

P1(k, ul(k, i)) ≡ P1(ζn = ul(k, i)/ζn−1 = k = (i1, . . . , im)) (7.5.2)
= P1(ξn = i/ξn−1 = im, . . . , ξn−m = i1), n ≥ m + 1,

Pr(v, ur(v, i)) ≡ P2(ηn = ur(v, i)/ηn+1 = v = (im, . . . , i1)) (7.5.3)
= P2(χn = i/χn+1 = im, . . . , χn+m = i1), n ≥ 1,

for all i1, . . . , im, i ∈ S, where the functions ul and ur are defined by (7.2.3)
and (7.2.5).

Assume ζ and η are irreducible chains on two disjoint subsets Wl and
Wr of Sm connected by relation (7.2.9), and consider p = (p(k), k ∈ Wl)
and p− = (p(k−), k− ∈ Wr) their invariant probability distributions. Re-
call that, if k = (i1, . . . , im), then k− designates as always the sequence
(im, . . . , i1). Then p(k) = p−(k−), k ∈ Wl, and in view of (7.5.1) we have

P1(ζn+1 = ul(k, i)/ζn = k) = P2(ηn = ur(k−, i)/ηn+1 = k−) (7.5.4)

for any k ∈ Wl, i ∈ S and n > m.
We are now ready to solve the circuit representation problem proposed at

the beginning of Section 7.3, namely: given any pair (ξ, χ) of higher-order
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strictly stationary Markov chains verifying equations (7.5.1) there exist a
class C of directed circuits in S and a collection of positive weights wc, c ∈ C,
which completely determine both transition laws of ξ and χ.

We shall answer this question following S. Kalpazidou (1988a). Before
proceeding, let us consider the multiple inverse chains (i.e., the parameter-
scale is reversed) ξ′ = (ξ′n) and χ′ = (χ′

n) of ξ and χ above as well as their
attached simple Markov chains ζ ′ = (ζ ′n) and η′ = (η′n) whose transition
probabilities are, respectively, given by

P ′
l (k, hl(i, k)) ≡ P1(ζ ′n = hl(i, k)/ζ ′n+1 = k = (i1, . . . , im))

= P1(ξ′n = i/ξ′n+1 = i1, . . . , ξ
′
n+m = im)), (7.5.5)

P ′
r(v, hr(i, v)) ≡ P2(η′n = hr(i, v)/η′n−1 = v = (im, . . . , i1))

= P2(χ′
n = i/χ′

n−1 = i1, . . . , χ
′
n−m = im), n > m, (7.5.6)

where the functions hl and hr are defined by (7.2.4) and (7.2.6).
To solve the circuit representation problem we need the following basic

lemma:

Lemma 7.5.1. Consider two nonnegative functions w∗
l and w∗

r which are
defined on Wl ×Wl and Wr ×Wr, respectively. Assume w∗

l and w∗
r satisfy

the balance equations∑
i∈S

ul(k, i)∈Wl

w∗
l (k, ul(k, i)) =

∑
i∈S

h1(i, k)∈Wl

w∗
l (hl(i, k), k), (7.5.7)

for all k ∈ Wl,∑
i∈S

ur(v, i)∈Wr

w∗
r(ur(v, i), v) =

∑
i∈S

hr(i, v)∈Wr

w∗
r(v, hr(i, v)), (7.5.8)

for all v ∈ Wr, such that each sum occurring in (7.5.7) and (7.5.8) is strictly
positive, and

w∗
l (k, ul(k, i)) = w∗

r(ur(k−, i), k−), (7.5.9)

for any k, ul(k, i) ∈ Wl and k−, ur(k−, i) ∈ Wr.
Then there exist two finite ordered classes C ∗

l and C ∗
r of elementary

circuits in Wl and Wr, where C ∗
r = {γ−, γ− is the inverse of γ, γ ∈ C ∗

l },
and strictly positive numbers w ∗

γ = w ∗
γ− , γ ∈ C ∗

l , depending on the ordering
of C ∗

l , such that

w∗
l (k, ul(k, i)) =

∑
γ∈C ∗

l

w∗
γJ

∗
γ (k, ul(k, i)),

w∗
r(ur(k−, i), k−) =

∑
γ−∈C ∗

r

w∗
γ−J∗

γ−(ur(k−, i), k−),
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for all k ∈ Wl, k− ∈ Wr, and i ∈ S. Here the functions J∗
γ , γ ∈ C ∗

l , are
defined by (7.4.1), while the J∗

γ− are given similarly.

Proof. Consider the oriented graph of w∗
l , that is, the points are the se-

quences u = (i1, . . . , im) ∈ Wl and the directed edges are the pairs (u, u′) ∈
Wl for which w∗

l (u, u
′) > 0. Then, choosing an arbitrary point k ∈ Wl, the

strict positiveness of the sums in (7.5.7) and (7.5.8) enables us to find at
least an element j1 ∈ S such that (k, j1) satisfies

0 < w∗
l (k, ul(k, j1)) = w∗

r(ur(k−, j1), k−).

Repeating the same argument, since the function w∗
l is balanced, we may

find a finite number of elementary circuits γ1, . . . , γσ constructed below
which pass through the elements of Wl. Let us examine the construction of
the γ1, . . . , γσ.

The balance equation (7.5.7) implies the existence of an edge (k1, k2),
with k1 = k and k2 = ul(k, j1), and in turn of a sequence of pairs
(k1, k2), (k2, k3), . . . in Wl ×Wl such that kn+1 = ul(kn, jn), for some jn ∈
S, and

w∗
l (kn, kn+1) > 0 implies w∗

l (kn+1, kn+2) > 0.

Since Wl is finite, there exists a smallest integer n ≥ 2 for which kn = ks for
some s = 1, . . . , n− 1. Then γ1 = (ks, ks+1, . . . , kn−1, ks) is an elementary
circuit in Wl. By setting

w∗
γ1

≡ w∗
l (γ1(t1), γ1(t1 + 1))

= min
t

w∗
l (γ1(t), γ1(t + 1))

= w∗
r(γ

−
1 (t1 + 1), γ−

1 (t1))
≡ w∗

γ−
1
,

we define

w∗
l (u, ul(u, i)) ≡ w∗

l (u, ul(u, i)) − w∗
γ1
J∗
γ1

(u, ul(u, i))
= w∗

r(ur(u−, i), u−) − w∗
γ−
1
J∗
γ−
1

(ur(u−, i), u−)

≡ (w∗
1)−(ur(u−, i), u−),

for any u ∈ Wl and i ∈ S with ul(u, i) ∈ Wl.
By the definition of w∗

γ1
and w∗

γ−
1

, the functions w∗
1 and (w∗

1)− are
non-negative. Moreover, since the functions J∗

γ1
and J∗

γ−
1

are balance,
the functions w∗

1 and (w∗
1)− are also. Then, repeating the same reason-

ing above to w∗
1 , which remains strictly positive on fewer pairs than the

initial function w∗
l , if w∗

1 > 0, and then (w∗
1)− > 0, at some point, we

can find another elementary circuit γ2 and its inverse γ−
2 with w∗

γ2
=

w∗
γ−
2
> 0, which in turn provides new balance functions w∗

2 and (w∗
2)−
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given by

w∗
2(u, ul(u, i)) ≡ w∗

1(u, ul(u, i)) − w∗
γ2
J∗
γ2

(u, ul(u, i))
= w∗

l (u, ul(u, i)) − w∗
γ1
J∗
γ1

(u, ul(u, i)) − w∗
γ2
J∗
γ2

(u, ul(u, i))
= w∗

r(ur(u−, i), u−) − w∗
γ−
1
J∗
γ−
1

(ur(u−, i), u−)

−w∗
γ−
2
J∗
γ−
2

(ur(u−, i), u−)

≡ (w∗
2)−(ur(u−, i), u−).

Continuing the procedure we find a sequence w∗
1 , w

∗
2 , . . . of balanced func-

tions such that each w∗
k+1 remains strictly positive on fewer pairs than w∗

k.
Because Wl is finite, after finitely many steps, say σ, we find the elementary
circuits γ1, γ2, . . . , γσ, such that

w∗
σ+1(u, ul(u, i)) ≡ 0.

Then the collection C ∗
l required in the statement of this lemma is iden-

tical to {γ1, γ2, . . . , γσ}. Analogously, choosing as representative class of
circuits for w∗

r to be C ∗
r = {γ− : γ− is the inverse circuit of γ, γ ∈ C ∗

l },
we obtain w∗

γ− = w∗
γ for all γ− ∈ C ∗

r , and the decomposition of w ∗
r by

(C ∗
r , w

∗
γ−). The proof is complete. �

Remark. From the proof of Lemma 7.5.1 it follows that the family C ∗
l is

not uniquely determined since its construction depends upon the starting
sequence k as well as upon the ordering of the closed chains in Sm.

Analogously, one may prove:

Lemma 7.5.2. Consider two nonnegative functions w∗
l and w∗

r which are
defined on Wl ×Wl and Wr ×Wr, respectively. Assume w∗

l and w∗
r satisfy

the balance equations (7.5.7) and (7.5.8) such that each sum occurring in
(7.5.7) and (7.5.8) is strictly positive, and

w∗
l (hl(i, k), k) = w∗

r(k−, hr(i, k−)),

for any k, hl(i, k) ∈ Wl and k−, hr(i, k−) ∈ Wr.
Then there exist two finite ordered classes C ∗

l and C ∗
r of elementary

circuits in Wl and Wr, where C ∗
r contains the reverses of the elements of

C ∗
l , and strictly positive numbers w∗

γ = w∗
γ− , γ ∈ C ∗

l , such that

w∗
l (hl(i, k), k) =

∑
γ∈C ∗

l

w∗
γJ

∗
γ (hl(i, k), k),

w∗
r(k−, hr(i, k−)) =

∑
γ−∈C∗

r

w∗
γ−J∗

γ−(k−, hr(i, k−)),

for all k ∈ Wl, k− ∈ Wr and i ∈ S.
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Now we can state and prove the representation theorem for the originally
given m-order Markov chains (ξn)n and (χn)n which satisfy the assump-
tions mentioned at the beginning of this section.

Theorem 7.5.3 (The Circuit Representation for Higher-Order Markov
Chains). There exist two finite ordered classes C and C− = {c− : c− is
the reverse of c, c ∈ C} of m-elementary directed circuits in S and strictly
positive circuit weights wc and wc− , with wc = wc− , c ∈ C, depending on
the ordering of C, such that

P1(ξn = i/ξn−1 = im, . . . , ξn−m = i1) =
wl((i1, . . . , im), i)
wl(i1, . . . , im)

=
wl(k, i)
wl(k)

,

P2(χn = i/χn+1 = im, . . . , χn+m = i1) =
wr(i, (im, . . . , i1))
wr(im, . . . , i1)

=
wr(i, k−)
wr(k−)

,

for any n > m and i1, . . . , im, i ∈ S such that k = (i1, . . . , im) ∈ Wl, where

wl(k, i) =
∑
c∈C

wcJc(k, i),

wr(i, k−) =
∑

c−∈C−

wc−Jc−(i, k−),

wl(k) =
∑
c∈C

wcJc(k),

wr(k−) =
∑

c−∈C−

wc−Jc−(k−),

and Jc(·, ·), Jc(·), Jc−(·, ·) and Jc−(·) are the passage functions associated
with c and c−.

Proof. Associate with the strictly stationary Markov chains (ξn)n and
(χn)n of order m, the two irreducible Markov chains (ζn)n and (ηn)n whose
transition probabilities Pl and Pr are given by (7.5.2) and (7.5.3), and
with the stationary distributions p and p−, respectively. Further, we define
w∗

l (k, k
′) for k, k′ = ul(k, i) ∈ Wl, with i ∈ S, by

w∗
l (k, ul(k, i)) = p(k)Pl(k, ul(k, i)). (7.5.10)

Similarly, for v, v′ = ur(v, i) ∈ Wr, with i ∈ S, we define w∗
r(v

′, v) by

w∗
r(ur(v, i), v) = p−(v)Pr(v, ur(v, i)). (7.5.11)

Then, letting

w∗
l (k) ≡

∑
i∈S

w∗
l (k, ul(k, i)),

w∗
r(v) ≡

∑
i∈S

w∗
r(ur(v, i), v),
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we have

w∗
l (k) = p(k),

w∗
r(k−) = p−(k−). (7.5.12)

Therefore, we have w∗
l (k) = w∗

r(k−) and

Pl(k, ul(k, i)) =
w∗

l (k, ul(k, i))
w∗

l (k)
,

Pr(k−, ur(k−, i)) =
w∗

r(ur(k−, i), k−)
w∗

r(k−)
, (7.5.13)

for any k = (i1, . . . , im) ∈ Wl and i ∈ S such that ul(k, i) ∈ Wl. Further-
more, because of (7.5.4), we get

w∗
l (k, ul(k, i)) = w∗

r(ur(k−, i), k−) (7.5.14)

for any k = (i1, . . . , im) ∈ Wl and i ∈ S such that ul(k, i) ∈ Wl.
Then, we may apply Lemma 7.5.1 to the balanced functions w∗

l (·, ·) and
w∗

r(·, ·) defined by (7.5.10) and (7.5.11). Accordingly, there exist two finite
ordered classes C ∗

l and C ∗
r of elementary circuits in Wl and Wr, with C ∗

r =
{γ− : γ− is the inverse circuit of γ, γ ∈ C ∗

l }, and strictly positive numbers
w∗

γ = w∗
γ− , γ ∈ C ∗

l such that

w∗
l (k, ul(k, i)) ≡

∑
γ∈C ∗

l

w∗
γJ

∗
γ (k, ul(k, i)),

w∗
r(ur(v, i), v) ≡

∑
γ−∈C ∗

r

w∗
γ−J∗

γ−(ur(v, i), v).

Then, because of Theorem 7.4.5, by letting

C = τC ∗
l , C− = τ−C ∗

r ,

wc ≡ w∗
τ−1c = w∗

τ−1
− c−

≡ wc− ,

where τ and τ− are the bijections on C ∗
l and C ∗

r , given as in Proposition
7.3.2, we have

w∗
l (k, ul(k, i)) = wl(k, i),

where

wl(k, i) =
∑
c∈C

wcJc(k, i),

and

w∗
r(ur(v, i), v) = wr(i, v),

where

wr(i, v) =
∑

c−∈C−

wc−Jc−(i, v).
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Thus w∗
l (k) = wl(k), for any k ∈ Wl, and w∗

r(v) = wr(v), for any v ∈ Wr,
where wl(k) and wr(v) have the expressions stated in the theorem. Finally
relations (7.5.13) become

Pl(k, ul(k, i)) =
wl(k, i)
wl(k)

,

Pr(k−, ur(k−, i)) =
wr(i, k−)
wr(k−)

,

as was to be proved. �

Remark. (i) If we consider the inverse chains (ξ′n)n and (χ′
n)n of (ξn)n

and (χn)n, then in view of Lemma 7.5.2 and by using the inverse chains
of (ζn)n and (ηn)n we may analogously prove the following representation
theorem:

Theorem 7.5.4. There exist two finite ordered classes C and C−, with
C− = {c− : c− is the reverse of c, c ∈ C } of m-elementary circuits in S and
strictly positive circuit weights wc and wc− , with wc = wc− , c ∈ C, such that

P1(ξ′n = i/ξ′n+1 = i1, . . . , ξ
′
n+m = im) =

wl(i, (i1, . . . , im))
wl(i1, . . . , im)

=
wl(i, k)
wl(k)

,

P2(χ′
n = i/χ′

n−1 = i1, . . . , χ
′
n−m = im) =

wr((im, . . . , i1), i)
wr(im, . . . , i1)

=
wr(k−, i)
wr(k−)

,

for any n > m and i1, . . . , im, i ∈ S, such that k = (i1, . . . , im) ∈ Wl, where

wl(i, k) =
∑
c∈C

wcJc(i, k),

wr(k−, i) =
∑

c−∈C−

wc−Jc−(k−, i),

wl(k) =
∑
c∈C

wcJc(k),

wr(k−) =
∑

c−∈C−

wc−Jc−(k−),

and Jc(·, ·), Jc−(·, ·), Jc(·) and Jc−(·) are the passage functions associated
with c and c−.

(ii) It is obvious (from Lemma 7.5.2) that the classes of m-elementary
circuits and the corresponding weights whose existence is stated in Theorem
7.5.4 are the same as those given in Theorem 7.5.3. Moreover, the functions
wl and wr constructed in Theorems 7.5.3 and 7.5.4 satisfy the balance
properties (β1) and (β2).

To conclude, starting from a natural number m > 1 and a finite class of
weighted circuits in a finite set S (containing more than m elements) we
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may define two strictly stationary Markov chains of order m or their inverse
chains. Conversely, any finite strictly stationary Markov chain of order m
enables us to define a finite class of weighted m-elementary circuits in S.
The latter is also obtained if we reverse the parameter-scale in the initial
chain.

Finally, the reader may find in S. Kalpazidou (1989b, 1990b, 1991a, e)
expansions of this chapter to higher-order circuit chains with a countable
infinity of states.



8

Cycloid Markov Processes

As we have already seen, finite homogeneous Markov chains ξ admitting
invariant probability distributions may be defined by collections {cκ, wk} of
directed circuits and positive weights, which provide linear decompositions
for the corresponding finite-dimensional probability distributions. The aim
of the present chapter is to generalize the preceding decompositions to more
relaxed geometric entities occurring along almost all the sample paths of
ξ such as the cycloids, which are closed chains of edges with various ori-
entations. Then ξ is called a cycloid Markov chain. Correspondingly, the
passage-functions associated with the algebraic cycloids have to express the
change of the edge-direction, while the linear decompositions in terms of
the cycloids provide shorter descriptions for the finite-dimensional distri-
butions, called cycloid decompositions.

A further development of the cycloid decompositions to real balance func-
tions is particularly important because of the revelation of their intrinsic
homologic nature. Consequently, the cycloid decompositions enjoy a
measure-theoretic interpretation expressing the same essence as the known
Chapman–Kolmogorov equations for the transition probability functions.
The development of the present chapter follows S. Kalpazidou (1999a, b).

8.1 The Passages Through a Cycloid

Let S be a finite set and let G = (S,E) be any connected oriented graph G =
(S,E), where E denotes the set of all directed edges (i, j), which sometimes
will be symbolized by b(i,j).
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If c̃ is a sequence (e1, . . . , em) of directed edges of E such that each edge
er, 2 ≤ r ≤ m− 1, has one common endpoint with the edge er−1(�= er) and
a second common endpoint with the edge er+1(�= er), then c̃ is called the
chain which joins the free endpoint u of e1 and the free endpoint v of em.
Both u and v are called endpoints of the chain. If any endpoint of the edges
e1, . . . , em appears once when we delete the orientation, then c̃ is called an
elementary chain.

Definition 8.1.1. A cycloid is any chain of distinct oriented edges whose
endpoints coincide.

From the definition of the elementary chain, we correspondingly obtain
the definition of an elementary cycloid. Consequently, a directed circuit or
cycle c is any cycloid whose edges are oriented in the same way, that is,
the terminal point of any edge of c is the initial point of the next edge.
Accordingly, we also obtain the definition of the elementary cycle.

To describe the passages along an arbitrary cycloid c̃, we need a much
more complex approach than that given for the directed circuits in Chapter
1. It is this approach that we introduce now.

Let c̃ be an elementary cycloid of G. Then c̃ is defined by giving its edges
e1, e2, . . . , es, which are not necessarily oriented in the same way, that is,
the closed chain (e1, e2, . . . , es) does not necessarily define a directed circuit
in S. However, we may associate the cycloid c̃ with a unique directed circuit
(cycle) c and with its opposite c made up by the consecutive points of c̃.
Note that certain edges of both c and c may eventually be not in the
graph G.

We shall call c and c the directed circuits (cycles) associated with the
cycloid c̃. For instance, consider the cycloid c̃ = ((1, 2), (3, 2), (3, 4), (4, 1)).
Then the associated directed circuits are c = (1, 2, 3, 4, 1) and c = (1, 4, 3,
2, 1). With these preparations we now introduce the following definitions.

The passage-function associated with a cycloid c̃ and its associated di-
rected circuit c is the function Jc̃,c : E → {−1, 0, 1} defined as

Jc̃,c(i, j) = 1, if (i, j) is an edge of c̃ and c,
= −1, if (i, j) is an edge of c̃ and c , (8.1.1)
= 0, otherwise.

Analogously, the passage-function associated with the pair (c̃, c ) is the
function Jc̃,c : E → {−1, 0, 1} defined as

Jc̃,c (i, j) = 1, if (i, j) is an edge of c̃ and c ,

= −1, if (i, j) is an edge of c̃ and c,
= 0, otherwise.

Then we have

Jc̃,c(i, j) = −Jc̃,c (i, j), i, j ∈ S,
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and

Jc̃,c(i, j) �= Jc̃,c(j, i), i, j ∈ S.

In particular, if the cycloid c̃ coincides with the cycle c, then

Jc̃,c(i, j) = Jc(i, j), i, j ∈ S,

where Jc(i, j) is the passage-function of c, which is equal to 1 or 0 according
to whether or not (i, j) is an edge of c.

The passage-functions associated with the cycloids enjoy a few simple,
but basic properties.

Lemma 8.1.2. The passage-functions Jc̃,c(i, j) and Jc̃,c (i, j) associated
with the elementary cycloid c̃ are balanced functions, that is,∑

j∈S

Jc̃,c(i, j) =
∑
k∈S

Jc̃,c(k, i), (8.1.2)

∑
j∈S

Jc̃,c (i, j) =
∑
k∈S

Jc̃,c (k, i), (8.1.3)

for any i ∈ S.

Proof. We shall prove equations (8.1.2). Consider i ∈ S. If i does not lie
on c̃, then i does not lie on both c and c . Then both members of (8.1.2)
are equal to zero.

Now, let i be a point of c̃. Then i is a point of c and c as well. Accord-
ingly, we distinguish four cases.

Case 1: The edges of c̃, which are incident at i, have the orientation of c.
Then ∑

j∈S

Jc̃,c(i, j) = Jc̃,c(i, u) = +1,

∑
k∈S

Jc̃,c(k, i) = Jc̃,c(v, i) = +1,

where (i, u) and (v, i) are the only edges of c̃ and c, which are incident at
i.

Case 2: The point i is the terminal point of both edges of c̃, which are
incident at i. Then, we have∑

j∈S

Jc̃,c(i, j) = 0,

∑
k∈S

Jc̃,c(k, i) = Jc̃,c(v, i) + Jc̃,c(u, i) = (+1) + (−1) = 0,

where (v, i) and (u, i) are the only edges of c̃, one lying on c and the other
on c , which have i as a terminal point.
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Case 3: The point i is the initial point of both edges of c̃ which are incident
at i. Accordingly, we write∑

j∈S

Jc̃,c(i, j) = (+1) + (−1) = 0,

∑
k∈S

Jc̃,c(k, i) = 0.

Case 4: The edges of c̃, which are incident at i, have the orientation of c .
Then ∑

j∈S

Jc̃,c(i, j) = −1,

∑
k∈S

Jc̃,c(k, i) = −1.

Finally, relations (8.1.3) may be proved by similar arguments. The proof is
complete. �

Now we shall investigate how to express the passages of a particle moving
along the cycloids c̃ of G in terms of the passage-functions.

First, let us assume that the cycloid c̃ coincides with the directed circuit
c. Then the motion along the circuit c is characterized by the direction of
c, which, in turn, allows the definition of an algebraic analogue c in the real
vector space C1 generated by the edges {b(i,j)} of the graph G. Specifically,
as in paragraph 4.4 any directed circuit c = (i1, i2, . . . is, i1), occurring in
the graph G, may be assigned to a vector c ∈ C1 defined as follows:

c =
∑
(i,j)

Jc(i, j)b(i,j),

where Jc is equal to 1 or 0 according to whether or not (i, j) is an edge
of c. Let us now consider a cycloid c̃, which is not a directed circuit. To
associate c̃ with a vector c̃ in C1, we choose a priori a direction for the
passages along c̃, that is, we shall consider either the pair (c̃, c) or the pair
(c̃, c ) where c and c are the directed circuits associated with c̃. Then we
may assign the graph-cycloid c̃ with the vectors c̃ and −c̃ in C1, defined as
follows:

c̃ =
∑
(i,j)

Jc̃,c(i, j)b(i,j),

(8.1.4)
−c̃ =

∑
(i,j)

Jc̃,c (i, j)b(i,j).

In other words, any cycloid c̃ of the graph G may be assigned, except for the
choice of a direction, with a vector c̃ in C1. The vector c̃ will be called a cy-
cloid, as well. If c̃ is elementary, then c̃ is called an elementary cycloid in C1.

On the other hand, it turns out that all the cycloids c̃, associated with the
connected oriented graph G, generate a subspace C̃1 of C1. The dimension
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B of the vector space C̃1 is called the Betti number of the graph G. One
method to obtain a base for C̃1 consists in considering a maximal (oriented)
tree of G. A maximal tree is a connected subgraph of G without cycloids
and maximal with this property. This may be obtained by deleting B suit-
able edges e1, . . . , eB ∈ E, which complete B uniquely determined elemen-
tary cycloids λ̃1, . . . , λ̃B , each of λ̃k being in T ∪ {ek} and associated with
the circuit λk orientated according to the direction of ek, k = 1, . . . , B. Then
the vector-cycloids λ̃1, . . . , λ̃B ∈ C̃1, associated to (λ̃1, λ1), . . . , (λ̃B , λB) as
in (8.1.4), form a base for C̃1 and are called Betti cycloids. Furthermore,
the number B is independent of the choice of the initial maximal tree.

Now we turn back to our original point to express the dynamical status
of the passages of a particle moving along a cycloid c̃ of G in terms of the
passage-functions.

First, let us consider that the cycloid c̃ is an elementary directed circuit
c of G. Then, if i is a point of c = (i1, . . . , ik, . . . , is, i1), say i = ik, we have

Jc(i) =
∑
j∈S

Jc(i, j) =
∑
k∈S

Jc(k, i) �= 0. (8.1.5)

Specifically, there are only two edges of c that make nonzero both mem-
bers of (8.1.5): (ik−1, i) and (i, ik+1). Then relations (8.1.5) become:
Jc(ik−1, i) = Jc(i, ik+1) = 1 = Jc(i) and consequenty we have the follow-
ing simple intuitive interpretation: a particle moving along c is passing
through i if and only if it is passing through the edges of c preceding and
succeeding i. This interpretation allows us to say that a directed circuit c
passes through a point i if and only if the corresponding passage-function
Jc satisfies relations (8.1.5).

Now let us consider a cycloid c̃ that is not a directed circuit. Then it
may happen that a point i belongs to c̃, but the last inequality of (8.1.5)
may eventually be not verified by the passage-functions Jc̃,c(i, j), that is,∑

j∈S

Jc̃,c(i, j) =
∑
k∈S

Jc̃,c(k, i) = 0.

Consequently, to describe intuitively the passage along an arbitrary cycloid
c̃, we have to take into account the associated directed circuit (cycle) c;
namely, we say that a cycloid c̃ passes through the point i if and only if
the associated directed circuit c passes through the point i, that is, relations
(8.1.5) hold for c.

8.2 The Cycloid Decomposition of Balanced
Functions

We present the following theorem:

Theorem 8.2.1. Let S be a nonvoid set. Assume w is a real function de-
fined on S × S whose oriented graph G is connected, satisfying the folowing
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balance equations: ∑
j∈S

w(i, j) =
∑
k∈S

w(k, i), i ∈ S. (8.2.1)

Then there exists a finite collection C∗ = {c̃1, . . . , c̃B} of independent
elementary cycloids in G and a set {α1, . . . , αB} of real nonnull numbers
such that

w(i, j) =
B∑

k=1

αkJc̃k,ck(i, j), i, j ∈ S, αk ∈ R, (8.2.2)

where B is the Betti number of the graph G, αk ≡ w(ik, jk) with (ik, jk) the
chosen Betti edge for c̃k, and Jc̃k,ck are the passage-functions associated
with the cycloids c̃k, k = 1, . . . , B. Furthermore, the decomposition (8.2.2)
is independent of the ordering of C∗.

Proof. Let G = (S,E) be the oriented connected graph of w. That is,
(i, j) ∈ E if and only if w(i, j) �= 0. With the graph G we associate the
vector spaces C1 and C̃1 generated by the edges and cycloids of G, respec-
tively.

Consider now an arbitrary maximal tree � = (S, T ) of G. Then there
are edges of E, say e1 = (i1, j1), . . . , eB == (iB , jB), such that E = T ∪
{e1, . . . eB}. Hence, B is the Betti number G. Because � is a tree, any
two points of S may be joined by a chain in T. In addition, that � is a
maximal tree means that each directed edge of E\T = {e1, . . . , eB}, say
ek = (ik, jk), determines a unique elementary cycloid c̃k in T ∪ {ek} and a
unique associated circuit ck with the orientation of ek, k = 1, . . . , B. Then,
by using (8.1.4), we may assign the unique vector-cycloid c̃k to the pair
(c̃k, ck), k = 1, . . . , B.

Define

α1 = α1(e1) ≡ w(i1, j1).

Put

w1(i, j) ≡ w(i, j) − α1Jc̃1,c1(i, j), i, j ∈ S.

Then w1 is a new real balanced function on S. If w1 ≡ 0, then equations
(8.2.2) hold for C∗ = {c̃1} and B = 1. Otherwise, w1 remains different from
zero on fewer edges than w (because w1 is zero at least on the edge (i1, j1)).

Further, we repeat the same reasonings above for all the edges e2 =
(i2, j2), . . . , eB = (iB , jB), and define

wB(i, j) ≡ w(i, j) −
B∑

k=1

αkJc̃k,ck(i, j), i, j ∈ S.

where αk ≡ w(ik, jk), k = 1, . . . , B. From the previous construction of the
elementary cycloids c̃k and circuits ck, k = 1, . . . , B, there follows that the
associated vector-cycloids c̃1, . . . , c̃B form a base for C̃1.
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Also, wB(ik, jk) = 0, k = 1, . . . , B, and the reduced function wB remains
a balance function on the tree T, as well. Then wB ≡ 0 (see Lemma 4.4.1).
Consequently, we may write

w(i, j) =
B∑

k=1

αkJc̃k,ck(i, j), i, j ∈ S.

The proof is complete. �
Corollary 8.2.2. Assume the oriented strongly connected graph G =
(S,E) associated with a positive balanced function on a finite set S × S.
If {c̃1, . . . , c̃B} is a base of elementary Betti cycloids, then for any i ∈ S
we have ∑

j∈S

B∑
k=1

Jc̃k,ck(i, j) =
∑
u∈S

B∑
k=1

Jc̃k,ck(u, i) ≥ 1. (8.2.3)

Proof. Let i ∈ S and let c be an elementary directed circuit of G that
passes through i, that is,∑

j∈S

Jc(i, j) =
∑
u∈S

Jc(u, i) = 1.

Then we may apply the cycloid decomposition formula (8.2.2) to the bal-
ance function Jc(·, ·) on the set E of the edges of G and correspondingly
we write

Jc(i, j) =
B∑

k=1

Jc(ik, jk)Jc̃k,ck(i, j), i, j ∈ S,

where (i1, j1), . . . , (iB , jB) are the Betti edges of G that uniquely determine
the elementary Betti cycloids c̃1, . . . , c̃B by the method of maximal tree.
Consequently, we have

1 =
∑
j∈S

Jc(i, j) =
∑
j∈S

B∑
k=1

Jc(ik, jk)Jc̃k,ck(i, j)

=
∑
u∈S

B∑
k=1

Jc(ik, jk)Jc̃k,ck(u, i)

≤
∑
j∈S

B∑
k=1

Jc̃k,ck(i, j) =
∑
u∈S

B∑
k=1

Jc̃k,ck(u, i).

The proof is complete. �

8.3 The Cycloid Transition Equations

Let S be a finite set. Consider the connected oriented graph G = (S,E)
and denote by C∗ the collection of all overlapping cycloids occurring in G
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(whose edge-set is identical to E). Then each maximal tree of G provides a
collection B of Betti edges in E. Denote by P(E) the power set of E.

Define the function μ: C∗ × P(E) → R as follows:

μ(c̃, A) =
∑

(i,j)∈A

Jc̃,c(i, j), if A ∈ P(E), A �= ∅, and c̃ ∈ C∗, (8.3.1)

= 0, otherwise.

Plainly, for each (i, j) ∈ E, the numbers μ(c̃, (i, j)), c̃ ∈ C∗, are the coordi-
nates of the algebraic cycloid c̃ in C1 defined as

c̃ =
∑

(i,j)∈E

Jc̃,c(i, j)b(i,j).

Furthermore, the function μ enjoys some interesting properties given by
the following.

Proposition 8.3.1. Consider G = (S,E) a connected oriented graph on a
finite set S, and the measurable space (E,P(E)).
Then the function μ: C∗ × P(E) → R defined by (8.3.1) enjoys the following
properties:

(i) For any c̃ ∈ C∗ the set function μ(c̃, ·): P(E) → R is a signed mea-
sure;

(ii) For any A ∈ P(E), the function μ(·, A) is P(C∗)-measurable;
(iii) For arbitrary c̃ ∈ C∗ and A ∈ P(E), the following equations hold

μ(c̃, A) =
∑

u∈B μ(c̃, {u})μ(c̃u, A), (8.3.2)

where B denotes a base of Betti edges of G, and for each u ∈ B, c̃u denotes
the unique elementary Betti cycloid associated with u by the maximal-tree-
method.

Proof. (i) We have μ(c̃,∅ ) = 0, c̃ ∈ C∗, and

μ(c̃,
∞⋃

n=1

An) =
∞∑

n=1

μ(c̃, An), c̃ ∈ C∗,

for all pairwise disjoint sequences {An}n of subsets of E. Hence μ(c̃, ·) is a
signed measure on P(E) for any c̃ ∈ C∗.

(ii) That μ(·, A) is P(C∗)-measurable is immediate.
(iii) Let B be the set of Betti edges associated with an arbitrarily chosen

maximal tree of G. Then by applying the cycloid decomposition formula
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(8.2.2) to Jc̃,c(i, j), we have

∑
u∈B μ(c̃, {u}) μ(c̃u, A) =

∑
u∈B

∑
(i,j)∈A

Jc̃,c(u)Jc̃u,cu(i, j)

=
∑

(i,j)∈A

Jc̃,c(i, j)

= μ(c̃, A).

The proof is complete. �

Remark. Conditions (i)–(iii) of Proposition (8.3.1) may be paralleled with
those defining a stochastic transition function from C∗ to P(E). The basic
differentiations appear in property (i) where the set function μ(c̃, ·) is a
signed measure instead of a probability on P(E), and in (iii), where equa-
tions (8.3.2) replace the known Chapman–Kolmogorov equations. How-
ever, equations (8.3.2) keep the essence of a transition as in the classical
Chapman–Kolmogorov equations: a transition from a point to a set presup-
poses a passage via an intermediate point. Specifically, in equations (8.3.2)
the role of the intermediate is played by a Betti cycloid c̃u, which is isomor-
phically identified with the Betti edge u. Consequently, Proposition (8.3.1)
allows us to introduce the following:

Definition 8.3.2. Given an oriented connected graph G = (S,E) on a fi-
nite set S and a collection C∗ of overlapping cycloids whose edge-set is E,
a cycloid transition function is any function π: C∗ × P(E) → R with the
properties:

(i) For any c̃ ∈ C∗, π(c̃, {(i, j)}) defines a balance function on S × S,
that is,

∑
j

π(c̃, {(i, j)}) =
∑
k

π(c̃, {(k, i)}), i ∈ S;

(ii) For any c̃ ∈ C∗, π(c̃, ·) is a signed measure on P(E);
(iii) For any c̃ ∈ C∗, A ∈ P(E) and for any collection B of Betti edges,

the following equation holds:

π(c̃, A) =
∑

u∈B π(c̃, {u})π(c̃u, A). (8.3.3)

Relations (8.3.3) are called the cycloid transition equations.

Plainly, they express a homologic rule characterizing the balanced func-
tions.
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A further interpretation of the cycloid decomposition formula (8.2.2)
may continue with the study of the cycloid transition equations (8.3.3) as
follows.

Consider π: C∗ × P(E) → R the cycloid transition function introduced
by (8.3.1) and assign with each c̃ ∈ C∗ the balanced function

w(i, j) = π(c̃, (i, j)), (i, j) ∈ E,
= 0, (i, j) ∈ S2\E.

Then equations (8.3.3) written for w become

w(i, j) =
∑

u∈B w(u)Jc̃u,cu(i, j), (i, j) ∈ S2, (8.3.4)

where B denotes the set of Betti edges of G associated with a maximal tree.
Consider further the measurable space (S2,P(S2)).

Denote by B the vector space of all bounded real-valued functions v on
S2 whose graphs are subgraphs of G. Then B is a Banach space with respect
to the norm of supremum.

Define the linear operator U : B → B as follows:

(Uv)(·, ·) =
∑

u∈B v(u) π(c̃u, {(·, ·)}).
Let now S be the space of all signed finite and aditive set-functions on the
power-set P(S2). A norm on S is given by the total variation norm.

Consider the linear operator V : S → S defined as follows:

(V λ)({u}) =
∑

(i,j)∈S2

λ({(i, j)}) π(c̃u, {(i, j)}), if u ∈ B,

= 0, otherwise.

Set

〈λ, v〉 =
∑

(i,j)∈S2

v(i, j)λ({(i, j)}),

for λ ∈ S, v ∈ B.
Let E(1) be the subspace of all eigenvectors v of U corresponding to the

eigenvalue 1, that is, Uv = v. Then we have the following theorem.

Theorem 8.3.3.
(i) The functions Jc̃1,c1 , . . . , Jc̃B ,cB , associated with the elementary

Betti cycloids c̃1, . . . , c̃B of the connected graph G, form a base for
the space E(1).

(ii) The space of all solutions to the cycloid formula (8.2.2) coincides
with E(1).

(iii) For any v ∈ B and for any λ ∈ S, we have

〈λ, Uv〉 = 〈V λ, v〉.
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Proof. (i) From Proposition 8.3.1, we have that the passage-functions
Jc̃1,c1 , . . . , Jc̃B ,cB belong to E(1). In addition, these functions are in-
dependent. Also, if v ∈ E(1), then v satisfies equation (8.3.4), that is,
Jc̃1,c1 , . . . , Jc̃B ,cB are generators for E(1).
(ii) This property is an immediate consequence of the definition of U.
(iii) For any λ ∈ S and any v ∈ B we have

〈λ, Uv〉 =
∑

(i,j)∈S2

λ({(i, j)})
∑

u∈B v(u)π(c̃u, {(i, j)})

=
∑

u∈B v(u)(V λ)({u}),

and

〈V λ, v〉 =
∑

(i,j)∈S2

v(i, j) (V λ)({(i, j)})

=
∑

u∈B v(u) (V λ)({u}).

The proof is complete. �

8.4 Definition of Markov Chains by Cycloids

Let S be a finite set and let G = (S,E) be an oriented strongly connected
graph. Let B be the Betti number of G, and consider a base of elementary
Betti algebraic cycloids C∗ = {c̃1, . . . , c̃B}, which correspond to a maximal
tree in G and to a set of Betti edges (i1, j1), . . . , (iB , jB). Consider also
B strictly positive numbers w1, . . . , wB such that the following relations
hold

w(i, j) ≡
B∑

k=1

wkJc̃k,ck(i, j) > 0, (i, j) ∈ E, (8.4.1)

w(i) ≡
∑
j∈S

w(i, j) =
∑
m∈S

w(m, i) > 0, i ∈ S, (8.4.2)

where Jc̃k,ck(·, ·), k = 1, . . . , B, denote the passage-functions of the Betti
cycloids c̃1, . . . , c̃B .

If we denote

Jc̃k,ck(i) ≡
∑
j∈S

Jc̃k,ck(i, j) =
∑
m∈S

Jc̃k,ck(m, i), i ∈ S,

then

w(i) =
B∑

k=1

wkJc̃k,ck(i), i ∈ S.
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Define

pij =
∑B

k=1 wkJc̃k,ck(i, j)∑B
k=1 wkJc̃k,ck(i)

, if (i, j) ∈ E,

(8.4.3)
= 0, if (i, j) ∈ S2\E.

Then P = (pij , i, j ∈ S) is the stochastic matrix of an irreducible Markov
chain on S whose invariant probability distribution p = (pi, i ∈ S) has the
entries

pi =
w(i)∑

i∈S

w(i)
, i ∈ S.

Conversely, given a homogeneous irreducible Markov chain ξ on a finite
set S, the cycloid decomposition formula applied to the balance function
w(i, j) = Prob(ξn = i, ξn+1 = j), i, j ∈ S, n = 1, 2, . . . , provides a unique
collection {{c̃k}, {wk}} of cycloids and positive numbers, so that, except
for a choice of the maximal tree the correspondence ξ → {{c̃k}, {wk}} is
one-to-one.
Then we may summarize the above results in the following statement.

Theorem 8.4.1.
(i) Let S be any finite set and let G = (S,E) be an oriented strongly

connected graph on S. Then for any choice of the Betti base
C∗ = {c̃1, . . . , c̃B} of elementary cycloids and for any collection
{w1, . . . , wB} of strictly positive numbers such that relations (8.4.1)
and (8.4.2) hold, there exists a unique irreducible S-state Markov
chain ξ whose transition probability matrix P = (pij , i, j ∈ S) is de-
fined as

pij =
∑B

k=1 wkJc̃k,ck(i, j)∑B
k=1 wkJc̃k,ck(i)

, if (i, j) ∈ E.

(ii) Given a finite set S and an irreducible homogeneous S-state Markov
chain ξ = (ξn), for any choice of the maximal tree in the graph of
ξ there exists a unique minimal collection of elementary cycloids
{c̃1, . . . , c̃B} and strictly positive numbers {w1, . . . , wB} such that
we have the following cycloid decomposition:

Prob(ξn = i, ξn+1 = j) =
B∑

k=1

wkJc̃k,ck(i, j), i, j ∈ S.
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w(3,1)=1/7

w(2,1)=1/7

w(2,3)=1/7
w(1,2)=2/7w(1,1)=2/7

3

2
c1
~ c3

~

c2
~

1

Figure 8.4.1.

Example. We now apply the cycloid representation formula of Theorem
(8.4.1) to the stochastic matrix

P =

⎛
⎜⎝

1/2 1/2 0
1/2 0 1/2
1 0 0

⎞
⎟⎠ ,

whose invariant distribution is the row-vector π = (4/7, 2/7, 1/7). The
graph of P is given in Figure 8.4.1 below.
Consider the vector w =

∑
w(i, j)b(i,j), with w(i, j) = πipij , i, j ∈ {1, 2, 3}.

The set of edges of the graph is {(1, 1), (3, 1), (2, 1)(1, 2), (2, 3)}.

Consider the maximal tree T = {(2, 1), (2, 3)} associated with the Betti
edges B = {(1, 1), (3, 1), (1, 2)}. Accordingly, the base of Betti algebraic cy-
cloids is as follows:

c̃1 = 1 · b(1,1), c̃2 = 1 · b(3,1) + (−1) · b(2,1) + 1 · b(2,3),
c̃3 = 1 · b(2,1) + 1 · b(1,2),

and they correspond to the graph-cycloids c̃1 = ((1, 1)), c̃2 = ((3, 1),
(2, 1), (2, 3)), and c̃3 = ((2, 1), (1, 2)) associated with the directed circuits
c1 = (1, 1), c2 = (3, 1, 2, 3), and c3 = (2, 1, 2).

Then according to Theorem 8.4.1 (ii), the cycloid decomposition of P
corresponding to the maximal tree T is as follows:

πipij =
2
7
Jc̃1,c1(i, j) +

1
7
Jc̃2,c2(i, j) +

2
7
Jc̃3,c3(i, j), i, j ∈ {1, 2, 3}.



9

Markov Processes on Banach Spaces
on Cycles

The problem of defining denumerable Markov chains by a countable infinity
of weighted directed cycles is solved by using suitable Banach spaces lp on
cycles and edges. Furthermore, it is showed that the transition probabilities
of such chains may be described by Fourier series on orthonormal collections
of homologic ingredients.

9.1 Banach Spaces on Cycles

9.1.1 Euclidean spaces associated with infinite graphs

Now we shall consider an irreducible and positive-recurrent Markov chain
ξ = (ξn)n, whose state space S is a denumerable set. The corresponding
graph G is usually required to satisfy the local finiteness condition, that is,
for each i ∈ S there are finitely many j ∈ S such that pij > 0 or pji > 0.
We now explain that the local finiteness condition is necessary for the
existence of topologies of Euclidean spaces comparable with the topology
of l2(R) (according to Hilton and Wylie (1967) p.45).

Let G = (N, E) be an infinite directed graph where N = {nu} are the
vertices (nodes) of G and E = {enunk

} are the oriented edges of G. To fix
the ideas, we shall consider that N and E are denumerable sets.
The graph G may be viewed as an infinite abstract simplicial complex,
noted also by G, where

(i) the vertices nu of G are called 0-simplexes,
(ii) the oriented edges enunk

of G (which are completely determined by
the ordered pairs (nu, nk) of vertices) are called 1-simplexes.
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Accordingly, the graph G is an oriented complex of dimension 1. To the
1-dimensional complex G we may attach a topological space, symbolized
by (|G| ,�) and called the polyhedron of G, as follows. First, to define the
space-elements of the set |G|, and then the topology �, we introduce an
ordering on the set N. This is equivalent, by a homeomorphic translation
in Euclidean spaces, with a choice of a system of orthogonal axes. Since N
is denumerable, we may use the index set I = {0, 1, . . .}, which particularly
is totally ordered. Accordingly, N = {n0, n1, . . .} becomes a totally ordered
set with respect to the ordering-relation “ ¡ ”defined as

ni < nj if and only if i < j.

With this preparation we give now the definition of the polyhedron (|G| ,�)
as follows. To define the set |G|, we first consider a family Wof weight-
functions on the vertices and edges of G in the following way:

W = {0w : {0 − simplexes} → {1} : 0w(ni) ≡ 1, for anyni ∈ N} ∪
{1w : {1 − simplexes = (nik , nim)} → [0, 1] × [0, 1] : 1w(nik , nim)

= (1w1(nik), 1w2(nim)),where
(i) 1w1(nik), 1w2(nim) vary in [0, 1],
(ii) 1w1(nik) + 1w2(nim) = 1}.

Or, better we may consider the family W defined as

W = {wi, i ∈ N : wi : N → [0, 1], wi(nj) ≡ 1, if j = i; or 0, if j �= i} ∪
{wij , (ni, nj) ∈ E : wij : N → [0, 1], wij(nk) > 0 if k = i, j;
wij(nk) = 0, if k �= i, j; and wij(ni) + wij(nj) = 1}.

Then the family W involves a weighting procedure according to which we
attach to each vertex ni of G one nonnegative real weight w̃i such that

(i) if (ni) is a 0-simplex of G, w̃i may be chosen to be equal to wi(ni) = 1;
(ii) if ni is a vertex of an 1-simplex (ni, nj), then w̃i may be chosen,

along with w̃j , to be the nonnegative real number given by wij , that
is, w̃i ≡ wij(ni) > 0, w̃j ≡ wij(nj) > 0, and w̃i + w̃j = 1}.

In this way, the images of the weight-functions of W provide a collection
of sequences which have either the form

(α) (1, 0, 0, . . .), (0, 1, 0, . . .), . . . for the case (i) above,
or, the form
(β) (0, . . . , 0, w̃i, 0, . . . , w̃j , 0, . . .), for the case (ii) above if i < j, with

w̃i, w̃j > 0, and with w̃i + w̃j = 1, where (ni, nj) varies in the set E
of oriented edges of G.

Then the set |G| is that whose elements are all the sequences of the form
(α) and (β).
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An equivalent way to describe the set |G| is as follows: associate the
0-simplex n1 to the sequence (1, 0, . . .), the 0-simplex n2 to the sequence
(0, 1, 0, . . .), and so on.

Furthermore, to each 1-simplex (ni, nj), i < j, associate the subsets bij
and bij of |G| defined as

bij = {(0, . . . , 0, w̃i, 0, . . . , w̃j , 0, . . .) : w̃i, w̃j ≥ 0, w̃i + w̃j = 1},
bij = {(0, . . . , 0, w̃i, 0, . . . , w̃j , 0, . . .) : w̃i, w̃j > 0,with w̃i + w̃j = 1}.

Then

|G| = {(1, 0, 0, . . .), (0, 1, 0, . . .), . . . } ∪ (∪(ni,nj) bij)
= {(1, 0, 0, . . .), (0, 1, 0, . . .), . . . } ∪ (∪(ni,nj) bij).

Now let us see how to define the topology � of |G|. Consider the pro-
jection pri associated to the 0-simplex ni and which associates the se-
quence (0, 0, . . . , 1, 0, . . .) (where 1 has the rank i in the sequence) with
the number 1. Analogously we may consider the projection prij : bij →
R2 for any edge (ni, nj) of G, that is, prij associates any sequence
(0, 0, . . . , 0, w̃i, 0, . . . , w̃j , 0, . . .) ∈ bij with the ordered pair (wi, wj).

Next, for any edge (ni, nj) ∈ G we topologize the subset bij by requiring
that prij be a homeomorphism in R2. Then, we topologize |G| by specifying
its closed sets: A ⊆ |G| is closed if and only if A ∩ bij is closed in bij for
every 1-simplex (ni, nj) of G.

The topology � of |G| may be in some cases (involving conditions on the
configuration of the graph G) compatible with the topology of Euclidean
spaces defined by the metric ρ((xi), (yi)) =

√∑
(xi − yi)2. Such a case is

given by the graphs which are locally finite (i.e., each vertex belongs only
to finitely many edges) and contain denumerable sets of vertices and edges.

Let G = (N, E) be such a graph. Then G can be realized in l2(R) =
{(xn)n: xn ∈ R,

∑
n

(xn)2 < ∞ } by the inclusion (see Hilton and Wylie

(1967), p.45).

9.1.2 Banach spaces on cycles

Let N = {n1, n2, . . . } and let C = {c1, c2, . . . } be a sequence of overlapping
directed circuits or cycles in N as those corresponding to an irreducible
and positive-recurrent Markov chain. Then the Vertex-set C and Arc-set
C will symbolize the sets of all vertices and edges of C, respectively.
Throughout the paragraph we shall assume the collection C of directed
circuits in N such that Vertex-set C = N, and we shall consider arbitrary
orderings on N and Arc-set C. For instance, without any loss of generality,
we shall assume that the first p(c1) points and pairs of N and Arc-set
C will belong to the circuit c1, the next p(c2) to c2, and so on. Also we
shall assume that any circuit c = (i1, i2, . . . , is, i1) of C has all points
i1, i2, . . . , is distinct each from the other.
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Now let G = (N, E) be the oriented graph associated with C, that is,
N =Vertex-set C and E = Arc-set C, and assume that G is locally finite.
With every pair (i, j) ∈ E we associate the symbol b(i,j). Then, since
a directed circuit c = (i1, i2, . . . , is, i1), s ≥ 1, is completely defined by
the sequence (i1, i2), (i2, i3), . . . , (is, i1) of directed edges, we may further
associate c with the sequence of symbols b(i1,i2), b(i2,i3), . . . , b(is,i1). An
equivalent version is to associate any circuit c of C with the formal
expression c = b(i1,i2) + b(i2,i3) + · · · + b(is,i1) = Σ(i,j)Jc(i, j) b(i,j), where
Jc(i, j) is the passage-function which equals 1 or 0 according to whether
or not (i, j) is an adge of c.
Then the sets B = {b(i,j), (i, j) ∈ E} = {b1, b2, . . . } and C = {c1, c2, . . . }
will be ordered according to the chosen orderings on E and C, respectively.

With these preparations we shall now define certain Banach spaces by
using the sets C, N = Vertex-set C and E = Arc-set C. In this direction
we first introduce the vector spaces generated by N = {n1, n2, . . . },B =
{b1, b2, . . . } and C = {c1, c2, . . . }, respectively. Let

N = {n =
s∑

k=1

xknk : s ∈ N,nk ∈ N, xk ∈ R},

E = {b =
r∑

k=1

akbk : r ∈ N, ak ∈ R, bk ∈ B},

C = {c =
m∑

k=1

wkck : m ∈ N,wk ∈ R, ck ∈ C},

where n, b and c are formal expressions on N, B and C, and N and R
denote as usual the sets of natural and real numbers, respectively.
Then the sets N , E , and C may be organized as real vector spaces with
respect to the operations + and scalar-multiplicity defined as follows. For
the formal expressions of N , we define

s∑
k=1

xknk +
r∑

k=1

xk
′ nk =

∑
k

(xk + xk
′)nk,

λ
s∑

k=1

xknk =
s∑

k=1

(λxk)nk, λ ∈ R.

Then N will become, except for an equivalence relation, a real vector space,
which is isomorph with

σ(N) = {(x1, x2, . . . , xs, 0, 0, . . .) : s ∈ N, xk ∈ R, k = 1, . . . , s}.
Analogously, the set E becomes, except for an equivalence relation, a real
vector space whose base is B, if we shall not adhere to the notational
convention: b(j,i) = −b(i,j), (i, j) ∈ E.
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Then E is isomorph with

σ(E) = {(w(i1, j1), . . . , w(in, jn), 0, 0, . . .) :
n ∈ N,w(ik, jk) ∈ R, (ik, jk) ∈ E, k = 1, . . . , n}.

Here the index k of (ik, jk), k = 1, . . . , n, means the k-th rank according to
the ordering of E, that is, b(ik,jk) = bk , k = 1, 2, . . . .

As concerns the set C we define analogously the vector space opera-
tions and note that some vectors ck ∈ C may perhaps be linear expressions
of other vectors of C. To avoid this, we shall assume that C contains only
directed circuits ck whose generated vectors ck in C ⊂ C are linear indepen-
dent. This assumption may be always achieved by applying Zorn’s lemma
to any countable collection C, which perhaps contains linear dependent
vectors. Then C may be correspondingly organized (except for an equiv-
alence relation) as a real vector space whose base is C. Furthermore C is
isomorph with

σ(C) = {(wc1 , . . . , wcm , 0, 0, . . .) : m ∈ N,wck ∈ R, ck ∈ C, k = 1, . . . ,m}.
Since C is a vector subspace of E , it is isomorph with the following subspace
of σ(E) :

C(E)= {(
m∑

k=1

wck Jck(i1,j1), . . . ,
m∑

k=1

wck Jck(in, jn), 0, 0, . . .):m∈N,wck ∈R,

ck ∈ C, k = 1, . . . ,m; (iu, ju) ∈ Arcset{c1, . . . , cm}, u = 1, . . . , n}.
We proceed by introducing certain norms on the vector spaces N , E , and

C. For instance, we define the functions |·|k : E → R, k = 1, 2, as follows:

|
r∑

k=1

ak bk|1 =
r∑

k=1

|ak|,

|
r∑

k=1

ak bk|2 =

(
r∑

k=1

ak
2

)1/2

. (9.1.1)

Analogously, we define the functions ‖·‖k : C → R, k = 1, 2, as follows:

‖
m∑

k=1

wk ck‖1 =
m∑

k=1

|wk|,

‖
m∑

k=1

wk ck‖2 =

(
m∑

k=1

wk
2

)1/2

. (9.1.2)

In an analogous way we may define similar norms on N . Then N , E , and
C will become normed spaces with respect to the above norms, and con-
sequently we may compare them with the following classic Banach spaces
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associated with the original collection C of circuits:

l1(N2) = {w = (w(i, j), (i, j) ∈ N2) : w(i, j) ∈ R,Σ(i,j)|w(i, j)| < ∞},
l2(N2) = {w = (w(i, j), (i, j) ∈ N2) : w(i, j) ∈ R,Σ(i,j)(w(i, j))2 < ∞},
l1(C) = {(wc, c ∈ C) : wc ∈ R,Σc|wc| < ∞},
l2(C) = {(wc, c ∈ C) : wc ∈ R,Σc(wc)2 < ∞},

where the corresponding norms for the spaces l1(N2) and l2(N2) are re-
spectively given by:

/w/1 = Σ(i,j)|w(i, j)|,
/w/2 = (Σ(i,j)(w(i, j))2)1/2,

and for the spaces l1(C) and l2(C), by

//(wc)c//1 = Σc|wc|,
//(wc)c//2 = (Σc(wc)2)1/2.

Consequently, the normed vector spaces (E , | |k), k = 1, 2, are isomorph
with (σ(E), //k) (viewed included in (lk(N2), //k)), k = 1, 2.
Analogously, the normed vector spaces (C, ‖ ‖k), k = 1, 2, are isomorph
with (σ(C), // //k), k = 1, 2. Similar reasonings may be repeated for the
space N as well.

All previous normed vector spaces are incomplete with respect to the
corresponding topologies induced by the norms above. Then we may fur-
ther consider the corresponding topological closures of (C(E), //k) and
(C, ‖ ‖k), k = 1, 2, which, except for an isomorphism, provide Banach sub-
spaces in lk(N2), k = 1, 2, and the Banach spaces lk(C), k = 1, 2, respec-
tively.

Let us now consider c =
∑m

k=1 wckck ∈ C. Then, the isomorph of c in
σ(C) will be denoted by c′, and in C(E) by c′′. Throughout the paragraph
we shall adhere to this notation for any vector of cl C , where cl symbolizes
the topological closure of C with respect to ‖‖k, k = 1, 2.
Correspondingly we have

//c′//1 =
m∑

k=1

|wck |,

//c′//2 =
( m∑

k=1

(wck)2
)1/2

,

/c′′/1 = Σ(i,j)

∣∣∣∣∣
m∑

k=1

wckJck(i, j)

∣∣∣∣∣
/c′′/2 =

(
Σ(i,j)

( m∑
k=1

wckJck(i, j)
)2)1/2

.
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Consider the vector spaces E and C. Define the function < · , · >: E × E → R
as follows :

<

r∑
k=1

akbk,

m∑
k=1

a′k bk >=
min(r,m)∑

k=1

aka
′
k.

Then (E , < · , · >) is an inner product space. Analogously, define the inner
product space (C, < · , · >′). Then the corresponding norms induced by the
inner products < · , · > and < · , · >′ are given by the relations (9.1.1) and
(9.1.2).

Since E and C are incomplete metric spaces, we may further consider
their completions H(E) and H(C) along with the corresponding exten-
sions of < · , · > and < · , · >′ . Also, since the sets B = {b1, b2, . . . } and
C = {c1, c2, . . . } are orthonormal bases of H(E) and H(C), we may con-
sequently write any x ∈ H(E) and any y ∈ H(C) as the following Fourier
series

x =
∞∑
k=1

akbk,

y =
∞∑
k=1

αkck,

where ak =< x, bk > and αk=<y, ck >′, k = 1, 2, · · ·, are the corresponding
Fourier coefficients.
Furthermore, according to the Riesz-Fischer representation theorem, we
may write

H(E) =

{
x =

∞∑
k=1

akbk : ak ∈ R,

∞∑
k=1

(ak)2 < ∞
}
,

and

H(C) =

{
y =

∞∑
k=1

αckck : αck ∈ R,

∞∑
k=1

(αck)2 < ∞
}
.

Since B and C are denumerable orthonormal bases, the Hilbert spaces
H(E) and H(C) are, respectively, isomorph (as normed vector spaces) with
l2(E) and l2(C).
Finally, a Hilbert space H(N ) may also be defined, by developing a similar
approach to the vector space N .
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9.2 Fourier Series on Directed Cycles

One problem to be solved in this section has the following abstract formu-
lation:

Find the class of all sequences w = (w(i, j) ∈ R, (i, j) ∈ N2), N =
{1, 2, . . .}, which satisfy the following conditions:

(i) There is a countable collection (C,wck) of directed cycles in N
and real numbers wck such that the Vertex set C = N and

w(i, j) =
∞∑
k=1

wckJck(i, j), (i, j) ∈ ArsetC, (9.2.1)

= 0, otherwise,

where the series occurring in (9.2.1) is absolutely convergent for
any (i, j), and all involved sets as N2, C, etc., are endowed with
certain orderings.

(ii) There is p ≥ 1 such that w ∈ lp(N2).

If sequence w = (w(i, j), (i, j) ∈ N2) verifies the above conditions (i) and
(ii), then we shall say that w satisfies the cycle formula for p and (C,wc).
In this case, collection (C,wc) is called a cycle representation for w.
Throughout this paragraph we shall consider a collection C = {c1, c2, . . .} of
independent homologic cycles associated with a collection C = {c1, c2, . . .}
of overlapping directed circuits with Vertex set C = N . Also, we shall as-
sume (without any loss of generality) that the corresponding graph-sets
associated with C are symbolized and ordered as mentioned in the previ-
ous section.
The spaces to be considered here are the Banach spaces lk(C) and cl C(E)
(in lk(N2)), k = 1, 2, where C will be identified by an isomorphism of vector
spaces either with σ(C) or with C(E).

We shall now answer the question of whether or not the Fourier series∑∞
k=1 wck ck may define a sequence (w(i, j), (i, j) ∈ N2) which satisfies the

cycle formula following Kalpazidou and Kassimatis (1998). Namely, we have

Theorem 9.2.1. Let the Fourier series
∞∑
k=1

wckck ∈ H(C),

where wck , k = 1, 2, . . ., are positive numbers.
Then the following statements are pairwise equivalent:

(i) Except for an isomorphism of vector spaces, the sequence
{∑n

k=1 wck ck}n converges coordinate-wise, as n → ∞, to a sequence
w = (w(i, j), (i, j) ∈ N2), which satisfies the cycle formula for p = 1
and with respect to (C,wc). Furthermore, /w/1 =

∑∞
k=1 p(ck)wck ;
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(ii)
∑∞

k=1 p(ck)wck < ∞;

(iii) Except for an isomorphism of vector spaces, the sequence
{∑n

k=1 wck ck}n converges in l1(N2), as n → ∞.

Proof. First we shall prove that (i) implies (ii). Let wm =∑m
k=1 wckc k,m = 1, 2, . . . , with wck > 0, k,= 1, . . . ,m. Then the isomorph

wm
′′ of wm in C(E) is given by

wm
′′ =

(
m∑

k=1

wckJck(i1, j1), . . . ,
m∑

k=1

wck Jck(in, jn), 0, 0, . . .

)
;m = 1, 2, . . . ,

where (i1, j1), . . . , (in, jn), are the first n edges of Arc-set {c1, . . . , cm} in-
dexed according to the ordering of Arcs-set C ≡ E. If (i) holds, then for
any (i, j) ∈ N2 there exists a positive number w(i, j) defined as follows:

w(i, j) = lim
m→∞

m∑
k=1

wckJck (i, j), if (i, j) ∈ E,

= 0, otherwise.

Denote w = (w(i, j), (i, j) ∈ N2). Then

∞∑
k=1

p(ck)wck =
∞∑
k=1

∑
(i,j)

wckJck(i, j) =
∑
(i,j)

|w(i, j)| < ∞.

The proof of (ii) is complete.
Let us now prove the converse implication. Accordingly, assume that

relation (ii) holds. Then, for any (i, j) ∈ E the limit

lim
m→∞

m∑
k=1

wck Jck(i, j)

exists, since
∞∑
k=1

p(ck)wck =
∑
(i,j)

∞∑
k=1

wckJck(i, j) < ∞.

Define w = (w(i, j), (i, j) ∈ N2) with

w(i, j) =
∞∑
k=1

wckJck(i, j), if (i, j) ∈ E,

= 0, otherwise.

Then w satisfies the cycle formula for p = 1 and with respect to (C,wc).
Furthermore, we note that w is the coordinate-wise limit of {∑m

k=1 wckck}m
viewed isomorphically in C(E). The proof of (i) is complete.
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Let us now prove that (ii) implies (iii). From the relation (ii) we obtain
that

∞∑
k=1

wck Jck(i, j) < ∞,

for any (i, j) ∈ E. Then we may accordingly define the following sequence
w = (w(i, j), (i, j) ∈ N2) in l1(N2):

w(i, j) =
∞∑
k=1

wckJck(i, j), if (i, j) ∈ E,

= 0, otherwise.

Consider w n
′′ = (wn

′′(i, j), (i, j) ∈ N2) with

wn
′′(i, j) =

n∑
k=1

wckJck(i, j).

Then w n
′′ ∈ C(E) and

/w − w n
′′/1 =

=
∑

(i,j)∈E

|
∞∑
k=1

wckJck (i, j) −
n∑

k=1

wckJck (i, j)|

=
∑

(i,j)∈E

( ∞∑
k=n+1

wckJck(i, j)

)
=

∞∑
k=n+1

p(ck)wck < ∞.

Furthermore

lim
n→∞ /w − w n

′′/1 = lim
n→∞

∞∑
k=n+1

p(ck)wck = 0.

Therefore, the sequence of w n
′′, n = 1, 2, . . ., which are the isomorphs of

w n =
∑n

k=1 wckc k in C(E), converges in l1(N2) to w = (w(i, j), (i, j) ∈
N2), as n → ∞. The proof of (iii) is complete.

Now we shall prove the converse, that is, from (iii) we shall obtain relation
(ii). Let w = (w(i, j), (i, j) ∈ N2) be the

lim
n→∞

n∑
k=1

wckck in l1(N2),

where wn =
∑n

k=1 wckck is isomorphically viewed in C(E).
Since for every n ≥ 1 and any (i, j) ∈ N2\E we have

∑n
k=1 wckJck (i, j) =

0, then w(i, j) = 0 outside E. Therefore

w(i, j) =
∞∑
k=1

wckJck (i, j),

for any (i, j) ∈ E and /w/1 =
∞∑
k=1

p(ck)wck < ∞.
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Furthermore, from convergence

lim
n→∞ /w − wn

′′/1 = 0,

where w n
′′ is the isomorph of w n in C(E), we may write

/w − wn
′′/1 =

∑
(i,j)∈E

|w(i, j) −
n∑

k=1

wckJck(i, j)|

=
∑

(i,j)∈E

( ∞∑
k=n+1

wckJck(i, j)

)
=

∞∑
k=n+1

p(ck)wck

and

lim
n→∞

∞∑
k=n+1

p(ck)wck = 0.

The proof of Theorem is complete. �

Now we shall investigate the relations between the Hilbert spaces H(N ),
H(E), H(C), and the sequences that satisfy the cycle formula. We have:

Theorem 9.2.2. Let Fourier series
∞∑
k=1

wckck ∈ H(C),

with wck > 0, k = 1, 2, . . .
Then the following statements are pairwise equivalent:

(i) Except for an isomorphism of vector spaces, the sequence
{∑n

k=1 wckck}n converges coordinate-wise, as n → ∞, to a sequence
w = (w(i, j), (i, j) ∈ N2), which satisfies the cycle formula for p = 2
and with respect to (C,wc);

(ii)
∞∑
k=1

(wck)2p(ck) + 2
∞∑

k,s=1;k �=s

wckwcscard{(i,j) :Jck(i,j)Jcs(i,j)=1}<∞
where Jck (i,j) is the passage-function associated with
ck, k = 1, 2, . . .;

(iii) Except for an isomorphism of vector spaces, the sequence
{∑n

k=1 wckck}n converges in H(E) to
∑

(i,j)(
∑∞

k=1 wckJck (i, j))
b(i,j), as n → ∞.

Proof. Let us assume that (i) holds. We shall now prove that relation (ii) is
valid. Let wm = {∑m

k=1 wckc k}, m = 1, 2, . . . Then wm ∈ C and sequence
{wm}m converges in H(C) to

∑∞
k=1 wckc k. Consider the isomorph wm

′′ of
wm in C(E). Then

wm
′′ =

(
m∑

k=1

wckJck(i1, j1), . . . ,
m∑

k=1

wckJck(in, jn), 0, 0, . . .

)
,m = 1, 2, . . . ,



156 9. Markov Processes on Banach Spaces on Cycles

where (i1, j1), . . . , (in, jn) are the first n edges of Arcset{c1, . . . , cm} accord-
ing to the ordering of E. Since (i) holds, for any (i, j) ∈ N2 there exists a
positive number w(i, j) given by

w(i, j) =
∞∑
k=1

wckJck(i, j), if (i, j) ∈ E,

= 0, otherwise,

and sequence w = (w(i, j), (i, j) ∈ N2) belongs to l2(N2).
On the other hand, we have

∑
(i,j)

w2(i, j) =
∑
(i,j)

( ∞∑
k=1

wckJck(i, j)

)2

=
∑
(i,j)

⎛
⎝ ∞∑

k=1

(wck)2Jck(i, j) + 2
∞∑

k,s=1;k �=s

wckwcsJck(i, j)Jcs(i, j)

⎞
⎠

=
∞∑
k=1

(wck)2p(ck) + 2
∞∑

k,s=1;k �=s

wckwcs card{(i, j) : Jck(i, j)Jcs(i, j) = 1}.

The relation (ii) holds.
Let us now prove the converse: assuming (ii), we shall prove that (i)

holds. First, we have

∑
(i,j)

( ∞∑
k=1

wckJck(i, j)

)2

< ∞.

Define the sequence w = (w(i, j), (i, j) ∈ N2) as follows:

w(i, j) =
∞∑
k=1

wckJck(i, j), if (i, j) ∈ E,

= 0, otherwise.

Then sequence w satisfies the cycle formula for p = 2 and with respect to
(C,wc). Furthemore w is the coordinate-wise-limit of the sequence {wm

′′}
of isomorphs of wm =

∑m
k=1 wckc k in C(E), given by

w′′
m =

(
m∑

k=1

wckJck(i1, j1), . . . ,
m∑

k=1

wckJck(in, jn), 0, 0, . . .

)
,m = 1, 2, . . . ,

where (i1, j1), . . . , (in, jn) are the edges of c1, . . . , cm. The proof of (i) is
complete.
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Let us now prove (iii) from (ii). In this direction, we define by using (ii)
the sequence w = (w(i, j), (i, j) ∈ N2) in l2(N2) with

w(i, j) =
∞∑
k=1

wckJck(i, j), if (i, j) ∈ ArcsetC,

= 0, otherwise.

Furthermore, the sequence

wm
′′ =

(
m∑

k=1

wckJck(i1, j1), . . . ,
m∑

k=1

wckJck(in, jn), 0, 0, . . .

)
,m = 1, 2, . . . ,

where (i1, j1), . . . , (in, jn) are the edges of c1, . . . , cm, converges coordinate-
wise to w. Now we prove that we have more: namely, sequence {wm

′′}m
converges in l2(N2) to w, as m → ∞. In this direction, we first write

/w − wm
′′/2 =

⎡
⎣ ∑

(i,j)∈E

(w(i, j) −
m∑

k=1

wckJck(i, j))2

⎤
⎦

1/2

=

⎡
⎣ ∑

(i,j)∈E

( ∞∑
k=m+1

wckJck(i, j)

)2
⎤
⎦

1/2

=

[ ∞∑
k=m+1

(wck)2p(ck)+2

×
∞∑

k,s=m+1;k �=s

wckwcscard{(i,j) :Jck(i,j)Jcs(i,j)=1}
⎤
⎦

1/2

.

Since (ii) holds, both last series occurring in the expression of /w −
wm

′′/2 converge to zero, as m → ∞. Finally, the isomorphs of wm
′′

and w in H(E) are, respectively,
∑

(i,j) (
∑m

k=1 wckJck(i, j)) b(i,j) and∑
(i,j) (

∑∞
k=1 wckJck(i, j)) b(i,j).

The proof of (iii) is complete.
To prove the converse, assume that the sequence of isomorphs of∑m
k=1 wckck,m = 1, 2, . . . , in l2(N2) converge to w = (w(i, j), (i, j) ∈ N2),

as m → ∞, where w(i, j) =
∑∞

k=1 wckJck(i, j), for any (i, j) ∈ N2. Then,
since series occurring in (ii) is related to the norm /w/2, relation (ii) holds.
The proof of theorem is complete. �

9.3 Orthogonal Cycle Transforms for Finite
Stochastic Matrices

Let S = {1, 2, . . . , n}, n > 1, and let P = (pij , i, j = 1, 2, . . . , n) be an irre-
ducible stochastic matrix whose probability row-distribution is π = (πi, i =
1, . . . , n). Let G = G(P ) = (S,E) be the oriented graph attached to P,
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where E = {b1, . . . , bτ} denotes the set of directed edges endowed with an
ordering. The orientation of G means that each edge bk is an ordered pair
(i, j) of points of S such that pij > 0, where i is the initial point and j is
the endpoint. Sometimes we shall prefer the symbol b(i,j) for bk when we
need to point out the terminal points.

As we have already mentioned in section 4.2.1, irreducibility of P means
that the graph G is strongly connected, that is, for any pair (i, j) of states
there exists a sequence b(i,i1), b(i1,i2), . . . , b(is,j) of edges of G connecting i
to j. When i = j then such a sequence is called a directed circuit of G.
Throughout this chapter, we shall consider directed circuits c =
(i, i1, i2, . . . , is, i) where the points i, i1, i2, . . . , is are all distinct.

Let C denote the collection of all directed circuits of G. Then according
to Theorem 4.1.1 the matrix P is decomposed by the circuits c ∈ C as
follows:

πipij =
∑
c∈C

wcJc(i, j), (9.3.1)

where each wc is uniquely defined by a probabilistic algorithm and Jc is
the passage-matrix of c introduced in the previous section. Furthermore,
equations (9.3.1) are independent of the ordering of C.

Now we shall look for a suitable Hilbert space where the cycle decompo-
sition (9.3.1) is equivalent with a Fourier-type decomposition for P. In this
direction we shall consider as in section 4.4 two-vector spaces C0 and C1

generated by the collections S and E, respectively. Then any two elements
c0 ∈ C0 and c1 ∈ C1 have the following expressions:

c0 =
n∑

h=1

xhnh = x′n, xh ∈ R, nh ∈ S,

c1 =
τ∑

k=1

ykbk = y′b, yk ∈ R, bk ∈ E,

where R denotes the set of reals. The elements of C0 and C1 are, re-
spectively, called the zero-chains and the one-chains associated with the
graph G.

Let δ : C1 → C0 be the boundary linear transformation defined as

δc1 = y′η n,

where

ηbjns
= +1, if ns is the endpoint of the edge bj ;

−1, if ns is the initial point of the edge bj ;
0, otherwise.

Let

C̃1 ≡ Ker δ = {z ∈ C1 : z′η = 0},
where 0 is the neutral element of C1.
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Then C̃1 is a linear subspace of C1 whose elements are called one-cycles.
One subset of C̃1 is given by all the elements c = bi1 + · · · + bik ∈ C1 whose
edges bi1 , . . . , bik form a directed circuit c in the graph G. In general, the
circuits occurring in the decomposition (9.3.1) of P determine linearly
dependent one-cycles in C̃1. In Lemma 4.4.1, it is proved that there are B
one-cycles γ

1
, . . . , γ

B
, which form a base for the linear subspace C̃1, where

B is the Betti number of G. When γ
1
, . . . , γ

B
, are induced by genuine

directed circuits γ1, . . . ,γB of the graph G, then we call γ1, . . . ,γB the
Betti circuits of G.

With these preparations, we now prove

Lemma 9.3.1. The vector space C̃1 = Ker δ of one-cycles is a Hilbert
space whose dimension is the Betti number of the graph.

Proof. Let Γ = {γ
1
, . . . , γ

B
} be the set of Betti one-cycles of G, endowed

with an ordering. Then

C̃1 =

{
B∑

k=1

akγk
, ak ∈ R

}
.

Consider the inner product < ,>: C̃1 × C̃1 → R as follows:

<

B∑
k=1

akγk
,

B∑
k=1

bkγk
>=

B∑
k=1

akbk.

Then C̃1 is metrizable with respect to the metric

d

(
B∑

k=1

akγk
,

B∑
k=1

bkγk

)
=

√√√√ B∑
k=1

(ak − bk)2.

Therefore (C̃1, <,>) is an inner product space where Γ is an orthonor-
mal base. Accordingly, to any one-cycle z =

∑B
k=1 akγk

there correspond
the Fourier coefficients ak =<z, γ

k
>,k = 1, . . . ,B, with respect to the or-

thonormal base Γ.
Define the mapping f : C̃1 → RB as follows:

f

(
B∑

k=1

akγk

)
= (a1, . . . , aB).

Then f preserves inner-product-space structures, that is, f is a linear bi-
jection which preserves inner products. In particular, f is an isometry.
Then (C̃1, <,>) is a Hilbert space, whose dimension is B. The proof is
complete. �

The previous result may be generalized to any finite connected graph G.
Now we shall focus on graphs G(P ) associated with irreducible stochastic
matrices P. Denote by B the Betti number of G(P ). Consider the collection



160 9. Markov Processes on Banach Spaces on Cycles

C of cycles occurring in the decomposition (9.3.1), endowed with an order-
ing, that is, C = {c1, . . . , cs}, s > 0. Then we have

Theorem 9.3.2. Let P = (pij , i, j = l, . . . , n) be an irreducible stochas-
tic matrix whose invariant probability row-distribution is π = (π1, . . . , πn).
Assume that {γ1, . . . , γB} is a collection of Betti circuits. Then πP
has a Fourier representation with respect to Γ = {γ

1
, . . . , γ

B
}, where the

Fourier coefficients are identical with the probabilistic-homologic cycle-
weights wγ1 , . . . , wγB

, that is,

∑
(i,j)

πipijb(i,j) =
B∑

k=1

wγk
γ
k
, wγk

∈ R, (9.3.2)

with

wγk
=< πP, γ

k
>, k = 1, . . . , B .

In terms of the (i, j)-coordinate, equations (9.3.2) are equivalent to

πipij =
B∑

k=1

wγk
Jγk

(i, j), wγk
∈ R; i, j ∈ S. (9.3.3)

If P is a recurrent stochastic matrix, then a similar representation to
(9.3.2) holds, except for a constant, on each recurrent class.

Proof. Denote w(i, j) = πipij , i, j = 1, . . . , n. Then πP may be viewed as
a one-chain w = Σ(i,j)w(i, j)b(i,j).
Since πP is balanced, w is a one-cycle, that is, w ∈ C̃1 = Ker δ. Then,
according to Lemma 9.3.1, w may be written as a Fourier series with respect
to an orthonormal base Γ = {γ

1
, . . . , γ

B
} of Betti circuits of G, that is,

w =
B∑

k=1

< w, γ
k
> γ

k
, (9.3.4)

where < w, γ
k
>, k = 1, . . . , B, are the corresponding Fourier coefficients.

On the other hand, the homologic-cycle-formula proved by Theorem 4.5.1
asserts that w may be written as

w =
B∑

k=1

wγk
γ
k
, (9.3.5)

where wγk , k = 1, . . . , B, are the probabilistic-homologic cycle-weights
given by a linear transformation of the probabilistic weights wc, c ∈ C, oc-
curring in (9.3.1), that is,

wγk
=
∑
c∈C

A(c, γ
k
)wc, A(c, γ

k
) ∈ Z,

where Z denotes the set of integers.
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Since representation (9.3.5) is unique, it follows that it coincides with the
Fourier representation (9.3.4), that is,

wγk
=< w, γ

k
>, k = 1, 2, . . . , B.

Accordingly, since c = ΣκA(c, γ
k
) γ

k
, then

A(c, γ
k
) =< c, γ

k
>, k = 1, . . . , B,

and therefore

wγk
=
∑
c∈C

< c, γ
k
> wc. (9.3.6)

Let us now suppose that P has more than one recurrent class e in S =
{1, . . . , n}. Then we may apply the previous reasonings to each recurrent
class e and to each balanced expression

πe(i)pij =
B∑

k=1

wγk
Jγk

(i, j), i, j ∈ e,

where B = Be is the Betti number of the connected component of the graph
G(P ) corresponding to e, and πe = {πe(i)} (with πe(i) > 0, for i ∈ e, and
πe(i) = 0 outside e) is the invariant probability distribution associated to
each recurrent class e. The proof is complete. �

Remark. Let w = (w(k), k = 1, 2, . . . , B) be defined as

w(k) = wγk
, k = 1, . . . , B,

where wγk
, k = 1, . . . , B, are the probabilistic-homologic weights occurring

in (9.3.5). Then equations

w(k) =
∑
c∈C

< c, γ
k
> wc

may be interpreted as the inverse Fourier transform of the probabilistic
weight-function wc, c ∈ C, associated with P.

9.4 Denumerable Markov Chains on Banach
Spaces on Cycles

Now we are prepared to show how to define a denumerable Markov chain
from a countable infinity of directed cycles by using the Banach spaces on
cycles investigated in the previous sections. Namely we have

Theorem 9.4.1. Let C = {c1, c2, . . .} be a countable set of overlapping di-
rected circuits in N that verify the assumptions mentioned in section 9.2.

If sequence w = (w(i, j), (i, j) ∈ N2) satisfies the cycle formula for
p = 1 and with respect to (C,wc), with wc > 0, c ∈ C, then pij ≡
w(i, j)/(Σjw(i, j)), i, j ∈ N , define a stochastic matrix of an N -state
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cycle Markov chain ξ = (ξn)n, that is,

pij =

∑
c∈C

wcJc(i, j)∑
c∈C

wcJc(i)
, if (i, j) ∈ ArcsetC,

= 0, otherwise,

where Jc(i) = ΣjJc(i, j), i ∈ N, c ∈ C. Furthermore, μ =
( ∞∑

k=1

wckJck(i),

i = 1, 2, . . .

)
is an invariant finite measure for the Markov chain ξ.

Proof. Let w = (w(i, j), (i, j) ∈ N2) be a sequence of l1(N2), which sat-
isfies the cycle formula with respect to a collection (C,wc), with wc > 0,
that is,

w(i, j) =
∞∑
k=1

wckJck(i, j), if (i, j) ∈ ArcsetC,

= 0, otherwise.

We may always find such a sequence if we choose the sequence {wck , k =

1, 2, . . .} of positive numbers such that
∞∑
k=1

p(ck)wck < ∞ (as in condition

(ii) of Theorem 9.2.1).
Define

w(i) =
∑
j

w(i, j), i ∈ N.

Then w(i) > 0, i ∈ N , and

w(i) =
∞∑
k=1

wckJck(i),

where Jck(i) =
∑
j

Jck(i, j) for any i ∈ N .

Define

pij =
w(i, j)
w(i)

, i, j ∈ N.

Then P = (pij , i, j ∈ N) is a stochastic matrix that defines an N-state cycle
Markov chain ξ = (ξn)n whose cycle representation is (C,wc). Also,∑

i

w(i) =
∞∑
k=1

p(ck)wck < ∞

and ∑
i

w(i)pij =
∑
i

w(i, j) =
∞∑
k=1

wckJck(j) = w(j),

for any j ∈ N . Then μ = (w(i), i = 1, 2, . . .) is an invariant finite measure
for the Markov chain ξ. The proof is complete. �
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The Cycle Measures

Further interpretations of the circuit representations of balanced functions
in terms of the electrical networks require a compatibility with dual-type
concepts as are the measures on weighted cycles, called cycle measures.
The present chapter is devoted to the generic definition of the cycle mea-
sures and their interconnection with the cycle decompositions of balanced
functions.

10.1 The Passage-Functions as Characteristic
Functions

Consider a finite set S and a strongly connected oriented graph G = (S,E ).
The passage-function I2: P (E ) × S2 → {0, 1} through the subsets of edges
E ∈ P (E ) is defined to be the characteristic function

I2(E; i, j) =
{

1, if (i, j) ∈ E,
0, if (i, j) �∈ E.

(10.1.1)

An analogue definition may be given for the passage-function I1: P (S) ×
S → {0, 1} through the subsets of points of S.
Then an extension of the passage-function I2 to Sk, k > 2, is as follows:

Ik(E; i1, . . . , ik) = I2(E; i1, i2) · I2 (E; i2, i3) · · · I2 (E; ik−1, ik), (10.1.2)

for any E ⊆ E and i1, . . . , ik ∈ S. Accordingly, we define Îk: P (S) × Sk →
{0, 1}, k = 2, 3, . . ., as extensions of I1.
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Then

Ik(E; i1, . . . , ik) = Ik−1(E; i1, . . . , ik−1) · I2(E; ik−1, ik),

for any E ⊆ E and i1, . . . , ik ∈ S.
If Ik(E; i1, . . . , ik) = 1, then either (i1, i2, . . . , ik) or ((i1, i2), (i2, i3), . . . ,
(ik−1, ik)) is called a directed polygonal line in E. When ik = i1 the polygo-
nal line is called closed. Then (i1, . . . , ik−1, i1) is a directed circuit or cycle
in E.

Conversely, if c = (i1, . . . , ik−1, i1), k > 1, is a directed circuit in S, then
by considering the set c̃ = {(i1, i2), . . . , (ik−1, i1)} of edges of c we have

Is(c̃; k1, . . . , kS) = I2(c̃; k1, k2) · I2(c̃; k2, k3) · · · I2(c̃; ks−1, ks),

for any s ≥ 2 and any k1, . . . , ks ∈ S. Correspondingly, if ĉ denotes the set
of points of c then

Îs(ĉ; k1, . . . , kS) = I1(ĉ; k1) · I1(ĉ; k2) · · · I1(ĉ; ks).
One property which differentiates Is(c̃; i1, . . . , is) from Is(E; i1, . . . , is)
(with E �= c̃) is that the former is balanced. However, both passage-
functions Is(c̃; ·) and Is(E; ·) satisfy the product formula

Is(E; i1, . . . , is) = I2(E; i1, i2) · I2(E; i2, i3) · · · I2(E; is−1, is),

for any i1, . . . , is ∈ S.
Since the product formulae are subjects of special importance in Proba-

bility Theory, we are further interested in the comparison of the passage-
functions Is(c̃; i1, . . . , is) and Jc(i1, . . . , is).
Recall that for any directed circuit c, Jc(i1, . . . , is) (which may be denoted
also Js(c; i1, . . . , is)) is, according to Definition 1.2.2, the number of the
appearances of the directed sequence (i1, . . . , is) along c.
If c = (i1, . . . , ip, i1) has only distinct points i1, . . . , ip, then

Js(c; k1, . . . , ks) = Is(c̃; k1, . . . , ks), s ≥ 2,

=

⎧⎨
⎩

1, if k1, . . . , ks are
consecutive points of c,

0, otherwise.

where c̃ denotes the set of edges of c.
In general we have

Proposition 10.1.1. If c̃ denotes the set of edges of any circuit c =
(i1, . . . , ip, i1), then the passage-function Jk, k = 2, . . . , introduced by Defi-
nition 1.2.2 satisfies the following equation:

Jk(c; i1, . . . , ik) =
∑
j

Ik(c̃; i1, . . . , ik)

=
∑
j

1cõtj (i1, i2) · · · 1cõtj (ik−1, ik),
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where j ranges the set of integers � such that 0 ≤ � < p(c) − 1 and
(cot�)(m) = im,m = 1, . . . , k, k ≥ 2. (Here p(c) denotes as always the pe-
riod of c and 1c̃ denotes the characteristic function on c̃.)

If c is an elementary circuit then the specialization of Proposition 10.1.1.
is as follows:

Jk(c; k1, . . . , ks) = Ik(c̃; k1, . . . , ks),

or, else

Jk(c; k1, . . . , ks) = J2(c; k1, k2) · J2(c; k2, k3) · · ·J2(c; ks−1, ks),

for any integer s ≥ 2 and for any k1, . . . , ks ∈ S.
Consequently it will be interesting to look for a product formula when c

is any oriented circuit. A first step is given by the following:

Proposition 10.1.2. Given a finite set S, a strongly connected oriented
graph G = (S,E ), any integer k ≥ 3 and an arbitrary directed circuit c in
S, we have

Jk(c i1, . . . , ik) �= 0, i1, . . . , ik ∈ S, (10.1.3)

if and only if there exist two circuits c1 and c2 such that

Jk−1(c1; i1, . . . , ik−1) · J2(c2; ik−1, ik) �= 0, (10.1.4)

where Jk is introduced by Definition 1.2.2.
Furthermore, there exist certain circuits c1, c2, c

′, and c′′ such that the
following decompositions hold modulo the cyclic permutations:

Jk(c; i1, . . . , ik) = Jk−1(c1; i1, . . . , ik−1) · J2(c2; ik−1, ik) (10.1.5)
Jk(c; i1, . . . , ik) = J2(c′; i1, i2) · Jk−1(c′′; i2, . . . , ik), (10.1.6)

for any i1, . . . , ik ∈ S.

Proof. We shall prove the equivalence of relations (10.1.3) and (10.1.4),
and then relation (10.1.5) by induction with respect to k ≥ 3.

Let k = 3 and let c be an elementary directed circuit in S. If relation
(10.1.3) holds, then by choosing c1 = c2 = c we may write

J3(c; i1, i2, i3) = J2(c1; i1, i2) · J2(c2; i2, i3) = 1.

If c is not elementary such that

J3(c1; i1, i2, i3) = � > 1, i1, i2, i3 ∈ S,

then by Definition 1.2.2, we may find two elementary cycles c′ and c′′, such
that c̃′ ⊂ c̃, c̃′′ ⊂ c̃ and

J2(c′; i1, i2) J2(c′′; i2, i3) = 1,

where c̃ denotes the set of all edges of c.
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Then we may define a circuit c1 by repeating � times c′, and choose c2 ≡ c′′.
Consequently, we have

J2(c1; i1, i2)J2(c2; i2, i3) = �

and we have proved (10.1.4) from (10.1.3) when k = 3.
To prove the converse, suppose that (10.1.4) holds for two elementrary

cycles c1 and c2, that is,

J2(c1; i1, i2) J2 (c2; i2, i3) = 1, i1, i2, i3 ∈ S.

Then we may find a cycle c containig c1 and c2, and which satisfies the
relation (10.1.3), that is,

J3(c; i1, i2, i3) = 1.

Therefore the required equivalence and relation (10.1.5) are proved for
k = 3.

Now, assume the equivalence of the first two relations, and relation
(10.1.5) hold for the k > 3 points i1, . . . , ik. Then we have to prove
the equivalence of (10.1.3) and (10.1.4), and then relation (10.1.5) for
i1, . . . , ik, ik+1. If c is an elementary circuit and

Jk+1(c; i1, . . . , ik, ik+1) = 1,

then by choosing c1 = c2 = c, we may write

Jk+1(c; i1, . . . , ik, ik+1) = Jk(c1; i1, . . . , ik)J2(c2; ik, ik+1) = 1.

If c is not an elementary circuit such that

J3(c; i1, . . . , ik+1) = � > 1,

then we may find two directed elementary circuits c′ and c′′ such that
c̃′ ⊂ c̃, c̃′′ ⊂ c̃, and

Jm(c′; i1, . . . , im) Jk−m+1(c′′; im, im+1, . . . , ik, ik+1) = 1,

where 1 < m < k.
Consequently we may repeat many times the induction hypothesis and find
two circuits c1 and c2 such that

Jk+1(c; i1, . . . , ik, ik+1) = Jk(c1; i1, . . . , ik) J2(c2; ik, ik+1).

Therefore we have proved (10.1.4) and (10.1.5) from (10.1.3).
Let us now prove the converse implication under the induction hypothesis

for the points i1, . . . , ik. If

Jk(c1; i1, . . . , ik) J2(c2; ik, ik+1) = 1,
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for some circuits c1 and c2, then we may choose a directed circuit c such
that c̃ = c̃1 ∪ c̃2 and

Jk+1(c1; i1, . . . , ik, ik+1) = 1.

If

Jk(c1; i1, . . . , ik)J2(c2; ik, ik+1) = � > 1,

we may first choose an elementary circuit whose edge-set contains c̃1 ∪ c̃2,
and then by repeating it � times we define a circuit c such that c̃ = c̃1 ∪ c̃2
and

Jk+1(c; i1, . . . , ik, ik+1) = �.

Then the required equivalence and relation (10.1.5) are proved. Finally,
relation (10.1.6) follows by using analogous arguments. The proof is com-
plete. �

From the course of the proof of Proposition 10.1.2, we may write for any
directed circuit c the following product formula:

Jk(c; i1, . . . , ik) = Jm(c1; i1, . . . , im) Jk−m(c2; im, . . . , ik), i1, . . . , ik ∈ S,

where k ≥ 3, 2 ≤ m < k and c1, c2 are suitably chosen circuits in S. Fur-
thermore we have

Corollary 10.1.3. Let S be a finite set and G = (S,E ) be a strongly con-
nected oriented graph. Then for any directed circuit c in S the following
formula holds modulo the cyclic permutations:

Jk(c; i1, . . . , ik) = J2(c1; i1, i2) · J2(c2; i2, i3) · · ·J2(ck−1; ik−1, ik),
i1, . . . , ik ∈ S,

where k ≥ 3 and c1, c2, . . . , ck−1 are suitable directed circuits in S. �

10.2 The Passage-Functions as Balanced
Functions

We have compared in the previous paragraph the product property of
two types of passage-functions associated with a directed circuit c =
(i1, . . . , ip, i1) in S:

Is(c̃; k1, . . . , ks) = 1c̃s−1((k1, k2), . . . , (ks−1, ks)), s = 2, 3, . . . , (10.2.1)

where 1c̃s−1 is the characteristic function on the cartesian product c̃s−1,
and

Js(c; k1, . . . , ks) ≡ Jc(k1, . . . , ks),

which is the number of the appearances of the sequence (k1, . . . , ks) along
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c, s = 1, 2, . . .. These two passage-functions are in general distinct except
for the case c is elementary (its points are distinct from each other).

One basic characteristic of both passage-functions above is the property
of being balanced, that is,∑
i∈S

Js(c; k1, . . . , ks−1, i) =
∑
j∈S

Js(c; j, k1, . . . , ks−1) ≡ Js−1(c; k1, . . . , ks−1),

∑
i∈S

Is(c̃; k1, . . . , ks−1, i) =
∑
j∈S

Is(c̃; j, k1, . . . , ks−1) ≡ Is−1(c̃; k1, . . . , ks−1),

(10.2.2)

for any k1, . . . , ks−1 ∈ S, s ≥ 2, where I1(c̃; i) denotes I1(ĉ; i), i ∈ S, which
is introduced in paragraph 10.1. Consequently, we say that Js extends Js−1

by the balance property. It is the balance property of the passage-functions
above that we shall investigate in this paragraph.

First we have

Proposition 10.2.1. Given any circuit c and any integer n ≥ 2, the
passage-functions In(c̃;. ) and Jn(c;. ) satisfy the following equation:

Jn(c; i1, . . . , in) =
∑

k1,...,kn−1∈S

Jn−1(c; k1, . . . , kn−1) · Jn(c; k1, . . . , kn−1, i1)
Jn−1(c; k1, . . . , kn−1)

· Jn(c; k2, . . . , kn−1, i1, i2)
Jn−1(c; k2, . . . , kn−1, i1)

· · · Jn(c; i1, . . . , in)
Jn−1(c; i1, . . . , in−1)

,

(10.2.3)

for any i1, . . . , in ∈ S, when the right-hand side is well-defined. �

From the very definition of the passage-function Is, we may write the prod-
uct formula

In(c̃; i1, . . . , in) = I1(ĉ; i1) · I2(c̃; i1, i2)
I1(ĉ; i1)

· · · I2(c̃; in−1, in)
I1(ĉ, in−1)

for any consecutive points i1, . . . , in of c.
However, the previous equation does not characterize a balance function.
Specifically, if we introduce

Ĩn(c̃; i1, . . . , in) ≡ I1(ĉ; i1) · I2(c̃; i1, i2)
I1(ĉ; i1)

· · · I2(c̃; in−1, in)
I1(ĉ, in−1)

,

for any points i1, . . . , in of c, then we have

In(c̃; i1, . . . , in) = Ĩn(c̃; i1, . . . , in), (10.2.4)

but in general

Jn(c; i1, . . . , in) �= J̃n(c; i1, . . . , in),

where J̃n is defined as Ĩn.
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A sufficient condition for Jn to satisfy relation (10.2.4) is given by the
following:

Proposition 10.2.2. Let c be any directed circuit in S. Then we have

(i) J3(c; i, j, y) = J̃3(c; i, j, y)

= J1(c; i) · J2(c; i, j)
J1(c; i)

· J2(c; j, y)
J1(c; j)

for any consecutive vertices i, j, y of c, which satisfy the following con-
dition:

J3(c; i, j, y)
J2(c; i, j)

=
J2(c; j, y)
J1(c; j)

. (10.2.5)

(ii) Also

Jn(c; i1, . . . , in) = J̃n(c; i1, . . . , in)

= J1(c; i1) · J2(c; i1, i2)
J1(c; i1)

· · · J2(c; in−1, in)
J1(c; in−1)

for any integer n > 3 and for any consecutive vertices i1, . . . , in of c
which satisfy the following condition:

Jn(c; i1, . . . , in)
Jn−1(c; i1, . . . , in−1)

=
J2(c; in−1, in)
J1(c; in−1)

(10.2.6)

Proof. (i) By using relation (10.2.5), we may write

J̃3(c; i, j, y) = J2(c; i, j) · 1
J1(c; j)

· J3(c; i, j, y)
J2(c; i, j)

· J1(c; j)

= J3(c; i, j, y).

(ii) Assume by the induction hypothesis that relation

Jn−1(c; i1, . . . , in−1) = J̃n−1(c; i1, . . . , in−1)

holds. Then by using (10.2.6), we may write

Jn(c; i1, . . . , in) =
J2(c; in−1, in)
J1(c; in−1)

· J̃n−1(c; i1, . . . , in−1)

= J̃n(c; i1, . . . , in),

and the proof is complete. �

Let us see the previous relations in the following concrete example. Consider
the circuit c = (1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 1) of period p = p(c) = 12. Then

J3(c; 2, 1, 2)
J2(c; 2, 1)

=
4
4

= 1,

J2(c; 1, 2)
J1(c; 1)

=
4
4

= 1.
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On the other hand we have

J3(c; 2, 1, 2) = 4,

J̃3(c; 2, 1, 2) = J1(c; 2) · J2(c; 2, 1)
J1(c; 2)

· J2(c; 1, 2)
J1(c; 1)

=
4.4
4

= 4,

therefore J3(c; 2, 1, 2) = J̃3(c; 2, 1, 2).
Further characteristics of the passage-functions which generalize Propo-

sition 10.2.1 are given by the following:

Proposition 10.2.3. Given a directed circuit c and any integer n ≥ 2,
then any passage-function satisfies the property below:

Jm(c; i1, . . . , im) =
∑

k1,...,kn−1

Jn−1(c; k1, . . . , kn−1) · Jn(c; k1, . . . , kn−1, i1)
Jn−1(c; k1, . . . , kn−1)

· Jn(c; k2, . . . , kn−1, i1, i2)
Jn−1(c; k2, . . . , kn−1, i1)

· · ·

· Jn(c; km, . . . , kn−1, i1, . . . , im)
Jn−1(c; km, . . . , kn−1, i1, . . . , im−1)

,

for any m such that n > m ≥ 2 and for any i1, . . . , im ∈ S when the right-
hand side is defined.

Let us now consider any directed circuit c in S. Then we may associate
c with families of passage-functions as follows:

J(c̃) = {In(c̃; i1, . . . , in), n = 1, 2 . . .},
and

J(c) = {Jn(c; i1, . . . , in), n = 1, 2, . . .}
where In and Jn are considered as in paragraph 10.1.
Also, if we fix arbitrarily an integer n ≥ 1, we may define further families
of passage-functions as

F (c, In) = {gm(i1, . . . , im), m = 1, 2, . . .}
and

F (c, Jn) = {fm(i1, . . . , im),m = 1, 2, . . .},
where for m > n the functions gm and fm are given by Proposition
10.2.3 and for m ≤ n they are given as: gm = Im(c̃; i1, . . . im) and fm =
Jm(c; i1, . . . , im).

All families J(c̃),J(c),F (c, In),F (c, Jn) satisfy the compatibility con-
dition. For instance, any function fm ∈ F (c, Jn),m = 2, 3, . . . , satisfies the
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compatibility equation,∑
i∈S

fm(i1, . . . , im−1, i) = fm−1(i1, . . . , im−1),

for any i1, . . . , im ∈ S. Furthermore, any function hm = Im (or
Jm, gm, fm),m = 2, 3, . . . , satisfies a system of (m− 1) balance equations,
that is,∑

i∈S

hk(i1, . . . , ik−1, i) =
∑
j∈S

hk(j, i1, . . . , ik−1) ≡ hk−1(i1, . . . , ik−1),

for any k = 2, . . .m, and i1, . . . , ik−1 ∈ S.
If n = 2 and c = (i1, . . . , ip, i1) is an elementary circuit, then the family
F (c, J2) = {fm(i1, . . . , im),m = 1, 2, . . .}, provides the finite-dimensional
distributions of a homogeneous periodic Markov chain ξ whose state space
is {i1, . . . , ip} and the stochastic matrix is⎛

⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0
− − − −
1 0 0 . . . 0

⎞
⎟⎟⎠ .

The sample paths of ξ are obtained by the repetitions of c and have a
geometric simplicity that corresponds to the inexistence of chaos.

In general, the appearance of chaos involves Markov models ξ whose
geometry of the sample paths is more complexed and is characterized by the
appearance of (more than 1) directed overlapping circuits c1, . . . , cm. Then
a further algebraization will naturally involve the vectors c1, . . . , cm, whose
coefficients are defined by the passage-functions Jc1 , . . . , Jcm , which in turns
decompose (by the circuit decomposition formula) the finite-dimensional
distributions of ξ. Consequently, we have good reasons to study the vector
space generated by the passage-functions Jc1 , . . . , Jcm .

10.3 The Vector Space Generated by
the Passage-Functions

10.3.1. Consider S a finite set with card S = σ > 1 and let F = (S,F )
be the full-oriented graph on S. In the previous chapters we have studied
various ways to express dynamics from a point i ∈ S to another point j ∈ S
by using the graph elements of F. One of them uses the directed circuits
(cycles) c made up with the edges of F and the corresponding passage-
functions Jc and Cc defined as:

Jc(i, j) = 1, if i, j are consecutive vertices of c,
= 0, otherwise,

and Cc(i, j) =
1

p(c)
Jc(i, j), i, j ∈ S.
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In Chapter 8, we have studied a more generalized motion along sequences
of consecutive edges e1, . . . , es ∈ F, which are not necessarily oriented in
the same way, that is, each edge er has one common endpoint (either the
starting point or the terminal point) with er−1(�= er), and a second end-
point with er+1(�= er), 2 ≤ r ≤ s− 1. When such a sequence is closed and
contains distinct edges, then it is called a cycloid in S (see Definition 8.1.1).
Recall that a cycloid whose vertices occur once is called an elementary
cycloid.

Any cycloid γ̃ may be passed according to one of the orientations of two
directed circuits γ and γ− (the opposite of γ) made up with the consecutive
points of γ̃.

Now, giving two points i and j in S there exists a cycloid γ̃ which connects
i to j and suitable functions Jγ̃,γ and Jγ̃,γ− expressing this connection as
follows:

Jγ̃,γ(i, j) = 1, if (i, j) is an edge of γ̃ and γ,
= −1, if (i, j) is an edge of γ̃ and γ−,
= 0, otherwise,

and

Jγ̃,γ−(i, j) = −Jγ̃,γ(i, j), i, j ∈ S.

Then by Lemma 8.1.2 both cycloid passage-functions Jγ̃,γ and Jγ̃,γ− are
real balanced functions.

Denote by C and Γ the set of all elementary directed circuits in S and
the set of all elementrary cycloids of graph F, respectively. Then C ⊂ Γ.

Consider now the vector space B(S2) generated by the cycloid passage-
functions

{Jγ̃,γ : S2 → {−1, 0, 1}, γ̃ ∈ Γ}.
Then

B(S2) ≡ {w:S2 → R:w =
m∑

k=1

βkJγ̃k,γk
, γ̃k ∈ Γ,

βk ∈ R, k = 1, . . . ,m; m = 1, 2, . . .}.
We have

Theorem 10.3.1. The vector space B(S2) generated by the cycloid
passage-functions {Jγ̃,γ , γ̃ ∈ Γ} contains all real balanced functions on S2.
Furthermore, we have

B(S2) = {w:S2 → R:w is balanced }

= {w:S2 → R:w =
B∑

k=1

βkJγ̃k,γk
, γ̃1, . . . , γ̃B ∈ Γ independent elementary

cycloids; β1, . . . , βB ∈ R;B = 1, . . . , σ2 − σ + 1}.
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Proof. Any passage-function Jγ̃,γ(i, j), i, j ∈ S, defines a one-cycle

γ̃ =
∑
(i,j)

Jγ̃,γ(i, j) b(i,j).

(See definitions and notations of paragraph 4.4.)
Correspondingly, we may associate the balance function w : S2 → R with
a one-chain

w =
∑
(i,j)

w(i, j) b(i,j).

Assume for the sake of simplicity that the oriented graph Gw of w contains
only one connected component and let B be its Betti number. Then B =
1, 2, . . . , σ2 − σ + 1 and by applying Theorem 8.2.1 to w, we may write w
in terms of B independent elementary cycloids {γ̃1, . . . , γ̃B} of the graph
Gw as follows:

w(i, j) =
B∑

k=1

βkJγ̃k,γk
(i, j), i, j ∈ S; βk ∈ R, k = 1, . . . , B.

Specifically, the cycloids γ̃1, . . . , γ̃B are given by the maximal-tree-
method, which uniquely defines βk = w(ik, jk), k = 1, . . . , B, where
(i1, j1), . . . , (iB , jB) are the corresponding Betti edges in Gw. The proof
is complete. �

Let us now consider the set

B+(S2) = {w:S2 → R+, w is balanced}.
Then B+(S2) is a convex cone of B(S2). Furthermore, by applying Theo-
rem 1.3.1, B+(S2) is “generated” by the circuit passage-functions {Jc, c ∈
C }, that is,

B+(S2)={w:S2→R+:w=
m∑

k=1

αkJck ,ck∈C, αk∈R+, k = 1,...,m;m = 1,2,...}.

A convex subset of B+(S2), occurring in the theory of stochastic matrices,
is given by

B1
+(S2) = {w : S2 → R+ : w is balanced;

∑
i,j∈S

w(i, j) = 1}.

Then B1
+(S2) is a convex hull of {Cc, c ∈ C} according to the

Carathéodory-type decomposition (4.3.2), that is,

B+
1 (S2) =

{
w:S2 → R+:w =

m∑
k=1

wkCck , ck ∈ C, wk ≥ 0, k = 1, . . . ,m;

m∑
k=1

wk = 1,m = 1, 2, . . . , σ2 − σ + 1
}
.
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10.3.2. Given S any finite set and w:S2 → R+ any balanced function,
then one way to extend w to S3 by the balance property is to consider the
product

w3(i, j, k) =
w(i, j) · w(j, k)

w(j)
, if w(j) �= 0,

= 0, otherwise,
(10.3.1)

where w(j) ≡∑u∈S w(u, j). Then w3 is balanced, that is,∑
k∈S

w3(i, j, k) =
∑
u∈S

w3(u, i, j) = w(i, j), i, j ∈ S.

The extension (10.3.1) may be written in a more sophisticated form as
follows:

w3(i, j, k) =
∑
k1

w1(k1) · w2(k1, i)
w1(k1)

· w2(i, j)
w1(i)

· w2(j, k)
w1(j)

(10.3.2)

when the right-hand side is defined, where w1(i) ≡ w(i), w2(i, j) ≡ w(i, j).
The expression (10.3.2) allows us to continue the extension of w to
w4(i1, i2, i3, i4) by the balance property, and after consecutive steps to
wn: Sn → R+ given by

wn(i1, . . . , in) =
∑
k1

w1(k1)
w2(k1, i1)
w1(k1)

· w2(i1, i2)
w1(i1)

· · · w2(in−1, in)
wl(in−1)

,

n = 2, 3, . . . ,

when the right-hand side is defined.
Then, generalizing the previous motivation we may state

Proposition 10.3.2. Any balance function wn:Sn → R+ satisfies the fol-
lowing relation:

wn(i1, . . . , in) =
∑

k1,...,kn−1∈S

wn−1(k1, . . . , kn−1)
wn(k1, . . . , kn−1, i1)
wn−1(k1, . . . , kn−1)

· wn(k2, . . . , kn−1, i1, i2)
wn−1(k2, . . . , kn−1, i1)

· · · wn(i1, i2, . . . , in)
wn−1(i1, . . . , in−1)

,

when the right-hand side is well defined. �

10.4 The Cycle Measures

There are measures μ on the product measurable space (S × S,P (S) ⊗
P (S)), which satisfy the balance equation μ(S × ·) = μ(· × S). In the
present section we shall show the existence of a reciprocal relation between
the balanced measures μ and the linear combinations of weighted cycles
(or circuits), which motivates the name of a cycle measure for μ.
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Let S be a finite set and let G = (S,E ) be a strongly connected oriented
graph. Consider C any collection of directed circuits in S such that the
edge-set of C is E.
Associate each directed circuit c ∈ C with the passage-functions 1Ic: S →
{0, 1} and 2Ic: S × S → {0, 1} defined as

1Ic(i) = 1, if i = c(n) for some n ∈ Z,
= 0, otherwise,

and

2Ic(i, j) = 1, if i = c(n), j = c(n + 1) for some n ∈ Z,
= 0, otherwise.

Definition 10.4.1. Given any directed circuit c ∈ C define
(i) the passage-function 1Jc(A, j) from A ∈ P (S) to j ∈ S as

1Jc(A, j) = 1, if j = c(n) and c(n− 1) ∈ A for some n ∈ Z, (10.4.1)

= 0, otherwise.

and
(ii) the passage-function 2Jc(i, B) from i ∈ S to B ∈ P (S) as

2Jc(i, B) = 1, if i = c(n) and c(n + 1) ∈ B for some n ∈ Z, (10.4.2)

= 0, otherwise. �

An immediate consequence of the balance property of 2Ic (i, j) is the
following:

Proposition 10.4.2. The passage-functions 1Jc and 2Jc introduced by
Definition 10.4.1 satisfy the following equations:

1Jc(A, j) =
∑
i∈A

2Ic(i, j), j ∈ S, A ∈ P (S);(i)

2Jc(i, B) =
∑
j∈B

2Ic(i, j), i ∈ S, B ∈ P (S);(ii)

1Jc(S, j) = 2Jc(j, S) = 1Ic(j), j ∈ S.(iii)

Also we have

Proposition 10.4.3. Consider the measurable space (S,P (S)) and the
directed circuit c ∈ C. Then the following statements hold:

(i) the set function Ic: P (S) → R+ defined as Ic(A) =
∑

i∈A 1Ic(i) is
a measure on P (S):

(ii) for any vertex i of c the set functions 1Jc(·, i) and 2Jc(i, ·) are
probability measures on P (S);
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(iii) for any A,B ∈ P (S) we have∑
i∈A

2Jc(i, B) =
∑
j∈B

1Jc(A, j). �

Now let us consider the product mesurable space (S × S,P (S) ⊗ P (S)).
For any E ⊂ S × S and any i, j ∈ S denote

Ei = {u ∈ S: (i, u) ∈ E},
and

Ej = {v ∈ S: (v, j) ∈ E},
which are usually called sections of E. In particular, for any measurable
rectangle A×B and for any i ∈ S, we have

(A×B)i = B, if i ∈ A,

= Ø, if i /∈ A;

and

(A×B)i = A, if i ∈ B,

= Ø, if i /∈ B.

We have

Proposition 10.4.4. Let (S,P (S)) and let c be any directed circuit of C,
Then for any E ∈ P (S) ⊗ P (S) we have∑

i∈S

2Jc(i, Ei) =
∑
j∈S

1Jc(Ej , j). (10.4.3)

Proof. We have∑
i∈S

2Jc(i, Ei) =
∑
i∈S

∑
j∈Ei

2Ic(i, j) =
∑

(i,j)∈E

2Ic(i, j)

=
∑
j∈S

∑
i∈Ej

2Ic(i, j) =
∑
j∈S

1Jc(Ej , j),

and the proof is complete. �

In particular, if E = A×B,A,B ∈ P (S), the equations (10.4.3) become∑
i∈A

2Jc(i, B) =
∑
j∈B

1Jc(A, j).

Theorem 10.4.5. Let (S,P (S), Ic) be the measure space associated with
a directed circuit c ∈ C, where Ic(·) is introduced by Proposition 10.4.3.(i).
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Consider the set function J̃c on P (S) ⊗ P (S) defined as

J̃c(E) ≡
∑
i∈S

2Jc(i, Ei) =
∑
j∈S

1Jc(Ej , j), E ∈ P (S) ⊗ P (S).

Then J̃c is a measure on P (S) ⊗ P (S) and J̃c(· × S) = J̃c(S × ·) = Ic(·).
In particular,

J̃c(A×B) =
∑
i∈A

2Jc(i, B) =
∑
j∈B

1Jc(A, j),

for any measurable rectangle A×B ∈ P (S) ⊗ P (S).

Proof. Plainly, J̃c(Ø) = 0. Let E1, E2, . . . , be a pairwise disjoint sequence
of subsets in P (S) ⊗ P (S). Then

J̃c(
⋃
n

En) =
∑
i∈S

2Jc(i, (
⋃
n

En)i)

=
∑
i∈S

2Jc(i,
⋃
n

(En)i)

=
∑
n

∑
i∈S

2Jc(i, (En)i)

=
∑
n

J̃c(En).

Also, for E = A×B we have

J̃c(A×B) =
∑
i∈S

2Jc(i, (A×B)i)

=
∑
i∈A

2Jc(i, B)

and

J̃c(A×B) =
∑
j∈S

1Jc((A×B)j , j),

=
∑
j∈B

1Jc(A, j).

Finally, for any A ∈ P (S) we have

J̃c(A× S) =
∑
i∈A

2Jc(i, S) =
∑
i∈A

1Jc(S, i)

=
∑
i∈A

1Ic(i) = Ic(A).

The proof is complete. �
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Note. A comparison of J̃c with the product measure Ic × Ic on P (S) ⊗
P (S) shows that J̃c �= Ic × Ic. Specifically, if i and j are two non-
consecutive vertices of the circuit c ∈ C then

J̃c({i} × {j}) = 2Ic (i, j) = 0,

while

(Ic × Ic)({i} × {j}) = 1Ic(i) · 1Ic(j) = 1.

In general, there are i, j ∈ S such that

2Ic (i, j) �= 1Ic(i) · 1Ic(j),

since the vertex j occurring in 2Ic (i, j) is conditioned to be the next vertex
to i on c, while i and j are independent points in 1Ic (i) ·1 Ic (j).

However, both measures J̃c and Ic × Ic enjoy a common property:

J̃c(A× S) = J̃c(S ×A), A ∈ P (S).

This motivates the following

Definition 10.4.6. A measure μ on the product measurable space (S ×
S,P (S) ⊗ P (S)) is called a balanced measure if it satisfies

μ(A× S) = μ(S ×A), (10.4.4)

for any A ∈ P (S).

Further we give a procedure to defining balanced measures from weighted
circuits in an analogous manner with that given in section 2.2.1.

Theorem 10.4.7. Let S be any finite set. Then for any collection C of
overlapping directed circuits in S and any collection {wc, c ∈ C } of positive
numbers there exists a balanced measure μ on the product measurable space
(S × S,P (S) ⊗ P (S)) such that

μ(A×B) =
∑
c∈C

wc J̃c(A×B), A,B ∈ P (S), (10.4.5)

where J̃c is introduced by Theorem 10.4.5. In particular,

μ(· × S) = μ(S × ·) =
∑
c∈C

wcIc(·),

where Ic(·) is the measure on P (S) introduced by Proposition 10.4.3.(i).
Furthermore, μ({i} × {j}), i, j ∈ S, defines a balanced function whose cir-
cuit representation is {C, wc}.
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Proof. For the given collection {C, wc}, define

μ(E) =
∑
c∈C

wc J̃c(E), E ∈ P (S) ⊗ P (S), (10.4.6)

where J̃c(·) is introduced by Theorem 10.4.5. Plainly, μ is a positive measure
on the product measurable space (S × S,P (S) ⊗ P (S)). In particular, for
any E = A×B,A,B ∈ P (S), we have

μ(A×B) =
∑
c∈C

wc J̃c(A×B),

and the measure μ is balanced. Furthermore,

μ(A× S) = μ(S ×A) =
∑
c∈C

wcIc(A), A ∈ P (S),

and

μ({i} × {j}) =
∑
c∈C

wc · 2Ic (i, j), i, j ∈ S,

defines a balanced function whose circuit representation is {C, wc}. The
proof is complete. �

Equations (10.4.5) allows us to call any balanced measure μ a circuit (cycle)
measure while {C, wc} is called a circuit (cycle) representation of μ.

The converse direction uses the argument of the cycle generating equa-
tions. Namely, we have

Theorem 10.4.8. Let S be any finite set and let μ be any nonnegative
balanced measure on (S × S,P (S) ⊗ P (S)) such that μ(· × S) > 0. Then
there exists a finite ordered collection C of overlapping directed circuits in
S and a finite collection {wc, c ∈ C} of positive numbers, depending on the
ordering of C such that {C, wc} is a circuit representation of μ, that is,

μ(A×B) =
∑
c∈C

wc J̃c(A×B), A,B ∈ P(S),

where J̃c is introduced by Theorem 10.4.5.

Proof. Define w(i, j) = μ({i} × {j}), i, j ∈ S. Then w is a positive bal-
anced function on S × S. Consequently we may apply Theorem 1.3.1 to w
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and find a circuit representation {C, wc} for w, that is,

μ({i} × {j}) =
∑
c∈C

wc · 2Ic (i, j), i, j ∈ S,

where C is a collection of directed circuits endowed with an ordering and
wc, c ∈ C are positive numbers. Then

μ(A×B) =
∑
c∈C

wc J̃c (A×B), A,B ∈ P (S).

Finally, {C, wc} is a circuit representation of μ, and the proof is
complete. �

A generalization of Theorem 10.4.7 is given by the following:

Theorem 10.4.9. Let S be any finite set. Then for any collection C
of overlapping directed circuits with the vertex-set S and any collection
{wc, c ∈ C} of positive numbers there exists a positive measure μ on the
product measurable space {SN , (P (S))N} such that

μ(A1 ×A2 × S × S × . . .) =
∑
c∈C

wcJ̃c(A1 ×A2), A1, A2 ∈ P (S),

μ(A1 ×A2 ×A3 × . . .×Ak × S × S × . . .)

=
∑

i1∈A1

∑
i2∈A2

· · ·
∑

ik∈Ak

w1(i1) · w2(i1, i2)
w1(i1)

· w2(i2, i3)
w1(i2)

· · · w2(ik−1, ik)
w1(ik−1)

,

where

w1(i) ≡
∑
c∈C

wc · 1Ic(i), i ∈ S,

w2(i, j) ≡
∑
c∈C

wc · 2Ic(i, j), i, j ∈ S,

and J̃c is introduced by Theorem 10.4.5.
Furthermore, μ is a balanced measure, that is, for any k = 1, 2, . . . and

any A1, . . . , Ak ∈ P (S) we have

μ(S×A1×A2×. . .×Ak×S×S×. . .) = μ(A1×A2×. . .×Ak×S×S×. . .).

(N denotes as always the set of all natural numbers.)

Proof. The elements of SN are all sequences (in)n∈N with in ∈ S, n ∈ N ,
and (P (S))N is the minimal σ-algebra containing all cylinders

{i1} × {i2} × . . .× {ik} × S × S . . .

with in ∈ S, 1 ≤ n ≤ k, k ∈ N .
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Let

w1(i) ≡
∑
c∈C

wc · 1Ic(i), i ∈ S,

w2(i, j) ≡
∑
c∈C

wc · 2Ic(i, j), i, j ∈ S.

Define the measure μ on the class of all cylinders by the equalities

μ({i1} × S × . . .) = w1(i1)

μ({i1} × {i2} × . . .× {ik} × S × S × . . .)

= w1(i1) · w2(i1, i2)
w1(i1)

· w2(i2, i3)
w1(i2)

· · · w2(ik−1, ik)
w1(ik−1)

,

where i1, i2, . . . , ik ∈ S, k ≥ 1.
Then by applying Ionescu-Tulcea’s extension theorem, the measure μ

may be extended to the whole (P (S))N . Finally, for any k = 1, 2, . . . and
any A1, . . . , Ak ∈ P (S), we have

μ(S ×A1 ×A2 × . . .×Ak × S × S × . . .)

=
∑
i∈S

∑
i1∈A1

∑
i2∈A2

· · ·
∑

ik∈Ak

w1(i) · w2(i, i1)
w1(i)

· w2(i1, i2)
w1(i1)

· · · w2(ik−1, ik)
w1(ik−1)

=
∑

i1∈A1

∑
i2∈A2

· · ·
∑

ik∈Ak

w1(i1) · w2(i1, i2)
w1(i1)

· · · w2(ik−1, ik)
w1(ik−1)

=
∑

i1∈A1

∑
i2∈A2

· · ·
∑

ik∈Ak

∑
i∈S

w1(i1) · w2(i1, i2)
w1(i1)

· w2(i2, i3)
w1(i2)

· · · w2(ik−1, ik)
w1(ik−1)

· w2(ik, i)
w1(ik)

= μ(A1 ×A2 × . . .×Ak × S × S × . . .),

and the proof is completed. �

10.5 Measures on the Product of Two Measurable
Spaces by Cycle Representations of Balanced
Functions: A Fubini-Type Theorem

In this paragraph we shall show that the cycle representation formula of
balanced functions may be involved in a Fubini-type theorem.

Theorem 10.5.1. Any positive balanced function v(·, ·) : S × S → R+ on
a finite set S, whose graph is (S,E ) and which admits a circuit representa-
tion {C, w(·)}, with w: C → R+, defines a positive measure μ on the product
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measurable space (C × E,P (C ) ⊗ P (E )) such that

μ(C × E) =
∑
c∈C

w(c) Jc(E), C ⊆ C, E ⊆ E, (10.5.1)

where Jc(i, j) = 1 or 0 according to whether or not (i, j) is an edge of c.
Furthermore,

μ(C × {(i, j)}) = v(i, j), (i, j) ∈ E.

(Here P (·) denotes as always the power-set.)

Proof. Let (S,E ),E ⊆ S2, be the oriented strongly connected graph asso-
ciated with the positive balanced function v (i.e., (i, j) ∈ E if and only if
v(i, j) > 0, i, j ∈ S). Then we may apply the circuit representation Theo-
rem 1.3.1 according to which we may find a finite collection C of directed
circuits c in S, with periods p(c) ≥ 1, and a positive (P (C )-measurable)
function w: C → R+ such that

v(i, j) =
∑
c∈C

w(c) Jc(i, j), i, j ∈ S. (10.5.2)

Consider the measurable spaces (C,P (C )), (E,P (E )) and the measure
ν: P (C ) → R+ defined as

ν(C) =
∑
c∈C

p(c)w(c), C ⊆ C

Also, introduce the function Q: C × P (E ) → R+ defined as

Q(c, E) =
1

p(c)
Jc(E), c ∈ C, E ⊆ E,

where Jc(E) =
∑

(i,j)∈E

Jc(i, j), and Jc(i, j) is the passage-function occurring

in the statement of the theorem. Then Q behaves as a transition probability
measure from (C,P (C )) to (E,P (E )), that is,

(i) 0 ≤ Q(c, E) ≤ 1, c ∈ C, E ⊆ E;
(ii) Q(c,E ) = 1, c ∈ C;
(iii) Q(c, ·) is σ-additive.

Following M.M. Rao (1993) we further define the set function μ for each
measurable rectangle C × E of P (C ) ⊗ P (E ) as follows:

μ(C × E) =
∑
c∈C

ν({c})Q(c, E)

=
∑
c∈C

w(c) Jc(E),

and prove that μ is σ-additive. Specifically, if Ci × Ei, i = 1, 2, . . . , n;n ≥ 1,
is a sequence of pairwise disjoint measurable subsets of C × E whose union
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is C × E, then

1C×E =
n∑

i=1

1Ci
1Ei

.

By integrating the previous equation with respect to Q((·, dε) on (E,P (E )),
we get

1C ·Q(·, E) =
n∑

i=1

1Ci
·Q(·, Ei).

Further, we integrate with respect to ν on (C,P (C )) and find

∑
c∈C

p(c)w(c)Q(c, E) =
n∑

i=1

∑
c∈Ci

p(c)w(c)Q(c, Ei),

or, else

μ(C × E) =
n∑

i=1

μ(Ci × Ei), n = 1, 2, . . . .

Finally, we apply, Carathéodory’s theorem and consider the extension, sym-
bolized also by μ. Furthermore,

μ(C × E ) =
∑
c∈C

w(c) Jc(E )

=
∑
c∈C

p(c)w(c)

= ν(C)

for any C ∈ P (C ),
and

μ(C × {(i, j)}) =
∑
c∈C

w(c)Jc(i, j)

= v(i, j),

and the proof is complete. �

Immediate consequences of the previous theorem are as follows:

Corollary 10.5.2. For any finite set S and any positive balanced function
v (·, ·):S × S → R+ whose graph is (S, E) and which admits a circuit repre-
sentation {C, w(·)} there exist an initial positive measure ν on (C,P (C)),
a transition probability measure Q: C × P (E ) → R+((i)0 ≤ Q(c, ·) ≤ 1, c ∈
C; (ii) Q(c,E ) = 1, c ∈ C; (iii) Q(c, ·) is σ-additive for any c ∈ C ) and a
measure μ on the product measurable space (C × E,P (C ) ⊗ P (E )) such
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that

μ(C × E) =
∑
c∈C

Q(c, E) ν({c}), C ∈ P (C ), E ∈ P (E ),

μ(C × E ) = ν(C), C ∈ P (C ),

and ∑
(c,ε)

f(c, ε)μ{(c, ε)} =
∑
c

ν({c})
∑
ε

f(c, ε)Q(c, {ε}),

for any f : C × E → R, where (c, ε), ε and c range C × E,E and C, respec-
tively.

Also, we have

Corollary 10.5.3. For any finite set S and any positive balanced function
v(·, ·): S × S → R+ with the graph (S,E ) and the circuit representation
{C, w(·)}, there exist an initial positive measure λ on (E,P (E )), a tran-
sition probability measure P : P (C ) × E → R+ ((i) 0 ≤ P (· .ε) ≤ 1, ε ∈ E;
(ii) P (C, ε) = 1, ε ∈ E; (iii) P (· , ε) is σ-additive for any ε ∈ E) and a mea-
sure μ on the product measurable space (C × E,P (C ) ⊗ P (E )) such that

μ(C × E) =
∑

(i,j)∈E

P (C, (i, j)) λ({(i, j)}), C ∈ P (C ), E ∈ P (E ),

μ(C × E) = λ(E), E ∈ P (E ),

and ∑
(c,ε)

g(c, ε)μ{(c, ε)} =
∑
ε

λ({ε})
∑
c

g(c, ε)P ({c}, ε), (10.5.3)

for any g: C × E → R, where (c, ε), ε and c range C × E,E and C, respec-
tively.

Proof. We consider the circuit representation (10.5.2) for the positive bal-
anced function v and define

λ(E) =
∑
c∈C

w(c) Jc(E), E ⊆ E,

where

Jc(E) =
∑

(i,j)∈E

Jc(i, j).

Also, define P : P (C ) × E → R+ by the relation

P (C, (i, j)) =
∑

c∈C w(c)Jc(i, j)∑
c∈C w(c)Jc(i, j)

, C ⊆ C, (i, j) ∈ E.
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Then, P (·, ·) is a transition probability measure from (C,P (C )) to
(E,P (E )).
If μ is defined for each measurable rectangle C × E by

μ(C × E) =
∑

(i,j)∈E

P (C, (i, j))λ{(i, j)}

=
∑

(i,j)∈E

∑
c∈C

w(c) Jc(i, j)

=
∑
c∈C

w(c) Jc(E),

then μ extends to a measure on P (C ) ⊗ P (E ).
Finally, μ(C × E) = λ(E) and (10.5.3) holds as well. The proof is

completed. �
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Wide-Ranging Interpretations
of the Cycle Representations
of Markov Processes

In the present chapter we shall further study wide-ranging interpretations
of the cycle representations of Markov processes: the homologic, the al-
gebraic, the Banach space, the measure-theoretic and the stochastic one,
which altogether express genuine laws of real phenomena. The versatility
of these interpretations as orthogonality equations, as linear expressions
on cycles, as Fourier series, as semigroup equations, as disintegrations of
measures, etc., is consequently motivated by the existence of algebraic–
topological principles in the fundamentals of the cycle representations of
Markov processes.

11.1 The Homologic Interpretation
of the Cycle Processes

Let S = {n1, n2, . . . , nk}, k ≥ 1, be a set of symbols, which denote the states
of a homogeneous irreducible Markov chain ξ = {ξn, n = 0, 1, 2, . . .}. The
stochastic transition matrix of ξ is denoted by P = (pij , i, j ∈ S), that is,

pij ≡Prob (ξn+1 = j|ξn = i) = Prob (ξn = i, ξn+1 = j)/Prob (ξn = i), i, j ∈S,

for any n = 0, 1, . . . , whenever Prob (ξn = i) �= 0, i ∈ S. Also, the invariant
probability distribution of ξ will be symbolized by π = (πi, i ∈ S). Then
π′P = π.
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C3

Cm

C1

C2

i3
i2

i1
i4

Figure 11.1.1.

Let G = (S,E) be the oriented graph associated to P and consider arbi-
trary but fixed orderings on S and E, that is,

S = {n1, n2, . . . , nk}, k ≥ 1,
E = {(i1, j1), (i2, j2), . . . , (is, js)}

= {b(i1,j1), b(i2,j2), . . . , b(is,js)} = {b1, b2, . . . , bs}.

As we have already seen, the irreducibility of ξ is translated in terms of
graph-elements as follows: any point i1 ∈ S belongs to at least one or-
dered sequence (i1, i2, . . . , in, i1), n = 1, 2, . . . , called a directed circuit (or
cycle) in S, such that the pairs (i1, i2), . . . , (in, i1) are edges of G. That
is, the set E of directed edges determines completely a finite collection
C = {c1, c2, . . . , cm} of overlapping directed circuits such that each edge
belongs to at least one circuit of C as in Figure 11.1.1.

Throughout this section, we shall consider only directed circuits
(i1, . . . , iu, i1) with distinct points i1, . . . , iu.

As we have studied in Chapter 4, any irreducible finite state Markov chain
like ξ above admits a description of the finite probability distributions in
terms of the directed circuits or cycles of the associated graph as follows:

Prob{ξn = i, ξn+1 = j} =
∑
c∈C

wcJc(i, j), i, j ∈ S, n = 0, 1, . . . ,

(11.1.1)
where wc, c ∈ C, are positive real numbers, called usually the cycle-weights,
and

Jc(i, j) = 1, if (i, j) ∈ E and (i, j) is an edge of c,
= 0, otherwise.

Now we shall show how to find a homologic analogue of the process
ξ = (ξn)n in a suitable vector space associated to the graph G along with
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a homologic interpretation of the cycle formula (11.1.1). First, define

C0 =

{∑
i

xini, xi ∈ R,ni ∈ S

}

the vector space spanned by the points n1, n2, . . . , nk called 0-simplexes in
R2. The elements of C0 are called 0-chains. Here the points of S and the
edges of G are viewed homeomorphically in the plane R2.

Further define

C1 =

{∑
i

yibi, yi ∈ R, bi ∈ E

}

the vector space spanned by the edges of E, called 1-simplexes in R2.
The elements of C1 are called one-chains. Then as in Chapter 4 any cir-
cuit c = (i1, i2, . . . , ik, i1) ∈ C is uniquely associated with a vector c ∈ C1

defined as

c =
∑
(i,j)

Jc(i, j)b(i,j). (11.1.2)

Consequently, if we associate the process ξ = (ξn) with the (unique) vector

ξ =
∑
(i,j)

(πi pij)b(i,j) ∈ C1, (11.1.3)

then the cycle decomposition (11.1.1) has a vector analogue in C1 as
follows:

ξ =
∑
c∈C

wc c. (11.1.4)

Now, associate each directed circuit c = (i1, i2, . . . , is, i1) ∈ C with a
surface-element σc, which is the polygon with interior and with vertices
i1, i2, . . . , is (see Figure 11.1.2). The polygons σc, c ∈ C, are oriented ac-
cording to the orientation of the circuit c as in Figure 11.1.2. The σc, c ∈ C,

i4

i3

i2

i1

i5

σc

Figure 11.1.2.
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Figure 11.1.3.

are the topological images of regular s-gons, s > 1, or of certain circles,
and are called the closed 2-cells. With the definition of Rotman (1979)
(see pp. 17–19) each σc is a sum of s 2-simplexes whose boundary remains
always c.
Furthermore, each 2-simplex is a continuous image in R2 of the convex set
spanned by (0,0),(1,0),(0,1).
Denote by Σ the collection of all 2-cells determined by the circuits of C in
the graph G.

Define

C2 =

{∑
i

ziσi, zi∈R, σi∈Σ

}
,

the vector space spanned by the 2-cells associated with G. Then C2 is
identical with the vector space spanned by all triangles with interior (the
2-simplexes) occurring in G. The collection

K = G ∪ {the directed 2-cells}
= S ∪ E ∪ {2-cells}

will be called the 2-complex associated with the Markov chain ξ (or, with
the stochastic matrix P). In general, we may define an n-complex associated
to the process ξ.

Further we shall now define boundary operators (resolutions) ∂2, ∂1, ∂0

as in Rotman (1979) (p. 19):

· · · −→ C2
∂2−→ C1

∂1−→ C0
∂0−→ 0.

To this direction we consider the standard simplexes Δ0,Δ1,Δ2 with
the corresponding vertices {(0, 0)} for Δ0, {(0, 0), (0, 1)} for Δ1, and
{(0, 0), (0, 1), (1, 0)} for Δ2, that is, Δ0 = {0},Δ1 = [0, 1],Δ2 = the triangle
(with interior) with vertices at (0, 0), (0, 1), (1, 0). For each Δk, k = 0, 1, 2,
consider an orientation. Since a k-simplex, k = 0, 1, 2 in the 2-complex
K associated to ξ is a continuous function σ: Δk → K, k = 0, 1, 2, the
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Δ0 = {0} is homeomorphically transposed by the zero-simplexes into the
points nr, r = 1, . . . , k, of K, the Δ1 = [0, 1] is homeomorphically trans-
posed by the one-simplexes into the edges of K: b1, . . . , bs, and the Δ2 is
homeomorphically transposed by the 2-simplexes into the 2-cells of K.

Define ∂0 ≡ 0, ∂1((nh, nk)) ≡ nk − nh, where (nh, nk) is the oriented edge
of E with the original end at nh and the terminal end at nk. The op-
erator ∂1 has an abstract expression in terms of the embedding func-
tions e0: Δ0 → Δ1, e1: Δ0 → Δ1 defined as: e0(0) = (0, 1), e1(0) = (1, 0).
Then nk = σ{(0, 1)} = σe0(Δ0), nh = σ{(1, 0)} = σe1(Δ0), where σ: Δ1 →
K is the 1-simplex (nh, nk). So, ∂1(nh, nk) = ∂1 σ = σe0Δ0 − σe1 Δ0 =∑1

i=0(−1)i σ ei.
Extend ∂1 to C1 by

∂1

(∑
i

yibi

)
=
∑
i

yi∂1(bi),

where bi = ((ni(h), ni(k)), i = 1, . . . , s.
Define ∂2: C2 → C1 for a 2-cell σc = the sum of k two-simplexes σj =

triangles with bases the k edges of the circuit c = (i1, i2, . . . , ik, i1), as
follows:

∂2 σc =
k∑

j=1

∂2 σj =
k∑

j=1

2∑
i=0

(−1)i σj ei =
k∑

j=1
ik+1≡i1

b(ij , ij+1) = c.

Thus ∂2, associates each 2-cell σc to its boundary directed circuit c.
Now consider the dual spaces C∗

0 , C
∗
1 , C

∗
2 , . . . and the cohomology bound-

ary operators

← C∗
2

∂∗
2←− C∗

1

∂∗
1←− C∗

0

∂∗
0←− 0∗,

where Ker∂∗
2 ⊃ Im∂∗

1 . Then we may define the factor group H2 ≡
Ker∂∗

2

/
Im∂∗

1
, which is the 2nd cohomology group of K. On the other hand,

except for an isomorphism we have C1 = Ker∂1 ⊕ Im∂∗
1 (see Lefschetz

(1975)). Accordingly we may write

ξ =
∑
c∈C

wc c⊕O.

Now, we may conclude:

Theorem 11.1.1. (The homologic interpretation). Any cycle process ξ
has a vector analogue ξ in Ker∂1 given by

ξ =
∑
c∈C

wc c.
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In general, any finite Markov chain η = (ηn) may be decomposed into a
sum of a cycle process ζ = (ζn) and a noncycle process ζ⊥ = (ζ⊥n )n, that
is, η may be associated with a vector η ∈ C1 written as

η = ζ ⊕ ζ⊥,

where ζ ∈ Ker∂1, ζ
⊥ ∈ Im∂∗

1 (except for an isomorphism).

11.2 An Algebraic Interpretation

Assume the same hypotheses and notations of the previous paragraph for
the Markov chain ξ. In Chapter 8 we have shown that the graph G = (S,E)
of ξ provides collections of cycloids whose arc-sets coincide with E. Also,
we may always find by the maximal-tree-method a base of elementary
cycloids for the vector space C̃1 = Ker ∂1 of all one-cycles. For exam-
ple, in Figure 11.2.1 we have a strongly connected 1-graph G = (S,E),

u8

u7

u5

u6

u1

u2
u4

6

1

2

10

12 11

9

3

4

5

7

8

u3

Figure 11.2.1.
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where S = {1, 2, . . . , 12}, card E = 19 and the Betti number is B = 8.
Then a base for the corresponding space C̃1 may be given by using the
cycloids:

γ̃1 = (2,3,4,5,6,1,2), γ̃2 = (2,7,6,1,2), γ̃3 = (4,3,4), γ̃4 = {(6,2),(1,2),(6,1)},
γ̃5 = {(3,9),(9,10),(10,2),(1,2),(6,1),(5,6),(4,5),(3,4)}, γ̃6 = {(11,12),(12,2),
(1,2),(6,1),(5,6),(4,5),(3,4),(3,11)}, γ̃7 = {(4,7),(7,6),(5,6),(4,5)},
γ̃8 = {(7,8),(8,4),(4,5),(5,6),(7,6)},

where the corresponding Betti edges are u1 = (2, 3), u2 = (2, 7), u3 =
(4, 3), u4 = (6, 2), u5 = (3, 9), u6 = (11, 12), u7 = (4, 7), u8 = (7, 8), and the
first three cycloids are directed circuits.
In general, we may choose by the maximal-tree-method two bases of elemen-
tary Betti cycloids {c̃1, . . . , c̃B} and {γ̃

1
, . . . , γ̃

B
}, with the corresponding

Betti edges (i1, j1), . . . , (iB , jB) and (u1, v1), . . . , (uB , vB).
Then any cycloid c̃ may be written as

c̃ =
B∑

k=1

Jc̃,c(ik, jk) c̃k =
B∑
l=1

Jc̃,c(ul, vl) γ̃l
,

where c and c are the two possible directed circuits associated with c̃ and

Jc̃,c(i, j) = 1, if (i, j) is an edge of c̃ and c,

= −1, if (i, j) is an edge of c̃ and c−,
= 0, otherwise.

By replacing c̃ with γ̃
l
, l = 1, . . . , B, we have

γ̃
l
=

B∑
k=1

Jγ̃l,γl
(ik, jk) c̃k,

or else,

Jγ̃1,γ1(i, j) =
B∑

k=1

Jγ̃1,γ1(ik, jk) Jc̃k,ck(i, j), i, j ∈ S. (11.2.1)

Equations (11.2.1) are generalizations of the cycle formula (11.1.1) in terms
of the cycloids and have the following algebraic interpretation: they give
the change of a base of cycloids into another one.
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11.3 The Banach Space Approach

In Chapter 9 we have shown that the cycle formula may be interpreted
as a Fourier decomposition

∑
wγγ for any denumerable Markov process

which admits an invariant measure, where {γ} is an orthonormal family of
directed cycles. Also, we have proved that we may define a Markov process
from suitable Banach spaces lp on cycles.

Here we shall now prove the converse of Theorem 9.4.1. Namely, we have

Theorem 11.3.1. Let P = (pij , i, j ∈ N) be the transition matrix of an
irreducible and positive-recurrent Markov chain ξ = (ξn)n, whose invariant
probability distribution is π = (πi, i ∈ N).

Then the following statements hold:

(i) The sequence (πipij , (i, j) ∈ N2) satisfies the cycle formula for p = 1
and with respect to a countable collection (C,wc) of directed cycles c
and positive weights wc, where C and {wc} are given a probabilistic
interpretation in terms of the sample paths of ξ;

(ii) Given collection (C,wc) as in (i) above, if (πipij , (i, j) ∈ N2) ∈
l2(N2) then, except for certain isomorphisms, the sequence
{∑n

k=1 wckck}n converges in H(E ) to

∑
(i,j)

( ∞∑
k=1

wckJck(i, j)
)
b(i,j),

as n → ∞, where E is the vector space generated by the Arc-set C endowed
with certain ordering.

Proof. (i) Let N,N2 be endowed with certain orderings. Consider that P =
(pij , i, j ∈ N) and π = (πi, i ∈ N) satisfy the hypotheses of the Theorem.
Then, we may apply the cycle representation Theorem 3.3.1 according to
which we may choose a collection C of directed cycles which occur along
almost all the sample paths of the Markov chain ξ = (ξn)n on P and a
unique collection {wc, c ∈ C} of positive numbers such that

πipij =
∑
c∈C

wcJc(i, j), i, j ∈ N,

where any cycle-coordinate wc, c ∈ C, enjoys the following probabilistic in-
terpretation: wc = lim

n→∞(wc,n(ω)/n) a.s., and wc,n(ω) denotes the num-
ber of appearances until time n of cycle c along almost all trajectories
(ξ1(ω), ξ2(ω), . . .). Furthermore, the cycle values wc, c ∈ C, are indepen-
dent of the ordering of C. Then the sequence (πi, pij , (i, j) ∈ N2) satisfies
the cycle formula for p = 1 and with respect to the above representative
collection (C,wc) for the stochastic matrix P = (pij , i, j ∈ N).
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(ii) Let C = {c1, c2, . . .} and {wck , k ∈ N} be the cycle representatives
for the original stochastic matrix P = (pij , i, j ∈ N) as given at (i). Denote
by N,E and C the vector spaces generated by N = Vertex-set C, Arc-
set C and C = {c1, c2, . . .} as introduced in Chapter 9. Consider further
the corresponding Hilbert spaces H(N ), H(E ) and H(C). Then, according
to Theorem 9.2.2, the sequence of isomorphs of {∑m

k=1 wckck}m in H(E )
converges to

∑
(i,j) (

∑∞
k=1 wck Jck(i, j)) b(i,j), as m → ∞. The proof is com-

plete. �

11.4 The Measure Theoretic Interpretation

As we have shown in Chapter 4, given a finite set S and a transition prob-
ability matrix {pij , i, j ∈ S}, which admits an invariant probability distri-
bution π = (πi, i ∈ S), there exists a finite class C of directed circuits c
in S and a positive function w : C → R+ called a weight function such
that

πipij =
∑
c∈C

w(c)Jc(i, j), i, j ∈ S, (11.4.1)

where Jc(., .) is the passage-function of c defined as

Jc(i, j) = 1, if (i, j) is an edge of c,
= 0, otherwise.

The probabilistic algorithm of Theorem 4.4.1 assures the uniqueness of w
and its independence of the ordering of C.

It might be interesting to investigate the measure-theoretic meaning of
the weight function w(·) occurring in the circuit representation (11.4.1). To
this end, consider the measurable space (S,P (S)), where P (S) denotes
as usual the power set of S, and the transition probability function from S
to P (S) defined as Q(i, A) =

∑
j∈A pij , for any i ∈ S and A ⊆ S. We shall

show that

πiQ(i, A) =
∫
C

w(c) Ic(i, A) dc , i ∈ S A ⊆ S,

where C is the ordered set of all directed circuits with distinct points
in S associated to P, dc denotes the counting measure on P (C) and
Ic generalizes the passage function Jc occurring in (11.4.1), while the
weight function w: C → R+ is the Radon-Nicodym derivative dν

dc of a suit-
able measure v with respect to dc. Specifically, for any directed circuit
c = (i1, i2, . . . , is, i1) = (c(n), c(n + 1), . . . , c(n + s− 1), c(n)), n ∈ Z, of pe-
riod s> 1, we consider the following passage-functions of c.

(i) Jc(i, j) = 1, if i = c(n), j = c(n + 1) for some n ∈ Z,
= 0, otherwise,
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(ii) Ic(i, A) = 1, if i = c(n) and c(n + 1) ∈ A for some n ∈ Z,

= 0, otherwise.

Then we have

Proposition 11.4.1. The passage-function Ic(·, ·) satisfies the following
equations:

(i) Ic(i, A) =
∑
j∈A

Jc(i, j),

(ii) Ic(i, S) = Jc(i),

for all i ∈ S,A ⊆ S, where Jc(i) =
∑
j∈S

Jc(i, j).

Proof. If Ic (i, A) = 0 for i ∈ S and A ∈ P (S), then Jc(i, j) = 0 for all
j ∈ A. Therefore both members of (i) are equal to zero. Now, consider that
Ic(i, A) �= 0. Then i = c(n) for some n ∈ Z and c(n + 1) ∈ A. Thus both
expressions

∑
j∈A Jc(i, j) and Ic(i, A) equal 1.

Finally, (ii) is a special case of (i) for A = S. The proof is complete. �

Further, consider the measure space (C,A, ν), where A = A(G ) is the
smallest σ-algebra generated by G = {C(i, A), i ∈ S,A ∈ P (S)} with
C(i, A) = {c ∈ C: Ic(i, A) = 1}, and v is defined as follows:

ν(C(i, {j}) = πipij , ij ∈ S, (11.4.2)

ν(∪nBn) =
∑

n
πin Q(in, An), if Bn = C(in, An) �= ∅, in ∈ S,An ⊆ S,

n = 1, 2, . . . ,
= 0, otherwise,

where the sets in the union are pairwise disjoint. Note that {c} ∈ A(G ).
Now, consider A,A′ ∈ P (S) such that A ∩A′ = ∅. Then, C(i, A) ∩

C(i, A′) = ∅, i ∈ S. Accordingly, for any sequence C(i, An), n = 1, 2, . . . ,
where An, n = 1, 2, . . . , are pairwise disjoint sets we may use the additivity
of Q(i, ·) and write

ν(∪nC(i, An)) = ν(C(i,∪nAn))
= πiQ(i,∪nAn)

=
∑

n
πiQ(i, An)

=
∑

n
ν(C(i, An)).

Now we may prove the following:

Theorem 11.4.2. There are two finite measure spaces (C,P (C), dc) and
(C,P (C), ν) such that

πiQ(i, A) =
∫
C

w(c) Ic(i, A)dc =
∑
c∈C

w(c) Ic(i, A) i ∈ S,A ⊆ S, (11.4.3)
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and

πi =
∫
C

w(c) Jc(i)dc =
∑
c∈C

w(c) Jc(i), i ∈ S, (11.4.4)

where w(·) denotes the Radon–Nicodym derivative dν
dc .

Proof. Since v, defined by (11.4.2), is absolutely continuous with respect
to the counting measure dc, we may apply the Radon–Nikodym theorem,
and find a (P (C)-measurable) function w: C → R+ such that

ν(B) =
∫
B

w(c) dc =
∑
c∈B

w(c), B ⊆ C. (11.4.5)

To obtain (11.4.3), we may choose B = C(i, A) for i ∈ S and A ∈ P (S) in
(11.4.5). Then we have

ν(C(i, A)) = πiQ(i, A) =
∫
C(i,A)

w(c)dc

=
∫
C

w(c) Ic(i, A)dc

=
∑
c∈C

w(c) Ic(i, A).

Finally, taking A = S in (11.4.3) and applying Proposition 11.4.1, we get
Ic(i, S) = Jc(i). Then (11.4.3) becomes

πi =
∫
C

w(c) Jc(i)dc =
∑
c∈C

w(c)Jc(i), i ∈ S.

The proof is complete. �

11.5 The Cycle Representation Formula as a
Disintegration of Measures

Equation (10.5.1) becomes a disintegration formula of the measure μ̃(·) =
μ(C × ·) with respect to ν({c}) = p(c) w(c), when C is the entire set C of
the directed cycles or circuits which decompose a positive balance function
v, that is,

μ̃(E) =
∑
c∈C

Q(c, E) ν({c}), E ⊆ E,

where Q is a transition function defined as in the proof of Theorem 10.5.1.
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Consequently, by using the approach of M.M. Rao (1993) the cycle repre-
sentation formula

v(i, j) =
∑
c∈C

w(c) Jc(i, j), (i, j) ∈ E,

expresses a “disintegration” of the “edge-measure” v(i, j) relative to the
“cycle-measure” w(c).

The present paragraph is devoted to the study of the cycle representa-
tions of balance functions in the context of the disintegration of measures
as given by M.M. Rao (1993).
We first prove

Theorem 11.5.1. Let S be a finite set and let v(·, ·): S × S → R+ be any
positive balanced function with the oriented graph (S, E) and a circuit rep-
resentation (C, w(·)) with w(c) > 0, c ∈ C.

Consider the probability measure μ on the product measurable space (C ×
E,P (C ) ⊗ P (E )) defined for each measurable rectangle C × E ⊆ C × E
as:

μ(C × E) =
1∑

c∈C

p(c)w(c)

∑
c∈C

w(c) Jc(E), (11.5.1)

where p(c) denotes the period of the cycle c, and Jc(i, j) = 1 or 0 according
to whether or not (i, j) is an edge of c. Then

(i) there exists a transition probability function Q from (C,P (C )) to
(C × E,P (C ) ⊗ P (E )) such that

μ(C × E) =
∑
c∈C

Q(c,C × E) ν({c}). (11.5.2)

for any C × E ⊆ C × E, where ν = μ ◦pr−1
c is the image probability

of μ with respect to the projection prc: C × E → C.
(ii) there exists a transition probability function P from (E,P (E )) to

(C × E,P (C ) ⊗ P (E )) such that

μ(C × E) =
∑

(i,j)∈E

P ((i, j), C × E ) λ({(i, j)}), (11.5.3)

for any C × E ⊆ C × E, where λ = μ ◦pr−1
ε is the image probability

of μ with respect to the projection prε: C × E → E.

Proof. (i) Let (C ′ × E) be any measurable rectangle with C ′ ∈ P (C ), E ∈
P (E ), and let C ∈ P (C ). Consider

μ[(C ′ × E) ∩ pr−1
c (C)] = μ[(C ′ ∩ C) × E].

Then for each C ′ × E ⊂ C × E, the measure μ[(C ′ × E) ∩ pr−1
c (·)] is abso-

lutely continuous with respect to ν on P (C ). Consequently, there exists
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the Radon–Nikodým derivative Q(·, C ′ × E) of μ[(C ′ × E) ∩ pr−1
c (·)] rela-

tive to ν, that is,

μ[(C ′ × E) ∩ pr−1
c (C)] =

∑
c∈C

Q(c, C ′ × E) ν({c}),

for any C ∈ P (C ).
Furthermore, the σ-additivity of the measure μ(· ∩ pr−1

c (C)) implies that
Q(c, ·) is σ-additive as well, for any c ∈ C.

From the expression of μ given by (11.5.1) we may further find the con-
crete form of both ν and Q as follows:

ν(C) = (μ ◦ pr−1
c )(C)

= μ(C × E )

=
1∑

c∈C

p(c)w(c)

∑
c∈C

p(c) w(c),

for any C ∈ P (C ).
Also,

μ[(C ′ ∩ C) × E] =
1∑

c∈C

p(c)w(c)

∑
c∈C′∩C

w(c)Jc(E), (11.5.4)

and∑
c∈C

Q(c, C ′ × E) ν({c}) =
1∑

c∈C

p(c)w(c)

∑
c∈C

p(c)w(c)Q(c, C ′ × E).

(11.5.5)
Then, from (11.5.4) and (11.5.5), Q(c, C ′ × E) is identical to

Q(c, C ′ × E) =

⎧⎪⎨
⎪⎩

1
p(c)

Jc(E), if c ∈ C ′,

0, if c /∈ C ′.

In particular, if C ′ = C, then we obtain (11.5.2), where

Q(c,C × E) ≡
∑

(i,j)∈E

1
p(c)

Jc(i, j),

for any c ∈ C and E ⊆ E.
(ii) Consider

μ[(C × E′) ∩ pr−1
ε (E)] = μ[C × (E ∩ E′)],

for any C ∈ P (C ) and E,E′ ∈ P (E ).
Then for each C × E′ ⊆ C × E, the measure μ[(C × E′) ∩ pr−1

ε (·)] is ab-
solutely continuous relative to λ = μ ◦ pr−1

ε on P (E ). Consequently, there
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exists the Radon–Nikodým derivative P (·, C × E′) of the former with re-
spect to λ, that is,

μ[(C × E′) ∩ pr−1
ε (E)] =

∑
(i,j)∈E

P ((i, j), C × E′) λ{(i, j)}.

Also, the σ-additivity of P ((i, j), ·) follows from that of μ[· ∩ pr−1
ε (E)] for

any (i, j) ∈ E. As in the proof of (i), we now describe both λ and P (·, ·)
from the concrete expression (11.5.1) of μ. Specifically, we have

λ(E) = (μ ◦ pr−1
ε )(E)

= μ(C × E)

=
1∑

c∈C

p(c)w(c)

∑
c∈C

w(c)Jc(E),

for any E ⊆ E.
On the other hand,

μ(C × (E ∩ E′)) =
1∑

c∈C

p(c)w(c)

∑
c∈C

w(c) Jc(E ∩ E′), (11.5.6)

and ∑
(i,j)∈E

P ((i, j), C × E′) λ{(i, j)}

=
1∑

c∈C

p(c)w(c)

∑
(i,j)∈E

P ((i, j), C × E′)
(∑

c∈C

w(c) Jc(i, j)
)
. (11.5.7)

The comparison of equations (11.5.6) and (11.5.7) inspires the following
expression for P ((i, j), ·) on the measurable rectangles C × E′:

P ((i, j), C × E′) =

∑
c∈C

w(c)Jc(i, j) · 1E′(i, j)∑
c∈C

w(c)Jc(i, j)
, (i, j) ∈ E. (11.5.8)

Indeed, by replacing (11.5.8) in (11.5.7), we get

∑
(i,j)∈E

P ((i,j),C × E′)λ{(i,j)} =
1∑

c∈C

p(c)w(c)

∑
(i,j)∈E

∑
c∈C

w(c) Jc(i,j) 1E′(i,j)

=
1∑

c∈C

p(c)w(c)

∑
c∈C

w(c) Jc(E ∩ E′)

= μ(C × (E ∩ E′)).
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For the particular choice E′ = E, we obtain (11.5.3) with

P ((i, j), C × E ) =
∑

c∈C w(c) Jc(i, j)∑
c∈C w(c) Jc(i, j)

,

for any (i, j) ∈ E and C ⊆ C.
The proof is complete. �

Corollary 11.5.2. Let S be a finite set and let v(·, ·): S × S → R+ be a
positive balanced function which has the graph (S, E) and satisfies the cycle
decomposition

v(i, j) =
∑
c∈C

w̃(c)J̃c(i, j), (i, j) ∈ S × S, (11.5.9)

where C denotes as usual a collection of directed circuits c with periods
p(c) ≥ 1; w̃(c) > 0 and J̃c(i, j) = 1/p(c), or 0 according to whether or not
(i, j) is an edge of c.

Let λ̃ be the measure on the edges defined as λ̃{(i, j)} = v(i, j), (i, j) ∈ E,
and let ν̃ be the measure on the circuits defined as ν̃({c}) = w̃(c), c ∈ C.
Then

(i) there exists a transition probability function Q̃ from (C,P (C )) to
(E,P (E )), which disintegrates λ̃ relative to ν̃, that is,

λ̃(E) =
∑
c∈C

Q̃(c, E) ν̃({c}), E ∈ P (E ). (11.5.10)

(ii) there exists a transition probability function P̃ from (E, P (E) to
(C,P (C )), which disintegrates ν̃ relative to λ̃, that is,

ν̃(C) =
∑

(i,j)∈ E

P̃ ((i, j), C) λ̃{(i, j)}, C ∈ P (C ). (11.5.11)

Proof. (i) By choosing C = C in equation (11.5.2), we get

μ(C × E) =
∑
c∈C

Q(c,C × E) ν({c}),

for any E ∈ P (E ), where

ν({c}) =
p(c)w(c)∑

c∈C

p(c)w(c)
,

and {C, w(c)} is the circuit representation of v occurring in Theorem 11.5.1
with the passage-function Jc(i, j).
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Consider the measures λ̃: P (E ) → R+ and ν̃: P (C ) → R+ defined as

λ̃(E) =
∑
c∈C

w̃(c) J̃c (E), E ∈ P (E ),

ν̃(C) =
∑
c∈C

w̃(c), C ∈ P (C ),

where w̃(c) ≡ p(c) w(c) and J̃c(i, j) = (1/p(c)) Jc(i, j), c ∈ C.
Define the transition probability function Q̃ from (C,P (C )) to

(E,P (E )), by

Q̃(c, E) = J̃c(E), c ∈ C, E ∈ P (E ),

where J̃c(E) =
∑

(i,j)∈E J̃c(i, j), c ∈ C.
Then

λ̃(E) =
∑
c∈C

Q̃(c, E) ν̃({c}), E ⊆ E.

(ii) By applying an analogous reasoning to equation (11.5.3) for E = E,
we get

μ(C × E ) =
∑

(i,j)∈ E

P ((i, j), C × E ) λ{(i, j)}, C ⊆ C.

Consider now the measures λ̃ and ν̃ associated with the circuit representa-
tion {C, w̃(c)} as in (i).
Define the transition probability function P̃ from (E,P (E )) to (C,P (C )),
by

P̃ ((i, j), C) =
∑

c∈C w̃(c)J̃c(i, j)∑
c∈C w̃(c)J̃c(i, j)

, (i, j) ∈ E, C ⊆ C.

Then

ν̃(C) =
∑

(i,j)∈ E
P̃ ((i, j), C) λ̃{(i, j)}, C ⊆ C.

The proof is complete. �

Remark. We have proved that the circuit representation formula (11.5.9) is
equivalent with the disintegration formula of the measure λ̃{(i, j)} = v(i, j)
on the edges with respect to the measure ν̃({c}) = w̃(c) on the circuits,
that is,

v(i, j) =
∑
c∈C

Q̃(c, {(i, j)}) w̃(c), i, j ∈ S. (11.5.12)
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On the other hand, by choosing C = {c}, c ∈ C, in equation (11.5.11), we
obtain

w̃(c) =
∑

(i,j)∈ edge−set of c

P̃ ((i, j), {c}) v(i, j), c ∈ C. (11.5.13)

The equivalence between the cycle representation formula (11.5.9) and the
disintegration of measures (11.5.12) allows us a parallel with Kirchhoff’s
laws on electrical networks where the overlapping circuits are here given
by the circuits c ∈ C and the electrical flow {w̃(c)} is obeying Kirchhoff’s
laws. Specifically, equation

v(i) (≡
∑
j∈S

v(i, j)) =
∑
c∈C

Q̃(c, i) w̃(c), i ∈ S,

with Q̃(c, i) =
∑

j Q̃(c, {(i, j)}), expresses that the current v(i) at node
i ∈ S equals the sum of the currents w(c) = [(1/p(c)) w̃(c)] of the circuits
c passing through i.

On the other hand, the disintegration of measures (11.5.13) may enjoy the
following dual interpretation: the series connected voltage-sources w(i, j) =
P̃ ((i, j), {c}) v(i, j), where (i, j) ranges the edge-set of the circuit c, are
equivalent with the one voltage sourse w̃(c) of the circuit c.



II

Applications of
the Cycle Representations



1

Stochastic Properties in
Terms of Circuits

In the present chapter we shall be concerned with circuit Markov chains
and we shall investigate their recurrent behavior, entropy production and
reversibility property. The principal results will give criterions in terms of
the representative circuits and weights.

1.1 Recurrence Criterion in Terms of the Circuits

In Section 2.2 of Part I certain coutable state Markov chains are defined
using classes {C, wc} where C is a countable set of overlapping directed cir-
cuits with distinct points (except for the terminals) satisfying some topolog-
ical conditions, and {wc, c ∈ C} is any collection of strictly positive numbers
attached to C. We recall now the definition of these processes.

Let S be the set of points of all the circuits of C. Preliminary ingredients
will be the passage functions Jc(·, ·) assigned to the circuits c of C. Here
we shall consider the backward–forward passage functions Jc introduced by
relation (2.2.1) of Part I, where the domain of each Jc is the set S × S.

Assume C satisfies the conditions (c1), (c2), and (c3) quoted in Section
2.2 (Part I). In particular, C may contain infinitely many circuits with
periods greater than 2. Introduce

w(i, j) =
∑
c∈C

wcJc(i, j), i, j ∈ S. (1.1.1)

Then we may use the function w(·, ·) to define an S-state Markov chain as
follows. Since

∑
j∈S w(i, j) is finite for any i ∈ S (see condition (c1)), we
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may consider

w(i) =
∑
c∈C

wcJc(i), i ∈ S,

where Jc(i) ≡
∑

j∈S Jc(i, j). Then

pij =
w(i, j)
w(i)

, i, j ∈ S, (1.1.2)

define the stochastic matrix of a Markov chain ξ = (ξn)n≥0 called the cir-
cuit chain associated with {C, wc}. The chain ξ is an S-state irreducible
reversible Markov chain.

One may obtain a recurrent or transient behavior for the circuit chain ξ
according to the constraints imposed to either the circuit weights wc alone,
or to both collections C and {wc}. For instance, in Theorem 2.2.2 of Part I
the Nash-Williams-type criterion for the chain ξ to be recurrent is a global
condition on the circuit weights wc.

In this section a topological argument on C is developed to give a suf-
ficient condition, of Ahlfors-type, for a reversible countable state circuit
chain to be recurrent (S. Kalpazidou (1988b, 1989b, 1991e). To this end,
let us add to conditions (c1), (c2), and (c3) on C (mentioned in Section 2.2
of Part I) the following one on the circuit weights wc, c ∈ C:

(c4) there exists a strictly positive number b such that wc ≤ b for all c ∈ C.

Consider the shortest-length distance d on S, that is,

d(k, u) =

⎧⎨
⎩

0, if k = u;
the shortest length of the paths
along the edges of C connecting k to u, if k �= u;

where the passages through the edges are backward–forward passages (that
is, a circuit c passes through (k, u) if and only if the backward–forward
passage function Jc has a nonzero value at either (k, u) or (u, k)).

Fix an arbitrary point O in S called the origin. Let Sm,m = 0, 1, 2, . . .
be the “sphere” of radius m about the origin, that is,

Sm = {u ∈ S : d(O , u) = m}.

Then S0 = {O} and {Sm,m = 0, 1, 2, . . .} is a partition of S. Consider now
the “balls” Bn, n = 0, 1, 2, . . . , of radius m about the origin, that is,

Bn =
n⋃

m=0

Sm.
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Define the function γ(n), n = 0, 1, 2, . . . , as follows:

γ(n) = card Bn. (1.1.3)

We call γ the growth function of S associated with C and O (S. Kalpazidou
(1990c)). In particular, when C is the representative class of a circuit chain
ξ, γ will be called the growth function of ξ associated with O.

We now prove

Theorem 1.1.1. Any reversible circuit chain ξ whose generative class
{C, wc} satisfies conditions (c1)–(c4) is recurrent if

∞∑
n=1

1
γ(n) − γ(n− 1)

= ∞. (1.1.4)

Proof. Let

αk =
∑
u∈Sκ

∑
u′∈Sκ−1

w(u, u′), k = 0, 1, . . . .

We shall prove that (1.1.4) is a sufficient condition for the series∑∞
κ=0(αk)−1 to be divergent. To this end, let us estimate the αk, k =

0, 1, . . . , in terms of the growth function:

αk =
∑
u∈Sκ

∑
u′∈sκ−1

∑
c∈C

wcJc(u, u′)

≤ b
∑
u∈Sκ

∑
c∈C

Jc(u)

≤ bn0(γ(k) − γ(k − 1)),

where n0 and b are the constants occurring in conditions (c1) and (c4), re-
spectively. The last inequalities together with (1.1.2) assure the divergence
of the series

∑
k(αk)−1. Then, appealing to Theorem 2.2.2 of Part I, one

obtains the desired result. �

The previous theorem shows that, although the stochastic features of
a circuit chain do not in general remain invariant when the collection of
the weights {wc}c∈C varies while the configuration of the circuits remains
unchanged, one can still find stochastic properties which remain invariant
when the collection Wα ≡ {wc}c varies in a certain family {Wα}. This will
then argue for a dichotomy of the collections Wα of circuit-weights into
recurrent collections and transient collections according to whether the
corresponding circuit chains are recurrent or transient. A detailed study of
this aspect is given by S. Kalpazidou (1991e) and is based on an important
lemma due to P. Baldi, N. Lohoué, and J. Peyrière (1977) and specialized
to discrete spaces by N. Varopoulos (1984c).
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1.2 The Entropy Production of Markov Chains

1.2.1. A heuristic introduction to the entropy production of Markov chains
has its beginnings in the corresponding generative entity arising in non-
equilibrium statistical physics. Let Σ be a nonequilibrium system of coupled
chemical reactions where some reactants are continuously introduced into
the system and others are continuously withdrawn. Then the affinity

Aij = pjpji − pipij

expresses the reaction rates, where pij denotes a probability law from
i to j, (pj) is a strictly positive probability distribution, and i, j ∈
{1, . . . , n}, n > 1, symbolize the chemical components involved in the reac-
tion. The number n of components does not need to be finite. Consider the
entity

Ãij = log
pjpji
pipij

with pij > 0, i, j ∈ {1, . . . , n},

which is known in the physical nomenclature as the conjugated thermody-
namic force of Aij . Then the expression

E ≡ 1
2

∑
i,j AijÃij

= 1
2

∑
i,j(pjpji − pipij) log

pjpji
pipij

, (1.2.1)

containing all pij > 0, may be interpreted up to a constant factor (which
is the Boltzmann constant multiplied with the temperature at which the
reaction occurs) as the entropy production of the system Σ.

The expression E given by (1.2.1) was first investigated by J. Schnaken-
berg (1976) under the standpoint of nonequilibrium statistical physics. Ac-
cordingly, E is decomposed into two terms E1 and E2 such that

E = E1 + E2 (1.2.2)

and

E1 = 1
2

∑
i,j(pjpji − pipij) log

pj
pi

,

E2 = 1
2

∑
i,j(pjpji − pipij) log

pji
pij

.

The interpretation of this decomposition is more suitable in the nonhomo-
geneous case when the equation for the dynamical evolution of a probability
distribution pi(t) (over states i ∈ {1, 2, . . . , n}) characterizing the system
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Σ is given by

d

dt
pi(t) =

n∑
j=1

(pj(t)pji − pi(t)pij).

Then E1 is exactly the first derivative of (−∑i pi(t) log pi(t)) and repre-
sents the entropy of the system in equilibrium, while P2 is the contribution
due to the coupling of the system to an external set of thermodynamic
forces which prevent the system from achieving an equilibrium state. Here
we point out that the previous interpretation in a thermodynamic setting
argues why the expression (1.2.2) can be identified with the entropy pro-
duction of the system Σ except for a couple of factors due to the natural
conditions. A second reason that enables one to identify (1.2.2) with the en-
tropy production of the real system is the stability criterion of P. Glansdorff
and I. Prigogine (1971) according to which a steady state of a thermody-
namic system is stable if the so-called excess entropy production, that is,
the second-order variation δ2E around the steady state, is positive (see J.
Schnakenberg (1976), p. 579).

1.2.2. We are now in the position to apply to Markov chains the argu-
ment developed in the previous paragraph and to define the analogue of the
entropy production. Let S be a denumerable set. Consider ξ = (ξn)n≥0 as
any irreducible and positive-recurrent S-state Markov chain whose transi-
tion probability matrix is P = (pij , i, j ∈ S). Let π = (πi, i ∈ S) denote the
invariant probability distribution of P. Then the expression

E = 1
2

∑
i,j∈S(πipij − πjpji) log

πipij
πjpji

, (1.2.3)

where the pairs (i, j) occurring in the sum correspond to strictly positive
probabilities pij , is called the entropy production of the chain ξ. Since the
chain ξ is a circuit chain with respect to some class (C, wc) of directed
circuits in S and positive weights, it might be interesting to express the
entropy production in terms of the circuits and their weights. Here is a
detailed argument due to Minping Qian and Min Qian (1982) (see also
Minping Qian et al. (1991)).

Namely, we have:

Theorem 1.2.1. The entropy production E of an irreducible and positive-
recurrent Markov chain ξ with a denumerable state space S has the following
expression in terms of the circulation distribution (wc, c ∈ C):

E = 1
2

∑
c∈C(wc − wc ) log

wc

wc
, (1.2.4)

where C is the collection of directed circuits occurring along almost all the
sample paths and c− denotes the reversed circuit of c.
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Proof. Let P = (pij , i, j ∈ S) and π = (πi, i ∈ S) be, respectively, the tran-
sition matrix and the invariant probability distribution of ξ. The circulation
distribution (wc, c ∈ C) was introduced by Theorem 3.2.1 of Part I. Here C
is the collection of all directed circuits with distinct points (except for the
terminals) occurring along almost all the sample paths of ξ. Assign each
circuit c = (i1, . . . , is, i1) ∈ C to the cycle ĉ = (i1, . . . , is), s > 1. Then, ap-
pealing to Theorem 3.3.1 and Corollary 3.2.3, one may write

E = 1
2

∑
i,j

∑
(i,j) occurs in ĉ

(wc − wc−) log
πipij
πjpji

= 1
2

∑
c

(wc − wc−)
s∑

k=1

log
πiκpiκiκ+1

πiκ+1piκ+1iκ

= 1
2

∑
c

(wc − wc−) log
s∏

k=1

πiκpiκiκ+1

πiκ+1piκ+1iκ

= 1
2

∑
c

(wc − wc−) log
wc

wc−
. �

1.3 Reversibility Criteria in Terms of the Circuits

Let S be an arbitrary denumerable set and let Z denote the set of all in-
tegers. We say that an irreducible and positive-recurrent S-state Markov
chain ξ = (ξn)n∈Z is reversible if (ξm1 , ξm2 , . . . , ξmn) has the same distri-
bution as (ξτ−m1 , ξτ−m2 , . . . , ξτ−mn) for all n ≥ 1, and m1, . . . ,mn, τ ∈ Z.
The most known necessary and sufficient criterion for the above chain
ξ to be reversible is given in term of its transition probability matrix
P = (pij , i, j ∈ S) and invariant probability distribution π = (πi, i ∈ S),
and it is expressed by the equations

πipij = πjpji, i, j ∈ S. (1.3.1)

When relations (1.3.1) hold, we say that ξ is in detailed balance (see P.
Whittle (1986), F.P. Kelly (1979)).

Let us write relations (1.3.1) for the edges (i1, i2), (i2, i3), . . . , (is, i1) of
an arbitrarily chosen directed circuit c = (i1, . . . , is, i1), s > 1, with distinct
points i1, . . . , is, which occurs in the graph of P. Then multiplying these
equations together and cancelling the corresponding values of the invariant
distribution π, we obtain the following equations:

pi1i2pi2i3 · · · · · pis−1ispisi1 = pi1ispisis−1 · · · · · pi3i2pi2i1 (1.3.2)

for any sequence of states i1, . . . , is ∈ S. Equations (1.3.2) are known as
Kolmogorov’s criterion and provide a necessary and sufficient condition, in
term of the circuits, for the chain ξ to be reversible.
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As we shall show in this section, a natural development of the idea of
expressing the reversibility property in term of the circuits can be achieved
if we appeal to the circuit representation theory according to which the
original chain ξ is completely determined by a collection (C, wc) of directed
circuits and weights. Then, when the circuits to be considered are defined
by the sample paths of ξ, the corresponding criterion assuring the property
of reversibility will rely on the process itself.

Let us further develop certain necessary and sufficient conditions, in
terms of the weighted circuits, for the chain ξ to be reversible. To this
end, let us consider the circulation distribution (wc, c ∈ C) defined in The-
orem 3.2.1 of Part I, where C contains now all the directed circuits (with
distinct points except for the terminals) occurring along almost all the sam-
ple paths of ξ. Then the circuit weights wc, c ∈ C, also called cycle skipping
rates, are defined by the sample paths of ξ according to Theorem 3.2.1.

To establish the connection between the wc’s and equation (1.3.1) above,
we may use the entropy production of ξ introduced in the previous section.
Namely, we have

E = 1
2

∑
i,j∈S

(πipij − πjpji) log
πipij
πjpji

= 1
2

∑
c∈C

(wc − wc−) log
wc

wc−
.

Then the expression

(wc − wc−) log
wc

wc−

describes the deviation from symmetry along the circuit c, while the en-
tropy production is the total deviation from symmetry along the circuits
occurring on the sample paths.

Accordingly, one may assert the following criterion: the circuit chain
ξ is reversible if and only if the components wc, c ∈ C, of the circulation
distribution of ξ satisfy the consistency condition

wc = wc− , (1.3.3)

where c denotes as always the reversed circuit of c.
The analogues of the previous relations for physical phenomena are given

by T. Hill (1977) using a diagram method where his concepts of cycle flux
and detailed balance correspond, respectively, to the circulation distribu-
tion and reversibility property of Markov chains.

One may obtain the same condition (1.3.3) using the connection between
the wc’s and the Kolmogorov criterion (1.3.2). To this end we shall need the
following algebraic expression of wc provided by Corollary 3.2.2 of Part I.
Let c = (i1, . . . , is, i1), s > 1, be a directed circuit of C with distinct points
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i1, . . . , is. Then the cycle skipping rate wc has the following expression:

wc = πi1pi1i2pi2i3 · · · pis−1ispisi1

·N(i2, i2/i1)N(i3, i3/i1, i2) · · ·N(is, is/i1, . . . , is−1),

where N(ik, ik/i1, . . . , ik−1) denotes the taboo Green function introduced
by relation (3.1.4) of Part I. Since the product

πi1N(i2, i2/i1)N(i3, i3/i1, i2) · · ·N(is, is/i1, . . . , is−1)

is unaffected by the permutation of the indices i1, i2, . . . , is, we may in-
troduce it, as a multiplier, in the Kolmogorov equations (1.3.2). Then we
obtain again the consistency relation (1.3.3).

Let us now suppose that the state space S of ξ is finite. Let (C, wc) be any
deterministic representation of ξ as in Theorem 4.2.1 of Part I. Then the
transition probabilities pij , i, j ∈ S, of ξ are defined as pij = w(i, j)/w(i),
with

w(i, j) =
∑
c∈C

wcJc(i, j), i, j ∈ S,

w(i) =
∑
c∈C

wcJc(i), i ∈ S,
(1.3.4)

where the passage function Jc(·, ·) is given by Definition 1.2.2 of Part I, and
Jc(i) =

∑
j Jc(i, j). Consider the collection C− = {c− : c− is the reversed

circuit of c, c ∈ C}. Put wc− = wc. Define

w−(i, j) =
∑

c−∈C−

wc−Jc−(i, j), i, j ∈ S,

w−(i) =
∑

c−∈C−

wc−Jc−(i), i ∈ S.
(1.3.5)

Then one can find that the transition probabilities of the inverse chain of
ξ are given by

p̂ij =
w−(i, j)
w−(i)

, i, j ∈ S.

This immediately leads to the following conclusion: ξ is reversible if and
only if w(i, j) = w−(i, j) for all i, j ∈ S.

Our results can now be summarized in

Theorem 1.3.1. Let S be a denumerable set. If (pij , i, j ∈ S) is the tran-
sition matrix and (C, wc) is the circulation distribution associated with an
S-state irreducible and positive-recurrent Markov chain ξ = (ξn)n∈Z , then
the following statements are pairwise equivalent:
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(i) The chain ξ is reversible.
(ii) The chain ξ is in detailed balance. That is,

πipij = πjpji, i, j ∈ S,

where π = (πi, i ∈ S) denotes the invariant probability distribution
of ξ.

(iii) The transition probabilities of ξ satisfy the Kolmogorov cyclic con-
dition:

pi1i2pi2i3 · · · pis−1ispisi1 = pi1ispisis−1 · · · pi3i2pi2i1 ,
for any sequence of states i1, . . . , is ∈ S.

(iv) The components of the circulation distribution of ξ satisfy the con-
sistency condition:

wc = wc− , c ∈ C.

(v) The entropy production is null, that is,∑
c∈C

(wc − wc−) log
wc

wc−
= 0.

1.4 Derriennic Recurrence Criterions in Terms
of the Weighted Circuits

As we have seen, recurrence criterions are usually given under the reversibil-
ity hypothesis. When this property does not hold, we still may find recur-
rence criterions for the case of the circuit Markov processes.

The present section is devoted to Derriennic’s recurrence criterions (as
given in Derriennic (1999a, b)) by using the circuit representation for ran-
dom walks in random environments on the integers line Z, whose increments
are +2 or −1. These criterions provide a method to construct plenty of re-
current Markov chains, and show that recurrence is a property which does
not depend only on the unidimensional marginal distributions of the envi-
ronment, in contrast to the case of the “birth and death” random walks
studied by Solomon (1995). Furthermore, the Derriennic criterions extend
previous result of Letchikov (1988) and improve the efficiency of Key’s
criterion (1984), based on the multiplicative ergodic theorem of Oseledets.

1.4.1. Following always Derriennic (1999a), let us first consider a random
walk X = (Xk)k≥0 on the set N of natural numbers, with the jumps +2 or
−1 in a fixed environment. The corresponding Markov transition matrix is
given by

P(Xk+1 = n + 2/Xk = n) = pn, (1.4.1)
P(Xk+1 = n− 1/Xk = n) = qn = 1 − pn, n ≥ 1,
P(Xk+1 = 2/Xk = 0) = 1,
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where the (pn)n≥0 is an arbitrarily fixed sequence with p0 = 1 and 0 <
pn < 1, for any n ≥ 1.
Consider also the corresponding “adjoint” chain X ′ = (X ′

k)k≥0 on N, whose
only possible transitions are n → n− 2 and n → n + 1. Then the Markov
transition matrix of X ′ is given by

P (X ′
k+1 = n + 1/X ′

k = n) = q′n,

P (X ′
k+1 = n− 2/X ′

k = n) = p′n = 1 − q′n, n ≥ 2,

P (X ′
k+1 = 2/X ′

k = 1) = 1,

P (X ′
k+1 = 1/X ′

k = 0) = 1,

(1.4.2)

where (p′n)n≥0 is an arbitrary sequence with p′0 = p′1 = 0 and 0 < p′n < 1,
for any n ≥ 2. In the sequel we shall use the following notations: the chain
X has the jumps +2 or −1 with the probabilities (pn, qn); the chain X ′

has the jumps −2 or +1 with the probabilities (p′n, q
′
n).

Plainly, these chains are not reversible, but they admit a representation by
cycles and weights, which we shall use to study criterions for their recurrent
(transient, or, positive-recurrent) behavior.

First, we have

Proposition 1.4.1. The Markov chain X introduced by (1.4.1) has a
unique representation by cycles and weights.

Proof. The set of representative cycles is given by the sequence cn =
(n, n + 2, n + 1), n ≥ 0, since only the transitions from n to n + 2, and from
n to n− 1 are possible. There are 3 cycles passing through each point
n ≥ 2: cn, cn−1, cn−2; 2 cycles passing through 1: c1, c0; and, only one cycle
c0, passing through 0. Then it remains to define the corresponding weights.
Specifically, if we symbolize the weight wc(n) of cn by wn, then the sequence
{wn, n ≥ 0} have to be a solution to the equation

pn =
wn

wn−2 + wn−1 + wn
, n ≥ 2,

p1 =
w1

w0 + w1
.

Let us put ξn = wn

wn−1
, n ≥ 1. Then the preceding equation reduces to:

ξ1 =
p1

q1
and ξn =

pn
qn

(
1 +

1
ξn−1

)
, n ≥ 2.

Given the sequence (pn), it is clear that the solution (ξn), n ≥ 1, exists and
is unique. Thus the sequence of the weights wn, n ≥ 0, is uniquely defined
as wn = w0 ξ1 . . . ξn, up to a multiplicative constant factor (the uniqueness
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in the statement of the theorem is obviously understood up to a constant
factor). Consequently, the transition probabilities of X are written as:

pij =
∑
cn

wnJcn(i, j)/
∑
cn

wnJcn(i),

where Jcn(i, j) = 1, or 0 according to whether or not (i, j) is an edge of cn,
and Jcn(i) =

∑
j

Jcn(i, j). The proof is complete. �

To study the adjoint chain X ′, we shall need

Lemma 1.4.2. Given a positive sequence (an)n≥0, there exists a positive
sequence (zn)n≥0, which is the solution of equation

zn = an

(
1 +

1
zn+1

)
, n ≥ 0.

Namely, the value z0 may be chosen to be any intermediate value between
the inferior and superior limits of the convergents of the continued fraction

u0 +
1

u1 + 1
u2...

,

where u0 = a0 and un+1 = an+1
un

. The solution (zn)n≥0 is unique if any only
if
∑∞

n=0 un = +∞, and in particular if
∑∞

n=0 an = +∞.

Proof. The numbers un are positive. Even though they are not integers,
we can write them in the formula of the convergents of a continued fraction
in the place of the partial quotients. Plainly, z0 may be any number between
the limit of the increasing sequence of even convergents and the limit of
the decreasing sequence of odd convergents. For example, if

z0 = u0 +
1

u1 + 1

u2

(
1+ 1

z3

) ,
then

u0 +
1

u1 + 1
u2

≤ z0 ≤ u0 +
1
u1

.

For more details, see Khinchin (1984). This proves the existence of the
sequence (zn)n≥0. It is not unique if the two limits of even convergents and
of odd convergents are not equal. In this case z0 can be chosen arbitrarily
in the corresponding interval. If the two limits are equal, z0 is this unique
value and then the sequence (zn)n≥0 is unique, as well. It is well known that
the convergence of the continued fraction is equivalent to

∑∞
n=0 un = +∞.

The proof is complete. �
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Now, we are prepared to prove

Proposition 1.4.3. The adjoint Markov chain X ′ defined by (1.4.2) is
a circuit chain whose circuit representation is not necessarily unique. A
sufficient condition to have a unique circuit representation is given by

∞∑
n=1

p′n
q′n

= +∞.

Proof. The set of the representative directed cycles for X ′ is {c′n = (n, n +
1, n + 2);n ≥ 0}; they are the reversed cycles of those which represent the
chain X. The existence of the weights w′

n = w′
c(n) is not obvious, as it was

for the chain X. Specifically, the sequence {w′
n} is given as a solution to

the equation

p′n =
w′

n−2

w′
n−2 + w′

n−1 + w′
n

, n ≥ 2.

Since there is only one cycle c0, which passes through 0 and two cycles c0
and c1 passing through (1, 2), then the corresponding two weights w′

0 and
w′

1 may be arbitrarily chosen. To solve the proposed equation, let us put
ξ′n+1 = w′

n−1
w′

n
, n ≥ 1. Then, by applying Lemma 1.4.2 to the equation

ξ′n =
p′n
q′n

(
1 +

1
ξ′n+1

)
, n ≥ 2,

for an admissible value of ξ′2, there exists a sequence of weights defined
as w′

n = w′
0

ξ′2...ξ
′
n+1

, n ≥ 1. If ξ′2 is unique then the sequence of weights w′
n is

unique up to a multiplicative factor w′
0. The proof is complete. �

Furthermore, we have

Theorem 1.4.4 (Positive-recurrence criterion). The chain X defined by
(1.4.1) is positive-recurrent if and only if

∑+∞
n=1 ξ1 . . . ξn < +∞, where

ξn = pn

qn

(
1 + 1

ξn−1

)
, with ξ1 > 0 and n ≥ 2. The adjoint chain X ′ defined

by (1.4.2) is positive-recurrent if and only if
∑+∞

n=2
1

ξ′2...ξ
′
n
< +∞, where

ξ′n = p′
n

q′n

(
1 + 1

ξ′
n+1

)
, with ξ′2 > 0 and n ≥ 2.

Now we shall study a recurrence criterion for the above chains. Following
the well-known method based on the Foster–Kendall theorem, we consider
the harmonic functions on N\{0}. For the chain X, the equation of harmonic
functions is given by

pnfn+2 + qnfn−1 = fn, n ≥ 1.
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With the differences Δfn = fn − fn−1 we get

(Δfn+2 + Δfn−1)pn = qn(Δfn),

and with γn = Δfn
Δfn+1

we have

γn =
pn
qn

(
1 +

1
γn+1

)
, n ≥ 1.

We recognize here the equation of the ξ′n for the chain X ′, where p′n =
pn (n ≥ 2). Therefore, the strictly increasing harmonic functions of the
chain X are in correspondence with the weight representations of the chain
X ′ such that

p′n = P(X ′
k+1 = n− 2/X ′

k = n) (1.4.3)
= P(Xk+1 = n + 2/Xk = n) = pn, n ≥ 2.

We shall call the chain (X ′
k)k≥0 the adjoint of the chain (Xk)k≥0 if and

only if relation (1.4.3) holds.
For a chain X ′ it is understood that p′0 = p′1 = 0; therefore, the adjoint of
a chain X is well defined. However, two chains X with the same pn for any
n ≥ 2 and with different p1 have the same adjoint. Since two such chains
have the same asymptotic behavior, there is no inconvenience in calling
also the chain X the adjoint of X ′, when pn = p′n, for n ≥ 2.
For the chain X ′, the harmonicity equation on N\{0} is given by

p′nf
′
n−2 + q′nf

′
n+1 = f ′

n, n ≥ 2.

Letting γ′
n = Δ f ′

n+1
Δ f ′

n
we further get

γ′
n =

p′n
q′n

(
1 +

1
γ′
n−1

)
, n ≥ 2

Then, according to Proposition 1.4.1 we here recognize the equation of the
ξn for the adjoint chain X. Consequently, we may state the following:

Theorem 1.4.5 (Recurrence-Transience Criterion). The chain (Xk) de-
fined by (1.4.1) is transient if and only if the adjoint chain (X ′

k) (according
to (1.4.3)) is positive-recurrent. Both adjoint chains (Xk) and (X ′

k) are
simultaneously null-recurrent.
Specifically, we have

(i) the chain (Xk) is transient if and only if
∑+∞

n=1 w
′
n < ∞, where

w′
n = 1

ξ′2...ξ
′
n+1

, with ξ′n = p′
n

q′n

(
1 + 1

ξ′
n+1

)
, n ≥ 2 and ξ′2 > 0; (w′

n) is

the weight sequence of the adjoint chain (X ′
k); a symmetrical state-

ment holds for the chain (X ′
k) with wn = ξ1 . . . ξn, where ξn =

pn

qn

(
1 + 1

ξn−1

)
, and ξ1 > 0.

(ii) both adjoint chains (Xk) and (X ′
k) are null-recurrent when∑∞

n=1 wn =
∑∞

n=1 w
′
n = +∞.
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1.4.2. Consider now random walks on Z whose possible steps are +2 or
−1. We shall give criterions for recurrence or transience of the random
walks on Z, which are valid for almost all environments. For the birth and
death chains similar results are given by Solomon (1975).

Let (S,S,m) be a probability space and let θ:S → S be a measure pre-
serving ergodic automorphism of this space. Let p be a measurable function
p:S → (0, 1).
Each s ∈ S generates the random environment pn = p(θns), where θ is
measure preserving and ergodic. The sequence (pn) is a stationary and er-
godic sequence of random variables. On the infinite product space Ω = ZN,
with the coordinates (Xk)k≥0, we define a family of probability measures
(Ps)s∈S , such that for every s ∈ S, (Xk) is a Markov chain on Z with

Ps(X0 = 0) = 1, (1.4.4)
Ps(Xk+1 = n + 2|Xk = n) = p(θns),
Ps(Xk+1 = n− 1|Xk = n) = 1 − p(θns) ≡ q(θns).

We have

Proposition 1.4.7. For m-almost every environment s ∈ S, the chain
(Xk)k≥0 has a unique cycle representation (C,wn).

Proof. We may choose as representative cycles the ordered sequences cn =
(n, n + 2, n + 1), n ∈ Z. If we denote by wn(s) the weight of cn, and put
ξn(s) = wn(s)

wn−1 (s) , n ∈ Z, we get the equation

ξn(s) =
p

q
(θns)

(
1 +

1
ξn−1(s)

)
, n ∈ Z. (1.4.5)

By applying Lemma 1.4.2 to the sequence (ξ−n), we see that the solution
(ξn(s))n∈Z exists and is unique m-a.s. The unicity comes from the sufficient
condition

∑−1
n=−∞

p
q (θns) = +∞, m-a.s. Then the corresponding sequence

of weights is defined as

w0(s) = 1,
wn(s) = ξ1(s) . . . ξn(s), if n > 0,

wn(s) =
1

ξ0(s)ξ−1(s) . . . ξn+1(s)
, if n < 0,

(as before the uniqueness of the weight sequence is understood up to a
constant factor).

Let us consider more closely the sequence (ξn(s))n∈Z as a solution to
the equation (1.4.5). Specifically, from Lemma 1.4.1, we know that ξ0(s) is
given by the infinite continued fraction with partial quotients υ0(s) = p

q (s),
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and vn+1(s) = p
q (θn−1s)/vn(s). Consequently, we write

ξ0(s) = [v0(s), . . . , vn(s), . . .].

Plainly, ξ0 is measurable and positive on S. Furthermore we have

ξk(s) = [v0(θks), . . . , vn(θks), . . .] = ξ0(θks),

therefore, the sequence (ξk)k∈z is stationary with respect to the probability
measure m.
From the ergodicity hypothesis on θ, it is clear that convergence of∑∞

n=1 wn and
∑−1

n=−∞ wn are properties which hold m—almost everywhere
or m—almost nowhere. �

Now, we introduce the “adjoint” random walk (X ′
k)k≥0 in a random envi-

ronment s as in (1.4.3). Correspondingly, we have

Probs(X ′
0 = 0) = 1, (1.4.6)

Probs(X ′
k+1 = n− 2/X ′

k = n) = p(θns),
Probs(X ′

k+1 = n + 1/X ′
k = n) = 1 − p(θns) = q(θns).

For this adjoint chain there is a unique cycle representation, where the
cycles are c′n = (n, n + 1, n + 2) and the weights w′

n(s) verify ξ′n+1(s) =
w′

n−1(s)
w′

n(s)
, where

ξ′n(s) =
p

q
(θns)

(
1 +

1
ξ′n+1(s)

)
, n ∈ Z.

The function ξ′0(s) is given by the continued fraction [v′0(s), . . . , v′n(s), . . .]
whose partial quotients are v′0(s) =

p

q
(s) = v0(s) and

v′n+1(s) =
p

q
(θn+1s)/v′n(s).

From the recurrence-criterion given by Theorem 1.4.5, we know that the
behaviors of (Xk) and of the “adjoint” (X ′

k) are tied together, and depend
on the convergence of the series
∞∑
1

n∏
�=1

ξ0(θ�),
∞∑
1

n∏
�=1

ξ′0(θ
�),

−1∑
−∞

(
n+1∏
�=0

ξ0(θ−�)

)−1

,

−1∑
−∞

(
n+1∏
�=0

ξ′0(θ
−�)

)−1

.

We have

Theorem 1.4.8 (Recurrence-transience criterion). Assume that the two
functions ln p

1−p and ln 1
1−p are m-integrable.

The random walk X = (Xk)k≥0 in ergodic random environment, defined
by (1.4.4), is recurrent for m-a.e. environment s ∈ S, if and only if
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∫
S

ln ξ0(s)dm(s) = 0, where ξ0(s) is the infinite continued fraction

ξ0(s) = [v0(s), . . . , vn(s), . . .],

with v0 =
p

1 − p
, . . . , vn+1 =

v0 ◦ θ n+1

vn
, . . .

If
∫
S

ln ξ0(s)dm(s) > 0, then lim
k→∞

Xk = +∞ a.s.

If
∫
S

ln ξ0(s)dm(s) < 0, then lim
k→∞

Xk = −∞ a.s.

The “adjoint” random walk X ′ = (X ′
k)k≥0 defined by (1.4.6), with the in-

crements −2 or +1, is recurrent if and only if the random walk X =
(Xk)k≥0 is recurrent.
Moreover, lim

k→∞
X ′

k = +∞ a.s. if and only if lim
k→∞

Xk = −∞ a.s., and re-

ciprocally.

1.4.3. Derriennic (1999a) investigates a few examples of random walks in
a random environment. Let α and β be two numbers such that 0 < α < 1
and 0 < β < 1. Consider also the values pn of the probabilities of jumps
from n to n + 2 as follows: pn = α with probability 1/2, or pn = β with
probability 1/2. Therefore, the marginal distributions of the sequence pn
are given. We shall consider first the periodic case, and then the case of an
environment which is independent and identically distributed.

In the periodic environment, with period 2, we put pn = α if n is even,
and pn = β if n is odd, or the converse. The underlying dynamical system
(S,m, θ) is just a set having 2 elements, with m the uniform measure and θ

the permutation. Then ξ0 takes only 2 values x and y with probability 1/2,
where y = β

1−β

(
1 + 1

x

)
and x is the unique positive solution to the equation

x =
α

1 − α

(
β + x

β(1 + x)

)
.

Then we get

α =
∫

ln ξ0 dm =
1
2

(
ln

β

1 − β
+ ln(1 + x)

)
.

and after elementary computations the recurrence criterion is as follows:

i) if α
1−α + β

1−β = 1, then we have recurrence,
ii) if α

1−α + β
1−β > 1, then we have transience and Xk → +∞ a.s.,

iii) if α
1−α + β

1−β < 1, then we have transience and Xk → −∞ a.s.,

where the average increment is equal to 3
2 (α + β) − 1.

When α
1−α + β

1−β = 1, this average is negative, except for α = β = 1/3.
In other words, the random walk is recurrent but the average increment is
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negative. A small increase of α will produce the transience to +∞; yet if
the increase is small enough the average increment remains negative.

In the independent identically distributed environment, the infinite con-
tinued fraction ξ0 is a random variable which cannot be easily simplified.
Yet using the convergents it is possible to give explicit sufficient conditions
of transience.
Namely, with

v0 =
p0

1 − p0
, vn+1 =

(
p−n−1

1 − p−n−1

)
1
vn

, n ≥ 0,

we have

ξ0 = [v0, . . . , vn, . . .]

and

[v0, . . . , v2�+1] ≥ ξ0 ≥ [v0, . . . , v2�+2], for any � ≥ 0.

Using ξ0 ≤ [v0, v1, v2, v3], we obtain∫
ln ξ0 dm ≤

∫
ln

(
1 +

p0

1 − p0
− p−2/(1 − p−2)

p−1
1−p−1

(1 + p−2
1−p−2

) + p−2
1−p−2

)
dm.

A computation of this quantity for (pn)n∈Z an independent and identi-
cally distributed sequence, where pn = α with probability 1/2, pn = β with
probability 1/2, and with the additional condition α

1−α + β
1−β = 1, yields

a function of α
1−α having the following properties:

– for α
1−α = 1/2 (α = β = 1/3, that is, the fixed environment) the

corresponding value is ln 11
10 > 0,

– for α
1−α→ 1−, the function tends to −∞.

– for α
1−α→ 0+, the function tends to −∞.

These properties show that for α close enough to 0 or 1/2, the random walk
in the independent and identically distributed environment is transient
and Xk → −∞ a.s. although in the periodic environment (with the same
marginal values) the random walk is recurrent. This is the case for example
with α = 1/4, that is, pn = 1/5 with probability 1/2, and pn = 3/7 with
probability 1/2.



2

Lévy’s Theorem Concerning
Positiveness of Transition
Probabilities

Paul Lévy investigated “the allure” of the sample paths of general Markov
processes ξ = {ξt}t≥0 with denumerable state space S by using the prop-
erties of the so-called i-intervals, that is the sets I(i) = {t: ξt = i}. Lévy’s
study concludes with a very fine property of the transition probabilities
pij(t) of ξ, known as the Lévy dichotomy:

for any pair (i, j) of states and t ∈ (0,+∞), pij(t) is either identically
zero or everywhere strictly positive.

(See P. Lévy (1951, 1958).)
D.G. Kendall, introducing a classification for Markovian theorems in the

spirit of the swallow/deep classification of Kingman, pointed out that the
Lévy dichotomy belongs to the class of theorems relying on the Chapman–
Kolmogorov equations (see D.G. Kendall and E.F. Harding (1973), p. 37).

D.G. Austin proved Lévy’s property by a probabilistic argument, using
the right separability of the process and Lebesgue’s theorem on differen-
tiation of monotone functions. Another proof, more analytic, was latter
given by D. Ornstein (see K.L. Chung (1967) for details on these results).
Recently, K.L. Chung (1988)) proved Lévy’s theorem by using some infor-
mation from the corresponding Q-matrix: he assumes the states are stable.

In this section we shall show that Lévy’s theorem has an expression
in terms of directed cycles or circuits, when the state space is at most a
countable set and the process admits an invariant probability distribution
π = (πi, i ∈ S). Our approach relies on the circuit representation theory
exposed in Part I according to which, for each t, the transition probabilities
pij(t) are completely determined by a class {C(t), wc(t)}, where C(t) and
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wc(t) denote, respectively, a collection of directed circuits occurring in the
graph of (pij(t), i, j ∈ S) and strictly positive numbers. Specifically, the
pij(t)’s are expressed as

πipij(t) =
∑

c∈C(t)

wc(t)Jc(i, j), wc(t) > 0, t ≥ 0, i, j ∈ S,

where Jc is the passage function associated with c. Throughout this chap-
ter the circuits will be considered to have distinct points (except for the
terminals). Then for t > 0

w(i, j, t) ≡ πipij(t) > 0
if and only if (i, j) is an edge of some circuit c ∈ C(t).

Accordingly, we may say that Lévy’s theorem expresses a qualitative prop-
erty of the process ξ. This will then inspire a circuit version of Lévy’s
theorem according to which the representative circuits are time-invariant
solutions to the circuit generating equations∑

j

w(i, j, t) =
∑
k

w(k, i, t), i ∈ S, t > 0.

Finally, we shall discuss a physical interpretation of Lévy’s theorem when
the elements of C(t) are considered resistive (electric) circuits, the πi, i ∈
S, represent node (time-invariant) currents and the w(i, j, t), i, j ∈ S, are
branch currents.

2.1 Lévy’s Theorem in Terms of Circuits

Given a countable set S, let P = {P (t), t ≥ 0} be any homogeneous stochas-
tic standard transition-matrix function with P (t) = (pij(t), i, j ∈ S). As-
sume P defines an irreducible positive-recurrent Markov process ξ =
{ξt, t ≥ 0} on a probability space (Ω,K,P). Suppose further that P (t), t >
0, is of bounded degree (that is, for any i ∈ S there are finitely many
states j and k such that pij(t) > 0 and pki(t) > 0). For any t > 0 consider
the discrete t-skeleton Ξt = {ξnt, n ≥ 0} of ξ, that is, the S-state Markov
chain whose transition probability matrix is P (t). The above assumptions
on P imply that any skeleton-chain Ξt is an irreducible aperiodic positive-
recurrent Markov chain.

Now we shall appeal to the circuit representation Theorems 3.3.1 and
5.5.2 of Part I according to which, there exists a probabilistic algorithm
providing a unique circuit representation {Ct, wc(t)} for each P (t), that is,

πipij(t) =
∑
c∈Ct

wc(t)Jc(i, j), t ≥ 0, i, j ∈ S, (2.1.1)
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where π = (πi, i ∈ S) denotes the invariant probability distribution of
P (t), t > 0,Ct is the collection of the directed circuits occurring on almost
all the trajectories of Ξt, t > 0, and wc(t), c ∈ Ct, are the cycle skipping
rates defined by Theorem 3.2.1. Then the wc(t)’s are strictly positive on
(0,+∞).

On the other hand, if we suppose that ξ is reversible, that is, for each
t > 0 the condition πipij(t) = πjpji(t) is satisfied for all i, j ∈ S, we may
apply the deterministic algorithm of Theorem 3.4.2 for defining a circuit
representation (C(t), w̃c(t)) of each P (t) with all w̃c(t) > 0 on (0,+∞). As
already mentioned we shall consider directed circuits (with distinct points
except for the terminals) as representatives. Furthermore, we shall distin-
guish the probabilistic collection of representative circuits from the deter-
ministic ones using the notation Ct for the first and C(t) for the second
ones. Also, the theorems quoted below belong to Part I. Denote by sgn x
the signum, that is, the function on [0,+∞) defined as sgn x = 1 if x > 0,
and sgn x = 0 if x = 0.

We are now in a position to apply to Lévy’s property the argument of
the circuit decomposition above, and to show that this property has an
expression in terms of the directed circuits.

Theorem 2.1.1. Let S be any finite set. Then for any S-state irreducible
Markov process ξ = {ξt}t≥0 defined either by a standard matrix function
P (t) = (pij(t), i, j ∈ S), t ≥ 0, or by a probabilistic or deterministic collec-
tion of directed circuits and weights, the following statements are equivalent:

(i) Lévy’s property: for any pair (i, j) of states, the sgn(pij(t)) is time
invariant on (0,+∞).

(ii) Arcset C(t) = Arcset C(s), for all t, s > 0 and for all the determin-
istic classes C(t) and C(s) of directed circuits occurring in Theorem
4.2.1 when representing Ξt, and Ξs, respectively, where Arcset C(u)
denotes the set of all directed edges of the circuits of C(u), u > 0.

(iii) Ct = Cs, for all t, s > 0, where Ct and Cs denote the unique proba-
bilistic classes of directed circuits occurring in Theorem 4.1.1 when
representing Ξt and Ξs, respectively.

If S is countable, then the above equivalence is valid for reversible pro-
cesses. In any case, we always have (i) ⇔ (iii).

Proof. First, consider that S is a finite set. The equivalence (i) ⇔ (ii)
follows immediately. Let us prove that (iii) ⇒ (i). Consider t0 > 0. Then
for any pair (i, j) of states we have

pij(t0) =
∑
c∈Ct0

1
πi

wc(t0)Jc(i, j), (2.1.2)

where π = (πi, i ∈ S) is the invariant probability distribution of ξ and
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wc(t0), c ∈ Ct0 , are the cycle skipping rates (introduced by Theorem 3.2.1).
If pij(t0) > 0, it follows from (2.1.2) that there is at least one circuit c0 ∈ Ct0

such that wc0(t0) > 0 and Jc0(i, j) = 1. Then, by hypothesis c0 ∈ Ct for all
t > 0. As a consequence, the pij(·), written as in (2.1.2), will be strictly
positive on (0,+∞). Therefore (iii) ⇒ (i).

To prove that (i) ⇒ (iii) we first note that the Chapman–Kolmogorov
equations and standardness imply that Cs ⊆ Ct for s ≤ t. It remains to show
the converse inclusion. Let c be a circuit of Ct, that is, c = (i1, . . . , ik, i1)
has the points i1, . . . , ik distinct from each other when k > 1 and

pi1i2(t)pi2i3(t) · . . . · piki1(t) > 0.

Then, from hypothesis (i) we have

pi1i2(s)pi2i3(s) · . . . · piki1(s) > 0.

Therefore c ∈ Cs, so that Cs ≡ Ct for all s, t > 0.
Finally, for the countable state space case we have to appeal to the

representation Theorems 3.3.1 and 3.4.2, and to repeat the above reasoning.
The proof is complete. �

As an immediate consequence of Theorem 2.1.1, the circuit decomposi-
tion (2.1.1), or the cycle decomposition (5.5.2) of Chapter 5 (Part I) should
be written in terms of a single class C ≡ Ct, independent of the parameter-
value t > 0, that is,

πipij(t) =
∑
c∈C

wc(t)Jc(i, j), t ≥ 0, i, j ∈ S.

Accordingly, (C, wc(t))t≥0 will be the probabilistic circuit (cycle) represen-
tation of ξ.

2.2 Physical Interpretation of the Weighted
Circuits Representing a Markov Process

One of the physical phenomena which can be modeled by a circuit pro-
cess is certainly that of a continuous electrical current flowing through a
resistive network. Accordingly, the circuits and the positive circuit-weights
representing a recurrent Markov process should be interpreted in terms of
electric networks. Then certain stochastic properties of circuit processes
may have analogues in some physical laws of electric networks.

Let S be a finite set and ξ = {ξt}t≥0 be an irreducible reversible Markov
process whose transition matrix function and invariant probability distri-
bution are P (t) = (pij(t), i, j ∈ S) and π = (πi, i ∈ S), respectively. Denote
by C0 the collection of all the directed circuits with distinct points (except
for the terminals) occurring in the graph of P (t). Since C0 is symmetric,
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we may write it as the union C ∪ C− of two collections of directed circuits
in S such that C− contains the reversed circuits of those of C.

Then the probabilistic circuit representation Theorem 4.1.1 and Lévy’s
theorem enable us to write the equations

πipij(t) =
∑
c∈C

wc(t)Jc(i, j) +
∑

wc−∈C−

wc−(t)Jc−(i, j), (2.2.1)

for any i, j ∈ S, t > 0, where the wc(t)’s and wc−(t)’s denote the cycle
skipping rates for all the circuits c and c with period greater than 2 and
the halves of the skipping rates for all the circuits c with periods 1 and 2.
The passage functions Jc and Jc− occurring in (2.2.1) are those introduced
by Definition 1.2.2 of Part I.

Consider w(i, j, t) ≡∑c∈C wc(t)Jc(i, j). Then, applying Theorem 1.3.1
of Part II, we have

1
2πi =

∑
j w(i, j, t) =

∑
k w(k, i, t), i ∈ S, t > 0. (2.2.2)

If we relate each circuit c ∈ C0 with a resistive circuit, we may interpret the
w(i, j, t), i, j ∈ S, as a branch current flowing at time t from node i to node
j. Suppose Ohm’s law is obeyed. Then equations (2.2.1) express Kirchhoff’s
current law for the resistive network associated with C.

Invoking the Lévy theorem in terms of circuits, equations (2.2.2) may
be interpreted in the electrical setting above as follows: if at some moment
t > 0 there exist currents wc(t) flowing through certain electric circuits c
according to the law of a circuit Markov process, then this happens at any
time and with the same circuits. But, using an argument from the electrical
context, the same conclusion arises as follows. The time invariance of the
node currents πi, i ∈ S, and the equilibrium Kirchhoff equations (2.2.2)
enable one to write∑

j

w(j, i, t− Δt) =
∑
k

w(i, k, t + Δt) = 1
2πi, i ∈ S, t > 0. (2.2.3)

Then, π being strictly positive at the points of every circuit c =
(i1, . . . , is, i1) at any time t > 0, the existence of a branch current
w(ik, ik+1, t− Δt) requires the existence of w(ik+1, ik+2, t + Δt), and vice
versa. Therefore the time invariance of the node currents πi and the
equilibrium equations (2.2.3) require the existence of the branch currents
w(j, i, t− Δt) > 0 and w(i, k, t + Δt) > 0 entering and leaving i. Then the
collection Ct of electrical circuits through which the current flows at time
t > 0 should be time-invariant, and this is in good agreement with Lévy’s
theorem.

In general, when interpreting a circuit Markov process, the diffusion of
electrical currents through the corresponding resistive network can be re-
placed by the diffusion of any type of energy whose motion obeys rules
similar to the Kirchhoff current law. For instance, relations (2.2.2) have
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a mechanical analogue as long as Kirchhoff current law has a full anal-
ogy in Newton’s law of classical mechanics. To review briefly some basic
mechanical elements of a mechanical system, we can recall any free-body
diagram where a body is accelerated by a net force which equals, according
to Newton’s law, the derivative of the momentum. This equality becomes,
when replacing, respectively, forces, velocity, friction, mass, and displace-
ment by currents, voltage, resistor, capacitor, and flux, formally equivalent
to Kirchhoff’s current law. The previous analogy enables us to consider cir-
cuit processes associated to mechanical systems which obey Newton’s laws.
For instance, let us observe the motion of a satellite at finitely many points
i1, i2, . . . , im of certain time-invariant overlapping closed orbits c (where
Newton’s laws are always obeyed). Then the passages of the satellite at
time t > 0 through the points i1, i2, . . . , im under the traction forces wc(t),
follow a Markovian trajectory of a circuit process with transition matrix
function

p̃ij(t) =
w(i, j, t)

π̃i
for all t > 0 and i, j ∈ {i1, i2, . . . , im},

where w(i, j, t) ≡∑c wc(t)Jc(i, j) and π̃i ≡
∑

j w(i, j, t). When a trajectory
correction is necessary at some instant of time, this will correspond to a
perturbation of either the Markov property or strict stationarity. Then we
have to change the stochastic model into another circuit process where the
corrected orbits will play the rôle of the new representative circuits for the
process.



3

The Rotational Theory of
Markov Processes

3.1 Preliminaries

Up to this point of our exposition, it has been seen that the main geometric
characteristics of either theoretical or practical importance for the defini-
tion of finite recurrent Markov processes are the edges and circuits. The
cycle representation theory presented in Part I gives us the liberty to inter-
change the weighted edges (of the stochastic matrices) with the weighted
cycles or circuits (of the circuit representations), and the resulting equations
and new revelations in the interaction between the stochastic processes
theory and algebraic topology are so useful that there is an unavoidable
methodological horizon leading to edge-problems and cycle-problems.

It turns out that the circuits are the simplest topological structures
which link the immediate inferior and superior topological elements in
the sequence: 0-cells, 1-cells, 2-cells, . . . . Namely, the directed circuits are
the simplest 1-chains whose boundary is zero and which are themselves the
boundaries of certain 2-cells. Furthermore, the circuits form a basis for
describing algebraically the linear expressions of the 1-cells and a tool for
describing the 2-cells.

The presence of the circuits in the descriptions of certain stochastic struc-
tures, as in the collection of finite-dimensional distributions defining a re-
current Markov process, is dictated by the presence of the directed edges
and circuits along the sample paths, and by the fundamental topological
rule

ηtζ = 0,
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where ηt is the tranposed matrix of η = (ηedge, point) introduced in (1.3.7),
and ζ = (ζedge, circuit) is given by (1.3.8) of Part I.

The rôle of the circuits grows when assigning them to certain coordinates,
the circuit-weights, by either nonrandomized algorithms or by randomized
algorithms (having in mind the Kolmogorov–Uspensky (1987) theory on
randomized algorithms).

This chapter is dedicated to a recent and essential application of the cycle
representations presented in Part I that reveals the connections between the
recurrent Markov processes and the rotations, something we have already
discussed in Chapter 1. Namely, we concluded there that:

any directed circuit provides a collection of arcs (rotations) partition-
ing the circle, and vice versa, certain partitions of the circle generate
collections of directed circuits.

A hypothesis imposed throughout this chapter will be that the circuits will
have distinct points (except for the terminals).

Let n ≥ 2 and let C be a set of overlapping directed circuits in a finite
set, say {1, 2, . . . , n}. Then, as will be shown, it is possible to find a cor-
respondence from the set C into a set of directed circle-arcs (summing to
2π) which are suitably indexed using the edges of C.

It turns out that the sets S̃i, i = 1, . . . , n, each consisting of a finite
union of arcs attached to the circuits passing through i by the previ-
ous correspondence, form a partition of the circle. Then the circle can
be viewed as an Ω-set of a future probability space, and the partitioning
sets S̃i, i = 1, . . . , n, as events which, when rotated by a suitable rotation
rτ of length τ = 2πt, can intersect each other, that is, rτ (S̃i) ∩ S̃j �= ∅,
for some i, j ∈ {1, . . . , n}. Then it is easily seen that the quantification of
these intersections in a certain way will determine the marginal distribu-
tions of a Markov process with states 1, 2, . . . , n. For instance, the sim-
plest way to assign coordinates to the sets S̃i is to consider the Lebesgue
measures of their homeomorphs Si in the linear segment [0, 1] accord-
ing to a probability distribution. Then the sets S1, S2, . . . , Sn partition
the interval [0, 1]. Correspondingly the pair (circle, {S̃i}) will be re-
placed by the canonical probability space ([0, 1), B, λ), where B de-
notes the σ-algebra of Borel subsets of [0, 1) and λ Lebesgue measure
on B.
Then λ(ft(Si) ∩ Sj)/λ(ft(Si)), i, j = 1, 2, . . . , n, define a stochastic matrix
P, where ft(x) = (x + t)(mod 1) is the shift on the real line which replaces
the circle rotation rτ above.

When a stochastic matrix P = (pij , i, j = 1, . . . , n) admits the previous
description in terms of the shift ft, for a choice of the length t, and a
partition {S1, . . . , Sn} of [0, 1), we say that (t, {S1, . . . , Sn}) is a rotational
representation of P. All these considerations lead to the following important
question: How to develop the theory of finite recurrent Markov processes in
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terms of rotations, and particularly, how to define the rotational represen-
tations of the recurrent stochastic matrices?

It is obvious that an answer will naturally start from the cycle repre-
sentation theory given in Part I since the weighted circuits can provide
a link between the weighted edges, defined by the entries of a stochastic
matrix, and the weighted circle-arcs. Then a preliminary problem is the
difficulty of defining a system of two different kinds of transformations for
each recurrent stochastic matrix P:

(i) the transformation of the representative circuits of P, occurring
in a circuit decomposition, into circle arcs, (3.1.1)

(ii) the transformation of the circuit-weights into the arc-weights.

The transformation (3.1.1)(i) (which is a one-to-many relation between
the graph-elements) presupposes a choice of a circuit decomposition for P
(as in Section 4.4 of Part I) and along with (3.1.1)(ii) requires an algebraic
structure associated with the graph G(P ) of P. The algebraic structure is
understood to be an assignment of certain numbers (the weights), depend-
ing on P, with various elements of G(P ) as the edges and circuits. These
numbers are derived by certain algorithms according to rules involving ei-
ther the above orthogonal matrices η and ζ associated with G(P ), or a prob-
abilistic interpretation in term of the Markov chain on P (see Section 4.4 of
Part I).

It is this chapter that will elucidate an affirmative answer to the above
question (3.1.1), and the corresponding developments will be called the the-
ory of rotational representations of finite recurrent Markov processes. The
present exposition is far away from a closed theory—it should be viewed
as an attempt to clarify what we understand by rotational representations
and what are their perspectives, as they can be estimated so far, to the
theory of Markov processes, ergodic theory, dynamical systems, theory of
matrices, etc.

The idea of geometric representations of certain n× n stochastic matri-
ces appeared first in the 1981 paper of Joel E. Cohen, who conjectured
that each irreducible n× n stochastic matrix can be represented by a ro-
tational system (ft, {Si}) of some dimension, where ft, and {Si} have the
meaning above, and by dimension we mean the maximum number of (arc-)
components occurring in the unions Si, i = 1, . . . , n.

A solution to this problem is given for n = 2 by Joel E. Cohen (1981),
and for n ≥ 2 by S. Alpern (1983) (using a combinatorial argument) and
by S. Kalpazidou (1994b, 1995) (using either a probabilistic or a homologic
argument). Major contributions to the rotational theory are recently due to
J. Haigh (1985), P. Rodŕıguez del T́ıo and M.C. Valsero Blanco (1991), and
S. Kalpazidou (1994b, 1995).

This chapter is a unified exposition of all the results on the rotational
representations, and an attempt to develop a theoretical basis for these rep-
resentations, argued by algebraic topology and the theory of Markov chains.
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3.2 Joel E. Cohen’s Conjecture on Rotational
Representations of Stochastic Matrices

Throughout this section X denotes the interval [0, 1), λ Lebesgue measure
on the Borel σ-algebra of X, and n is assumed to be an integer greater
than 1. As is known a finite stochastic matrix P is an n× n matrix with
nonnegative real elements such that every row-sum is 1.

Joel E. Cohen (1981) proposed the following conjecture that we shall call
the rotational problem:

(R) Any finite irreducible stochastic matrix P = (pij , i, j = 1, . . . , n), n >
1, can be described by a rotational system (ft,S ) where S is a par-
tition of X into n sets S1, . . . , Sn each of positive Lebesgue measure
and consisting of a finite union of arcs, and ft, with certain t ∈ [0, 1),
is the λ-preserving transformation of X onto itself defined by

ft(x) = (x + t) (mod 1), (3.2.1)

that is, ft(x) is the fractional part of x + t. The description of P by
(ft,S ) is given by

pij = λ(Si ∩ f−1
t (Sj))/λ(Si), (3.2.2)

for all i, j ∈ {1, . . . , n}.
A stochastic matrix P which satisfies equations (3.2.2) is called to have a

rotational representation (t,S ). Equivalently, we say that P is represented
by (t,S ). A stochastic matrix P is called irreducible if for any row i and
any column j �= i, there exists a positive integer k, which may depend on i
and j, such that the (i, j)-element of P k is not zero. The stochastic matrix
P that occurs in the above rotational problem (R) can be chosen arbi-
trarily close to the identity matrix I = (δij), where δ is Kronecker’s delta,
since limλ(ft(Si) ∩ Sj) = δijλ(Si), as t → 0. This will enable the extension
of the rotational problem to continuous parameter semigroups (Ps)s≥0 of
stochastic matrices, where lims→0+Ps = (δij) (see Section 3.9 below).

Joel E. Cohen (1981) answers the rotational problem (R) for n = 2 as
follows:

Theorem 3.2.1. Any irreducible 2 × 2 stochastic matrix has a rotational
representation.

Proof. Let M be an irreducible 2 × 2 stochastic matrix. M is irreducible if
and only if both elements off the main diagonal are not zero. Then, there
exists a positive row vector v such that vM = v (Seneta (1981)). Assume
v1 + v2 = 1. It may be checked that

v = (m21/(m12 + m21),m12/(m12 + m21)). (3.2.3)



3.3 Alpern’s Solution to the Rotational Problem 235

Now we show how to define S1, S2 and t > 0 such that mij = pij , where
pij is given by (3.2.2). Since v is the invariant distribution of M and of the
desired P, it is natural, in the light of the above, to let S1 = [0, v1) and
S2 = [v1, 1).
Let

t = m12m21/(m12 + m21). (3.2.4)

Since M is irreducible, t > 0. From (3.2.3) and (3.2.4) we find that t ≤
vi, i = 1, 2 (because mij ≤ 1, i �= j ).
Now

ft(S1) ∩ S1 = [t, v1 + t) ∩ [0, v1) = [t, v1).

Then λ(ft(S1) ∩ S1) = v1 − t, and by (3.2.2) we have

p11 = (v1 − t)/v1. (3.2.5)

Substituting (3.2.3) and (3.2.4) into the right side of (3.2.5) we obtain
p11 = m11 as desired. It follows that p12 = m12. Since t > 0, p11 < 1 and
p12 > 0.

Analogously,

ft(S2) ∩ S2 = ([v1 + t, 1) ∪ [0, t)) ∩ [v1, 1) = [v1 + t, 1) ∪ [v1, t).

Since t ≤ v1, [v1, t) = ∅. Thus λ(ft(S2) ∩ S2) = 1 − v1 − t = v2 − t < v2.
Using (3.2.3) and (3.2.4) as before, and on account of (3.2.2), we have

p22 = (v2 − t)/v2 = m22.

Thus, we have shown that any irreducible 2 × 2 stochastic matrix M has
a representation of the form (3.2.2), with 0 < t < 1, and the proof is
complete. �

3.3 Alpern’s Solution to the Rotational Problem

A stochastic matrix of a finite recurrent Markov chain is called a recurrent
stochastic matrix. For any finite stochastic matrix P the following properties
are equivalent:

(i) P is recurrent; and
(ii) P admits a strictly positive invariant probability row-vector v, that

is, there is a probability row-vector v > 0 satisfying vP = v.

Let us notice that there are reducible stochastic matrices that admits
rotational representations. For instance, the identity matrix is represented
by (0,S ), for every partition S. On the other hand, if (t,S ) represents
an n× n stochastic matrix P, then (3.2.2) implies that (λ(S1), . . . , λ(Sn))
is an invariant row-distribution which, by assumptions on S in (R), has
strictly positive elements. So, any stochastic matrix that has a rotational
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representation is recurrent. Since any irreducible finite stochastic matrix is
recurrent, it would be interesting to see if the rotational problem (R) stated
in the previous section can be generalized from irreducible to recurrent
stochastic matrices. Here is an answer due to S. Alpern (1983).

Theorem 3.3.1. Let n ≥ 2 and S = {1, . . . , n}. Any S-state Markov chain
is recurrent if and only if its transition matrix P has a rotational represen-
tation (t,S ). Moreover, for any recurrent matrix P and for any positive
invariant distribution π there is a rotational representation (t,S ), with
S = {S1, . . . , Sn}, where:

(i) (λ(S1), . . . , λ(Sn)) = π; and
(ii) t = 1/n!.

Proof. We need only prove the “only if” part. Consider P an n× n recur-
rent matrix and π a strictly positive invariant probability row-distribution
of P. Let c be a directed circuit with distinct points (except for the termi-
nals) of the graph of P. Consider the circuit-matrix Cc given by

Cc(i, j) =
1

p(c)
Jc(i, j), i, j = 1, . . . , n, (3.3.1)

where Jc is the second-order passage matrix of c introduced by Definition
1.2.2, and p(c) denotes c’s period. (The circuit-matrix was also introduced
in Section 4.3 (Chapter 4) of Part I.). Notice that the matrix (πipij , i, j =
1, . . . , n) belongs to a compact convex set whose extreme points are the
circuit-matrices Cck defined by (3.3.1), where ck are directed circuits in the
graph of P.

Then appealing to the Carathéodory dimensional theorem we obtain
a decomposition of P in terms of certain circuits c1, . . . , cN in S, where
N ≤ n2 − n + 1. Namely,

πipij =
N∑

k=1

wckCck(i, j), with
N∑

k=1

wck = 1, wck > 0, (3.3.2)

for all i, j = 1, . . . , n (since the set of all n× n matrices (rij) that satisfy
the isoperimetric equalities

∑
i rij =

∑
i rji, j = 1, . . . , n, and

∑
ij rij = 1

has dimension n2 − n).
We now show that any circuit decomposition of P implies a rota-

tional representation (t,S ). To this end, let M be any multiple of the
periods p(c1), . . . , p(cN ) of the representative circuits c1, . . . , cN occur-
ring in (3.3.2). In particular, we may choose either M = n! (since each
p(ck) ≤ n) or M = least common multiple of p(c1), . . . , p(cN ) (for short
l.c.m. (p(c1), . . . , p(cN )).

Put t = 1/M . Let {Ak, k = 1, . . . , N} be a partition of A = [0, 1/M)
into N subintervals with relative distribution (wc1 , . . . , wcN ), that is,
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λ(Ak)/λ(A) = wck , k = 1, . . . , N . Define

Akl = f l−1
t (Ak), k = 1, . . . , N ; l = 1, . . . ,M, (3.3.3)

and

Uk =
M⋃
l=1

Akl, k = 1, . . . , N, (3.3.4)

where ft is the λ-preserving transformation given by (3.2.1) with t = 1/M .
Define now the partition S = {Si, i = 1, . . . , n} by

Si =
⋃

h(k,l)=i

Akl, i = 1, . . . , n, (3.3.5)

where h is the following labeling of the intervals Akl. Fix k and suppose
Cck is the circuit-matrix associated with the circuit ck = (α1, . . . , αp, α1)
where p is the period of ck. Define

h(k, 1) = α1, h(k, 2) =α2, . . . , h(k, p) = αp, (3.3.6)
h(k, p + 1) = α1, . . . , h(k,M) = αp.

The fact that the last label is αp follows from the choice of M as a multiple
of p.

It is to be noticed that the labeling defined by (3.3.6) depends on the
ordering of the circuits in the Carathéodory-type decomposition (3.3.2)
as well as on the choice of the representatives of the (class-)circuits (see
Definition 1.1.2). The latter amounts in fact to the choice of the starting
points of all the representative-circuits.

In Figure 3.3.1 we draw the intervals Akl, k = 1, . . . , N : l = 1, . . . ,M ,
where the points of each circuit ck appear M/p(ck) times, so that each

Figure 3.3.1.
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circuit ck is represented by M/p(ck) copies (we have M intervals Akl with
the first index k). The measure of Akl is given by

λ(Akl) = (1/M)wck , (3.3.7)

since

λ(Akl) = λ(Ak)

and

λ(Ak)/(1/M) = wck .

Then

λ(Uk) = wck , k = 1, . . . , N. (3.3.8)

If (i, j) is an edge of ck, then λ(Si ∩ f−1
t (Sj) ∩ Uk) = (1/p(ck))wck .

In general,

λ(Si ∩ f−1
t (Sj)|Uk) = Cck(i, j) (3.3.9)

for any i, j = 1, . . . , n and any k = 1, 2, . . . , N . Finally, we have

λ(Si ∩ f−1
t (Sj)) =

N∑
k=1

λ(Uk) λ(Si ∩ f−1
t (Sj)|Uk)

=
N∑

k=1

wckCck(i, j)

= πipij .

Therefore we have shown that (1/M,S ) is a rotational representation of
P with λ(Si) = πi, i = 1, . . . , n, and that we may choose M = n!. �

Remarks
(i) In the previous proof, as well as throughout this chapter, the circuits

are considered with distinct points (except for the terminals).
(ii) There are many ways to label the sets Si, which in turn determine dif-

ferent rotational representations. In Sections 3.6, 3.7, and 3.8 we shall
discuss other labelings which are different from that given in (3.3.6).
The label and rotational representations proposed in the next section
are the most structurally close to what we understand by a rotational
system.

Let us now examine a concrete example of a rotational representation
due to S. Alpern (1983).
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Figure 3.3.2.

Example 3.3.1. We apply the rotational representation of Theorem 3.3.1
to the matrix

P =

⎡
⎢⎣

1/2 1/2 0
1/2 0 1/2
1 0 0

⎤
⎥⎦ .

The row-vector v = (4/7, 2/7, 1/7) is an invariant distribution of P.
The first step to a rotational representation of P consists in writing the

circuit-decomposition-equation for the matrix R = (vipij , i, j = 1, 2, 3). The
graph of P comprises N = 3 circuits for which we choose the following
ordering: c1 = (1, 1), c2 = (1, 2, 1), c3 = (1, 2, 3, 1). The associated cycles are
ĉ1 = (1), ĉ2 = (1, 2) and ĉ3 = (1, 2, 3). We draw the graph of P in Figure
3.3.2.

A cycle decomposition of R is as follows:

R =
2
7

⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦+

2
7

⎡
⎢⎣

1 1/2 0
1/2 0 0
0 0 0

⎤
⎥⎦+

3
7

⎡
⎢⎣

0 1/3 0
0 0 1/3

1/3 0 0

⎤
⎥⎦. (3.3.10)

Now we find a rotational system (t,S ), where S = {S1, S2, S3}, by using
the decomposition (3.3.10).

Let M = least common multiple of the periods p(c1), p(c2), p(c3), so M =
6. Then t = 1/M = 1/6 and f1/6 is the shift to the right of length 1/6.
Partition the interval [0, t) = [0, 1/6) into three subintervals A1, A2, A3 with
the relative lengths given by the coefficients 2/7, 2/7, 3/7 of (3.3.10). Then
we have

A1 =
[
0,

2
42

)
, A2 =

[
2
42

,
4
42

)
, A3 =

[
4
42

,
1
6

)
.

For k = 1, 2, 3 and l = 1, . . . , 6 define intervals

Akl = Ak +
l − 1

6
,

as in Figure 3.3.3. Let Uk =
⋃6

l=1 Akl, k = 1, 2, 3.



240 3. The Rotational Theory of Markov Processes

Figure 3.3.3.

The “columns” in Figure 3.3.3 are the sets Uk = 1, 2, 3, where λ(U1) =
2/7, λ(U2) = 2/7, λ(U3) = 3/7. Define S1, S2 and S3 as in (3.3.5) us-
ing labeling (3.3.6). The absolute distribution of Si ∩ f−1

1/6(Sj) is given
by R. Then P is represented by (1/6,S ), where S = {S1, S2, S3} with
(λ(S1), λ(S2), λ(S3)) = v.

3.4 Transforming Circuits into Circle Arcs

In this section we propose to achieve one step to the original question
quoted in (3.1.1), namely, to define a transformation of a collection of di-
rected circuits in the set S = {1, . . . , n}, n ≥ 2, into a set of certain circle-
arcs which can be involved in the definition of a rotational representation
of a stochastic matrix. Here the term transformation will correspond to
a one-to-many relation. As we have already seen from any circuit decom-
position of a recurrent n× n stochastic matrix we can obtain rotational
representations. In principle, this relation relies upon a general topological
(geometric) connection: any collection of circuits involves a collection of
arcs partitioning the circle. This idea was already initiated in Section 1.1
of Part I where, in addition, we have shown that any circuit of period p
can be assigned to a p-order cyclic group of rotations, and some partitions
of the circle can generate a collection of overlapping circuits.
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It is the algebraic-topologic argument for the existence of a transforma-
tion of the directed circuits occurring in the graph of a recurrent stochastic
matrix P = (pij , i, j = 1, . . . , n), n ≥ 2, into certain circle-arcs providing a
rotational representation of P that we shall examine in the present sec-
tion. This approach is due to S. Kalpazidou (1994b, 1995) and reveals the
theoretical basis of the rotational idea.

A rotational representation of P via circuits presupposes two relations:

(R) (i) the edges of G(P ) are related with certain circuits of G(P ); and
(ii) the circuits of G(P ) considered at (i) are related with certain arcs

partitioning the circle.

Here we shall consider two connected directed graphs: the graph G(P ) of
the original recurrent stochastic matrix P = (pij , i, j = 1, . . . , n), and the
graph of a circle. Both relations quoted in (R) will be further used to define
a transformation Φ from the space of n× n recurrent stochastic matrices
P into n-partitions of [0, 1). The domain of Φ will be a convex hull in the
(n2 − n)- Euclidean space whose extreme points are the circuit-matrices.
Then, as we shall show below, the ordering of the decomposing circuits as
well as the specification of their representatives in the cycle-decomposition-
formula will influence the definition of the transformation Φ. A detailed
study of such a transformation Φ is, given in the next section.

3.4.1. Let us start with an ordered sequence (c1, . . . , cN ) of circuits
appearing in a circuit decomposition of the originally given recurrent
stochastic matrix P = (pij , i, j = 1, . . . , n). n ≥ 2. Here we choose the
Carathéodory-type decomposition for P, that is,

πipij =
N∑

k=1

wckCck(i, j), with wck > 0,
N∑

k=1

wck = 1, (3.4.1)

for all i, j = 1, . . . , n, where N ≤ n2 − n + 1 and π = (πi,= 1, . . . , n) is a
strictly positive invariant probability distribution of P. The Cck denotes
the circuit-matrix associated with the circuit ck (see Section 4.3 of Part I,
or (3.3.1)). Also, fix the starting points of c1, . . . , cN . Denote by ĉ1, . . . , ĉN
the corresponding cycles (see Definition 1.1.3 of Part I). Our target is to
define a transformation of c1, . . . , cN into certain circle-arcs which in turn
are involved in the definition of a rotational representation (t, {S1, . . . , Sn})
of P. As already seen, in general any collection of circuits may be assigned
to certain arcs Ãkl partitioning the circle. Here a specialization will appear
since the homeomorphs of the arcs Ãkl in [0, 1) are required to define a
rotational partition for the original matrix P. To this end, we have to find
the length t of the shift ft(x) = (x + t) (mod 1), x ∈ [0, 1), and how to
define the subintervals Akl along with their indices (k, l) and a suitable
procedure of joining Akl into sets S1, . . . , Sn such that (t, {S1, . . . , Sn})
will stand for a rotational representation of P.
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Let M denote the least common multiple of p(c1), . . . , p(cN ), where p(ck)
denotes the period of ck, k = 1, . . . , N . Partition the circumference of a
circle c into N equal consecutive directed arcs Û1, . . . , ÛN such that each
Ûk is assigned to the circuit ck. Next, partition each arc Ûk, k = 1, . . . , N ,
into M equal circle-arcs denoted by αk1, αk2, . . . , αkM .

On the other hand, the M/p(ck) consecutive repetitions of ck = (ck(1),
ck(2), . . . , ck(p(ck)), ck(1)) contain exactly M edges: (ck(1), ck(2)), . . . ,
(ck(p(ck)), ck(p(ck) + 1)), . . . , (ck(M), ck(M + 1)), where the rth repeti-
tion of ck is given by the sequence (ck(1 + (r − 1)p(ck)), . . . , ck(p(ck) +
(r − 1)p(ck)), ck(1 + (r − 1)p(ck))). Then we may put these edges in a
one-one correspondence with the circle-arcs αk1, αk2, . . . , αkM as fol-
lows: (ck(1), ck(2)) → αk1, . . . , (ck(M), ck(M) + 1)) → αkM . Accordingly,
we may define a correspondence between the points of the cycle
ĉk and the starting points of αk1, . . . , αkM as follows. The points
ĉk(1), . . . , ĉk(p(ck)), ĉk(1 + p(ck)), . . . , ĉk(M) of the M/p(ck) repetitions of
ĉk are assigned to the starting points of αk1, αk2, . . . , αkM along the circum-
ference of the circle c. Symbolize the starting points of αk1, αk2, . . . , αkM

on the circumference of the circle c by ĉk(1), . . . , ĉk(p(ck)), ĉk(1 +
p(ck)), . . . , ĉk(M). In this way:

the index of each xkl is given by the pair (k, l) of the ĉk(l) occurring in
the sequence ĉk(1), . . . , ĉk(p(ck)), ĉk(1 + p(ck)), . . . , ĉk(M).

Furthermore, the edges of each circuit ck are assigned to the circle-arcs
{αkl} of c, and the points of the corresponding cycle ĉk are repeated
M/p(ck) times along the circumference of the circle c in Ûk.

Now, consider another circle and let rτ be the rotation of length τ =
2π/M . Divide this circle into M equal arcs each of length 2π/M . Let Ã be
one of these arcs. Partition Ã into N consecutive equal arcs Ã1, . . . , ÃN .
Define

Ãkl = rl−1
τ (Ãk), k = 1, . . . , N ; l = 1, . . . ,M.

In this way we have transformed the circuits c1, . . . , cN into the circle-arcs
Ãkl, k = 1, . . . , N ; l = 1, . . . ,M , which partition the circle (as quoted in
(R)(ii)). Let A and A1, . . . , AN be the homeomorphs of Ã and Ã1, . . . , ÃN

in [0, 1) defined as follows: A = [0, 1/M), A1 starts at 0 and A1, . . . , AN are
consecutive disjoint subintervals of A of the form [a, b) having the relative
lengths given by the coordinates of the vector (wc1 , . . . , wcN ) occurring in
the decomposition (3.4.1), that is, λ(Ak)/λ(A) = wck , k = 1, . . . , N . Here
λ denotes as always Lebesgue measure. Define

Akl = f l−1
t (Ak), k = 1, . . . , N ; l = 1, . . . ,M,

where ft is the shift of length t = 1/M on the interval [0, 1) as introduced
by (3.2.1). Then

λ(Akl) = (1/M)wck , k = 1, . . . , N ; l = 1, . . . ,M.
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Furthermore,

the index (k, l) of each Akl is assigned to that of the circle-arc αkl on c.
(3.4.2)

Let

Si =
⋃
(k,l)

Akl, i = 1, . . . , n,

where

the indices (k, l) occurring in the union Si are given by those arcs αkl

whose starting points are symbolized on the circumference of the circle c
by i.

To summarize, the rigorous expression of the label of each Akl occurring
in the union Si is given, according to S. Kalpazidou (1994b), by any pair
(k, l) = (ki, li) defined as:

(i) ki is the index of a chosen representative of a class-circuit ck, k ∈
{1, 2, . . . , N},which passes through the pre-given point i and which
occurs in decomposition (3.4.1).

(ii) li denotes those ranks n ∈ {1, 2, . . . ,M} of all the points ĉk(n) which
are identical to i in the M/p(ck) repetitions of the cycle ĉk = (ĉk(1),
ĉk(2), . . . , ĉk(p(ck))) associated to the representative of the circuit
ck chosen at (i) above, i.e., if for some s ∈ {1, . . . , p(ck)} we have
ĉk(s) = ĉk(s + p(ck)) = · · · = ĉk(s + (M/p(ck) − 1)p(ck)) = i, then

li ∈ {s, s + p(ck), . . . , s + (M/p(ck) − 1)p(ck)}. (Here the rth
repetition of ĉk, with r ∈ {1, . . . ,M/p(ck)}, is meant to be the
sequence (ĉk(1 + (r − 1)p(ck)), ĉk(2 + (r − 1)p(ck)), . . . ,
ĉk(p(ck) + (r − 1)p(ck))).) (3.4.3)

(Recall that the circuits and the corresponding cycles are understood as
equivalence classes according to Definitions 1.1.2 and 1.1.3 of Part I). Then
S = {S1, . . . , Sn} is a rotational partition of [0, 1) associated to P with
respect to the shift f1/M . The partitioning sets S1, . . . , Sn are defined by
three procedures. One is the labeling procedure of the intervals Akl, the
second is the labeling of the components of the unions Si, and the third
is the definition of the intervals Akl on the line. The labeling (3.4.2) of
the intervals Akl and the labeling (3.4.3) of the components of each Si are
topological procedures since they depend only on the connectivity relations
of the graph of P.

Before leaving these investigations, let us notice that any point i ∈
{1, . . . , n} appears along the circumference of the circle c if and only if
there are some circuits cj1 , . . . , cjm of the decomposition (3.4.1) which pass
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through i. Then i will appear M/p(cj1) times along the arc Ûj1 ,M/p(cj2)
times along Ûj2 , and finally M/p(cjm) times along Ûjm . Accordingly for
each rotational partition S = {Si} the number δ(j) of all the components
Akl of Sj defined according to the labeling (3.4.3) is equal to the number
of all the appearances of the point j on the circumference of the circle c.

Let δ = δ(S ) = maxj δ(j). Then δ is a topological feature of S, that
is, δ depends only upon the connectivity relations of the chosen collection
{c1, . . . , cN} of the circuits decomposing the original matrix P and does
not depend on the circuit-weights. Furthermore, δ is independent of the
ordering of the decomposing circuits as well as of the choice of their starting
points. The study of δ will be given in the subsequent section 3.6.

3.4.2. Let us investigate the indexing procedure (3.4.2) and the labeling
(3.4.3) for the concrete Example 3.3.1 of the previous section. We start
with two choices: one choice is concerned with the ordering of the class-
circuits in the set S = {1, 2, 3} which occur in the decomposition (3.3.10),
say c1, c2, c3 as in Figure 3.3.2, and a second choice with the representatives
of the class-circuits c1, c2, c3, that is, we fix a starting point for each circuit.
Here we choose c1 = (1, 1), c2 = (1, 2, 1) and c3 = (1, 2, 3, 1).

Partition the circumference of a circle c into three equal arcs Û1, Û2, Û3

each assigned to one circuit of the ordered sequence c1, c2, c3. In turn, parti-
tion Û1 into 6 equal directed arcs and assign each of these arcs to an edge of
the 6/p(c1) = 6 copies (c1(1), c1(2)), (c1(2), c1(3)), . . . , (c1(6), c1(7)) of the
circuit c1 = (c1(n), c1(n + 1)) = (1, 1), n ∈ Z. In this way we can denote the
arcs of Û1 by α11, α12, . . . , α16, where the first index 1 is related to the corre-
spondence c1 → Û1 while each of the second indices 1, 2, . . . , 6 is the rank of
a starting point of an edge in the sequence (c1(1), c1(2)), . . . , (c1(6), c1(7));
then, the second index counts the edges of the 6 copies of c1 (see Figure
3.4.1). This being so, we have now assigned the edges of c1 to the 6 arcs
α11, . . . , α16 of the circle c. Furthermore, we assign the point 1 of the cycle
ĉ1 = (1) to the starting points of α11, . . . , α16. Accordingly, we symbolize
the starting points of these arcs on the circle c by 1.

Analogously, partition Û2 into 6 equal directed arcs and put them
in a one-one correspondence with the 6 edges of the 6/p(c2) = 3
copies (c2(1), c2(2), c2(3)), (c2(3), c2(4), c2(5)), (c2(5), c2(6), c2(7)) of c2 =
(c2(n), c2(n + 1), c2(n + 2)) = (1, 2, 1), n ∈ Z. Denote the arcs of Û2 by
α21, α22, α23, α24, α25, α26 and their starting points by 1, 2, 1, 2, . . . , 1, 2
(which are the starting points of the edges of c2 = (1, 2, 1) when ĉ2 is re-
peated 3 times).

Notice that we have the one-one correspondence (c2(s), c2(s + 1)) → α2S ,
that is, s denotes the ranks of the starting points c2(s) of the 6 edges
in the 3 copies of c2. In this way we have assigned the edges of c2 to
the arcs α21, . . . , α26 of the circle c, and the points of ĉ2 to the starting
points of α21, . . . , α26. Finally, partition Û3 into 6 equal circle arcs, denoted
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α31, α32, . . . , α36. Assign each edge (c3(s), c3(s + 1)) of the 6/p(c3) = 2
copies of c3 = (1, 2, 3, 1) to the circle-arcs α3S , s = 1, . . . , 6. Put 1,2,3,1,2,3
as symbols for the starting points of α31, . . . , α36.

It happens that the circuit c2 appears 3 times along c as well, but this
is not the general case. For instance, if we would choose the sequence (2,
1, 2) to represent the circuit c2, then it is only the cycle (2, 1) which is
repeated 3 times in Û2. Let S = {S1, S2, S3} be the rotational partition of
P, with respect to the shift f1/6, provided in Example 3.3.1, and let Akl

be the corresponding component-sets indexed according to (3.4.2). Also let
Uk =

⋃6
t=1 Akl, k = 1, 2, 3.

Replacing the labeling (3.3.6) of Theorem 3.3.1 by (3.4.3), the sets Si

will be defined as

Si =
⋃
(k,l)

Akl, i = 1, 2, 3,

where (k, l) is the index of any arc αkl on c which starts at i as in Fig-
ure 3.4.1. Then

Figure 3.4.1.
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S1 contains the intervals:

A11, A12, A13, A14, A15, A16 in U1.

A21, A23, A25 in U2,

A31, A34 in U3.

S2 contains the intervals:

A22, A24, A26 in U2,

A32, A35 in U3.

S3 contains the intervals:

A33, A36 in U3.

Figure 3.4.2.
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The homeomorphs Ãkl of Akl along a circle are given in Figure 3.4.2.
Furthermore,

λ(S1 ∩ f−1
1/6(S1)) =λ(A11) +λ(A12) +λ(A13) + λ(A14) +λ(A15) +λ(A16) = 2

7 ,

λ(S1 ∩ f−1
1/6(S2)) = λ(A21) + λ(A23) + λ(A25) + λ(A31) + λ(A34) = 2

7 ,

λ(S2 ∩ f−1
1/6(S1)) = λ(A22) + λ(A24) + λ(A26) = 1

7 ,

λ(S2 ∩ f−1
1/6(S3)) = λ(A32) + λ(A35) = 1

7 ,

λ(S3 ∩ f−1
1/6(S1)) = λ(A33) + λ(A36) = 1

7 .

3.5 Mapping Stochastic Matrices into Partitions
and a Probabilistic Solution to the
Rotational Problem

The rotational problem (R), quoted in Section 3.2, gives rise to prototypes
of questions which, suitably reformulated in other contexts, more abstact,
reveal their depth with greater clarity. One, to which we shall return in
the following chapters, is of considerable importance. Suppose we view
the correspondence i → Si between states 1, 2, . . . , n of a recurrent Markov
chain ξ with prescribed transition matrix P, and partitioning sets Si of a
rotational system as a coding process.

This idea is much better translated in the context of dynamical systems
as a coding problem as follows: code a given A-state stationary stochastic
process η = (ηn)∞n=−∞, where (A,A ) is a measure space, onto an N-state
stationary process ξ = (ξn)n whose conditioned probabilities Prob (ξn+1 =
j/ξn = i) are previously specified by a stochastic matrix P (see J.C. Kieffer
(1980), and S. Alpern and V. Prasad (1989)). N denotes the set of nonneg-
ative integers. Suppose that P admits an invariant probability distribution
π. Consider the associated dynamical system (A∞,A∞, μ, τ) to η, where
A∞ is the doubly infinite sequence space, A∞ is the product σ-field, μ is the
joint distribution of {ηn}, and τ denotes the left shift transformation de-
fined on A∞ by (τ(s))n = sn+1. Since η is stationary, μ is preserved by the
shift τ .

The coding function will be thought of as a measurable function κ: A∞ →
N so that ξj = κ(τ j(ηi : −∞ < i < ∞)) for each j. Each coding function κ
corresponds to a measurable partition {Si}i∈N of A∞ with Si = κ−1({i}),
and conversely. The coding problem has a version for each n× n recurrent
stochastic matrix P = (pij , i, j = 1, . . . , n), n ≥ 1, expressed by the rota-
tional problem (R) where it is required to find a circle rotation τ and a circle
partition {Si}.
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Let us point out that the relation P → {Si} which arises in the approach
of the previous section to the rotational representation is in general a one-
to-many relation since it depends on the following variables:

(α) the length of the rotation;
(β) the ordering of the cycles (in the complete graph):
(γ) the starting points of the cycles;
(δ) the rotational labeling; and
(ε) the representative class (C, wc) of cycles (or circuits) and weights pro-

vided by a cycle decomposition algorithm on P and on a chosen strictly
positive invariant probability (row) distribution π (i.e., an algorithm
which expresses πP by a linear combination of the passage functions
Jc, c ∈ C, having wc as positive scalars).

(The cycles are considered according to Definition 1.2.1 to have distinct
points.) When the approach to the rotational representation is defined in-
dependently from a cycle decomposition of P, then the ingredients (β), (γ)
and (ε) are not considered.

Throughout this section the rotational-representation-procedure will be
that of the previous section. Accordingly, the rotational labeling will be
defined by (3.4.2) and (3.4.3). If we agree from the beginning that for a
given n ≥ 2, the rotational length to be considered is 1/n!, and that the
ordering of the cycles and the starting points of the cycles will be originally
chosen, it will nevertheless be necessary to investigate the existence of a
uniqueness criterion for {Si} based on the variable (ε). This being formu-
lated so, the problem in question is the following: With the above variables
(α), (β), (γ) and (δ) fixed, find a criterion on the variable (ε) which assures
the existence of a one-to-one mapping Φ from the set of irreducible n× n
stochastic matrices P into n-partitions {Si}. In other words, we have to fix
a vector-solution of cycles and weights of an algorithm providing a cycle-
decomposition-formula for each irreducible n× n stochastic matrix P.

Before answering, let us notice that for an irreducible Markov chain ξ the
transition matrix P = (pij , i, j = 1, . . . , n) and the invariant probability dis-
tribution π = (πi, i = 1, 2, . . . , n) determine uniquely the edge-distribution
E = (πipij , i, j = 1, . . . , n) and the cycle-distribution C∞ = (p(c)wc, ĉ ∈
C∞) attached to the circulation distribution {wc}, and conversely. Here for
both edges and cycles we have initially considered some orderings. Then we
may view ξ either as a vector with respect to the referential system of edge-
axes, or as a vector with respect to the referential system of cycle-axes (see
S. Kalpazidou (1995)).

On the other hand, given ξ, Theorem 3.3.1 provides a collec-
tion of rotational representations {Rα}α with Rα = (1/n!, {αSi}) whose
edge-distribution Eα = (λ(αSi ∩ f−1

t (αSj)), i, j = 1, . . . , n), t = 1/n!, are
all identical to E, but whose cycle-distributions Cα = (αwc, c ∈ Cα) are
distinct from the above cycle-distribution C∝. The explanation is sim-
ple: the cycle-distributions Cα are defined by a nonrandom algorithm with
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many solutions of cycles and weights in the cycle-decomposition-formula.
Obviously, under the assumption that the variables (α), (β), (γ) and (δ)
are fixed, the rotational representation will be unique if we fix a cycle-
distribution, as for instance the above C∞ which is the unique solution of a
probabilistic algorithm. The following theorem, adapted from the paper of
S. Kalpazidou (1994b), gives a detailed answer to this question along with
a probabilistic solution to the rotational problem.

Theorem 3.5.1. (A Probabilistic Solution to the Rotational Problem).
Given n ≥ 2, for each ordering providing all the possible cycles in S =
{1, 2, . . . , n} and for each choice of the representatives of these cycles there
exists a map Φ from the space of n× n irreducible stochastic matrices P
into n-partitions S = {S1, . . . , Sn} of [0, 1) such that the rotational repre-
sentation process defined by (ft, {Si}) with t = 1/n! and {Si} = Φ(P ) has
the same transition probabilities and the same distribution of cycles as the
probabilistic cycle distribution of the Markov process on P.

If the measures of the component sets of Si converge, then the sequence
of partitions converges in the metric d defined as

d(S,S ′) =
∑
i

λ(Si + S′
i), (3.5.1)

where λ denotes Lebesgue measure on Borel subsets of [0, 1), and + denotes
symmetric difference.

Proof. We first appeal to the probabilistic cycle representation of Theorem
3.3.1 of Part I according to which any irreducible stochastic matrix P is de-
composed in terms of the circulation distribution (wc, ĉ ∈ C∞) (introduced
by Definition 3.2.2 (of Part I)) as follows:

πi pij =
∑
ĉ∈C∞

wcJc(i, j), i, j ∈ S.

where π = (πi, i ∈ S) denotes the invariant probability distribution of P, ĉ
is the cycle attached to the circuit c, and Jc is the passage-function of c. By
hypotheses, we have chosen an ordering for the cycles of C∞ and a starting
point for each of them. So, let C∞ = {ĉ1, . . . , ĉs}, s ≥ 1.

Let us replace the passage-functions Jck by the circuit-matrices Cck ≡
(1/p(ck))Jck , k = 1, . . . , s, where p(ck) denotes as usual the period of ck.
Next we shall follow the procedure to the rotational partition of the previ-
ous section starting with the probabilistic decomposition

πipij =
s∑

k=1

(p(ck)wck)Cck(i, j), i, j = 1, . . . , n. (3.5.2)

Accordingly, relations (3.5.2) will replace the Carathéodory-type decompo-
sition (3.4.1) in the labeling (3.4.3).
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Let t = 1/n! and let ft be the shift defined by (3.2.1). Then there will
exist a rotational representation (t, {Si}), where the pairs (k, l) occur-
ring in the expressions of the partitioning sets Si =

⋃
(k,l) Akl, i = 1, . . . , n

are given by labeling (3.4.3), and the Akl = f l−1
t (Ak), k = 1, . . . , s; l =

1, . . . , n!, are provided by the partition (Ak, k = 1, . . . , s) of A = [0, 1/n!)
whose relative distribution (λ(Ak)/λ(A), k = 1, . . . , s) matches the proba-
bilistic cycle distribution (p(ck)wck , k = 1, . . . , s). Therefore we have

λ(Akl) = (1/n!) p(ck)wck , k = 1, . . . , s, l = 1, . . . , n!.

Then the uniqueness of the lengths of the intervals Akl follows from that
of the cycle-weights wck in the algorithm of Theorem 3.2.1 of Part I. This,
added to the assumptions that we have chosen an ordering and the starting
points of the cycles in (3.5.2), will assure the uniqueness of the partition
{Si}.

Accordingly, for any fixed n ≥ 2 there exists a map Φ which assigns
to each n× n irreducible stochastic matrix P a partition S = {Si, i =
1, . . . , n} of [0, 1) such that the rotational representation process defined by
(ft,S ) with t = 1/n! and S = Φ(P ) has the same transition probabilities
and the same distribution of cycles as the probabilistic cycle distribution
of the Markov chain on P.

Finally, if we endow the set of all partitions of [0, 1) with the metric d
defined by (3.5.1), the convergence in metric d of any sequence of partitions
{nSi} will follow from that of the measures of the component-sets of nSi.
The proof is complete. �

3.6 The Rotational Dimension of Stochastic
Matrices and a Homologic Solution
to the Rotational Problem

3.6.1. The map Φ occurring in Theorem 3.5.1 is expressed by two one-
to-one transformations Φ1 and Φ2. Specifically, Φ1 acts from the set of
n× n irreducible stochastic matrices into the set of pairs of ordered classes
(C∞, C∞) where C∞ = (p(ck)wĉk , k = 1, . . . , s) is the unique probabilistic
cycle distribution assigned to the class C∞ = {ĉ1, . . . , ĉs} of cycles accord-
ing to Theorem 4.1.1 of Part I. Also, Φ2 assigns each pair (C∞, C∞) to an
n-partition S = {S1, . . . , Sn} of [0, 1).

In general, Φ1 becomes a one-to-many relation if we relax the assump-
tions in Theorem 3.5.1 For instance this happens if the cycle-representation-
algorithm varies, or if the ordering on the class of the circuits is changing
(i.e., the referential system of the cycle-axes varies). It is this case that we
shall consider, extending for a moment the domain of Φ1 to the class of all
n× n recurrent stochastic matrices.
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Let S = {1, 2, . . . , n}, n ≥ 2, and let P = (pij , i, j ∈ S) be a recurrent
stochastic matrix. Then, choosing an invariant strictly positive probabi-
lity distribution π = (πi, i ∈ S) of P, a system of cycle-axes and a circuit-
representation-algorithm, one obtains an ordered class of circuits C =
{c1, . . . , cs}, s ≥ 1, and a row vector

C = (p(c1)wc1 , . . . , p(cs)wcs) (3.6.1)

which decompose P by equations

πipij =
s∑

k=1

(p(ck)wck)Cck(i, j), i, j ∈ S, (3.6.2)

where wck > 0, k = 1, . . . , s; p(ck) denotes the period of ck, and Cck is the
circuit-matrix associated with ck.

Once the pair (C,C) is chosen to represent the matrix P by equations
(3.6.2), the above transformation Φ2 is concerned with an assignment

(C,C) → ({Akl}, {λ(Akl)}) (3.6.3)

from the circuits of C and numbers of C into the circle-arcs {Akl} and
numbers {λ(Akl)} defined according to the labeling (3.4.2) and Theorem
3.5.1, where the shift ft is defined by (3.2.1) with t = 1/M and M in equal to
the least common multiple of (2, 3, . . . , n) (λ symbolizes Lebesgue measure).
Then, for each choice of the starting points of the circuits, the sets

Si =
⋃
(k,l)

Akl, i = 1, . . . , n, (3.6.4)

with the unions indexed by the pairs (k, l) which are assigned to each i ac-
cording to the labeling (3.4.3), form a partition S = {S1, . . . , Sn} of [0, 1).
Furthermore S along with t = 1/M define a rotational representation of P.
When either n or s is a large number, the corresponding rotational partition
S will contain a vast number of components {Akl} and the construction of
Si, i = 1, . . . , n, will become very complicated. This motivates our interest
in rotational partitions with a minimal number of components {Akl}.

In this section we shall examine the rotational representations with small
numbers of components {Akl} in the descriptions (3.6.4) of the partition-
ing sets Si, i = 1, . . . , n. The approach is adapted from the paper of S.
Kalpazidou (1995).

Throughout this section we shall consider the rotational partitions S =
{S1, . . . , Sn} according to Theorem 3.5.1 where the rotational length is 1/M
with M equal to the least common multiple of (2, . . . , n), the components
Akl in the unions Si are labeled by (3.4.3), and the representation algorithm
and the corresponding collection (C,C) of circuits and weights vary. The
detailed exposition of the procedure for this type of rotational partitions
was given in Section 3.4. As we have already seen in Chapter 4 (Part
I), there are many algorithms which provide more than one solution of
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representative circuits and weights. Consequently, the pair (C,C) varies in
equations (3.6.2).

For a fixed representative pair (C,C) of P let:

δ(i) denote the number of the components Akl of Si, i = 1, . . . , n, defined
according to labeling (3.4.3).

Then, as we have seen in the previous Section 3.4, δ(i) depends only on C,
that is δ(i) is a topological feature of Si which depends neither on the
ordering of C nor on the starting points of the circuits of C. It is to
be noticed that, if i is passed by a single circuit c of period p(c), then
δ(i) = M/p(c), but when there are more than one circuit c passing through
i, then δ(i) =

∑
c(M/p(c)). Hence δ(i) depends on the number s of the

representative circuits in the decomposition (3.6.2) and on the connectiv-
ity relations of C.

Let δ = δ(s,C) = maxi=1,...,n δ(i). Then the number of components Akl

of each Si, i = 1, . . . , n, is less than or equal to δ. We call δ the length of
description of the partition S = {Si, i = 1, . . . , n} associated with C.

In general when the collection C is dissociated from any matrix and
refers to an arbitrary graph, we shall call δ(s,C) the rotational length of
description on C. Then there exists a pair (s0,C0), which provides the
minimal value for δ, when the representative class (C,C) varies in equations
(3.6.2). Let D(P ) ≡ δ(s0,C0) = mins,C δ(s,C). We call D(P ) the rotational
dimension of P (S. Kalpazidou (1995)). Analogously, one may define the
rotational dimension of a finite oriented graph.

Now we shall be concerned with the homological characterization of the
rotational representations of P and of the corresponding rotational lengths
of descriptions via the Betti circuits. To this end, we shall consider, for the
sake of simplicity, only irreducible stochastic matrices on S and we shall
define the Betti circuits as in Chapter 4 of Part I.

3.6.2. Before proceeding to our main task let us scrutinize the definition
of the rotational dimension of P. Specifically, when the circuit decomposi-
tion (3.6.2) is chosen to be the probabilistic one (provided by Theorem 3.3.1
of Part I), the circuits {ck} and the weights {wck} are uniquely determined
by a sample-path description. This probabilistic criterion enables us to gen-
eralize the rotational dimension to semigroups of stochastic matrices with
continuous parameter. A detailed argument of the rotational dimension of
semi-groups of finite stochastic matrices will be given in Section 3.9.

On the other hand, one may characterize an irreducible stochastic matrix
P as “chaotic” in the spirit of Kolmogorov if the connectivity relations of
the graph G(P ) of P are complex enough. Then the Betti number of the
graph G(P ) should be the maximal one.

It turns out that for a given n ≥ 1 the largest Betti number of all the
connected oriented graphs on {1, 2, . . . , n} is n2 − n + 1. Then there is an
irreducible stochastic matrix on {1, 2, . . . , n} whose graph has the Betti
number n2 − n + 1. In this case, the homological dimension of Betti is
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equal to the algebraic dimension of Carathéodory, which is n2 − n + 1 as
well (see Definition 4.5.3 of Part I).

3.6.3. We shall now consider the homological approach of Sections 4.4 and
4.5 (Chapter 4) of Part I. Accordingly, let G = G(P ) = (B0(P ),B1(P )),
B = B(P ), and Γ = Γ(P ) = {γ1, . . . , γB} denote, respectively, the graph of
a given irreducible stochastic matrix P = (pij i, j = 1, 2, . . . , n), the Betti
number of G, and an arbitrarily chosen base of B directed circuits of G
called Betti circuits. Here the B0(P ) and B1(P ) denote the set of points
and the set of directed edges of G endowed, respectively, with an ordering.
Then G is a strongly connected oriented graph where strong connectedness
is understood as in Section 4.4 of Part I. The Betti one-cycle associated
with a Betti circuit γ will be symbolized by γ.

Then, following the same reasoning of Theorem 4.5.1 and Remark 4.5.6
of Part I, we have:

Theorem 3.6.1. Any irreducible stochastic matrix P = (pij , i, j =
1, 2, . . . , n) has a circuit decomposition in terms of the Betti circuits
γ1, . . . , γB, that is,

∑
(i,j)

πipijb(i,j) =
B∑

k=1

w̃γk
γ

k
, b(i,j) ∈ B1(P ), w̃γk

∈ R, (3.6.5)

or, in terms of the (i, j)-coordinates,

πipij =
B∑

k=1

w̃γk
Jγk

(i, j), w̃γk
∈ R; i, j = 1, 2, . . . , n, (3.6.6)

where π = (π1, . . . , πn) denotes the invariant probability distribution of P
and Jγk

is the passage-function associated to γk. Furthermore, the circuit-
weights w̃γk

are given by equations.

w̃γk
=
∑
c∈C

a(c, γk)wc, a(c, γk) ∈ Z, k = 1, 2, . . . , B,

where the collection {C, wc} of circuits and weights is a circuit repre-
sentation of P given by either randomized algorithms or non-randomized
algorithms.

(Here Z, R denote as always the sets of integers and reals respectively,
and a circuit decomposition is understood as in Chapter 4, of Part I.) Any
decomposition of P in terms of the Betti circuits is called a Betti-type
circuit decomposition of P. For instance, equations (3.6.6) provide such a
decomposition (see also Section 4.5 of Part I).

In Remark 4.5.2 (Chapter 4) of Part I we have discussed how to obtain
positive weights w̃γk

in the decompositions (3.6.6) above (since w̃γk
can

be negative numbers). From this standpoint one may obtain a method of
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construction of finite stochastic matrices which admit Betti-type decompo-
sitions with positive scalars. Furthermore in Figure 4.4.1 we have illustrated
a strongly connected oriented graph where any B circuits are Betti circuits
(here B denotes the Betti number of the corresponding graph).

With this preparations, we now prove

Theorem 3.6.2. (A Homologic Solution to the Rotational Problem). Let
n ≥ 2 and S = {1, 2, . . . , n}. Consider G a strongly connected oriented
graph on S whose Betti number is B. Then for any irreducible stochastic ma-
trix P, which has G as its graph and a positive Betti-type circuit decomposi-
tion, there exists a rotational representation in terms of the Betti circuits.

Furthermore, if any B circuits of G are Betti circuits, then each of
the lenghts of description of the rotational partitions associated to any
irreducible stochastic matrix with the graph G is greater than or equal
to the length of description on a collection {γ1, . . . , γB̃} of Betti circuits
whose graph is G, where B̃ ≤ B.

Proof. Let G be a graph as in the first assumption of the theorem. Then
we shall apply Theorem 3.6.1 to the irreducible stochastic matrices on
S with the same graph G. Accordingly, let P = (pij , i, j ∈ S) be such a
matrix which, in addition, admits a Betti-type decomposition (3.6.6) with
respect to a base {γ

1
, . . . , γ

B
} of Betti circuits of G where the weights

w̃γk
, k = 1, . . . , B, are positive. Then equations (3.6.6) can be written in

the form

πipij =
B∑

k=1

(p(γk)w̃γk
)Cγk

(i, j), w̃γk
≥ 0, k = 1, . . . , B; i, j=1, . . . , n,

(3.6.7)
where Cγk

≡ (1/p(γk))Jγk
, k = 1, . . . , B, and π = (πi, i ∈ S) denotes the in-

variant distribution of P, (p(γk)) symbolizes as always the period of γk, and
Jγk

the second order passage-function of γk).
Let us further assume that the weights w̃γk

are strictly positive. Put t =
1/M , where M = l.c.m.(2, . . . , n). Then we may start labeling (3.4.3) with
the decomposition (3.6.7) and with the shift ft defined by (3.2.1). Next,
partition the interval A = [0, 1/M) into B subintervals A1, A2, . . . , AB such
that the relative distribution (λ(Ak)/λ(A), k = 1, . . . , B) matches the dis-
tribution (p(γk)w̃γk

, k = 1, . . . , B), that is,

λ(Ak) = (1/M)p(γk)w̃γk
, k = 1, . . . , B,

where λ symbolizes Lebesgue measure. Define Akl = f l−1
t (Ak) for k =

1, . . . , B, and l = 1, . . . ,M . Then for each choice of the starting points of
γk, k = 1, . . . , B, the sets Si =

⋃
Akl, i = 1, . . . , n, whose components Akl

are labeled by (3.4.3), provide a rotational representation (1/M,S (P )) of
P. Since the previous approach relies upon homologic arguments we shall
call (1/M,S (P )) a homologic solution to the rotational problem.
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Further, suppose that any B circuits of G are Betti circuits. Let P be an
irreducible stochastic matrix whose graph is G and let δ(s,C ) be a length of
description on a collection C of directed circuits which decompose P
by a circuit-decomposition-formula. Then we may find a collection Γ̃ =
{γ1, . . . , γB̃}, with B̃ ≤ B, of Betti circuits in C such that the associated
graph with Γ̃ is G . Furthermore the length of description δ(B̃, Γ̃) on Γ̃ sat-
isfies δ(B̃, Γ̃) ≤ δ(s,C ). For instance, we have B̃ < B when certain weights
w̃γk

are zero in equations (3.6.7). The proof is complete. �

3.7 The Complexity of the Rotational
Representations

We have seen in the previous section that, if P is an irreducible matrix
on {1, 2, . . . , n} whose graph G = G(P ) is the complete directed graph,
then three characteristics, which in general are irreconcilable, come into
a condition of compatibility. These characteristics are the Betti number
of P (a topological invariant), the Carathéodory dimension (an algebraic
dimension) and the property of being “chaotic” approached in the spirit
of Kolmogorov. The Betti dimension and the Carathéodory dimension are
introduced in Section 4.5 (Chapter 4) of Part I.

Consider the maximal rotational dimension of P when P varies in the set
of all n× n recurrent stochastic matrices. Another way to approach this
concept was initiated by S. Alpern (1983). The present section, as well as
the next one, deals with this approach as was developed by S. Alpern, J.
Haigh, P. Rodriguez del Tio, and M.C. Valsero Blanco.

We first start with a definition. A rotational partition S = {Si, i =
1, 2, . . . , n} has the type L if the number of components of each Si is less
than or equal to L, i = 1, . . . , n. Let D = D(n) be the least integer such
that every n× n recurrent matrix has a rotational representation of type
D, that is, a representation (t,S ) where S is of type D. Then D depends
on the definition of the labeling of the components of the partitioning sets
S1, . . . , SN . In Sections 3.3 and 3.4 there were presented two approaches
to the rotational partition. Now the ingredient D will be investigated in
the context of Alpern’s approach exposed in Section 3.3. To obtain a lower
bound of D(n) we first prove the following lemma due to S. Alpern (1983).

Lemma 3.7.1. Let ck, k = 1, . . . , r, be positive integers and let n = 1 +
c1 + c2 + · · · + cr. Let Q = Q(c1, . . . , cr) be an n× n permutation matrix
with cycles of lengths 1, c1, c2, . . . , cr. Then, if Q is represented by (t,S ),
the type of S is at least l.c.m.(c1, . . . , cr) ( l.c.m. symbolizes as always the
least common multiple).

Proof. Let 1 be the label of the 1-cycle of Q so that q11 = 1. Then, if f
denotes ft the set S1 is invariant under f. It follows from Weyl’s well-known
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theorem (see P.R. Halmos (1956)) that t is rational (irrational rotations are
ergodic—have no nontrivial invariant sets). Let t = p/q in lowest terms, so
that every point in [0, 1) has f-period q. The invariant set S1 consequently
consists of at least q intervals and hence the type of S is at least q. To
estimate q from below, observe that, if a point x belongs to Si where the
index i belongs to a Q-cycle of length ck then the f-period of x must be
a multiple of ck. But the f-period of every x is q, so q is a multiple of ck.
Hence q ≥ l.c.m. (c1, . . . , cr). �

A general estimation of D(n) is given by S. Alpern (1983) as follows:

Theorem 3.7.2. There exist positive constants α and β such that for
all n,

exp(αn1/2) < D(n) < exp(βn). (3.7.1)

Proof. We shall need the following notation and estimates due to Landau
(1958) (pp. 89–91). Let pk denote the kth prime (p1 = 2) and let π(n)
denote the number of primes less than or equal to n. A partial result in the
direction of the Prime Number Theorem (due to Chebyshev) asserts the
existence of a positive constant β1 such that

π(n) ≤ β1/ log n.

Let d(k, n) be the largest integer power d such that pdk ≤ n. Then for any
even n,

2n/2 ≤ l.c.m.(2, 3, . . . , n) =
π(n)∏
k=1

p
d(k,n)
k ≤ nπ(n). (3.7.2)

We can now proceed with the proof proper, beginning with the up-
per bound. The algorithm presented in the proof of Theorem 3.3.1 rep-
resents any recurrent n× n matrix by (t,S ) where S is composed of
intervals Akl, k = 1, . . . , N, l = 1, . . . ,M , where N ≤ n2 − n + 1 and M =
l.c.m.(1, 2, 3, . . . , n). Consequently, we have that

D(n) ≤ NM ≤ n2 l.c.m.(1, 2, . . . , n). (3.7.3)

If we combine (3.7.3) with (3.7.2) and take logarithms we get,

log D(n) ≤ 2 logn + π(n) logn
≤ log n(2 + β1n/ logn) (3.7.4)
≤ log n(βn/ logn)
= βn,

where β is some positive number larger than β1.
To obtain the lower bound, fix any even m and define ck = p

d(k,m)
k

for k = 1, . . . , π(m). Let n = nm = 1 +
∑π(m)

k=1 ck ≤ m2. Then we apply
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Lemma 3.7.1 to the permutation matrix Q = Q(c1, . . . , cπ(m)), obtaining

D(nm) ≥ l.c.m.(c1, . . . , cπ(m)) =
π(m)∏
k=1

p
d(k,m)
k ≥ 2m/2. (3.7.5)

Since nm ≤ m2 and D(n) is nondecreasing, (3.7.5) implies

D(m2) ≥ 2m/2

and hence

D(m) ≥ 2m
1/2/2

or

D(m) ≥ exp(αm1/2),

where α = log 21/2. �

The estimation (3.7.1) for D(n) is based on the labeling (3.3.6) (Section
3.3 of Part II) for the component intervals Akl of the partitioning sets
Si, i = 1, . . . , n. The change of the labeling will naturally imply the change
of the estimation of D(n). We now present other labelings along with the
corresponding estimations for the D(n).

A first labeling is given for n = 2 by J.E. Cohen in the course of the proof
of Thorem 3.2.1. Consequertly we have D(2) = 1. Next, the generalization
D(3) = 2 is due to J. Haigh (1985) using the following labeling. Let P be
any 3 × 3 recurrent matrix with invariant probability distribution π. Then
we have

πi = π1p1i + π2p2i + π3p3i, i = 1, 2, 3, (3.7.6)
πi = πipi1 + πipi2 + πipi3, i = 1, 2, 3. (3.7.7)

Equating the two expressions for πi in (3.7.6) and (3.7.7), we have

π2p21 − π1p12 = π1p13 − π3p31 = π3p32 − π2p23 ≡ v. (3.7.8)

It turns out to be more convenient to define ft(x) = (x + t) (mod 2), and
use the interval [0, 2) instead of [0, 1), so that λ(Si) = 2πi. We now specify
the division points x1, x2, . . . , x5, that partition [0, 2) into the six intervals
in the order shown in Figure 3.7.1, by fixing the lengths of these intervals.

We choose

λ(Ai1) = 2πi − πipii, λ(Ai2) = πipii,

Figure 3.7.1.
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Figure 3.7.2.

and we define t = 1 − v, where v was introduced by (3.7.8). Then, writing
ft(xi) = yi, we can easily calculate the values of y0, . . . , y5, and verify that
these points are juxtaposed with x0, . . . , x6 as shown in Figure 3.7.2 (i.e.,
that x0 ≤ y3, y4 ≤ x1, etc.) and that:

x3 − y0 = 2π1p13, y1 − x4 = 2π1p12,

x1 − y4 = 2π2p21, y5 − x2 = 2π2p23, (3.7.9)
x5 − y2 = 2π3p32, y3 − x0 = 2π3p31.

Hence, if Si ≡ Ai1 ∪Ai2, then λ(Si) = 2πi and relations (3.7.9) show that
pij = λ(ft(Si) ∩ Sj)/λ(Si) for i �= j; but since S = {S1, S2, S3} partition
[0, 2), the previous equation holds for {pii} as well. Therefore we have
proved that any 3 × 3 recurrent matrix has a rotational representation
(t,S ), with t and S = {S1, S2, S3} defined above, where each Si is a union
of at most two intervals.

The particular cases D(2) = 1, D(3) = 2 cannot be extended to n ≥ 4.
The above Alpern’s Lemma 3.7.1, which disproves that D(n) = n− 1 for
n ≥ 4, uses a matrix corresponding to a reducible Markov chain with cyclic
classes of sizes 1, c1, c2, . . . , cr. Thus, if we partition any positive integer m
as m = c1 + c2 + · · · + cr, and define

H(m) = Max{l.c.m.(c1, c2, . . . , cr): all partitions},
Alpern’s result implies that D(n) ≥ H(n− 1). Furthermore, J. Haigh pro-
poses the following conjecture:

D(n) = H(n− 1).

Here are some values:

n 2 3 4 5 6 7 8 9 10 11 12 13
H(n− 1) 1 2 3 4 6 6 12 15 20 30 30 60

Also, J. Haigh (1985) proves the following:

Theorem 3.7.3. We have D(n) ≥ D(n− 1).

Proof. Let P0 be some (n− 1) × (n− 1) recurrent matrix in which any
rotational representation requires some Si to contain D(n− 1) intervals.
Let P1 be the n× n matrix whose principal submatrix is P0, and pnn = 1.
Suppose that λ(Sn) = α and that P1 has a representation in which every
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Si is the union of at most r intervals. Since ft(Sn) = Sn, we see that the
intervals in Sn can be split into families, each family consisting of equally
sized intervals whose left endpoints are a multiple of t = p/k apart.

Remove this Sn from [0, 1), coalesce the remaining intervals, and define
t = p(1 − α)/k; this gives a representation of P0 on [0, 1 − α), using at most
r intervals, so r ≥ D(n− 1); but D(n) ≥ r, so D(n) ≥ D(n− 1). �

3.8 A Reversibility Criterion in Terms
of Rotational Representations

The rotational representations were originally given in Theorem 3.2.1 for
the case where the stochastic matrices are 2 × 2 irreducible matrices. These
matrices have the property of being reversible matrices. As is known, a
recurrent stochastic matrix P = (pij , i, j = 1, . . . , n), n ≥ 1, is reversible if
πipij = πjpji, i, j = 1, . . . , n, where π = (πi, . . . , πn) denotes an invariant
probability row-distribution. Define R = (rij , i, j = 1, . . . , n), where rij =
πipij . Then P is a reversible matrix if and only if R is a symmetric matrix.

In this section we investigate the rotational representations of n× n re-
versible recurrent matrices according to the approach of P. Rodriguez del
Tio and M.C. Valsero Blanco (1991). One result will be a reversibility cri-
terion for finite recurrent Markov chains in terms of rotational partitions.

As already seen in the previous sections the type of a rotational partition
depends on the way the labels are assigned to each subinterval. If R is a
symmetric matrix, then it is a convex combination of n cycle matrices
(defined by relations (3.3.1) of this chapter) of length one and n(n− 1)/2
cycle matrices of length two, so the rotation can be taken to be 180◦, that
is t = 1/2 in the definition (3.2.1) of the shift ft. In this case the cycles
and the labels can be reordered to get the labels grouped at least in pairs
except, perhaps, one of them. As two or more contiguous subintervals with
the same label can be merged into one, we have less intervals than labels,
therefore the type of the partition decreases.

The following lemma, due to P. Rodriguez del Tio and M.C. Valsero
Blanco (1991), shows that such orderings and labelings can be found.

Lemma 3.8.1. Let E = E(n) be the set of N = n + n(n− 1)/2 unordered
pairs (i, j) with i, j in {1, 2, . . . , n}. Then the elements of E may be ordered
and labeled as (a(k), b(k)), k = 1, . . . , N , so that in the circular arrangement
a(1), a(2), . . . , a(N), b(1), . . . , b(N) (i.e., with a(1) adjacent to b(N)) the
n + 1 occurrences of each label i form at most [n/2] + 1 contiguous sets.

Proof. First assume n is odd. Let G be the graph with points 1, . . . , n
and edges E (the complete graph with loops added at every point). At
every point there are exactly (n− 1) + 2 = n + 1 incident edges, since a
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loop counts as 2. Since this number is even, there is an Eulerian cycle
v1, . . . , vN , vN+1 = v1 in G (see M. Gondran and M. Minoux (1984), The-
orem 1, p. 338), for which we may assume 1 = v1 = vN . If k is even, let
(a(k), b(k)) = (vk, vk+1) and if k is odd, let (a(k), b(k)) = (vk+1, vk).

In vertical notation, the ordering of E is as follows:

b(k) 1 v3 v3 vk vk+2 vk+2 · · · 1
a(k) v2 v2 v4 · · · vk+1 vk+1 vk+3 . . . 1.

Observe that all occurrences of every label i appear in pairs, with the
possible exception of the four l’s in columns 1, N − 1 and N. If n = 1 (mod
4), then N is odd and the 1 in column N − 1 is in the top row, so the
pairing holds for all the l’s, too. Since each label i occurs n + 1 times. then
it occurs in (n + 1)/2 contiguous pairs and we are done. If n = 3 (mod 4),
then there is a l in the bottom row of column N − 1, so these four l’s are
still in two contiguous sets and the occurrences of any label i still form at
most (n + 1)/2 contiguous sets, as required.

If n is even, the graph G has odd degree (n + 1) at every point. In this
case, define G′ to be the multigraph with N ′ = N + n/2 edges obtained
from G by adding another copy of each edge (1, 2), (3, 4), . . . , (n− 1, n).
Observe that every vertex has even degree n + 2 in G′. Apply the same
argument as before to obtain N ′ columns with all labels (except possibly
l, which is treated specially, as before) appearing n + 2 times in (n + 2)/2
pairs. Then delete one appearance each, for the n/2 added columns (edges).
Renumber the columns; in the resulting circular ordering each label appears
in at most (n + 2)/2 contiguous sets. �

Example 3.8.1. Let n = 3 (N = 6). An Eulerian cycle in G is given by
1, 2, 2, 3, 3, 1. The associated ordering of E, writing pairs vertically, is
given by

1 2 2 3 3 1 (two contiguous sets),
2 2 3 3 1 1

Example 3.8.2. Let n = 4 (N = 10, N ′ = 12). An Eulerian cycle in G′ is
given by 1, 2, 2, 3, 3, 4, 4, 1, 3, 4, 2, 1. If we delete the second occurrence of
the additional edges (1, 2) and (3, 4) (marked x), we have

1 2 2 3 3 4 4 3 3 2 2 1 (three contiguous sets),
2 2 3 3 4 4 1 1 4 4 1 1

x x

Theorem 3.8.2. If R is a symmetric matrix, the P has a rotational rep-
resentation ( 1

2 ,S ) where S has type [n/2] + 1.
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Proof. As R is a symmetric matrix, it is a convex combination of n cycle
matrices of length one and n(n− 1)/2 cycle matrices of length two with
coefficients rii in the (i) cycle and 2rij in the (i, j) cycle. Let (a(i), b(i)), i =
1, . . . , N , be as in Lemma 3.8.1.

Define

α0 = 0,
αi = (ra(i),b(i))/2, if a(i) = b(i);
αi = ra(i),b(i), if a(i) �= b(i), i = 1, 2, . . . , N.

Let Ak1, k = 1, . . . , N, be a partition of [0, 1/2), where

Ak1 =

[
k−1∑
i=0

αi,

k∑
i=0

αi

)
.

Define Ak2 = f1/2(Ak1), k = 1, . . . , N ,

Si =

⎛
⎝ ⋃

a(k)=i

Ak1

⎞
⎠ ∪

⎛
⎝ ⋃

b(k)=i

Ak2

⎞
⎠ ,

S = {Si, i = 1, . . . , n}.
Note that

R =
N∑

k=1

2αkC(α(k),b(k)),

where C(α(k),b(k)) is the n× n cycle matrix with elements:

if a(k) �= b(k): ca(k),b(k) = cb(k),a(k) = 1
2 ,

cij = 0, otherwise;

if a(k) = b(k): ca(k),b(k) = 1,
cij = 0, otherwise.

Direct calculations prove that (1
2 ,S ) is a rotational representation of P.

The definition of the labels (a(k), b(k)) shows that S has type [n/2] + 1.
The proof is complete. �

Remark. In case the matrix R does not contain all possible cycles of length
two or all possible cycles of length one, fewer subintervals in the previous
construction are required and the type of the partition may possibly be less
than [n/2] + 1. For example, if pii = 0, i = 1, . . . ., n (i.e., there are not any
loops) and n is even or n = 3 (mod 4), then the matrix P has a rotational
representation in which the partition S has type [n/2].

Let P be an n× n recurrent matrix with π its invariant probability dis-
tribution. Let Q = (qij) be defined qij = (πjpji)/πi. Q is called the reversed
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matrix of P. It is well known that Q is a stochastic matrix whose invariant
probability distribution is also π.

We have:

Lemma 3.8.3. Let (t,S ) be a rotational representation of P. Then (1 −
t,S ) is a rotational representation of Q.

Proof. Let ft(x) = (x + t) (mod 1), gt(x) = (x + 1 − t) (mod 1) be shift
transformations on [0, 1). Then ft = g−1

t . Since (t,S ) is a rotational rep-
resentation of P, then pij = (λ(ft(Si) ∩ Sj))/λ(Si). Furthermore, qij =
(πjpji)/πi = λ(ft(Sj) ∩ Si)/λ(Si) = λ(Sj ∩ gt(Si))/λ(Si). This completes
the proof. �

We are now prepared to prove a reversibility criterion in terms of the
rotational representations following P. Rodriguez del Tio and M.C. Valsero
Blanco (1991).

Theorem 3.8.4. A recurrent matrix P is reversible if and only if it has a
rotational representation ( 1

2 ,S ), for some partition S. If so, there is such
a representation where the type of S is [n/2] + 1.

Proof. Let P be a recurrent reversible matrix, then pij = qij , so R is sym-
metric and we apply Theorem 3.8.2. Conversely, suppose that P has a
rotational representation (1

2 ,S ); then by Lemma 3.8.3. Q has the same
representation, so P = Q. �

3.9 Rotational Representations of
Transition Matrix Functions

Let n ≥ 2 and let P (h) = (pij(h), i, j = 1, . . . , n), h ≥ 0, be any standard
transition matrix function defining an irreducible Markov process ξ =
(ξh)h≥0, whose invariant probability distribution is denoted by π = (πi, i =
1, . . . , n). Then the cycle representation Theorem 5.5.2 of Part I and The-
orem 2.1.1 of Part II assert that each P (h) has a linear decomposition in
terms of a collection (C, wc(h)) of directed circuits c and positive (weight-)
functions wc(h), that is,

πipij(h) =
∑
c∈C

wc(h)Jc(i, j), i, j = 1, . . . , n,

where the collection C is independent of h and the wc(·) enjoy a probabilistic
interpretation in terms of the sample paths.

Associate with each h > 0 the discrete skeleton chain Ξh = (ξhm)m≥0

with scale parameter h. Then, as is well known, Ξh is an aperiodic and
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irreducible finite Markov chain whose transition matrix is given by P (h) =
(pij(h), i, j = 1, . . . , n). A transition matrix function defining an irreducible
(or recurrent) Markov process will be called an irreducible (or recurrent)
transition matrix function.

In this section we generalize the rotational problem to the semigroup
(P (h))h>0 of stochastic matrices following S. Kalpazidou (1994b). We shall
assume that the hypotheses of Theorem 3.5.1 of Part II are satisfied (the
ordering of the circuits and the starting points of the circuits are fixed, etc.).

We have

Theorem 3.9.1. (i) A standard transition matrix function
P = (P (h), h ≥ 0) on {1, 2, . . . , n}, n ≥ 2, is recurrent if and only if
for each h > 0 there exists a rotational representation (t,S (h)) for P (h),
that is,

pij(h) = λ(Si ∩ f−1
t (Sj))/λ(Si), i, j = 1, . . . , n; h > 0, (3.9.1)

where ft = (x + 1) (mod 1), x ∈ [0, 1), with t = 1/n!,S (h) = (Si(h), i =
1, . . . , n) is a partition of [0, 1) and λ denotes Lebesgue measure. More-
over, for any recurrent standard transition matrix function P = (P (h), h ≥
0) and for any positive invariant probability distribution π there is a
rotational representation (t,S (h)) for each P (h), h ≥ 0, such that π =
(λ(S1(h)), . . . , λ(Sn(h))).

(ii) There exists a map Φ defined by Theorem 3.5.1 which, for any ir-
reducible standard transition matrix function P = (P (h), h ≥ 0), assigns
each P (h), h > 0, to an n-partition S (h) = (Si(h), i = 1, . . . , n) of [0, 1)
such that for all h the Si(h) have the same labels for their components,
i = 1, . . . , n.

Proof. (i) The assertion (i) of the theorem follows from Theorem 3.3.1
(Part II) applied to each P (h), h > 0.

(ii) We further appeal to Theorem 5.5.2 of Part I according to which we
have the following probabilistic decomposition

πipij(h) =
∑
c∈C

wc(h)Jc(i, j), (3.9.2)

where (wc(h), c ∈ C) is the circulation distribution of the discrete skeleton
Ξh on P (h) whose ordered collection C of circuits is independent of h.
Then the statement (ii) of the theorem follows from Theorem 3.5.1 of Part
II applied to each stochastic matrix P (h), h > 0.

Finally, from the definition of the labeling (3.4.3) and from the cy-
cle version of the Lévy Theorem 2.1.2, it follows that for each i the
sets Si(h), h > 0, have the same labels (k, l) for their component intervals
Akl(h). The proof is complete. �

A transition matrix function P = (P (h), h ≥ 0) which satisfies equa-
tions (3.9.1) is said to have the rotational representation (t,S (h))h≥0.
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Let P = (P (h), h ≥ 0) be a recurrent standard transition-matrix function
where P (h) = (pij(h), i, j = 1, . . . , n), n ≥ 2, and let ξ = (ξh)h≥0 be the cor-
responding Markov process. Denote by C the collection of directed circuits
(with distinct points except for the terminals) which occur along the sam-
ple paths of Ξt, t > 0. Let further σ be the number of circuits of C. Also, for
each P (h) let S (h) be a rotational partition associated with C according
to the procedure of Section 3.4.

Denote by δ(j), j = 1, . . . , n, the number of components Akl(h), occur-
ring in the description of Sj(h) by the union

⋃
(k,l) Akl(h) which is indexed

according to the labeling (3.4.3). Then, as in Theorem 3.9.1 (ii), we see
that δ(j), j = 1, . . . , N , depends only on the representative class C of cir-
cuits, and so δ(j) will be a common characterstic of all the partitioning
sets Sj(h), h > 0.
Consider δ(σ,C) = maxj=1,...,n δ(j).

We call δ(σ,C) the rotational dimension of the transition matrix function
P. Then the rotational dimension δ(s,C) of all the recurrent transition-
matrix functions with the same graph G is provided by the collection C of
all the directed circuits of G.



List of Notations

β = (βedge, point) page 15
c directed circuit
ĉ directed cycle
c the one-chain associated to c
C class of directed circuits, or cycles
Cc the circuit (or cycle) matrix associated to c
γ a circuit of a Betti base
Γ(P ) base of Betti circuits of the graph of P
γ(·) the growth function
d(k, u) the shortest-length-distance
D(P ) the rotational dimension of P
ζ = (ζedge, circuit) page 13
G(P ) the graph of the stochastic matrix P
η = (ηedge, point) page 13
Jc the passage-function associated to c
λ Lebesgue measure
MS×S({0, 1}) the set of m×m matrices whose entries belong to

{0, 1}.
N(i, j/i1, . . . , ik) page 32
ν = (νcell, edge) page 62
P probability measure
P = (pij) stochastic matrix
P (t) = (pij(t)) stochastic transition matrix function
π = (πi) invariant probability distribution
π̃ = π̃([i1, . . . , in]) page 32



266 List of Notations

R the set of reals
(R) the symbol of the rotational problem
[S] page 31
S rotational partition
(t,S) the rotational representation of length t
wc circuit-weight (or cycle-weight) associated to c (or ĉ)
wc(·) the weight function associated to c
Z the set of integers
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in Mathematics, No. 1210, Springer-Verlag, Berlin.



Bibliography 271

(1988) “Entropy and boundary for random walks on locally compact
groups”, Transactions of the Tenth Prague Conf. on Information Theory,
etc., Akademia, Prague, pp. 269–275.
(1993) “Ergodic problems on random walks in random environment”, in:
S. Kalpazidou (Ed.): “Selected Talks Delivered at the Department of Mathe-
matics of the Aristotle University (1993)”, Aristotle University Press, Thes-
saloniki.
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Univ. Masaryk (Brno), no. 236.
(1940) “Eléments d’une théorie générale des châınes simples constantes
de Markoff”, Ann. École Norm. Sup., 37(3), 61–111.

W. Doeblin and R. Fortet
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H. Poincaré, 1, 117–160.
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R.T. Rockafellar
(1964) “Duality theorems for convex functions”, Bull. Amer. Math. Soc.,
70, 189–192.



290 Bibliography

(1969) “The elementary vectors of a subspace of R”, in: R.C. Bose
and T.A. Dowling: “Combinatorial Mathematics and its Applications”,
University North Caroline Press, pp. 104–127.
(1972) Convex Analysis, Princeton University Press, Princeton.

V.I. Romanovski
(1949) Discretnie tsepi Markova, GIL-TL, Moscow and Leningrad.

J.P. Roth
(1955) “An application of algebraic topology to numerical analysis: On
the existence of a solution to the network problem”, Proc. Nat. Acad. Sci.
U.S.A., 41, 518–521.
(1959) “An application of algebraic topology: Kron’s method of tearing”,
Quart. Appl. Math., XVII, no. 1, 1–24.

J. Rotman
(1994) An Introduction to Homological Algebra, Academic Press, New
York.

H.L. Royden
(1952) “Harmonic functions on open Riemann surfaces”, Trans. Amer.
Math. Soc. 75, 40–94.
(1968) Real Analysis, 2nd edn., Macmillan, New York.

Yu.A. Rozanov
(1967) Stationary Random Processes, Holden-Day, San Francisco.

I.W. Sandberg
(1993) “Approximately-finite memory and the circle criterion”, Pro-
ceedings of the International Symposium on the Mathematical Theory of
Networks and Systems, Regenburg, August 2–6, 1993.

J.J. Schäffer
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