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Abstract. [Sim84] introduced th e concept of subliminal channel in the contezt 

of signature systems. [Des88b] presented a solution against subliminal channels and 
eztended in [Des88a] the solution to abuse-free coin-flipping, abuse-free genemtion of 
public keys, and abuse-free zero-knowledge. In this paper we demonstrate that a whole 
family of systems (genemlized Arthur-Merlin games) can be made abuse-fme, avoiding 
the ezhaustive approach of [Des88aJ. We will hereto formalize the concept of abuse. 

1 Introduct ion 

[Sim84] found that a secret message can be hidden in a subliminal way through the 
authentication process. Simmons called the hidden channel the subliminal channel 

Simmons illustrated it, by comparing it with two prisoners who are communicating 
authenticated messages in full view of a warden. The warden is able to read the 

messages. The subliminal consists in hiding a message through the authentication 

scheme such that the warden cannot detect its use nor read the hidden part (for other 

subliminal channels see [JS86,Sim85,Sim86]). 

[Des88b] demonstrated that subliminal-free authentication and signature systems 
can be made by introducing the concept of active warden (a warden who modifies 

the authenticator). [DesSSa] studied subliminal channels in different contexts (which 
was then called abuses). iDes88 a ‘s solutions against abuses are exhaustive, discussing ] 

particular solutions to particular problems. The goal of this paper is to prove, in a con- 
structive way, that all cryptosystems can be made abuse-free using a compiler which 
will transform a given cryptosystem into an abuse-free version (similarly as [GMW86, 

p. 1851, but keeping the solution practical). However, our solution could ruin the 
security specifications, in other words, it could be that the abuse-free version is no 

longer a secure cryptosystem. Therefore, we can only prove our theorem for a family 
of cryptosystems. 
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2 Formal model for abuses and abuse-freeness 

We assume that the reader is familiar with terminology of [GMRSS] (will be briefly 
overviewed in final paper) and notations in [CEvdGP87]. We now introduce a formal 
description of an active and a passive warden, covering'them together to avoid long- 
windedness. The model has similarities with the one in [BOGKW88]. 

Definition 1 Let AI,  . . . , A,,,, A,,,+1 be probabilistic Turing machines. If all machines 
A; have a shared common read-only tape C and in addition: 

all A; (1 5 i 5 m + 1) have their own work-tape and own random tape, 

0 each Ai (1 5 i 5 m + 1) has a private read-only tape H; and the content of 
these tapes has been written before the machines run, 

for all i such that 1 5 i 5 m, A; has m - 1 write-only communication tapes Ti2 
(1 5 j 5 m and i # j )  and A,,,+l has m(m - 1) read only communication tapes 
Ri2 such that q2 = Ti2 (for all i and j such that i # j and 1 5 i 5 m and 
1 I i < m ) ,  

0 for all i such that 1 5 i 5 m, A; has m - 1 read-only communication tapes &,j 

(1 5 j 5 m and i # j )  and Am+1 has m(m - 1) write only-communication tapes 
Ti2 such that = R,,, (for all i and j such that i # j and 1 5 i 5 m and 
1 r j  I m),  

0 the order in which these machines write on the tapes is fixed ( e .g . ,  A1 starts), 

then we call A = (Al, . . . ,Am,  Am+1) an m-participant system with warden, Am+l, or 
for short m-participant system. We will denote Am+1 mostly as W .  If m could be an 
indeterminate, we call A a multi-participant system with warden, W .  If the warden, 
W ,  does not read the common tape C, his random tape, his private read-only tape 
H,,,+l; but only writes on tape T;:. the same symbol which he reads from tape R:,; 
(for all i and j ,  i # j ) ,  then we say that the warden is passive. In ali other cases we 
say that the warden, W ,  is actiue. 

We remark that the case that the actual communication links don't exist corre- 
sponds with machines that don't write on these tapes. Adapting the above model 
could be useful in other contexts. The private read-only tape Hi can be used e.g., 
to store secret keys. We assume mostly that the length of Hi is polynomial in z, 
where x is the common input. Simplification of notations is possible by giving each 
A; (1 5 i 5 rn) only one tape T; and one tape I?,. However, in our model in the case 
that the warden is passive the network corresponds with a complete directed graph. 
It depends on the context which power the probabilistic Turing machines AI,  . . . , Am 
and W have. 



Definition 2 Let S(z, A) be a predicate, (specifications of the security), where A is 
a k-participant system and x E {0,1}*. If for a multi-participant system, B holds that 
S(x,B) = 1 for all sufficiently long (large) z E L ,  where L c {O, l}* ,  then we call B 
an S(L)-system with (active or passive) warden, W ,  or shorter an S-system if there 
is no ambiguity. We will also say that the m-participant system B is S-secure. 

Definition 2 allows us to speak about authentication-system, signature-systems 
and so on. For our purposes, we now adapt notations introduced in [GMRBg]. For a 
run of A, an m-participant system, with x on the shared common tape (C) and with 
hl on Al’s private read-only tape, the l-participant’s view corresponds with all that 
can be seen from his random tape and from the read-only communication tapes Ri,j 
(for all j E (1 , .  . . , l - 1, l + 1,. . , , m + 1)). Let PviewA,I(z, hl) be the random variable 
whose value is the I-participant’s view, If the warden, W ,  is an active one, we define 
the warden’s view to be everything that can be seen from W’s random tape and from 
all read only communication tapes R:, j ,  for i # j. If the warden is passive, and x is 
on the shared common tape (C), we define the warden’s view to be everything that 
can be seen from all read only communication tapes, Rij (i # j ) .  WviewA(z) is the 
random variable whose value is the warden’s view. To simplify notations, we did not 
specify the input h,+l in the expression WviewA(z). 

Definition 3 Let A = (Al , .  . . ,A,,,, W )  be an S(L)-system, with warden W .  Let 
A’ = (A; ,  . . . , AA, W )  be an m-participant system. A‘ is a perfect (statistical) (com- 
putational) a b w e  of the S(L)-system A if: 

1. Warden-indistinguishable: {WviewA(z)} and {WviewA,(s)} (families of ran- 
dom variables) are equal (statistically indistinguishable) (computational indistin- 
guishable) on L‘, where L‘ = L if the warden is passive, else L’ = ((3, h , + ~ )  I 
z E L and Ihm+lI = 1 ~ 1 ‘ ) .  

2. k-Participant-distinguishable: 3k, h k  (1 5 k 5 m) : the families of random 
variables {PviewAl# ,k(x, h k ) }  and {PviewA,,k(z, hk)}  are not computationally 
indistinguishable on L“, where A$ = (A: ,  . . . ,A:, W )  is an m-participant sys- 
tem such that A: = A; for all i # k and A;’ = A; and L” = { ( x , h k )  I x E 
L and l h k l  = [zl‘}. 

k 

We denote Af: as: A * A; (* is non-commutative). The aforementioned participant k 
is called the subliminal receiver. If there ezists an m-participant system A’, which is 
an abuse of the m-participant system A, we say that A can be abused. 

Definition 4 Let A = ( A l , .  . . , A m ,  W )  be an S(L)-system, with warden W. We call 
A an abuse-free S(L)-system if for all m-participant systems A’ = ( A ; ,  , . . , A;, W ) ,  
A’ is not an abuse of the S(L)-system A. We call A a strong (weak) abuse-free S(L)- 
system if for all m-participant systems A‘ = ( A ; ,  . . . , A ; ,  W )  holds Vk, h k  (1 5 k I 
m): if the families of random variables {WviewA(z)} and (WviewAl(z)) are compu- 
tationally indistinguishable on L’, then {PviewA*A;,k(z, h k ) }  and {PviewAt,k(z, hk) }  
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are statistically (computationally) indistinguishable on L”, where L’ and L” were 
defmed in Definition 3. 

Informal interpretation 

In an abuse, the passive warden, W ,  is listening to all communications going on during 
the run of the system. However, the passive warden, W ,  has no access to the tapes 
Hi. The subliminal receiver k is waiting to receive hidden information and is therefore 
running his special program A; instead of running the normal one, namely Ak. 

Abuse-freeness means that one does not exclude that a different system is used than 
the one intended, but the warden will detect it (almost always). Strong abusefreeness 
means that a polynomial-bounded warden will (almost always) detect an abuse even 
if the other participants have all infinite computer power. 

3 A general solution 

3.1 A BUILDING BLOCK 

Let us first discuss a slightly modified version of [Des88a] abuse-free generation of 
public keys (the main difference is that W will always publish the public key). In 
the final paper we will formally define what a public-key generation system is  SO 
considering [GMR88, pp. 290-2911’s definition. 

Lemma 1 If G(.) forms a group and r is chosen out of G according to a uniform 
proljability distribution, (the probabizity to select a given r i s  p(r)  = l/(G[), then: 
Vz E G : p(z  r )  = 1/lGl and p ( r .  z) = l/lGl, or z .  r and r - z, with z fized, have 
uniform distributions. 
Proof. Trivial: based on group theory and [Sha49]. 0 

Theorem 1 If a polynomial-time operation @ is defined on G such that G(@) forms a 
group and f is hard to invert ,  then the protocol of Figure 1 is a strong abuse-free public- 
key generation sys t em.  The abuse-freeness is unconditional. (If the eerorknowledge 
protocol used is non-intemctive,  the Zength of the input 1x1 has an upperbound similar 
as in [BFM88].) 
Proof. First observe that such a zero-knowledge protocol exists, because 
what has to be proven is an NP problem [GMW86]. (The fact that the zero-knowledge 
aspect in [GMW86] is based on unproven assumptions does not  influence our proof, 
because its soundness is unconditional.) 

Let us call the public-key generation system, which is presented in Figure 1, A = ( A ,  
Bz, . . . , B,, W ) .  It is sufficient to prove that for all 2-participant systems A’ holds 
that: if {WviewA(z)} and {WviewA,(z)} are computationally indistinguishable on 
L’ then { PviewA,A;,2(z, h 2 ) }  and {PviewAl,z(z, h , ) }  are statistically indistinguishable 

(Sketch) 
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Participant A Warden W 

r E(R) G and k E(R) K and 
rn := c(r, k) m 

r f  
___t - rf E R G  

s := r @ r', n := f(s) 

A proves to W that 
3r E G,k E K :  If proof is interactive W asks 
m = c ( r , k )  A n = f ( r @ r ' ) ,  questions and proof is 
using zero-knowledge. proof repeated. 

W verifies A's proof. W 
publishes A's public key n. 

n 
___t 

FIGURE 1. Abuse-free generation of public key 

on L", where x specifies a description of G (as its size and so on), and where L' and 
L" are similar as in Definition 3. Because the warden doesn't use his private read-only 
tape H,,,+*, we replace L' by L without problems. We denote A as A = (A,  B,  W).  
Observe that {Pview~,A;,~(z, h2) }  = {Pview~,2(x, h 2 ) }  because B is not sending and 
thus not influencing. We will prove more than required; which is that there exists 
a poly-size family of circuits C such that if {WviewA(z)} and {WviewAr(z)} are 
C-computationally indistinguishable then, {PviewA,Z(z, h,)} and {Pv~~wA, ,~(z ,  h2)} 
are statistically indistinguishable on L". 

Consider the circuit which the warden will use to check the zero-knowledge proof. 
Let the circuit return a 1 if the warden accepts the proof and a 0 otherwise. For this 
particular circuit, saying that {WviewA(z)} and {WviewA,(z)} are C-computational 
indistinguishable means that for all constants e > 0 and all sufficiently long strings 
z E L: Ip(warden rejects) - $(warden rejects)I < 1z1-=, where $(warden rejects) and 
p'(warden rejects) denote respectively the probability that the warden will reject (the 
proof) when A and A' is executed. (A correct proof is not necessarily accepted with 
probability one, due to the definition of completeness, which is important for non- 
interactive proofs.) 

PviewAt,Z(z, hz)  is nothing else than n sent by W and the probability that a specific 
n; is sent is denoted as $(n = n;). Similarly p(n = n;) corresponds to the probability 
that B receives n; when A is executed. 

Using our reformulations, it is sufficient to prove that if (1) holds for all e > 0 and 
all sufficiently long z E L,  then (2) holds for all d > 0 and all sufficiently long z E L. 
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We first describe how n is made. First A‘ makes a string m, not necessarily as 
specified. So there is a probability that A’ returns a specific rn E {O,l}*. Then W 
gives a r‘ E G. Given this r’ and his previous information, A’ will make an n. n does 
not necessarily correspond with f(s). Similarly, A’ will make a proof, but nothing 
guarantees that this proof is correct. We will denote the string (At’s random, r‘, U) 
as a, where c is the string of W’s questions in the zereknowledge protocol when it 
is interactive, and when the zero-knowledge proof system is non-interactive, u cone 
sponds with the shared common random string [BFM88]. The string(s) that A’ sends 
during the zero-knowledge proof is(are) denoted as 7. So: 

Remark that p ( a  = a,) remains the same independently if A or A’ is executed (and 
independent of hz) .  

Let us denote p’(X = 1) the probability that machine A’ will return at one or 
another stage of the protocol something different than it should have returned when 
it would have followed the protocol. We then prove that: 

C I p ( n = n ; ) - p ‘ ( n = n ; ) l  I: 2p’(A=1). 

Let us denote $(warden rejects) as p’(p = 1). The problem remaining now is to relate 
$(A = 1) with p’(p = 1) and then to finally prove the theorem. 

We prove that: 

# ( p  = 1 )  + $ ( p  = O I A  = 1) - 1 p’(A = 1) = 
+ (#(p = OIX = 0) - l f ( p  = OlA = 1)) (4) 

Assuming (l), this means # ( p  = 1) < lzl-“ for all e > 0 and 5 large enough, and 
using the definition of completeness and soundness we obtain that for all t > 0 and 
sufficiently large x: $(A = 1) < IzI-’. Then follows that if (1) holds for all e > 0 and 
all sufficiently long z E L ,  then ( 2 )  holds for all d > 0 and all sufficiently long z E L. 
0 

We have used the symbol @ for a visualization aid in case G = GF(2”), but the group 
G does not have to be Abelian. 

3.2 O U R  SOLUTION 

Let us first introduce a special case of a sequential multi-participant system. (What 
we describe can be run in parallel under some circumstances, but our definition of 
a multi-participant system requires an order in which the machines write on their 
communication tapes.) 

Definition 5 Let A be a sequential rn-participant system with passive warden W .  
Let us call t the input of the common input tape, h; and qfi the content of respectively 
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the private tape H; and the read-only communication tape I&; at stage s. The binary 
string ri contains the string read by A; during the protocol from the random tape. We 
assume that the length of hi, qQ and r; and the number of stages (this last requirement 
could be relaxed) are polynomial in function of the length of z. q:i could be empty. 
During stage s, A%(*) writes n, on tape Tx(,),4(,). If ~ ( s )  # 1 ( I  fixed), then n, E R  Gz,. 
Or n, = fs(z, d ( s ) , 1 7  qr(r),27 1 * 9 qr(s),m7 1 * .  * 7 qr(a),lY S-1 qn(s),27 8-1 * * * 7 qw,(a),m), #-' such that: 

the form of n, is known beforehand in a deterministic way, 

0 Vx,s : G,,,(+) forms a group, such that in polynomial-time (in function of the 
length of z) one can: execute the operations +, check if z E G,,,, and select a 
random element of G,,*, 

the functions f, are executable in polynomial time. 

1 8-1 8-1 If +) = I, then n, = fd(3, f l ,  hl, Q[l,Q:,2,. . ., Q I , , ,  ' f * 7 Q1,l 7 Ql,2 7 - .  7 Q;,3 and the 
predicate B,(hl) = 1 is satisfied, such that: 

0 checking if an input exists such that fd(input) = output is an N P  problem, 

the length of rl, g, is fixed for a given z. 

If A satisfies all the described properties here; we call A a generalized Arthur-Merlin 
game, with A1 being Merlin [Bab85]. 

Observe that if A, is not Merlin its output is  either truly random or a deterministic 
function of its inputs, so in the last case the random tape is not used. We would 
like to prove now that all S(L)-systems which are generalized Arthur-Merlin games 
can be made abuse-free. However, our solution could ruin its (security) specifications; 
therefore we can only prove a restricted form of it, which is based on a repetitive 
use of Theorem 1. We claim that most practical, conditionally secure cryptosystems 
can be made abuse-free if one allows interaction with the warden. Giving a proof of 
this claim is impossible due to a lack of an adequate formal description of all possible 
cryptosystems. 

Corollary 1 If A is a genemlized Arthur-Merlin game and an S(L)-system, then 
there exists a multi-participant system A' (with active warden), such that either: 

A' is  an unconditionally strong abuse-free S(L)-system, or 

0 A' isn't an S(L)-sys tem.  

Proof. Our proof will be constructive by describing the multi-participant system 
A'. A generalized Arthur-Merlin game can be considered to be a system which is 
mainly publishing public. keys, random numbers and/or deterministic calculations. 
In an initial stage, A; sends W a commitment (ml = c(rl ,kl))  for the bit string ri. 
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Then the warden sends his random choice of his bit string ri (with length 9). Let US 
now describe what is executed in Af instead of the execution of stage s in A. We 

), then A: sends the warden n, and the warden 
verifies if n, is correct (if it is not, the warden calculates n, himself) and sends n, 
(writes qic,),*(,) = n, on the tape T$(d),,(,)). If A(.) # I ,  and n, had to be chosen 
randomly from G,,,, then the following steps are executed: 

distinguish three different cases. If A ( $ )  # I and n, has the form f,(q 

* . - 3 Q * ( a ) , m  * . - 7 Q * ( , ) , l Y  %(a),?, - * * 9 Q*(s),m 

q+),2, 1 '-' 1 e-1 6-1 

1. A:(,) chooses n, E(R) Gz,, and sends W a commitment (mr(.,) = c(n., k=(,))), 

2. the warden sends A;(,,: n: ER Gz,,, 

3. A:(,, sends the warden: n, and kr(8). 

4. the warden verifies the commitment. If correct, then the warden writes qi(,),r(,) = 
n, + n:, eIse sends a random Q;( , ) ,~ ( , )  ER GZ,*. 

1 a-1 a-1 a- 1 

(where @ is the bit-by-bit exclusive-or) and gives a zero-knowledge proof to  W that: 
If r(4 = 1, then Af sends n, = f*(z, r m ; ,  h, Q.?J, n:,z, - * - * Q l , W .  - , Ql,l  7 942 ? . - 9 Ql,,  1 

%I E K,rl E { O , l } O ,  hi : rnl = c(q, kl) A B,(hl) = 1 
1 8-1 8-1 a-1 A na = f a ( z ,  f l  G3 4, hl, d,l, 4:,2,. * 7 QI, , ,  * * I Q1,l 9 Q l , Z  9 - - 7 Qr,m 1. 

The warden verifies then Ai's proof and writes q;(,),, = n,. 
Let us now prove that A' is abuse-free. It holds that VA" : {PviewAt,,q,;(z, hi)} 

and {PViewAl,;(z, h; ) )  are equal, when i # I; due to the independency of the warden's 
random choices. Also VA" : {PviewAj*A;,l(z, hl ) }  and {PviewAll,,(s, hl ) }  are equal. 
This implies that the rest of the proof follows easily from the proof of Theorem 1 
(because the remark made after (3) is still valid). 

Let us discuss some improvements. Sometimes, it is sufficient for the warden to  
check once and for all (or at the beginning of the protocol) that hl satisfies the appro- 
priate predicates. Instead of rl being modified at the beginning of the protocol, it could 
be done during the different stages of the protocol. It is then necessary to guarantee 
independency of randomness when appropriate and to treat earlier altered random 
as deterministic variables instead of random ones. If a function fa is deterministic, it 
means rl is not used, then there is no need for interaction if Ai's zero-knowledge proof 
is non-interactive. a 
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We make the important observation that all the unconditionally abuse-free cryptosys- 
tems discussed in [Des88a,Des88b] are generalized Arthur-Merlin games and therefore 
special cases of ours and that therefore the proof of their abuse-freeness has not to be 
given for  each separately. 

Let us discuss the consequences of Corollary 1 by analyzing which cryptosystems 
can be made abuse-free. One first has to realize that, so far, most cryptosystems have 
been defined without taking a (passive) warden into consideration. So first, one has to 
convert them into a definition in which the warden’s role and privileges are defined. 
Mostly, one considers such a warden as an opponent. In particular the above corol- 
lary also implies (after a careful redefinition, as mentioned) that abuse-free interactive 
proof systems and zero-knowledge systems for N P  languages ezist, using Goldreich- 
Micali-Wigderson [GMW86] proof for 3-colourability and Corollary 1, however the 
verifier’s soundness collapses to a conditional soundness, instead of an unconditional 
one. It is possible to make abuse-free zero-knowledge proofs for all languages in NP 
such that the soundness of the verifier remains unconditional, as was recently demon- 
strated [BD89]. This solution is however not based on the above compiler. The pro- 
tocol described in [Des88a] to make zero-knowledge proof systems for NP languages 
abuse-free is only conditionally abuse-free, while the one here is unconditional. 

4 Conclusions and open problems 

Our approach to abuse-freeness allows one to make all (generalized Arthur-Merlin 
games) cryptosystems abuse-free. It is an open problem of whether Corollary 1 can 
be generalized to more general multi-participant systems (excluding the obvious gen- 
eralizations). If so, a different proof technique will be necessary. 

Trying to apply Corollary 1 on unconditionally secure authentication systems as 
e.g., [GMS74], ruins the unconditionality of the authentication. The question whether 
it can be solved in one or another way is an open problem, even if the abuse-freeness 
would only be weak abuse-freeness (as defined). A similar remark was made related to 
soundness of zero-knowledge schemes, there also the unconitionality of the soundness 
was ruined by using above compiler. For zero-knowledge, the same problem could be 
solved [BD89], but the solution is not based on the above compiler. 

The approach followed in this paper is constructive as well as general. It avoids the 
exhaustive character followed in [Des88a] but gives a global solution to the problem, 
useful for many situations. One of the advantages of this approach is the reduction of 
proofs required to demonstrate the abuse-freeness of different cryptosystems to mainly 
one proof. 
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