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Abstract  

We present strong evidence that the implication, “if one-way permutations 
exist, then secure secret key agreement is possible”, is not provable by standard 
techniques. Since both sides of this implication are widely believed true in real 
life, to  show that the implication is false requires a new model. We consider 
a world where all parties have access to a black box for a randomly selected 
permutation. Being totally random, this permutation will be strongly one- 
way in a provable, information-theoretic way. We show that, if P = N P ,  no 
protocol for secret key agreement is secure in such a setting. Thus, to prove that 
a secret key agreement protocol which uses a one-way permutation as a black 
box is secure is as hard as proving P # N P .  We also obtain, as a corollary, 
that there is an oracle relative to which the implication is false, i.e., there is 
a one-way permutation, yet secret-exchange is impossible. Thus, no technique 
which relativizes can prove that secret exchange can be based on any one-way 
permutation. Our results present a general framework for proving statements 
of the form, “Cryptographic application X is not likely possible based solely 
on complexity assumption Y .” 

1 Introduction 

A typical result in cryptography will be of the form: With assumption X, we can 
prove that a secure protocol for task P is possible. Because the standard crypto- 
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graphic assumptions are, at present, unproved, many results focus on weakening the 
assumptions needed to imply that a given protocol is possible. As a consequence, we 
ask a new form of question: which assumptions are too weak to yield a proof that a 
secure protocol for P is possible? 

The task we will study is secure secret-key agreement. Secret-key agreement is a 
protocol where Alice and Bob, having no secret information in common, agree on a 
secret-key over a public channel. Such a protocol is secure when no polynomial-time 
Eve listening to the conversation can determine part of the secret. Secure secret-key 
agreement is known to be possible under the assumption that trapdoor functions exist 
[DH76], [GM84]. However, researchers have been frustrated by unsuccessful attempts 
to base it on the weaker assumption that one-way permutations exist. 

We provide strong evidence that it will be difficult to prove that secure secret-key 
agreement is possible assuming only that a one-way permutation exists. We model 
the existence of a one-way permutation by allowing all parties access to a randomly 
chosen permutation oracle. A random permutation oracle is provably one-way in the 
strongest possible sense. We show that any proof that secure secret-key agreement 
is possible in a world with a random permutation oracle would simultaneously prove 
P # N P .  (Formally, P = N P  implies there is no secure secret-key agreement relative 
to a random permutation oracle.) We conclude that it is as hard to provably base 
a secure secret-key agreement protocol on an arbitrary one-way permutation as it 
is to prove P # N P .  Furthermore, we can use the above result to construct an 
oracle relative to which one-way permutations exist, but for which secure secret-key 
agreement is impossible. (This oracle 0 is constructed by starting with an oracle 
for which P=NP, and adding on a random permutation oracle.) This means that 
any proof that the existence of a one-way function implies that of a secure secret- 
key agreement protocol cannot relativize (i.e., hold relative to any oracle). Non- 
relativizing proofs are few and far between not only in cryptography, but in complexity 
theory as a whole. Since the technique of examining complexity relative to an oracle 
was introduced in [BGS75], relativization results have been used to provide evidence 
for the difficulty of resolving questions in complexity theory [BGSl]. (We will later 
briefly discuss the possibility that a non-relativizing proof basing secure secret-key 
agreement on a one-way permutation can be found.) Relativized complexity has not 
been frequently used in cryptography ([Bra, Bras31 is one exception to this rule); 
we hope the framework developed here will have wide applicability in separating the 
strengths of cryptographic assumptions. 

Our result also has some implications for “black box” reductions between various 
other cryptographic assumptions and tasks. Instead of formalizing the notion of 
“black box” reducibility to an assumption or task, which would involve going into 
the specifics of these assumptions and tasks, we will use the phrase “A is black-box 
reducible to B” as an abbreviation for “If B holds relative to an oracle 0, then A also 
holds relative to 0”. (In [ISS], a general notion of “black box’’ proof is developed, and 
shown to be basically equivalent to that given in the preceding.) Since the definitions 
of the cryptographic tasks and assumptions mentioned here are lengthy, technical, and 
often not unique, to describe them formally would require a separate paper. (In fact, 



10 

One-way permutations exist 
Signature schemes exist 
Pseudo-random generators exist 
Private-key cryptosystems exist 
Telephone coin flipping is possible 
Bit commitment with strong receiver is possible 
Bit commitment with strong sender is possible 
Collision free functions exist 

Secret-key agreement is possible 
Oblivious transfer is possible 
Trapdoor functions exist 
Voting Schemes exist 

papers have been written describing various ways of formalizing some of the terms 
used here; for others, such papers do not presently exist but are greatly needed.) 
Therefore, rather than attempt to define these terms here, we will give references 
to papers introducing these concepts and/or papers clarifying them. We hope the 
reader not familiar with cryptography will still be able to follow the general idea of 
the following discussion. 

Cryptographic tasks to be discussed here include: coin flipping by telephone ( 
[Blu82] ), electronic signatures ( [DH76] , [GMR84] ), private-key cryptography ( 
[GM84, GGM84, LR86, Rac88]), bit-commitment (both the strong committer ver- 
sion ( [GMW87] ) and the strong receiver version ( [BCC87] ) ), identification ( 
[DH76], [FFS86] ), electronic voting ( [Ben871 1, oblivious transfer ( [Blu81, Ra.b81] 
), and secret-key exchange itself ( [DH76, Mer78) ). General assumptions which have 
been used in cryptography include the existence of : one-way permutations ( [P74] 
), pseudo-random generators ( [BM84, Ya0821 ), trap-door permutations ( fDH76]), 
and two-to-one collision-free functions. This last is a function f which is easily com- 
putable, is two-to-one on strings of length n, and where no polynomial-time algorithm, 
given n, can find strings z and y of length n with f(z) = f(y). 

Many reductions between the various assumptions and tasks listed above are 
known. In particular, it is known that the existence of a one-way permutation im- 
plies the following: pseudo-random generators exist (paoS2]), private-key encryption 
is possible ([GM84, GGMS4, LRs6]), strong committer bit commitment is possible 
([Ya082, GMW87]), telephone coin flipping is possible ([Blu82]), and electronic sig- 
natures are possible ([NY]). All of the preceding results relativize. We construct an 
oracle 0 relative to  which one-way permutations exist, but for which no secret-key 
agreement protocol is possible. From relativized versions of these results, it follows 
that 0 will also have the property that, relative to 0, pseudo-r?ndom generators 
exist, strong committer bit commitment is possible, etc. Thus, none of the preceding 
assumptions can imply that secure secret-key agreement .is possible in a way which 
relativizes. 

Furthermore, we can add to this list several statements which are not known to 
follow from the existence of a one-way permutation, but which 0 can be proved to 
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satisfy because a truly random permutation is used in 0 ’ s  construction. For example, 
it is unknown whether a one-way permutation can be used to construct a two-to- 
one collision-free function, but it is easy to see that for a random permutation p ,  
the function which outputs all but the last bit of p will be such a function. [NY] 
show that the existence of a two-to-one collision-free function suffices to construct 
a protocol for strong receiver bit commitment. Thus, neither the existence of two- 
to-one collision-free function nor that of a strong receiver bit commitment protocol 
suffices to construct a secret-key agreement scheme via a relativizing proof. 

Similarly, if an assumption is sufficient to prove the possibility of secret-key agree- 
ment in a relativizing manner, it itself cannot be proven from the existence of a 
one-way permutation via a “black box” reduction. Examples of such assumptions in- 
clude oblivious transfer ( [BluSl, RabSl]), voting ([BenS7]), and trap-door functions 
([DH76, GM841). 

To summarize: 

There is an oracle 0 relative to which all A’s hold, but all B’s do not. (See above 
table.) 

Some caution is needed in interpreting these results, since at least one non- 
relativizing construction in cryptography is known. In [ISS] it is shown that the 
theorem proved in [GMW87], “the existence of a one-way permutation implies the 
existence of zero-knowledge protocols for all languages in NP” , fails with respect 
to a random permutation. In contrast, the [FFSSG] construction of an identification 
protocol based on any one-way function will not be possible with just a black box 
for a random permutation. Their construction is as follows. Every person chooses 
a random z, and announces publicly f(z) as their I.D. To prove you are the person 
with I.D. I ,  you give a zero-knowledge proof of knowledge that you know an z with 
f(z) = I .  However, t o  give a zero-knowledge 

proof as in GMW and FFS that you know such an 2, it is necessary to have an 
actual circuit that computes f, not just a black box which gives the valueof f .  In fact, 
if f is a random permutation, no such zero-knowledge proof will be possible. Thus, 
the [FFSSG] scheme does not relativize. The [FFSsG] protocol is exceptional even 
for those constructions involving zero-knowledge proofs. Most applications of zero- 
knowledge will in fact relativize, even though the literal statement of the [GMWS7] 
theorem does not. In a world with a random permutation oracle, it is possible to give 
a zero-knowledge proof for any property actually in N P ,  as opposed to N P  relativized 
to this oracle. It is only applications which attempt to “bootstrap”, proving things 
concerning the values of the same function used to make the protocol zero-knowledge, 
which fail to relativize. 

The above example is the only non-black box construction in cryptography known 
to the authors for a result in a general form (as opposed to results involving specific 
crypto-systems). Thus, it is fair to say that the result presented here shows that most 
of the standard techniques in cryptography cannot be used to construct a secret-key 
exchange protocol from a one-way permutation. 
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2 Notation and definitions 

A secret-key agreement protocol is a pair of PPTMs called Alice and Bob. Each 
machine has a set of private tapes: a random-bit tape, an input tape, two work 
tapes, and a secret tape. In addition, they have a common communication tape that 
both can read and write. A run of the protocol is as follows: Alice and Bob both start 
with the same integer 1 written in binary on their input tapes; Alice and Bob run, 
communicating via the common tape; Alice and Bob both write an /-length string 
on their secret tape. If this string is the same, Alice and Bob are said to agree. The 
entire history of the writes to  the communication tape is called the conversation. a ( / )  
will denote the probability that Alice and Bob agree on a secret of length 1. 

A P P T M  Eve breaks a secret-ket agreement protocol if Eve, given only the con- 
versation, can guess the secret with probability a(l)/poly(Z).  A protocol is secure if 
no Eve can break it. One could imagine far more stringent notions of security. For 
example, we might require that Eve can’t even get one bit of the secret. However, 
in our scenario, we will be breaking secret-key agreement in the strong sense defined 
above, thus including the weaker notions of breaking that an applied cryptographer 
would use. (For example, a cryptographer would be happy to learn one bit of the 
secret .) 

A one-way permutation is a 1-1, onto, polynomial-time computable function from 
n-bit strings to n-bit strings, where the inverse permutation is not computable in 
polynomial-time. In fact, for cryptography we require that no P P T M  can expect to 
invert the function on more than a l/poZy(n) fraction of the inputs of length n. 

We will abbreviate probabilistic polynomial-time Turing machine with the nota- 
tion PPTM.  The computation of a P P T M  on a given input will be a trace of the 
entire run of the machine given the input. (The computations are indexed by the 
possible random tapes.) If the machine is an oracle machine, this would include all 
the queries and answers received during the computation. (In this case, each com- 
putation would be  determined by a random tape, and by a finite set of query-answer 
pairs.) We use the notation poly to refer to some polynomial function. Thus, we 
can use the freewheeling arithmetic poly * poZy = poly .  A conversation between two 
PPTMs is the history of writes to the cells of a common communication tape. 

We will use the following form of the pigeonhole principle: 

Let A4 be a 0-1 matrix with a 1 --.a proportion of 1s. For every ab = a ,  a 1 - a 
portion of the columns have at least a 1 - b portion of Is. (It suffices to note that the 
worst case is when the 0’s are concentrated in an a by b rectangle.) 



13 

3 Uniform Generation 

3.1 Polynomial-time relations 

A relation, R, is polynomial-time if we can decide xRy in time polynomial in 1 1 ~ 1 1  + 
l(y1l. In this paper, we will only consider relations where the length of y is polynomially 
related to the length of 2. Is sat is f ied by is an example of such a relation: z is satisfied 
by y iff x is a boolean formula and y is one of its satisfying assignments. 

3.2 What is uniform generation? 

Let R be the ‘is satisfied by” relation. We can ask two natural questions: 

Existence Given z, does there exist a y such that xRy? 
(Does a given formula has a satisfying assignment?) 

Counting Given 3, how many y exist such that xRy? 
(How many satisfying assignments does a given formula have?) 

The existence question, satisfiability, is NP-complete. The counting question, 
Jerrum, Valiant, and thought to be harder than satisfiability, is #P-complete. 

Vazirani[JW86] introduced a problem of intermediate complexity. 

Uniform generation Given 2, pick a y uniformly at random such that zRy. 
(Given a formula, find a random satisfying assignment.) 

More generally, let R be a polynomial-time relation. Let M be a PPTiM with 
a fixed (as opposed to expected) polynomial running time. We say 11.1 u n i f o r m l y  
generates  R if given x, M has at least a 50% chance of outputting a uniformly chosen 
y such that zRy; otherwise, hf outputs “try again”. If such a y does not exist, M 
will only output Yry again”. Notice that rerunning the algorithm when it fails to 
generate a random y will succeed in generating a random y in expected polynomial 
time. 

3.3 P = N P  and uniform generation 

Theorem 3.1 (JVV) F o r  a n y  polynomial - t ime  relation. there exists a PPTACf equipped 
with a rc oracle t h a t  u n i f o r m l y  generates  it. 

Theorem 3.2 P = NP+ for a n y  polynomial- t ime relation, there exis ts  a PPTM 
that  un i formly  generates  it. 
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Proof: P = N P s  the polynomial-time hierarchy collapses[CI~S81] =+- 
a polynomial-time machine can simulate a Er oracle +we can use previous theorem 
to uniformly generate. 

Let M be a P P T M .  There are possibly many different computations of M con- 
sistent with a given input and output. (Of course, there may be none.) The following 
corollary shows that if P = N P ,  we can efficiently pick a random element from the 
finite set of these computations. 

Corollary 3.1 P = N P  ==+ it is possible to  generate a random computation for a 
given PPTM,  M ,  with given input,  I ,  and given output, 0, in expected polynomial 
time. 

Proof: Checking that the trace of a computation is consistent with M ,  I ,  and 0 is 
a polynomial-time relation. rn 

Corollary 3.2 P = NP+ given a conversation, C, between two P P T M s  M and 
N ,  we can uniformly generate a possible Computation of M. 

Proof: Checking that C is consistent with a given computation of M is possible in 
polynomial-time. 

3.4 An application to cryptography 

Public-key cryptography relies on the assumption that P f N P .  The formal version 
of this fact, P = N P  implies secret-key agreement is not possible, is something one 
might see a rather technicaI proof of in a first-year course. We can use our results on 
uniform generation to give a particularly simple proof of the optimal result. 

Theorem 3.3 P = NP- Eve has an expected polynomial time algorithm to break 
any given secret-key agreement protocol in the strongest possible sense: Eve will find 
the secret with exactly the same probability that Alice and Bob agree o n  one. 

Proof: Fix a computation and resulting secret for Bob. We will show that the prob- 
ability that Alice agrees with Bob is the same as the probability that Eve agrees with 
Bob. By corollary 3.2, Eve can generate a random computation of Alice consistent 
with the conversation. Alice’s particular computation is, by definition, a random 
computation of AIice consistent with the conversation. Thus, Eve and Alice produce 
secrets with exactly the same probability distribution. They must, therefore, have 
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exactly the same probability of agreeing with Bob. In other words, from Bob's point 
of view, Alice and Eve think alike; he will fool Eve with exactly the same probability 
that he will fool Alice. 

4 Random Oracles 

4.1 Random function oracles 

Let r be a random real between 0 and 1, chosen with the uniform distribution; express 
r in binary notation. A random oracle is the set induced from r as follows: {z : the 
s t h  binary digit of r is a 1 }. 

With each random oracle R, we can associate a function from n-bit strings to 
n-bit strings. f(i) is defined by its length(i) binary digits; the j t h  digit is 1 iff 
(22 + 1)2j E R. (Every natural is uniquely expressed as an odd times a power of 
2.) Notice that as we vary over all possible R, we get all possible length-preserving 
functions, each one occurring with the same frequency. Furthermore, using R as an 
oracle, f is polynomial-time computable. Thus, a TM with a random oracle also has 
at its disposal an easy to compute length-preserving random function. The notions 
of a random oracle and a random function oracle will be used interchangeably. We 
state without proof a theorem a standard theorem concerning random functions: 

Theorem 4.1 For most oracles, the function associated with the oracle is one-way 
in the strongest possible sense: For every oracle P P T M ,  there exists a p l y ,  such 
that the machine has ezpectation no more than p o l y ( n ) / Y  of inverting the inputs of 
length n. 

4.2 Random oracles and uniform generation 

Theorem 4.1 implies that uniform generation is impossible in a random world; it is 
impossible to uniformly generate an inverse to the function associated with the oracle. 
Our goal is, assuming P = N P ,  to break secret-key exchange in a random world. (In 
theorem 3.3, we saw how to break it in the real world.) Even though we can't hope 
for uniform generation in a random world (which would make life very easy), we can 
prove weak analogues of the uniform generation results, which will be helpful. 

The idea is not to generate the computation of an oracle P P T M ,  M, with a 
particular random oracle, but rather, with a random random oracle; we want a random 
computation of the machine over all possible oracles. Let Mi?' be the finite set of 
possible computations of M given input I ,  output 0, using some oracle. (These 
computations are indexed by the random-bit tape, and the oracle query-answer pairs 
used during the computation.) A natural probability distribution to put on 11.1'~' is 
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to weight each computation by the probability that it occurs using a random oracle. 
We want to be able to pick a random element of the space MI*'. Note: This time 
the distribution on the underlying set is not necessarily uniform. The probability of 
a computation with Q queries being chosen is 2 - 9 / 2 - P  as likely as a computation with 
p queries being chosen. 

Theorem 4.2 P = NP- there exists a PPTM that picks a random element from 
the probability space in expected polynomial time. 

Proof: iFrom the oracle P P T M  M, we construct a PPTM M',  such that a uni- 
formly generated computation of iM' given input I and output 0, when suitably 
syntactically modified, yields a random element of the probability space Intu- 
itively, M' is an oracle machine that makes up its own oracle on the fly. 

Without loss of generality, assume the computation of M never makes the same 
oracle query twice; keep track of queries asked in a table, and use the oracle only 
when the table does not have the answer. Let t ( n )  be a polynomial bound on the 
number of oracle queries M asks given an input of length n. &I' starts its computation 
by writing down t(n) random bits on a separate tape, called the answer tape. M' 
then proceeds as M would, except that when M asks the oracle for a query answer, 
M' answers the simulated query with the first unused bit from the answer tape. By 
corollary 3.2, we can generate a random computation m' of M', with input I and 
output 0, in expected polynomial time. To make m' look like a random Computation 
of M ,  strip away the answer tape, pretending that all answers came from an oracle; 
call the computation that remains m. The probability associated with an rn asking 
q queries is proportional to 2 - 9 .  Hence, m is a random element of hi'?'. 

We can strengthen our result slightly by fixing some finite portion of the oracles 
we wish to consider. Let E be a finite set of oracle addresses and their contents. An 
oracle is said to be  consistent with E if the content-address pairs in E are also in the 
oracle. We define a space similar to bi'.': M i o  is a finite set of corn utations of M 
given I and 0, using oracles consistent with E.  Each element in bli' is weighed by 
the probability of it occurring using a random oracle consistent with E .  Once again, 
we wish to pick a random element of the space. 

Theorem 4.3 P = NP=+ there exists a PPTM that picks a random element of 
the probability space iWiO in expected polynomial time. 

Proof: Same as the proof of the previous theorem with one important modification: 
Hardwire the answers to  oracle queries in E into the finite state control of M'. When 
M' asks a query in E ,  do not use a bit from the answer tape. 
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We can now prove the analogue of corollary 3.2 using oracle PPTMs Alice and 
Bob. In the case where oracle Alice and oracle Bob have conversation C, and E 
is a finite set of queries and answers, we define another similar space: A; is the 
space of possible computations of oracle Alice consistent with the conversation C, 
where each computation is weighed by its probability of occurring with a random 
oracle consistent with E .  The next theorem will be very important in the results on 
secret-key agreement. 

Theorem 4.4 P = NP=+ there exists a P P T M  that picks a random element of 
A; in expected polynomial t ime.  

Proof: iFrom Alice's point of view a conversation is a set of inputs and outputs 
occurring at certain prescribed times during her computation. No further modification 
of the above proof technique is required. m 

5 Random Permutation Oracles 

Random permutation oracles are similar to the random function oracles discussed in 
the previous section, except that the random functions must be 1-1 onto. A random 
pennutation oracle II is a random length-preserving function from the set of finite 
strings onto itself. Again, the function is chosen from the uniform distribution. 

iFrom the point of view of oracIe PPTMs, there is no difference between the two 
types of oracles. We will formalize this in the spirit of pseudo-randomness. 

A tester is an oracle PPTMwhich, given n and a function oracle from n-bit strings 
to n-bit strings, outputs either 0 or 1. Let T be a tester. Let P, be the probability 
that T will output a 0, when given n and a random function from n-bit strings to 
n-bit strings. Let P,!, be the probability that T will output a 0, when given n and a 
random permutation from n-bit strings to n-bit strings. Let DT" = If, - P,!,I. Thus, 
DT" measures how well the tester can distinguish between the two types of oracles. 

Theorem 5.1 For every tester T ,  D T ~  < poly(n) /2" 

Proof: Assume T makes q < poZy(n) queries. In the case of a random function oracle, 
the answer to a previously unasked query is a random n-bit number, independent of 
the answers to previously asked queries. Thus, for each query made the probability 
that it gets the same answer as a previously made query is less than q/2". Summing, 
we conclude that the probability that two queries received the same answer is less 
than q2/2". Next we observe that the distribution on possible query answers, given 
that all query answers are different, is the same for random function oracles and 
random permutation oracles; the probability that T will output a 0 given that all 



i a  

query answers are different, is the same for the two types of oracles. It follows that 
DT,, < q2/2". 

The above theorem will allow us to first prove our results relative to a random 

It is a standard theorem that random permutations are very hard to invert. 

oracle, and then extend them to a random permutation oracle. 

Theorem 5.2 Measure one of random permutation oracles are one-way in the strongest 
possible sense: For every oracle P P T M ,  there exists a poly, such that the machine 
has expectation no more than poly(n) /2" of inverting the inputs of length n. 

6 Cryptographic Lower Bounds 

6.1 Introduction 

We will show that the existence of a very strong one-way permutation is not an 
assumption likely to yield a proof that secure secret key agreement is possible. By 
theorem 5.2, we know that a random permutation oracle is one-way in the strongest 
possible sense. Therefore, we will use the availability of a random permutation oracle 
to model the existence of an ideal one-way permutation. We will show that it is 
as hard to prove secure secret key agreement is possible using a common random 
permutation oracle is it is to prove P # N P .  The result will take the form of the 
contrapositive: P = N P  implies that any secret-key agreement protocol can broken 
even when a random permutation oracle is available to all parties. 

Summarizing the results of this section: We first show that P = N P  implies there 
is no secret-key agreement protocol that is secure with measure llpoly of random 
oracles (random function oracles). Theorem 5.1 will be used to extend the result 
to random permutation oracles. Further strengthening the result by swapping the 
quantifiers, we show P = N P  implies for measure one of oracles there is no secure 
secret-key agreement. -4 corollary of this result is the existence of an oracle relative 
to which one-way permutations exist, but secure secret-key agreement is impossible. 
We also distinguish between two strong senses of breaking a secret-key agreement 
protocol. 

6.2 A normal form for secret-key agreement 

To facilitate our analysis, we will assume that the secret-key agreement protocol has 
a normal form. Communication takes place in n rounds. Each round involves one 
person speaking and computing. Before each round, the party who is to speak asks 
the oracle a single query, and then does some computation. If Alice speaks first, 
the protocol would take the following form: Alice queries the oracle: Alice computes; 



19 

Alice speaks (i.e. writes on the communication tape); Bob queries the oracle; Bob 
computes; Bob speaks; Alice queries the oracle; Alice computes; Alice speaks; Bob 
queries the oracle; . . . 

running time. 
Any protocol can be converted to normal form with only a polynomial blow-up in 

6.3 Notation and definitions 

We wish to investigate a random world where Alice and Bob attempt to agree on an 1- 
bit secret. In other words, we vary over runs of Alice, Bob, and Eve; and over oracles. 
Formally, a worZd situation is a five-tuple < 1, rundomAlice, rUnd0mgob, randomEve, 
R >. I ,  the input to Alice, Bob, and Eve, is the length of the secret being agreed 
upon. randomAlice, randomgob, and randomE,, are random bit tapes for Alice, Bob, 
and Eve to use during their computations (the random bit tapes are just long enough 
that they never get used up). R is a random oracle. Let IVSI be the set of all world 
situations where Alice and Bob attempt to agree on an /-length secret ( I  is the first 
entry of the five-tuple). We wilI also think of W S I  as a probability space with the 
uniform distribution. A world situation determines a random run of the protocol with 
a random oracle. With each world situation we can associate the following variables: 

C,, the conversation up to and including round r .  

q,, the query asked in round r .  

A,, the query-answer pairs Alice knows up to and including round r. 

Br, the query-answer pairs Bob knows up to and including round r. 

If it is ambiguous which world situation C, comes from, we write C,W to mean the 
conversation comes from world situation w. 

World situation w satisfies C, (written w Cr) means that the conversation 
between the machines in w is identical to C, for the first r rounds. We will use the + notation with the other world situation variables as well. 

Notice that none of the three polynomial time machines involved will be able to 
access the oracle past some very large address. Thus, without any loss, we c m  think 
of the oracle as finite. This means that the probability space W S I  is finite. Similarly 
any space we will discuss can be considered finite. This technical point will prevent 
the reader from suspecting any measure-theoretic fallacy. 

6.4 Eve’s sample space 

We need to define the probability distributions Eve samples from during her algo- 
rithm. They have already been described in section 4.2, Theorem 4.4. We define 
them again here. 
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Call a random tape for Alice consistent with conversation C, and oracle R if the 
run of Alice, determined by the random tape and input from Bob’s portion of c,, 
outputs Alice’s portion of C,. (What she does after round r- does not matter.) Let E 
be a finite set of query-answer pairs. 

Let AS$ be the set of <oracle, random tape for Alice> pairs such that E is 
in the oracle and the random tape for Alice is consistent with C, and the oracle. 
Eve will be sampling from the space A 2  of computations of Alice consistent with 
C, and the query-answer pairs in E .  The distribution on A 2  is induced from the 
uniform distribution on AS$; sample a point in AS$, that point corresponds to 
a computation of Alice: An <oracle, random tape for Alice> pair corresponds to 
a <finite portion of the oracle used during the Computation, random tape for Alice 
pair>. 

6.5 Eve’s algorithm 

We now give an algorithm for Eve to break a secret-key agreement protocol in a 
random world, This algorithm runs in polynomial time under the assumption that 
P = N P .  SI is a function of the form l/poly (called a security parameter), which 
determines Eve’s probability of failure. The smaller Sl, the longer Eve must run to 
break the protocol. 

For each of n rounds of communication between Alice and Bob, Eve does m = 
[3(n/S1)In(2n/S!)1 segments. Each segment has a simulate phase and an update 
phase. We will describe these phases in segment i for round T .  

Without loss of generality, assume Alice speaks in round T .  Let E,+l be the finite 
set of query-answer pairs that Eve knows about the oracle so far; < q ,  a >E E,+l i f f  
prior to round r ,  segment i, Eve has asked if g is in the oracle ( q  E R?), and received 
answer a. Recall that  C, is the conversation that has occurred up to this round. 

SIMULATION PHASE: 

Using the method described in theorem 4.4, Eve picks a random run of Alice from 
the space (If Bob speaks in round r, Eve would instead simulate Bob.) Let 
F,,i be the set of queries that the simulated run of Alice asks her simulated oracle. 
(Note that so far in this segment, we have not asked any real oracle queries. Recall 
that when simulating a random Alice, we make up the answers to the oracle queries.) 

UPDATING PHASE: 

Eve asks all the queries in F,,i of the actual oracle R. Thus, E,,j equals E,,;-I 
union the new query-answer pairs Eve learned by asking F,,; of the oracle. 

The following variables are also associated with any world situation: 

Er,i, the query-answer pairs Eve knows up to and including the ith segment of her 

E,,O, the query-answer pairs Eve knows before she simulates round T .  (E,,O = 

simulation of round T .  

E7--1pI .) 
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BPQ,,;, the query-answer pairs Bob knows and Eve does not, up to and includ- 
ing round r ,  segment i. BPQ stands for Bob’s private queries. Note the relation: 
BPQ,i  = sPQr,o - Erj- 

6.6 Intersection queries and the secret 

Intersection queries are the queries Alice and Bob ask in common during an execution 
of their protocol. A particular query becomes an intersection query, not when it  is 
first asked by one party, but rather when it is later asked by the other party. For 
conceptual unity, we can assume without loss of generality that the secret is an 
intersection query; assume that as their final act Alice and Bob query the oracle at 
the location addressed by the secret. 

The next Theorem will prove that with high probability Eve finds all the inter- 
section queries. Thus, Eve will have a polynomial-length list containing the secret; 
Eve breaks the protocol. 

6.7 The efficacy of Eve’s algorithm 

Theorem 6.1 Suppose Alice and Bob attempt to agree on an 1-length secret. The 
probability that Eve finds all the intersection queries is greater than 1 - Sl. Formally, 
PfiOBz,ws,IAn fI B, S En,,] > 1 - Sr. 

Proof: (We show the stronger result that Eve probably anticipates (asks) a query 
before it becomes an intersection query.) Eve’s algorithm has n rounds. If Eve fails to 
fmd all intersection queries, there must be a first round where she fails to anticipate an 
intersection query that occurs in the next round; there exists a first time q E’ Ar n B, 
and q @ Er- l ,mv  To formalize the event that Eve fails for the first time to anticipate 
an intersection query in the next round, we write it as the conjunct of three events: 

0 Eve has, in previous rounds, anticipated all intersection queries about to hap- 
pen. (Thus, Eve knows all intersection queries to date.) 

qr+1, the query asked in the next round, is an intersection query. 
AND 

Lemma 6.1, the technical heart of the proof, will show this event has probability no 
more than Si/n by showing that the complementary event has probability greater 
than 1 - Sl/n. Thus, for each round the probability of failing for the first time to 
anticipate an intersection query in the next round is less than Sl/n. Summing the 
error probability for each round, we get a total error probability bounded by Sl. 
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Lemma 6.1 T h e  probability that in round r ,  either 

0 In a previous round, Eve failed to anticipate the intersection query about t o  
happen, 

qp+l is not an intersection query, 
OR 

is greater than 1 - Sl/n.  

The proof of this lemma can be found in STOC’89 

Theorem 6.2 Theomm 6.1 is true relative to a random permutation oracle: Given 
any secret-key agreement protocol and a random permutation oracle, the probability 
that Eve finds all the intersection queries is greater than 1 - S1/2. 

Proof: Assume not. We will construct a tester to distinguish between a random 
function oracle and a random permutation oracle. We start with a protocol where 
Eve will find all the intersection queries with probability less than 1 -St/2 if a random 
permutation oracle is used, and probability greater than 1 - Sl if a random function 
oracle is used. A tester can simulate runs of Alice, Bob, and Eve, counting the fraction 
of times Eve finds all the intersection queries. The essence of the situation is that the 
tester is flipping a coin with two possible biases: 1 - S1/2 and 1 - St; the tester must 
guess which. If the tester flips the coin 1/S12 times, even a very weak form of the law 
of large numbers would tell us that Eve can guess the bias of the coin at least 99% 
of the time. This very strongly contradicts theorem 5.1. m 

Notice the order of the quantifiers in the above result. We picked the protocol 
between Alice and Bob, then we picked the oracle (since the protocol is bound by 
definition to work with a random oracle). Then, we showed Eve can break the pro- 
tocol. We prove a stronger result which reverses the quantifiers. First, we pick a 
random oracle; then a protocol for Alice and Bob (this time the protocol need not 
work properly on other oracles). Then, we show that Eve can break the protocol 
relative to the chosen oracle. 

Theorem 6.3 P = -VP= relative to a random permutation oracle, any  secret key 
agreement scheme can be broken. 

Proof: First, we argue that for every secret-key agreement protocol, there are only 
measure zero of oracles where it can’t be broken. Fix a protocol. The P = N P  
assumption allows us to use Eve’s algorithm as before. Choose Sl = 1/12+‘. Theorem 
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6.1 tells us that in 1 - Sl/2 of world situations we succeed in breaking the protocol. 
By the pigeon-hole principle, for each length I ,  there are 1 - a oracles relative 

to which there is a 1 - chance of Eve breaking the protocol. Call all such 
oracles good for length 1. The probability that a random oracle fails to be good for 
length 1 is @. x & p  converges; by the Borel-Cantelli lemma, measure one 
of oracIes are good on but finitely many lengths. For measure one of the oracles, 
past some length, Eve has a 1 - chance of breaking the protocol. (We can 
even non-uniformly boost Eve’s ability to break protocols for finitely many lengths.) 
Thus, there are only measure zero oracles where the protocol can’t be broken. 

For each of the countably many protocols we throw out the measure zero of oracles 
where the protocol is secure. We have thrown out measure zero in all. Every protocol 
can be broken relative to  the measure one of remaining oracles. 

Corollary 6.1 There ezists a n  oracle relative to which a strongly one-way permuta- 
tion ezists, but secure secret-key agreement is impossible. 

Proof: Consider any oracle world where P = N P .  Add a random permutation oracle 
to this world. Because all the techniques in our theorem relativize, we can conclude 
that secure secret-key agreement is not possible in the resulting world. 

Construct an example of such an oracle as follows: The even numbers form an 
oracle for PSPACE (a PSPACEcomplete problem), the odd numbers form a random 
permutation oracle. P = N P  relative to a PSPACE-complete oracle. We know the 
random permutation is one-way in the strongest possible sense. 

The only other relativized result that we know in cryptography is Brassard[Bra83, 
Bra]. He explicitly constructs an oracle where secret-key agreement is possible. 

So far, our sense of breaking a secret key agreement consists of finding a polynomial- 
sized list with the secret on it somewhere. The strongest sense of breaking secret key 
agreement is clearly to find the secret itself. We show how to extend Eve to actually 
find the secret. For the same reasons as before, the argument works equally well with 
both random oracles and random permutation oracles. 

Eve’s strategy can be extended as follows: Eve’s final round will be her simulation 
of the n - l th  round of the protocol. In each segment of her final round, Eve records 
her last query to  the oracle. (Recall that the last query to the oracle should be 
thought of as the secret.) Of the final queries Eve has recorded, she outputs the one 
which occurs the majority of the time. (If there is no majority, output “failure”.) 

Theorem 6.4 Suppose that Alice and Bob agree on a secret with probability at least 
1 - a over world situations in WSl.  Then,  for every S > 0,  there exists an Eve who 
can guess the secret with probability at least 1 - a(2+6) over world situations in WS1. 

The proof of this theorem can be found in STOC’SS 
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7 Related Work and Open Problems 

In the work presented here, as in much of theoretical cryptography, we do not go into 
exactly how much time the adversary will take to break the protocol, as long as this 
time is polynomial. However, in real Iife, a protocol taking a large degree polynomial 
time to break may be almost as good as one secure against any polynomial time 
adversary. Merkle[Meri'S] has suggested a protocol, based on any one-way function, 
the breaking of which would require an eavesdropper to take time quadratic in the 
time taken by the participants. (Here, time is measured as the number of calls to 
a black box for the one-way function.) We showed that for a protocol in normal 
form, an eavesdropper can always break the protocol in time O(n3 log n); however, 
to put the protocol into normal form may square n? so our eavesdropper is actually 
taking time O(n6 log n). This leaves open Merkle's question of whether his scheme is 
optimal. 

Another general question brought up by this research is whether similar statements 
can be proved for other cryptographic applications. We have previously given a list 
of applications at least as strong as secret key agreement; that these are unlikely to 
be a consequences of the existence of a one-way permutation follows from the result 
here. However, it would be interesting to show that there is some natural application 
which cannot even be based on a much stronger assumption, such as the existence of 
a trapdoor permutation. 
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