
Limits on the Provable Consequences of
One-way Permutations

Russell Impagliazzo’
Computer Science Division

University of California at Berkeley
Berkeley, California 94720

Steven Rudicht
Computer Science Department

University of Toronto
Toronto, Canada M5S 1-44

Abstract

We present strong evidence that the implication, “if one-way permutations
exist, then secure secret key agreement is possible”, is not provable by standard
techniques. Since both sides of this implication are widely believed true in real
life, to show that the implication is false requires a new model. We consider
a world where all parties have access to a black box for a randomly selected
permutation. Being totally random, this permutation will be strongly one-
way in a provable, information-theoretic way. We show that, if P = N P , no
protocol for secret key agreement is secure in such a setting. Thus, to prove that
a secret key agreement protocol which uses a one-way permutation as a black
box is secure is as hard as proving P # N P . We also obtain, as a corollary,
that there is an oracle relative to which the implication is false, i.e., there is
a one-way permutation, yet secret-exchange is impossible. Thus, no technique
which relativizes can prove that secret exchange can be based on any one-way
permutation. Our results present a general framework for proving statements
of the form, “Cryptographic application X is not likely possible based solely
on complexity assumption Y .”

1 Introduction

A typical result in cryptography will be of the form: With assumption X, we can
prove that a secure protocol for task P is possible. Because the standard crypto-

‘Research partially supported b y NSF grant CCR 88-13632.
‘Research partially supported by NSF grant CCR S8-13632 and an IBhI doctoral fellowship.

S. Goldwasser (Ed.): Advances in Cryptology - CRYPT0 ’88, LNCS 403, pp. 8-26, 1990.
0 Spnnger-Verlag Berlin Heidelberg 1990

9

graphic assumptions are, at present, unproved, many results focus on weakening the
assumptions needed to imply that a given protocol is possible. As a consequence, we
ask a new form of question: which assumptions are too weak to yield a proof that a
secure protocol for P is possible?

The task we will study is secure secret-key agreement. Secret-key agreement is a
protocol where Alice and Bob, having no secret information in common, agree on a
secret-key over a public channel. Such a protocol is secure when no polynomial-time
Eve listening to the conversation can determine part of the secret. Secure secret-key
agreement is known to be possible under the assumption that trapdoor functions exist
[DH76], [GM84]. However, researchers have been frustrated by unsuccessful attempts
to base it on the weaker assumption that one-way permutations exist.

We provide strong evidence that it will be difficult to prove that secure secret-key
agreement is possible assuming only that a one-way permutation exists. We model
the existence of a one-way permutation by allowing all parties access to a randomly
chosen permutation oracle. A random permutation oracle is provably one-way in the
strongest possible sense. We show that any proof that secure secret-key agreement
is possible in a world with a random permutation oracle would simultaneously prove
P # N P . (Formally, P = N P implies there is no secure secret-key agreement relative
to a random permutation oracle.) We conclude that it is as hard to provably base
a secure secret-key agreement protocol on an arbitrary one-way permutation as it
is to prove P # N P . Furthermore, we can use the above result to construct an
oracle relative to which one-way permutations exist, but for which secure secret-key
agreement is impossible. (This oracle 0 is constructed by starting with an oracle
for which P=NP, and adding on a random permutation oracle.) This means that
any proof that the existence of a one-way function implies that of a secure secret-
key agreement protocol cannot relativize (i.e., hold relative to any oracle). Non-
relativizing proofs are few and far between not only in cryptography, but in complexity
theory as a whole. Since the technique of examining complexity relative to an oracle
was introduced in [BGS75], relativization results have been used to provide evidence
for the difficulty of resolving questions in complexity theory [BGSl]. (We will later
briefly discuss the possibility that a non-relativizing proof basing secure secret-key
agreement on a one-way permutation can be found.) Relativized complexity has not
been frequently used in cryptography ([Bra, Bras31 is one exception to this rule);
we hope the framework developed here will have wide applicability in separating the
strengths of cryptographic assumptions.

Our result also has some implications for “black box” reductions between various
other cryptographic assumptions and tasks. Instead of formalizing the notion of
“black box” reducibility to an assumption or task, which would involve going into
the specifics of these assumptions and tasks, we will use the phrase “A is black-box
reducible to B” as an abbreviation for “If B holds relative to an oracle 0, then A also
holds relative to 0”. (In [ISS], a general notion of “black box’’ proof is developed, and
shown to be basically equivalent to that given in the preceding.) Since the definitions
of the cryptographic tasks and assumptions mentioned here are lengthy, technical, and
often not unique, to describe them formally would require a separate paper. (In fact,

10

One-way permutations exist
Signature schemes exist
Pseudo-random generators exist
Private-key cryptosystems exist
Telephone coin flipping is possible
Bit commitment with strong receiver is possible
Bit commitment with strong sender is possible
Collision free functions exist

Secret-key agreement is possible
Oblivious transfer is possible
Trapdoor functions exist
Voting Schemes exist

papers have been written describing various ways of formalizing some of the terms
used here; for others, such papers do not presently exist but are greatly needed.)
Therefore, rather than attempt to define these terms here, we will give references
to papers introducing these concepts and/or papers clarifying them. We hope the
reader not familiar with cryptography will still be able to follow the general idea of
the following discussion.

Cryptographic tasks to be discussed here include: coin flipping by telephone (
[Blu82]), electronic signatures ([DH76] , [GMR84]), private-key cryptography (
[GM84, GGM84, LR86, Rac88]), bit-commitment (both the strong committer ver-
sion ([GMW87]) and the strong receiver version ([BCC87])), identification (
[DH76], [FFS86]), electronic voting ([Ben871 1, oblivious transfer ([Blu81, Ra.b81]
), and secret-key exchange itself ([DH76, Mer78)). General assumptions which have
been used in cryptography include the existence of : one-way permutations ([P74]
), pseudo-random generators ([BM84, Ya0821), trap-door permutations (fDH76]),
and two-to-one collision-free functions. This last is a function f which is easily com-
putable, is two-to-one on strings of length n, and where no polynomial-time algorithm,
given n, can find strings z and y of length n with f(z) = f(y).

Many reductions between the various assumptions and tasks listed above are
known. In particular, it is known that the existence of a one-way permutation im-
plies the following: pseudo-random generators exist (paoS2]), private-key encryption
is possible ([GM84, GGMS4, LRs6]), strong committer bit commitment is possible
([Ya082, GMW87]), telephone coin flipping is possible ([Blu82]), and electronic sig-
natures are possible ([NY]). All of the preceding results relativize. We construct an
oracle 0 relative to which one-way permutations exist, but for which no secret-key
agreement protocol is possible. From relativized versions of these results, it follows
that 0 will also have the property that, relative to 0, pseudo-r?ndom generators
exist, strong committer bit commitment is possible, etc. Thus, none of the preceding
assumptions can imply that secure secret-key agreement .is possible in a way which
relativizes.

Furthermore, we can add to this list several statements which are not known to
follow from the existence of a one-way permutation, but which 0 can be proved to

11

satisfy because a truly random permutation is used in 0 ’ s construction. For example,
it is unknown whether a one-way permutation can be used to construct a two-to-
one collision-free function, but it is easy to see that for a random permutation p ,
the function which outputs all but the last bit of p will be such a function. [NY]
show that the existence of a two-to-one collision-free function suffices to construct
a protocol for strong receiver bit commitment. Thus, neither the existence of two-
to-one collision-free function nor that of a strong receiver bit commitment protocol
suffices to construct a secret-key agreement scheme via a relativizing proof.

Similarly, if an assumption is sufficient to prove the possibility of secret-key agree-
ment in a relativizing manner, it itself cannot be proven from the existence of a
one-way permutation via a “black box” reduction. Examples of such assumptions in-
clude oblivious transfer ([BluSl, RabSl]), voting ([BenS7]), and trap-door functions
([DH76, GM841).

To summarize:

There is an oracle 0 relative to which all A’s hold, but all B’s do not. (See above
table.)

Some caution is needed in interpreting these results, since at least one non-
relativizing construction in cryptography is known. In [ISS] it is shown that the
theorem proved in [GMW87], “the existence of a one-way permutation implies the
existence of zero-knowledge protocols for all languages in NP” , fails with respect
to a random permutation. In contrast, the [FFSSG] construction of an identification
protocol based on any one-way function will not be possible with just a black box
for a random permutation. Their construction is as follows. Every person chooses
a random z, and announces publicly f(z) as their I.D. To prove you are the person
with I.D. I , you give a zero-knowledge proof of knowledge that you know an z with
f(z) = I . However, t o give a zero-knowledge

proof as in GMW and FFS that you know such an 2, it is necessary to have an
actual circuit that computes f, not just a black box which gives the valueof f . In fact,
if f is a random permutation, no such zero-knowledge proof will be possible. Thus,
the [FFSSG] scheme does not relativize. The [FFSsG] protocol is exceptional even
for those constructions involving zero-knowledge proofs. Most applications of zero-
knowledge will in fact relativize, even though the literal statement of the [GMWS7]
theorem does not. In a world with a random permutation oracle, it is possible to give
a zero-knowledge proof for any property actually in N P , as opposed to N P relativized
to this oracle. It is only applications which attempt to “bootstrap”, proving things
concerning the values of the same function used to make the protocol zero-knowledge,
which fail to relativize.

The above example is the only non-black box construction in cryptography known
to the authors for a result in a general form (as opposed to results involving specific
crypto-systems). Thus, it is fair to say that the result presented here shows that most
of the standard techniques in cryptography cannot be used to construct a secret-key
exchange protocol from a one-way permutation.

12

2 Notation and definitions

A secret-key agreement protocol is a pair of PPTMs called Alice and Bob. Each
machine has a set of private tapes: a random-bit tape, an input tape, two work
tapes, and a secret tape. In addition, they have a common communication tape that
both can read and write. A run of the protocol is as follows: Alice and Bob both start
with the same integer 1 written in binary on their input tapes; Alice and Bob run,
communicating via the common tape; Alice and Bob both write an /-length string
on their secret tape. If this string is the same, Alice and Bob are said to agree. The
entire history of the writes to the communication tape is called the conversation. a (/)
will denote the probability that Alice and Bob agree on a secret of length 1.

A P P T M Eve breaks a secret-ket agreement protocol if Eve, given only the con-
versation, can guess the secret with probability a(l)/poly(Z). A protocol is secure if
no Eve can break it. One could imagine far more stringent notions of security. For
example, we might require that Eve can’t even get one bit of the secret. However,
in our scenario, we will be breaking secret-key agreement in the strong sense defined
above, thus including the weaker notions of breaking that an applied cryptographer
would use. (For example, a cryptographer would be happy to learn one bit of the
secret .)

A one-way permutation is a 1-1, onto, polynomial-time computable function from
n-bit strings to n-bit strings, where the inverse permutation is not computable in
polynomial-time. In fact, for cryptography we require that no P P T M can expect to
invert the function on more than a l/poZy(n) fraction of the inputs of length n.

We will abbreviate probabilistic polynomial-time Turing machine with the nota-
tion PPTM. The computation of a P P T M on a given input will be a trace of the
entire run of the machine given the input. (The computations are indexed by the
possible random tapes.) If the machine is an oracle machine, this would include all
the queries and answers received during the computation. (In this case, each com-
putation would be determined by a random tape, and by a finite set of query-answer
pairs.) We use the notation poly to refer to some polynomial function. Thus, we
can use the freewheeling arithmetic poly * poZy = poly . A conversation between two
PPTMs is the history of writes to the cells of a common communication tape.

We will use the following form of the pigeonhole principle:

Let A4 be a 0-1 matrix with a 1 --.a proportion of 1s. For every ab = a , a 1 - a
portion of the columns have at least a 1 - b portion of Is. (It suffices to note that the
worst case is when the 0’s are concentrated in an a by b rectangle.)

13

3 Uniform Generation

3.1 Polynomial-time relations

A relation, R, is polynomial-time if we can decide xRy in time polynomial in 1 1 ~ 1 1 +
l(y1l. In this paper, we will only consider relations where the length of y is polynomially
related to the length of 2. Is sat is f ied by is an example of such a relation: z is satisfied
by y iff x is a boolean formula and y is one of its satisfying assignments.

3.2 What is uniform generation?

Let R be the ‘is satisfied by” relation. We can ask two natural questions:

Existence Given z, does there exist a y such that xRy?
(Does a given formula has a satisfying assignment?)

Counting Given 3, how many y exist such that xRy?
(How many satisfying assignments does a given formula have?)

The existence question, satisfiability, is NP-complete. The counting question,
Jerrum, Valiant, and thought to be harder than satisfiability, is #P-complete.

Vazirani[JW86] introduced a problem of intermediate complexity.

Uniform generation Given 2, pick a y uniformly at random such that zRy.
(Given a formula, find a random satisfying assignment.)

More generally, let R be a polynomial-time relation. Let M be a PPTiM with
a fixed (as opposed to expected) polynomial running time. We say 11.1 u n i f o r m l y
generates R if given x, M has at least a 50% chance of outputting a uniformly chosen
y such that zRy; otherwise, hf outputs “try again”. If such a y does not exist, M
will only output Yry again”. Notice that rerunning the algorithm when it fails to
generate a random y will succeed in generating a random y in expected polynomial
time.

3.3 P = N P and uniform generation

Theorem 3.1 (JVV) F o r a n y polynomial - t ime relation. there exists a PPTACf equipped
with a rc oracle t h a t u n i f o r m l y generates it.

Theorem 3.2 P = NP+ for a n y polynomial- t ime relation, there exis ts a PPTM
that un i formly generates it.

14

Proof: P = N P s the polynomial-time hierarchy collapses[CI~S81] =+-
a polynomial-time machine can simulate a Er oracle +we can use previous theorem
to uniformly generate.

Let M be a P P T M . There are possibly many different computations of M con-
sistent with a given input and output. (Of course, there may be none.) The following
corollary shows that if P = N P , we can efficiently pick a random element from the
finite set of these computations.

Corollary 3.1 P = N P ==+ it is possible to generate a random computation for a
given PPTM, M , with given input, I , and given output, 0, in expected polynomial
time.

Proof: Checking that the trace of a computation is consistent with M , I , and 0 is
a polynomial-time relation. rn

Corollary 3.2 P = NP+ given a conversation, C, between two P P T M s M and
N , we can uniformly generate a possible Computation of M.

Proof: Checking that C is consistent with a given computation of M is possible in
polynomial-time.

3.4 An application to cryptography

Public-key cryptography relies on the assumption that P f N P . The formal version
of this fact, P = N P implies secret-key agreement is not possible, is something one
might see a rather technicaI proof of in a first-year course. We can use our results on
uniform generation to give a particularly simple proof of the optimal result.

Theorem 3.3 P = NP- Eve has an expected polynomial time algorithm to break
any given secret-key agreement protocol in the strongest possible sense: Eve will find
the secret with exactly the same probability that Alice and Bob agree o n one.

Proof: Fix a computation and resulting secret for Bob. We will show that the prob-
ability that Alice agrees with Bob is the same as the probability that Eve agrees with
Bob. By corollary 3.2, Eve can generate a random computation of Alice consistent
with the conversation. Alice’s particular computation is, by definition, a random
computation of AIice consistent with the conversation. Thus, Eve and Alice produce
secrets with exactly the same probability distribution. They must, therefore, have

15

exactly the same probability of agreeing with Bob. In other words, from Bob's point
of view, Alice and Eve think alike; he will fool Eve with exactly the same probability
that he will fool Alice.

4 Random Oracles

4.1 Random function oracles

Let r be a random real between 0 and 1, chosen with the uniform distribution; express
r in binary notation. A random oracle is the set induced from r as follows: {z : the
s t h binary digit of r is a 1 }.

With each random oracle R, we can associate a function from n-bit strings to
n-bit strings. f(i) is defined by its length(i) binary digits; the j t h digit is 1 iff
(22 + 1)2j E R. (Every natural is uniquely expressed as an odd times a power of
2.) Notice that as we vary over all possible R, we get all possible length-preserving
functions, each one occurring with the same frequency. Furthermore, using R as an
oracle, f is polynomial-time computable. Thus, a TM with a random oracle also has
at its disposal an easy to compute length-preserving random function. The notions
of a random oracle and a random function oracle will be used interchangeably. We
state without proof a theorem a standard theorem concerning random functions:

Theorem 4.1 For most oracles, the function associated with the oracle is one-way
in the strongest possible sense: For every oracle P P T M , there exists a p l y , such
that the machine has ezpectation no more than p o l y (n) / Y of inverting the inputs of
length n.

4.2 Random oracles and uniform generation

Theorem 4.1 implies that uniform generation is impossible in a random world; it is
impossible to uniformly generate an inverse to the function associated with the oracle.
Our goal is, assuming P = N P , to break secret-key exchange in a random world. (In
theorem 3.3, we saw how to break it in the real world.) Even though we can't hope
for uniform generation in a random world (which would make life very easy), we can
prove weak analogues of the uniform generation results, which will be helpful.

The idea is not to generate the computation of an oracle P P T M , M, with a
particular random oracle, but rather, with a random random oracle; we want a random
computation of the machine over all possible oracles. Let Mi?' be the finite set of
possible computations of M given input I , output 0, using some oracle. (These
computations are indexed by the random-bit tape, and the oracle query-answer pairs
used during the computation.) A natural probability distribution to put on 11.1'~' is

16

to weight each computation by the probability that it occurs using a random oracle.
We want to be able to pick a random element of the space MI*'. Note: This time
the distribution on the underlying set is not necessarily uniform. The probability of
a computation with Q queries being chosen is 2 - 9 / 2 - P as likely as a computation with
p queries being chosen.

Theorem 4.2 P = NP- there exists a PPTM that picks a random element from
the probability space in expected polynomial time.

Proof: iFrom the oracle P P T M M, we construct a PPTM M', such that a uni-
formly generated computation of iM' given input I and output 0, when suitably
syntactically modified, yields a random element of the probability space Intu-
itively, M' is an oracle machine that makes up its own oracle on the fly.

Without loss of generality, assume the computation of M never makes the same
oracle query twice; keep track of queries asked in a table, and use the oracle only
when the table does not have the answer. Let t (n) be a polynomial bound on the
number of oracle queries M asks given an input of length n. &I' starts its computation
by writing down t(n) random bits on a separate tape, called the answer tape. M'
then proceeds as M would, except that when M asks the oracle for a query answer,
M' answers the simulated query with the first unused bit from the answer tape. By
corollary 3.2, we can generate a random computation m' of M', with input I and
output 0, in expected polynomial time. To make m' look like a random Computation
of M , strip away the answer tape, pretending that all answers came from an oracle;
call the computation that remains m. The probability associated with an rn asking
q queries is proportional to 2 - 9 . Hence, m is a random element of hi'?'.

We can strengthen our result slightly by fixing some finite portion of the oracles
we wish to consider. Let E be a finite set of oracle addresses and their contents. An
oracle is said to be consistent with E if the content-address pairs in E are also in the
oracle. We define a space similar to bi'.': M i o is a finite set of corn utations of M
given I and 0, using oracles consistent with E. Each element in bli' is weighed by
the probability of it occurring using a random oracle consistent with E . Once again,
we wish to pick a random element of the space.

Theorem 4.3 P = NP=+ there exists a PPTM that picks a random element of
the probability space iWiO in expected polynomial time.

Proof: Same as the proof of the previous theorem with one important modification:
Hardwire the answers to oracle queries in E into the finite state control of M'. When
M' asks a query in E , do not use a bit from the answer tape.

17

We can now prove the analogue of corollary 3.2 using oracle PPTMs Alice and
Bob. In the case where oracle Alice and oracle Bob have conversation C, and E
is a finite set of queries and answers, we define another similar space: A; is the
space of possible computations of oracle Alice consistent with the conversation C,
where each computation is weighed by its probability of occurring with a random
oracle consistent with E . The next theorem will be very important in the results on
secret-key agreement.

Theorem 4.4 P = NP=+ there exists a P P T M that picks a random element of
A; in expected polynomial t ime.

Proof: iFrom Alice's point of view a conversation is a set of inputs and outputs
occurring at certain prescribed times during her computation. No further modification
of the above proof technique is required. m

5 Random Permutation Oracles

Random permutation oracles are similar to the random function oracles discussed in
the previous section, except that the random functions must be 1-1 onto. A random
pennutation oracle II is a random length-preserving function from the set of finite
strings onto itself. Again, the function is chosen from the uniform distribution.

iFrom the point of view of oracIe PPTMs, there is no difference between the two
types of oracles. We will formalize this in the spirit of pseudo-randomness.

A tester is an oracle PPTMwhich, given n and a function oracle from n-bit strings
to n-bit strings, outputs either 0 or 1. Let T be a tester. Let P, be the probability
that T will output a 0, when given n and a random function from n-bit strings to
n-bit strings. Let P,!, be the probability that T will output a 0, when given n and a
random permutation from n-bit strings to n-bit strings. Let DT" = If, - P,!,I. Thus,
DT" measures how well the tester can distinguish between the two types of oracles.

Theorem 5.1 For every tester T , D T ~ < poly(n) /2"

Proof: Assume T makes q < poZy(n) queries. In the case of a random function oracle,
the answer to a previously unasked query is a random n-bit number, independent of
the answers to previously asked queries. Thus, for each query made the probability
that it gets the same answer as a previously made query is less than q/2". Summing,
we conclude that the probability that two queries received the same answer is less
than q2/2". Next we observe that the distribution on possible query answers, given
that all query answers are different, is the same for random function oracles and
random permutation oracles; the probability that T will output a 0 given that all

i a

query answers are different, is the same for the two types of oracles. It follows that
DT,, < q2/2".

The above theorem will allow us to first prove our results relative to a random

It is a standard theorem that random permutations are very hard to invert.

oracle, and then extend them to a random permutation oracle.

Theorem 5.2 Measure one of random permutation oracles are one-way in the strongest
possible sense: For every oracle P P T M , there exists a poly, such that the machine
has expectation no more than poly(n) /2" of inverting the inputs of length n.

6 Cryptographic Lower Bounds

6.1 Introduction

We will show that the existence of a very strong one-way permutation is not an
assumption likely to yield a proof that secure secret key agreement is possible. By
theorem 5.2, we know that a random permutation oracle is one-way in the strongest
possible sense. Therefore, we will use the availability of a random permutation oracle
to model the existence of an ideal one-way permutation. We will show that it is
as hard to prove secure secret key agreement is possible using a common random
permutation oracle is it is to prove P # N P . The result will take the form of the
contrapositive: P = N P implies that any secret-key agreement protocol can broken
even when a random permutation oracle is available to all parties.

Summarizing the results of this section: We first show that P = N P implies there
is no secret-key agreement protocol that is secure with measure llpoly of random
oracles (random function oracles). Theorem 5.1 will be used to extend the result
to random permutation oracles. Further strengthening the result by swapping the
quantifiers, we show P = N P implies for measure one of oracles there is no secure
secret-key agreement. -4 corollary of this result is the existence of an oracle relative
to which one-way permutations exist, but secure secret-key agreement is impossible.
We also distinguish between two strong senses of breaking a secret-key agreement
protocol.

6.2 A normal form for secret-key agreement

To facilitate our analysis, we will assume that the secret-key agreement protocol has
a normal form. Communication takes place in n rounds. Each round involves one
person speaking and computing. Before each round, the party who is to speak asks
the oracle a single query, and then does some computation. If Alice speaks first,
the protocol would take the following form: Alice queries the oracle: Alice computes;

19

Alice speaks (i.e. writes on the communication tape); Bob queries the oracle; Bob
computes; Bob speaks; Alice queries the oracle; Alice computes; Alice speaks; Bob
queries the oracle; . . .

running time.
Any protocol can be converted to normal form with only a polynomial blow-up in

6.3 Notation and definitions

We wish to investigate a random world where Alice and Bob attempt to agree on an 1-
bit secret. In other words, we vary over runs of Alice, Bob, and Eve; and over oracles.
Formally, a worZd situation is a five-tuple < 1, rundomAlice, rUnd0mgob, randomEve,
R >. I , the input to Alice, Bob, and Eve, is the length of the secret being agreed
upon. randomAlice, randomgob, and randomE,, are random bit tapes for Alice, Bob,
and Eve to use during their computations (the random bit tapes are just long enough
that they never get used up). R is a random oracle. Let IVSI be the set of all world
situations where Alice and Bob attempt to agree on an /-length secret (I is the first
entry of the five-tuple). We wilI also think of W S I as a probability space with the
uniform distribution. A world situation determines a random run of the protocol with
a random oracle. With each world situation we can associate the following variables:

C,, the conversation up to and including round r .

q,, the query asked in round r .

A,, the query-answer pairs Alice knows up to and including round r.

Br, the query-answer pairs Bob knows up to and including round r.

If it is ambiguous which world situation C, comes from, we write C,W to mean the
conversation comes from world situation w.

World situation w satisfies C, (written w Cr) means that the conversation
between the machines in w is identical to C, for the first r rounds. We will use the + notation with the other world situation variables as well.

Notice that none of the three polynomial time machines involved will be able to
access the oracle past some very large address. Thus, without any loss, we c m think
of the oracle as finite. This means that the probability space W S I is finite. Similarly
any space we will discuss can be considered finite. This technical point will prevent
the reader from suspecting any measure-theoretic fallacy.

6.4 Eve’s sample space

We need to define the probability distributions Eve samples from during her algo-
rithm. They have already been described in section 4.2, Theorem 4.4. We define
them again here.

20

Call a random tape for Alice consistent with conversation C, and oracle R if the
run of Alice, determined by the random tape and input from Bob’s portion of c,,
outputs Alice’s portion of C,. (What she does after round r- does not matter.) Let E
be a finite set of query-answer pairs.

Let AS$ be the set of <oracle, random tape for Alice> pairs such that E is
in the oracle and the random tape for Alice is consistent with C, and the oracle.
Eve will be sampling from the space A 2 of computations of Alice consistent with
C, and the query-answer pairs in E . The distribution on A 2 is induced from the
uniform distribution on AS$; sample a point in AS$, that point corresponds to
a computation of Alice: An <oracle, random tape for Alice> pair corresponds to
a <finite portion of the oracle used during the Computation, random tape for Alice
pair>.

6.5 Eve’s algorithm

We now give an algorithm for Eve to break a secret-key agreement protocol in a
random world, This algorithm runs in polynomial time under the assumption that
P = N P . SI is a function of the form l/poly (called a security parameter), which
determines Eve’s probability of failure. The smaller Sl, the longer Eve must run to
break the protocol.

For each of n rounds of communication between Alice and Bob, Eve does m =
[3(n/S1)In(2n/S!)1 segments. Each segment has a simulate phase and an update
phase. We will describe these phases in segment i for round T .

Without loss of generality, assume Alice speaks in round T . Let E,+l be the finite
set of query-answer pairs that Eve knows about the oracle so far; < q , a >E E,+l i f f
prior to round r , segment i, Eve has asked if g is in the oracle (q E R?), and received
answer a. Recall that C, is the conversation that has occurred up to this round.

SIMULATION PHASE:

Using the method described in theorem 4.4, Eve picks a random run of Alice from
the space (If Bob speaks in round r, Eve would instead simulate Bob.) Let
F,,i be the set of queries that the simulated run of Alice asks her simulated oracle.
(Note that so far in this segment, we have not asked any real oracle queries. Recall
that when simulating a random Alice, we make up the answers to the oracle queries.)

UPDATING PHASE:

Eve asks all the queries in F,,i of the actual oracle R. Thus, E,,j equals E,,;-I
union the new query-answer pairs Eve learned by asking F,,; of the oracle.

The following variables are also associated with any world situation:

Er,i, the query-answer pairs Eve knows up to and including the ith segment of her

E,,O, the query-answer pairs Eve knows before she simulates round T . (E,,O =

simulation of round T .

E7--1pI .)

21

BPQ,,;, the query-answer pairs Bob knows and Eve does not, up to and includ-
ing round r , segment i. BPQ stands for Bob’s private queries. Note the relation:
BPQ,i = sPQr,o - Erj-

6.6 Intersection queries and the secret

Intersection queries are the queries Alice and Bob ask in common during an execution
of their protocol. A particular query becomes an intersection query, not when it is
first asked by one party, but rather when it is later asked by the other party. For
conceptual unity, we can assume without loss of generality that the secret is an
intersection query; assume that as their final act Alice and Bob query the oracle at
the location addressed by the secret.

The next Theorem will prove that with high probability Eve finds all the inter-
section queries. Thus, Eve will have a polynomial-length list containing the secret;
Eve breaks the protocol.

6.7 The efficacy of Eve’s algorithm

Theorem 6.1 Suppose Alice and Bob attempt to agree on an 1-length secret. The
probability that Eve finds all the intersection queries is greater than 1 - Sl. Formally,
PfiOBz,ws,IAn fI B, S En,,] > 1 - Sr.

Proof: (We show the stronger result that Eve probably anticipates (asks) a query
before it becomes an intersection query.) Eve’s algorithm has n rounds. If Eve fails to
fmd all intersection queries, there must be a first round where she fails to anticipate an
intersection query that occurs in the next round; there exists a first time q E’ Ar n B,
and q @ Er- l ,mv To formalize the event that Eve fails for the first time to anticipate
an intersection query in the next round, we write it as the conjunct of three events:

0 Eve has, in previous rounds, anticipated all intersection queries about to hap-
pen. (Thus, Eve knows all intersection queries to date.)

qr+1, the query asked in the next round, is an intersection query.
AND

Lemma 6.1, the technical heart of the proof, will show this event has probability no
more than Si/n by showing that the complementary event has probability greater
than 1 - Sl/n. Thus, for each round the probability of failing for the first time to
anticipate an intersection query in the next round is less than Sl/n. Summing the
error probability for each round, we get a total error probability bounded by Sl.

22

Lemma 6.1 T h e probability that in round r , either

0 In a previous round, Eve failed to anticipate the intersection query about t o
happen,

qp+l is not an intersection query,
OR

is greater than 1 - Sl/n.

The proof of this lemma can be found in STOC’89

Theorem 6.2 Theomm 6.1 is true relative to a random permutation oracle: Given
any secret-key agreement protocol and a random permutation oracle, the probability
that Eve finds all the intersection queries is greater than 1 - S1/2.

Proof: Assume not. We will construct a tester to distinguish between a random
function oracle and a random permutation oracle. We start with a protocol where
Eve will find all the intersection queries with probability less than 1 -St/2 if a random
permutation oracle is used, and probability greater than 1 - Sl if a random function
oracle is used. A tester can simulate runs of Alice, Bob, and Eve, counting the fraction
of times Eve finds all the intersection queries. The essence of the situation is that the
tester is flipping a coin with two possible biases: 1 - S1/2 and 1 - St; the tester must
guess which. If the tester flips the coin 1/S12 times, even a very weak form of the law
of large numbers would tell us that Eve can guess the bias of the coin at least 99%
of the time. This very strongly contradicts theorem 5.1. m

Notice the order of the quantifiers in the above result. We picked the protocol
between Alice and Bob, then we picked the oracle (since the protocol is bound by
definition to work with a random oracle). Then, we showed Eve can break the pro-
tocol. We prove a stronger result which reverses the quantifiers. First, we pick a
random oracle; then a protocol for Alice and Bob (this time the protocol need not
work properly on other oracles). Then, we show that Eve can break the protocol
relative to the chosen oracle.

Theorem 6.3 P = -VP= relative to a random permutation oracle, any secret key
agreement scheme can be broken.

Proof: First, we argue that for every secret-key agreement protocol, there are only
measure zero of oracles where it can’t be broken. Fix a protocol. The P = N P
assumption allows us to use Eve’s algorithm as before. Choose Sl = 1/12+‘. Theorem

23

6.1 tells us that in 1 - Sl/2 of world situations we succeed in breaking the protocol.
By the pigeon-hole principle, for each length I , there are 1 - a oracles relative

to which there is a 1 - chance of Eve breaking the protocol. Call all such
oracles good for length 1. The probability that a random oracle fails to be good for
length 1 is @. x & p converges; by the Borel-Cantelli lemma, measure one
of oracIes are good on but finitely many lengths. For measure one of the oracles,
past some length, Eve has a 1 - chance of breaking the protocol. (We can
even non-uniformly boost Eve’s ability to break protocols for finitely many lengths.)
Thus, there are only measure zero oracles where the protocol can’t be broken.

For each of the countably many protocols we throw out the measure zero of oracles
where the protocol is secure. We have thrown out measure zero in all. Every protocol
can be broken relative to the measure one of remaining oracles.

Corollary 6.1 There ezists a n oracle relative to which a strongly one-way permuta-
tion ezists, but secure secret-key agreement is impossible.

Proof: Consider any oracle world where P = N P . Add a random permutation oracle
to this world. Because all the techniques in our theorem relativize, we can conclude
that secure secret-key agreement is not possible in the resulting world.

Construct an example of such an oracle as follows: The even numbers form an
oracle for PSPACE (a PSPACEcomplete problem), the odd numbers form a random
permutation oracle. P = N P relative to a PSPACE-complete oracle. We know the
random permutation is one-way in the strongest possible sense.

The only other relativized result that we know in cryptography is Brassard[Bra83,
Bra]. He explicitly constructs an oracle where secret-key agreement is possible.

So far, our sense of breaking a secret key agreement consists of finding a polynomial-
sized list with the secret on it somewhere. The strongest sense of breaking secret key
agreement is clearly to find the secret itself. We show how to extend Eve to actually
find the secret. For the same reasons as before, the argument works equally well with
both random oracles and random permutation oracles.

Eve’s strategy can be extended as follows: Eve’s final round will be her simulation
of the n - l th round of the protocol. In each segment of her final round, Eve records
her last query to the oracle. (Recall that the last query to the oracle should be
thought of as the secret.) Of the final queries Eve has recorded, she outputs the one
which occurs the majority of the time. (If there is no majority, output “failure”.)

Theorem 6.4 Suppose that Alice and Bob agree on a secret with probability at least
1 - a over world situations in WSl. Then, for every S > 0, there exists an Eve who
can guess the secret with probability at least 1 - a(2+6) over world situations in WS1.

The proof of this theorem can be found in STOC’SS

24

7 Related Work and Open Problems

In the work presented here, as in much of theoretical cryptography, we do not go into
exactly how much time the adversary will take to break the protocol, as long as this
time is polynomial. However, in real Iife, a protocol taking a large degree polynomial
time to break may be almost as good as one secure against any polynomial time
adversary. Merkle[Meri'S] has suggested a protocol, based on any one-way function,
the breaking of which would require an eavesdropper to take time quadratic in the
time taken by the participants. (Here, time is measured as the number of calls to
a black box for the one-way function.) We showed that for a protocol in normal
form, an eavesdropper can always break the protocol in time O(n3 log n); however,
to put the protocol into normal form may square n? so our eavesdropper is actually
taking time O(n6 log n). This leaves open Merkle's question of whether his scheme is
optimal.

Another general question brought up by this research is whether similar statements
can be proved for other cryptographic applications. We have previously given a list
of applications at least as strong as secret key agreement; that these are unlikely to
be a consequences of the existence of a one-way permutation follows from the result
here. However, it would be interesting to show that there is some natural application
which cannot even be based on a much stronger assumption, such as the existence of
a trapdoor permutation.

8 Acknowledgements

We are especially grateful to Manuel Blum and Amos Fiat, who asked us the question
of whether a one-way permutation suffices for secret agreement, and presented a model
in which it might be disproved. We would also like to thank Noam Nisan, Charlie
Rackoff, and Umesh Vazirani. We give Manuel and Umesh a second helping of thanks
for their support and encouragement during the many times we found a fatal flaw in
what we thought was a proof.

References

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=NP question.
SIAM J. Comp., 4 (1975) pp. 431-442.

PAneNPAneCo - N P A with probability 1. SIAM J. Comp. 10 (1981)

G. Brassard, D. Chaum, and C. CrCpeau. Minimum disclosure proofs
of knowledge. TechnicaI Report PM-RS710, Centre for Mathematics and
Computer Science. Amsterdam, The Netherlands, 1987.

[BG81] C. H. Bennett and J. Gill. Relative to a random oracle A,

[BCC87]

25

[Ben871

[Blu81]

[Blu82]

[BM84]

[Bra1

[Bra831

[CKSglJ

[DH76)

[FF S 8 61

[G GM84]

J. Cohen Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale
University, Sept 1987. YALEU/DCS/TR-561.

M. Blum. Three applications of the oblivious transfer: Part i: Coin flipping
by telephone; part ii: How to exchange secrets; part iii: How to send
certified electronic mail. Department of EECS, University of California,
Berkeley, CA, 1981.

M. Blum. Coin flipping by telephone: A protocol for solving impossible
problems. In Proceedings of the 24th IEEE Computer Conference (Com-
peon), pages 133-137, 1982. reprinted in SIGACT News, vol. 15, no. 1,
1983, pp. 23-27.

M. Blum and S. Micali.
quences of pseudo-random bits. SIAM J. Comp. 13 (1984) pp. 850-864

G. Brassard. An optimally secure relativized cryptosystem. Advances
in Cryptography, a Report on CRYPT0 81, Technical Report no. 82-04,
Department of ECE, University of California, Santa Barbara, CA, 1982,
pp. 54-58; reprinted in SIGACT News vol. 15, no. 1, 1983, pp. 28-33.

G. Brassard. Relativized cryptography. IEEE Transactions on Information
Theory, IT-192377-894, 1983.

A.K. Chandra, D. Kozen, and L. Stockmeyer. Alternation. JACM, 28:114-
133, 1981.

W. Diffie and M. E. Hellman. New directions in cryptography.
Transactions on In formation Theory, IT-223644-654, 1976.

U. Feige, A. Fiat and A. Shamir. Zero-knowledge proofs of identity. STOC,
1987.

0. Goldreich, S. Goldwasser, and S. hlicali. How to construct random
functions. In Proceedings of the 25th Annual Foundations of Computer
Science. XCM, 1984.

How to generate cryptographically strong se-

IEEE

[GMW87] 0. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
or a completeness theorem for proto cols with honest majority. In Pro-
ceedings of the 19th Annual Symposium on Theory of Computing. ,4CM,
1987.

[GM84] S. Goldwasser and S. Micali. Probabalistic Encryption. JCSS, 25:270-299,
1984.

[GMRA4] S. Goldwasser, S. Micali, and R. Rivest. A ”paradoxical” solution to the
signature problem. In Proceedings of the 25th Annual Foundations of Com-
puter Science. ACM, 1984.

26

[188] R. Impagliazzo Proofs that relativize, and proofs that do not. Unpublished
manuscript, 1988.

[IY87] R. Impagliazzo and M. Yung. Direct minimum-knowledge computations.
In Proceedings of Advances in Cryptography. CRYPTO, 1987.

[JW86] Mark Jerrum, Leslie Valiant, and Vijay Vazirani. Random generation of
combinatorial structures from a uniform distribution. Theoretical Com-
puter Science, 43:169-188, 1986.

[LR86] M. Luby and C. Rackoff. How to construct pseudo-random permutations
from pseudo-random functions. In Proceedings of the Eighteenth Annual
ACM Symposium on Theory of Computing, 1986.

[Mer78] R. C. Merkle. Secure communications over insecure channels. CACM,
21(4):294-299, April 1978.

[NY] M. Naor and M. Yung. Universal One-Way Hash Functions and Their
Applications. These precedings.

[P74] G. P. Purdy A high security log-in procedure. CACM, 17:442-445, 1974.

[Rab81] M. O. Rabin. How to exchange secrets by oblivious transfer. Technical
Report TR-81, Harvard University, 1981.

[Rac88] C. Rackoff. A basic theory of public and private cryptosystems. Crypto

[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings of
the 23rd Annual Symposium on Foundations of Computer Science, pages
80-91. IEEE, 1982.

	Introduction
	Notation and deflnitions
	Uniform Generation
	Polynomial-time relations
	What is uniform generation?
	P = NP and uniform generation
	An application to cryptography

	Random Oracles
	Random function oracles
	Random oracles and uniform generation

	Random Permutation Oracles
	Cryptographic Lower Bounds
	Introduction
	A normal form for secret-key agreement
	Notation and definitions
	Eve’s sample space
	Eve’s algorithm
	Intersection queries and the secret
	The efficacy of Eve’s algorithm

	Related Work and Open Problems
	Acknowledgements
	References

