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Abstract: Fiat-Shamir's identification and signature scheme is efficient as well as 
provably secure, but it has a problem in that the transmitted information size and 
memory size cannot simultaneously be small. This paper proposes an identification 
and signature scheme which overcomes this problem. Our scheme is based on the 
difficulty of extracting the L-th roots mod n (e.g., L = 2 N 1020) when the factors of 
n are unknown. We define some variations of no transferable information and prove 
that the sequential version of our scheme is a zero knowledge interactive proof system 
and our parallel version satisfies these variations of no transferable information under 
some conditions. The  speed of our scheme's typical implementation is at least one order 
of magnitude faster than that of the RSA scheme and is relatively slow in comparison 
with that of the Fiat-Shamir scheme. 

1. Introduction 
Fiat and Shamir have proposed an identification and signature scheme which 

is promising because it is efficient and provably secure against any active attack [FS]. 
Their scheme is based on the difficulty of extracting square roots mod n when the 
factors of n are unknown. The  Fiat-Shamir scheme consists of sequential and parallel 
versions. Though their sequential version is a zero knowledge interactive proof system 
[FFS], the iteration number must be O(log, n )  and the communication performance is 
therefore low. The parallel version is more efficient than the sequential version, and it is 
secure because it reveals no transferable information [FFS]. There is, however, a trade- 
off between the transmitted information size and memory size. That is, the probability 
of forgery is 1 / 2 k f ,  where k denotes the number of secret information integers and the 
overall transmitted information size is proportional to t .  For example, in order to 
attain the security level 2 - * O ,  i.e., t k  = 20, when we reduce the information size t o  

t = 1, we must store twenty (k = 20) secret integers. When we store only one secret 
integer, k = 1, we must send twenty ( t  = 20) times as long a message. Therefore, the 
efficient parameter values, t = k = 1, cannot be used in their scheme. 

In this paper, we propose an identification and signature scheme which over- 
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comes the above mentioned problem. Our scheme is based on the difficulty of extract- 
ing the L-th roots mod n when factors of n are unknown. In our scheme, the third 
design parameter L is introduced in addition to the two parameters t and k which cor- 
respond to t and k of the Fiat-Shamir scheme. Here, the security level is represented 
as L-”k .  Therefore, the parameter values t = k = 1 are applicable in our scheme if the 
appropriate value for L is chosen, although our scheme is relatively slow in comparison 
with the Fiat-Shamir scheme. Hence our scheme is suitable for smart cards, because 
their memory amounts are restricted. 

We define new security level notions of “transferable information with a ( s t r ic t )  
secvrity level p ” and “transferable information with a ( s t r i c t )  sharp-threshold securi iy  
level p .” We then prove that the sequential version of our scheme is a perfect zero 
knowledge interactive proof system for any L.  We go on to prove that our parallel 
version reveals no transfera,ble information with a strict security level l/p‘, where p 
and q are factors of n,  p’ = ( L ,  p -  1) > 1, p’ 2 q‘ = ( L ,  q- l),  if the factoring is difficult 
and an additional condition holds, where (u, 15) denotes the greatest common divisor 
of a and b. Finally we also prove that our parallel version releases no transferable 
information with a strict sharp-threshold security level 1/L when ( L , p  - 1) = L and 
an additional condition holds. 

Although the idea of using higher roots was implied in [FS], [GQl] and [GQ2), 
its security and parameter conditions were not formally discussed. 

In the following sections, we consider a typical case where k = 1 for the sequential 
version and E = t = 1 for the parallel version. Our results are easily extended to cases 
where k and t have other values. 

2. Some Number-Theoretic Results 
First some number-theoretic results a.re shown concerning the modular L-th 

roots. 

[Lemma 11 Let p be an odd prime, L be an integer ( L  2 2 )  and p’ = ( L ,  p - 1). If 
y is the L-th residue mod p ,  then there are p’ integers z of the L-th root mod p of y 
such that zL y (mod p ) .  
Proof Let g be a primitive element over a finite field G F ( p ) .  let a satisfy g“ z 

(mod p )  and let /3 satisfy gp y (mod p ) .  Then z L  y (mod p )  implies (ga)L g B  
(mod p ) .  Here a sa td i e s  a L  G /3 (mod p - 1); therefore, it has p’ solutions [HW, 
pp.51-521. Q. E. D. 

[Lemma 21 Let p be an odd prime, L be an  integer ( L  2 2 )  , y be the L-th residue 
mod p and p’ = ( L , p  - 1) 2 2. If (51, .. . , z p , }  is the set of the L-th roots mod p of 
y,  then any pair (E,, z l )  satisfies zp’ (mod p )  (1 5 i, j 2 p ’ )  and there is at z:’ 
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least one pair (zi, zj) such that, i # j and z:’-’ $ zf’-’ 
Proof Let g be a primitive element over G F ( p )  and let ai satisfy gai E z i  (mod p )  
(1 5 i 5 p ’ ) .  Since a congruence 2: 3 2: 5 y (mod p )  implies L(ai  - crj) EE 0 
(mod p - l),  p - 1 is a divisor of L(ai  - aj). Here p’ is the greatest common divisor 
of L and p - 1. Thus, p - 1 is a divisor oEp’(a; - aj).  Therefore, the congruence 
p‘ai  G p’cyj 2;’ 

p’) .  Thus, there are 
p’ integers of the (p’ - 1)-th roots mod p of 2 .  Here, the number of the (p’ - 1)-th 
roots modp of z is at most p’ - 1 according to Lemma 1 because (p’  - 1, p - 1) 5 p’ - 1. 
This is a contradiction. Therefore, there is at Ieast one pair (zi, z j )  such that i # j 
and z;’-’ f zP’-l (mod p )  . Q. E. D. 

(mod p ) .  

(mod p - 1) holds, and we finally obtain 4’ 3 (gai)P’ G ( ~ “ 1 ) ~ ’  

(mod P) ( 1  5 ;,i I P’). 
Assume that any z; satisfies z:’-’ G z (mod p )  (1 _< i 

We classify the L-th roots mod n of 1 in order to calculate the probability of 
successfully factoring n. 

[Definition 11 Let L be an integer ( L  3 2) and n be a composite number which is 
the product of two odd primes p and q .  Four types of the L-th roots modn of 1 are 
defined as follows: 

w is Type1 if w = [I, 11, 
w is T y p e 2  if w = [I, up], 

w is T y p e 3  if w = [wp,  11, 
w is Type4  if w = [wp , w q ] ,  

where the notation w = [a, b] means that w satisfies the following congruences: 

and where up satisfies 1 + wp + . . . + w i - 2  + w:-’ s 0 
1 + wq + . . . + wf-’ t w t - ‘  = 0 

[Lemma 31 Let L be an integer ( L  2 2) ,  n be a composite number which is the 
product of two odd primes p and q and w be one of the L-th roots modn of 1. Then, 

(mod p )  and wq satisfies 
(mod q) .  

# { w  I LJ is type1 } = 1, 
#{w 1 w is type2 } = q’ - 1, 
# { w  I w is type3 } = p‘ - 1, 
#{w I w is t y p d  } = (p’  - l)(g’ - 1) 

where p’ = ( L ,  p - l),  q’ = ( L ,  q - l), and # denotes the number of elements of a set. 
Proof The following equation with respect to w has p‘ solutions in G F ( p )  according 
to Lemma 1: 1 - w L  (mod p ) .  Thus, 
#{w,modp) l+~,+...+wk-~+wk-~ ~0 (modp)} =p’-1. Similarly, #{w, mod 

(1 - w ) ( l  + w + . . . + w L - 2  + d-‘) 5 0 
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q I I+w,+. . . + W : - ~ + W ~ - '  

and #{w  mod q ]  = 

[Theorem 11 Let L be an integer (L  2 2),  n be a composite number which is 
the product of two odd primes p and q,  I be the L-th residue mod n,  and AL be a 
probabilistic polynomial time algorithm which, given I and n,  finds one of the L-th 
roots mod n of I with probability (> l / lnla),  where In1 denotes the data length of 
n. If (Lip - 1) # 1 or (L,q - 1) # 1,  then there exists a probabilistic polynomial 
time algorithm for factoring n using AL at most in O(lnl"+") steps, where b satisfies 

Proof Choose a random integer y E Z,, where 2, denotes (0,. . . , n - l}, calculate 
z = yL mod n and compute 2 which is one of the L-th roots mod n of z by using AL. 
Because the distribution of x doesn't depend on which y is selected, and because y is 
randomly selected, w = z/y mod R is uniformly distributed. If w is type2 or type3, we 
can calculate the factors of n by computing (w - 1, n). Note that when w is type], 
(w - 1, n)  = n; and when w is type4, (w - 1, n)  = 1. The probability of { w is type2 

P'4' 
holds because of the assumption ( L , p  - 1) # 1 or (L,q - 1) # 1. The average number 
of iterations for deriving z from z using AL is Inla. The average number of iterations 
for selecting 5 such that w is type2 or type3 is at most p'q' = O(1112b). Therefore, 
the total average number of iterations for the factorization of n is at most O(lnl"'"). 
Q. E. D. 

[Definition 21 
is defined as follows: 

0 (mod q ) }  = qI-1. Moreover, #{ w I # { w  mod p} = a 
= a. p. Therefore, the above property is proven. Q.E.D. 

L = O(lnl">. 

'+ ' -2  2 1 or type3 } is p ' ~ ~ ~ ; 2  according to  Lemma 3. Moreover, the inequation P pyq, 

Let p be a prime and a E G F ( p ) .  An index of a over G F ( p ) ,  Ind,(a), 

I n d p ( u )  = min{m I urn 1 (mod p ) } .  

[Lemma 41 Let p be a prime, J E G F ( p )  be the p'-th residue mod p ,  where (p' ,  p - 
1) = p' and p' = r1 . r2 ( P I ,  r2 > l), K be one of the rl-th roots mod p of J ,  v,(i = 
1,2,. . . , r2)  be the rg-th roots of I<, vo be one of the p'-th roots of J ,  and w, = 
t~,/vO mod p .  If there is an integer 5(> 1) which satlsfies (a, r1) = 1 and (5, r2) = 6, 
for any Ii' and VO, there is at  least one pair (w, ,w, )  such that Indp(w,) # Indp(d l ) .  
Proof = - J  (modp) .  
Then, 

Let g be a primitive element over G F ( p ) ,  let cr satisfy grl ' 2  

= g r Z  O + ( P - l )  $ mod p .  

where 0 5 j ,  5 r1 - 1. Thus, 
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where 0 5 i T Z  - 1. Similarly, 

Therefore, 
(I --I ) + ( t - t  ) r 

w .  1 -  - g('-l). ' ',I '2 ' mod p .  

When j o  # j 1 ,  for any io ,  j o  and j 1 ,  there are two integers u (-6 < u < 5 )  and v (-r1 < 
v < TI) such that ( j l - j ~ ) + u - r l  = v.5, because ( T ~ ,  6) = 1. Put il = io+u mod r z ,  then 
(Wi1)- Gg(p- ' ) '"  (mod p ) .  Thus, I n d p ( w i l )  divides v. On the other hand, 
there is an integer i~ (0 5 i 2  5 T Z  - 1) such that ( j l  - j o )  + (iz - iO)rl  $ 0 (mod 5), 
because (r1,6)  = 1 and 5 2 2. Thus, Indp(wj2 )  does not divide v. Therefore, 
Indp(w; , )  # IndP(wi2 ) .  When j~ = j 1 ,  then w;, = 1 and w; # 1 (i # io). Therefore, 
Indp(wi,)  # I n d p ( w ) .  

1 

Q. E. D. 

3. Sequential Version 
An identification scheme is proposed here in which a prover convinces a verifier 

that he is a real prover. Hereafter we denote a real prover as ;f, an invalid prover as 
A ,  a real verifier as 

A trusted center publishes an integer L ( L  2 3) and a modulus n which k 
the product of two secret large primes p and q. 2 publishes I which is calculated 
by I = S L  mod n using a secret random integer S E 2,. Note that the difficulty of 
deriving S from I corresponds to  that of breaking the RSA scheme [RSA] in the case 
where ( L , p  - 1) = 1 and ( L ,  q - 1) = 1, and corresponds to the difficulty of factoring 
n in the case where ( L ,  p - 1) # 1 or ( L ,  q - 1) # 1 according to Theorem 1. 

To generate and verify a proof of identity, the parties execute the following 
procedure. Repeat Steps 1 to 4 in sequence t times: 

- 
and an invalid verifier as 5. 

Step 1) 3 generates a random integer R E Z,, and sends X = RL mod n to  B. 
Step 2) 
Step 3) 
Step 4) B verifies that Y L  E X . I E  

sends a random integer E E ZL to 2. 
sends Y = R .  SE  mod n to B. 

(mod n) .  
Verifier 3 accepts prover 3 ' s  proof of identity only if all the checks are successful t 
times. Note that there is no constraint on the relation among L ,  p and q. 

The following theorem guarantees the security of our sequential version. 

[Theorem 21 
[FFS] which is perfect zero knowledge [GMW], when t = O(l.1) and L = O(1). 
Proof (sketch) 
evaluate the verification condition: Y L  G ( R  . S E ) L  3 RL(SL)= 3 X . I E  
Thus, the verifier accepts 2 ' s  proof with probability 1. 

This protocol is an interactive proof system of knowledge of the S 

Completeness: To prove that l ' s  proof always convinces z, we 
(mod n). 
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1 

Soundness: Our goal is to  show that  whenever B accepts il ' s  proof with non-negligible 
probability (> l / ~ n ~ " ) ,  a probabilistic polynomial time Turing machine M can output 
the S', which satisfies StL 3 I 

Let T be the truncated execution tree of (2,z) for input 1 and A's random 
tape RA. A vertex is called "heavy" if it has more than L / 2  sons. First, we prove that 
at least half the vertices in at least one of the levels in T must be heavy, then that M 
can find a heavy vertex in T with overwhelming probability, and finally that S' can be 
computed from the sons of any heavy vertex when a heavy vertex is found. 

Let a; = p i + l / p ;  where f l i  means the number of vertices at level i in T .  If ai < 
( 3 / 4 ) L  for all 1 5 i _< t ,  then the total number of leaves in T(i.e., ,Bt = a1 . . . at-I . P I )  
is bounded by ( 3 / 4 ) t - 1 L t ,  which is a negligible fraction of the L' possible leaves. Since 
we assume that this fraction is polynomial, a, > ( 3 / 4 ) L  for at least one level, which 
we denote io. Assume at least half the vertices at this level (io) are not heavy, then 
Bi,-,+t < Pi,  * L - ( P i o / 2 ) ( L / 2 )  = ( 3 / 4 ) P i ,  . L ,  and ai, = fiio+i/pio < ( 3 / 4 ) L .  Here 
a;, > (3/4)L. This is a contradiction. Therefore, it is proven that at least half the 
vertices in at least one of the levels in T must be heavy. 

In order to find a heavy vertex in T ,  M explores random paths in the untruncated 
tree by determining the degree of each vertex and restarts from the root whenever the 
path encounters an improperly answered query. Since a non negligible fraction (> 
1/1n1") of leaves is assumed to  survive the truncation, the average iteration number of 
the executions where the path reaches to the t-th level is ]n]"(i.L>. Since there is at least 
one level in T where at least half the vertices are heavy, the average iteration number 
of the executions where M can find a heavy vertex is at most 2lnl"(t. L )  = O(lnll+"). 

Finally, we will show how S' can be computed from the sons of any heavy 
vertex, when a heavy vertex is found. Let Q be the set of queries E which are properly 
answered by 2. Assume that  all pairs of integers (E' ,  l3") satisfy E" - E'> I where 
E',  E" E Q. Since #Q > L / 2 ,  the largest difference between elements in Q is a t  least 
L. Here #ZL = L and the largest difference between elements in ZL is at most L - 1. 
This is a contradiction. Therefore, it is proven that a set Q of more than L / 2  integers 
of ZL must contain at least one pair of integers (E1,Ez) such that El - Ez = 1. 
Since these queries were properly answered, the following verification conditions hold, 
where Xi = X; YF ZE* . X (mod n )  (1 5 i 5 2) .  From these equations, we 
obtain S' = Y1/Y2 mod n which satisfies the relation S f L  3 (Y1/Y2)L z ZE1-Ez 1 
(mod n). 
Zero knowledge: Let 
The simulator M g  does the following: 

(mod n), with overwhelming probability. 

be any polynomial expected time algorithm for the verifier. 

repeat while 0 5 c 5 t 
begin 
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choose E’ E ZL randomly and uniformly 
choose Y = R E ZL randomly and uniformly 
X = RL/IE’  (mod n) 
B issues E 
if E = E’ then halt, c = c + 1 and output ( X ,  E ,  Y )  

- 

end _ -  
It can be demonstrated that (A, B)(n ,  I )  and n/r,-(n,I) are identically dis- 

tributed verifier’s histories. For any verifier g, the probability that E = E‘ is at 
least 1/L. Thus, the average running time of this simulator M E  is O(t . L ) ,  which is 
polynomial in In/ based on our assumptions of the values of L and t .  

Remark Evidently, we can extend the value of L to O(l.1) in the above theorem. 

Q.E.D. 

4. Parallel Version 
In this section, we consider a typical case where k = t = 1 and p’ = ( L ,  p -  1) > 1 

and p’ 2 q‘ = ( L ,  q - 1) for the parallel version. In this case, the difficulty of deriving 
S from I corresponds to that of factoring n according to Theorem 1. We define four 
security level notions of “transferable information with a (strict) security level p ” and 
“transferable information with a (strict) sharp-threshold security level p ,” which are 
more rigorous than the notion “transferable information” defined by [FFS]. 

[Definition 31 
curity level p if: 

-- 
The protocol ( A ,  B )  releases no lransferable information with a se- 

1. It succeeds with overwhelming probability. 
2. There is no coalition of 2, 5 with the property that, after a polynomial number 

of executions of ( A ,  B ) ,  it is possible to execute (2, B) with c .  p probability of 
success, where c is an arbitrary real constant greater than 1. 

The protocol ( A ,  B )  releases no Iransferable information with a strict security level p 
if: 

_ -  

-- 

1. It succeeds with overwhelming probability. 
2’. There is no coalition of A ,  B with the property that, after a polynomial number 

of executions of (A, B ) ,  it is possible to execute (2, B) with c p probability of 
success, where c is (1 + l / lnld)  and d is an arbitrary constant greater than 0. 

The protocol ( A ,  B )  releases no transferab/e information wath a sharp-threshold security 
level p if it satisfies conditions 1 and 2 above as well as the following condition: 

The protocol ( A ,  3 )  releases n o  transferable information with a strict sharp-threshold 
security level p if it satisfies conditions 1, 2’ and 3. 

- _  
_ I  

- _  

3. The probability of 2 cheating B is p .  - _  

It has been proven that Fiat-Shamir’s parallel version of the identification scheme 
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releases no transferable information with a sharp-threshold security level [FFS], but 
not with a s f r i d  sharpthreshold security level. The following theorem and corollary 
guarantee the security of our parallel version using the new notion, “transferable infor- 
mation with a sfricf ( ~ h  arp-threshold) security level.” The following results are easily 
extended to  the situation where k and f have other values. 

[Theorem 31 Let the parameters k = t = 1 and L satisfy ( L , p  - 1) = p’ > 1, 
p f  2 ( L , q  - 1) = q‘, and L = O(1). When at least one of the following conditions 
C1, C2, C3, and C4 is satisfied, then the parallel version of our identification scheme 
releases no transferable information with a strict security level l/$, if there is no 
probabilistic polynomial time algorithm of factoring. 

Cl.  p’ = nEl p i ,  where pi is a prime number, p i  # p ,  ( i  # j ) ,  and N 2 1. 
C2. q’ = ni=, q;, where q; is a prime number, q; # qj ( i  # j ) ,  and M 2 1. M 

c3 .  q‘ = 1. 
c4. (p’ ,q’ )  = 1 - -  

Proof (sketch) Let L = p’ . 1,. To prove this theorem, we show that if ( A , B )  
can be executed with probability E = c/p‘ = (1 + l / ln ld ) /p ’  after O(ln1“) executions 
of ( A ,  B ) ,  then n can be factored by a coalition of A, A ,  B and 3 at most in time 
O(llgll* Inlei- 11211. Inid) and with overwhelming probability, where d and e are positive 
constants, and IIAll and 112311 denote the time complexity of A and B. 

and 5, we start the factoriza- 
tion by executing ( A ,  B )  O(ln1“) times and relaying a transcript of the communication 
to 2. Since ;;I itself can be used in this part and its time complexity llzl[ is assumed 
to be dominated by 11gll, these executions require O(llBll. Inl“). 

The possible outcomes of the executions of ( 2 , B )  can be summarized in a large 
Boolean matrix H whose rows correspond to all possible choices of RA. Its columns 
correspond to all the possible choices L of RBI  and its entries are 1 if 3 accepts A’S 
proof, and 0 if otherwise. 

To factor n, the coalition tries to find at least (I, + 1) 1’s along the same row 
in H .  We call a row “heavy” if the number of 1’s along it is at least I ,  + 1. Assume 
that at least 1/c of the 1’s in H are not located in heavy rows. Then the fraction of 
non-heavy rows in H ,  which we denote r ,  is estimated as follows: T > = 1. 
This is a contradiction. Therefore, at least (1 - l / c )  of the 1’s in H are located in 
heavy rows. We thus adopt the following strategy: 

- -  - - _  

Given any pair of unusually successful programs _ -  

- 

- 

e L 1  c 

1. Probe O ( l / r )  random entries in H .  
2. After the first 1 is found, probe l ,0(1/~) random entries along the same row. 

Because & =13 = 1 + lnldl we can find a heavy row with constant probability 
in just 5. { O ( ; )  + l p  - O ( 3 ) )  = + . ((1 + l,)O(:)} < O(lnld) probes. Again we 
assume that llsll is dominated by 11.411, and thus the time complexity of this part of 



240 

the algorithm is a t  most O( 11211 . Inld). 
Next, we will prove that n can be factored by a coalition of A ,  A ,  B and B in 

polynomial time and with probability at least l/p’, when the coalition finds at  least 
( l ,  + 1) 1’s along the same row in H .  

Let Q be the set of queries E which are properly answered by 2. Assume that 
all pairs of queries (E’,  E”) satisfy E” - E’> p’ where E’, E” E Q. Since #Q 2 ( I ,  + l), 
the largest difference between elements in Q is at least I p  . p’ = L. Here # Z L  = L and 
the largest difference between elements in 2, is at most L - 1. This is a contradiction. 
Therefore, it is proven that  a set Q of at least (I, + 1) integers of 2, must contain at 
least one pair of integers ( E l ,  Ez) such that El - EZ < p ’ .  

Let ( X , E l , Y l )  and (A-, Ez,Y2) be the two 1’s in Q , i.e., the two possible 
outcomes of the execution of ( A ,  B ) ,  that satisfy El - 152 < p ‘ .  Since (S, El ,  Y1) and 
(.Y, Ez, Y2) satisfy the equation (171/l$)L f IE1-Ez (mod n) ,  thus Yl/Y2 mod n is 
one of the L-th roots mod n of I E 1 - E 2  mod n,  and SEI-Ez mod n is also one of the 
L-th roots mod n of I E 1 - E 2  mod n,  where S is known by 2. 

We claim that from the x”s and E”s sent by 2 during the execution of (A ,  B )  
even an infinitely powerful 5 cannot determine which L-th root mod n of 12 acturally 
uses. This can be shown as follows: let w be one of the L-th roots mod n of 1, then 
S’ = w . S is another L-th root mod n of I other than S. If 2 replaces S with S‘, 
A produces the same X,Y with the same probability distribution, shown as follows: 
X G RL ( R . W - ~ ) ~  (mod n)  and Y S E .  R S’E(R.w-E) (mod n). Since the 
R’s are randomly chosen, 2 produces the same X, k’ values with the same probability 
distribution in both cases. Therefore, during the executions of ( A ,  B )  A cannot leak 
to 5 which L-th root mod n of IE1-E2 mod n he can compute from the S he knows. 
Thus, we have proven that  the L-th roots mod n of IEl-Ea mod n which are known 
by 2 and computed by a coalition of A, B and 5 are totally independent. 

Next, we will prove that n can be factored with probability at least l/p’ using 
SE1-E2  mod n and Y*/Y2 mod R ,  if at least one of the conditions C1, C2, C3, and C4 

mod n and is satisfied, even if the value of Yl/Y2 mod n is biased. Let w = 
w = [ w p , w q ] .  When C1 is satisfied, the probability of successfully factoring n using 
w is at least l/p‘. This  is because: if Ind,(w,) < I r ~ d , ( i 3 ~ ) ,  then w‘~~P(“‘P) mod n is 
Type2, and if I n d p ( u p )  > Indq(wq), then i 3 f n d q ( w q 1  mod n is Type3. Therefore, when 
Indp(wp) # I n d q ( w q ) ,  the probability of successfully factoring n using w is 1. Here, we 
will show that the probability of I n d p ( w p )  # Ind,(y.,) IS at least l/p’. Let p’ = T I  . r2 

such that PI = ( p ’ ,  El - E2) < p ’ ,  { u 1 , .  . . , vr2}  = {S‘E~-E2 mod p I S’ is the L-th root 
mod n of I }  and 2r0 = 5 mod p ,  then (q, r 2 )  = 1 because of C1, and ~2 2 2 because 
of Lemma 2. Therefore, there is at least one pair (J,,,. up,] )  satisfying I n d p ( ~ l p , , )  # 
Ind,(w,,,) according to  Lemma 4, where up,, = v , /vo  mod p ( 1  = l;.. , r2) .  When 

I - - -  

- _  

_ -  

- 

- -  - 

- _  

s E i  - E a  
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C2 is satisfied, change the role of p and q in the C1 case. When C3 is satisfied and 

S‘ is the L-th root mod n of I }  2 2, the probability of successfully factoring n using 
w is at least 1/2. When C4 is satisfied and w # 1, then wq’ mod n is Type3 because 
wq’ = [wp, 11 where up # 1. Since #{S’E1-Ez mod p I S‘ is the L-th root mod n of 
I }  2 2, the probability of successfully factoring n using w is at least 1/2. Therefore, 
the probability of successfully factoring n using w is at least l / p ’ .  

Finally, We will prove that n can be factored by a coalition of A , A , B  and fi 
at most in time p ’ { ~ ( i l E l l  . In[‘) + ~ ( l l i l l  . = ~(lliill . 1nle + 1 1 i 1 1  + 1.1~) and 
with overwhelming probability. When for any f ( 1  5 f < p ‘ ) ,  wf mod n is Type1 
or Type4, n cannot be factored. Then, ‘;I selects another S’ randomly and calculates 
I‘ = SIL mod n, and the coalition goes through the same procedure to factor n. The 
procedure is repeated until n can be factored. The average number of iterations is a t  
most p‘ .  Q.E.D. 

Remark Evidently, we can extend the value of L to O(l.1) in the above theorem. 
However, from the practical viewpoint, it is essential that the security level is a constant 
value, or a non asymptotic value. Therefore, the condition of Theorem 3 for the order 
of L is optimal. 

[Corollary] Let the parameters k = t = 1 and L satisfy (L ,p  - 1) = L, and 
L = O(1). If at least one of the conditions Cl1C2,C3, and C4 is satisfied, then the 
parallel version of our identification scheme releases no transferable information with 
a strict sharp-fhreshold security level 1/L, if there is no probabilistic polynomial time 
algorithm of factoring. 
Proof It is proven that this protocol releases no transferable information with a 
strict security level 1/L because ( L , p  - 1) = L and because of Theorem 3. Here, 
A can cheat B with probability 1/L because 2 can guess RB with probability 1/L. 
Q. E. D. 

w # 1, then w is Type3 because w = [wp ,  11 where wp # 1. Since #{S’El-EZ m od P I  

- - -  

- 

5. Applications 
Signature scheme A triplet (Ad, E ,  Y )  is sent as the signed message, where M is 
a message, h is a public pseudo-random function and E = h ( M ,  X )  f ZL, to turn the 
identification scheme into a signature scheme. Y here is the same as in Step 3 of the 
identification scheme. 

N-Party authentication scheme N-party identification and signature protocol 
based on the Fiat-Shamir scheme was proposed by [BLY]. However, in the Fiat-Shamir 
scheme a large memory (k = 100) is required. Our parallel version is suited to  their 
protocol with only one secret integer and logz L x 100. 
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6. Efficiency 
In this section, we focus on a typical implementation of our parallel version. 

Secret memory size This scheme requires 1.1 bits of secret information S, while 
the Fiat-Shamir scheme requires k In1 bits of secret information. The proposed scheme 
is therefore more efficient than the Fiat-Shamir scheme when L 2 2. 

Transmission efficiency (21.1 + [LI)  bits are transmitted in this scheme, while 
(2tI.l + k t )  bits are transmitted in the Fiat-Shamir scheme. Note that when t = 1 is 
used in the Fiat-Shamir scheme, the t value must be large. 

Processing speed The amount of processing needed for this scheme is compared 
with the RSA [RSA] and Fiat-Shamir schemes using the average number of modular 
multiplications required to generate or verify a proof of identity. 

The RSA scheme requires (3lnl) /2  steps, the Fiat-Shamir scheme requires t ( k +  
2)/2 steps, and the proposed scheme requires (51  + 2)/2 steps where L = 2‘. For 
example, when 1k = I = 20, our parallel version requires 51 steps, while the Fiat-Shamir 
scheme requires 11 steps (where rl. = 20, t  = 1) to 30 steps (where k = 1,1 = ZO), and 
the RSA scheme requires 768 steps where In1 = 512. 

When a prover uses a secret integer S satisfying I - l  = SL  mod n, a verifier 
checks whether Y L .  I E  = X (mod n) holds. The computations of YL and I E  can be 
combined, i.e., according to the value of E ,  a verifier can repeatedly square the results 
of the intermediate calculation, or square those results multiplied by I ,  as appropriate. 
This improved calculation requires 31/2 steps in the verification; for example, 30 steps 
are required when 1 = 20. 

7. Conclusion 
Combining our scheme with the Fiat-Shamir scheme provides greater flexibility 

because three appropriate design parameters of transmitted information size, memory 
size and speed can be selected. 

The parallel version described in Section 4 is more efficient than the Fiat-Shamir 
scheme from the standpoint of transmitted information size and secret information size, 
because it corresponds to t = L = 1 in their scheme. It is about one order of magnitude 
faster than the RSA scheme and is relatively slow in comparison with the Fiat-Shamir 
scheme. Our sequential and parallel versions are also shown to have the same security 
characteristics as the Fiat-Shamir scheme. 

Finally, we conclude with an open problem reIating to the security level: when 
( L , p  - 1) = p’ < L and at least one of conditions Cl,C2,C3, and C4 is satisfied, does 
the parallel version of our identification scheme release no transferable information 
with a strict sharp-threshold security level l/p’, if there is no probabilistic polynomial 
time algorithm of factoring ? 
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