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Abstract 

This paper describes a systematic procedure for decrypting simple substitu- 
tion ciphers with word divisions. The algorithm employs an exhaustive 
search in a large on-line dictionary for words that satisfy constraints on 
word length, letter position and letter multiplicity. The method does not 
rely on statistical or semantical properties of English, nor does it use any 
language-specific heuristics. The system is, in fact, language independent in 
the sense that i t  would work equally well over any language for which a suf- 
ficiently large dictionary exists on-line. To reduce the potentially high cost 
of locating all words that contain specified patterns, the dictionary is com- 
piled into a database from which groups of words that satisfy simple con- 
straints may be accessed simultaneously. The algorithm (using a relatively 
small dictionary of 19,000 entries) has been implemented in Franz Lisp on a 
Vax 11/780 computer running 4.3 BSD Unix. The system is frequently suc- 
cessful in a completely automated mode -- preliminary testing indicates 
about a 60% success rate, usually in less than three minutes of CPU time. 
If it fails, there exist interactive facilities, permitting the user to guide the 
search manually, that perform very well with minor human intervention. 

1. Introduction 
Despite its relative insecurity compared to modern encryption techniques, 

the simple substitution cipher remains a classical problem that has defied reliable 
automated decryption. Human cryptanalysis of substitution ciphers is usually 
begun by obtaining a trial entry to the code, i.e. guessing the decodings one or 
more letters. The initial guesses may be based on a variety of simple techniques, 
such as n-gram frequencies, doubled letters or short word patterns. The partial 
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decryption yielded by the entry may then be used deduce full words through 
visual recognition and by observing syntactic and semantic patterns. The 
guessed words, in turn,  yield further letter decodings and the process is repeated 
until the entire is message is deciphered. Some of the automated systems have 
attempted to  imitate this method. Carroll and Martin [CM86], for instance, have 
developed a microcomputer-based program which utilizes expert system methc- 
dology to capture the knowledge and heuristics that an experienced cryptanalyst 
might employ in both the entry and deduction phases. Schatz [ S V ]  uses singular 
value decomposition of a cipher’s digram matrix to obtain a prediction of a 
cryptogram’s vowels. Using the vowels and some special clues (e.g. one-letter 
words and apostrophes) as an entry, Schatz’s program performs a heuristic search 
for words guided by a small vocabulary and a database of rules which reflect sta- 
tistical properties of the English language. A very different method, proposed by 
Peleg and Rosenfeld [Peleg-Rosenfeld], employs a relaxation algorithm to deter- 
mine all of the plaintext letters in parallel by iteratively updating the joint pro- 
babilities for the decoding of each ciphertext letter, with respect to its two 
nearest neighbors. The above systems assume that the plaintext conforms to 
various statistical properties of English. For long cryptograms this is a reasonable 
assumption, however messages that are short in length or contain uncommon 
combinations of letters (e.g. acronyms), are particularly difficult, if not impossi- 
ble for such systems to solve. 

An exhaustive search that generates all 26! keys is a reliable, but clearly 
impractical decryption method. A more reasonable (but still exhaustive) approach 
is t o  conduct’the search at  the word level, rather than at the letter level, using a 
large on-line dictionary. For each word in the ciphertext, the dictionary is 
searched for all of words that satisfy some known constraints. Since the cipher- 
text contains word divisions, word length is always a known constraint. Multiple 
occurrences of the same letter in the same word a second important pattern con- 
straint. If the dictionary is complete, then each plaintext word must appear 
somewhere in the corresponding list of constrained words. If we examine all possi- 
ble combinations from the constrained lists, the correct translation of the entire 
message must eventually appear. The search for the correct combination is con- 
ducted as a depth-first tree walk, in which each branch in the search tree 
corresponds to a guess for the decoding of a particular word in the ciphertext. 
Although the search space is initially very large, it is greatly reduced during the 
course of the search because each time a word is chosen as a possible decryption 
it imposes additional constraints upon other word that shares one or more of its 
letters. Hence, as a choices are made for each word, the set of possible choices for 
the other words becomes progressively smaller. Backtracking is performed when- 
ever there are remaining words for which the set of potential decryptions is 
empty. Hence, if the dictionary is complete, the search will eventually find a set 
of choices for the ciphertext words which mutually satisfy all known constraints. 
With high probability, this set of words is very close to the correct plaintext. 
Even if some plaintext words are not in the dictionary, the constraints imposed 
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by those that are may be sufficient to provide an unambiguous decryption that is 
apparent by visual inspection. Wall [W80] describes such a procedure, bu t  claims 
it is feasible only if special purpose hardware (a content addressable memory) is 
used to support parallel lookup of words from the dictionary. Wall actually 
implemented this method, simulating the parallel hardware via APL vector 
operations and excluding lookup time from the performance analysis. Our 
approach is much the same as Wall’s, but with the following improvements: 

1) no special hardware is required; instead the dictionary is compiled into a 

2) a control strategy is employed to  guide the search toward promising paths; 
3) the use of letter multiplicity (i.e. multiple occurrences of the same letter in 

the same word) as a constraint results in a much smaller search space; 
4) certain guesses for words are recognized as yielding inconsistencies, and 

hence immediately rejected instead of being propagated further in the 
search. 

database designed to facilitate efficient lookup; 

2. The Database 
Our system is based on an exhaustive search for pattern words in a diction- 

ary of over 19,000 entries. The word search entails determining the set of words 
in the dictionary tha t  satisfy specified constraints on word length, letter position 
and letter multiplicity. An example of such a pattern is the set all words with 
six letters having e in position 2 and w in position 5. A more complicated exam- 
ple is the set of all eight letter words ending in t in which the same letter occurs 
in positions 1, 5 and 7. Extracting such information by repeatedly scanning the 
dictionary for pattern matches would be impractically slow. Instead, the diction- 
ary is compiled into a database that is partitioned according letter, word length 
and letter position. Associated with each letter in the alphabet is a list of num- 
bered properties 1, 2, ... m, where m is the maximum length of any word in the 
dictionary. The value of each property j is a vector Vi, indexed from 1 to  j .  If 
we want to find all words of length n containing the letter I in position i, we 
look on the property list of I and access the i th element of the vector found on 
property n.  For instance, all 10 letter words containing r in position 6 are found 
by looking in the sixth entry of the vector found in property 10 on the property 
list of r .  For simplicity, the database may also be viewed as a three dimensional 
array D, indexed by word length, letter and letter position, in which the entries 
are lists of words. For parameters i, j and k, an entry D ( i , j , k )  would contain 
the list of all words of length i in which letter j occurs in position k. Words 
satisfying more complicated patterns are found by computing the union and 
intersection of one-letter patterns. The intersection of D(9,b ,4) and D(9,w17), for 
example, would be the set of all 9 letter words containing b in position 4 and w 
in position 7. To get all 6 letter words containing the same letter in positions 5 
and 6, we take the  union of all words having letter 1 in positions 5 and 6. where 1 
ranges from a thru  z. 
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Word 

The dictionary is compiled in a Franz Lisp session, separate from the execu- 
tion of the decryption program. The resulting Lisp image may then be stored on 
disk to permit fast  loading of the system. The Lisp image, including the data- 
base of approximately 19,700 words, occupies about 2.9 megabytes of disk space. 

Ciphertext Possible Decryptions # Possibilities 

3. The Search Technique 
Viewing a cipher a s  a list of words [wo, wl, ... , wn], our decryption process 

amounts t o  a state-space search in which each state Ti is a pair [Pi,Si]. Pi is a 
list [piO,pil , . . . ,pi ,]  where each pi, is itself a list containing all possible decryptions 
for word wj in the ciphertext. Si is a the current substitution list, i.e. a list of 
pairs of letters ([C,,d,], [C2,d2] ,  ...,[ C,,d,]) indicating that letter dk is currently 
assumed to be the decoding of the ciphertext letter Ck. Each node in the search 
tree represents a modified state which reflects the constraints imposed by a new 
guess for some ciphertext word. At the root node To, So is empty and Po is 
obtained by searching the dictionary for the possibIe decryptions of each word, 
subject t o  the constraints of word length and multiple occurrences in a word of 
the same letter. For example, consider the following cryptogram taken from The 
Dallas Morning News: 

WO 

W 1  

W2 

w3 

w4 

7J5 

w6 

w7 

MZDDTK CJQLAPZZ D K D M  C J Q L N Z P Q  T Z J K D A  H P Q B P Q B  T N T  MNQBM 

MZDDTK 'babble, ..., sizzle] 320 
C JQLAP ZZ 'absentee,. . . , megawatt] 90 

DKDM [afar,, . . ,vivo] 39 

C JQLNZPQ [academia, .. . , b ayberry] 130 

TZJKDA ? ? 
MPQBPQB -alfalfa] 1 

MNQBM 'aloha, ..., widow] 93 

TNT ala, ..., wow] 28 

Possible decryptions of the first ciphertext word are words that satisfy the pat- 
tern MZDDTK, i.e. all six-letter words having the same letter in positions 3 and 
4. In this case, the word search routine returns a list of 320 words, 
[babble,bobbin, ..., sizzle]. The same procedure is then repeated for each word in 
the ciphertext. Table 1 summarizes these initial possibilities. 

Table 1. Initial possible decryptions of ciphertext words 

The entries for the word TZJKDA are left blank because it has no multiple 
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Word 

occurrences of any letter. Its possible decipherments (all six-letter words) are so 
numerous (2,850 words) that  it is best to postpone evaluation of this word, as 
will be discussed later. 

~ 

Ciphertext Possible Decryptions # Possibilities 

wo 
W1 

MZDDTK [cobble, ..., sizzle) I 246 
CJBLAPZZ [divorcee ,....kilowatt1 I 32 

~~~ 

w2 DKDM [afar, .. . ,vivo] 32 

w3 C JQLNZP Q [charisma, .. , ,petulant] 42 

w4 TZJKDA ? ? 
w5 MPQBPQB - 0 

. w 6  TNT [ala, ..., wow] 28 
w7 MNQBM [aloha,. . . ,widow] 79 

Table 2. Reduced possible decryptions of ciphertext words 

The size of these initial lists of possibilities may be reduced considerably by 
removing inconsistent words, i.e. words that imply an ambiguous decryption key. 
For instance, babble is inconsistent with MZDDTK because it implies that both M 
and D translate to 6 .  (In Wall's algorithm, such inconsistencies are not recog- 
nized.) Table 2 displays the reduced possibility lists in which inconsistent words 
have been extracted. Note that MF'QBPQB has no possible decryption, i.e. the 
plaintext for the word doesn't appear in the dictionary. 

The initial state of the search at the root node of the search tree is To = 
[Po,So], where So is an empty list and Po corresponds to the lists of possible 
decryptions in Table 2. For instance, pa, is the list of candidate decryptions for 
the first word, i.e. po,  = [cobble, ..., sizzle]. Similarly, pol = [divorcee, ..., kilowatt], 
p o ,  = [afar ,..., vivo], ... , p o ,  = [aloha ,..., widow]. Each descendant node in the 
tree may be viewed as a guess for some word in the ciphertext. To expand the 
root node, a particular word is chosen from some po i  as a trial decryption of wo. 
The successor 'state is T ,  = [Pl,S1], where S, is list of letter substitutions 
implied by the choice and P, is equal to [Pl ,  ,..., Pl~ ,~ l~ ,P l~ ,+ l~  ,..., PIJ, where each 
PI, is the subset of Po, whose words do not violate the new constraints imposed 
by S,. (Note tha t  PI does not contain the possible decryptions for wi, since w; 
is the word for which a guess is being made.) If divorcee is selected as trial 

[(C,d),(J,i),(Q,w),(L,o),(A,r),(P,c),(Z,e)] . Each P I ,  is now filtered to remove 
words which conflict with S,. The filter succeeds in two ways. In one case, 

- - decryption of Wll for example, then Sl 
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words are discarded because the same ciphertext letter has two decryptions, e.g.
charisma is dismissed as a possible decryption for w3 (CJQLNZPQ) because the
implied decoding (C,c) conflicts with the assumption from S1 that C decodes to
d. The second way that filtering works is to eject words that require two dif-
ferent ciphertext letters to decode to the same plaintext. For example, cobble is
no longer a possible decryption of wl because the required substitution of c for
M conflicts with the constraint (P,c) in 5j . The new constraints also provide
additional information about w4 (TZJKDA), the word which had not been previ-
ously evaluated. Under the constraints (Z,e) and (D,c), the possible decryptions
for for TZJKDA is now the set of all six-letter words containing e in position 2
and c in position 5. The result is a list of 21 words [deduce,...,select] (all of which
get filtered out). If we had evaluated w4 earlier, we would have to filter the
entire list of 2,850 six-letter words in the dictionary.

The search space is greatly reduced by the seven constraints of Sv as indi-
cated in Table 3 which corresponds to Pv

Word

w2

w3

w4

«>s
w5

w7

Ciphertext

MZDDTK

DDTK

CJQLNZPQ

TZJKDA

MPQBPQB

TNT

MNQBM

Possible Decryptions

[bellum]

[alan,...,sash]
-

-

-

[ala,...,tat]

-

# Possibilities

1

4

0

0

0

8

0

Table 3. Possible decryptions at state 7\ = [P^SJ
with wl decoded as CJQLAPZZ = divorcee

The node corresponding to state T\ may now be expanded by choosing among
the 13 possible decodings for the w0, w2

 an<^ w&- ^ bellum is chosen for w0, the
resulting additional constraints in state T2 filter out all of the remaining possibil-
ities for u;2 and w6, so we have reached a dead end in the search.

When a dead end is encountered, the trial plaintext under the current set of
constraints is evaluated to decide whether or not the constraints yield a likely
decryption of the ciphertext. The main criterion considered by the evaluation
routine is the number of words in the ciphertext which are completely deter-
mined. The evaluation function awards points to any completed word, whether
or not its decipherment is in the dictionary -- the mere fact that all of the letters
can be unambiguously decoded is a positive sign. Greater weight, of course, is
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given to words found in the dictionary and longer words are assigned more points
than shorter ones. Extra credit is given to completed words that were not among
those selected for expansion, i.e. words that were filled in as a result of other
selections. If the score returned by the evaluation function is sufficiently high
and is equal to or greater than the previous highest score, the current state is
considered to be a possible solution and the trial plaintext is displayed to the
user. In any case, the search continues by backtracking to the previous node and
re-expanding with a new word choice.

In the present example, the constraints derived from the first selected word
are sufficient to shrink the search space to a manageable level after the expansion
of only one node — fortunately the selected word provides sufficient constraints.
This is not always the case, however. For instance, if we had selected ala as a
decryption for w6 (TNT) at state To (instead of divorcee for Wj), Px would con-
tain far more possibilities, as shown in Table 4. Here the number of combinations
of remaining possible decryptions is 3,456 (6x 6x 16x 6) rather than 32 (4x 8) as
in Table 3.

Word

w0

wx

W1
W 3

W 4

w7

Ciphertext

MZDDTK

CJQLAPZZ

DKDM

CJQLNZPQ

TZJKDA

MPQBPQB

MNQBM

Possible Decryptions

[giddap,...,hurray]

[divorcee,...,princess]

[divorcee,...,princess]

[preclude]
-

-

[elide,...,plump]

# Possibilities

6

6

]6

1

0

0

6

Table 4. Possible decryptions at state T1 =
with WQ decoded as TNT = ala.

The striking contrast is due, of course, to the difference in the number of con-
straints imposed by the two choices. Word wx has 7 distinct letters, yielding 7
constraints, as opposed to only 2 constraints produced by the 2 distinct letters in
w6. Short words (i.e. words with less than 5 letters) hence pose a problem for our
algorithm. Not only do they fail to provide the desired constraints on other
words, they also are less likely to be filtered out themselves because there are
fewer possibilities for letter conflicts. If there are several unresolved short words,
the combinatorics involved in checking all possible combinations rapidly gets out
of hand. Since most cryptograms contain a high percentage of such words, the
full tree may be extremely bushy and a complete traversal usually cannot be
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executed in a reasonable amount of time. It is therefore advisable that the traver- 
sal be directed toward cheap, promising paths and steered away from expensive, 
dubious ones, so tha t  a satisfactory solution may be displayed to the user at  a 
relatively early stage of the search. Fortunately, it is usually possible to  achieve 
this goal if we are careful in the selection of nodes to be expanded. 

To deal with the short word problem, the ciphertext is separated into two 
groups. Group A contains the longer words in the message, i.e. words of six or 
more letters, while group B contains the rest. (If there are not three or more long 
words in the message, the definition of “long” is dynamically redefined so that 
there are at least three.) No words from group B are considered for expansion 
until all of the words in group A have been either been expanded or have no 
remaining possible decryptions. By examining longer words first we hope that 
the search space will already be somewhat constrained before the short words are 
processed. When only words from group B remain, the current state is evaluated 
and a decision is made whether to continue on the current path or to backtrack. 
The node is expanded only if there is some evidence that the current path looks 
promising or if the cost of expansion is relatively small. The primary measure 
for evaluating the promise of a path is the number of completely deciphered 
words which are also found in the dictionary, particularly words that were not 
chosen as guesses. A secondary measure is the number of letters remaining to  be 
deciphered -- the fewer the better. If a path is not found to  be promising by the 
above critiria, the next node may still be expanded if it can be done cheaply, i.e. 
if the number of successors is small and the tree is already of sufficient depth. 

Another useful heuristic for optimizing the search is Wall’s suggestion that 
the most constrained word, i.e. the word with the fewest number of possible 
decryptions, should be expanded first. If a word found in the dictionary happens 
to be highly constrained at the root node, expanding it right away will almost 
always yield a speedy correct decryption because the search converges very fast 
once the right path is found. (This rule should be subordinate to the short word 
heuristics, however -- a short word should not be expanded prior to a long one 
even if it is more constrained.) 

The workings of the search may be illustrated by completing the decryption 
of our example. (An abbreviated trace of the search is found in the appendix.) 
The words in group A are wo, wl, w3, w4 and w5. In the initial state (Table 2) 
the most constrained long word is wl, with 32 possibilities, hence CJQLAPZZ is 
chosen to be expanded first. From its list of possible decryptions, kilowatt is 
selected as the first trial word. Since there are no possible decryptions for any of 
the other long words under the new constraints, this choice is rejected and the 
search immediately backtracks and the word waitress is tried. This choice is 
rejected for the same reason, as are the next 10 choices for wl. The first trial 
guess for wl that  is considered promising is buckaroo. This path is considered 
worthy to pursue because it allows another long word (.to) to be deciphered into 
a word appearing in the dictionary, namely sodden. .After sodden is selected to  
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expand wo, the state is considered promising enough to warrant expansion of a 
short word, so eye is chosen for TNT. At this point a dead end is reached. Since 
there has been no previous solution offered, the current decryption is the best 
available so far, hence it is displayed to the user as: 

sodden b u c k a r o o  dnde buckyorc eounda src-rc- eye ayc-8 
MZDDTK C J Q L A P Z Z  DXDM CJQLNZPQ TZJXDA MPQBPQB TNT MNQBM 

As shown in the appendix, the search now backtracks to sodden and selects ewe 
for TNT. This yields a solution which appears equally good as the first, so it too 
is displayed. After 13 possible solutions involving buckaroo are discovered, the 
search backtracks to  top level and other choices are tried for wl. Several other 
paths are explored, but the depth of the search never exceeds 2. Eventually 
mandrill is selected for wl, which happens to be the correct decryption. This 
leads immediately to  mandol in  for w3. The only word that now satisfies the con- 
straints for w4 is slater (player is not in the dictionary). This path terminates in 
the solution 

-1ee8t m a n d r i l l  ete- mandolin alater -in-in- 80s -on-- 
MZDDTK C J Q L A P Z Z  DKDM CJQLNZPQ TZJKDA MPQBPQB TNT MNQBM 

which is still very obscure. Backtracking to the mandolin level, sleety is now 
tried for wo, yielding the somewhat intelligible 

sleety m a n d r i l l  eyes mandolin tlayer sin-in- tot son-8 
MZDDTK C J Q L A P Z Z  DKDM CJQLNZPQ TZJKDA MPQBPQB TNT MNQBM 

The next choice for wo is s leepy  which yields the correct answer 

sleepy m a n d r i l l  eyes mandolin player sin-in- pop son-8 
MZDDTK C J Q L A P Z Z  DXDM CJQLNZPQ TZJKDA MPQBPQB TNT MNQBM 

The full plaintext is obvious by inspection, however there is no way for the sys- 
tem to determine that B decodes to g because neither singing nor songs is in the 
dictionary and only these words contain g. (Since player is not in the dictionary, 
the score of 4100 is no better than the score of the previous decryption.) 

4. Interactive Mode 
When the system fails in the fully automated mode, a backup interactive 

mode is provided through which the user may analyze the cipher and supply 
his/her own guesses for letters. Commands exist which permit the user to 
display first order statistics, to add and delete guesses for letters, and to simul- 
taneously display the message and its partial decryption. With some guesses for 
letters, the automated search may then be repeated, this time guided by the 
user-supplied constraints. In many cases where the automated system fails, a suc- 
cessful decryption is achieved via correct guesses for only one or two letters. 
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5. Extensions 
The current system might be improved in a variety of ways that have yet to 

be attempted. An ability to recognize plural, prefixed and suffixed forms as 
words, for instance, would take care of the majority of examples that the present 
system can’t handle automatically. Whether these forms should be added to the 
dictionary (at the cost of a significantly larger search space) or detected by a 
separate routine is under investigation. A second desirable extension would be to  
integrate the various heuristics and statistical approaches found in [S77], [PR79], 
[CM86], [A841 and [A86]. The information obtained from the statistical analyses 
might be valuable both in guiding the automated search a s  well as aiding the 
interactive user. Finally, an moderate improvement in performance would 
almost certainly result from a careful editing of the dictionary, which currently 
contains a many extremely rare words and omits many common ones. It would 
also be desirable to order the words in the database, so that more frequently used 
words are considered first. These tedious tasks have not yet been undertaken. 

6. Performance 
The system has been implemented in Franz Lisp on a Vax 11/780 computer. 

In tests on more than 100 examples chosen at random from newspapers and 
magazines, the system was successful in a completely automated mode about 
60% of the time. Usually the solution was obtained in less than three minutes of 
CPU time. In approximately 30% of the trials, the program required rather 
trivial human intervention, such as the guessing of a common short word such as 
the or and. Failure most commonly occurred on examples in which none of the 
longer words in the plaintext were present in the dictionary. This situation 
occurs, for instance, when all of the long words are plurals or suffixed, since these 
forms are not likely to be found in our limited dictionary. When this happens, 
the system is forced to use small words as trial entries, thereby establishing few 
constraints and hence greatly expanding the search space. The second most com- 
mon cause of failure was that none of the words in the plaintext contained any 
repeated letters. In this case, the program is unable to prcceed (unless there are 
some one-letter words) because there are no entry candidates. This situation is 
most likely to arise in very short messages or in examples composed mostly of 
short words. 

7. Conclusions 
We have described an automated method for decrypting simple substitution 

ciphers based on exhaustive search and controlled thru constraints imposed by 
word patterns. No statistical analyses or language-specific heuristics are 
employed. Although quite successful in its own right, we believe that the tech- 
nique could be used as a driver to an even more powerful system in which heuris- 
tics and statistical information would assist in directing the search. This hybrid 
approach would exploit the somewhat unstructured methods of the human 
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cryptanalyst while retaining the systematic character of the exhaustive search
that enables successful automation.

Acknowledgement
I would like to thank Dr. James G. Dunham, SMU Dept. of Electrical

Engineering, for his advice and assistance in the development of this project.

References
[A84] Roland Anderson, "Finding Vowels in Simple Substitution Ciphers by

Computer", Cryptologia, vol. 8, no. 4, Oct. 1984, pp. 348-358.

[A86] Roland Anderson, "Improving the Machine Recognition of Vowels in
Simple Substitution Ciphers", Cryptologia, vol. 10, no. 1, Jan. 1986,
pp.10-33.

[CM86] John H. Carroll and Steve Martin, "The Automated Cryptanalysis of
Substitution Ciphers", Cryptologia, vol. 10, no. 4, Oct. 1986, pp. 193-
209.

[PR79] Shmuel Peleg and Azriel Rosenfeld, "Breaking Substitution Ciphers
Using a Relaxation Algorithm", CACM, vol. 22, no. 11, Nov. 1979, pp.
598-605.

[S77] Bruce R. Schatz, "Automated Analysis of Cryptograms", Cryptologia,
vol. 1, no. 2, April 1977, pp. 116-142.

[W80] Rajendra Wall, "Decryption of Substitution Cyphers with Word Divi-
sions Using a Content Addressable Memory", Cryptologia, vol. 4, no. 2,
April 1980, pp. 109-115.

Appendix

Program Execution with Trace of Word Search

The current depth of the search tree is indicated by the number on the left. The
ciphertext of the word currently being examined is denoted in upper case, while
the trial decryption for the word is in lower case. (A portion of the trace has
been omitted to save space.)

MZDDTK CJQLAPZZ DKDM CJQLNZPQ TZJKDA MPQBPQB TNT MNQBM

0 CJQLAPZZ kilowatt
0 CJQLAPZZ waitress
0 CJQLAPZZ ruthless
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0 CJQLAPZZ p r i n c e s s  
0 CJQLAPZZ m a r q u e s s  
0 CJQLAPZZ g i a n t e s s  
0 CJQLAPZZ d u t c h e s s  
0 CJQLAPZZ c o n g r e s s  
0 CJQLAPZZ c o m p r e s s  
0 CJQLAPZZ b a r o n e s s  
0 CJQLAPZZ b u c k a r o o  
I 1  MZDDTK s o d d e n  
I12 TNT eye 

* * *  - -  S o l u t i o n  I1 

sodden b u c k a r o o  d n d s  b u c k y o r c  eounda src-rc- eye s y c - s  
MZDDTK CJQLAPZZ DKDM CJQLNZPQ TZJKDA MPQBPQB TNT MNQBM 

S c o r e  = 3 1 0 0  

I12 TNT ewe 

* * *  - -  S o l u t i o n  t 2  
sodden b u c k a r o o  d n d s  b u c k w o r c  eounda src-rc- ewe s w c - s  
MZDDTK CJQLAPZZ DKDM CJQLNZPQ TZJKDA MPQBPQB TNT MNQBM 

S c o r e  = 3 1 0 0  

I 1 2  TNT eve 

* * +  - -  S o l u t i o n  # 3  

sodden b u c k a r o o  d n d s  b u c k v o r c  eounda src-rc- eve s v c - s  
S c o r e  = 3 1 0 0  

MZDDTK CJQLAPZZ DKDM CJQLNZPQ TZJKDA MPQBPQB TNT MNQBM 

I 1  MZDDTK t o d d l e  
I 1  MZDDTK soffit 
I 1  MZDDTK j o g g l e  
I 1  MZDDTK t o g g l e  
I 1  MZDDTK p o l l e n  
I 1 2  TNT eye 

* * *  - -  S o l u t i o n  t 4  
S c o r e  = 3 1 0 0  

pollen b u c k a r o o  l n l p  b u c k y o r c  eounla prc-rc- eye p y c - p  
MZDDTK CJQLAPZZ DKDM CJQLNZPQ TZJKDA MPQBPQB TNT MNQBM 

{ To s a v e  s p a c e ,  t h e  n e x t  15 t r i a l  solutLons are o m i t t e d  } 

0 CJQLAPZZ n u t s h e l l  
I 1  MZDDTK b l o o d y  
I 1 2  TNT did 
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* * *  - -  S o l u t i o n  #20 
S c o r e  = 3 1 0 0  

bloody n u t s h e l l  o y o b  n u t s i l e t  d l u y oh bet-et- did bit-b 
MZDDTK CJQLAPZZ DKDM CJQLNZPQ TZJKDA MPQBPQB TNT MNQBM 

I12 TNT dad 

* * *  - -  S o l u t i o n  #21 
S c o r e  = 31 0 0  

bloody n u t s h e l l  o y o b  n u t s a l e t  d l u y oh bet-et- dad bat-b 
MZDDTK CJQLAPZZ DKDM CJQLNZPQ TZJKDA MPQBPQB TNT MNQBM 

I 1  MZDDTK g l o o m y  
0 CJQLAPZZ m a n d r i l l  
I 1  CJQLNZPQ m a n d o l i n  
1 1 2  TZJKDA s l a t e r  

* * *  - -  S o l u t i o n  #22 
S c o r e  = 31 0 0  

-1eest m a n d r i l l  e t e -  m a n d o l i n  slater -in-in- 50s - o n - -  
MZDDTK CJQLAPZZ DKDM CJQLNZPQ TZJKDA MPQBPQB TNT MNQBM 

1 1 2  MZDDTK s l e e t y  

* * *  - -  S o l u t i o n  #23 
S c o r e  = 4 1 0 0  

sleety m a n d r i l l  e y e s  m a n d o l i n  t l a y er sin-in- tot s o n - s  
MZDDTK CJQLAPZZ DKDM CJQLNZPQ TZJKDA MPQBPQB TNT MNQBM 

1 1 2  MZDDTK s l e e p y  

* x *  - -  S o l u t i o n  1 2 4  
S c o r e  = 4 1 0 0  

sleepy m a n d r i l l  e y e s  m a n d o l i n  player sin-in- p o p  s o n - s  
MZDDTK CJQLAPZZ DKDM CJQLNZPQ TZJKDA MPQBPQB TNT MNQBM 
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