
On the McEliece Public-Key Cryptosystem 

Johan van Tilburg 

Dr. Neher Laboratories, Department of Applied Mathematics 

P. 0. Box 421, 2260 AK Leidschendam, the Netherlands 

Abstract 

Based on an idea by Hin, the method of obtaining the original message after 
selecting k of n coordinates at random in the McEliece public-key cryptosystem 
is improved. The attack, which is more efficient than the attacks previously 
proposed, is characterized by a systematic method of checking and by a random 
bit swapping procedure. An optimization procedure similar to the one proposed 
by Lee and Brickell is used to improve the attack. The attack is highly suitable 
for parallel and pipelined implementation. The work factor and the values, 
which yield ‘maximum’ security for the system are given. 

It is shown that the public-key can be reduced to k x (n-k) bits. 

1 Introduction 
At Crypto’87 Adams and Meijer 111 presented a paper in which the ‘optimum’ values 
for the parameters of the McEliece public-key cryptosystem [9] are given. As shown 
in (11 these values improve the cryptanalytic complexity of the system and increase 
the information rate. As noted in [4,9] there are several ways of attacking McEliece’s 
cryptosystem. Of the known attacks, the one which requires the least effort is based 
on decoding a more or less arbitrary linear code containing correctable errors. It 
has been proved in [2] that  the general decoding problem for linear codes is NP- 
complete, SO one certainly expects that for sufficiently large code parameters, the 
minimal effort for this attack will become computationally infeasable. The  best 
known attack is based on selecting and solving k of n equations obtained from the 
(publicly known) encryption matrix and the cryptogram. Thereafter it is necessary 
to verify whether the obtained solution is unique and gives the correct plaintext. 
If the solution is not correct, then a new set of k equations has to be selected etc. 
For the attack it was shown in [I.] that  for a suitable choice of the parameters this 
minimal effort can be maximized. 

This paper gives an  improved method to obtain the original message after se- 
lecting k o f n  cryptogram bits. A bit swapping procedure is used to  randomly renew 
the set of k-bits one bit a t  a time. A fast validation wether the selected k-bits are 
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error-free and the corresponding columns of the publicly known encryption matrix 
are linearly independent is part of the algorithm. 

At the same time when this paper was accepted €or presentation at Crypto’88, 
Lee and Brickell [7] presented an elegant attack on the McEliece public-key cryp- 
tosystem at Eurocrypt’88. Their attack is based on a generalization of two well 
known attacks and includes a systematic method for checking whether the obtained 
message agrees with the original message and is closely related to our attack. 

Sections 2 and 3 describe the public-key cryptosystem and some well known 
attacks on this system. Section 4 discusses the basics of the proposed attack in- 
cluding the way of validation. The algorithm, based on a bit swapping procedure, 
is subsequently given in the next section. Section 6 considers in more details the 
bit swapping procedure. In section 7 the work factor is discussed and in Section 8 
an optimization similar to the one proposed by Lee and Brickell is used to improve 
the attack. Finally we note in Section 9, that the public-key can be reduced to 
k x (n-k) bits without affecting the security of the system. 

2 McEliece’s Cryptosystem 

The McEliece public-key cryptosystem can be easily understood from the following 
description. Let C be a linear [n, I c ,  d] code over GF(2)  with code length n, dimen- 
sion k and minimum distance d. Let the k x n matrix G be a generator matrix of 
C and let the (n-Ic) x n matrix N be a parity check matrix of C. The publicly 
known encryption matrix E is defined by 

E = SGP, (1)  

where S is a k x k non-singular binary matrix over G F ( 2 )  and P is an n x n 
permutation matrix. The scheme also uses a subset 2 of GF(2)” with the property 
that the Hamming weight w H ( ~ )  of the vectors 4 E 2 is less or equal than t = 
(d - 1)/2.  Generally w H ( z )  = t .  

- -  e = nE + g  = c +  g, 

A k-message m is encrypted into the n-bit ciphertext e as follows 

(2)  

where c is a n-bit permuted codeword from C .  

by the following steps. 
Decryption is straightforward. An enciphered message m is formally decrypted 

1. Compute e’ = ePT and obtain the error pattern z’ = g P T  
Let c‘ = e’ - g’. 

2. Calculate m = 114’ x S-’, where m‘ represents the first k-bits of c‘. The result 
is the plaintext ~n_. 
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This encryption scheme must satisfy the properties introduced by Diffie and 
Hellman (31 to become a public-key cryptosystem. Therefore the decryption process 
must be fast if the private-keys S, P and G are known and the decryption process 
must be infeasible if only the public-key E is known. Furthermore the encryption 
process must be fast if one has only knowledge of the public-key E .  McEliece based 
his cryptosystem on the existence of Goppa codes, which meet the conditions for a 
public-key cryptosystem and can easily be generated. 

We note that Goppa codes are in general not maximum distance separable codes 
(MDS). The only binary MDS codes are the trivial ones which are of no use in the 
(binary) McEliece scheme. More details about Goppa codes can be found in e.g. 
I81 * 

3 Cryptanalysis of the McEliece Cryptosystem 
In this section we will discuss some general and well known attacks on the McEliece 
scheme. We shall not pay attention to special cases for which fast cryptanalysis 
exist. 

3.1 Factoring the encryption matix 

Let G, denote the generator matrix G in systematic form and let the encipher matrix 
E be SG,P. The number of non-singulier matrices S is given by 0.29 x 2 k 2 .  There 
exist approximately 2 m t / t  generator matrices G, for a binary irreducible t-error 
correcting Goppa code. And there are n! possible permutation matrices. Moreover 
as shown by Adams and Meijer [l] the only transformation which transforms the 
encryption matrix E into a generator matrix G which algebraic structure allows us 
to use a fast decoding algorithm, is the original transformation i.e. G = S-'EP-'. 
Therefore we may conclude that for sufficiently large parameters it will be infeasible 
to obtain the private-keys S, G and P by an exhaustive search. 

3.2 Recover message from cryptogram and encryption ma- 
trix 

McEliece states in [9] that probably the most promising attack on his scheme con- 
sists of actually solving the basic problem, i.e. decoding a more or less arbitrary 
[n, k, d] linear code containing t correctable errors. As it has been proved that the 
general decoding problem is NP-complete [2], one certainly expects that for large 
code parameters this attack will be infeasible. 

A straightforward approach is based on a brute force diJtance search; comparing 
the cryptogram e to each permuted codeword c = mE. If the Hamming distance 
result is: d ~ ( e , c )  5 t ,  then 274 is the original message. However this method has 
a work factor of about 0 ( 2 k ) .  For Ic = 654 this becomes 2"* z which is 
astronomically large. 
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Another approach is based on a brute force search for a correct Jyndrome. Let 
D be the matrix HP. Clearly EDT = 0. Find an error vector g with minimum 
weight for which eDT = g D T .  However, it seems to be necessary to search through 
all solutions of this equation to find the desired z of minimum weight and has a 
work factor of about O(nt ) .  

McEliece proposes in [9] to select randomly k of n ciphertext bits from g in the 
hope that none of the k selected bits are in error, and based on this assumption, to 
obtain the correct plaintext m. The probability pk of no error in the chosen k-bits 
of e, however, is equal to  

t k-I 
= n(1- -). 

i=o n - z 
(3)  

Selecting k-bits, which are not in error, does not guarantee that the correspond- 
ing k x k sub-matrix of E is non-singular. This only holds for maximum distance 
separable codes (MDS, [8]). In case of an MDS code every k columns of the encryp- 
tion matrix are linearly independent. Since the Goppa codes used in the McEliece 
scheme are not MDS, we will have k linearly independent columns with a proba- 
bility q k  > 0. This also holds for the encryption matrix E ,  since S works on the 
message space and P permutes the code words. Clearly, q k  can not be estimated 
by assuming that E is a random matrix. 

The amount of work involved in solving k simultaneous equations in k unkown 
is k" (e.g. a = 2.8 [S]). Let v k  be the average work factor if k columns are linearly 
dependent. Hence, before finding the message m with this attack one expects a 
work factor of 

w = 7 X [(I - q k ) V k  4- q k k a ]  X X p i ' .  (4) 

We can use the Hamming distance to check whether the obtained message is 
correct plaintext. If the result of the Hamming distance is: dH($ ,&E)  5 t ,  then 
- h is the original message 2. The additional cost to validate each message & is 
therefore O(nJc). 

Adams and Meijer [I] established by exhaustive search that for values of 'a' 
between 2 and 3, the maximal work-factor (without validation, 7 = 1 and qk  = 1) is 
reached at t = 37. In this case for a =  3 the work-factor is approximately za4.l, while 
for t = 50 this becomes 280.7. As a consequence of this improvement, the value of 
k is increased from 524 to 654; i.e. the information rate R= k/n is increased from 
0.51 to 0.64. 

4 Main Idea 
A straightforward approach is based on a brute force distance search as mentioned in 
the previous section. Despite the high work factor this approach has the advantage 
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that there are no additional validation costs, because the validation is part of the
attack itself. As suggested by Hin [5], this attack can be improved by taking the
constraints imposed by the cryptogram into account. For this reason we have to
restate the above attack in terms of the cryptogram e instead of the message m.

For the attack to be described in the next section we need a decomposition of
the encryption matrix E in the following form

E = Sa[Ik\Aa]Pj, (5)

where Ik is the k x k identity matrix and Aa is a k x (n — k) binary matrix. Since
every linear code is equivalent to a systematic code, this decomposition is always
possible.

If we apply a permutation matrix Pa to e=mE + z, then we obtain the relation

ePa = cPa + zPa, (6)

which will be denoted as ea = c^ + za.

The function FKB(x) is defined as

FKB(x) = FKB(x1,x2,... ,xk,xk+1,... ,xn) = xi,x2>... ,xk.

Hence, FKB{x) selects the first fc-bits from a n-bit vector x.

We are now able to prove the next theorem.

Theorem 1 If Pb is a permutation matrix for which e = mE + z can be written as

S^Pj, = TnSaSb[Ik\Ab} + z^Pb,

then

wH{FKB{zaPby\ = 0 <̂ =* dH[FKB{eaPh)[Ik\Ab],eaPb] < t. (7)

Proof. We have

From which it follows that

dH[FKB(eaPb - z^lhlA,,},^} < t

UwH[FKB{zaPby\ = 0, then it follows that dH[F«:B(eaFfc)[/fe|Afc],eoPi] < t. On
the other hand, if d^FKB^Pb)[Ik\Ab], e ,^] < t, then FA'B(eaPi)[/fc| Ab) must be
the codeword with whom eaPb corresponds to. Therefore the FKB(e^Pb) must be
error-free, i.e. wH[FKB^P,,)) = 0.

a
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Observe that this theorem describes McEliece 'attack (with validation) in a more 
general form. During the initial phase of the attack, k cryptogram bits are randomly 
selected (without replacement) from e. The k selected bits form the set A and the 
remaining (n-k)-bits are assigned to set 0. Selecting k new bits in the McEliece 
attack is replaced by a permutation Pb which swaps at most k new bits from set B for 
k-bits from set A. The permutation is only succesful if the corresponding columns of 
the encryption matrix E are linearly independent as has been mentioned in section 
3. The theorem states that the obtained solution is unique and gives the correct 
message n if the distance verification is positive. In the next section we will describe 
an attack based on this kind of bit swapping. 

5 One Bit Swapping Attack 
The McEliece attack can be considered as a k-bit swapping attack. To obtain a low 
complexity and to  determine in a fast way if a given permutation fulfils, we will 
present an algorithm for a one bit swapping procedure only. 

The algorithm for a one bit swapping attack consists of the following 5 steps. 

Step 1 - initialisation. 
Decompose the encipher matrix E ,  i.e. calculate a permutation matrix l', and a 
matrix A,  such that E = S,[I&IA,]P: . Set-up a pointer table: FOR i := 1 T O  n 
DO Ptable[i] := i. 
Calculate g, = gP, and up-date the pointer table. 

Step 2 - checking. 
Check if it holds that ~ H ( F K B ( ~ , , ) [ I ~ ) A , ] , G )  5 1.  This can be done by checking 
whether there are no more than t errors with respect to F K B ( e ) A , .  If there are t 
errors or less in the ZaJt (n-k)-bits of L, then proceed to step 5 .  

Step 3 - swapping. 
The algorithm P R P  produces a pseudo-random permutation P b .  The permutation 
Pb swaps one column, say i, from the part of the matrix [IklA,] for one column, 
say j ,  from the A, part, The swapping procedure is as follows. 

REPEAT 
Select permutation P b  from PRP.  
IF column j has not an '1' as i-th entry 

THEN does not fulfil 
ELSE pb fulfils 

sw up( Ptuble [i] , Pt able [ j ]  ) ; 
& := GPb 

FI; 
UNTIL Pb fulfils. 
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Step 4 - up-dating. 
Compute [IklAa]Pb into the form S b [ l k l A b ] .  The new ‘stripped’ generator matrix 
will be defined as [IklA,] := [ I k I A b ] .  Compute e-, := 5Pb.  
Proceed to step 2. 

Step 5 - calculate plaintext .  
At this stage there are no errors in F K B ( & )  and consequently F K B ( & )  is 0. The 
first k positions of the pointer table (P tab le )  show locations in g without error. 
Select the corresponding columns of the encryption matrix E which are guaranteed 
linearly independent and calculate the plaintext m. 

6 Number of Swaps 

A ciphertext e is obtained by adding an error vector z with Hamming weight t 
to a permuted codeword c = mE.  Therefore there are t ‘disturbed’ bits in the 
cryptogram e which differ from the permuted codeword bits in c. In the attack bits 
are repeatedly swapped in order to  obtain k non-disturbed ciphertext bits. During 
the initial phase of the attack, k cryptogram bits are randomly selected (without 
replacement) from g. The k selected bits form the set A = {e,} and the remaining 
(n-k)-bits are assigned to set B = {e,,}.  The procedure swap(e, ,e,) ,  which swaps 
a bit from set A for a bit from set B, has one of the following values 

0 s = 0 if a (non-)disturbed bit e,  is swapped €or a (non-)disturbed bit e,,, 

0 8 = -1 if a disturbed bit e, is swapped for a non-disturbed bit e,, 

0 s = +1 if non-disturbed bit e, is swapped for a disturbed bit e,. 

For the conditional probability Pr{i + sli},  i.e. the probability that an event 
with i disturbed bits e, in A is followed after a swap by an event with i + s disturbed 
bits e, in A, we find 

(8) 
i (n-k- t+i )  (k -i)( t - 2 )  C Pr{i + 81;) = 1, Pr{ i  - 11;) = and Pr{ i  + 112) = 

a k ( n  - k) k ( n - k )  

If N; = N ; ( n , k , t )  denotes the average wo:k ;Actor for a stzte with i errors, then 
Ni-l follows from 
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Nl 
259.4 

Table 1 The average number of swaps N ,  for state i. 
II n=1024 k=624 t=39 n 

N2 N 3  N 4  N5 N6 N 7  N8 N 9  N I O  
253 .3  248.3 243.9 239.9 236.3 233.0 230.0 227.3 224.7 

The average number of random swaps (with replacement) N(n,k,t) depending on 

all the possible ( n 
t ) initial states is given by 

7 Work factor 

Let Wi denotes the average work factor of step i. With a probability of approxi- 
mately one half (Qk zz f )  a permutation Pb is found in step 3 which can be used. The 
permutation Pb can be generated and validated in a fast way and independent from 
the main algorithm. Steps 2 and 4 are only executed when a correct permutation 
Pb is determined. Therefore we can neglect W3 ( v k  z 0  in equation 4). Since steps 1 
and 5 are executed only once, we can neglect W, and W5 in view of the on average 
N(n,k,t) repeated steps 2 and 4. Therefore the main algorithm has an average 
work factor 

M ( j ,  i) is a notation for j simultaneous i-bit multiplications and similarly A ( j , i )  
denotes j simultaneous i-bit additions. If simultaneous i-bit operations are left out 
of consideration, then e.g. M ( j , i )  becomes, with a little ambiguity, j M ( 1 , i )  = 
jM(i). Moreover if only 1 bit operations are considered, then this notation reduces 
to M ( j , i )  = ji. 

For W2 we find that 

On average W-2 will be 2 ( t + l )  . M ( k ) .  (14) 

For W4 we obtain 

W, = A ( k - l p - k - l ) ,  (15)  
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A(n-k-1)  5 Tq-4 5 ( k - 1 )  A(n-k-I . ) .  (16) 

(17) 
k - 1  

2 
On average W4 will be - . A(n-k  - 1) .  

In general the work factor (11) becomes 

W = [ M ( n - l c , k )  + A ( k - - l , n - k - l ) ]  x N ( n , k , t ) .  

If we use for example the average values (14) and (17) in (11), then we obtain the 
following work factor 

k - 1  
2 

w = [ 2 ( t + l ) .  M ( k )  + - - 4 7 % - k - 1 ) ]  x iV(n,Ic,t). 

This way we find for the overall average work factor (without parallelism etc.) 

(20) 
1 

W = - .  [ 4 k ( t + l )  + k ( n - k )  - (71-l)] x N ( n , k , t ) .  
2 

The maximum value of W is approximately 276.8 for t = 39. The average number 
of swaps is in this case 259.4. 

8 F'urther Improvements 
At Eurocrypt'88, Lee and Brickell [7] presented a generalized attack on the McEliece 
scheme. Briefly, the attack is as follows: a set of k-bits is selected at random from 
the cryptogram. The set is tested by an exhaustive search for an error pattern with 
no more than j errors. In case an error pattern is found with j or less errors, the 
algorithm stops, otherwise a new set of k-bits is selected. For j = 0 the traditional 
attack is obtained and a brute force distance search for j = t .  Lee and Brickell have 
found (with some assumptions) that the optimum j which minimizes the maximum 
work factor is 2 for all values of useful code parameters. 

8.1 Search for one correctable error 

Lee and Brickell propose in [7] a random update of only one bit instead of all the k- 
bits at the same time. This bit swapping is actually one of the basics of our method. 
From section 6 it follows that the last steps, i.e. removing the last j errors, domi- 
nate the work factor. An optimization procedure similar to the Lee-Brickell method 
is used to speed-up our attack. While in our case there is a trade-off between the 
swap-complexity and the complexity of the exhaustive search with checking, the 
optimum j which minimizes the maximum work factor is found to be 1. This low 
optimumis due to the low complexity of the swap-procedure, which is U(k x (n-k) ) .  
For a single error pattern search a new step has to be added to the attack described 
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in section 5. If gi is the i-th unit vector, then the new step becomes 

Step 2a - ~ e a r c h  for one  correctable error 
For 1 5 i 5 k, check if it holds that ~ H ( F K B ( ~ , ,  - ~ i ) [ l k l A d ] , ~ )  5 t. This 
can be done by checking whether there are no more than t errors with respect to 
F'KB(& - %;)A,. If for a certain i there are t or less errors in the l ad  (n-k)-bits 
of 1, then correct bit PtabZe[iJ in g and proceed to step 5. 

For the average work factor W,, for step 2a we find that 

w,, = 2( t  + l)k (21) 

The maximum overall work factor W is approximately 2".' for t = 39. The average 
number of swaps is in this case 253.4. 

8.2 Partial search for two correctable errors 

Since the value of W,, is small compared to (Wz + Wi), a partial search for pat- 
terns with two errors can be considered additionally. The number of partial search 
patterns used in step 2b below is denoted by n,. 

Step 2b - partiaZ search for two correctable errors 
For 1 5 i < k and i < j 5 k, check if it holds that ~ H ( F K B ( % - ~ L ; - ~ ~ ) [ I ~ ~ A , ] , ~ )  5 
t .  This can be done by checking whether there are no more than t errors with re- 
spect to F'KB(& - 2 - xj)A, .  If for certain i and j there are t or less errors in the 
lad (n-k)-bits of L, then correct bit PtabZe[i] and PtabZe[j] in g and proceed to 
step 5.  If #{(i, j)) = n, then proceed to step 3. 

For the average work factor W26 for step 2b we find that 

W 2 6  = 2( t  + 1) . n,. (22) 

If we assume a uniform distribution of the error patterns, then the probability of 
succes follows from 

(:I Pr{Succes Partial Searchli = 2) = n,/ (23) 

The average work factor N; for states 3 to t follows from equation 9. The average 
work factor Nz for state i = 2 becomes 

Pr{i = 21i = 2) + Pr{i = 31i = 2) . (N3 -+ 2) 
Pr{i = lli = 2) + Pr{Succes Partial Searchji = 2) 

NZ = 

The maximum overall work factor W is approximately 269.7 for t = 39 and n, = 5769. 
The average number of swaps is in this case 250.3. 
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8.3 General Attack 

Let f'b be a permutation matrix which swaps at most i-columns from the I k  part 
for i-columns in the A, part of the [IkIA,] matrix. Let S be a subset of GF(2)k 
with the property that the Hamming weight wH(a)  of the vectors a E S is less or 
equal than j .  If all vectors a with Hamming weight equal to j are used during one 
search, then the attack is called complete otherwise partial. 

The general [i, j ]  - swap attack follows from 

1. initialisation 

0 decompose encipher matrix: E = Sa[IkIA,]P: 

0 calculate g, = eP, 
0 set-up pointer table 

2 .  checking 

Check if there exists an E S such that d H [ ( F K B ( e , ) - s ) [ I k I A a ] , ~ ]  I t .  
If there exists such an 5 E S, then correct e with 3 using the pointer table 
and proceed to step 4. 

3 .  ~wapping 

0 select a permutation Pb which fulfils 

Pb swaps a t  most i-columns from the I k  part for i-columns in the A,, part 
of the [IklA,] matrix 

Transform [IklA,]Pb into Sb[IklAb] 

0 let [IklA,] := [IkIAb] and := &Pb 
0 up-date the pointer table and proceed to step 2 

4. calculate plaintezt 

the first k positions of the pointer table show locations in e without error 

select the corresponding columns of the encryption matrix E which are 
guaranteed linearly independent 

calculate the plaintext 2 

For a complete [i,j]-swap attack with i < j all search patterns 8 E S have to be used 
during the initial round. However for the subsequent rounds only the search patterns 
with ( j  - i) 5 w ~ ( $ )  5 j have to be considered, since there are at least ( j  - 2) errors 
after each i-swap. For a partial attack this becomes (j-i-1) 5 w ~ ( 2 )  5 j .  
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9 Reduced Public-Key 
From the attack described in section 5 and the fact that the existence of more than 
one trapdoor in the system is unlikely 111, it follows that although a factorisation 
of E is found, no information about the original S, G and P matrices is revealed. 
For this reason a k x (n-lc) matrix A of a decomposition of the encryption matrix 
E = SGP = S'[IkIA]P' can be published instead of E. Encryption can be done in 
the following way 

0 Use a publicly known seed a. The seed 3 generates a new non-singular binary 
matrix S" . The encryption scheme becomes 

0 Use an publicly known invertible function f which transforms a message m E 
GF(2)k  into a word w E G F ( 2 ) k .  The function f may also depend on the 
error vector 4- In this case the following encryption scheme is obtained 

To keep the seed 9, used to generate a non-singulier matrix S', secret does not 
increase tbe security of the system. Since a chosen-plaintext attack by majority 
voting of each position of a row of the encipher matrix E will be successful and 
reveal (S*(S*A]  and consequently S". 

In both cases it follows that 

0 The sender generates an error vector z ,  computes w and calculates a cryp- 
togram e = W[rklA] t 2. 

0 The receiver determines the error pattern 1, removes it from g, computes 
w = F K B ( e  - c) and calculates the message f ~ l =  as*-' or m = f - ' ( ~ , z ) .  

It follows that the public-key can be reduced to n x (n-k)-bits. For n = 1024 and 
t = 39 the reduced key becomes 399 kbits. 
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