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The Biologic Effects of 
Low-Level Radiation
Martin Charron

Few topics engender more vigorous debate than the biologic effects 
of low-level radiation and selection of a mathematical model to pre-
dict the incidence of cancer. A recent review on radiation risk stated 
(1):

The A-bomb survivors represent the best source of data for risk estimates of
radiation-induced cancer.

It is clear that children are ten times more sensitive than adults to the induc-
tion of cancer.

There are no assumptions, and no extrapolation indicated.

This chapter provides data that suggest that exactly the opposite of
the above three statements applies; that is, I present a large amount of
data indicating the linear no-threshold theory is erroneous. To that
effect, this chapter discusses a review article (2) that scrutinized numer-
ous scientific studies that arrived at drastically different conclusions. I
present the information in four sections: the available experimental
data, studies looking at the biologic effects of background radiation,
the experimental evidence obtained from medical exposure to radia-
tion, and in vitro studies.

First, let’s look at the experimental data available on radiation 
risk. The only study that suggested a higher risk of cancer with low
levels of radiation is the retrospective study by Ron and Modan (3) 
of 11,000 children treated for tinea capitis. The incidence of thyroid
cancer was higher, especially in children less than 5 years old. Be-
cause the study was retrospective, the dose range was estimated to be
4.5 to 50 rem. But there are limitations of retrospective studies, as well
as significant inaccuracies encountered in estimating radiation expo-
sure. Also, a large proportion of the children received a dose (calcu-
lated to be) greater than 10 Rem. Therefore, it seems very inappropriate
to draw any conclusion from this study, which was of dubious quality
at best.

All the other studies, of much higher quality, done on the same topic
have led to the opposite conclusions. A study of 14,624 infants less than
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16 months of age treated for hemangioma did not reveal a higher inci-
dence of cancer (4). Similarly, a Finland study of 1 million children,
after the Chernobyl accident, did not reveal a higher incidence of cancer
(5). Hjalmars et al. (6) reported no change in cancer incidence in a study
of 1.6 million children in Sweden. The study by Rallison et al. (7),
looking at the radiation fallout in Utah, reported similar results. Finally,
a study of 35,074 patients who received diagnostic doses of iodine
radioisotope 131I did not find a higher incidence of cancer (8). Based on
those studies of millions of children, it seems appropriate to conclude
that low-level radiation does not increase the incidence of cancer, even
in children.

We now review the conclusions stemming from studies about 
the biologic effects of background radiation. A Chinese study of 
73,000 persons, comparing radiation doses of 96mrem/yr versus 
231mrem/yr, found no difference in the incidence of cancer. Similarly,
the study by Amsel et al. (9) comparing the incidence of cancer in 
a population of 825,000 patients living at an altitude of 1000 feet to 
the incidence in a population of 350,000 persons living at 3000 feet 
did not find a difference in the incidence of cancer between the two
populations. One study comparing four groups living at different 
altitudes actually disclosed a negative dose-risk correlation (10). In 
the United States, a study looking at the radiation exposure of 1730
counties also found a negative dose-risk correlation (11). One more
study of indoor radon exposure did not find any positive correlation
(12).

As for the experimental evidence from medical exposure to radia-
tion, a study by Saenger et al. (13) evaluated 33,888 Graves’ disease
patients treated with either surgery or with 131I. The data revealed fewer
complications in patient treated with 131I. A study in 10,552 patients (8)
and another study of 46,000 diagnostic doses of 131I (14) did not dis-
close any higher incidence of cancer.

Looking at occupational exposure, data collected in approximately
200,000 persons (15–17) did not reveal an increase in cancer, notwith-
standing that in one of those studies the mortality rate from cancer 
was lower in patients who were radiated! Also, the International 
Association for Research on Cancer study of 95,673 monitored 
radiation workers in the United States, the United Kingdom, and 
Canada found 3830 deaths for all cancers except leukemia but no
deaths exceeding what was expected (18). No support for the linear no-
threshold theory can be found here either. Finally, several studies 
have reported that workers who inhaled plutonium have lower lung
cancer mortality rates than those not thus exposed (19–21). Con-
trary to impressions generated by the media, no record exists of 
cancer deaths resulting from human exposure to plutonium. Probably
the most significant data on low-level radiation exposure in humans is
still in the research stage, but preliminary results are interesting 
(22). In Taipei and other areas of Taiwan, 1700 apartment units were
built using steel contaminated with cobalt 60, exposing 10,000 occu-
pants for 16 years to an average, according to preliminary estimates, 
of 4.8 rem in the first year and 33 rem in total (23). From national 
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Taiwan statistics, 173 cancers and 4.5 leukemias would be expected
from natural sources, and according to the linear no-threshold theory,
there should have been 30 additional leukemias. However, a total 
of only five cancers and one leukemia have occurred among this group
(23).

There are no statistically sound, well-designed studies that have 
validated the applicability of the linear no-threshold model at low
doses (2). On the contrary, there is a suggestion that low-level expo-
sure may be beneficial. This has been dubbed hormesis, and there are
myriad of studies that suggest the beneficial effects of radiation. A
study in human lymphocytes showed a protective effect of exposure
from low-dose 3H to subsequent exposure to 150 rem of x-rays (24). 
Shadley and Dai (25) found that preexposure of human lympho-
cytes to 5 rem reduces the number of DNA aberrations induced by 
400 rem. Sanderson and Morely (26) found a decrease in mutagenesis. 
Kelsey et al. (27) found fewer mutations from 300 rem if human 
lymphocytes are preexposed to 1 rem of radiation. Shadley and 
Wolff (28) found a decrease in the number of DNA breaks if cells are
irradiated with less than 20 rem. Fritz-Niggli and Schaeppi-Buechi (29) 
found lower embryonic mortality when Drosophila melanogaster eggs
are exposed to 200 rem. Finally, ingenious experimental techniques
have been developed for observing the effects of a single alpha 
particle hitting a single cell. Miller et al. (30) found that the probability
for transformation to malignancy from N particle hits on a cell is 
much greater than N times the probability for transformation to 
malignancy from a single hit. This is a direct violation of the linear 
no-threshold theory, indicating that the estimated effects based on 
extrapolating the risk from high exposure, represented by N hits, 
greatly exaggerate the risk from low-level exposure as represented by
a single hit.

The aforementioned data indicate that the linear nonthreshold model
is unable to predict the biologic effects of low-level radiation, and con-
sequently grossly overestimates the incidence of those effects. We shall
demonstrate that this viewpoint that has exaggerated the risk from
low-level exposure unduly poses a burden that is detrimental to the
general welfare.

After a review of studies on natural, occupational, and medical expo-
sure to radiation, health risk from low-level dose could not be detected
above the “noise” of adverse events of everyday life (2). No available
data confirm the hypothesis that children are more radiosensitive than
adults (2). The evidence is consistent with the statement from the
Health Physics Society that the health risk from the exposure to up to
10 rem is “either too small to be observed or nonexistent” (31). A sen-
timent has recently developed in the community of radiation health
scientists to regard the risk estimates in the low-dose region that are
based on the linear no-threshold theory as being grossly exaggerated
or completely negligible (22). The data regarding leukemia among
atomic bomb survivors (32) strongly suggest a threshold greater than
20 centisievert (cSv) (22). The evidence presented in that review leads
to the conclusion that the linear nonthreshold theory fails badly in the
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low-dose region because it grossly overestimates the risk from low-
level radiation (22).

A controversial analysis and interpretation by Pierce et al. (32) of
some of the A bomb survivor data from Japan suggested that a linear
model is valid at exposures as low as 50 millisievert (mSv) and that this
is the lowest dose linked to a statistically significant radiogenic risk. In
other independent analyses of the same data, a curvilinear dose-
response also provided a satisfactory fit to the Japanese data (33). 
Heindenreich et al. (34), using the same data and applying different
analytical methods, did not find any evidence for increased tumor rates
below 200mSv. Finally, if error bars are ignored (22), the points suggest
a linear relationship with the intercept at a near-zero dose. The data
themselves give no statistically significant indication of increased inci-
dence of cancer for doses of less than 25cSv. In fact, considering only
the three lowest dose points, the slope of the dose-response curve has
a 20% probability of being negative (risk decreases with increasing
dose) (22).

The data largely comes from observation at relatively high doses and
dose rate and do not suffice to define the shape of the dose-response
curve in the millisievert dose range; however, it is noteworthy that “the
dose-response curve for the overall frequency of solid cancers in the
atomic-bomb survivors is not inconsistent with a linear function” (35).
It is important to note that the rate of cancer in most populations
exposed to low-level radiation has not been found to be detectably
increased, and that in most cases the rate has appeared to decrease (35).
The same report asserts that low-dose epidemiologic studies are of
limited value in assessing dose-response relationship and have pro-
duced results with sufficiently wide confidence limits to be consistent
with an increased effect, a decreased effect, or no effect. For some types
of tumors there is actually a decrease in cancer frequency with expo-
sure to radiation (35).

Finally, let us consider a legal interpretation in this country of the
current scientific data. Recently, a U.S. federal court dismissed all 2100
lawsuits against GPU Nuclear Corporation that claimed radiation
injury from the 1979 Three Mile Island accident because of lack of evi-
dence that anyone had received doses greater than 100mGy (36). The
court determined that there is consensus within the scientific commu-
nity that “at doses below 10 rems [100mGy], the casual link between
radiation exposure and cancer induction is entirely speculative.” The
Health Physics Society recommends against quantitative risk assess-
ment of radiogenic health effects below an individual dose of 50mGy
in 1 year (36).

The former vice chancellor of Oxford University (37) stated that 
risk perception is intricate, as it involves fear and dread. However, 
an oversimplified algorithm is likely to prevent useful empirical 
application of radiation for the health benefit of children. In addi-
tion to the large number of studies we have reviewed, numerous 
scientific groups believe the linear no threshold model grossly over-
estimates the incidence of biologic effects, if any, of low-level radiation
(38–49).
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