
Chapter 7 

A Method of Minimizing Empirical Risk 
for the Problem of Regression Estimation 

§1 Uniform Convergence of Means to 
Mathematical Expectations 

In this book the problem of pattern recognition is formulated as the simplest 
problem of estimating dependences from empirical data. The simplicity of 
the problem is due to the fact that it reduces to minimizing the functional 

/(ct.) = J (y - F(x, ct.)) 2 P(x, y) dx dy, 

with an unknown density P(x, y), from the sample 

(7.1) 

(7.2) 

when y takes on only two values O and 1 and F(x, ct.) is a class of indicator 
functions. 

The problem of regression estimation is considered to be more complex. 
It also reduces to minimizing a functional with unknown density P(x, y) 
on the basis of the sample (7.2), but in this case y may take on an arbitrary 
value and the class F(x, ct.) consists of square-integrable functions. Therefore 
the construction of the theory of minimizing the risk (7.1) in a class of not 
necessarily indicator functions F(x, ct.) by means of minimization of an 
empirical functional 

(7.3) 

can be viewed as a generalization of results of the theory obtained in the 
preceding chapter to a wider class of functions. In this chapter we shall 
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182 7 Minimizing Empirical Risk of Regression Estimation 

construct the theory of regression estimation using the method of minimizing 
the empirical risk (7.2) as a natural generalization of the solution for the 
pattern recognition problem. 

This is our first opportunity to implement this approach. It was not 
possible to do this utilizing parametric methods as in problems of pattern 
recognition (Chapter 3) and regression estimation (Chapters 4 and 5). 
Solutions of problems were carried out there under stipulations of intrinsic­
ally different models for densities P(x, y): in the pattern recognition problem 
the structure of the density was determined by a union of two densities; in 
the regression estimation problem it was given by a measurement model with 
additive noise. Here, however, the principle for solving the problem is the 
same: a search for a function which minimizes (7.1) is carried out by means 
of minimizing the empirical functional (7.3). 

In the preceding chapter conditions were obtained under which this 
approach can be successfully implemented for a class of indicator functions 
F(x, ix). Now we shall obtain conditions which assure a successful application 
of the method of minimizing empirical risk when the class F(x, ix) is of a 
more general nature. 

In the problem of pattern recognition, the functional (7.1) determines for 
each fixed ix the probability of a certain event (an incorrect classification 
of the vector which is to be "recognized"), and the empirical functional 
(7.3) determines the frequency of this event computed from the sample. 
Conditions for applicability of the method of minimizing empirical risk are 
associated here with the uniform convergence, over a class of events, of 
frequencies of events to their probabilities. 

In the problem of regression estimation the functional (7.1) determines 
for each fixed ix the mathematical expectation of the random variable 

~(ix) = (y - F(x, ix))2, 

and the empirical functional (7.3) determines the empirical mean of this 
random variable computed from the sample (7.2). 

Above (Chapter 6, Section 1) it was shown that a successful application 
of the method of minimizing an empirical risk might be associated with the 
validity of the uniform convergence of the means to their mathematical 
expectations: 

P{s~p II(ix) - / 0 mp(ix)I > X} < 17(/, x), 

lim 17(/, x) = 0. 
1-00 

(7.4) 

It was shown that under the condition (7.4) the value of the functional (7.1) 
at the point of empirical minimum F(x, 1Xemp) deviates with probability 1 - 17 
from the minimal value of J(ix0 ) in the class F(x, ix) by an amount not exceed­
ing 2x: 
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Thus the problem is reduced to the determination of the conditions for the 
existence of uniform convergence of the means to their mathematical 
expectations and to the estimation of the rate of convergence. 

As in the previous chapter the validity of basic theorems on uniform 
convergence does not depend on the form of the loss function. Therefore, in 
spite of a quadratic loss function used in the text a general theory is obtained. 

§2 A Particular Case 

As above, we shall start with simple case: the set of functions F(x, oc) consists 
of a finite number N of elements 

F(x, oc 1), ... , F(x, ocN)­

For this case the inequality 

P{s~p ll(oc;) - /em/oc;)I > x} < it P{IJ(oc;) - /em/oc;)I > x} 

~ N sup P{IJ(oc;) - Jem/oc;)I > x} (7.5) 

is valid. 
In Chapter 6, for an analogous situation of bounding the rate of uniform 

convergence of frequencies of events to their probabilities, a nontrivial 
bound on the second factor was used. In this case a nontrivial bound on 

sup P{IJ(oc;) - Jem/oc;)I > x} 
i 

is generally unavailable-since the random variable Jem/oc;) may possess 
"large deviations", and therefore its deviation from the mean J(oc;) may be 
arbitrary. We have already encountered such a situation in Chapter 2, 
where it was necessary to take into account the measure of "possible large 
deviations" when determining a guaranteed bound on the mathematical 
expectation based on the value of the empirical mean. In particular it was 
shown (cf. Chapter 2, Section 2) that for this purpose it is sufficient to know 
either a bound on possible losses, 

sup(y - F(x, oc))2 ~ r, 
a,x,y 

or a bound on the relative variance of losses, 

sup 
J (y - F(x, oc))4P(x, y) dx dy 
~----------~-l<r (J (y - F(x, oc))2 P(x, y) dx dy) 2 - · 

Thus to obtain a bound on the rate of uniform convergence of the means to 
their mathematical expectations the prior information on the magnitude of 
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possible large deviations should be utilized. We remark that for solving the 
problem of pattern recognition there was no need for such information. In 
view of the statement of the problem, the loss function (y - F(x, a))2 was 
bounded by 1, i.e., the prior information about the large deviations was 
contained in the statement of the problem. 

In this chapter we shall utilize both types of prior information on large 
deviations, and for each of them obtain a bound on the rate of uniform 
convergence. 

The simplest condition under which it is possible to obtain a bound on the 
rate of uniform convergence of the means to mathematical expectations is the 
condition of uniform boundedness of the losses. t 

(y - F(x, a))2 5 r 

for all a, x E X and y E Y. 
Let the inequality (7.6) hold. We show that in this case the bound 

P{s~p l/(a;) - /emp(a;)I > xr} < l8Nle-"2114 

(7.6) 

is valid. To obtain this bound we write the functionals /(a;) and J.mp(a;) 
using the Lebesgue integrals: 

n r { ft} l(a;) = Jim L - P (y - F(x, a;))2 > - , 
n--+oc, j= 1 n n 

. ~ r { 2 jr} I.mp(a;) = hm L.., - v (y - F(x, a;)) > - , 
n--+oo j= 1 n n 

(7.7) 

where v{(y - F(x, a;))2 > jr/n} denotes the frequency of the event 
{(y - F(x, a;))2 > jr/n} computed from the sample (7.2). Denote by Ax,.; 
the event 

{ 
2 jr} (y - F(x, a;)) >-;;- . 

Then in view of (7.7) 

n r 
II(a;) - I.mp(a;)I 5 Jim L - IP(Acx,,) - v(Acx,)I 

n--+oc,j=ln 

Thus 

:0::::: r sup IP(Acx,,) - v(Acx,,)I. 
j 

t Below, various sufficient conditions for uniform convergence will be presented. Necessary 
and sufficient conditions are given in the appendix to this chapter. 
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Consider now the class of events Aa,,p: 

{(y - F(x, 1X;))2 > /3}, 

where f3 is a nonnegative quantity. Clearly this class contains the events 
{Aa,,J whence 

P{s~p IP(Aa,,) - v(Aa,,)I > x} ::_;; P{s~p Pl(Aa,,p) - v(Aa,,p)\ > x} 

The problem has thus been reduced to bounding the uniform convergence of 
frequencies to their probabilities over the class Sp of events Aa,,p (with fixed 
values of IX;}. 

Utilizing the results of the preceding chapter, we bound the rate of uniform 
convergence of frequencies to probabilities over the class of events 

Sp = {x, y: (y - F(x, 1X;))2 > {3}. 

For this purpose we bound the growth function m8P(l). Since using the 
rules 

0[(y - F(x, 1X;})2 - /3] 

(IX; is fixed) one can subdivide only one point x, y in all possible ways, we 
have in view of Theorem 6.6 

Consequently, utilizing Theorem A.2 of the Appendix to Chapter 6, we 
obtain 

P{\/(1X;) - Jem/oc;)I > rx} 

s; P{s~p \P(Aa,.p) - v(Aa,,p)I > x} 

(7.8) 

The right-hand side of the inequality does not depend on oc. Therefore, along 
with (7.8), a more refined bound, 

sup P{\(oc) - Jem/oc)\ > rx} < l8le-x 2114, 

a 

is valid. Returning to the bound (7.5), we have 

P{s~p\/(1X) - /emp(1X)\ > ,x} < l8Nle-x2114 • 

We shall require that this probability be equal to 11: 

l8Nle-x 2114 = '1· 
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Therefore the deviation x should not be less than 

x = 2 In N + In l - ln(IJ/18) 
l . 

The result obtained can be stated as 

Theorem 7.1. Let the class F(x, a) consist of N functions for which the losses 
(y - F(x, a))2 in the domain x EX, y E Y are uniformly bounded by a constant r. 
Then one can assert with probability 1 - '7 that the inequality 

In N + In l - ln(IJ/18) ( ) 
/em/a;) - 2r l <Ia; 

In N + In l - ln(IJ/18) 
< I em/a;) + 2r l 

is valid simultaneously for all N functions F(x, a;). 

Remark. The theorem is valid simultaneously for all N functions, including 
the function F(x, aemp) which yields the minimum for the value of the 
empirical risk. Hence the inequality 

In N + In l - ln(IJ/18) 
J(aemp) < Jem/aemp) + 2r z 

is valid. Thus if the loss function is uniformly bounded and the number of 
functions F(x, a;) in the class is finite, then the uniform convergence of the 
means to their mathematical expectations holds. Theorem 7.1 is a direct 
generalization of Theorem 6.1. 

§3 A Generalization to a Class with 
Infinitely Many Members 

Now let the class F(x, a) consist of infinitely many elements while admitting 
a cover by a finite i;-net in either the C metric or the L; metric. As before, let 
the restriction (7.6) be valid. We show that in this case a bound on the quality 
of the rule minimizing the empirical risk exists which is analogous to the one 
that follows from Theorem 7.1. 

Theorem 7.2. Let the set of functions F(x, a) be covered by a finite i;-net 
F(x, a1), ... , F(x, a Ne,>). Then with probability 1 - '7 the quality of the function 



§3 A Generalization to a Class with Infinitely Many Members 187 

F(x, ll(emp) which minimizes the empirical risk is bounded by 

In N(£) + In I - ln(17/l8) r:. 
/(ll(emp) < I.mp{ll(;(ll(.mp)) + 2r I + 2£v r, 

where F(x, ll(;(ll(.mp)) is a function in the £-net closest to F(x, ll(emp). 

The proof is carried out along the lines of the proof of Theorem 6.4. 

(1) Select on the set of functions F(x, ll() a finite £-net consisting of N(£) 
elements 

F(x, a1), ... , F(x, ll(NM). 

According to Theorem 7.1 the inequalities 

/( ·) I ( ·) 2 In N(£) + In I - ln(17/l8) 
ll(, < emp ll(, + r / (7.9) 

are valid simultaneously for all elements of the £-net with probability 1 - 17. 
(2) We bound the amount of deviation of the functionals /(()( 1) and /(()( 2) 

for functions F(x, ()( 1) and F(x, ()( 2 ) separated from each other by at most £, 
i.e., we find the smallest c5(£) such that the inequality 

l/(()(1) - /(()(2)1 ::::; c5(£) 

is fulfilled provided only the conditions 

PL(ll(1, ()(2) = (J(F(x, ()( 1) - F(x, a2 ))2P(x) dx) 
112 

:s;; £ (7.10) 

(Pc<ll(1, ()(2) = s~p IF(X11l(1) - F(x1, ()(2)1 :S::: £) 
are satisfied. For this purpose we carry out the transformations 

l/(()(1) -· /(()(2)1 = I J<Y - F(x, ll( 1))2P(x, y) dx dy 

- J<Y - F(x, ()( 2))2 P(x, y) dx dy I 

= I JF(x, ()( 1 ) - F(x, ()( 2 )) 

x (2y - F(x, ()( 1) - F(x, ll( 2 ))P(x, y) dx dyl 

:s;; £ J(2y - F(x, ()( 1) - F(x, ll(2))2P(x, y) dx dy. 
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Here we have utilized the Cauchy-Schwarz inequality and the bound (7.10). 
Next we utilize the convexity of the function (y - F(x, oc))2 : 

J<2y - F(x, oc 1) - F(x, oc2))2 P(x, y) dx dy 

5 2 J<y - F(x, oc 1))2 P(x, y) dx dy 

+ 2 J (y - F(x, oc2))2 P(x, y) dx dy. 

We thus obtain 

I J(oc 1) - /(oc2) I 5 ej2(J(oc 1) + /(oc2)). 

However, by the condition, /(oc) ::; r. Finally we obtain 

II(oc 1) - /(oc2)1 ~ 2ej'°i. 

(7.11) 

(7.lla) 

(3) Now let F(x, ocemp) be the function which yields the minimum for the 
empirical risk. We choose a function F(x, oc;(oc.mp)) in the e-net F(x, oc 1), ••. , 

F(x, ocN,,l) closest to F(x, ocemp). For this function the inequality (7.9) is 
satisfied with probability 1 - 17. We strengthen this inequality utilizing the 
bound (7.lla). This leads to 

r.:. In N(e) + In l - ln(17/l8) 
/(oc0 mp) < / 0 mp(oc;(oc0 mp)) + 2ey r + 2r l 

The theorem is proved. 

(7.12) 

0 

Remarks. The theorem is valid for anye (assigned before sampling). Therefore 
e may be selected from the condition of the minimum for the expression 

( ) _ r.:. In N(e) + In I - ln(IJ/18) 
re -eyr+r l . 

Note also that for any set F(x, oc) and any e the minimal number of elements 
inane-net constructed in the L; metric does not exceed the minimal number 
of elements in an e-net in the C metric. Therefore the bound (7.12) is more 
precise if the e-net is constructed in the L; metric. However, in order to 
define this metric the density P(x) should be known. 

§4 The Capacity of a Set of Arbitrary Functions 

In Chapter 6 we introduced the notion of capacity for a set of indicator 
functions. The capacity was determined by a maximal number of points 
x 1, .•. , xh which can be subdivided in all possible ways into two classes by 
means of a given set of indicator functions. 
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We shall now extend the notion of capacity to sets of functions F(x, a) of 
an arbitrary nature. For this purpose we shall introduce the following param­
etric set of indicator functions: 

F(x, y; a, /3) = 0((y - F(x, a))2 + /3) 

in the parameters a and /3 (/3 is a real number). 

Definition. The capacity of the set of indicator functions F(x, y; a, /3) is called 
the capacity of the set F(x, a). 

Thus the capacity of the set F(x, a) determines the largest number h of 
pairs X;, Y; which can be subdivided in all possible ways into two classes by 
means of the rules F(x, y; a, /3). 

The capacity of a set of functions linear in its parameters. 
n 

F(x, a) = I a;<p;(x), 

equal n + 1. 
Under this definition of capacity, the growth function for the system of 

events 
Sa,p = {x, y: (y - F(x, a))2 > /3} 

is bounded by 
lh 

m5•-P(l) < 1 5 -. h! 

for l > h. Let the capacity of a set of functions F(x, a) be equal to h, and as 
above, let the loss function be bounded by r. Under these conditions the 
following theorem is valid. 

Theorem 7.3. For l > h simultaneously for the whole class of functions F(x, a), 
the inequality 

__ h In h + 1 - In 9 J ( 21 ) 1J 

Jemp(a) - 21. l < !(a) 

Jh(ln ~ + 1) - In i 
<fem/a)+ 2, [ 

is satisfied with probability 1 - IJ· 

PROOF: We express functionals /(a) and /em/a) in terms of Lebesgue integrals: 

n T { i,} 
!(a) = !~~ ;~i ~ P (y - F(x, a))2 > -;; , 

fem/a) = Jim I ~ v (y - F(x, a))2 > - . n r { ir} 
n-too i:==1 n n 
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Here P{(y - F(x, a))2 > ir/n} denotes the probability of the event 
{(y - F(x, a))2 > ir/n}, and v{(y - F(x, a))2 > ir/n} is the frequency of this 
event computed from the training sequence. 

The event 

{(y - F(x, a))2 > /3} 

will be denoted by Aa,fJ E Sap· Then 

Whence 

n r 
IJ(a) - J.mp(a)I ~ lim L - IP(Aa) - v(Aa)I. 

n-+ooi=ln 

l/(a) - / 0 mp(oc)I ~ rsup IP(Aa,p) - v(Aa,p)I. 
(J 

Furthermore it follows that 

P{s~p IJ(a) - J.mp(a)I > rx} 

~ P{sup I P(Aa, p) - v(Aa, p) I > x}. 
a,/J 

Since for I > h the growth function of the system of events Sa, 11 is bounded 
by l.5lh /h ! , utilizing Theorem A.2 of the Appendix to Chapter 6 we obtain 

P{s~p IJ(a) - J.mp(a)I > rx} 

< 6ms(2/)e-x2//4 < 9 (!1t e-x2//4_ (7.13) 

Setting the right-hand side of the inequality equal to 17 and solving the 
resulting equation for x, we have 

h(ln ~ + 1) - In~ 
x=2 h 9 

I . (7.14) 

It thus follows from (7.13) and (7.14) that for I> h the inequality 

h(ln !I + 1) - In i 
J.mp(a) - 2r I < l(a) 

h(In !I + 1) - In i 
< Jemp(oc) + 2r I 

is satisfied with probability 1 - 17 simultaneously for all functions of the 
set F(x, oc). The theorem is proved. D 
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§5 Uniform Boundedness of a Ratio of Moments 

Now let for some p > l the conditions 

P J<y - F(x, 1X})2PP(x, y) dx dy 
sup ---'---------------- :5: r 

Jcy - F(x, 1X}}2 P(x, y) dx dy . 
IX 

(7.15) 

be fulfilled, i.e., for any fixed IX = IX* let the ratio of the pth order meant of 
the random variable 

~(IX*) = (y - F(x, 1X*}}2 

to the first order mean be bounded by r. The fulfillment of the conditions 
(7.15) is the basic requirement imposed for solving problems of dependence 
estimation and ill-posed problems. 

In the next sections we shall show that if (7.15) holds for a p > 1 a theory of 
uniform relative deviation of the means from their mathematical expecta­
tions can be constructed. The case (7.15) for p ~ 2 will be the most impor­
tant. For p > 2 maximum rate of convergence is achieved in the order of 
magnitude. For p = 2 the requirement (7.15) is equivalent to the condition 
of uniform boundedness of the relative variance considered in Section 2 of 
Chapter 2; moreover the number •rel which bounds the relative variance is 
related tor, which bounds the mean of the second order, as follows: 

The condition (7.15) is quite weak. All parametric models of regression 
extimation considered in Chapters 4 and 5 satisfy this condition with r 
within the narrow limits 1.35 < r < 2.45 ( cf. Chapter 2, Section 3). 

We shall show below that if along with (7.15) one of the following three 
conditions is fulfilled: 

(1) the set F(x, IX} consists of a finite number of elements, 
(2) the set F(x, IX} may be covered by a finite e-net, 
(3) the set of functions F(x, IX} possess a finite capacity, 

then the method of minimizing empirical risk yields a solution to the problem 
of estimating dependences. Thus we shall bound the rate of uniform con­
vergence of the means to mathematical expectations under the condition (7.15) 
and the condition that the class of functions possesses a bounded capacity in 
any one of the above-stated senses. 

t The mean of the pth order of a random variable ~ is defined as .j M ~P. 
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§6 Two Theorems on Uniform Convergence 

In this section we shall prove two theorems which bound the rate of uniform 
convergence of the means to the mathematical expectations. We shall con­
sider the case when the set of functions F(x, a) consists of a finite number of 
elements and the case when the set of functions can be covered by a finite 
i:-net in either the C or the L; metric. 

The proof of both theorems rely heavily on the following fact: let a 
function F(x, ix*) be such that the condition 

PJ (y - F(x, ix*))2PP(x, y) dx dy 

------------ < r, 

J<Y - F(x, ix*))2P(x, y) dx dy -

p > I (7.16) 

is satisfied. Then if restriction (7.16) is stipulated for p > 2, the inequality 

is valid, where 

P{1(ix*) ~ixJ*e)p(ix*) > ra(p)x} < 24le-x 2114 (7.17) 

p (p - 1y-1 
a(p) = 2(p - 2y-1. (7.18) 

If restriction (7.16) is stipulated for 1 < p ~ 2, then the inequality 

p{J(ix*) - 1.mp(ix*) > rV.(x)} < 241 exp{- x2 12-(2/p)} (7.19) 
](ix*) P 4 

where 

Vp(x) = x Pf(1 - --~1r:ln_x_)p-1 
-..j p--J p(p - 1) 

holds. Note that for p > 3 the values of a(p) in (7.18) is close to 1. A large 
value for a(p) is attained only when pis close to 2. 

These bounds will be obtained as a corollary of Theorem 7.6 presented in 
Section 7. 

Theorem 7.4. Let the condition (7.15) be fulfilled, and the class of functions 
F(x, a) consist of a.finite number N of elements. Then under (7.15) with p > 2, 
the inequality 

l(a) ~ [ 1.mp(a) l 
1 2 ( In N + In l - ln(17/24) 

- rap) I 
00 

(7.20) 
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is fulfilled with probability 1 - '1 simultaneously for all functions in the class 
F(x, ix); if, however 1 < p s 2, then the inequality 

ln N + ln l - ln(11/24) ' 
(7.21) 

12-(2/p) 
00 

where 

J( lnx )p-l VP(x) = (x) 1 - :fp , 
p- 1 p(p - 1) 

[zJoo = {z for z ~ 0, 
oo for z < 0, 

is fulfilled with probability 1 - '1 simultaneously for all functions F(x, a). 

PROOF. Let p > 2 in the condition (7.15). We utilize the inequality 

P{ /(ix,) - /em/ix;) ( )} 
sup ( ) > xra p 

i I IX; 

< N sup P{J(ix;) - J)mp(ix;) > xra(p)}. (7.22) 
i l(a; 

We bound the second factor on the right-hand side of (7.22) using (7.17). We 
thus obtain 

P{s~p /(ix;) ~(:;)mp(ix;) > rxa(p)} < 24Nle-"2114, 

which can be written in the following equivalent form: with probability 
1 - I'/ the inequalities 

[ 
/em/ix;) l 

/(ix;) s 2 ln N + ln l + ln(11/24) 
1 - ra(p) 

/ 00 

are valid simultaneously for all ix;. The first assertion of the theorem is proved. 
Analogously in the case 1 < p s 2 we shall use the bound (7.19). Applying 

this bound to the right-hand side of (7.22), we obtain a bound on the rate of 
uniform convergence which is equivalent to the assertion of the theorem. 

D 

Theorem 7.5. Let the condition (7.15) be satisfied, and let the set F(x, a) be 
covered by a finite £-net. Then one can assert with probability 1 - I'/ that the 
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quality of the Junction F(x, 1Xemp) which yields the minimum for the empirical 
risk is bounded by 

/(1Xemp) ~ (f, + 

where F(x, 1X;(1Xemp)) is an element of the ,;-net closest to F(x, 1Xemp), 

! 2 ( ) In N(,;) + In l - ln(l'J/24) fi 2 = -cap I or p > ; 
T(,;) 

_ (2 In N(,;) + In l - ln(l'//24)) fi I 2 - rVP 12 _<2IP> or < p ~ . 

Remark. Theorem 7.5 is valid for any ,;, which defines a ,;-net chosen a priori, 
i.e., before the sample is taken. 

In particular i; may be chosen from the condition of the minimum for the 
expression 

e + Je2 + [1 - cT(e)l,· 

where c is a constant. It is reasonable to choose c to be close to the minimum 
of functional /(1X0 ). Thus a priori information on the value of /(1X0 ) is utilized 
for choosing an appropriate £. 

The proof of this theorem is basically analogous to the proof of Theorem 
7.2. 

(1) We choose an arbitrary ,;-net. For p > 2, in view of Theorem 7.4, the 
inequality 

/(IX;) ~ [ fem/IX;) l 
1 _ 2-ca(p) In N(e) + In/- ln(l'//24) 

00 

(7.23) 

is satisfied with probability 1 - I'/ simultaneously for all elements of the £-net. 
(2) In view of the bound (7 .11) obtained in the proof of Theorem 7.2, the 

values of the functionals /(IX) for functions F(x, 1Xemp) and F(x, 1X;(1Xemp)) 
which are separated in either the C or the L; metric by an amount smaller 
than £, differ by an amount not exceeding 

I 1(1Xemp) - /(1X;(1Xemp)) I < 2eJmax(/(1Xemp), /(IX;(Cr:emp))). (7.24) 

(3) We shall consider two cases: /(1Xemp) > /(1X;(1Xemp)) and 1(1Xemp) ~ 
/(1X;(1Xemp)). In the first case it follows from (7.23) and (7.24) that the bound 

/(1Xemp) ~ [ Jem/1X;(1Xemp)) l + 2ej/(1Xemp) 
In N(e) + In I - ln(l'J/24) 

1 - 2-ca(p) I 
00 (7.25) 
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is valid with probability 1 - Yf. In the second case we have the bound 

J(rx.emp) :-:; [ 

1 - 2ra(p) 

J emp( rx.;( (X_emp)) l + 2eJ J ( rx.;( (X_emp)) 
In N(e) + In I - ln(yt/24) 

/ 00 

(7.25a) 

with the same probability. 

(4) Solving the inequality (7.25) for J(rx.emp) we obtain 

) 

(7.26) 
2 + Jem/rx.;(rx.emp)) 

£ [ J1n N(r,) + In I - ln(yt/24)] · 
1 - 2ra(p) 1 

00 

Taking (7.23) into account we verify that the bound (7.26) is valid also in the 
case (7.25a). 

The theorem for the case 1 < p :-:; 2 is proved in the same manner. D 

Remark. As in the case in Theorem 7.2, the bound (7.26) will be smaller 
(N(r,) is smaller) provided the £-net is constructed in the L; metric, i.e., when 
the information about the density P(x) is utilized. 

§7 Theorem on Uniform Relative Deviation 

We now prove the basic theorem. 

Theorem 7.6. Let the condition (7.15) be satisfied and the set of functions 
F(x, a) possess a finite capacity h < l; then if p > 2, the inequality 

J(rx.) :-:; 

I - 2ra(p) 
( 2/ ) Y/ h In - + 1 - ln-

h 12 

where 

J(p - l)p-l 1 a(p) = -- ·-
p - 2 2 
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is fulfilled with probability l - 11 simultaneously for all functions F(x, oc); 
if however 1 < p s 2, the inequality 

J(oc) s 

h(ln ~ + 1) - In Ti~ ' 
12-(2/p) 

00 

where 

Vp(x) = x Pf(1 - --1/:ln_x_)p-1 
'1 p--,J p(p - 1) 

is fulfilled with probability l - 11 simultaneously for all functions F(x, oc). 

We prove the theorem first for the case p > 2 and then for 1 < p s 2. 
To begin with we express the functional J(oc) in terms of the Lebesgue 

integral 

J(oc) = { 00 
P{(y - F(x, oc))2 > t} dt. (7.27) 

Observe that for any fixed oc and arbitrary t the probability of the event 
{(y - F(x, oc))2 > t} is expressed in terms of the distribution function of a 
positive random variable ~(oc) = (y - F(x, oc))2 ; namely, the cumulative 
distribution function of ,(oc), 

<l>(,(oc) s t) = <l>a(t), 

is related to the probability of occurrence of event {(y - F(x, oc))2 > t} as 
follows: 

P{(y - F(x, oc))2 > t} = 1 - <l>a(t). 

Thus the functional (7.27) can be written in the form 

J(oc) = f (1 - <l>a(t)) dt. 

We introduce a new functional 

R(oc) = f jl - <l>a(t) dt. 

It is easy to see that this functional exceeds J(oc), since 

1 - <l>a{t) < J1 - <l>a{t). 

The following lemma is valid. 
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Lemma. If for each function of the set F(x, a) the functional R(a) exists and 
the set of functions F(x, a) has a finite capacity h < l, then the inequality 

P1- /(ix) - /em/ix) } 
sup---~->x 
. a R(a) 

< 8ms(21)e- x 2114 < 12 (2ll e- x 2114 (7.28) 
h! 

is valid. 

PROOF. Denote by A,,; the event {(y - F(x, ix)) 2 > i/n}. Consider the expres­
sion 

[

00 1 00 1 ] lim L - P(A,, ;) - L - v(A,,;) 
](a) - /emp(1X) _ n-oo i=l n i=I n 

R(a) R(a) 

We show that if the inequality 

P(A, ;) - v(A, ;) 
sup · · S:: x 
a,; j P(A,, ;) 

is fulfilled, then the inequality 

/(ix) - /em/ix) 
sup---~-<x 

a R(a) -

is fulfilled as well. Indeed, (7.29) and (7.30) imply that 

00 1 
( , Jim x L - J P(A,, ;) ( ) 

(7.29) 

(7.30) 

laJ-lemp(a) - •-oo i=tn xRa 
s~p R(a) s s~p R(a) = s~p R(a) = x. 

Thus the probability that the inequality 

/(a) - /em/ix) 
sup ( ) > x 

a R IX 

is valid does not exceed the corresponding probability for the validity of 

P(A, ;) - v(A, ;) 
sup · · > x. ,, ; J P(A,, ;) 

On the other hand, in view of Theorem A.3 of the Appendix to Chapter 6, 
the bound 
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holds, which implies that 

P{sup /(ex) - 1•mp(ex) > x} < 8m5(2l)e-x 2114 • (7.31) 
a R(ex) 

Noting that m5(l) < 1.51"/h !, we arrive at the bound (7.28). The lemma is 
thus proved. 

PROOF OF THE THEOREM. The statement of the lemma involves the following 
condition: for any function F(x, ex) there exists a functional R(ex). We now 
show that the functional R(ex) exists provided the random variable ~(ex) 
= (y - F(x, ex))2 possesses a moment of order greater than second (even a 
noninteger one). Moreover for p > 2 the relation 

R(ex) < jM~P(ex) · ex(p), 

where 

p (p - 1y-1 
a(p) = 2(p - 2y- I' 

is valid. Indeed, the transformation 

M~P(ex) = J<Y - F(x, ex)) 2PP(x, y) dx dy 

= Loo tP d<Pa(t) = p Loo tp- 1(1 - <Pa{t)) dt 

is valid. On the other hand, by definition 

R(ex) = Loo jl - <Pa(t) dt. 

Now let the pth moment be mp(ex): 

p Loo tp- 1(1 - <t>a(t)) dt = mp(ex). 

We shall obtain a distribution <Pa(t) such that R(ex) is maximized. 
For this purpose we construct the Lagrange function 

L(ex) = R(ex) - JM~P(ex) 

= Loo Jl - <Pa(t) dt - Ap Loo tp- l(l - <Pa(t)) dt. (7.32) 

We determine a probability distribution function <Pa(t) for which the 
maximum of L(ex) is obtained. Denote z2 = 1 - <t>a(t), b = Jp, and rewrite 
(7.32) using this notation: 

L(ex) = L00 z(l - bztP- 1) dt. (7.33) 
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The function z at which the maximum of the functional (7.33) is attained is 
defined by 

1 - 2bztP- 1 = 0, 
which implies that 

where t0 = (1/2b) 11<1 -pJ_ 

Since z(t) varies between 1 and Oas t varies between 0 and oo, the optimal 
function z(t) is 

{
1 ift < t0 , 

z(t) = (; r- l if t Z to. 

We now compute max,. R(a) (recalling that p > 2): 

J
C() JC() (t )p- 1 p l 

max R(a) = z(t) dt = t0 + __Q dt = = 2 to. 
a O O t P 

(7.34) 

On the other hand, express t0 in terms of mp: 

mp(a) =, p fo00 z2(t)tp- i dt 

= p L"rp-l dt + p s: (~rp-\p-l dt = 2tg(: = ~)- (7.35) 

Substituting the value of t0 obtained from (7.35) into (7.34), we arrive at 

sup ~ = Pf~ (p = ~)p- l = a(p), 
a mp(a) \} P 

which implies that for p > 2 

R(et.) < .jM~P(a)a(p). (7.36) 

Utilizing the lemma and the bound (7.36), we prove the first part of the 
theorem. Note that under the conditions of the theorem the inequality 

R(a) < ra(p)J(a) (7.37) 

is valid. We utilize the bound (7.37) to improve the inequality (7.28): 

{ J(a) - lem (a) } 
P sup ) P > ra(p)x 

" l(a 

{ J(a) - Jemp(a) } 12 (2ft _ 2 114 < p sup---~-> x < ~hl e" . 
a R(a) . 

(7.38) 

The first assertion of the theorem is equivalent to this inequality. 
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We now prove the second part of the theorem. Consider the difference 

00 1 
/(a) - I.mp(a) = lim L - (P(Aa,i) - v(Aa,;)). 

n-oo i=l n 

Assume that for all events Aa,i the condition 

P(Aa,;) - v(A,,;)::::; x,e/P(Aa,;) 

is fulfilled. Moreover the inequality 

P(Aa, ;) - v(Aa, ;) ::::; P(A,.;) 

(7.39) 

(7.40) 

(7.41) 

is always valid. To compute the sum (7.39) we apply the bound (7.40) to 
the summands corresponding to the events Aa,; for which P(Aa, ;) > xPl<p- 1>. 
For the summands for which the events Aa,; satisfy P(Aa, ;) ::::; xPf<p-1) we 
shall utilize the trivial bound (7.41). We thus obtain 

/(a) - I emp(a) 

:s:; X j ~1 - <l>a(t) dt + I (1 - <l>,(t)) dt. (7.42) J 1 -4>a(t) > xPf(p - I) J 1 -4>a(t):S xPf(p - I) 

We now find the maximal value (with respect to <l>a(t)) of the right-hand side 
of the inequality under the condition that the pth moment takes on some 
fixed value mp, i.e., 

For this purpose we again use the method of Lagrange multipliers, denoting 

zP = 1 - <l>a(t). 

We thus seek the maximum of the expression 

L(a) = f xz dt + f zP dt - A. l 00 tp-lzP dt. 
z> x-p+l zsx-p+l Jo 

Represent L(a) in the form 

L(a) = f (xz - JtP- 1zP)dt + f (zP - JtP- 1zP)dt, 
z>x-p+t z:5x-P+l 

where the first summand defines the function z(t) in the domain z > x and 
the second in the domain z ::::; x. The first summand attains its absolute 
maximum at 

z = p-ffJ. 
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However, taking into account that z is a monotonically decreasing function 
from 1 to x, we obtain 

z(t) = l 1 
p-:ffii 

if 
p- 1r;; 

0::;; t < './"ii' 
If - < t < -. . p-:ffi"' p-rx1 

pA - pA 

The second summand attains its maximum in the doamin z ::;; xP+ 1 for the 
function lp-~ 

z(t) = 
0 

x 

We thus finally obtain 

z(t) = 

1 

p-lr;; ! 
vil t 

p-~ 

If -<t< -. p-rx1 p-111 
pA - A' 

if 

if 

p-111 t> -- A. 

p- 1r;; 
0::;; t < \}"ii' 

If - < t < -. p-:ffi"' p-:lfx1 
pA - pA' 

If - < t < -. p -:lfx1 p -111 
PA - A' 

p- 1 /l-
o if v--X=s;t<oo. 

We now express the pth moment mp in terms of the Lagrange multiplier A. 
For this purpose we compute the pth moment 

Joo ("')p/(p- 1) ( ln x ) 
mP=p tP-lzPdt= - 1------. 

0 A p-,jp(p - 1) 

Analogously we compute the quantity 
p-Vflp]: 

J(r,.) - / 0 mp(r1.)::,; X { Z dt 

+ zP dt = X - 1 - ----- . Joo ("')l/(p-l)( lnx ) 
p-VI7P1 A p-.fp(p - 1) 

It follows from (7.43) and (7.43a) that 

J(rx) - I.m/rx) < V( ) 
sup ,,~ px, 
~ -v mp(rx) 

where J( ln x )p-t Vp(x) = x 1 - ',Jp . 
p- 1 p(p - 1) 

(7.43) 

(7.43a) 

(7.44) 
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Thus we have shown that the condition (7.40) implies the inequality (7.44). 
Therefore the probability of the event 

{sup /(a) - 1•mp(a) > Vp(x)} 
a ~ 

does not exceed the probability of the event 

{ P(Aa ;) - v(Aa ;) } 
sup · · > x . 
a,i ~P(Aa,J 

According to the assertion of Theorem A.3 in the Appendix to Chapter 6, 
the probability of this event for l >his bounded by (A.16); this implies that 

P{sup /(a) - 1.m/a) > Vp(x)} < 12 (2/l exp{- x2 12-(2/p)}· 
a ~ h! 4 

On the other hand, in view of the condition of the theorem (Equation (7.15)), 

~~,!(a). 

Taking this into account, we obtain 

P{s~p /(a) ~(~)mp(a) > ,Vp(x)} < P{s~p I(a~(a) > Vp(x)}. 

We thus finally arrive at the inequality 

P{sup !(a) - 1•mp(a) > ,V.(x)} < 12 (2/l exp{- x2 12-<2IP)} (7 45) 
a I(a) P h! 4 · 

for I > h. This inequality is equivalent to the assertion of the second part 
of the theorem. O 

Remark. For the proofs of Theorems 7.4 and 7.5 we have utilized bounds 
on relative deviations, (7.17) and (7.19). These bounds may be easily obtained 
from the inequalities (7.38) and (7.45), taking into account that the capacity 
of the class of decision rules F(x, a) formed by a fixed function F(x, a*) 
equals 1. 

§8 Remarks on a General Theory of Risk Estimation 

We have thus constructed a theory of uniform convergence of the means to 
their mathematical expectations. Formally this theory was constructed for 
quadratic loss functions. However, the results obtained are also valid for 
general loss functions. 
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Below we state the basic assertions of the theory of uniform deviations of 
empirical estimators from the means in a general setup. The proofs of these 
assertions are identical to the proofs of the analogous theorems considered 
above. 

Let Q(z, c~) be a parametric family of nonnegative functions satisfying the 
following conditions: 

(1) for any fixed value of the parameter llC* EA the functions Q(z, llC) are 
measurable in z; 

(2) the set of functions Q(z, llC) has a finite capacity h (the indicator functions 
0(Q(z, llC) + /3) have a finite capacity h). 

Then the following assertions on the rate of uniform convergence of empirical 
means 

constructed from a sample z 1, .•. , z1 to their mathematical expectations 

/(llC) = J Q(z, llC)P(z) dz 

are valid. 

Assertion 1. If for functions Q(z, llC) the functional 

RP(llC) = J jl - P{Q(z, llC) :c::; t} dt 

exists, then for l > h the inequality 

< 12 (2/l exp{- x2 12-c2/p)} 
h! 4 

P{ J(llC) -- I.mp{llC) } sup---~-> x 

a Rp{llC) (2ft { x2 } 
< 12 h! exp - b(p) I 

where 

J ( p )P(p _ 2)p-2 b(p)= 4 -- --
p-1 p-l 

is valid. 

for l < p :c::; 2, 

(7.46) 

for p > 2, 
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Assertion 2. If for junctions Q(z, ex) the pth moment (1 < p ~ 2) 

mp(ex) = J QP(z, ex)P(z) dz 

exists, then the inequality 

P{sup /(ex) - I emp(ex) > x P (l In X )p- 1
} 

a ~ P-Jp(p - 1) 

< 12 (2ll exp{- x.2 12 - (2/ P>} 
h! 4 

is valid for l > h. 

Assertion 3. If for functions Q(z, ex) the pth moment (p > 2) 

mp(ex) = J QP(z, ex)P(z) dz 

exists, then for l > h we have the inequality 

p{ /(ex) - /emp(ex) > ( ) } < 12 (2/t - x2//4 
sup ,,~ a p x h I e , 

a ,v mp(ex) · 

where 

Jl (p - l)p-l 
a(p) = 2 p - 2 · 

Assertion 4. If the condition 

r,~ 

sup ~v~ "'p_\<A) < r 
a /(ex) -

is fulfilled for p > 2, then/or l > h the inequality 

/(ex) ~ / 0 mp(ex) j 
h(ln !1 + 1) - In ~ 

1 - 2ra(p) 1 
00 

(7.47) 

is satisfied with probability 1 - 17 simultaneously for all ex. If, however, the 
condition 
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is fulfilled for 1 < p :,;; 2, then for all / > h the inequality 

(7.48) 

is satisfied with probability 1 - Y/ simultaneously for all a, where 

J( In x )p-l 
Vp(x) = x 1 - ir: 

p-~ p(p - 1) 

In Chapters 8 and 9 we shall utilize the theory of uniform convergence 
developed herein to construct extremal algorithms for estimating depen­
dences in the case of samples of finite sizes. Here we shall note that if the 
condition (7.15) is satisfied and the capacity of the class of functions F(x, a) 
is bounded, then according to the theory described the method of minimizing 
empirical risk leads us to the determination of a function which is close to the 
best in the class (provided the sample size is sufficiently large). Indeed, in this 
case the denominator in the bounds (7.47) and (7.48) is close to 1 and the 
value of the expected risk determines the value of the empirical risk. 



Appendix to Chapter 7 

Theory of Uniform Convergence of 
Means to Their Mathematical 
Expectations: Necessary and Sufficient 
Conditions 

§Al e-entropy 

In the Appendix to Chapter 6 sufficient conditions for the uniform 
convergence of frequencies to probabilities were established. These con­
ditions are sufficient in order that the equality 

lim P{sup IMF(x, a) - .!.1 .± F(x;, a)I > s} = 0 (A.l) 
1-+oo o,eA ,= 1 

be fulfilled for a given set of indicator functions F(x, a), a E A as the sample 
size of a random indepedent sample of vectors x 1, ... , x1 increases. 

In this Appendix we shall indicate necessary and sufficient conditions 
for the uniform convergence of means to their mathematical expectations in 
the case of uniformly bounded families of functions 

0 ~ F(x, a) ~ C, a EA. (A.2) 

(These are conditions which are necessary and sufficient for the fulfillment 
of the equality (A.1) for the family (A.2).) Below we shall assume without 
loss of generality that C = Lt To state these conditions precisely we introduce 
several notions. 

Let A be a bounded set of vectors in E1• A finite set T c E1 such that for 
any y EA there exists an element t E T satisfying p(t, y) < sis called a relative 
s-net of A in E1• 

Below we shall assume that the metric is defined by 

p(t, y) = max It; - ii, t = (t1, ... , t"), y = (y1, ... , y"), 
1 Si Sn 

and the norm of a vector z is given by llzll = max1 sisn Iii. 
t Note that indicator functions satisfy the condition (A.2). 

206 
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If an £-net T of a set A is such that T c A, then we call it a proper £-net 
of the set A. 

The minimal number of elements in an £-net of the set A relative to E1 

will be denoted by N(e, A), the minimal number of elements in a proper £-net 
is denoted by N 0(e, A). It is easy to see that 

N 0(e, A) 2: N(e, A). (A.3) 

On the other hand 

N 0(2e, A) < N(e, A). (A.4) 

Indeed, let T be a minimal £-net of A relative to E1• We assign to each 
element t E T an element y EA such that p(t, y) < i; (such an element y 
always exists, since otherwise the £-net could have been reduced). The totality 
T0 of elements of this kind forms a proper 2i;-net in A (for each y EA there 
exists t ET such that p(y, t) < E, and for such a t ET there exists , E T0 

such that p(l, ,) < E and hence p(y, ,) < 2e). 
Let F(x, ex) be a class of numerical functions in the variable x EX depending 

on parameter ex EA.. Let x 1, ... , x1 be a sample. Consider in the space E1 a 
set A of vectors z with coordinates zi E F(xi, a), i = 1, ... , l, formed by all 
CX EA.. 

If the condition Os F(x, a) s 1 is fulfilled, then the set A = A(x 1, ••• , x1) 

belongs to an I-dimensional cube O s zi s 1 and is therefore bounded and 
possesses a finite £-net. The number of elements of a minimal relative £-net 
of A in E1 is N(e; A(x 1, ••• , x1)) = NA(x 1, ..• , x 1; e). The number of elements 
of a minimal proper £-net is N~(x 1, ••• , x1; e). If a probability measure Px 
is defined on X and x 1, ... , x 1 is an independent random sample and 
NA(x 1, ••• , x 1; i;) is a function measurable with respect to this measure on 
sequences x t, ... , x 1 then there exists an average £-entropy (or simply an 
£-entropy) 

HA(E, l) = M log2 NA(x 1, ... , x1; e). 

It is easy to verify that a minimal relative £-net satisfies 

NA(x 1, ••• , x 1+k; e) s NA(xi, ... , x1; e)NA(x1+ 1, ••• , x 1+k; e): (A.5) 

(Recall that 

p(z 1 , z2) = max lz~ - z~ l)-
1 :Si:,;;; n 

Indeed, in this case a direct product of relative £-nets is also a relative £-net. 
Thus 

HA(e, I + k) s HA(e, l) + HA(e, k). (A.6) 

In the end of this section it will be shown that there exists the limit 
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and the convergence 

(A.7) 

holds. 
Consider two cases: 

(1) limi-.x, H'\e, l)/l = c(e) = 0 for all e > 0. 
(2) There exists an t:0 such that c(t:0 ) > 0 (then also for all e < t:0 the quantity 

c(e) > 0). 

It follows from (A.4) and (A.7) that in the first case 

I. log2 N~(x 1, ••• , x 1; e) P 

1m I ~ 0 
1-00 

(A.8) 

for all e > 0. It follows from (A.3) and (A.7) that in the second case 

I. p{log2 N~(x 1, ••• , x 1; e) ( ) '} 1 1m 1 > c t:0 - u = 
1-00 

(A.9) 

for all e ::;; t:0 , i5 > 0. 
Below it will be shown that (A.8) implies uniform convergence of the 

means to their mathematical expectations, while under (A.9) such a con­
vergence is not valid. Thus the following theorem is valid. 

Theorem A.1. The equality 

I. HA(e, l) - 0 
1m I-, 

1-00 

Vt:> 0 

is a necessary and sufficient condition for the uniform convergence of means 
to their mathematical expectations for a bounded family of functions F(x, et), 
et E A.t 

The next sections are devoted to the proof of this theorem. 

We now prove (as in the information theory [65a]) that the limit (A.7) exists and 
the convergence (A.8) is valid. 

1.1 Proof of the Existence of the Limit 

As O ~ HA(e, I)// ~ I, for any e0 > 0 there is a lower bound 

I. HA(eo, [) 
1m / = c0. 

1-00 

t For indicator functions F(x, ct) we have HA(e, I) "" M log2 .6'(x 1, ••• , x1) for all O < e < I 
(cf. Section A.2 of the Appendix to Chapter 6). 
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Therefore for any b > 0 such an /0 can be found that 

H"(r,o, Io) b 
10 s Co+ . 

Now take arbitrary I > /0 . Let I = n/0 + m where n = [//10]. Then by virtue of (A.6) 

H"(::0 , I) H"(r.0 , n/0 + m) nH"(£0 , / 0 ) + m H"(r,0 , / 0 ) 1 
--- = ----· < ------ < --- + -. 

l n/0 + m n/0 10 n 

Strengthen the latter inequality 

H"(i;0 , /) H"(s0 , / 0 ) 1 . 1 
--- < --- + - < Co + () + - . 

I 10 n n 

Since n -> w when I -> w we have 

As b > 0 is arbitrary, the upper bound coincides with the lower one. 

1.2 Proof of the Convergence of the Sequence 

We prove that when I increases the sequence of random values 

1 log2 N"(x 1, ••• , x1; £0 ) 
r =--------

[ 

converges in probability to the limit c0 . For this it is sufficient to show that for any 
b>O 

and for any µ > 0 

P;(r1) = P{r1 < c0 - µ}-->0. 
I-ex, 

Consider a random sequence 
1 n 

glo = - "r'" , '1 L. I 

ni= 1 

of independent random values r'.. Evidently 

As O < ,l0 s 1, we have 

H"(£ l ) 
Mr10 = Mg 10 = 0 ' 0 

n lo . 

M(r10 - Mr10 ) 2 = D2 s 1, 

M(r10 - Mr10) 4 = D4 s 1. 
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Therefore 

' ' 4 D4 11 + I 4 M(gn° - Mgn°) = 3 + 3--3-D2 < z· 
n 11 11 

Write the Chebyshev's inequality for the fourth moment 

P{l 10 _H/\(eo,lo)I } _4 
9n / > X < 2 4• 

O 11 X 

Consider a random value g~, where I = 1110 + m. By virtue of (A.5) 

1 
r' = r"lu+m s g~o + -. 

11 

Now let x = b/3, /0 and I = 11/0 + m be so large that 

H/\(e0 , 10 ) b 
----c <-

lo o - 3' 

Then 

l b 
; s 3· 

{I 2 I b} 244 Pt(r1)=P{r1 -Co>b}sP g~0 -Co-3b >3 <()4112· 

As 11 ->CO when I-> oc 

To bound the value P;; (r1) consider the equality 

rH"(,o,1)/1(-H-/\_(e_o_,_I) - r') dP(r') = f 1 (r' - H/\(eo, I)) dP(r'). 
J0 I aA(,o,1)/1 I 

Mark its left part with R 1, the right one with R2 and bound R 1 and R2 for such I that 

The lower bound of R I is 

and the upper bound of R 2 is 

R2 = loH (r' - HA(eo, I)) dP(r') + r (r' - H/\(eo, /)) dP(r') 
JHA(,0,1)/1 / co+b [ 
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Combining these bounds we obtain 

Since 

we obtain 

µ I I H"(eo' I) I + I 2P;(r)s c0 +b- I +P0 (r). 

H"(r,o, I) 
I -co, 

I-cc 

2b 
Jim P;(r1) s -. 
1-00 µ 

As b and µ are arbitrary, we conclude that 

P; (r1)---> 0. 
1- 00 

§A2 The Quasicube 
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We shall define by induction an n-dimensional quasicube with an edge a. 

Definition. A set Q in the space E1 is called a one-dimensional quasicube 
with an edge a if Q is a segment [c, c + a]. 

A set Qin the space E. is called an n-dimensional quasicube with an edge 
a if there exists a coordinate subspace E. _ 1 (for simplicity it will be assumed 
below that this subspace is formed by the first n - 1 coordinates) such that a 
projection Q' of the set Q on this subspace is an (n - !)-dimensional quasi­
cube with an edge a and for each point z* E Q 1 (z* = (z;, ... , z;- 1 )) the set 
of numerical values z" such that (z;, ... , z;- 1, z") E Q forms a segment 
[c, c + a], where c in general does not depend on z*. 

The space E._ 1 is called an (n - !)-dimensional canonical space. In 
turn an (n - 2)-dimensional canonical space E. _ 2 can be constructed for 
this space and so on. 

The totality of subspaces E 1, ... , E. is called a canonical structure. 
The following lemma is valid. 

Lemma A.l. Let a convex set A belong to an /-dimensional cube whose co­
ordinates satisfy 

i = 1, ... , /. 

Let V(A) be the /-dimensional volume of the set A. 
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If for some 1 s n s /, 0 s a s 1, I > 1 the condition 

V(A) > Cfal-n (A.10) 

is fulfilled, one can then find a coordinate n-dimensional subspace such that 
the projection of the set A on this subspace contains a quasicube with an edge a. 

PROOF. We shall prove the lemma using an induction method. 

(1) For n = I the condition (A.10) is 

V(A) > C? = 1. (A.11) 

On the other hand 

V(A) :c;; 1. (A.12) 

Therefore the condition ( A. 1) is never fulfilled and the assertion of the 
lemma is trivially valid. 

(2) For n = 1 and any I we shall prove the lemma by contradiction. Let 
there exist no one-dimensional coordinate space such that the projection of 
the set A on this space contains the segment [c, c + a]. The projection of a 
bounded convex set on the one-dimensional axis is either an open interval 
or a segment or a semiclosed interval. Consequently by assumption the 
length of this interval does not exceed a. However, then the set A itself is 
contained in an (ordinary) cube with an edge a. This implies that 

V(A) :c;; a1• 

Taking into account that a ~ 1, we obtain 

V(A) < a1 < la1- 1, 

which contradicts the condition (A.10) of the lemma. 
(3) Consider now the general inductive step. Let the lemma be valid for 

all n < n0 for all /, and for n = n0 + 1 for all I such that n s Is 10 . We 
shall show that it is valid for n = n0 + 1, I = 10 + 1. 

Consider a coordinate subspace E10 of dimension 10 consisting of vectors 

z = (z1, ... , z10). 

Let A1 be a projection of A on this subspace. (Clearly A' is convex.) 
If 

V(A') > C" a'o-n lo ' (A.13) 

then by the induction assumption there exists a subspace of dimension n 
such that the projection of the set A' on this subspace contains a quasicube 
with an edge a. The lemma is thus proved in the case (A.13). 

Let 

(A.14) 
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Consider two functions 

qi 1(z1, ... , z10 ) = sup {z: (z1, ... , z10, z) EA}, 

qiz(zl, ... , z10) = inf {z: (z 1, ... , z10, z) EA}. 

These functions are convex upward and downward respectively. Therefore 
the function 

qiiz1, ... ' zlo) = (/)1(z1' ... , zlo) - <pz(z1, ... , z1o) 

is convex upward. 
Consider the set 

All= {(z1, ... , zlo): <p3(z1, ... ' zlo) > a}. 

This set is convex and is located in E10 • 

For the set A11 one of two inequalities is fulfilled: either 

V(All) > q 0-1a10 -n+1, 

or 

(A. 15) 

(A.16) 

(A.17) 

Assume that (A.16) is fulfilled. Then by the induction assumption there 
exists a coordinate space En- t of the space E1 such that the projection A 111 

of the set AH on it contains an (n - !)-dimensional quasicube Qn_ 1 with an 
edge a. Consider now the n-dimensional coordinate subspace En formed by 
En- 1 and the coordinate zn. Furthermore let A1v be the projection of the set 
A on the subspace En. For a given point (z ~, ... , z;- 1) EA m consider the set 
d = d(z!, ... , z;- 1) of values of z such that (z~, ... , z;- 1, z) E A 1v_ 

It is easy to see that the set d contains an interval with end points 

r1(z 1, .•• , zn- J) = sup' <p 1(z1, ... , z1"), 

zEA 11 

rz(z 1, ••• , zn- 1) = inf' <pz(z1, ... , z10), 

ZE A11 

where sup' and inf' are taken over the points z E A 11 which are projected 
onto a given point (z~, ... ,z;- 1). Clearly, in view of(A.15), r 1 - r 2 > a. 
We now assign to each point (z1, ... , zn- 1) E Am a segment c(z 1, •.• , zn- 1) 
of length a on the axis z10 + 1 : 

[½(r 1(z1, ... , zn-t) + rz(z1, ... , zn-l)) - a/2, 
½(r1(z1, ... ,zn-t) + rz(z 1, ... ,zn-J)) + a/2]. 

Clearly, c(z 1 , .•. , zn-J) c d(z 1, ••. , zn- 1). 

Consider now the set Q c En consisting of points (z 1, .•• , zn- 1, z10 + 1 ) 

such that 

z10 + 1 E c(z1, ... , zn- l). 

(A.18) 

(A.19) 
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This set is the required quasicube n •. Indeed, in view of (A.18) and (A.19) 
the set Q satisfies the definition of an n-dimensional quasicube with an edge a. 
At the same time we have Q E A1v by construction. 

To prove the lemma it remains to consider the case when the inequality 
(A.17) is fulfilled, i.e., 

Then 

V(A) = f <pJCz1, ... , z10) dz 1 • • • dz10 

Al 

+ f <pJCz 1 , ••• , z10) dz 1 • • • dz10 

All 

S aV(A1) + V(A11), 

and in view of (A.14) and (A.17) we obtain 

V(A) < C" a'o-n+ 1 + c•-1a10-n+ 1 = C" aUo+ 1J-n 
- lo lo lo+ 1 , 

which contradicts the lemma's condition. 

§A3 B-extension of a Set 

D 

Let A be a convex bounded set in E1• We assign to each point z EA an open 
cube Q(z) with the center at z and the edges oriented along the coordinate 
axes. 

Consider the set 

A0 = U O(z), 
ZEA 

along with the set A, which we shall call an s-extension of the set A. The set 
A, is the set of points y = (y1, ... , y1) for each of which there exists a point 
z E A such that 

s 
p(z, y) < 2· 

It is easy to show that an s-extension A, of the convex set A is convex. 
Now choose a minimal propers-net on the set A. Let the minimal number 

of elements of a propers-net of the set A be No(s, A). Denote byV(A,) the 
volume of the set A,. 
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Lemma A.2. The inequality 

N 0(1.5i:, A)i:1 s V(A,) (A.20) 

is valid. 

PROOF. Let T be a proper i:/2-net of the set A. Select a subset f of the set T 
according to the following rule: 

(1) The first point z 1 of the set f is an arbitrary point of T. 
(2) Let m distinct points z 1, ... , Zm be chosen. An arbitrary point of z E T 

such that 

min p(z, z;) ~ e 

is selected as an (m + l)th point off. 
(3) If there is no such point or if T has been exhausted, then the construction 

is completed. 

The set f· constructed in the manner described above is a l.5i:-net in A. 
Indeed, for any z EA, there exists t ET such that p(z, t) < i:/2. For such a t 
there exists z E f such that p(z, t) < i:. Consequently, p(z, z) < l.5i: and the 
number of elements in Tis at least N o(l.5i:, A). 

Furthermore, the union of open cubes with edge i: and centers at the points 
off is included in A,. At the same time cubes with centers at different points 
do not intersect. (Otherwise, there would exist z E Q(z1) and z E Q(z2), 

z1, z2 E f, and hence p(z 1, z) < i:/2 and p(z2 , z) < i:/2, whence p(z 1, z2 ) < i: 
and z1 = z2 .) Consequently 

V(A,) ~ N 0(1.5i:, A)i:1• 

The lemma is proved. D 

Lemma A.3. Let a convex set A belong to the unit cube in Ei, and A, be its 
i:-extension (0 < i: s l); and for some y > ln(l + i:) let the inequality 

N 0(1.5i:, A) > eY1 

beful.filled. Thenthereexistt(i:, y)anda(i:, y)suchthat-providedn = [t0 l] > 0 
-one can find a coordinate subspace of dimension n = [t0 l] such that a 
projection of A, on this space contains an n-dimensional quasicube with an 
edge a. 

PROOF. In view of Lemmas A.1 and A.2 and the condition (A.20), which is 
valid for this lemma, in order that there exist an n-dimensional coordinate 
subspace such that the projection of A, on this space contains an n-dimen­
sional quasicube with an edge a, it is sufficient that 

C'ibl-n < eYlel(l + e)-1, 

where b = a/(1 + i:). 
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In turn it follows from Stirling's formula that for this purpose it is sufficient 
that 

where y1 = y ln(l + e). Setting t = n/1 and taking 0 < t < ½, we obtain 

t(ln t - 1) I b In e + Y1 
- 1 +n < 1 ' - t - t 

using an equivalent transformation. 
Under the stipulated restrictions this equality will be fulfilled if the 

inequality 

-Jt(ln t - 1) + In b < (1 + 2t) In e + hi 
is satisfied. Now choose to(y, e) such that the conditions 

0 < to(e, y) s ½, 

-Jto(ln to - 1) < yi/6, 

-2t0 In e < yi/6 

(A.21) 

will be satisfied. This can always be achieved, since by assumption y1 > 0. 
Clearly for O < t s t0 these conditions are also fulfilled and in this case 
(A.21) will be fulfilled for 

In b = In e + 1; , 

or 

{ y - ln(l - e)} a = (1 + e)e exp 3 . 

The lemma is thus proved. 

§A4 An Auxiliary Lemma 

(A.22) 

D 

Now consider a class of functions <I> = F(x, oc) parametrized by means of 
oc EA defined on X. We shall assume that the class is convex in the sense 
that if 

F(x, oc 1), •.. , F(x, oc,) c <I>, (A.23) 

then 
r r 

I t;F(x, oc;) c <I>, I r; = 1, t;:?: 0. 
i= 1 i= 1 
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Now define two sequences: the sequence 

X;EX, 

and a random independent numerical sequence 

which has the property 

Y; = {~1 

Yi,···, Yi, 

with probability½, 

with probability ½. 

Using these sequences, we define the quantity 

Q(<l>) = MY sup ~ I ± F(x;, a)y; I· 
F(x,a)ECII i=l 

(The expectation is taken over the random sequences (A.24).) 
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(A.24) 

In Section A.I we denoted by A the set of /-dimensional vectors z with co­
ordinates z; 0= F(x;, a), i = 1, ... , /, for all possible a EA. Clearly A belongs 
to the unit /-dimensional cube in E1 and is convex. 

We rewrite the function Q(<l>) in the form 

1
1 1 

. I Q(<l>) = My sup l _L z'y; . 
ZEA 1=1 

The following lemma is valid. 

Lemma A.4. If for r, > 0 the inequality 

No(l.Sr,, A)> eY 1, 

is fulfilled for the set A, then the inequality 

y > ln(l + r,), 

( {Y - ln(l + r,)} ) (t 1) Q(<l>) 2 r, exp 3 - 1 2 - 21 

is valid, where t > 0 does not depend on [. 

PROOF. As was shown in the preceding section, if the conditions of the lemma 
are fulfilled, there exist t(r,, y) and a(r,, y) such that there exists a coordinate 
subspace of dimension n = [ti] with the property that a projection of the 
set A, on this subspace contains an n-dimensional quasicube with edge a. 
We have assumed here without loss of generality that this subspace forms 
the first n coordinates and the corresponding n-dimensional subspace forms 
a canonical subspace of this quasicube. 

We define the vertices of the quasicube using the following iterative rule: 

(1) The vertices of the one-dimensional cube are the end points of the 
segment c and c + a. 
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(2) To define vertices of an n-dimensional quasicube in an n-dimensional 
canonical space, we proceed as follows. Let the vertices of an (n - 1)­
dimensional quasicube be determined. Assign the segment 

[ n-1 Al n-1 a n-1 1 An-1 a] <p (zk, ... , 2k ) - 2' <p (2k, ... , zk ) + 2 

to each such vertex (2f, ... , 2;;- 1) (k is the number of the vertex), where 

<pn-1(2l, ... ' 2;;-1) = ½((()1(2l, ... ' 2,:-1) + <pi(2l, ... ' 2;;-1)), 

<p1(21, ... , 2n-l) = max {2n: (21, ... , 2n-1, 2n) E Qn}, 
z" 

<pz(21, ... , 2n-l) = min {2n: 21, ... , 2n-l, 2n) E QJ, 
zn 

and Qn is an n-dimensional quasicube. 

This segment is formed by the intersection of the line (2l, ... , 2;:- 1, zn) 
with the quasicube. The endpoints of the segment form the vertices of the 
quasicube. Thus if 

(2f, ... , 2i;- 1) E En-1 

is the kth vertex of an (n - 1)-dimensional quasicube, then 

( 1 An-1 n-1 Al An-1 a) 2k, ... , zk , <p (zk, ... , zk ) + 2 , 

( Al An-1 n-1 Al An-1 a) zk> ... , zk ' <p (zk, ... 'zk ) - 2 

are correspondingly the (2k - 1 )th and the 2kth vertices of the n-dimensional 
quasicube. 

Now we assign to an arbitrary sequence 

Yi,···, Yn 

a vertex 2* of a quasicube defined as follows: 

2!. = (c + ;) +; Y1, 

Aj _ j-1(<:,l Aj- 1) + a 
z*-<p "*, ... ,z* 2Yi, j =2, ... , n. 

In turn, to each vertex 2* of a quasicube in En we assign a point z* = 
(z!,, ... , z~) EA such that the distance between the projection (z!,, ... , z~) 
of this point in En and the vertex 2* is at most a/2, i.e., 

. . f, 

l z1 - 21 I < -* * 2' 
j = 1, 2, ... , n. 

This is possible because z* E Pr A, on En. 
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Thus we introduce two functions 

z* = ziyi, ... , Yn), 

We shall denote the difference z{ - z{ by bj (j = 1, ... , n) (lbil ~ f,/2) and 
bound the quantity 

Q(<l>) = M sup { 1.± ziyil 
zeA 1= 1 

1 I . 

~ [M i;l Z~Y; 

1 n . 1 I . 

=III Mylz~ + b;) + I i=~lMyiz~. 

Observe that the second summand in the sum is zero, since every term of the 
sum is a product of two independent random variables Yi and z~, i > n, one 
of which (y;) has zero mean. 

We shall bound the first summand. For this purpose consider the first 
term in the first summand: 

f M[Y1 (c + ~ + ~ Y1 + b1)] 

= f [~ + My1b1] 
1 

~ 21 (r1. - e). 

we observe that the vertex (z~, ... , z!- 1 ) was chosen in such a manner that 
it would not depend on Yk but only on y 1, ... , Yk- 1. Therefore 

1 [a ] 1 lk = 1 2 + Mykbk ~ 2/a - e). 

Thus we obtain 

Q(<l>) > M :.~~ { it z~yi ~ ;, (a - e) > (a - e) (~ - ~). 

Choosing the quantity a in accordance with (A.22), we arrive at 

Q(<l>) > e(exp{y - ln~l + e)}- 1)(i- ~). 
The lemma is thus proved. D 
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§A5 Necessary and Sufficient Conditions for Uniform 
Convergence: The Proof of Necessity 

Theorem A.2. For the uniform convergence of the means to their mathematical 
expectations over a uniformly bounded class of functions F(x, rx), rx EA, it is 
necessary and sufficient that for any t: > 0 the equality 

lim HA(t:, I) = 0 
1-00 l 

(A.25) 

be satisfied. 

To prove the necessity we can assume without loss of generality that the 
class F(x, rx) is convex in the sense of (A.23), since from the uniform con­
vergence of the means to their mathematical expectations for an arbitrary 
class follows the same convergence for its convex closure, and the condition 
(A.25) for a convex closure implies the same for the initial class of functions. 

PROOF OF NECESSITY. Assume the contrary. For some t:0 > 0 let the equality 

1. HA(t:0 , I) ( ) 0 1m 1 = c t:0 > 
1-00 

(A.26) 

be fulfilled, and at the same time let uniform convergence hold, i.e., for all t: 

let the relationship 

lim P{sup IMF(x, rx) - { _± F(xi, rx)I > s} = 0 
l-+oo cxeA ,=1 

(A.27) 

be satisfied. This will lead to a contradiction. 
Since the functions MF(x, rx), (1/l) Li= 1 F(x;, rx), rx EA, are uniformly 

bounded by 1, it follows from (A.27) that 

Jim M{sup IMF(x, rx) - { _I F(x;, rx)I} = 0. 
l-+oo «eA i=l 

This implies that if/ 1 -+ oo and I - l 1 -+ oo, then the equality 

Jim M{sup If _I, F(x;, rx) - 1 ~ 1 . ± F(x;, rx)I} = 0 (A.28) 
11,1-oo aeA 11=1 11=!1+1 

is fulfilled. 
Consider the expression 

I [C7 11 n I I] I(x 1 , ••• , x1) = L sup -21 -1 _L F(x;, rx) - . L F(x;, rx) . 
n=O aeA ,= 1 1=n+ 1 
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We subdivide the summation with respect ton into two "regions": 

I: In_ ~I < 1213, 

II: In - !_I > 1213 2 - . 

Then taking into account that 

we obtain 

c7 I(x 1, ••• ,x1)~L, 
nell 2 C" I l (n n ) + L --/- sup - - L F(x;, o:) 

nEI 2 ,e,\ n [ i= I 

-~ (~1 ± F(x;, o:))1· 
I 1-ni=n+i 

Note that in region I (½ - 1//113 < 11// < ½ + 1//113), 

q 
I-2, ~ 1, 
nEI 

while in region II 

I c7 __, o. 
nell 2' l-oc, 

Furthermore 

Jim MJ(x 1, •.. ,x1) s; Jim (I ~f 
l- oc, I-+ ::x n E II 
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(A.29) 

1 11 n 1 1 I C") + -2 max M sup - L F(x;, '.X) - i-=- - L F(x;, 'l.) L ,-i' . 
nil 7EA ni=l ni=n+l nel ,_ 

It follows from (A.28) that 

1
1 " t I I max M sup - _I F(x;, 'l.) - -- =-- I F(x;, 'l.) i~ 0. 

nel ,e,\ 11 1=! / 11 1=n+I I 

Thus taking (A.29) into account we have 

Jim M/(x 1, ••. , x1) = 0. (A.30) 
1-oc 

On the other hand 
1 I! 

Ml(x 1, ••• , x1) = M TT J/CT,,{x 1, ... , X1}), 
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where T,, (k = 1, ... , /!) are all the permutations of the sequence. We trans­
form the right-hand side: 

1 I! 

MI! k~i J(T,,{x 1, ••• , x1}) 

1 I! I [Ci'l I n l I] = M Ti L L sup 2' l _L F(xi(i,k), ex) - . L F(xiU,k), ex) 
·k=ln=OoeA ,=1 ,=n+l 

1 1 Cj'll' I = M ~ C" L sup~ I -~ Y;F(x;, ex) . 
n-0 I y,, ... ,y, oeA ,-1 

(Here j(i, k) is the index obtained when the permutation T, acts on i.) 
In the last expression the summation is carried out over all the sequences 

Y1, ···,Yi 

which haven positive values. 
Furthermore we obtain 

M/(x 1, ••• , x1) = M ½i{ L sup ii .t Y;F(x;, ex)I}· 
y,, ... ,y,oeA ,-1 

In (A.31) the summation is carried over all sequences 

Y1, ···,Yi· 

Choose for e0 > 0 a number such that 

I. HA(eol) () 0 1m 1 = c e > . 
1-00 

(A.31) 

Since c(e) is nondecreasing as e decreases, one can choose e in such a manner 
that 

0 < l.5e s e0 , 
c(e) - In 2 

ln(l + e) < 2 , c(l.5e) ~ c(e0 ) 

will be fulfilled. Then in view of (A.9) the probability that the inequality 

A {c( e0) In 2} N 0 (x 1, ..• , x,, l.5e) > exp 2 (A.32) 

is fulfilled approaches 1. 
According to Lemma A.4, if (A.32) is satisfied, the expression appearing 

in the braces in (A.31) exceeds 
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where y = ½c(t0) In 2 - ln(l + t), and t(t, y) does not depend on l. From 
this we conclude that 

1. ( ) • (t 1) Y/3 1m I x 1, ... , x1 > hm t -2 - 21 (e - 1) > 0. 
I-+ oo l--+ ex:, 

This inequality contradicts the assertion (A.30), and the contradiction 
obtained proves the first part of the theorem. D 

§A6 Necessary and Sufficient Conditions for 
Uniform Convergence: The Proof of Sufficiency 

The following lemma is valid. 

Lemma A.5. If for any t > 0 the relation 

P{!~~,f it F(x;, a) -f i=t/(x;, a)I > t} ~ 0 
is valid, then for any t the relation 

P{supl!z _I F(x;, a) - MF(x, a)I > t} __. 0 
,xeA 1= 1 1-+ro 

also holds. 

PROOF. Assume the contrary. For to > 0 let 

lim P{supl!, _I F(x;, a) - MF(x, a)I >to}# 0. 
l--+oo aeA i= 1 

Denote by R1 the event 

sup If I F(x;, a) - MF(x, a)I > to}· 
,xeA I= 1 

Then for l sufficiently large the inequality 

P{R1} >I'/> 0 

is fulfilled. Denote 

~II F(x;, a) - I F(xi> a)I = S(xi, ... , Xi, a) 
j i=l i=l+l 

and consider the quantity 

P21 = P{!~~ S(xi, ... , X 2 i, a) > t;} 

(A.33) 

= J- · J 0[!~~ S(x1, ... , x21,"') - t;] dP(x 1) • • • dP(x 21). 

Xl, 000 ,Xll 
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Next the inequality 

P21 ~ L, {f · · J 0[!~~ S(x1, ... , X2i, ix) - 8;}P(x1) · · · dP(x21). 
Xi, .• ,,X21 

is valid. To each point x1, ... , x1 belonging to R1 we assign the value 
ix*(x1, ... , x1) such that 

If J1 F(xi, ix*) - MF(x, ix*)I > 8
;. 

Denote by R.1 the event in X 1 = (x1+ 1, ... , x21) such that 

!11. f F(xi, ix*) - MF(x, ix*)I ~ 8;. 
1=1+1 

Since the function F(x, ix) is uniformly bounded, it follows that 

P(R1)--+ 1. 
I-+ ex, 

Furthermore 

P21 ~ L, {L,0[s(x1, ... ' X21; ix*(xi, ... ' x,)) - ~0] 

x dP(x1+ 1) • • · dP(x21)} dP(x1) · · · dP(x1). 

However if, x1, ... , x1 e R1 and x1+ 1, ... , x 21 e R.1, then the integrand equals 1. 
Choosing l so large that P(R1) >½,we obtain 

and hence lim1 .... 00 P1 =I= 0, which contradicts the lemma's assumption. D 

PROOF OF SUFFICIENCY. We shall prove that under the conditions of the 
theorem 

P{sup S(x1, ... , x 21 ; ix)> e}--o. 
ixeA 1-+oo 

In view of Lemma A.5 it follows from the condition (A.33) that the assertion 
of the theorem is valid: 

P{supl!l _i F(xio ix) - MF(x, ix)I > e}--+ 0. 
ixeA 1=1 1-+oo 

We shall now verify (A.33). 
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For this purpose observe that since the measure is by definition sym­
metric, the equality 

P{sup S(xi, ... , x 2,, cx) > e} 
aeA 

1 (21J! { } = (2/)I _L P sup S(Tj{x1, ••. , x 21}, cx) > e 
· 1= 1 aeA 

(A.34) 

is valid; here ½•j = 1, ... , (2/)!, are all the permutations of the indices, and 
Yi{xi, ... , x 21) is a sequence of arguments obtained from the sequence 
x1, .•. , x 21 when the permutation½ is applied. 

Now consider the integrand in (A.34): 

1 am ( ) K = - L 0 sup S(Ti{xi, ... , x21}, cx) - e . 
(2/) ! j= 1 aeA 

Let A be the set of points in E21 with coordinates z; = F(x;, cx), i = 1, ... , 21, 
for all cx EA. 

Let z(l), ... , z(N0 ) be the minimal proper e-net in A, and cx(l), ... , a(N0 ) 

be the values of a such that 

i = 1, ... , 21, k = 1, ... , N 0 • 

We show that if the inequality 

e 
max S(x1, .•. , X21; cx(k)) < 3 

l 5k5No 

is fulfilled, then the inequality 

is also valid. 

sup S(x 1, .•• , x 2,, a) < e 
aeA 

Indeed, for any cx there exists a(k) such that 

e 
IF(x;, a) - F(x;_, a(k)I < 3, i = 1, 2, ... , 21. 
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Therefore 

1
1 I 1 21 I 
-1 _L F(xi, a) - -1 . L F(xi, oc) 

,=1 ,=1+1 

1

1 ( I i ) = 1 J1 
F(xi, a) - J

1 
F(xi, a(k)) 

B 111 21 I s 2 3 + 1 i~l F(x;, oc(k)) - i=t+ 
1 
F(x;, a(k)) < B. 

Analogous bounds are valid for S(½{x 1, .•• , x21}, oc). Therefore 

1 (21)! [ BJ 
K = (21)! i~

1
0 m:x S(½{x 1, ... , x21}, oc(k)) - 3 

1 (21)! No B] 
s (21) ! J

1 
J

1 
0[S(½{x 1, •.• , x21 }, oc(k)) - 3 

We now bound the expression in the braces: 

Here 1'ii) is the index obtained when the permutation ½ acts on i. 
We arrange the values 

F(x;,, oc(k)) s F(xi,, oc(k) s · · · s F(xi2,, a(k)) 

in the order of their magnitudes and denote zP = F(x; , oc(k)). 
p 

Next we use the notation 

d =zP-zP-1 
p ' 

{
1 for F(xi, oc(k)) s zP, 

D;p = 0 for F(xi, oc(k)) > zP, 

. {1 for T11(i) s /, 
r{ = 0 for Ti 1 (i) > l, 
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where Tj- 1(i) is the index which is mapped into i by the permutation ½· 
Then 

1 I 21 . 21 .

1 = -, I ~p .I b;pr{ - I ~p .I b;p(l - r{) 
p r=l p r=l 

1

1 21 . I = I ~p -1 _I b;/2rf - 1) . 
p ,= 1 

Furthermore, if the inequality 

m:x ~ IJ1 b;p(2r{ - 1)1 < i (A.35) 

is fulfilled, then the inequality 

L~P~I_I b;p(2r{ - 1)1 < i L ~P :<:; i 
p ,= 1 p 

(A.36) 

is also valid. The condition (A.35) is equivalent to the following 

[ 1 I 21 . I /;J m:x 0 1 J1 
b;p(2r{ - 1) - 3 = 0. 

Th us we obtain 

R1 < _!_/)I '.f1 
max 0[!, l.f b;p(2r{- 1)1- -3i;] (2 . J = 1 p l = 1 

:<:; ~ {(2~)! :~:0D IJ1 b;p(2r{ - 1)1- i J}· (A.37) 

Let there be 2/ balls, of which Ii! 1 b;p = m are black, in an urn model 
without replacement. We select / balls (without replacement). Then the 
expression in the braces of (A.37) is the probability that the number of black 
balls chosen from the urn will differ from the number of remaining black 
balls by at least (i;/3)/. This value equals 

Ck ci-k r _ " m 21-m 

- f c~1 ' 

where k runs over all the values such that 

l~-~1>~ l l 3. 

In the Appendix to Chapter 6 the bound 

{ i;2[} r < 3exp - 9 
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was derived. Thus 

R 1 < ptl 3 exp{- i:;/} = 6/ exp{- 1:;1 
Returning to the bound, on K we obtain 

K < 6/No(x1, ... , x21 , i) exp{- e;/} 
Finally, for any c > 0 we have 

P{sup f I.± F(x;, oc) - . I F(x;, oc)I > i:} 
aeA ,=l ,=l+l 

::;; f dP(x 1 ) • • • dP(x 21 ) 

log2 N:7'(x1, ... , x21; e/ r) > cl 

+ f K(x 1 , ••• ,x21 )dP(x 1 )···dP(x21 ) 

log2 NJ'(x1, ... ,x21;e/3) s; cl 

::;; p{1og2 N~(x1,; .. , X21; e/3) > c} 

+ 6/ exp{- r,;/ + c1}. 

Setting c < e2 /10, we obtain that the second term on the right-hand side 

approaches zero as / increases. In view of the condition of the theorem and 

the relation (A.8), the first term tends to zero. The theorem is proved. D 

§A 7 Corollaries 

Theorem A.3. For uniform convergence of means to their mathematical 

expectations it is necessary and sufficient that for any r, > 0 the equality 

lim !1 M log V(A,) = log r, 
I-+ oo 

be fulfilled, where A, is the e-extension of the set A. 

PROOF. Necessity. Let e, [J > 0, [J < i: and T0 be a minimal b-net A with the 

number of elements N~(x 1 •.• , xi, b). We assign to each point in T0 a 

cube with edger, + 2b and center at this point, oriented along the coordinate 

axes. 
The union of these cubes contains Ae, and hence 
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whence we obtain 

I. I H"(F,, /) 
1m M -1- log V(A,) :,:; ~~ + log(1: + 26). 

,- .x I 

In view of the basic theorem, 

1 I -M I og V(A,) :,:; log(c: + 2o). 

Since V(A,) > 1:1 and 6 is arbitrary, we arrive at the required assertion. 
Sufficiency is obtained from the following considerations. Assume that 

the uniform convergence is not valid. Then for some i: > 0 

Jim M log NS(x 1, ••• , x1; I.Si:)=)'> 0 
I-cc 

whence in view of Lemma A.2 

. log V(A,) 
hm M ---~--- ;:::: )' + log 1:. 
1-x I 

D 

Lemma A.6. If uniform convergence is valid in the class o(fimctions F(x, x), 
it is then also valid in the class I F(x, x) I. 

PROOF. The mapping 

F(x, x) -> I F(x, x) I 

does not increase the distance 

p(a 1, c>: 2 ) = max IF(xj, a 1) - F(xi, a2 )1. 
1 ~i~! 

Therefore 

NS(x 1, ••• , x1; 1:) > NS(xi, ... , x,; i;), 

where NS and NS are the minimal numbers of the elements in a i-:-net in the 
sets A and A' respectively generated by the classes F(x, a) and I F(x, a) I. 

Consequently the condition 

1. {logNS(x 1, ... ,x,;i-:) '} 
1m P I > u = 0 

,_ co 

implies 

1m P -------- > o = 0 1. {logNS(x 1, •.• ,x1;1-:) -} 
,_ co / 

q.e.d. D 
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Consider a two-parameter class of functions 

f(x, a1, a2) = IF(x, a 1) - F(x, a2)1, 

along with the class of functions F(x, a), a EA. 

IX1, (.(2 EA, 

Lemma A.7. Uniform convergence in the class F(x, a) implies uniform con­
vergence in f(x, a1, a2). 

PROOF. Uniform convergence in F(x, a) clearly implies such a convergence 
in F(x, a 1) - F(x, a 2 ). Indeed, the condition 

s~p IMF(x, a) - i it F(xi, a)I < i:; 

and the condition 

imply that 

I MF(x, a1) - MF(x, :x2 ) 

l I 1 / I - 1 ;;1 
F(x;, a1) + 1 Ii F(x;, a2 ) 

s IMF(x, a1) -i J1 F(xi, 1X1)1 

+ IMF(x, a) - f J
1 

F(xi, a2 )1 

:,~~,M(F(x, a1) - F(x, a2)) -f ;t(F(x;, a1) - F(x;, cx 2))1 s 2c. 

Applying Corollary 2, we now obtain the required result. D 

Denote by L(x 1 , •.• , x1, i:;) the number of elements in the minimal c-net 

of the set A(x1, ••• , x1) in the metric 

Theorem A.4. For a uniform convergence of means to mathematical expecta­
tions it is necessary and sufficient that a function T(i:;) exists such that 

lim P{L(x 1, ... , x1; i:;) > T(c)} = 0. 
1-00 

PROOF. Necessity. The uniform convergence of F(x, :x) implies the uniform 
convergence of the function f(x, a 1, 1X 2), i.e., 

!,~~ If ;t I F(x;, 1X1) - F(x;, a2) I - MI F(x, a1) - F(x, a2) 1);:: 0. (A.38) 
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Consequently for a finite /0,and a given i; there exists a sequence x!, ... , xt 
such that the left-hand side of (A.38) is smaller than c. This means that the 
distance 

1 lo 

P1(a1, a2) = z":i J1 IF(xf, a 1) - F(xi, a2)1 (A.39) 

approximates with precision i; the distance in the space of functions 

(A.40) 

uniformly in a 1 and a2 • However, in the metric (A.39) there exists on the set 
A a finite i;-net S with the number of elements L(x!, ... , xt; i;). The same 
net S forms a 2i;-net in the space A with the metric (A.40). 

Next we utilize the uniform convergence of p(ai, a2) to pi(a 1 , a2) and 
obtain that the same net S, with probability approaching 1 as l--+ oo, forms 
a 3i;-net on the set A(x!, ... , x1'). Setting T(i;) = L(x!, ... , xt; i;), we obtain 
the assertion of the theorem. 

The proof of sufficiency of the conditions of the theorem for uniform 
convergence is analogous to the proof of sufficiency for Theorem A.2. D 




