
Chapter 6 

A Method of Minimizing Empirical Risk 
for the Problem of Pattern Recognition 

§ 1 A Method of Minimizing Empirical Risk 

In the preceding three chapters the estimation of dependences was associated 
with the methods of estimating probability densities. The determination of 
the function which minimizes the expected risk 

/(a) = f (y - F(x, a)) 2 P(x, y) dx dy 

on the basis of the empirical data 

X1,Y1; ... ;x1,Y1 

(6.1) 

(6.2) 

was reduced to estimating the density F(x, y) on the basis of the sample 
(6.2) and minimization of the functional 

f 2-I.mp(a) = (y - F(x, a)) P(x, y) dx dy. 

As was mentioned in Chapter 2, this method of minimizing the risk (6.1) 
generally is not reasonable, because the problem of density estimation is a 
more difficult problem than the minimization of the expected risk. Only 
when a substantial prior information is available about the desired density 
P(x, y), so that the function P(x, y) can be defined up to its parameters, is 
this approach plausible. Methods of parametric statistics developed for this 
particular case were utilized in the preceding chapters. 

However, in specific problems the structure of the density P(x, y) is 
unknown. Thus the successful application of methods of parametric statistics 
hinges on the assumption that the hypothesized density structure cor
responds to the true one. 
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140 6 Minimizing Empirical Risk in Pattern Recognition 

Starting with this chapter, we shall study methods of estimating depen
dences which do not require density estimation. The basis for these methods is 
the principle of minimizing the empirical risk, according to which as the 
minimum point of the functional (6.1) one takes the minimum point of the 
empirical functional 

(6.3) 

constructed from a random independent sample (6.2). Let the minimum of 
functional (6.3) be attained for F(x, aemp). The problem is to establish when 
the obtained function F(x, aemp) is close to the function F(x, a0 ) which 
minimizes (6.1) in F(x, a). 

Above (Chapter 2, Section 6) we have associated this problem with the 
problem of the uniform convergence of the means to their mathematical 
expectations, i.e., with the situation when for any given value of deviation x 
the inequality 

(6.4) 

can be asserted. 
Let (6.4) be satisfied. Then the inequality 

P{I(aemp) - I(a0 ) > 2x} < 17 (6.5) 

is valid. In other words, if (6.4) holds, then with probability 1 - 17 the 
deviation of the function (solution) F(x, a0 ) which is the best in the class 
F(x, a) from the function which yields a minimum for the empirical risk 
F(x, aemp) does not exceed 2x. 

Indeed, the condition (6.4) implies that with probability 1 - '1 the two 
inequalities 

I ( aemp) - I em/ aemp) < X' 

Iem/ao) - I(ao) < X 

(6.6) 

are simultaneously satisfied. Moreover, since aemp and a0 are the minimum 
points of /em/a) and /(a), the inequality 

is valid. The inequalities (6.6) and (6.7) yield that 

J(aemp) - I(ao) < 2x. 

(6.7) 

(6.8) 

And since the inequalities (6.6) are both fulfilled simultaneously with proba
bility 1 - 17, so is (6.8). Consequently 

P{J(aemp) - J(ao) > 2x} < 11· (6.9) 
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In this chapter we shall consider the theory of uniform convergence of the 
means to the mathematical expectations as applied to the problem of pattern 
recognition: i.e., in the case when the loss function in the functional of 
expected risk takes only two values, zero and one. In Chapter 7, for the 
problem of regression estimation we shall extend the results obtained to the 
case when the loss function takes on an arbitrary form in the interval (0, oo ). 
It is important to note here that the validity of basic theorems proved in 
these chapters does not depend on the form of the loss function. Therefore in 
spite of a quadratic loss function used in the text we shall obtain a general 

theory of risk minimization. 

§2 Uniform Convergence of Frequencies of Events 
to Their Probabilities 

Consider the functional whose minimization is the essence of the pattern 
recognition problem: 

J(rx) = P(rx) = J (w - F(x, rx))2P(x, w) dx dw. (6.10) 

As has already been mentioned, this functional defines for each decision rule 
the probability of erroneous classification. The empirical functional 

1 I 

/emp(rx) = v(rx) = l J
1 

(w; - F(x;, rx)) 2, (6.11) 

computed by means of the sample 

X;, W1; ... ; Xi, W1, (6.12) 

defines for each decision rule the frequency of incorrect classification. 
According to the classical theorems of probability theory the frequency 

of occurrence of an event converges to the probability of this event as the 
number of trials increases indefinitely. Formally this means that for any 
fixed rx and x the relation 

lim P{IP(rx) - v(rx)I > x} = 0 (6.13) 
1-00 

holds. However (cf. Chapter 2, Section 6), the condition (6.13) does not 
imply that the rule which minimizes (6.11) will yield a value of the functional 
(6.10) close to the minimal. For I sufficiently large the proximity between the 
solution obtained and the best one does follow from a stronger condition 
which stipulates that the equality 

lim P{sup IP(rx) - v(rx)I > x} = 0 (6.14) ,-co a: 
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is valid for any x. In this case we say that the uniform convergence of frequencies 
of events to their probabilities over a class of events S(ix) is valid. Each event 
S(ix*) in the class S(ix) is given by the decision rule F(x, ix*) as a set of pairs 
x, w for which the equality (w - F(x, ix*))2 = 1 is satisfied. 

Below we shall present conditions which assure uniform convergence of 
frequencies of events to their probabilities and at the same time determine 
the domain of applicability of the method of minimizing empirical risk. 
However, we first note that application of the method of minimizing the 
empirical risk does not guarantee a successful solution of the problem of 
estimating dependences. Here is an example of an algorithm for pattern 
recognition which minimizes the empirical risk but at the same time one 
cannot guarantee that the constructed decision rule will be close to the 
best in a given class: Elements of the sample are stored in memory, and each 
situation to be recognized is compared with the examples available in 
memory. If the situation at hand coincides with one of the examples it will 
be attributed to the class to which the example belongs. If, however no 
analogous example is available in memory, the situation is attributed to the 
first class. It is obvious that such a device cannot improve itself, since usually 
only a negligible fraction of the possible situations will correspond to the 
sample. At the same time, such a device classifies the elements of the sample 
without error, i.e., the algorithm minimizes the empirical risk down to 
zero. 

Below we shall verify that this algorithm uses a set of decision rules which 
form a system of events over which uniform convergence does not hold. 

§3 A Particular Case 

When does the uniform convergence of frequencies to probabilities take 
place? Consider the simple case where the class of decision rules F(x, ix) is 
finite, consisting of N rules: 

F(x, ix 1), ..• , F(x, ixN). 

An event A; corresponds to each decision rule F(x, ix;) consisting of pairs 
x, w such that (w - F(x, ix;))2 = 1. This defines a finite number N of events 
A,, ... , AN. 

For each fixed event the law of large numbers is valid (the frequency 
converges to the probability as the number of trials increases indefinitely). 
One of the specific forms of this law is the Hoeffding inequality: 

P{IP(ix;) - v(ix;)I > x} < 2exp{-2x2 /}. (6.15) 

We are however interested in uniform convergence, i.e., in the probability of 
simultaneous fulfillment of inequalities 

i = 1, 2, ... , N. 
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This probability can be easily bounded from above if the probability of 
occurrence of each one of the inequalities (6.15) is assessed separately: 

P{s~p IP(a;) - v(a;)I > x} ~ it P{IP(ai) - v(a;)I > x}. 

Taking into account the inequality (6.15), we obtain 

P{s~p IP(a;) - v(a;)I > x} < 2N exp{-2x2 l}. (6.16) 

This inequality implies that for a finite number of events the uniform con
vergence of frequencies of occurrences of events to the corresponding 
probabilities is always valid, i.e., the limit 

Jim P{sup IP(ai) - v(ai)I > x} = 0. 
1-00 ' 

We now require that the probability of the realization of the event 

{s~p IP(ai) - v(ai)I > x} 

not exceed Y/, i.e., that the inequality 

P{s~p IP(a;) - v(ai)I > x} < 1J (6.17) 

will be fulfilled. It follows from the bound (6.16) that the inequality (6.17) is 
definitely satisfied if the quantities N, l, x, and '1 are connected by 

2N exp{ -2x2 l} = IJ. (6.18) 

If one solves Equation (6.18) for x, then for given N, l, and '7 an estimator of 
the maximal deviation of the frequencies from the corresponding probability 
in the class of events under consideration is obtained: 

X= 
In N - ln(11/2) 

21 
(6.19) 

If, however we solve Equation (6.18) for l, then we obtain the size of the 
sample such that with probability at least 1 - '7 one can assert that the 
maximal deviation of the frequency from the probability over this class does 
net exceed r. : 

1 = In N - ln(11/2) 
2x2 

We have thus proved the following theorem: 

(6.20) 

Theorem 6.1. Let the set of decision rules consist of N elements, and for decision 
rules F(x, a;) let the frequency of errors in the sample of size l be equal to 
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v(ix;). Then with probability 1 - I'/ one may assert that the inequality 

v(ixi) -
In N - ln(l'//2) 

21 ::; P( ixJ ::; v( ixi) + 

is valid simultaneously for all decision rules. 

In N - ln(l'//2) 

21 

Remark. Since the inequalities are valid for all N rules, Theorem 6.1 deter
mines a confidence interval for the quality of a decision rule F(x, 1Xemp) 

which minimizes the empirical risk among N rules. This interval is 

In N - ln(l'//2) 
21 ::; P( 1Xemp) ::; v{ 1Xemp) + 

In N - In(l'//2) 

21 

In what follows the upper bound will be of importance: with probability 
1 - ,,, 

In N - In (l'//2) 
21 

is valid simultaneously for all decision rules (including those which minimize 
empirical risk). 

§4 A Deterministic Statement of the Problem 

The size of the confidence interval computed based on Theorem 6.1 may be 
excessive. Indeed, consider the case when the set consisting of N decision 
rules contains a rule which solves perfectly the problem of pattern recognition, 
i.e., a rule for which the possibility of erroneous classification will equal zero. 
Such a formulation of the problem is sometimes called deterministic.t Then 
this rule (or a rule close to it) should be found from the sample 
X1, W1; ... ; X1, W1. 

We seek this rule using the method of minimizing the empirical risk. Since 
there exists among functions F(x, ixi) (i = 1, ... , N) a function which solves 
the problem perfectly, it is clear a priori that for any sample x 1, w 1 ; ••• ; 

x1, w1 the value of the minimum of empirical risk will be zero. This minimum, 
however, can be obtained for several functions. Thus it becomes necessary to 
estimate the probability that the quality of any function which yields a value 
of zero for the empirical risk will not be worse than the given x. 

Introduce the function 

i'J(z) = {1 for z = 0, 
0 for z > 0. 

t The terminology is unfortunate, since the problem remains statistical. However, we use it 
because it is widespread. 
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Then an estimate of the rate of uniform convergence of frequencies to 
probabilities over the set of events for which the frequency of errors is zero 
is an estimate of the probability of an event 

{s~p IP(llC;) - v(llC;) IB(v(llCi)) > x} 
(rather than the event {supi IP(llCi) - v(llC;)I > x} as in Theorem 6.1). 

Since the number of functions for which the zero value of empirical risk is 
attained does not exceed N (the total number of the functions in this class), 
the inequality 

P{s~p IP(llC;) - v(llC;)IB(v(llC;)) > x} :=:; NPx (6.21) 

is valid. Here Px is the probability that the decision rule for which the 
probability of committing an error exceeding x will classify correctly all the 
elements of the sample. This probability may be easily bounded: 

Substituting the bound for Px into (6.21), we obtain 

P{s~p IP(llC;) - v(llC;)IB(v(llC;)) > x} :=:; N(l - x)1. 

In order that the probability 

may not exceed the value 17, it is sufficient that the equality 

N(l - x)1 = 11 

be fulfilled. Solving this equation with respect to I, we obtain 

l=lnN-ln17 
-ln(l-x)" 

Since for small x the approximation 

-ln(l - x) ~ x 

is valid, (6.25) may be represented in the form 

l=lnN-ln17_ 
X 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

In contrast with (6.20), the denominator here is x rather than 2x2 , i.e., in the 
deterministic formulation the sufficient size of the sample is smaller than 
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in the general case. Solving (6.24) with respect to x, we obtain 

lnN-ln11 
X = [ . 

Thus the following theorem is valid: 

Theorem 6.2. If one chooses from the set of decision rules consisting of N 

elements a rule that commits no errors in the sample, then with probability 
1 - IJ one can assert that the probability of erroneous classification using the 
selected rule is within the limits 

0 ~ P ~ X, 

where 

In N - In 1J 
X=--[--. 

§5 Upper Bounds on Error Probabilities 

Despite their apparent simplicity, Theorems 6.1 and 6.2 are quite deep. 
Essentially the subsequent development of the theory of minimizing empirical 
risk consists of a generalization of these theorems to the case of infinitely 
many decision rules. The basic points of this further theory are already 
available. We shall dwell on them in some detail. 

(1) Theorems 6.1 and 6.2 are immediately obtained from the bounds on 
the rate of uniform convergence, over a class of events, of frequencies to 
probabilities. Theorem 6.1 is based on the bound (6.16) on the rate ofuniform 
convergence over the class of events SN: A1, ..• , AN of frequencies towards 
probabilities. Theorem 6.2 is based on a bound on the rate of uniform 
convergence over a narrower class { IP(oc;) - v(oc;)I O(v(oc;)) ~ x}. Denote this 
class by SN. 

(2) In both cases the rate of uniform convergence was determined by the 
product of two quantities: the number of events in a class, and a bound on 
the probability that the frequency of any fixed event in the class deviates by 
more than x from the probability of this event. For the events considered in 
Theorem 6.1 this probability does not exceed exp{ -2x 2 l}; for the events 
considered in Theorem 6.2 the analogous probability does not exceed 
(1 - x)1 ~ exp{ -xi}. Thus a bound on the rate of uniform convergence of 
frequencies to probabilities over a class of events is obtained from a bound 
on the rate of the ordinary convergence which follows from the law of 
large numbers, by multiplying it by the number of events in this class. When 
constructing a theory of uniform convergence over a class of events with an 
infinite number of members, this structure of a bound on the rate of uniform 
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convergence is retained. However, instead of the number of events, in this 
case other characteristics of the "capacity" of the class of events are utilized. 

(3) In Theorem 6.1 two-sided bounds on the probability of erroneous 
classification using a decision rule which minimizes the empirical risk were 
obtained. However, for the subsequent theory the lower bound is of little 
importance. Therefore it is of interest to obtain a bound on a uniform one
sided deviation, i.e., a bound on 

and not on 

P{ s~p IP(C.t;) - v(C.t;)I > ,f 
The probability of the event {suplP(C.t;) - v(C.t;)) > x} does not exceed the 
probability of the event {sup; IP(C.t;) - v(C.t;)I > x}. Consequently a more 
refined bound on the probability of a uniform one-sided deviation 
P{sup; (P(C.t;) - v(C.t;)) > x}, than that on the probability of a two-sided 
uniform deviation P{sup; IP(C.t;) - v(C.t;)I > x} is possible. Such a bound 
allows us to obtain from the above a bound on the probability of erroneous 
classification which is better than the one obtained from Theorem 6.1. 

(4) The bounds on the rate of uniform convergence given by (6.16) and 
(6.23) depend substantially on bounds on the probability of deviation of a 
frequency from the probability of events in the class under consideration 
(SN or SN). The least favorable event A for the class SN is that for which 
P(A) = ½. Therefore only the bound (6.16) is possible. For the class of events 
SN the least favorable event is the one for which P(A) = x. The more refined 
bound (6.22) is available for the probability of deviation of the frequency 
from the probability of this event. Thus the bounds obtained for the classes 
of events SN and SN differ in the same manner as the bound on the probability 
of a deviation of an event A such that P(A) = ½ differs from the corresponding 
bound on an event A' such that P(A') = x. This fact demands that more 
careful attention be given to the requirements imposed on the amounts of 
deviation of frequencies from the respective probabilities for different events 
in the class. For our purposes of obtaining a uniform bound on the risk it is 
reasonable not to require a uniform deviation of frequencies from proba
bilities for all events in the class but to allow a larger deviation for events 
such that P(A) is close to ½ and a smaller one for events such that P(A') is 
close to x. For example, it makes sense to bound the uniform relative value 
of the deviation 

{ P(C.t;) - v(C.t;) } 
sup ( ) > x , 

i (J C.t; 

where a(C.t;) = JP(C.t;)(l - P(C.t;)); for small P(C.t;) the approximation 

a(C.t;) ~ jP{a;) is valid. We now obtam a bound on the probability of the 
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one-sided relative deviation 

{ P(a;) - v(a;) } 
P sup ~ > x, 

i v P(a;) 
(6.26) 

and using it we shall construct an upper bound on the probability of erroneous 
classification. To derive the bound (6.26) we shall utilize the inequality 

p{P(~a;) > x} < exp{ -½x2 l}. (6.27) 

It follows from (6.27) that for a class consisting of N events the following 
bound on the rate of uniform convergence is valid: 

P{sup P(~a;) > x} < N exp{ -½x 2 l}. 
; P(a;) 

(6.28) 

We shall require that the probability of uniform one-sided relative deviation 
( 6.28) not exceed Y/: 

N exp{ -½x2 l} = Yf. 

This is certainly satisfied if 

Let the condition (6.29) be fulfilled. Then the inequality 

P(a;) - v(a;) < x 
.jNiJ 

(6.29) 

(6.30) 

is satisfied simultaneously for all events Ai with probability 1 - r,. Solving 
(6.30) for P(a;), we obtain that 

x2 
( P(ai) < 2 1 + 4v(a-)) 

1 +7 + v(ai) (6.31) 

is valid with probability 1 - Y/ for all the events in the class simultaneously. 
Substituting (6.29) into (6.31), we obtain that with probability 1 - Y/, 

the N simultaneous inequalities 

In N - In Y/ ( 
P(a;) :s; l 1 + 1 2v(a;)/ ) ( ) +---- + vai 

ln N - ln Y/ 

are fulfilled. We have thus proved the following theorem: 

Theorem 6.3. Let the set of decision rules consist of N elements, and for each 
rule F(x, a;) let the.frequency of errors in the sample equal v(aJ Then one can 
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assert with probability l - 1J that the bounds 

In N - In 1J ( 
P(!Y.;) ~ l 1 + 

2v( ry_;)l ) 
1 + ln N - In 1J + v( ry_;) (6.32) 

are fulfilled simultaneously for all decision rules in the class. 

Remark. Since the bound (6.32) is valid, with probability 1 - IJ, simul
taneously for all the rules in the class, it also holds for the rule F(x, !Y.emp) 
which minimizes the empirical risk. 

Theorem 6.3 allows us to estimate the quality of the rule which minimizes 
the empirical risk. Moreover, the bound (6.32) coincides with the bound 
given in Theorem 6.2 obtained in the extreme case when P(!Y.*) ~ 0, and it is 
close to the bound given in Theorem 6.1 for the second extreme case when 
P(!Y.*) ~ ½- The structure of bounds for an infinite class of decision rules 
is the same. 

§6 An a-net of a Set 

In the preceding sections we established the existence of a uniform convergence of 
frequencies of occurrences of events to the corresponding probabilities over a class of 
events consisting of a finite number of elements; we obtained bounds on the rate of this 
convergence and using it, bounds on the quality of a decision rule which minimizes the 
empirical risk. Our task is to generalize these results to the case of infinitely many 
events. 

In general.. however, in the infinite case the uniform convergence of frequencies to 
probabilities may not occur: for example, if the set of events is defined as consisting of all 
open subsets of the set X, w. In this case a situation may arise where (cf. the example in 
Section 2) an algorithm for minimizing the empirical risk yields the value zero for the 
risk but it is not capable of learning. Therefore the problem is to determine conditions 
which will assure uniform convergence for an infinite number of events, to bound its 
rate, and finally to obtain an upper bound on the probability of erroneous classification 
for a rule which minimizes the empirical risk. 

In mathematics the necessity often arises of extending results valid for a finite set of 
elements to the infinite case. Usually such a generalization is possible if the infinite 
set can be covered by a finite r,-net. 

Definition. The set B of elements in a metric space R is called an r,-net of the set G if 
any point c E G is distant from some point b E B by an amount not exceeding r,, i.e., 
p(b, c) < r,. 

We say that the set G admits a covering by a finite c-net if for each r, there exists an 
r,-net B consisting of a finite number of elements. 

In this section, for an infinite set of decision rules admitting a covering by a finite 
r,-net we shall obtain assertions analogous to the assertions of Theorems 6.1 and 6.3. 
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Thus let an infinite set of decision rules F(x, 0() be given on which the metric 
p(0( 1 , 0(2 ) = p(F(x, 0( 1 ), F(x, 0(2 )) is defined and a finite e-net is singled out. Let this finite 
e-net consist of N(e) elements. Moreover, let it be given that if two decision rules 
F(x, O(i) and F(x, 0(2) are distant from each other by an amount not exceeding e 
(p(0( 1, 0( 2) s e), then the quality of these rules differs by an amount not exceeding b(e), 
i.e., 

I Jew - F(x, 0( 1))2P(x, w) dx dw - J (w - F(x, 0(2))2P(x, w) dx dwl s b(e). 

In other words, a small variation in the decision rule implies a small variation in the 
quality of classification. 

Under these conditions Theorems 6.1 and 6.3 can be generalized as follows: 

Theorem 6.4. Let the set of decision rules F(x, 0() be covered by a finite e-net. Then with 
probability 1 - 17 the quality of the decision rule F(x, O(emp) which minimizes the empirical 
risk is bounded by 

In N(e) - ln(17/2) 
21 - b(e) S P(O(emp) 

In N(e) - ln(17/2) 
21 + b(e), 

where F(x, O(;(O(emp)) is an element of thee-net which is closest to F(x, O(emp). 

Theorem 6.5. Let the set of decision rules F(x, 0() be covered by a finite e-net. Then with 
probability 1 - 17 the quality of the decision rule F(x, O(emp) which minimizes the empirical 
risk is bounded by 

In N(e) - In '1 ( 
P(O(emp) S V(O(;(O(emp)) + l I + l + 2V(O(;(O(emp))l ) + b(e), 

In N(e) - In '1 

where F(x, O(;(O(emp)) is an element of thee-net which is closest to F(x, O(emp). 

Remark. Theorems 6.4 and 6.5 are valid for any e-net given a priori (before the appear
ance of the sample). In particular the value of e which defines thee-net can be chosen 
in Theorem 6.4 from the condition of the minimum of expression 

In N(e) - ln(17/2) 
21 + b(e), 

and in Theorem 6.5 from the condition of the minimum of expression 

In N(e) - In 17 ( 
l 1 + 2d ) 1 + ---- + b(e), 

In N(e) + In 17 

where O s c s I is a constant (for example c = 0.5). 

Theorems 6.4 and 6.5 are proved in the same way: 
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PROOF. 

(1) A finite 1:-net consisting of N(s) elements 

F(x, 0( 1), ... , F(x, O(N(tJ) (6.33) 

is given for the set of decision rules F(x, 0(). According to Theorem 6.1 (6.3) the inequalities 

v(O(;) -
In N(s) - ln(11/2) 

21 

(

1 lnN(1:)-ln11( 
P(O(;) s I 1 + 

In N(s) - ln(11/2) 

21 

1 + I + V(O() 2V(O(.)/ ) ) 
In N(s) - In I/ ' 

are fulfilled with probability 1 - I/ simultaneously for all N(s) elements of (6.33). 

(6.34) 

(2) For any decision rule F(x, O(*) (including the one which minimizes in F(x, 0() 
the value of the empirical risk), the closest element of the 1:-net F(x, O(;(O(*)) can be found, 
for which this element satisfies 

I P(O(*) - P(O(;(O(*)) I s b(s). (6.35) 

The inequalities (6.34) and (6.35) imply that for the decision rule F(x, O(;(O(emp)) the 
relations 

In N - ln(11/2) 
21 - b(s) 

( In N(s) - In I/ ( 
P(O(emp) S / 1 + 

In N(s) - ln(11/2) ,5 
21 + (s), 

I+ 2V(O(;(O(emp))I) + b(s) + V(O(;(O(emp))) 
N(s) - In I/ 

are valid with probability I - 1/· The theorems are thus proved. D 

Thus if the set of decision rules F(x, 0() admits a cover by a finite 1:-net and the distribu
tion P(x, w) is such that close values of the probability of erroneous classification 
correspond to close decision rules, then as the sample size increases the method of 
minimizing the: empirical risk should in principle successfully yield the desired result. t 
Moreover for each fixed s the probability of erroneous classification using the rule 
which minimizes the empirical risk is bounded in terms of the inequalities (6.34). 

However, in order to utilize these bounds the value of b(s) is required. To compute 
this value the density P(x) is used, which in the formulation of the problem of pattern 
recognition is assumed to be unknown. In the next chapter, when solving the problem of 
estimating regression, we shall obtain the value of b(s) and be able to utilize bounds 
on the quality of a function expressed in terms of the value of empirical risk b(s) and 
N(s). In this chapter, to obtain the rate of uniform convergence of frequencies to the 
respective probabilities over an infinite class of events, a new idea will be utilized. This 
will eventually lead us to the construction of necessary and sufficient conditions for 
uniform convergence, to the derivation of a bound on the rate of uniform convergence 
based on these conditions, and finally to a constructive bound on the quality of a 
decision rule obtained using the method of minimizing the empirical risk. 

t Although this assertion does not follow formally from Theorem 6.4, its proof is completely 
analogous. 
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§7 Necessary and Sufficient Conditions for Uniform 
Convergence of Frequencies to Probabilities 

Up until now we have utilized quite rough "capacity" characteristics of 
the set of decision rules (the number of elements in the set) to obtain bounds 
on the rate of uniform convergence. In this section we introduce a more 
refined characteristic of capacity-the entropy of a system of events on samples 
of size l. Using this characteristic one can establish exhaustive necessary and 
sufficient conditions for uniform convergence of frequencies of events to 
their respective probabilities, i.e., for the equality 

lim P{sup IP(ix) - v(ix)I > x} = 0 
I-+ co « 

to be valid for any x. 
Thus let a set S of decision rules F(x, ix) be defined and a sample xi, ... , x1 

be given. This sample can generally be subdivided into two classes in 21 

ways. However, only those subdivisions of the sample which can be accom
plished using the rules F(x, ix) will be of interest. (Uusing the rule F(x, ix*), 
the set x1, •.. , x1 is subdivided into two subsets: one on which F(x, ix*) = 1, 
and the other on which F(x, ix*) = 0.) The number of different subdividing 
methods depends on the class of decision rules F(x, ix) as well as on the 
sample. We shall denote this number by 

L\5(x1, ... , X1), 

Consider the system of events 

S(ix) = {x, w: (w - F(x, ix))2 = l} 

formed by the set of decision rules F(x, ix). Let a random independent sample 

Xi, Wi; ... ; X1, W1 (6.36) 

be given. The system of events S(ix) induces A(S(ix); Xi, Wi; ... ; xi, w1) 
different subsamples on the sample (6.36). Clearly the number of these 
subsamples equals A5(xi, ... , x1). Since Xi, ... , x1 is a random independent 
sample the number of subdivisions A5(xi, ... , x1) is a random variable. 

Definidon. The quantity 

is called the entropy of a system of events S(ix) on a sample of size l. 

It turns out that for the uniform convergence of frequencies v(ix) to the 
respective probabilities P(ix) over the set of events, it is necessary and 
sufficient that as the sample size increases, the portion of the entropy due to 
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a single element of the sample approach zero, i.e., that the sequence 

H5(1) Hs(2) Hs(l) 
-1-, -2-, ... ' I 

approach zero as l increases. In other words the condition 

Jim Hs(l) = 0 
I-+ oo [ 
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(6.37) 

should be fulfilled. The proof of this assertion follows from Theorem A.1 of 
the Appendix to Chapter 7. 

Like any exhaustive conditions, the necessary and sufficient conditions 
stated above for the uniform convergence of frequencies to their respective 
probabilities utilize some refined concepts. In our case such a concept is the 
entropy H 5(l) of a system of events S(a) on samples of size /, which is con
structed by means of the density P(x). In the case of the problem of pattern 
recognition the density is unknown, as stated above. Therefore, in order to 
establish the feasibility of minimizing the expected risk via the determination 
of the minimum of empirical risk, the necessary and sufficient conditions 
(6.37) cannot be used. 

For this reason it is important to obtain less refined sufficient conditions 
which firstly will not depend on the properties of the measure P(x) and 
secondly will admit a bound on the rate of uniform convergence. Such 
conditions may be stated in terms of a capacity measure of the system of 
events S(a) which is obtained from the entropy Hs(I) by abstracting it from 
measure properties. 

Definition. The function 

Xt,•••,Xl 

where the maximum is taken over all possible samples of size l, is called the 
growth function of a system of events formed by the decision rules F(x, a). 

The growth function is constructed in such a manner that it does not 
depend on the properties of measure P(x) and the inequality 

In ms([) ~ Hs(l) 

is always satisfied. Now if the quantity 

In ms(l) 

l 

(6.38) 

approaches zero as I increases, then in view of (6.38) the ratio Hs(l)/l tends 
to zero a fortiori. Therefore the condition 

1. In m5(l) 
1m --- = 0 

I-+ oo [ 
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is a sufficient condition for the uniform convergence of frequencies to their 
probabilities. Below we shall show that the growth function can be easily 
obtained for the events defined by various classes of decision rules F(x, ix) 
and hence the uniform convergence can be established. Moreover, as will 
be shown below, the rate of uniform convergence can also be estimated using 
the growth function ms([). 

§8 Properties of Growth Functions 

A growth function has a simple interpretation: it counts the maximal number 
of ways for subdividing l points into two classes using the decision rules 
F(x, ix). For growth functions the following remarkable theorem is valid. 

Theorem 6.6. A growth function is either identically equal to 21 or for l > his 
majorized by thefunction 

lh 
ms([)< 1.5 h!' 

where h + I is the smallest sample size such that the condition ms([) = 21 is 
violated. In other words 

The proof of this theorem is presented in the appendix to this chapter. 
In order to bound a growth function it is necessary to show that either ( 1) 

for any l, points x 1, ..• , x1 exist such that using the decision rules F(x, ix) 
it would be possible to subdivide them into two classes by any one of the 21 

ways, or (2) a number h exists such that h points can be subdivided into classes 
in all possible ways, but h + I points cannot. In the first case the growth 
function is exponential; in the second it is polynomial. The number h can 
serve as the measure of rliversity of the class of decision rules. 

Definition. We say that the class of indicator functions has capacity h if the 
inequality 

([ > h) (6.39) 

is valid. If the equality 
ms([)= 21 

is satisfied we say that the capacity h of the class of indicator functions 
F(x, ix) is in.finite. 
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It is easy to verify that if the capacity of the class of indicator functions is 
finite, then the uniform convergence of frequencies to the respective proba
bilities always occurs. Indeed, in this case the relation 

h 

I s I h In I - L In i 
. nm(). i=t 

0 _-:::; hm 1 _-:::; hm ------ = 0 
l-oo l-+oo 

is valid and the sufficient condition is fulfilled. 
The following class of decision rules, which are linear in the parameter, 

plays an important role in the subsequent theory: 

e(z) = {1 for z 2". 0, 
0 for z < 0. 

(6.40) 

It is easy to obtain a growth function for a class of events defined by 
linear decision rules (6.40). For this purpose it is sufficient to determine 
the maximal number h of points in the space of dimensionality n which 
can be subdivided into two classes using a hyperplane in any one of the t' 
ways. It is known that this number equals n. Therefore according to Theorem 
6.6 the growth function is bounded by 

{n 
ms({) < 1.5 1 n. 

(/ > n) 

for the class of linear decision rules (6.40). Consequently for the class of 
linear decision rules sufficient conditions for uniform convergence are 
fulfilled. 

It was shown in Chapter 2 that uniform convergence of frequencies of 
events to their probabilities over a class of events defined by one-dimensional 
linear decision rules F(x, ix) = 0(x + ix) makes up the content of the 
Glivenko~Cantelli theorem, which asserts the uniform convergence of the 
empirical cumulative distribution function to the population one. 

§9 Bounds on Deviations of Empirically Optimal 
Decision Rules 

In the appendix to this chapter a bound on the rate of uniform convergence 
of frequencies to probabilities over a class of events S(ix) is obtained. It is 
shown that the inequality 

P{s~p IP(ix) - v(ix)I > x} < 6ms(2I) exp{- x:/} (6.41) 

is valid. The bound (6.41) is of the same form as the above: it is formed by 
multiplying the quantity 6m5(2l)-which is the capacity characteristic of the 
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system of events-by a bound on the probability that the deviation of the 
frequency from its probability exceeds x (the quantity exp{ -x2 l/4}). 

If the capacity of the class of decision rules is infinite (ms([)= 21), then the 
bound (6.41) is trivial, since for all x the right-hand side of the inequality 
exceeds 1. The bound (6.41) is meaningful when the capacity of the class of 
decision rules is finite: 

In this case it takes the form 

{ } (2lt { x 2l} P s~p I P(ix) - v(ix) I > x < 9 h! exp - 4 . (6.42) 

As l increases, the right-hand side of the inequality (6.42) tends to zero and the 
approach is faster for smaller values of the capacity h. We shall require that 
the probability 

P{s~p IP(ix) - v(ix)I > x} 
not exceed r,. This is certainly true if 

Equation (6.43) can be solved for K (using Stirling's formula): 

( 21 ) r, _ h In,;-+ 1 -In 9 
X- 2 [ . 

Then (6.42)-(6.44) imply the following theorem: 

(6.43) 

(6.44) 

Theorem 6.7. Let F(x, ix) be the class of decision rules of bounded capacity h, 
and let v(ix) be the frequency of errors computed from the sample for the rule 
F(x, ix). Then with probability 1 - r, one may assert that for l > h, and simul
taneously for all decision rules F(x, ix), the probability of erroneous classifica
tion is within the limits 

v(ix) - 2 
( 21 ) r, h In h + 1 - In 9 

l 

< P(ix) < v(ix) + 2 
( 21 ) r, h In h + 1 - In 9 

l 
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Remark. Theorem 6.7 implies that for the rule F(x, 1Xemp), which minimizes 
the empirical risk, the upper bound 

h(ln ¥ + 1) - In ~ 
P( 1Xemp) < v( 1Xemp) + 2 [ ([ > h) 

is valid with probability I - 17. 

In the appendix to this chapter it is shown that along with (6.41) the 
bound 

P{sup P(IX) - v(IX) > x} < Sm•(2l)e-x2114 

a ft{aj 
is valid. This bound is nontrivial for a class of decision rules of bounded 
capacity: 

P{ P(IX) - v(IX) > x} < 12 (2/t -x>i/4 
sup ~ h' e . 

a yP(1X) · 
(6.45) 

We shall require that the right-hand side of the inequality be equal to 1J: 

12 (2/l e - x2//4 = 
h ! 17. 

This is fulfilled if 

x=2 

(2ll 11 ( 21 ) 1J In - - In - h In - + 1 - In -
h! 12 ,.._, 2 h 12 

I "" I . (6.46) 

On the other hand, the inequality (6.45) can be stated as follows: with proba
bility 17, simultaneously for all IX the inequality 

x2 
( P(1X) ~ 2 1 + 1 4v(1X)) ( ) +-2- +VIX 

X 
(6.47) 

is valid. The relations (6.46) and (6.47) imply the following theorem. 

Theorem 6.8. Let F(x, IX) be a class of decision rules of bounded capacity h, 
and for each rule F(x, IX) let the frequency of errors computed in the sample 
equal v(IX). Then with probability l - 1J one can assert that the bound 

( 21 ) 1J ( ) h In h + l - In 12 v(IX)l 

P(1X)~2 I l +JI+ ( ZI ) ~ + ,<a..,) 
hln-+1 -ln-

h 12 
(6.48) 

is valid for I > h simultaneously for all rules in the class. 
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Remark. It follows from Theorem 6.8 that for the rule F(x, ixemp) which 
minimizes the empirical risk the bound 

P(1Xemp) 

( 21 ) '7 
h In h + 1 - In 12 Ii 

'>2 I \+ v(ixemp)/ ) 
I + ( 21 ) '7 + V(1Xemp) 

h In-+ I - In~ 
h 12 

is valid. 

§10 Remarks on the Bound on the Rate of Uniform 
Convergence of Frequencies to Probabilities 

In this chapter we have obtained bounds on the rate of uniform convergence 
of frequencies to the respective probabilities: 

P sup IP(ix) - v(ix)I > x < e _' 2114 
{ } {

2N -2, 21 

a 6m5(2l)e " , 

and bounds on the uniform one-sided relative deviations of frequencies from 
their probabilities: 

{ 
P(ix) - v(ix) } {Ne- ,2 112, 

P sup---=- > x < 2 

' jP{ix) 8ms(2l)e-" 1/4 

Using these bounds, Theorems 6.1, 6.3, 6.7, and 6.8 were obtained, which allow 
us to estimate the quality of a decision rule minimizing the empirical risk. 

All the estimates obtained have the same structure, consisting of two 
factors: one which bounds the probability of the corresponding deviation 
(separately) for each event in the class, and another which characterizes the 
variety of the class of decision rules. Different characteristics of the variety 
of the class of decision rules are used for the bounds. The simplest is the 
number of decision rules in the class. The simplicity of this characteristic is 
due to the fact that it does not, for example, take into account whether the 
decision rules in the class are "substantially different" or whether all the 
rules are "equivalent." 

An adequate measure of the variety of the class of decision rules, by which 
it is possible to construct necessary and sufficient conditions for the uniform 
convergence of frequencies to their probabilities, is the entropy of the system 
of events defined by the decision rules. However, to compute the entropy 
of a system of events on samples of length l is possible only if the density 
P(x) is known, and it is assumed to be unknown in the formulation of the 
pattern recognition problem. Therefore a new measure of variety was intro
duced which is obtained from entropy by choosing the least favorable distri-
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bution. This measure is expressed in terms of the capacity of the class of 
decision rules and can easily be computed. 

Various definitions of measures of variety of a class of decision rules 
generate different theorems on the quality of algorithms minimizing the 
empirical risk. However, in all these theorems the very same fact is asserted: 
if the measure of variety of a class of decision rules is small compared with the 
sample size, then the method of minimizing empirical risk allows us to choose 
a rule which is close to the best one in the class. 

A characteristic feature of the theory of minimizing empirical risk presented 
above is the complete absence of any indications as to the constructive 
feasibility of determining an algorithm. This feature has negative as well as 
positive aspects. On one hand, the theory does not give regular procedures 
for minimizing empirical riks; they should be implemented by a corresponding 
program. On the other hand, the theory is quite general. The method can be 
applied to various classes of decision rules: linear discriminant functions, 
piecewise linear discriminant functions, logistic functions of a particular 
kind, and so on. This is due to the fact that the theory of the method of 
minimizing empirical risk answers the question "what to do," leaving the 
question" how to do it" unsettled. Therefore various methods can be applied, 
including heuristic ones. 

The application of heuristic methods in this case has some theoretical 
justification: if in a class of decision rules whose capacity is small compared 
to the sample size one chooses a rule which, while it does not yield the 
minimum of the empirical risk, results in a sufficiently small value of it, then 
in view of the theorems proved above, the decision rule selected will be of 
sufficiently high quality. 

Constructive ideas for such algorithms admit a simple geometric interpre
tation: It is required to construct in a space X a hypersurface belonging to a 
given class of hypersurfaces which-with the smallest possible number of 
errors-will separate the vectors of the sample in one class from the corres
ponding vectors in the other. The assignment of vectors (including those 
which do not belong to a learning sequence) to a particular class is carried out 
according to the side of the subdividing hypersurface on which the vector is 
located. 

Methods of constructing separating hypersurfaces constitute a con
structive part of the theory of pattern recognition. These methods are 
presented in Addendum I. 

§ 11 Remark on the General Theory of 
Uniform Estimating of Probabilities 

We have thus developed a theory of uniform estimating of error probabilities 
in pattern recognition for arbitrary classes of decision rules. Formally, in the 
functional which computes the probabilities of errors we wrote a quadratic 
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loss function. In proving the related theorems, however, the form of the loss 
function was unimportant. What is important is that Q(z, ix), ix EA, is a class 
of indicator functions. 

In fact, this chapter presents a theory more general than the uniform 
estimation of error probabilities in pattern recognition. Here a general 
theory has been developed for uniform estimation of probabilities from 
their frequencies in a class of events of limited capacity. We now formulate 
the basic assertions of this theory. The proofs are identical to those of similar 
theorems given in the chapter. 

Assume that a space Z is given on which a probability measure P(z) has 
been defined and a system of events S,,, ix EA, is specified (subsets measurable 
with respect to the given measure and belonging to Z). Let Q(z, ix), ix EA 
be a family of indicator functions on the sets S,,, ix E A (i.e., the function 

{o if z ¢ s,,) 
Q(z, ix) = 1 if Z E S,, . 

Let the capacity of the family of indicator functions Q(z, ix), ix E A, be 
finite and equal to h (there exists such an h that m8«(h) = 2\ m8«(h + 1) ¥-
2h+ 1 ). 

Under these conditions the following assertions hold on two-sided and 
one-sided uniform bounds of probabilities 

P(ix) = J dP(z) = J Q(z, ix) dP(z) 
Sa 

by virtue of associated frequencies 

1 I 

v(ix) = 1 i~i Q(z;, ix) 

computed on a sample 

Z1, ... , z,. 

Assertion 1. For any I > (ll/(A - 1 ))2, A > 1 with probability 1 - 17 simul
taneously for all events S,,, ix EA, the two-sided bound 

v(ix) - A 
( 21 ) 17 h In - + 1 - ln-

h I 9 ~ P(ix) ~ v(ix) + A 
( 2/ ) I] hln,;-+1 -Jn 9 

I 

holds. 
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Assertion 2. With probability 1 - 17 simultaneously.for all events S,, rx EA, 
the one-sided bound 

P(rx) s v(rx) + 2 h l 12 1 + 
h(In 21 + 1) - In_!_ ( 

1 v(rx)/ ) 

+ h(In ~ + 1) - In ~ 
holds. 



Appendix to Chapter 6 

Theory of Uniform Convergence of 
Frequencies to Probabilities: Sufficient 
Conditionst 

§Al Sufficient Conditions for Uniform Convergence 
of Frequencies to Probabilities 

According to Bernoulli's classical theorem the frequency of occurrence of a 
certain event A in a sequence of independent trials converges (in probability) 
to the probability of this event. Often, however, it becomes necessary to 
assess simultaneously the probabilities of a class of events S based on the 
very same sample. Moreover, it is required that the frequencies converge to 
the probabilities uniformly over all events in the class S. More precisely, the 
probability that the maximal deviation over the class of frequencies from 
probabilities exceeds a given, arbitrarily small positive constant must tend 
to zero as the number of trials increases indefinitely. 

It turns out that even in the simplest cases uniform convergence may not 
occur. Therefore a criterion is required which will test whether such conver
gence is present. 

Let X be a set of elementary events on which a probability measure P(x) 
is defined. Let S be a collection of random events, i.e., subsets of a space 
measurable with respect to the measure P(x) (Sis included in the a-algebra 
of random events, but does not necessarily coincide with it). Denote by X(l) 
the space of random independent samples taken from X of length I. 

For each sample X 1 = x 1, ... , x1 and event AES, the frequency of occur
rence of event A is defined as the ratio of the number n(A) of elements of the 
sample belonging to A to the common sample size /: 

1 n(A) 
V (A) = v(x1, .. ,, X1) = -/-. 

t Necessary and sufficient conditions for uniform convergence of frequencies to probabilities 
will follow from the results presented in the Appendix to Chapter 7. 
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Bernoulli's theorem asserts that for a fixed event A the deviation of the fre
quency from the probability tends to zero (in probability) with increasing 
sample size, i.e., for any x 

P{IP(A) - vi(A)I > x} ~ 0. 

Here, however, we are concerned with the maximal (over the class S) devia
tion of the frequency from the probability: 

n(l) = sup I vi(A) - P(A) 1-
Aes 

The quantity n(l) is a function of a point in the space X(l). We shall assume 
that this function is measurable with respect to a measure in X(l), i.e., n(l) is 
a random variable. The theorems below deal with bounds on the probabil
ities of the event n(l). 

§A2 The Growth Function 

Let X be a set, S be a system of its subsets, and xi= x 1, ... , Xi be a sequence 
of elements x of length /. Each set AES determines a subsequence X A of this 
sequence consisting of elements belonging to A. We say that A induces a 
subsequence XA on the sequence xi. 

Denote by 

the number of different subsequences X A induced by the sets AES. Clearly, 

~s(x 1, .•. , x1) ~ t. 

The number ~s(x 1, ... , xi) is called the index of the system S relative to the 
sample x 1, ... , Xi. 

The index of a system may be defined in another way as well. We shall 
consider A1 ES to be equivalent to A 2 ES relative to the sample x 1, .•. , Xi 

if XA, = XA,· Then the index ~s(x 1 , ... , xi) is the number of equivalence 
classes into which the system Sis subdivided by this equivalence relation. 

Clearly the two definitions are equivalent. The function 

(A.l) 
Xt,•••,Xl 

where the maximum is taken over all the sequences of length I is called the 
growth function of the system S. Here the maximum is always attained, since 
the index ~s(x 1, ... , xi) takes on a finite number of values. 

The growth function of a class of events possesses the following remarkable 
property. 
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Theorem A.I. The growth function either is identically equal to 21 or is bounded 
by the function 

n-1 

I Cl 
i=O 

where n is the minimal value of l such that 

ms(l)-# 21• 

In other words 

{

either 

ms(l) 
or 

= 2', 
n-1 

< ICl 
i=O 

To prove this assertion the following lemma is required. 

Lemma A.I. If for some sequence Xi, ... , x1 and some n 

then there exists a subsequence X" of length n such that 

PROOF. Denote 

n-1 

L Cl = <l>(n, l) 
i=O 

(A.2) 

(here and below we shall assume that Cl = 0 for i > l). For this function, as 
it is easy to verify, the relations 

<l>(l, l) = 1, 
<l>(n, l) = 21 if l ~ n + l, 
<l>(n, l) = <l>(n, l - 1) + <l>(n - 1, l - 1), if n ~ 2, l ~ 1 (A.3) 

are valid. In turn these relations uniquely determine the function <l>(n, l) 
for l > 0 and n > 0. 

We shall prove the lemma by an induction on land n. For n = 1 and any 
l ~ 1 the assertion of the lemma is obvious. Indeed, in this case 

L\5(x 1, •.• , x1) > 1 

implies that an element of the sequence X; exists such that for some A* ES we 
have X; EA*, while for some other A** e S we have X; ¢ A**. Consequently, 
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For l < n the assertion of the lemma is valid because the premise is false. 
Indeed, in this case the premise is 

~ 5(x 1, ... , Xz) > 21, 

which is impossible, since 

~ 5(x 1, ... , x1) ~ 21. 

Finally assume that the lemma is valid for n ~ n0 (n 0 2 1) for all l. 
Consider now the case n = n0 + 1. We show that the lemma is valid in this 
case also for all l. 

We fix n = n0 + 1 and carry out the induction on l. As was pointed out, 
for l < 10 + 1 the lemma is valid. We shall assume that it is valid for l ~ 10 

and show that it is valid for l = 10 + l. Indeed, let the condition of the lemma, 

~s(x1, ... 'Xzo, Xzo+ 1) > <!>(no + 1, lo + I) 

be fulfilled for some sequence x 1 , ••• , x 10 , x10 + 1 • The lemma will be proved 
if We find a subsequence of length no + 1, say xno+ 1 = X1, ••. , Xno+ 1, su'ch 
that 

AS( ) _ 2no+ 1 
L.l X 1, · · · , Xno + 1 - · 

Consider the subsequence X 10 = x 1, ... , x 10 • Two cases are possible: 

(a) ~ 5(x 1, ... , X10 ) > <l>(no + 1, lo), 
(b) ~ 5(x 1, ... , X10 ) ~ <l>(no + 1, lo), 

In case (a), in view of the induction assumption, there exists a subsequence 
of length no + 1 such that ~5(Xno+ 1) = 2no+ 1' q.e.d. 

In case (b) we subdivide subsequences of the sequence X 10 induced by 
the sets in S into two types. We assign to the first type subsequences X' such 
that on the whole sequence x 10 + 1 events belonging to S induce X' as well as 
(X', x 10 + 1). Sequences X' such that either X' or (X', x10 + 1) is induced on the 
sequence x10 + 1 are assigned to the second type. Denote the number of sub
sequences of the first type by K I and of the second by K 2 • It is easy to see that 

~8(x 1, ... , x10) = K, + K 2 , 

~ 5(x 1, ... , x 10 , x 10 + 1) = 2K 1 + K 2 ; 

and hence 
~ 5(x1, ... , x 10 , x10 + 1) = ~5(x 1, ... , x10) + K 1• (A.4) 

Denote by S' the system of all subsets AES that induce subsequences of 
the first type on the sequence X 10• Then if 

(b') K 1 = ~5 '(x 1, ... , X10 ) > <l>(no, lo), 

in view of the induction assumption there exists a subsequence xno = 
x;,, ... , X; such that no 

~S'(x;,, ... ' X; ) = 2no no 
(Xno C xlo). 
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However, in that case we have 

!).S'( ) _ 2na+ 1 
X1, · · •, X;na' Xia+ 1 -

for the sequence X; 1,. , • , X;"a, Xia+ 1 , since for each subsequence X' induced on 
the sequence xna, two subsequences induced on X', x 1a+ 1 can be found, 
namely X' and (X', Xia+ 1). Thus the required subsequence is obtained in 
case (b). 

If, however 

(b") K 1 = N'(x1, ... , Xia)~ <l>(no, lo), 

we then obtain in view of (A.4) and (b) 

ds(x 1,, .• , x1a+ 1) ~ <l>(n0 + I, lo)+ <l>(n0 , lo), 

which by virtue of the properties (A.3) of the function <l>(n, [) implies that 

ds(x 1,,.,, Xia+ 1) ~ <l>(n0 + I, lo + 1). 

This however contradicts the condition of the lemma (i.e., (b") is impossible). 
The lemma is proved. D 

We shall now prove the theorem. As was pointed out, m5([) ~ 21• Let 
ms([) not be identically equal to 21, and let n be the first value of l such that 
ms([) =I i. Then for any sample of size / larger than n, the inequality 

!).S(X1,, .. , X1) ~ <f>(n, [) 

is valid. Indeed, otherwise, in view of the lemma's assertion, one could find 
a subsample x 1, ... , Xn such that 

(A.5) 

which is impossible, since by assumption ms(n) =I 2n. 
Thus the function ms([) either is identically equal to 21 or is majorized by 

<l>(n, [). The theorem is proved. D 

Remark. The function <l>(n, [) can be bounded from the above for n ~ I 
and l > n as follows: 

/n- 1 

<l>(n, [) < 1.5 (n - 1)! (A.6) 

Since the relation (A.3) is fulfilled for <l>(n, [), to prove (A.6) it is sufficient 
to verify that for n ~ I and l > n the inequality 

/n- l tn ([ + lf 
---+-<---
(n - 1)! n! - n! 

(A.7) 

is valid and to verify (A.6) on the boundary, i.e., for n = I and l = n + 1. 



§A2 The Growth Function 

The inequality (A. 7) is clearly equivalent to 

/"- 1(/ + n) - (l + I)" S 0, 

whose validity follows from Newton's binomial expansion. 
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It thus remains to verify A.6 on the boundary. For n = 1 the verification 
is direct. Next we shall verify the bound for small values of n and /: 

I= n + I 

<I>( n, /) 
/"- 1 

1.5 (n - I)! 

2 

1.5 

3 

4 

4.5 

4 

11 

12 

5 

26 

31.25 

6 

57 

81 

To check (A.6) for n 2: 6 we shall utilize Stirling's formula for an upper 
bound on/!: 

whence for I = n + 1 

1n-l = (l - 1)/(1-1) > ~ e-1+(121) I 

(n - 1)! /! - fi;jt 

and furthermore for / 2: 6 

[(n-1) 1 
> 0.8 ;,::;e'. 

(n-1)!- y2nl 

On the other hand, <l>(n, /) s 2' always. Therefore it is sufficient to verify that 
for l 2: 6 

I l I 
2 s 1.2 ;,::; e . 

v' 2nl 

Actually it is sufficient to verify the inequality for l = 6 (which is carried out 
directly) since as l increases the right-hand side of the inequality grows 
faster than the left-hand side (for l > 2). 

Thus we have seen that either the growth function is identically 21, or for 
some n the equality is violated for the first time (i.e., m8(n) #- 2"), and then the 
growth function is bounded by a polynomial function 

Therefore in order to estimate the behavior of a growth function it is 
sufficient to find the smallest n such that on no sequence of length l does the 
system S induce all possible subsequences. 
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§A3 The Basic Lemma 

Let a sample of size 21 be chosen: 

and the frequencies of occurrence of the event A E S on the first half sample 
x 1, .•• , xI and on the second half sample xI+ 1, ••• , x 2I be computed. Denote 
these frequencies by v'(A) and v"(A) respectively, and consider the deviations 
of these quantities: 

PA(X1, ... , X21) = lv'(A) - v"(A)I. 

We are interested in the maximal deviation of the frequencies over all 
events of the class S: 

p8(x1, ... , x21) = sup PA(xi, ... , x21). 
AeS 

Introduce the notation 

n8(x1, ... , x 21) = suplv'(A) - P(A)I. 
AeS 

Furthermore we shall assume that n8(x 1, ••• , x1) and p8(x 1, .•• , x 21) are 
measurable functions. 

The Basic Lemma. The distributions of the quantities n8(x 1, .•• , x1) and 
ps(x 1 , ..• , x 21) are related as follows: 

S {s X} P{n (x 1, ... , x 1) > x} ~ 2P p (x 1, ... , X21) > 2 , 
., 

provided that I > 2/x'-! 

PROOF. By definition 

where 

O(z) = {1 ~f z > 0, 
0 1f z ~ 0. 

Taking into account that the space X(2l) of samples of size 21 is a direct 
product of X 1 (I) and X i(l) of half samples of size /, we have the equality 

I <p(X1, ... , X21) dX2I = f [ I <p(x1, ... , X21) dx~J dXi 
JX(2I) X1(1) JX,(I) 

for any measurable function <p(x 1, ... , x 21), by Fubini's theorem [28]. 
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Therefore 

P{ps(X21) > ~} = f dP(XD f 0[ps(X21) - ~] dP(X~) 
X1(1) X2(1) 

(in the inner integral the first half sample is fixed). Denote by Q the event in 
the space X 1 ( l) 

{ns(x 1, ••• , x1) > x}, 

and bounding the domain of integration, we obtain 

P{ps(X21) > ~} 2 J dP(Xf) J 0[ps(X21) - ~J dP(X~). (A.8) 
2 Q X2(1) 2 

We now bound the inner integral on the right-hand side of the inequality 
and denote it by/. Here the sample x 1, ..• , x1 is fixed and is such that 

ns(x 1, •.. , x1) > x. 

Consequently there exists an A* ES such that 

IP(A*) - v(A*; x 1, ••• , x1)1 > x. 

Then 

I = f e[sup PA(X21) - ~] dP(X~) 2 J 0[PA•(X21) - ~] dP(X~). 
X2(1) _AcS X2(1) 

Let, for example, 

v'(A*; x 1, ••. , x1) < P(A*) - x 

(the case v'(A *) 2 P(A *) + x is dealt with completely analogously). Then 
in order that the conditions 

lv'(A*; x 1, ••• , x1) - v"(A*; x1+ 1 , ••• , x 21)1 > ~ 

may be satisfied, it is sufficient that the relation 

X 
v"(A*) > P(A*) - -

2 

be fulfilled, whence we obtain 

I 2 J 0[v"(A*) - P(A*) + ~J dP(X~) 
X2(1) 2 

L C~[P(A*)]k[l - P(A*)]1-k. 
k/l>P(A*)-x/2 
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As is known, the last sum exceeds½ provided only that l > 2/x. Returning 
to (A.8), we obtain that for l > 2/x 

P{p5(X 21) > i} ~ ~ f/P(X1) = ½P{n5(X1) > x}, 

q.e.d. D 

§A4 Derivation of Sufficient Conditions 

The following theorem is valid. 

Theorem A.2. The probability that for at least one event in the class S the 
frequency will deviate from the corresponding probability in an experiment of 
size l by an amount exceeding x is bounded by 

P{n5(x 1, ••. , x1) > x} < 6m5(2l)e-x2114• (A.9) 

Corollary. In order that the frequency of events in class S shall converge (in 
probability) to the corresponding probabilities uniformly over the class S, it is 
sufficient that there exist finite n such that for l > n 

r-1 
ms([)< 1.5 (n - l)! 

PROOF. In view of the basic lemma it is sufficient to bound the quantity 

P{ps(x2') > ~} = J 0[ps(x2') - ~J dP(X2'). 
2 X(21) 2 

Consider the mapping of the space X(2/) into itself obtained by a permutation 
7; of the elements of the sequence X 21. In view of the symmetry of the defini
tion of the measure, the equality 

J f(X 21) dP(X 21) = J f(I;X 21) dP(X 21) 
X(21) X(21) 

holds for any integrable functionf(X). Therefore 

<f 0[ps(7;x2') - ~J 
P{ps(X2') > ~} = J ;; i 2 dP(X2'), 

2 X(21) (2/) ! 
(A.IO) 

where the sum is taken over all (21) ! permutations. 
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First we observe that 

e[p8(X 21) - ~] = 0[ s~p I v'(A) - v"(A) I - ~] 

= s~p 0[1v'(A) - v"(A)I - ~] 
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Clearly if two sets A1 and A 2 induce the same subsample on the sample 
Xi, ... , Xz, xi+ 1, ... , x 21 , then 

and hence 

for any permutation T;. In other words, if two events are equivalent with 
respect to the sample x 1, ... , x 2 z, then deviations of frequencies for these 
events are the same for all permutations T;. Therefore if from each equivalence 
class one chooses one set and forms a finite system S', then 

AeS AeS' 

The number of events in the system S' is finite and is denoted by L15 '(x 1, .•. ,x21). 

Replacing the sup operation by a summation, we obtain 

[ 21 X] [ 21 X] sup 0 PA(T;X ) - 2 = sup 0 PA(T;X ) - 2 AeS AeS' 

These relations allow us to bound the integrand in (A.10): 

l (21)! [ X] 
sup (21)' .L 0 PA(T;X21) - -2 
AeS' · 1=1 

1 (2l)! [ X] 
= (21)' _L sup 0 PA(T;X21) - -2 ~ L 

• 1=1 AES' AeS' 

The expression in the square brackets is the ratio of the number of orderings 
in the sample (of a fixed composition) such that 

I v'(A) - v"(A)I > ;, 
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to the total number of permutations. It is easy to see that this expression is 
equal to 

Ck c'-k r* _ I m 2,-m 
- k c~, ' 

{I k m - k I x} 
k: ,--[- >2' 

where m equals the number of elements in the sample x 1, ... , x 21 belonging 
to A. 

In Section A.5 we bound the expression r, with the result that 

r* < 3 exp{- x:1} 

Thus 

1 (ll)! [ X] { x2[} L (2l)' _L 0 PA(T;X21) - -2 < L 3 exp - -4 
AcS' • 1= 1 AeS' 

= 3L\s(x1, ••. , x21) exp{- ~/} 

~ 3ms(2l) exp{- x; 1} 

Substituting this bound into the integral (A.10), we obtain 

P {ps(X21) > ~} < 3ms(2/) exp{- x:1} 

whence in view of the basic lemma 

{ x2
/} P{n(X1) > x} < 6ms(2l) exp - 4 . 

The theorem is proved. 

PROOF OF THE COROLLARY. Let n exist such that for l > n 

zn-1 
ms([)< 1.5 (n -

Then clearly 

(21)"-1 { x2z} 
lim P{ns(X1) > x} < 9 lim ( _ l) 1 exp - -4 = 0, 
1-+oo 1-+oo n · 

i.e., the uniform convergence in probability is valid. 

D 

D 
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The sufficient condition obtained does not depend on the properties of 
the distribution (the only condition is the measurability of functions ns and 
ps), but depends on the inner properties of the system S. 

Remark. As it was proved in Section A.2 only if the function ms(/) is not 
identically i, there exists n such that for / > n 

in- 1 

ms(/)< 1.5 (n - l)! 

Therefore the sufficient condition is always fulfilled when 

ms(/) ef=- 21. 

§AS A Bound on the Quantity r 
We bound the expression 

Ck c'-k r = I: m 121-m, 

k C21 

where k runs over the values satisfying the inequalities 

I k m _ k I l;- -/- > x, max(O, m - /) s k s min(m, /), 

or equivalently the inequalities 

I k - 11!_ I> xi 
2 2' 

max(O, m - /) s k s min(m, /), 

and / and m s 21 are arbitrary positive integers. 
We decompose r into two summands, r = r 1 + r 2 . 

Ck ci-k r =, m 21-m 
1 L. ci , 

k 21 

k ck c'-k r =, m 21-m 
2 L. ci , 

k 21 

xi m 
where k > 2 + 2. 

xi m 
where k < 2 - 2. 

Introduce the notation 

ck ci-k 
(k) = m 21-m 

P ci 
21 

p(k + 1) (m - k)(l - k) 
q(k) = p(k) = (k + 1)(/ + k + 1 - m)' 

where 

max(O, m - l) s k s min(m, /). 

(A. I I) 

(A.12) 



174 App. to Ch. 6 Uniform Convergence of Frequencies to Probabilities 

Furthermore denote 

s = min(m, l), T = max(O, m - l); 
s 

d(k) = LP(i). 
i=k 

Clearly the relation 

s s-1 s-1 

d(k + 1) = I p(i) = I p(i + 1) = I p(i)q(i) (A.13) 
i=k+ 1 i=k i=k 

is valid. Furthermore it follows directly from (A.12) that for _i < j, q(i) < qU), 
i.e., q(i) is monotonically decreasing. Therefore the inequality 

s-1 s 

d(k + 1) = I p(i)q(i) < q(k) I P<O 
i=k i=k 

follows from (A.13). Furthermore by definition of d(k) we have 

d(k + 1) < q(k) d(k). 

Applying this relation successively, we obtain for arbitrary k andj satisfying 
the condition T ~ j < k ~ s 

k-1 

d(k) < dU) 0 q(i). 
i=j 

Furthermore, since dU) ~ 1, 

k-1 

d(k) < n q(i). 
i=j 

where j is an arbitrary integer smaller than k. 
Set 

Then 

m - 1 
t = k--2-· 

_ ~-t (1-Y)-t 
q(t) - m + 1 · ( m - 1) · 

-2-+t 1--2- +t 

Moreover, as long as T < k < s, the inequality 

. (m + 1 m - 1) ltl < mm - 2-, l - - 2-

is clearly valid. 

(A.14) 
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To approximate q(k) we study the function 

a-t b-t 
F(t) = a + t. b + t' 

assuming that a and bare both positive. 
For !ti< min(a, b) 

In F(t) = ln(a - t) - ln(a + t) + ln(b - t) - ln(b + t). 
Furthermore we have 

In F(O) = 0, d [2a 2b] -d (In F(t)) = - 2 2 + b2 2 . t a - t - t 

This implies that for It I < min( a, b) 

d [1 1] dt (In F(t)) ~ - 2 ~ + b . 

Correspondingly for !ti< min(a, b) and t ~ 0 the inequality 

lnF(t)~ -2[~+1} 
is fulfilled. 

Returning to q(t), we obtain fort ~ 0 

[ 2 2 ] l+l 
In q(t) ~ - 2 m + 1 + 2/ - m + 1 t = - 8 (m + 1)(2/ - m + 1) t. 

We now bound 

assuming that (m - 1)/2 ~ j ~ k - 1: 

ln(Q q(i)) = :t;in q(i) 

<-------r 1---
- 8(/ + 1) k- l (· m - 1) 

- (m + 1)(2/ - m + 1) i=i 2 · 

Returning to (A.14), we obtain 

- 8(1 + 1) k - 1 (. m - 1) 
In d(k) < (m + 1)(2/ - m + 1) i~i z - -2- ; 
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here j is an arbitrary number smaller than k. Therefore for k > (m - 1)/2 
one can set j = (m - 1)/2 form odd and j = m/2 for m even, obtaining a 
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stronger bound. Next, summing the arithmetic progression, we obtain 

l-(m + 1~~~; _1 ~ + 1) ( k - i + 1) 
2 

for even m, 
1n d(k) < 

4(1 + 1) (k m - 1 1)(k m - 1) 
-(m+1)(21-m+l) --2-+ --2-

Finally r 1 is d(k) for the first integer k such that 

m x2l 
k-->-

2 2' 

whence 

l + 1 2 2 

ln r1 < - (m + 1)(21 - m + 1) x l . 

for odd m. 

In the same manner one can bound r 2, since the distribution (A.11) is sym
metric with respect to the point k = m/2. Thus 

{ 
(l + l)x212 } 

r < 2 exp - (m + 1)(21 - m + 1) · (A.15) 

The right-hand side of (A.15) attains its maximum at m = l, and consequently 

{ x212} 
r<2exp - 1+ 1 <3exp{-x2l}. 

§A6 A Bound on the Probability of 
Uniform Relative Deviation 

In this section we shall prove 

Theorem A.3. For any p (1 < p ~ 2) the bound 

P{sup P(A) - v(A) > x} < 8m5(2l) exp{- "'2 12-<2tP>} 
AeS .few 4 

is valid. 

(A.16) 

PROOF. Consider two events constructed from a random and independent 
sample of size 21: The event Q1 : 

Q { P(A) - v'(A) } 
1 = sup-----> x 

AeS .few 
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and the event Q2 : 

{ 
lv'(A) - v"(A)I } 

Q2 = sup-=====- > x , 
Aes jv(A) + 1/2/ 

where v'(A) is the frequency of the event A computed from the first half
sample of length l; v"(A) is the frequency of the event A computed from the 
second half-sample; v"(A) is the frequency of the event computed from the 
sample of length 21. 

Observe that in the case l ~ x-p/(p- l) the theorem is trivial. Accordinly we 
shall prove the theorem as follows: First we show that for l > x- p/(p- 1) the 
inequality 

P(Q 1) < 4P(Q 2 ) 

is valid, and then we bound the probability of the event Q2 • Thus we shall 
prove the lemma: 

Lemma A.2 .. For l > x-p/(p- l) the inequality 

(A.17) 

is valid. 

PROOF. Assume that event Q 1 occurred. This means that there exists A* such 
that for the first half sample the inequality 

P(A*) - v'(A*) > x~ 

is fulfilled. Since v'(A) ;?: 0, this implies that 

P(A*) > xPf(p-1). 

Assume that for the second half sample the frequency of occurrence of event 
A* exceeds the probability P(A *): 

v"(A*) > P(A*). 

Recall now that l > x-p/(p- 1J_ Under these conditions event Q2 will definitely 
occur. 

To show this we bound the quantity 

lv'(A*) - v"(A*)I v"(A*) - v'(A*) 
µ=-=====-<-;===== 

1v(A*) + 1/2/ 1v(A*) + 1/2/ 

under the conditions 

v'(A*) < P(A*) - x~ 

v"(A*) > P(A*), 

P(A *) > xPf(p- l)_ 

(A.18) 
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For this purpose we find the minimum of the function 

x-y 
T = --,==== dx + y + C 

in the domain O < a ::;; x ::; 1, 0 < y ::;; b, c > 0. We have for p > 1 

oT = ! (p - l)x + (p + l)y + pc > O 
ox p (x + y + c)<P+ 1>IP ' 

oT = _ ! (p + l)x + (p + l)y + pc < O 
oy p (X + y + c)<P+ 1)/p . 

Consequently T attains its minimum in the admissible domain for x = a 
and y = b. Therefore the quantity µ will be bounded from below if one 

replaces v'(A*) by P(A*) - xft(A*} and v"(A*) by P(A*) in (A.18). Thus 

x{;f2P(A*) 
µ > ----;:===========· 

{1/2P(A*) - xft(A*} + 1/l 

Furthermore, since P(A*) > xPl(p- 1), l > x-pf(p- 1>, we have 

x{;f2P(A*) 
µ > --,=========== = X. 

{;!2P(A *) - xP/(p-1) + xP/(p-1) 

Thus ifQ 1 occurs and the conditions P(A*)::; v"(A*) and l > x-pf(p-t) are 
fulfilled, then Q2 occurs as well. 

Observe that the second half sample is chosen independently of the first 
and, as is known, for l > 2/ P(A *) the frequency of occurrence of the event A* 
exceeds P(A*) with probability ¼. Therefore, provided Q1 is fulfilled, the 
event 

v"(A *) > P(A *) 

occurs with probability exceeding ¼ as long as l > x- Pf(p- 1>. Thus for 
[ > 'Xp/(p-1) 

The lemma is proved. 

Lemma A.3. For any p (1 < p::;; 2) the bound 

P(Q 2) < 2ms(2[) exp{- ~2 12 -(Z/p)} 

is valid. 

PROOF. Denote by RA(X21) the quantity 

RA(X2') = I v'(A) - v"(A) I_ 

dv(A) + 1/2/ 

D 
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Then the estimated probability equals 

Here the integration is carried out over the space of all possible samples of 
size 2/. 

Consider now all possible permutations 7; (i = 1, 2, ... , (2[) !) of the 
sequence x 1 , ••• , x 21 • For each such permutation 7; the equality 

J e[sup RA(X 21 ) - x] dP(X 21) = J e[sup RA(I;X21) - x] dP(X 21) 
X(21) AeS X(21) AeS 

is valid. Therefore the equality 

j. e[sup RA(X 21) - x] dP(X 21) 

X(21) AeS 

J 1 (ZI)! [ ] 
= (2/)1 I e sup RA(I;X 21) - X dP(X 21) 

X(21) ·i~I AeS 

is valid. 
Consider now the integrand. Since the sample x 1, ... , x 21 is fixed, instead 

of the system of events S one can consider a finite system of events S' which 
contains one representative for each one of the equivalence classes. Thus the 
equality 

is valid. Furthermore 

(A.19) 

The expression in the braces is the probability of the deviation of frequencies 
in two half samples for a fixed event A and a given composition of the complete 
sample. This probability equals 

Ck c'-k r = °'""' m 21-m 

T Ci, ' 
where mis the number of occurrences of events A in the complete sample, and 
k is the number of occurrences of the events in the first half sample; k runs 
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over the values 

max(0, m - l) ~ k ~ min(m, l), ,~-~, 
>X. 

1 
--

l 

Denote by x' the quantity 

nfm+l I 

.:..;~X=X. 

Using this notation the restrictions become 

max(0, m - l) ~ k ~ min(m, l), 

11- m ~ k I > x'. (A.20) 

In Section A.5 the following bound on the quantity r under the restrictions 
(A.20) was obtained: 

{ (1 + l)(x')2 12 } 

r < 2 exp - (m + 1)(21 - m + 1) · (A.21) 

Expressing (A.19) in terms ofx, we obtain 

r < 2 ex {- x2(l + 1)/2 (m + 1)2/p} 
p 2(21 - m + l)(m + 1) 21 · 

The right-hand side of the inequality attains its maximum at m = 0. Thus 

r < 2 exp{- : 2 12-<2/p)}· (A.22) 

Substituting (A.22) into the right-hand side of(A.19) and integrating, we have 

P(Q2 ) < 2m8(2l) exp{- : 2 
z2-<2iPl}· (A.23) 

The lemma is thus proved. D 

The inequalities (A.17) and (A.23) yield the assertion of the theorem. D 




