
Chapter 5 

Estimation of Regression Parameters 

§1 The Problem of Estimating Regression Parameters 

In the previous section we considered methods for estimating regression 
under conditions when the sample size increases indefinitely. However, 
strictly speaking, the results were related to the problem of estimating regres­
sion parameters rather than the problem of regression estimation. This 
substitution (instead of approximating functions we estimate their para­
meters) is legitimate for samples of sufficiently large size. As the sample size 
increases, the estimated parameters approach the true values and hence the 
function constructed using these parameters tends to the regression function. 
However, for samples of limited size the estimation of the regression is not 
always equivalent to the estimation of its parameters. 

Indeed, the quality of the estimator ix of the parameter a0 of the regression 
y(x) = F(x, a 0 ) is determined by the proximity of the vectors a0 and&: 

p(ao, ix)= II& - 1Xoll, (5.1) 
whereas the quality of the approximation of a function F(x, ix) to the regres­
sion F(x, a0 ) is measured by the proximity of functions. In Chapter l we 
agreed to consider the mean-square measure of proximity 

P1.(F(x, a0 ); F(x, &)) = (J (F(x, ix) - F(x, a0 ))2 P(x) dx) 
112 

(5.2) 

The criteria (5.1) and (5.2) are not identical, and it is possible that a solution 
which is the best according to one criterion may be the worst according to 
another. 

EXAMPLE. In the class of functions 

F(x, a)= a0 + a 1x + a 2x 2 
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Figure 5 

on the interval [1, 2], let the regression 

y = x2 

be estimated. Consider two solutions (Figure 5): first the polynomial 

F(x, &) = 0.5x 2 

and second the polynomial 

F(x, &) = 3x - 2. 

From the aspect of the parameter estimation criterion the first solution is 
better than the second (in any norm (5.1) the vector a = (0, 0, 0.5? is closer 
to the vector o:0 = (0, 0, ll than the vector & = ( -2, 3, O)T is). 

However, from the form of the criterion (5.2) the second solution F(x, &) 
is better. For any measure P(x) the inequality 

PL(3x - 2, x 2 ) < PL(0.5x 2 , x 2) 

is valid. 

When then is the problem of estimation of parameters of a regression 
based on samples of finite size equivalent to the problem of regression 
estimation? 

Assume that the class of functions to which the regression belongs is 
linear in its parameters 

n 

F(x, o:) = z:0:icpi(x), (5.3) 
i= I 

and let <p 1(x), ... , <p.(x) be a system of orthonormal functions with weight 
P(x), i.e., functions such that 

Jb {l for p = q, 
<pp(x)<pq(x)P(x) dx = 0 f 

a or p # q. 
(5.4) 
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In this case the quantities which characterize the proximity of functions in 
the Li metric and the proximity of parameters in the Euclidean metric 
coincide, and the problem of approximating a function on [a, b] to the 
regression becomes equivalent to the problem of parameter estimation. 
Indeed, 

Jb ( n n )2 
pi,(F(x, &), F(x, c.<)) = a J/i<t>;(x) - Jti<p;(x) P(x) dx 

n 

= I(&; - c.<;)2. (5.5) 
i= 1 

The conditions (5.3) and (5.4) are sufficient to replace the problem of 
estimating the regression with that of estimating its parameters. However, 
in order to construct an orthogonal system of functions the knowledge of 
P(x) is needed. In this chapter we shall assume that the density P(x) is known. 

§2 The Theory of Normal Regression 

The estimation theory of regression parameters based on samples of fixed 
size is developed for the case when the class of functions to which the regres­
sion belongs is linear in its parameters: 

n 

F(x, c.<) = L c.<;<p;(x), (5.6) 
i= 1 

and secondly the structure of the measurement follows the Gauss-Markov 
model. It is assumed that the measurements of functional dependence 

n 

y(x) = L c.<?<t>;(x) 
i= 1 

are carried out at I fixed points 

(These points are not random.) 
The measurements are subject to an additive noise which arises randomly 

according to the density P(~), and has mean zero (i.e., J ~P(~) d~ = 0) and 
finite variance (J ~2 P( ~) d~ < oo ). The errors at points X; and xi (i # j) are 
uncorrelated. 

The result of measurements of the function ji = y(x) at points x 1, ... , x1 

is the random vector Y = (y 1, ... , y1)T whose coordinates are equal to 

n 

Yi = L c.<?<t>;(x) + ~i = Yi + ~i' j = 1, 2, ... , I. 
i= 1 
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Using vector notation, we have 

y = <l>IXo + ~' (5.7) 

where <I> is an l x n matrix with elements <p;(xi) U = 1, 2, ... , l; i = 1, 2, ... , n), 
IXo is the vector of parameters, and ~ is the noise vector. Thus the equalities 

MY = <l>IX0 , M{(Y - MY)(Y - MY)T} = a2I, (5.8) 

where I is the unit matrix, define the Gauss-Markov model. 
In the theory of estimating regression parameters, the special case of the 

Gauss-Markov model is considered for which the errors t are normally 
distributed. 

For the normal distribution of the errors the so-called theory of normal 
regression is valid. It is based on the following fact: the extremal method of 
estimating parameters of normal regression is the least-squares method, 
according to which as an estimator of parameters IX one should choose the 
vector 1Xemp which yields the minimum of the functional 

Jem/1X) = f J1 (Yi - it;({J;(x)r 

The following theorem is valid. 

Theorem 5.1. The least-squares estimators of parameters of a normal regression 
are jointly efficient. 

Below we shall prove this theorem and then construct a method estimating 
normal regression which is superior to the one based on the least-squares 
method. 

PROOF. We write the probability density of the error in the form 

P(e) = ~ exp{- 2\ (Yi - .± 1X?({J;(x)) 2
}. (5.9) 

....;2na a ,;1 

Here the problem of estimating regression parameters is equivalent to 
estimating the parameter of the distribution (5.9) based on the results of 
measuring the function y = y(x) at points x 1, ... , Xi, 

We now write the likelihood functiont 

P(y1, ... , Yi; IX) = P(1X) 

= (2n;i1 2ai exp{- 2!2 Lt1 (Yi - it;({J;(x)Y]} (5.10) 

t For brevity we shall write P(cx) in place of P(y1, ••• , y1; ex). 
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In view of the Cramer-Rao inequality (cf. Chapter 3, Section 11) the Fisher 
information matrix II /;)I (the matrix with elements 

J;- = -M a2 Jn P(a)) 
!J aai aaj 

determines the limiting accuracy of the joint estimators of the vector of 
parameters <"J. in the class of unbiased estimators. Namely, for any vector z 
the inequality 

zTll/;)l- 1z s zTBz 

is valid, where Bis the covariance matrix of unbiased estimators of the para­
meter vector. Thus the limiting accuracy in the class of unbiased estimators 
is attained for the estimation method for which 

(5.11) 

We shall show that in the case of normal errors the equality (5.11) is attained 
when the regression parameters are estimated using the least-squares method. 
Indeed let us compute the elements J;i of the Fisher matrix. Taking (5.10) 
into account we obtain 

a2 In P(rx) 1 1 

J;j = -M a a = 2 ML <r>lx,)<p/x,), 
IY.i IY.j (j r= 1 

or in matrix form 

1 T 11/;)I = 2 M<I> <I>, 
(j 

(5.12) 

where <I> is an I x n matrix with elements <r>lx), i = 1, ... , n,j = 1, ... , l. 
We now compute the elements bii of the covariance matrix B of estimators 

obtained using the least-squares method. For this purpose we shall find the 
estimator of regression parameters using the least-squares method, i.e., 
the vector aemp which minimizes the functional 

J I ( n )2 
lemp(rx) = -1 _L Yi - _L IY.;<plx) 

1=1 ,=1 

(5.13) 

Minimization of /emp(a) with respect to a is equivalent to the solution of the 
following equation: 

(5.14) 

Equation (5.14) is called the normal equation. A solution of the normal 
equation for the vector of parameters a equalst 

t It is assumed that (<I> T<I>) is nonsingular; otherwise the generalized inverse (<I> T<I>) + is used in 
place of (<I> T<I>)- 1. 
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Observe that the least-squares estimator is unbiased: 

Ma.= M[(<l>T<l>)-1<l>TY] = !X.o, 

We now write the vector rx. - rx.0 of deviations of estimators of regression 
parameters from the true value of parameters 

IX._ !X.o = (<f>T<f>)-l<f>Te, 

where e is the vector of errors in measurement. 
Now we shall obtain the covariance matrix: 

B = M(rx. - !X.o)(rx. - rx.ol = (<l>T<l>)-l<l>TMeeT<l>(<l>T<l>)-1. 

Taking into account that MeeT = <121, we arrive at 

B = <12(<l>T<l>)-1. 

Hence for the case of normally distributed errors the covariance matrix of 
vectors of estimators is equal to the inverse of the Fisher information matrix. 
We have thus shown the efficiency of the least-squares method for the problem 
of estimating regression parameters when the observations are assumed to 
follow the Gauss-Markov model. D 

It should be mentioned that the least-squares method is an efficient method 
of estimating parameters only in the case of the Gauss-Markov model. In 
models with nonfixed measurement points x;, even with normally distributed 
errors, the least-squares method is only asymptotically efficient. Thus even 
in the case of the estimation of one parameter, 

ji = ax, 

when measurements subject to additive normal error 

y=ax+~ 

are taken at points x 1, ..• , x1 which are chosen randomly and independently 
according to distribution P(x), the estimator of the parameter a is not ef­
ficient. Indeed, exactly as above one can find the value of the Fisher informa­
tion quantity: 

I 

Mixf 
i= 1 

I..,, =-<1-2-

and compute the variance of the estimator of parameter a: 

(12 

D(a) = M-1-. 

Ixf 
i= 1 
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Observe now that since the function 1/x2 is convex, the inequality 

1 1 
M-1-~ 1 

Ixf M Ixf 
i= I i= I 

is valid. This implies that in the example under consideration 

D(a) ~ 1; 1 • 
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( 5.15) 

The only case when the inequality (5.15) becomes equality is when the 
observation points are fixed, which results in the Gauss-Markov model. 

§3 Methods of Estimating the Normal Regression 
that are Uniformly Superior to the Least-Squares 
Method 

Thus in the Gauss-Markov model the least-squares method is an efficient 
procedure for estimating parameters of a normal regression. This assertion 
required two stipulations: 

(1) The observations are carried out with normal errors. 
(2) The least-squares method is the best only among unbiased estimators. 

The question arises: Are these stipulations essential? They are indeed. 
The least-squares method retains its extremal properties only in the case of 
normal errors r When the number of observations / ~ 2n + 1 (n is the 
dimensionality of the basis), then the efficiency of the least-squares method 
implies that the errors are normally distributed [23]. 

No less important is the second stipulation: even under the conditions of 
normally distributed errors- in a class of biased estimators, there exist 
estimators which are uniformly superior to the least-squares estimators. 

Definition. We say that for the loss function 

110( - 0(011 2 = (0( - O(o)T(O( - O(o), 

the estimation method O(A(Y 1, ... , y1) of a vector of parameters 0(0 is uniformly 
better than the estimation method O(a(y 1, ... , y1) if for any 0(0 the inequalities 

MIIO(A(Y1, ... , Y1) - 0(011 2 < MIIO(iY1, ... , Y1) - 0(011 2 

are satisfied. 

In this section we shall construct algorithms for approximating regression 
which are uniformly better (i.e., better for any 0(0) than those which result 
from the least-squares method. The bases for these algorithms are methods of 
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estimating the mean vector of a multivariate normal distribution, and in 
particular the following 

Theorem 5.2 (James-Stein). Let x be an n-dimensional (n 2 3) random vector 
distributed according to a normal distribution N(a, a2I) with the mean vector a 
and covariance matrix a2 I. Let S be a random variable independent of x 
distributed according to the central a2x2 distribution with q degrees of freedom. 
Then the estimator of the mean given by 

&(x, S) = (1 -; ~ ~ ll~l 2t x, 

{
z for z 2 0, 

(z)+ = 0 
for z < 0 

is uniformly better than &(x) = x. 

(5.16) 

In other words, the theorem asserts that the vector &(x, S) collinear to the 
observed vector x but different from x in its absolute value should be chosen 
as the estimator of a. This theorem is a particular case of a more general 
assertion to be proven in the next section. 

We shall now utilize Theorem 5.2 to construct an algorithm for estimating 
regression which is uniformly superior to the one based on the least-squares 
method. Let observations y 1, ••• , y1 be carried out at the points x 1, •.. , x1; 

our purpose is to construct an approximation of a normal regression superior 
to the least-squares one. As above, we shall define proximity of functions 
using the L} metric: 

PL(F(x, &), F(x, a)) = (J (F(x, &) - F(x, a))2 P(x) dx) 
112 

We now proceed to a doubly orthogonal basis 

1/1 1(x), ... , lj;.(x), 

i.e., a basis which satisfies 

J lj;;(x)lj;/x)P(x) dx = {~; 
for i = j, 
for i =I j, 

for i = j, 
for i =I j, 

and seek the regression expanded with respect to the basis (5.17)t 

n 

F(x, a)= L a;I/J;(x). 
i= I 

(5.17) 

(5.18) 

t According to the theorem on simultaneous reduction of two quadratic forms to a diagonal 
form using a linear transformation, such a basis exists and may be constructed using linear 
algebra. 
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In the new basis the proximity of the function F(x, a) to the regression F(x, a0 ) 

is given by 

pf.(F(x, a), F(x, a0 )) = pf.(a, a0 ) 

= f (t (af - IX;)if;;(x)) 
2 
P(x) dx = J1 A;(af - a;)2. 

Thus our purpose is to obtain an algorithm &(y1, ... , y1) for estimating the 
parameter a0 such that the quantity 

n 

Mpi,(&(y1, · · ·, Y,), 1Xo) =ML ,1,;(&;(yi, · · ·, Y,) - af)2 (5.19) 
i= I 

is less than 

where 1Xise = (ai1.e, ... , a?se? is the least-squares estimator. 
Consider now the least-squares estimator of regression parameters. In 

the basis (5.17) this estimator becomes 

where <I> is an / x n matrix with elements lj;;(x), j = 1, ... , I, i = 1, ... , n, 
and Y is the vector of observations. The vector 1Xise is a random vector normal­
ly distributed with the mean vector 

Maise= M<l>TY = IXo 

and the covariance matrix a2 I: 

M(alse - 1Xo)(1X1se - 1Xo) T = M<I> T l~T<I> = a2 I. 

Thus the problem of estimating the parameter a0 of the regression is reduced 
to the estimation of the mean vector a0 of a normal distribution N(a0 , a2 I) 
based on its realization 1Xise. 

If in (5.19) all the A; were equal, Theorem 5.2 could be used to construct 
an algorithm for estimating regression which is better than the least-squares 
one. Indeed, as will be shown below, the statistic 

(5.20) 

does not depend on 1Xise and is distributed according to the central a2x2 

distribution with I - n degrees of freedom. Therefore according to Theorem 
5.2 the estimator 

A (l n - 2 yTy - IX~elXlse) 
IX - T 1X1se 

I - n + 2 1X1se IX1se + 
(5.21) 

is uniformly better than IXise• i.e., yields a value of the criterion ( 5.19) (in the 
case when ,1, 1 = · · · ,1,n) smaller than 1Xise· However, in the doubly orthogonal 
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system (5.17) constructed above, not all A; are generally equal. Thus obtaining 
a better approximation to the regression in the case of unequal A; involves 
the determination of an estimation method yielding a value for the criterion 
(5.19) which is lower than that due to the least-squares method. 

Construction of such an estimating algorithm is also based on the results 
of Theorem 5.2. We shall assume that the functions t/J; are enumerated in 
increasing order of A; (J1 ~ A.2 ~ • • • ~ An ~ 0). We shall introduce the 
following notation: let a0(p) be a vector of dimensionality p, consisting of the 
first p coordinates of the vector a0 =(a?, ... , a~)T; let a18e{p) be the vector 
consisting of the first p coordinates of the vector of estimators obtained by 
the least-squares method a,se-

Define n numbers/1, .•. ,f,,: 

/1 = 1, 

( S p-2 ) 
fp = l - IY. l~e(p) IY.1se(P) / - P + 2 +' p = 2, ... , n. 

Using these numbers, we construct n numbers hP by the rule 

n 

L (A; - A;+ 1)h 
hp= _;;~p-----, where An+l = 0, 

JP 

The following theorem is valid. 

p = 1, 2, ... , n. 

Theorem 5.3 (Bhattacharya). For the risk function (5.19) the estimator 

n ~ 3, 

is uniformly better than the estimator IY.ise = (afse, ... , afs.) T_ 

(5.22) 

PROOF. The proof of Theorem 5.3 is based on Theorem 5.2, according to 
which for any p the inequality 

(5.23) 

is valid. 
Consider the randomized estimator 

(5.24) 

where gk are random variables independent of S and y distributed according 
to 

An+i=O. 
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The value of this risk (5.19) for this estimator is equal to 

" 
Pi(Ga1 •• , ao) = ML -1igkaf •• - aZ)2 

k=I 

_ ~ ~ Aj - Ai+ 1 k o 2 
- k~1 j~k Ak AkM(Jja1 •• - ak) . 

We now utilize the inequality (5.23): 

" " 
Pi(Ga1 •• , a0 ) = L L (,1,i - Ai+ 1)M(af •• Jj - aZ)2 

k= 1 j=k 
" j 

= L (,1,j - Aj+ 1)M L (af •• Jj - af)2 

j=l k=l 

" 
= L (,1,j - Aj+1)Mlla1 •• U)Jj - aoU)ll 2 

j= 1 

" 
~ L (,1,j - Ai+ 1)Mlloc1 •• U) - aoU,11 2 

j= 1 
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Thus the value of the risk for the randomized estimator of the parameters 
is less than the corresponding value for the least-squares estimator. On the 
other hand, it follows from the convexity of the loss function (5.19) that the 
nonrandomized estimator (5.22) is at least as good as the randomized esti­
mator (5.24). Thus the approximation to the regression determined by the 
parameters (5.22) is uniformly better than the least-squares approximation. 
The theorem is proved. D 

It remains to show that statistics S = yTy - a~0 a1 •• does not depend on 
a1 •• and is distributed according to the central a2 x2 distribution with I - n 
degrees of freedom. For this purpose we shall complete the system of n 
vectors t/1 1, ... , t/1., orthonormal on x1, ••• , x1: 

t/J; = (t/J;(x1), · · ·, t/J;(X1))\ 

t/JTt/J. = {1 for i = j, 
' 1 0 for i 'I= j, 

i,j = 1, 2, ... , n, 

so that it becomes a complete orthonormal system consisting of I orthonormal 
vectors 

t/JTt/J·={l fori=j, 
' 1 0 for i 'I= j, 

i, j = 1, 2, ... , I. 
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We now expand Yin terms of this system: 

n I 

y = L Yir/li + L yjr/Jj, (5.25) i=l j=n+l 
where 

i = 1, 2, ... , n, 

j = n + 1, ... , I. 

Substituting (5.25) into (5.20), we obtain 
l 

s = I yJ, (5.26) j=n+l 
and hence S does not depend on Ol'.lse (but only on Yi,j = n + 1, ... , I). Since 
by assumption Y = Y0 + ~ and the vector Y0 can be expanded in terms of 
this incomplete system (5.17) 

n 

Yo = L Ol'.?r/li, i= 1 
we have the inequality 

-T 
Yi = e I/Ji. 

Substituting the value of Yi into (5.26), we obtain 

s = j=t/f = j=t+l (tei r/Jj(xi)r 
I 

I eJ, 
j=n+ 1 

and hence the statistic Sis distributed according to the central a2x2 distribu­
tion with I - n degrees of freedom. 

§4 A Theorem on Estimating the Mean Vector of 
a Multivariate Normal Distribution 

In this section we shall obtain a family of estimators of the mean vector 
which are uniformly better than the estimator Ol'.(x, S) = x. The estimator 
(5.21) belongs to this class. 

Let x be a random vector distributed according to N(Ol'.0 , <121), and S be a 
random variable independent of x distributed according to the central 
a2x2 distribution with q degrees of freedom. We denote F = x T x/S. 

The following theorem is valid. 

Theorem 5.4 (Baranchik). An estimator of the n-dimensional (n 2!: 3) mean 
vector 

( r(F)) &(x, S) = 1 - F x, 
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where r(F) is a monotonic nondecreasing function satisfying 

n - 2 
0 ~ r(F) ~ 2--2, 

q+ 

is uniformly better than the estimator ct(x, S) = x. 

121 

(5.27) 

Remark. Theorem 5.2 is a particular case of Theorem 5.4 obtained by setting 

!
n - 2 n - 2 
--2 for F 2:'. --2, 
q + q + 

r(F) = 
n - 2 

F for F <--2 . 
q+ 

PROOF. In the proof of Theorem 5.4 the following fact is used: the mathematical 
expectation of a random variable f (x2( n, b)) taken with respect to the measure 
µ(x2(n, b)), where x2(n, b) is a random variable with the noncentral x2 distri­
bution with n degrees of freedom and noncentrality parameter b, can be 
represented as 

Mf(x2(n, b)) = Mf(x;+2k), 

where x;+ 2k is a random variable with the central x2 distribution with n + 2k 
degrees of freedom, and k is a random variable distributed according to the 
Poisson distribution with parameter b: 

bk 
P(k) = exp{ -b} k!" 

(The mathematical expectation on the right-hand side is evaluated with 
respect to x as well as with respect to k.) 

Thus 

00 bt 
Mf(x2(n, b)) = Mf(x;+2k) = exp{ -b} I , Mf(x;+2r)-

r=o t · 
(5.28) 

We now proceed directly to the proof of the theorem: Our purpose is to show 
that the difference 

H = Mll&(x, S) - ctoll 2 - Mllx - ctoll 2 

is nonnegative. Denote 

and transform (5.29) 

g(F) = 1 - r(F) 
F 

H = M[xTxg2(F)] - 2ctJMg(F)x + ilctoll 2 - mr2. 

(5.29) 

(5.30) 



122 5 Estimation of Regression Parameters 

The expressions (5.31)-(5.34) below are derived under the assumption that S 
is fixed. According to (5.28) we have 

= exp{- llaoll 2
} ~ llaoll 21 M[ 2 2 g2(a2x;+21)] (S.3l) 

. 2a2 rf'o t!(2a2y a Xn+2t S . 

We now transform the expression 

T T (XTX) a0 Mg(F)x = a0 Mg S x. 

For this purpose we shall perform an orthogonal transformation of vectors 
x into vectors z such that in the new coordinate system the mean vector is 
equal to (llaoll, 0, ... , 0) (only the first coordinate does not vanish, and it is 
equal to the norm of the mean vector). This transformation leaves S unaltered. 
We obtain 

where z is the first coordinate of the vector z = (z 1, ... , zn?· 
Observe now that 

Thus we obtain 

2 { llaoll 2
} d {llaoll 2

} (a2x;+2k) = a llaoll exp - 2a2 dllaoll exp 2a2 Mg S , 

where k is a random variable distributed according to the Poisson distribu­
tion with the mean II a0 II 2 /(2a2). Finally we obtain 

aJMg(XTX)x = 2a2 exp{- llaor} f t(llaor)t Mg(a2x,;+21IS). (5.32) 
S 2a i=o 2a t. 
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Now taking into account that II ix0 II 2 /(2a2 ) is the mean of the random 
variable k distributed according to the Poisson distribution, we express the 
third summand in the sum (5.30) in the form 

( llixoll 2
)

1 

II 11 2 = 2 2 {- llixoll 2} ~ t ~ 
1Xo a exp 2 z ~ ' • 

CJ' t=O t. 
(5.33) 

We can thus represent the expression (5.30) in the form 

( llixof)r 
2 { llixoll 2} 00 2a2 

H = rr exp - --2 L ~--
2a t=O t ! 

x [ Mx~+ 2r g2 (a
2xf + 21) - 4tMg(a

2xf + 21) - n + 2r} (5.34) 

Now let S = a2 x~ be a random variable distributed according to the 
central a2x2 distribution with q degrees of freedom. The theorem will be 
proved if we verify that the expression 

h = M[ 2 2(X~+2 1) _ 4t (X~+2 1) _ + 2t] Xn+219 2 g 2 n 
Xq Xq 

is nonpositive for all t. 
2 2 Denote X,.+ 2r/Xq = u, and observe that 

u(l - g(u)) = r(u). 

Therefore condition (5.27) implies that 

n - 2 
g( u) > 1 - 2 -- u - 1. 

q + 2 

(5.35) 

(5.36) 

(5.37) 

We transform the expression (5.35) utilizing notation (5.36) and the fact that 
Mx~+2r = n + 2t: 

[ r(u)·J 
h = M -2r(u)x: + r(u)(l - g(u))x: + 4t -u-

= M[r(u)x:(-1 - g(u) + +)]· 
Xn+ 2r 

Taking (5.37) into account, we obtain that the quantity h does not exceed 

where 

2 [ ( n - 2 2 ) 1 ] ( = Xq - 2 + 4t + 2 --2 Xq - 2~ · 

q + Xn+21 
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For any fixed x; we determine a constant a such that 

- 2 + 4t + 2 -- x2 - = o. ( n-2 )1 
q + 2 q a 

(5.38) 

Observe that for any x; + 21 > a the inequality ( < 0 is valid. Therefore taking 
into account that in view of the condition of the theorem the function r(u) is 
nondecreasing, we obtain the bound 

M {r( x~r1), I x;} 
~ r(;;)MWx;+21 ~ a}P{x;+2r ~ a} 

+ r(~)Mmx;+2r > a}P{x;+2r > a} 

= r(;;)Mmx;} 
= r(~ )x; [ -2 + ( 4t + 2 : : ~ x;) n + ;t _ 2] 

= 2 n:; ~ 2 r(;;)x;(-1 + q 12)- (5.39) 

(We have used the equality M(l/x;.) = 1/(m - 2) (m ~ 3).) 
Substitute now into (5.39) the value of a satisfying (5.38), and compute the 

mathematical expectation of the last term in (5.39), which is 

n - 2 { (2t n - 2) 2 [ 1 x; ] } 2 n + 2t - 2 M r x; + q + 2 Xq - + q + 2 · 

Taking into account that r(u) is a nondecreasing function we find the bound 

M{rG: +;: ~)x;[-1+q1 2]} 

~ r(n: ~; 2)M{x;[-1 + q 12] Ix;~ q + 2} 

+ r(n: ~; 2)M{x;(-1 + q 12) Ix; > q + 2} 

= r(n: ~; 2)M{x;[-1 + q 12]} = o. 

(For a central x2 distribution we have Mx; = q, M(x;)2 = q(q + 2).) 
Thus the quantity (5.35) is nonpositive and the theorem is proved. D 
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§5 The Gauss-Markov Theorem 

Up until now, when estimating regression it was assumed that the errors are 
distributed according to the normal distribution. We shall now relax this 
assumption. It will be assumed that the distribution of errors is unknown 
but has a bounded variance. Under these conditions it is required to construct 
the best algorithm for the regression estimation. 

Above, when developing the theory of normal regression we first estab­
lished that in the class of algorithms leading to unbiased estimators of the 
parameters the least-squares method was optimal, but for a wider class of 
algorithms procedures which are better than the least-squares method were 
obtained. We shall now proceed analogously. First we shall show that in 
some narrow class of estimating algorithms the least-squares method is the. 
best, and then we obtain estimation methods in a wider class of algorithms 
which are superior to the least-squares method. 

Under the assumption of normal errors the least-squares method is the 
best in the class of unbiased methods of estimation. In this section we shall 
show that in a narrower class of estimates which are both linear and unbiased, 
the least-squares method yields the best estimating algorithms independently 
of the distribution of the errors. 

Definition. We say that an estimator of the parameter rx is linear in the observa­
tions Y = (y 1, •.. , y1) T if it can be represented in the form 

rx = LY (5.40) 

where Lis a matrix with the entries f3ii (i = 1, ... , l;j = 1, ... , n). 

The following theorem is valid: 

Theorem (Gauss~ Markov). Among all the linear unbiased estimators the 
least-squares estimator possesses the minimal variances of the coordinates. 

We shall prove the Gauss~Markov theorem in its more general form for 
the case of linear biased estimators. Denote by rx0 the vector of parameters 
of the linear regression 

( y = <l>rxo + ~). ( 5.41) 

Define the estimator rx(B) as the solution of the equation 

(5.42) 

where B is a symmetric nonnegative definite n x n matrix which defines 
the bias vector µ 0 • We shall show that the estimator rx(B) possesses extremal 
properties. Namely, the following theorem is valid. 
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Theorem 5.S. Among all the linear estimators of the vector of parameters (X 
with the bias vector equaling µ0 , the estimator (X(B) possesses the minimal 
variance of coordinates. 

PROOF. We obtain from (5.42) 

M(X(B) = M(<l>T<I> + B)- 1<1>TY = (<l>T<I> + B)- 1<1>T<l>(X0 • (5.43) 

Let 12 = LY be an arbitrary linear estimator such that 

Ml2 = M(X(B) = µo + (Xo = µ. 

Then we obtain from (5.42) 

MLY = L<l>(Xo = (<l>T<I> + B)-l<l>T<l>(Xo· 

Since the equality (5.45) is valid for any (Xo, then 

L<I> = (<l>T<I> + B)-l<l>T<I>. 

We now write the variance of the ith coordinate of estimator 12: 

M(l2i - µ;)2 = M(l2i - (XiB) + (XiB) - µ1)2 

(5.44) 

(5.45) 

(5.46) 

~ M((XiB) - µ;)2 + 2M(l2i - (XlB))((XiB) - µi), (5.47) 

where µi is the ith coordinate of the vector µ. 
We shall show that the second summand on the right-hand side of (5.47) 

vanishes. Indeed, utilizing (5.44) and (5.46), we obtain 

M(l2; - (XiB))((XiB) - µ;) 

= M(l2; - (X;(B))(Xi(B) 

= u2ll(L - (<l>T<I> + B)-1<l>T)<l>(<l>T<I> + B)-1llii 

= u2ll(L<I> - (<l>T<I> + B)- 1<1>T<l>)(<l>T<I> + B)- 1llu = 0, 

where IIAllii denotes the element Au of the matrix IIAII-
Thus 

The theorem is thus proved. D 

The Gauss-Markov theorem follows from the theorem just proved by 
setting IIBII = 11011 in (5.42). In that case µ0 = 0. 

Further, in Chapter 8 to construct the regression estimators from small 
samples we shall make use of this theorem. We shall search for the best 
estimators among the estimators of the class (X(yB) (where y > 0 is a constant 
specifying the estimator of the class). The estimator (X(y*B) is called a 
ridge-regression estimator. 
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§6 Best Linear Estimators 

Thus, among linear unbiased estimators, the least-squares estimators are 
the best regardless of the distribution of the errors. In the next sections we 
shall consider a wider class of estimators-the class of linear estimators (not 
necessarily unbiased), and we shall obtain the best estimators in this class. 
These estimators will differ from the least-squares estimators provided 
nontrivial prior information concerning the estimated parameters is avail­
able. In cases when no nontrivial prior information is available the best 
linear estimator is still the least-squares method. 

Let the parameters of the regression 

n 

y = y(x) = L r1.?l/f;(x) (5.48) 
i= 1 

in a Gauss-Markov model be estimated from empirical data x1, y 1, ... , x 1, y1• 

Let i{, 1(x), ... , i{,n(x) be a doubly orthogonal basis 

f {l for i = j, 
il,;(x)i{,/x)P(x) dx = Oi 

for i # j, 

~ A A {l 
,~11/J;(x,)l/f /x,) = 0 

Consider the class oflinear estimators: 

aP = 0JY + pg, 

where 

for i = j, 
for i # j. 

ep = (0f, ... , er?, Y = (Y1, · · ·, Y,l. 
We introduce the system of orthogonal vectors 

X1, · · ·, x,; T {I for i = j, 
X; Xi = 0 for i # j, 

in which the first n vectors are 

i = 1, ... , n. 

We represent the vector 0P in the expansion in terms of (5.51): 

l 

0P = Lf3fXi· 
i= 1 

Then the equality (5.50) can be rewritten as 

l 

&p = I Pfx{Y + pg. 
i= 1 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

(5.53) 
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We express the amount of deviation M(&P - 1X~)2 in terms of the parameters 
p. For this purpose we shall utilize the identity 

M(&p - 1X~)2 = (M(rxp - 1X~))2 + M(rxp - Mrxp)2. (5.54) 

The first summand on the right-hand side equals 

(M(&p - 1X~))2 = ctPflX? + pg - IX~ r-

The second summand equals 
l 

M(&p - M&p)2 = la2 L (Pf)2. 
i= 1 

Thus 

(5.55) 

The best linear estimator is the estimator which minimizes (5.55). 

§7 Criteria for the Quality of Estimators 

The best linear estimator can be obtained by directly minimizing with respect 
to p1, ... , Pi the right-hand side of the equality (5.55). The minimum of 
(5.55) is attained at Pf = P~ = · · · = Pf = 0 and pg = IX~, and this minimum 
is zero. 

Thus for each specific problem (specific values of IXo and a) a trivial biased 
estimator can be found which yields the minimum of the square of deviations. 
Now we wish to construct a linear estimator which will be suitable for a 
solution of a class of problems rather than for a single one. 

Let us define a class of problems R(a, a), to which the algorithm is appli­
cable, by means of the inequalities 

ap ::;; IXP ::;; bp, 

d::;; a::;; e. 
(5.56) 

We shall now determine the quality of an algorithm for estimating the 
parameter IXP in the class R(IX, a). As usual in such situations, we shall con­
sider two approaches: Bayesian and minimax. For each approach a different 
notion of the quality of a linear estimator will be introduced. 

According to Bayes's principle the best method for estimation is that for 
which the mean value of the criterion over the set of problems belonging to 
R(IX, a) is minimal (the measure on this set is given by the distribution 
P(1X, a)). 
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Definition. The estimator 

a~1) = I /3fxTY + {Jg 

is called linearly best in the mean if among all linear estimators it yields 
the minimum of the functional 

(5.57) 

Below we shall compute a Bayesian estimator for the case when the 
parameters a and CJ are distributed independently according to the uniform 
distribution on the corresponding intervals, i.e., 

{ 

n 1 1 
( ) _ TI ~b _ ----=-d if aP ~ aP ~ bp, d ~ CJ ~ e, 

p c~, CJ - i = i i a; e 

0 otherwise. 

(5.58) 

Thus the quality of the estimator is determined by the functional 

f n da; dCJ 
fi21f(/3) = fi2JP(f3 I a, CJ) I\ b; - a; e - d · (5.59) 

In accordance with the minimax principle the best method of estimation is 
considered to be the one which yields the minimum of fi2JP(f3 I a, CJ) for the least 
favorable problem (pair a, CJ). 

Definition. The estimator 

a~2 ) = I /Jf xTY + {Jg 

is called the best linear minimax estimator in the class R(a, CJ) if it yields the 
minimum of the functional 

fi21~(/3) = sup fi2JP(f3 I a, CJ) (5.60) 

in the class of linear estimators. 

In general there may exist problems belonging to the class R(a, CJ) for which 
the estimators a~1l and a~2l introduced above are worse than the least­
squares estimators /Jf.. = (0, ... , 1//, ... , O?, {Jg = 0 (only the pth co­
ordinate of the vector /Jf.. is nonvanishing). Therefore we shall define the 
third optimal estimator in such a manner that it will be uniformly better than 
the least-squares estimator. For this purpose we introduce the loss function 

fi21~(/3) = sup(fi2JP(f3 I a, CJ) - fi21P(f31se I, a, CJ)) (5.61) 
a,a 

and require that the optimal estimator minimize the expression (5.61). 
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Definition. The estimator 

°'~31 = L Pfxf Y + PS 
is called linearly uniformly better than the least-squares estimator if it yields 
the minimum of the functional (5.61) in the class of linear estimators and 
min11 D~(P) < 0. 

§8 Evaluation of the Best Linear Estimators 

The following three theorems constitute the basic content of the theory of 
the best linear estimator. 

Theorem 5.6 (Koshcheev). The best linear estimator of parameter °'P in the 
class R(rJ., u) is of the form 

aP + cP p<il 
lse l p 

oc<il =---­
P 

1 + !p(i) 
l P 

i = 1, 2, 3, (5.62) 

where cP = (ap + bp)/2, ocfse is the least-squares estimator, oc~1> is the best in the 
mean estimator, 

(ll - 4 d2 + de + e2 
Pp - (ap - bp)2 ' (5.63) 

oc~2> is the best minimax estimator, 
2 

c2> - e 
Pp - 4 (ap - bp)2' (5.64) 

oc~31 is the uniformly best estimator, and 

(3) - d2 
PP - 4 (ap - bp)2· (5.65) 

It thus turns out that the best linear estimators are biased. The structure of 
the estimators is given by the expression (5.62), where p~> are defined in 
(5.63)-(5.65), depending on the specific notion of the quality of an estimator. 
There exists a simple relationship which shows by how much a Bayes or 
minimax estimator is superior to a least-squares estimator. 

Theorem 5.7 (Koshcheev). The equality 

m,p( (i)) - 1 m,p( p ) ::o; (1.P - l ::o; °'Ise , 

1 + - p<il l p 

i = 1, 2 (5.66) 

is valid. 
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According to Theorem 5. 7 the optimal estimators rJ.~l are superior to the 
least-squares estimator by the factor (1 + (1//)p~>). Hence the smaller the 
sample size /, the better the estimators rJ.~>. 

Below we shall present the proof of Theorem 5.6. The validity of Theorem 
5.7 follows from a more general theorem considered in the next section. 

PROOF OF THEOREM 5.6 

(I) Derivation of the best linear estimator in the mean. We write the functional 
whose minimum determines under our conditions the best estimator in the mean: 

:»1;(/J) = f b, ... fb" r [fo2 ± <fJn2 + (1 ± /Jfrx; + wo - rxp)2] fI b d~i . ~ d. 
lit a 11 Jd 1=1 1=1 1=1 I a,e 

(5.67) 

This integral can be easily evaluated: 

I e3 - d3 i 

9J'!(/J) = - ~-- I c/Jnz 
3 e - d i= 1 

+ Il ~ fb' · · · fb" (1 I f3frx; + {ig - rxv) 2 
drx 1 · · · drx". 

j=l(bj a;) a1 Un i=! 

Denoting (a;+ b;)/2 = c;, (a; - b;)/2 = .It;, t; = rx; - c;, and substituting the variables, 
we obtain 

Since the integration is carried out over the symmetric intervals [ - .. H, .. HJ, the terms 
linear in I vanish. We thus obtain 

Here the notation 

is utilized. Finally we arrive at 

b = {I 
Ip 0 

for i = p, 

for i ¥- p 

I i 

f!ti'{(/3) = - (e 2 + ed + d2 ) L (/3f) 2 

3 i= I 

(5.69) 

(5.70) 

In order to obtain the best linear estimator in the mean it remains only to minimize 
the expression (5.70) with respect to parameters /3. 
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Equating the partial derivatives of (5.70) to zero, we obtain that 

Pf = 0 for i #- p, 

pg= -cp(IP~ - 1), 

A; 
e2 + ed + d2 

p~ = l.$12 

1 + P 

e2 + ed + d2 

Substituting the values (5.71) obtained into (5.53), we have 

1)((1) = 
p 

e2 + ed + d2 cP 

I JJ,2, x:Y + , 
Jn 1 + /.lfp 

1 + e2 + ed + d 2 e2 + ed + d2 

Introduce the notation p~1l = (e 2 + ed + d 2)/..i~. Then 

1 C - xTY + _I'_ p!l) 
1)((1) = / P I P 

p 1 
1 + - pol 

I P 

(5. 71) 

Observe that the quantity (1/l)x:Y is the least-squares estimator of the parameter 
I)(~. Thus 

C 
IJ(p + _I'_ p(l) 

lse / p 

I)(~!) = ---1--
1 + -p(l) 

I p 

The first part of the theorem is proved. 
(2) Derivation of the best minimax estimator. The functional whose mmtmum 

determines the best minimax estimator is equal to 

Utilizing the notation 

b- - Q-
A-=-'--' 

I 2 ' 

and substituting the variables in (5.72), we have 

I [ n n ]2 
= e2/I?f)2 + 1,~~':, i~/lf3f - Dip)ti + I (/f3f - Dip)ci + pg 

= e2/t(Pf)2 + [t11pf - ()iplA; + I JyPr - ()jp)cj + pg Ir 
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Thus 

We shall now obtain the minimum of (5.73). By choosing /3fi to be equal to 

/Jfi = - I U/3f - c5;p)c;, 
i= 1 

the second term of the sum in the square brackets becomes zero. Therefore it is sufficient 
to minimize 

The minimum of (5.74) is attained for 

/3f = 0 for i =f p, 

whence for /Jf = 0 (i =f p) the functional (5.74) becomes 

f:c1;;(/J) lpf ~ o <i" Pl = le2(/3~) 2 + (//3~ - 1)2..i;. 

The minimum of this expression is attained at 

Substituting (5.75) and (5.77) into (5.53), we obtain the best minimax estimator 

(ll A; T ( Ut; ) IA;cx.f,e + cpe2 
Ct. = --~-x y + --~- -1 C = ------

P e2 + IA; P e2 + IA; P e2 + Lit; 

Introducing the notation p~2 l = e2 /.It;, we arrive at 

cx.<2) = 
p 

Ct.p + /}: p(2) 
lse / p 

I + -p<2) 
l p 

(5.74) 

(5.75) 

(5.76) 

(5.77) 

(3) Derivation of the uniformly best linear estimator. To evaluate the uniformly 
best estimator it is required to minimize the functional 

f!j)Pi/3) = sup(r!i)P(/31 ex, a) - f!j)P(/3,,e I ex, a)), 
a.a 

or explicitly, 

(5.78) 
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It is easy to verify that in this case all the calculations are the same as those carried out in 

the preceding subsection, except that if 

l 

L. (Pf)2 - I < 0, (5.79) 
i=l 

then d = inf <1 should be taken instead of e = sup <1. 

Consequently 

l 

pg = - L. (lpf - h;p)c;, 
i=l 

Pf ={o .112 
I S2 + ;.llr 

for i ¥- p, 

for i = p, 
(5.80) 

where s is either inf <1 or sup <1, depending on the sign of Li= 1 (Pf)2 - I. However, for 

Pf as given by (5.80) the expression (5.79) is negative: 

I (Pf)2 - I = ( 2 .It; .21)
2 - I < 0. 

i=l s + .llp 

Hence s = inf <1 = d. Thus the uniformly best linear estimator is equal to 

where in this case 

C 
a.P + _!!. p(3) 

Jse / p 

a.~3>=----
1 1 + -p(3) 
I P 

(3) - d2 
PP - -2· 

.llp 

§9 Utilizing Prior Information 

D 

According to Theorem 5.6 the availability of the following prior information: 

(1) the interval [ai, ha to. which the estimated parameter r:,.P belongs, 
(2) the interval [d, e] to which the variance of the noise u belongs, 

allows us to construct the best linear estimators. According to Theorem 5. 7 
the functional defining the quality of the best linear estimator is 1 + (p~>//) 
times smaller than the functional corresponding to the least-squares esti­
mator. 

Usually it is not too difficult to obtain this prior information for solving 
practical problems within the Gauss-Markov model. As a rule the intervals 
in which the measured values of y are situated, 

(5.81) 
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are known. This knowledge results from long experience or from the knowl­
edge of the laws of nature. For example, when constructing the regression for 
the temperature forecast in Moscow on the 166th day of the year, it is known 
a priori that the forecast value of t lies within the given limits + 5°C ~ t 
~ 35°C. The knowledge of the bounds (5.81) allows us to obtain intervals 
for the estimated parameters. The equality a~ = M(l/l)xJY implies that 

Here the first sum I' contains the positive coordinates of the vector Xv = 
(t[lp(x 1), ... , t[lp(x1))T, while the second contains the negative ones. Anal­
ogously the bounds 

av= inf ~I xJY 2 ~/ (.I'r;t[lp(x;) + _I"T;t[lp(x;)) 
Y ,=1 ,=1 

are obtained. 
To estimate the interval for the variance we can also utilize our experi­

ence and knowledge of the laws which govern errors. However, if the interval 
obtained for the variance is too wide, we can then use alternatively the prob­
abilistic approach, which consists of choosing the interval which contains 
the true value of the variance with the highest probability. 

It is known that the quantity 

2 
aemp 

I n 

L yf - I L (afse)2 

i=l p=l 

I - n 

is an unbiased estimator of the error variance. We shall utilize Chebyshev's 
inequality 

P{a;mp 2 ~
2

} ~ ~' 

which implies that with probability 1 - ~ 

2 2 
a 2 aemp~· (5.82) 

The bound (5.82) may be refined if the nature of the error distribution is 
known. 

Based on the interval for the variance d ~ a ~ e and the interval to which 
the parameter aP belongs, the parameters p~> and c~> are found by means of 
which optimal linear estimators are constructed. Note that the more in­
definite the prior information is (the wider the interval is), the smaller the 
value of p~> will be and the closer the best linear estimator will be to the 
least-squares estimator. It can be shown that for trivial prior information 
( - oo < av < oo, 0 < a < oo) the best linear estimator coincides with the 
least-squares one. 
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To complete the theory of the best linear estimation it remains to clarify 
how sensitive the methods of linear estimation are to the precision of prior 
information. Theorem 5.8 answers this question. 

Theorem 5.8 (Koshcheev). Let &~ = ap(p~>, cp) be the best linear estimator 
computed from approximate values of the parameters p~>, cp, .ii P' while the 
true values of the parameters equal p~>, cp, .A p· Then the quality of the esti­
mator obtained is given by 

where 

(/J~))2 
1 + V;--(i)-

!!)P( A ( A(i) A )) - pp !!)P( p ) 
; t:1.P Pp, cP - (l + p~>)2 i t:1.1se 

(c c ) 2 
V1 = 1 + 3 P .Jl P P , 

(i = 1, 2), (5.83) 

(5.84) 

Observe that Theorem 5. 7 is a particular case of Theorem 5.8 for cP = cP 

and p~> = p~>. 
It follows from the equality (5.83) that if the value of parameter p~> is 

related to p~> and v; by the inequality 

A(i) 
(i) Pp V; 

Pp > 2 + p~>' (5.85) 

then the estimator obtained using p~>, cP will be better than the least-squares 
estimator. Consequently the choice of p~> is based on two contradictory 
considerations. To obtain an estimator at least as good as the least-squares 
one, the value of p~> should be reduced (so that (5.85) is fulfilled). But the gain, 
which is approximately equal to !!);(af..)/(1 + µCil), is decreased. 

PROOF OF THEOREM 5.8. First we shall compute the value of the criterion (5.55) for the 
estimator &p(p~>cp): 

( 
c . 

c,:f, +~PA (•) 
se / p 

=M A(i) 

1 +~ 
I 

c,:o + ~ p(il)2 (c,:o + ~ pU> )
2 

P I p P I P 

---- + ---- c,:o 
1 1 P 

1 + p(i) - 1 + p(i) -
P I P I 
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The two relations ( 5.83) claimed in the theorem are verified by elementary calculations 

hence 

(J2 ('(1))2 
~ + I!.!!___ (c - a0)2 

P - fcp+Atp fe l I P P _!!.!!_ da~ 
.1\(&) - ( 1 )2 e - d .,JI cp-Atp d l + _ •(!) P 

I Pp 

____ + _P_ __P + (c _ c )2 1 e3 _ d3 (/P>)2 (.Jt2 
) 

3e-d I 3 p P 

(1 + f p~'J 
P _ Jcp+Alp _!,rJ._ Je (J2 _!!.!!_ _ e2 + ed + d2 

~,(afs.) - 2.Jt I - d - 31 ' 
cp-J{,p p d e 

~Hix) 

~Ha,s.) 
(c c ) 2 

v1 =1+3 PAPP. 

We now compute 

On the other hand, 

hence 

~~(&p) 

~~(IX1se) 

The theorem is proved. D 

We have thus studied the theory of estimating regression parameters. This 
theory is based on the fact that in a certain narrow class of estimators the 
least-squares method is optimal (for normal regression this class is the class 
of unbiased estimators, and for general regression theory it is the class of 
linear unbiased estimators). It then turned out that in a class of biased esti­
mators, better estimators than those arising from the least-squares method 
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may be constructed. Such nonlinear biased methods of estimation were 
obtained for estimating parameters of normal regression, while linear biased 
methods arise in the general model of regression estimation. 

Estimation methods presented in this chapter can be utilized for regression 
estimation provided the density P(x) is known and the regression is indeed a 
linear function in the parameters. 




