
Chapter 4 

Methods of Parametric Statistics for the 
Problem of Regression Estimation 

§1 The Scheme for Interpreting the Results of 
Direct Experiments 

In the preceding chapter methods of parametric statistics were applied to 
solve the pattern recognition problem: to minimize the functional 

l(a) = J<Y - F(x, a))2P(x, y) dx dy 

with unknown density P(x, y), on the basis of empirical data 

(4.1) 

(4.2) 

first the density F'(x, y) was estimated in the parametric class of densities 
{P(x, y)}; then, using F'(x, y), the empirical functional 

I emp(a) = J (y - F(x, a))2 F'(x, y) dx dy (4.3) 

was constructed; and finally a value aemp was determined which minimizes 
(4.3). 

To implement this process it was essential that the coordinate y take on 
only two values, zero and one; the set F(x, a) was a set of indicator functions, 
and the density P(x, y) was a union of two densities. These were character­
istic features of the pattern recognition problem. In this chapter we shall 
implement the same procedure of risk minimization, but in relation to the 
problem of regression estimation. 

For a solution of this problem using methods of parametric statistics a 
specific model of density which differs from the one discussed in Chapter 3 is 
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82 4 Parametric Statistics of Regression Estimation 

used. It is assumed that the random variable y and a random vector x are 
related as follows: 

y = F(x, 0(0 ) + ~. 
where F(x, 0(0 ) is a function which belongs to the class F(x, (J() and ~ is a noise 
independent of x distributed according to the density P( ~): 

M ~ = 0, Me < oo. 

Thus for any fixed x the distribution P( ~) induces the conditional density of y, 

P(ylx) = P(y - F(x, 0(0)). (4.4) 

The joint density P(x, y) is defined by 

P(x, y) = P(ylx)P(x) = P(y - F(x, (J(0))P(x), (4.5) 

where P(x) is the probability density of the vector x. 
The problem of regression estimation, F(x, 0(0) E F(x, (J(), based on a 

random and independent sample of pairs x 1, y 1, •.. , x1, y1, can be interpreted 
as the estimation of the functional dependence F(x, 0(0 ) in the class F(x, (J() 
based on direct observations which are carried out subject to additive noise 
at I randomly chosen points. In Chapter 1 this problem was called "inter­
pretation of results of direct experiments". 

We shall solve this problem using methods of parametric statistics. First 
we estimate the density 

F(ylx) = P(y - F(x, ()(*)), 

and then we obtain the minimum point for the empirical functional 

J.mp((J() = J<y - F(x, (J())2F(y - F(x, (J(*))P(x) dx dy. (4.6) 

First we show that the minimum of the functional ( 4.6) is attained at 
_(J( = (J(*. We utilize the identity 

J.mp((J() = J<y - F(x, (J())2F(y - F(x, (J(*))P(x) dx dy 

= J<y - F(x, a*))2 F(y - F(x, (J(*))P(x) dx dy 

+ J<F(x, (J() - F(x, 0(*))2 P(x) dx. (4.7) 

Since the first summand on the right-hand side does not depend on (J(, the 
minimum of J.mp((J() is attained if the second nonnegative summand vanishes, 
i.e., at (J( = (J(*. Thus the value of the vector (J( = (J(* which defines the condi­
tional density F(ylx) = P(y - F(x, ()(*)) immediately determines the re­
gression. It equals F(x, ()(*). 



§2 Statement of Interpreting the Results of Direct Experiments 

§2 A Remark on the Statement of the Problem of 
Interpreting the Results of Direct Experiments 
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In the statement of the problem of interpreting results of direct experiments it is required 
that the unknown function F(x, a0 ) belong to a given parametric family F(x, a). This 
requirement is imposed because the density P(y - F(x, a)) is to be estimated by methods 
of parametric statistics. However, another formulation is possible according to which 
the unknown density P(x, y) belongs to a given parametric family of densities P(x, y; a) 
and the desired dependence F(x, a0 ) does not belong to the given set of dependences 
f(x, /J). In other words, as the model for interpreting results of direct experiments the 
following problem may be posed: find the minimum of the functional 

1(/3) = f (y - f(x, /3)) 2 P(y - F(x, a0))P(x) dy dx (4.8) 

from the sample 

if the joint density P(x, y) = P(y - F(x, a 0 ))P(x) is unknown, F(x, a0 ) E F(x, a), and the 
set of functions f (x, /3) does not necessarily coincide with F(x, a). If F(x, a0 ) r/J(x, /3), 
the minimum of the functional ( 4.8) is attained at a function belonging to f (x, fJ) which 
is closest to F(x, a0 ). The proximity is measured here in the Li sense: 

( )
1/2 

flL(FJ) = f (F(x, a0 ) - f(x, /3)) 2 P(x) dx . 

If however F(x, a0 ) Ef (x, /J), then the minimum coincides with the regression. (This 
fact also follows immediately from (4.7).) Thus the regression yields an absolute mini­
mum for the functional (4.8). 

For a known density P(x) the solution of the minimization problem for the functional 
( 4.8) may also be carried out by means of the methods of parametric statistics: based on 
sample (4.2), the density ?(y - F(x, a)) is estimated and then the empirical functional 

/emrC/3) = f (y - f(x, /3)) 2 ?(y - F(x, a*))P(x) dx dy 

is minimized. 
Observe that for the problem of pattern recognition the search for a conditional 

minimum (in the class f (x, /3)) of a functional, rather than the absolute one, was the 
subject matter of discriminant analysis. As it was pointed out in Section 2 of Chapter 3, 
the raison d'etre for this formulation was based on the fact that the sample size is finite 
and hence the density is estimated only approximately; thus the lower guaranteed 
minimum for the value of the expected risk can be obtained for a function belonging to a 
narrower class. An analogous situation arises for the interpretation of results of direct 
experiments based on finite samples: due to imprecisions in density estimation, the 
higher guaranteed proximity to regression may be attained at a function belonging to a 
narrower class f (x, /J). Methods for contracting classes of desired dependences in order 
to achieve a lower guaranteed expected risk will be discussed in Chapter 8. 
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§3 Density Models 

Thus in order to estimate regression -under the conditions of the model for 
interpreting the results of direct experiments-it is sufficient to estimate the 
density P(y - F(x, oc0)) defined up to the value of parameter oc. In view of the 
stipulated model, the parametric family of densities P(y - F(x, oc)) which 
contains the desired one is determined firstly by the ·given parametric family 
of functions F(x, oc) containing the regression F(x, oc0), and secondly by the 
known probability density for the noise P(~). 

The assignment of a class of functions F(x, oc) containing the regression 
is an informal step in the formulation of the problem. This class should be 
assigned a priori. 

As far as the probability density of errors is concerned, here the choice is in 
principle arbitrary. However, in the practice of direct experimentation certain 
typical situations arise connected with common mechanisms which yield 
observational errors. These mechanisms have been investigated. The 
following three probability densities are of importance for interpreting 
results of direct experiments: the uniform density, normal density, and 
Laplace density. 

The uniform probability density given by 

P(~) ={ 2~ for l~I s A, 

o for I ~I > A 

is used for roundoff errors. For example, let a value of a certain large quantity 
x be measured up to its integer value. Then the error ~ which arises from the 
roundoff to the closest integer is often assumed to be distributed according to 
the distribution 

P ~ = {1 for I~ I s o.s, 
( ) o for I~ I > o.s. 

The Normal (Gaussian) density given by 

1 { ~2
} PG) = r-:.= exp - _ 

v 2na 2a2 

is used to describe errors arising when repeated physical measurements are 
performed under identical conditions. These conditions determine the value 
of the variance a2 • For example, errors resulting in measuring distances by 
means of a theodolite carried out under the same conditions (the same 
illumination, humidity, air temperature, degree of atmospheric pollution, 
etc.) are commonly described by the normal density. 

The Laplace density given by 

P(~) = -1 exp{- ill} 
2A A 
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is used to describe errors occurring in physical experiments carried out 
under changing conditions. For example, if measurements of distances take 
place in unequal cloudiness, at different times, and under different pollution 
conditions, measurement errors are commonly described by a Laplace 
distribution. 

Each density P(O generates its own parametric set of densities 

P(y - F(x, rx)). 

In this chapter only the maximum-likelihood method will be used for 
estimating the density in various parametric families. This method is chosen 
because its implementation presents no technical difficulties. It is well suited 
to all the parametric families of densities under consideration. 

Thus we shall use the method of maximum likelihood for estimating 
parameters of the conditional density 

P(ylx) = P(y - F(x, rx 0)) 

from the random independent sample 

X1,Y1; ... ;x,,y1 

distributed according to the density 

P(x, y) = P(y - F(x, rx0))P(x). 

For this purpose we write the likelihood function 

l 

P(x 1, y1, ... , x 1, y1; rx) = TT P(y; - F(x;, a.))P(x;), (4.9) 
i = 1 

and then express it as a product of two factors: 

l 

P 1(rx) = TT P(y; - F(x;, rx)), 
i= 1 

which is the likelihood function for the conditional density, and 

l 

P 2 = TT P(x;). 
i= 1 

( 4.10) 

Since the factor P 2 does not depend on the parameter rx, ( 4.9) and ( 4.10) have 
the same maximum points. In what follows, the maximization of the function 
(4.10) will also be called a method of maximum likelihood. 

We shall now consider the likelihood function P 1(a.) for different distribu­
tions of the noise and find the corresponding maximum point. 

The likelihood function ( 4.10) for the uniform distribution of ~ is of the 
form 
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b;(o:) = {1 for IY; - F(x;, o:)I :5 ~. 
0 for IY; - F(x;, o:)I > ~-

The maximum of the likelihood function is determined by o: and ~ for which 
the minimum of the expression 

~(o:) = maxly; - F(x;, o:)I (4.11) 

is attained, i.e., o: is chosen to minimize the largest deviation of F(x;, o:) from 
Y;-

For the normal density the distribution of the likelihood function is given 
by the density 

pi (o:, a) = (2n)~12a1 exp{- 2~2 J1 (y; - F(x;, o:))2 }, 

and the maximum-likelihood method is equivalent to the minimization of 
the functional 

l 

/em/o:) = L (y; - F(x;, o:))2. (4.12) 
i= 1 

The method of determining o: by means of minimization of functional (4.12) 
is called the least-squares method. 

Finally, if the error is distributed according to the Laplace density, then 
the corresponding likelihood function is 

P1(~, o:) = (2~)' exp{-¼ ;tlY; - F(x;, o:)I}, 

and the maximum of the likelihood is attained for the vector o: for which the 
functional 

l 

/em/o:) = L IY; - F(x;o:)I ( 4.13) 
i= 1 

is minimized. The method of minimizing the functional (4.13) is called the 
method of minimal modules. 

As was indicated in Chapter 3, the method of maximum likelihood is an 
asymptotically efficient method of estimating parameters; therefore all 
three algorithms are optimal in a certain sense. Unfortunately each one of 
them is optimal only under its own conditions ( of uniform, normal, or Lap­
lace distributions of errors), and solutions obtained by means of these 
algorithms may differ significantly. 

Indeed, consider the simplest problem of estimating dependences-the determina­
tion of the mean value of a random variable y from a sample of size I. This problem is 
reduced to minimization of the functional 

(4.14) 
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on the basis of a sample y 1, ••• , y1• Using the method of minimization of the largest devia­
tion ( 4.11 ), we obtain the solution 

(I(* = Ymin + Ymax 

2 ' 
(4.15) 

where Ymin is the smallest and Ymax is the largest sample value; i.e., the estimator is the 
half range of the sample. The method of least squares (4.12) yields the estimator 

} I 

(I(*= - LY;; 
I i ~ I 

(4.16) 

i.e., the estimator is the sample arithmetic mean. Finally, the method of minimal modules 
(4.13) leads us to the following solution: order the observations according to their 
magnitude, 

and compute the estimator using the formula 

a*= { 
Yi,+ 1 for/ = 2k + 1, 

Y;, + Yi,+1 for/= 2k 
2 . 

§4 Extremal Properties of Gaussian and 
Laplace Distributions 

In the preceding section it was shown that algorithms for estimating regression 
obtained by methods of parametric statistics depend on the model adopted 
for the errors. Therefore it is necessary to be able to identify situations in 
which particular models are to be used. It was pointed out that the uniform 
distribution is used for describing errors resulting from rounding off, Gaus­
sian distributions for measurement errors under identical conditions, and 
the Laplace law for measurements under changing conditions. It would be 
desirable to make these recommendations more precise. 

In this section we shall establish certain remarkable properties for the 
Gaussian and Laplace distributions. We shall see that the Gaussian distribu­
tion possesses certain extremal properties under the absolute stability of 
measuring conditions, while the Laplace distribution possesses analogous 
extremal properties under "maximal instability" of measuring conditions. 

Thus we shall show that among all continuous densities with a given 
variance, the normal distribution possesses the largest entropy. In other 
words, the normal distribution is a "noise" distribution in which the size of 
the measurement is undetermined to the largest possible extent. 

We shall estimate the degree of uncertainty of measurements, in the case 
when errors are determined by the probability density P(~), by means of 
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Shannon's entropy 

We shall obtain a function P(e) obeying the restrictions 

P(e) ~ 0, 

J:
00 

P(e) de = 1, 

J_00

00 
eP<e) de = o, 

J:
00 

e2P(e) de= a2, 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

for which the maximum of the entropy ( 4.17) is attained. Here the conditions 
(4.18), (4.19) follow from the definition of the density, (4.20) reflects the 
unbiasedness of the error, and (4.21) fixes the class of densities of a given 
variance. 

This problem is solved using the standard method of Lagrange multi­
pliers to take the conditions (4.19)-(4.21) into account: 

We then write the Euler condition 

oL 
oP = -(In P(O + 1 + A.1 + A.2e + A.3e2) = 0. (4.22) 

The solution of Equation (4.22), 

P(x) = exp{ -(l1 + 1 + el2 + e2l 3)}, 

satisfies (4.18) and hence determines the desired density. 
To obtain values of the constants Ai, l 2 , and ).3 the conditions (4.19)­

(4.21) are utilized; we obtain 

l { e2
} P(e) = Jhr_a exp - 2a2 ' (4.23) 

thus the normal density has the largest entropy among all densities with a 
given variance (i.e., the random variable has the most "uncertain" distri­
bution). 

Consider now a somewhat more complicated model for the error term e. 
The value of random variable e is a realization of the normal distribution 
PN(ela2 ) with mean 0 and variance a2• However, each time the normal 
distribution has its own variance. The value of the variance is assigned 
randomly and independently according to the density P(a2). Thus we have 
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the distribution 

(4.24) 

This model reflects well the practical situation when under fixed conditions 
of measurements the normal distribution is valid. However, the measurement 
conditions change randomly and independently, and thus the probability 
density is a composition of two densities. In the example of measuring 
distances the factor P N(x I CJ 2) in ( 4.24) reflects the errors occurring under the 
same atmospheric conditions. The factor P(CJ2) reflects the random nature 
of the atmospheric conditions. If the measurement conditions do not change 
(the extreme case when P(CJ2) = b(CJ2 - O"l) where b(z) is the delta function). 
then the composition (4.24) defines a normal distribution. We, however, 
shall consider the other extreme case when the experimental conditions 
deviate from the mean in the "most uncertain manner", i.e., when the function 
P( CJ2) is such that the maximum of the entropy 

H(P) = - 1" P(CJ2) ln P(CJ2) dCJ2 

is attained and moreover the conditions 

P(CJ2) :2: 0, 

f P(CJ2) dCJ2 = 1, 

1" 0"2 P( CJ2) dCJ2 = 2~ 2 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

are satisfied. The conditions (4.26) and (4.27) follow from the definition of 
the probability density. The restriction (4.28) determines the average condi­
tions of conducting the experiment. 

We thus derive the maximum of the entropy (4.25) under the conditions 
(4.26)-(4.28). Writing the corresponding Lagrange function-which takes 
(4.27) and (4.28) into account 

L = -(P(CJ2) ln P(CJ2) + J 1P(CJ2) + J 2CJ2P(CJ2)), 

we obtain the Euler equation 

oL 
oP = -(ln P(CJ2) + 1 + ,1, 1 + A2CJ2) = 0. 

The solution of Equation (4.29) is 

P(CJ2) = exp{-(,1,1 + 1 + A2CJ2)} 

(4.29) 

which satisfies (4.26) and thus determines the desired density. To find the 
values of constants J 1 and ,1,2 we substitute solution (4.29) into (4.27) and 
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( 4.28), whencd1 + 1 = - In 2A 2 and ,l2 = l/2A 2. Thus the" most uncertain" 
conditions for conducting the experiment are given by density 

1 { a2
} P(a2) = 2A2 exp - 2A2 . (4.30) 

We shall show that the probability density PA(') given as a composition 
of densities (4.23) and (4.30) is a Laplace distribution, i.e., 

_ 1 Joo 1 { , 2 
} { a2 

} 2 
p A(') - ,j'2n2A2 o ;exp - 2a2 exp - 2A2 da 

= 2~ exp{- 111}- (4.31) 

In order to compute the integral (4.31) we shall use the following fact, which 
is valid for any integrable function on ( - oo, oo): 

(a, b > 0). 

T h. 'd . X b h o prove t 1s 1 entity set y = - - -. T en 
a X 

Substituting the variable x = -ab/tin the last integral, we arrive at 

Thus 

~ f 001[ (~ - trJ dt. 

s:<X)f(y2) dy = ~ s:001[ (~ - ~r] dx. 

Hence (since the integrand is even) we obtain the identity (4.32). 
We now transform the left-hand side of (4.31): 

1 Joo 1 { ( a2 , 2 
)} 2 

p A(') = -2,j'2n~2-n_A_2 o -;;: exp - 2A2 + 2a2 da 

(4.32) 

= 1 exp{-lli}J
00
exp{-!(~-W)

2
}da. (4.33) 

,j'2nA2 A O 2 A a 
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From (4.33) in view of (4.32) we obtain 

(4.34) 

In other words the composition (4.31) of a normal distribution and distribu­
tion (4.30) results in Laplace density (4.34). 

Thus we have shown that under fixed conditions of conducting an experi­
ment the most undetermined (uncertain) result is obtained when the error is 
normally distributed; if however the conditions of the experiment oscillate 
around some mean value in the most unfavorable manner, then the most 
undetermined measurement result is obtained when the error is distributed 
according to the Laplace law. Thus the choice between a Gaussian and a 
Laplace law depends on whether the conditions of the experiment are per­
fectly stable or most unstable. 

In practice, however, these two extreme cases seldom occur. Therefore 
neither Gaussian nor Laplace distributions are usually fulfilled. It is custom­
ary to assume that an "intermediate" situation is valid. 

Thus we are confronted with a situation where regression is estimated 
under the assumption that some hypothetical distribution for the error is 
valid (e.g., Gaussian or Laplace) while actually some other "intermediate" 
distribution is the correct one. How useful will the algorithms given by ( 4.11 )­
( 4.13) then be? In other words, to what extent are the algorithms constructed 
robust as far as the changes in the distribution of errors are concerned, and 
how should one construct robust algorithms? The answer is given in the 
succeeding sections. 

§5 On Robust Methods of Estimating 
Location Parameters 

Let the probability density of the error be unknown. Suppose it is only known 
that it belongs to a certain given set of densities { P( e)}. Below we shall define 
such sets more precisely; for the time being we merely assume that they are 
convex and that the density functions possess two continuous derivatives and 
are symmetric around zero. (The symmetry is the basic requirement for the 
theory discussed below.) The following problem will now be investigated. 
How should one choose the hypothetical density for the noise from the given 
class {P(e)} in order that the possible error shall have the least effect on the 
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estimators of regression parameters if it is known that the true density belongs 
to {P(e)}? 

First consider the simple case: it is required to estimate the mathematical 
expectation m of a random variable x on the basis of the sample x 1, •.. , x 1• 

If the mathematical expectation m exists the problem is equivalent to 
estimating the location parameter m of the density P(x - m) (here we utilize 
the fact that the noise e is related to the measurement X by e = X - m). 
For a known density P( e) the estimator m of location parameter m is carried 
out by the maximum-likelihood method, i.e., by maximizing the expression 

I 

R(m) = L In P(xi - m). (4.35) 
i= 1 

In this case the estimator m is consistent and asymptotically efficient. 
However, if the function P(,) in (4.35) does not coincide with the density 
function of the noise P(e), estimator m yielding the maximum of(4.35) will in 
general be neither consistent nor asymptotically efficient. 

Denote the value m maximizing (4.35) under the assumption that P(~) = 
Pr(~) by m = m(x1, ... , x1; Pr(~)). We shall now determine how to measure 
the accuracy of parameter estimation if it is assumed that the noise is distri­
buted according to the distribution Pr{~) E {P(~)} while actually the true 
distribution is Po(~) E {P(~)}. 

It is natural to use the quantity 

as the accuracy of the estimator m based on a sample x 1, •.. , x1, assuming that 
the noise is distributed according to the distribution Pr(~). {This quantity is 
the square of the deviation of the obtained value of the parameter from the 
true one.) The accuracy of estimating a location parameter based on samples 
of size l is naturally measured by the mathematical expectation of the quantity 
R(Pr(~); x 1, ••• , x,): 

(4.36) 

The quantity D(P0 , Pr) depends on two probability densities belonging to 
the same class {P(~)}: the hypothetical density Pr(~) (according to which the 
estimator m was constructed) and the true density Po(~) (according to which 
the mean square deviation was computed). 
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Below we shall utilize the following representation of the function 
D(P0 , Pr): 

f (Pi-(¢))2 p (¢) d¢ 
1 Pr(¢) 0 

D(P0 , Pr)= I (J(Pi-(¢))' )2 
Pr(O Po(¢) d¢ 

(4.37) 

We shall verify this representation by carrying out a not quite rigorous but 
intuitively appealing argument. A rigorous theory of robust estimation is 
presented in [88]. 

Without loss of generality it may be assumed that the true value of the 
location parameter m is zero. Denote 

/(¢)=:~~~;=(In Pr(O)'. 

Then using the maximum-likelihood method, the estimator m of the 
parameter m = 0 is obtained from the condition 

We now utilize an approximation which is valid for large land for the sym­
metric densities considered herein: 

hence 

l l l 

I f(xi - m) ~ I f(x;) - m I f'(x;) = O, (4.38) 
i= 1 i= 1 

l 

I rcxJ 
A. i= 1 
m=-,--

L f'(xJ 
j= 1 

i= 1 

Let l be so large that 

m~ f f'(x)Po(x) dx 
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(In the derivation of this relation it was assumed that the integral in the 
denominator exists. For this purpose it is sufficient that the functions f'(x) 
be bounded. Below we shall consider only densities satisfying l(ln PG))"I 
< const). 

Compute now D(P0 , Pr)= M1n 2 : 

D(Po, Pr)= f 1n2P 0(x1), ••• , Po(x1) dx 1, ••• , dx1 

x P0(x 1) · · · Po(x1) dx 1 • • • dx1• 

Since the densities Po(x), Pr(x) are symmetric, we have 

f f(x;)f(xi)Po(x 1) .. · P0(x1) dx 1 .. • dx1 = 0, i =I j. 

Thus we obtain for large l 

1 J JJ 2(x;)Po(xi) dxi 1 J J2(x)P0(x) dx 

D(P,, Pr) -r (f f'(x)P,(x) dx )' - I (f f'(x)P,(x) dx r 
Finally, returning to the original notation we obtain representation (4.37). 

We have thus determined a criterion of quality for estimators of location 
parameters given that the true density is Po(~) and the hypothetized one is 
Pr(~). Our goal now is to choose a density Pr(~) which minimizes D(P0 , Pr), 
It is easy to show ( see below) that if the density P 0( ~) were known, the mini­
mum of D(P0 , Pr) would be obtained at Pr(~) = P 0(~). 

The problem is to choose Pr(~) if it is known only that Po(~) belongs to 
the class {P(~)}. As usual in such situations one of two approaches-the 
Bayesian or the minimax-is taken. 

In the first case, it is assumed that the probability for each density in 
{P(~)} to be the true one is known a priori, and the measure of quality of 
estimators is chosen to be the average (with respect to the measure µ(P)) 
quality, i.e., 

The minimax approach suggests that we choose as a measure of quality the 
quantity D(P0 , Pr) evaluated for the least favorable density Po(~) E {P(O}, 
i.e., to evaluate the quality from the condition 

DmnxCPr) = max D(P0 , Pr), 
Po 
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Since the construction of a solution optimal in the Bayes sense encounters 
substantial difficulties here, we shall study only minimax solutions below. 
Thus we shall judge the quality of an estimator of a location parameter, 
obtained by means of the hypothetized density Pr(¢), by the quantity 

Dmn,(Pr) = max D(P0 , Pr)= max ( '(!') '(!') ) 2, 
Po Po [ J Pr ',, p O ',, d¢ 

Pr(O 

(4.39) 

and attempt to obtain a hypothetical density Prm minimizing (4.39). 
Such a statement of the problem yields a game-theoretic interpretation. 

Let there be two players-nature and a statistician-who possess the same 
set of strategies (functions {P(¢)}) but opposite goals. The first player 
(nature) attempts to select a strategy (i.e., assign a true density Po(¢)) which 
will maximize the losses of the second player, while the second chooses a 
strategy (hypothetized density Pr(¢)) which minimizes his loss. The amount of 
loss is determined by the functional ( 4.39). 

It is required to obtain the optimal strategy for the second player, i.e., 
to be able, for a given class of densities, to choose a hypothetized density 
that will guarantee the minimum losses for the least favorable true density. 
The density obtained will be called robust in the class {P(¢)}, and the method 
of estimation of a location parameter obtained by applying the maximum­
likelihood method to the density obtained is called the method of robust 
estimation of a location parameter. 

An important fact in the theory of robust estimation of a location para­
meter is that the game with the loss function (4.39) possesses on the convex 
set { P( ¢)} a saddle point, i.e., 

max min D(P0 , Pr)= min max D(P0 , Pr)-
Poe{P(~Jl Pre(PW} Pr(P(W Poe{P(rn 

Using this fact one can obtain an optimal strategy against nature. 
We now utilize the Cauchy-Schwarz inequality 

( f a(x )b(x) dµ(x) r ~ J a2(x) dµ(x) f b2(x) dµ(x ). ( 4.40) 

Using this inequality we rearrange the denominator of (4.37): 

f (Pr(¢)) 2 

1 P(0 Po(¢) d¢ 1 

D(Po, Pr) = I (f (P' (!')r P' (!')) )2 ?: f (P' (!'))2 . _r _.., _o_.., p (0 d¢ l _o_.., p (¢) d¢ 
Pr(¢) Po(¢) 0 Po(¢) 0 

(4.41) 
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Observe that for Pr(e) = Po(e) the equality 

(4.42) 

is valid. It follows from (4.41) and (4.42) that the minimum of(4.39) is attained 
if pr( e) = po( e), i.e., the optimal strategies of nature and the statistician 
result in the same density. To obtain this density it is necessary to maximize 
(4.42) over the class {P(e)} or equivalently to obtain in the class {P(e)} a 
density which will minimize the functional 

Observe that the functional I0 (P) is the Fisher information quantity (cf. 
Chapter 3, Section 11 ). 

In Sections 7 and 8 we shall obtain for various classes of probability 
densities those which minimize the Fisher information quantity and thus find 
robust estimators (within these classes) of a location parameter. In the next 
section we shall extend the result obtained here to the case of estimating 
regression parameters. 

§6 Robust Estimation of Regression Parameters 

Let it be required to estimate the regression. We shall assume that the class 
offunctions in which the estimation is carried out and to which the regression 
belongs is represented in the form 

n 

F(x, ix) = L ix,<p,(x), 
r= 1 

where <p,(x) is a system of linearly independent functions. As above, the 
true and the hypothetized densities of errors P0(e) and Pr(e) belong to the 
convex class {P(e)}. The densities are symmetric around zero and have a 
bounded second logarithmic derivative. 

To estimate regression parameters we shall use the maximum-likelihood 
method, i.e., we shall obtain the vector ix which maximizes the expression 

In Pr(x1, y1 ; ... ; x 1, y1; ix) = J
1
1n Pr(Y; - ,ti ix,<p,(x;) )- (4.43) 

Let this vector be ix = ix*. Consider the vector of deviations of the obtained 
values of regression parameters ix* from the actual ones ix0 : 

a = (ix0 - ix*). 
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Form the covariance matrix B: 

B = Mfi.. fi.T, 

which determines the quality of estimation of the vector of parameters a 
(cf. Chapter 3, Section 11). 

Below, analogously to (4.37), we shall obtain that for I sufficiently large 
the equalityt 

f (Pr{~)) 2 

1 Pr«) Po(~) d~ -1 

B = 1 (f (Pr(~))' )2 llk;)I 
Pr(~) Po(~) d~ 

(4.44) 

is valid, where 

k;i = { J
1 
<P;(xt)<p/xt) ~ f <P;(x)cp/x)Po(x) dx. 

Thus the elements of matrix B are proportional to 

f (Pr(~))\ (~) d~ 
1 Pr(~) 0 

D(Po, Pr)= I (f (Pr(~))' ) 2 -

Pr(~) Po(~) d~ 

In the representation (4.44) it is important that only the proportionality 
coefficient D(P0 , Pr) (and not the matrix llkiill) depends on the densities 
Po(~) and Pr(~). Therefore two quadratic forms zTB 1z and zTB2 z with the 
same matrix llkiill but different values of D(P0 , Pr) correspond to two 
different hypothetized densities Pr(~) and PrG). These forms satisfy one of 
two relations: either 

or 

zTB 1z < zTB2 z for any z, 

depending on whether D(P0 , Pr) or D(P0 , Pr) is the largest. It was shown in 
Section 11 of Chapter 3 that the minimum of the quadratic form z T Bz 
defines jointly efficient estimators of the parameters. Thus the value of the 
coefficient D(P O, Pr) determines the quality of estimation of the parameters 
of a linear regression: the smaller D(P O, Pr) is, the better is the quality. 

This means that in the case of estimating regression parameters the 
problem of choosing a robust density leads to a game between nature and 
the statistician. It was shown in the preceding section that in this game the 
optimal strategy for the statistician is to choose a density belonging to the 

t We assume additionally that the matrix II k,)I is not singular. 
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class of densities {PG)} which yields the minimum of Fisher's information 
quantity 

J(P'(~)) 2 

lq,(P) = I P(~) P(~) dr (4.45) 

Thus, in order to obtain the best hypothetical model for the error in the class 
{ P( ~)} it is necessary to find a function belonging to this class which mini­
mizes ( 4.45). This density will be used for the determination of regression 
parameters using the maximum-likelihood method. 

It remains to derive the relation (4.44). It is obtained analogously to (4.37). 
Denote f(~) = P'r(~)/PrG). Then the maximum of the likelihood function 
(4.43) is attained at values of IX which satisfy the equations 

J/(~; - J/,<,0,(x;))<,0lx;) = 0, k = 1, 2, ... , n. 

Utilizing the approximation (4.38), we have 

J/(~i - J/,<,0,(X;))<,0lx;) 

~ ;t [!(~;) - f'(~;),t ix,<p,(x;)]<pix;) = 0. 

Due to the independence of~; and x; we then obtain, for I sufficiently large, 

i J/<~;)<,0lx;) - J f'(~)Po(~) d~J
1 
(t ix,<p,(x;))<pix;) = 0, 

k = 1, 2, ... , n, 
or in vector form, 

1 H 
llkijllix ~ - ----, 

I J P(~)Po(~) d~ 

(4.46) 

where His a column vector with coordinates h, = LI= 1 <p,(x;)f(~;). 
It follows from ( 4.46) that 

1 1 -1 
~ = - llk'ijll H. 

I J f'(~)P0(~) d~ 

We now obtain the covariance matrix 

Returning to the original notation, we arrive at (4.44). 
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§7 Robustness of Gaussian and Laplace Distributions 

We shall show that Gaussian and Laplace distributions are robust, each in its 
own class. As was shown in the preceding section, it is sufficient for this 
purpose to show that in corresponding classes of densities { P( ~)} the Gaus­
sian and Laplace distributions yield the minimum of Fisher's information 
quantity ( 4.45). 

For specific classes {P(~)} which are discussed below this problem be­
comes a difficult problem in the calculus of variations (the class {P(~)} is 
defined by restrictions of the inequality type). Therefore we shall not obtain 
the hypothetical density here by using a regular method, i.e., by solving 
nonclassical variational problems, but rather we shall first identify these 
solutions and then verify that they indeed define a saddle point of the function 

In other words it will be required to verify that for a given density P,(~) the 
inequalities 

D(P, P,) s D(Pr, P,) s D(Pr, P) 

are fulfilled. Observe that in view of (4.41) one of the inequalities, namely 

D(P,, P,) s D(Pr, P) 

is always valid. Thus in order to prove the optimality of the selected strategy 
it is sufficient to establish the validity of the inequality 

D(P, P,) s D(Pr, P,). (4.47) 

We consider the following classes of densities. 

(1) The class of densities with a bounded variance. The corresponding 
variational problem is to minimize the functional ( 4.45) in the class of 
functions satisfying the conditions 

(1) P(O > 0, 

(2) JP(~) d~ = 1, 

(3) J ~P(~) d~ = 0, ( 4.48) 

(4) J ~2P(~) d~ s a2 • 
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Conditions (1), (2), and (3) determine the density of the error term, and 
condition (4) is a bound on the variance. The solution of this nonclassical 
problem (in view of(l) and (4)) of the calculus of variations is the density 

Indeed, substituting 

1 { e2
} Pr(e) = foa exp - 2a2 

into the inequality (4.47), we obtain 

Je: P(e) de 
(J J 2 2 

( 
1 )2 = e P(e) de ::;; a . 

a2 J P(e) de 

( 4.49) 

This inequality is valid for any density belonging to (4.48), since the class 
(4.48) consists of densities for which the variance does not exceed a2 • Thus 
the normal probability density with zero mean and variance a2 is robust in 
the class of all densities with the variance bounded by a2 • 

2. Now consider the class of nondegenerate at zero densities. Densities 
for which P(0) ~ l/2A belong to this class. We shall show that the Laplace 
distribution is robust in this class of densities. For this purpose we substitute 

Pr(e) = _l exp{- !fl} 
2A A 

into (4.47). We obtain 

J (~r P(e) de = _l - < A2 

4 2 4P2(0) - ' 
A2 p (0) 

or equivalently 

1 
P(0) ~ 2A· 

And since the densities satisfying P(0) ~ 1/2A are included in the class {P(e)}, 
the inequality (4.47) is satisfied for any function belonging to this class. Thus 
the Laplace distribution is robust in the class of densities for which P(0) ~ 
1/2A. 

The robustness of the Gaussian and Laplace densities (each in its own 
class) is no less remarkable a fact than their extremal properties verified in 
Section 4. 
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Although the Gaussian and Laplace densities are robust, the class in 
which this property is valid often turns out to be exceedingly wide. In such 
cases a more meaningful statistical model should be constructed on the basis 
of other, narrower classes of densities. 

Below in Sections 8 and 9 we shall consider certain specific classes of 
densities and obtain robust densities for these classes. 

§8 Classes of Densities Formed by a 
Mixture of Densities 

Consider the class H of densities formed by the mixture 

P(~) = g(~)(l - s) + sh(~) (4.50) 

of a certain fixed density g( ~) symmetric with respect to the origin and an 
arbitrary density h( ~) symmetric with respect to the origin. The weights in 
the mixture are 1 - s and s respectively. For classes of these densities the 
following theorem is valid. 

Theorem 4.1 (Huber). Let -Ing(~) be a twice continuously differentiable 
convex function. Then the class H possesses a robust density 

l (1 - s)g(~o) exp{k(~ - ~on, 

Pr(~)= (1 - s)g(~), 

(1 - s)g(~ 1) exp{ -k(~ - ~1)}, 

for ~ < ~o, 

for ~o s ~ < ~ 1, 

for ~ ~ ~1, 

( 4.51) 

where ~o and ~1 are the end points of the interval [~0 , ~ 1] on which a monotone 
(due to the convexity of - In g( ~)) function g'( ~)/g( ~) is bounded in absolute 
value by a constant k determined by the normalization condition 

1 = (1 - s) 1\m d~ + g(~o) + g(~i) (1 - s). 
J~o k 

PROOF. To prove this theorem it is required to show (as in the case of proving 
robustness of Gaussian and Laplace densities) that functions belonging to 
the class (4.50) satisfy 

D(P, Pr) s D(Pr, Pr) s D(Pr, P). 

As has already been mentioned, the validity of the bound 

D(Pr, Pr) s D(Pr, P), 

follows from the Cauchy-Schwarz inequality (4.40). Therefore to prove the 
theorem it is sufficient to verify that 

for any function P( ~) EH. 
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We represent the density Pr(~) in the form of a mixture of a fixed density 
g(~) and the density fi(~) = [Pr(~) - (1 - i::)g(~)]/i::. We shall write the 
density fi(~) explicitly taking (4.51) into account: 

1 - i:: 
- (g(~0 ) exp{k(~ - ~0 )} - g(~)) 

i:: 
for ~ < ~0 , 

fi(~) = 0 for ~o ~ ~ < ~1, (4.52) 

1 - i:: 
-- (g(~ 1) exp{ -k(~ - ~1)} - g(~)) for ~?: ~1. 

i:: 

It is easy to verify that fi( ~) is a density. Indeed, J fi( ~) d~ = 1, and fiG) ?: 0, 
since by the assumption of the theorem - In g( ~) is a convex function and 
hence is situated totally above the tangent: 

i = 0, 1. (4.53) 

This inequality is equivalent to the assertion 

i = 0, 1. 

Consider the inequality 

f (~)\(1 - i::)g(~) + i::h(e)] d~ < (1 - e) f (~rg(~) d~ + i;k2 

(f (;~ig)' [(1 - i::)g(~) + i::h(~)] d~) 2 
- (1 - i::)2(J (;~~~~)'g(~) d~) 2 

• 

(4.54) 

We shall verify that the right-hand side of this inequality is the least upper 
bound for the expression appearing in the left-hand side for arbitrary sym­
metric densities h( ~). For this purpose we observe that the function Pr(~)/ Pr(~) 
equals 

! k for ~ < ~o, 

Pr(~) _ g'(~) < 
PL(~) - g(~) for ~o _ ~ < ~i, 

-k for ~ ?: ~1, 

where according to the condition of the theorem lg'(~)/g(~)I ~ k, and the 
function (Pr(~)/Pr(rn' equals 
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Thus in order to maximize the left-hand side of the inequality it is necessary 
to choose a density h(¢) which is situated on the intervals ( - oo, ¢0 ) and 
( ¢ 1, oo ). Such a density simultaneously maximizes the numerator and mini­
mizes the denominator of the expression appearing on the left-hand side of 
the inequality. The value of the expression appearing on the left will then 
be exactly equal to the value of the right-hand side of the inequality. The 
density ( 4.52) indeed belongs to the class of densities concentrated on the 
intervals ( - oo, ¢0 ), (¢ 1, oo ). The theorem is proved. D 

This theorem is remarkable in that it allows us to construct various robust 
densities. In particular, if we choose for g( ¢) the normal density 

1 { ¢2
} g( ¢) = J2rr, (J exp - 2(J2 , 

and consider the class of densities 

1 - i; { ¢2
} P( O = J2rr, (J exp - 2(J2 + i;h( ¢), 

then in view of the theorem the density 

~ exp{k
2 

- ~ I¢ 1} 
J2rr,(J 2 (J 

Pr(¢)= 

for\¢\ 2 k(J, 

for\¢\< ku 

will be robust in this class, where k is determined from the normalization 
condition 

1 _ c [sku { ¢2} 2 exp{-~}] 
1 = J2rr,(J -k/XP - 2(J2 d¢ + k . 

The density just derived is an intermediate density between Gaussian and 
Laplace distributions. On the interval \ ¢ \ < k(J it coincides up to a normaliz­
ing constant with the Gaussian distribution and on the intervals I¢\ 2 k(J 
with the Laplace distribution. 

§9 Densities Concentrated on an Interval 

We now consider yet another important class of densities and obtain a robust 
probability density in it. 

Consider the class KP of densities concentrated on the whole on the interval 
[ -A, A], i.e., the class of densities P(¢) for which the condition 

s:AP(¢) d¢ 2 1 _ p 
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is satisfied (where pis a known parameter which defines the class KP). We 
shall show that in this class the density 

for Ii I< 1. 

for Ii I~ 1 

(4.55) 

is robust, where the parameters a, b are related to the constant p-which 
determines the class K-by the relations 

_ 1 _ cos2 a 
P- l+b' 

b = a tan a, 
n 

0 <a< 2. (4.56) 

Without loss of generality it will be assumed that A = 1 (the class A #- 1 is 
reduced to the case A = 1 by the substitution z = AO. Thus the problem is 
to show that in the class of densities satisfying the condition 

the density 

(4.57) 

will be robust. To do this it is sufficient to show that Pr(~) given by (4.57) 
minimizes in KP the Fisher functional 

(4.58) 

Instead of directly minimizing the functional (4.58), however, we shall 
utilize the fact that the necessary and sufficient condition for Pr(~) to be the 
minimum point for ( 4.58) is that the functional 

R(Pr, P) = l f (2( -In Pr(~))" - [(In Pr(0)'] 2)(P(~) - Pr(~)) d~ (4.59) 

is nonnegative in KP. The functional R(Pr, P) is the derivative with respect 
to c of the expression 
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evaluated at e = 0, i.e., 

dl~((l - e)Pr(e) + eP(e)) I = R(Pr, P). (4.60) 
de e=O 

The nonnegativity of derivatives ate = 0 (in any direction in K p) for densities 
(1 - e)Pr(~) + eP(e) means that the minimum of I~ is attained on Pr(e). 

Thus we shall verify that the expression R(Pr, P) is nonnegative. Since 
the function under the integral R(Pr, P) is even, it is sufficient to verify that it is 
positive on the ray0 ~ e < oo. First note that (4.57) implies that 

{2a tan ae for 1e1 < 1, 
( -ln P (;;))' = 

r "' 2b sign e for I e I ~ 1. 
(4.61) 

Substituting (4.61) into (4.69) and carrying out the calculations, we have 

R(Pr, P) ,= 4a21 L (P(e) - Pr(e)) de - 4h21 I:X)(P(e) - Pr(e)) de. (4.62) 

Transforming (4.62), we have 

R(Pr, P) = 4a21 L (P(e) - Pr(e)) de - 4h21 i00

(P(e) - Pr(rn de 

= 4(a2 + b2 )1 L (P(e) - Pr(e)) de. 

Thus the expression R(Pr, P) is nonnegative for all P(e) such that 

i.e., for all functions belonging to KP. 

§10 Robust Methods for Regression Estimation 

In preceding sections we have considered several classes of densities and 
obtained robust densities in these classes. It will now be possible in our 
scheme for interpreting results of direct experiments to weaken the re­
quirements on prior information concerning the statistical properties of the 
errors. It is sufficient to know the class of densities to which the errors belong. 
In this case for estimating parameters of regression using methods of para­
metric statistics it is possible to use-instead of a true density-a density 
which is robust in the given class. Obviously this replacement reduces the 
asymptotic rate of convergence of parameters of the regression. This rate 
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becomes proportional to some quantity I situated in the interval 

where 

/max= sup 
P(~)e(P@} 

1 

f (P'(e)) 2 ' 
1 P(e) P(e) de 

instead of being proportional to 

which is the limiting value attainable in the case of unbiased estimation of 
the location parameter ( cf. Chapter 3, Section 11) where P 0( e) is the true 
density of the error. However, if the class { P( e)} of densities is not too wide, 
then the possible loss of the rate is not overly large. 

The basic constructive result of the theory of robust estimation considered 
here is the determination of four classes of densities with specified robust 
density.t We again identify these classes and their densities: 

(1) The class of densities with variance bounded by a constant a 2 • A robust 
density in this class is the normal density 

1 { e} Pr(e) = foa exp - 2a2 . 

(2) The class of nondegenerate densities (for which P(O) > 1/2d). In this 
class a robust density is 

1 { 1e1} Pr(e) = 2d exp - T . 

(3) The class of densities formed by a mixture of a known density (for example, 
a normal PN(e) = (l/foa)e-'212" 2) with an arbitrary density in pro­
portion 1 - i; : £. In this class the density 

for 1¢1 ~ ka 

is robust (here c and k are constants determined by means of i; and a). 

t There are other classes of densities for which robust densities have been found [ 46]. 
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(4) The class of densities concentrated on the whole in the interval [ -A, A] 
(J~A P(~) d~ 2:: 1 - p). A density 

Pr(O = [ 
c cos 2 :~ for Ii I < 1, 

ccos2 aexp{-2b(\i\- 1)} for\il 2:: 1, 

where c, a, and b are constants determined via A and p, is robust in this 
class. 

Now suppose instead of the true density for the error Po(O we choose a 
robust one in the class Pr(~); determine, by means of it, the density of the 
conditional probability distribution 

Pr(Y - Jt,cp,(x)} 

and finally utilize the maximum-likelihood method for parameter estimation. 
Then we arrive at the following algorithm of regression estimation based on 
the sample 

One should minimize the functional 

where 
d(z) = z2, 

provided the true density of the error belongs to the class of densities with a 
bounded variance; 

d(z) = lzl, 
provided the true density of the error belongs to the class of nondegenerate 
densities; 

[ 

;;2 for lzl < ka, 

d(z) = 
k2 k 

- 2 +-;; lzl for lzl 2:: ka, 

provided the true density is a mixture of a normal density with an arbitrary 
one; I a 

- 2 In cos A z for I z I < A, 

d(z) = 

b( I ; I - 1) - 2 In cos~ z for I z I 2:: A, 
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provided the true density is concentrated on the whole on the interval 
[-A,A]. 

Among these four methods, the least-square method (d(z) = z2) and the 
method of minimal absolute values (d(z) = I z I) do not involve free para­
meters. The latter method is the most universal-it is determined by a stable 
density in a wider class of densities. 

The other two methods of estimation involve parameters which are 
computed from the quantities defining the classes of densities. These methods 
should be used when possible to determine, as precisely as possible, the class 
of densities containing the desired one. 

Thus when estimating regression we were able to remove the condition 
knowing exactly the error distribution. It is sufficient to know the class of 
functions which contains the regression and a class of densities to which the 
error density belongs. However, all of this theory developed for symmetric 
densities is essentially asymptotic (since in deriving the basic relation (4.37) 
the law of large numbers was substantially utilized). Therefore the belief that 
the asymptotic situation will occur rather early is the only guarantee that the 
algorithms obtained will be workable for samples of limited size. 




