
Chapter 3 

Methods of Parametric Statistics for the 
Pattern Recognition Problem 

§1 The Pattern Recognition Problem 

It is required to minimize the functional 

/(('J.) = J (y - F(x, ('J.)) 2 P(x, y) dx dy (3.1) 

under the conditions when the density P(x, y) is unknown but the sample 

X1,Y1; ... ;x,,y, (3.2) 

is given, based on random independent trials according to P(x, y). 
We shall solve this problem applying the following scheme: 

(1) Estimate the density from the sample (3.2). Denote the estimated 
density by P(x, y). 

(2) Construct the functional 

/emp(('J.) = J (y - F(x, ('J.))2P(x, y) dx dy (3.3) 

using the estimated density. 
(3) Obtain the minimum of this functional, and declare the function F(x, ('J.emp) 

which yields the minimum of (3.3) to be the solution of the original 
minimization problem (3.1 ). 

As was pointed out in Chapter 2, this scheme can be successfully carried 
out only if substantial prior information concerning the density P(x, y) 
is available (namely, when the density is completely specified up to its 
parameters). In other words, success can be achieved if the model of the 
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46 3 Methods of Parametric Statistics for the Pattern Recognition Problem 

estimated density is known. The model of the required density turns out to 
be quite different for different problems of estimating dependences. 

In this chapter we shall consider the pattern recognition problem. A 
characteristic feature of this problem is that the unknown probability 
densityt P(x, w) can be represented as a union of two densities P(x I w = 0) 
and P(xlw = 1) defined on different subspaces X, 0 and X, 1: 

P(x, w) = P(xlw = 0)P(w = 0)(1 - w) 

+ P(xlw = l)P(w = l)w. (3.4) 

The set of pairs x, w consists of two nonoverlapping subspaces of dimen­
sionality n, namely 

X c E., w = 0 and X c E., w = 1. 

The formula (3.4) asserts that on the first subspace the density is equal to 
P(xlw = 0)P(w = 0), and on the second P(xlw = l)P(w = 1). In formula 
(34)P(xlw = O)andP(xlw = l)arethecomponentsoftheunion;P(w = 0) 
and P(w = 1) = 1 - P(w = 0) are the proportions. 

Let the density P(x, w) be known up to a finite number m1 + m2 + 1 of 
parameters 

P(x,w) = Pp(xlw = 0)P(w = 0)(1 - w) 

+ Py(xlw = l)P(w = l)w, (3.5) 

where f3 is an unknown m1-dimensional vector of parameters of density 
P p(x I w = 0), y is an unknown mi-dimensional vector of parameters of the 
density P y(x I w = 1 ), and P( w = 0) is a scalar parameter. 

Now in order to implement our scheme it is necessary to be able to solve 
two problems: 

(1) to find the minimum of functional (3.3) for a given density P(x, w); 
(2) based on the sample (3.2), to estimate the density of P(x, w). 

The first problem is referred to in statistics as the problem of discriminant 
analysis; the second is called the problem of estimating the density in a para­
metric class of functions. We now consider these two problems. 

§2 Discriminant Analysis 

It is required to obtain the minimum of the functional (3.3) for a given density 
(given components of union P(x I w = 0), P(x I w = 1) and proportions 
P(w = 0), P(w = 1) = 1 - P(w = 0)). 

First consider the simple case: the class of possible decision rules F(x, ix) 
is in no way restricted. In this situation it is easy to construct a minimizing 

t We use the letter w instead of y to emphasize that it takes only the two values O and 1. 
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rule which m1mm1zes the functional (3.3). Indeed, according to Bayes's 
formula the probability that the vector x belongs to the first (second) class 
is determined by 

) P(xlw=0)P(w=0) 
P(w = 0lx = -------------­

P(xlw = 0)P(w = 0) + P(xlw = l)P(w = 1) 

( 
P(xlw = 1)(1 - P(w = 0)) ) 

P(w = 1 Ix)=------------- · 
P(xlw = 0)P(w = 0) + P(xlw = l)P(w = 1) 

(3.6) 

Minimal loss (the minimum probability of error) can be obtained for the 
classification in which the vector xis assigned to the first class if its affiliation 
to the first class is more probable than to the second, i.e., if 

P(w = 0lx) > P(w = 1 Ix). 

Otherwise the vector x is assigned to the second class. In other words, 
taking (3.6) into account, the vector x should be assigned to the first class 
provided the inequality 

P(xlw= 1) P(w=0) 
----<-----, 
P(x I w = 0) 1 - P(w = 0) 

is fulfilled, or equivalently, the optimal classification of vectors is carried 
out by means of the indicator function 

F(x) = 0[1n P(xlw = 1) - In P(xlw = 0) + In 1 - P(w = O)], (3.7) 
P(w = 0) 

where 

0 {1 for z 2 0, 
(z) = 

0 for z < 0. 

Therefore the knowledge of the probability density (composition and 
proportion of the union (3.5)) allows us to construct an optimal decision 
rule immediately. 

However, the problem of finding an optimal decision rule becomes 
substantially more complex if the class of admissible decision rules F(x, il() 
is restricted. In particular, the problem of finding an optimal linear decision 
rule of the form 

(3.8) 

is a difficult one. The vector il( = (()( 1, ... , il(.? determines the direction of a 
linear discriminant function, and the parameter 1)(0 its threshold value. 
The problem of finding the minimum of (3.3) in the class (3.8) is called the 
problem of linear discriminant analysis. 
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In the thirties R. A. Fisher proposed as the direction of the linear discriminant 
function a direction along which the maximum of the relative distance between the 
mathematical expectations of projections of vectors of different classes is obtained, 
i.e., the direction a along which the maximum of 

where 

T(a) = (m1(a) - mi{rx)) 2 

O'f(a) + a~(a) ' 

m1(a) = f aTxPp(xlw = 0)dx, 

m2(a) = f aTxPy(xlw = l)dx, 

af(a) = f (aTx - m1(a))2Pp(xlw = 0)dx, 

O'~(a) = f (aTx - mi(a))2Py(xlw = l)dx, 

aTa = 1 

is attained. 

(3.9) 

The determination of the maximum of (3.9) for arbitrary densities is a very difficult 
problem. Therefore basic investigations in the area of linear discriminant analysis 
were directed first toward verifying for specific types of densities that Fisher's linear 
discriminant function indeed determines a solution of linear discriminant analysis, and 
secondly toward finding algorithms for computing the discriminant function. The 
basic result was that for the union of two normal laws 

P(xlw = 1) = N(µ 2 ,fl2) 

(µ 1 is the mean vector, fl. 1 is the covariance matrix for the first multivariate normal 
distribution, and µ 2 , fl. 2 are the analogous parameters for the second distribution), 
taken in proportions P(w = 0) and 1 - P(w = 0), the optimal linear discriminant 
function is given by the direction vector 

(3.10) 

where O :o:; t* :o; 1. The value t* is determined as the root of the so-called resolvent 

function 

2 2 ( P(w = 0) ai(a,)) 
f(t) = t0" 1(a,) + (1 - t)O"i{rx,) - In 1 _ P(w = 0) · O"f(a,) . (3.11) 

For P(w = 0) = ½ the direction (3.10) of the linear discriminant function maximizes 
the functional 

(m 1(a) - mi(a))2 

J(a) = -~----c--­
t*O"f(a) + (1 - t*)ai(a) 

The calculation of the roots of the resolvent equation (3.11) is quite a difficult task. 
Therefore in practice when constructing a linear discriminant function it is assumed that 
t* = ½, and Fisher's linear discriminant is taken to be the solution of the problem. 
(More details are given in [71].) 
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Thus problems arising in discriminant analysis are due to the fact that 
the class of possible decision rules on which the minimum of functional 
(3.3) is to be determined is bounded. Therefore it may seem that the problem 
of discriminant analysis is artificial. Indeed, if it is possible to estimate 
probability density, what is the need for seeking a decision rule which yields 
a conditional minimum of the functional, when it is easy to find a decision 
rule (cf. (3.7)) which yields an absolute minimum for the functional (3.3)? 

The fact of the matter is that if the density is estimated imprecisely, then 
the value of the guaranteed deviation of the minimum for the empirical 
functional from the minimum for the expected risk functional becomes 
larger for a function chosen from a wider class. Therefore it may happen 
that the smaller value of the guaranteed expected risk will be achieved, not 
at a function yielding the absolute minimum for the empirical functional, 
but rather on a function belonging to a narrower class and yielding the 
conditional minimum. 

This result is connected with the effect of the second procedure for 
minimizing the expected risk (cf. Chapter 2, Section 4). The idea of narrowing 
the class of decision rules in order to obtain a smaller guaranteed value of the 
expected risk will be implemented below in Chapters 8 and 9. In the present 
chapter we shall consider parametric methods of estimating densities. 
In view of (3.7), the knowledge of the density immediately leads to the 
construction of a decision rule yielding the absolute minimum for (3.3). 

§3 Decision Rules in Problems of 
Pattern Recognition 

Algorithms of pattern recognition based on estimation of the density 
(gives components of the union (mixture) P(x I w = 0) and P(x I w = 1) and its 
proportion P(w = 0)) are traditionally associated with two classes of 
distributions. 

3.1 First Class of Distributions 

The probability distribution P w(x) = P(x I w) is such that coordinates of the 
vector x = (x 1, ... , x")T are statistically independent, i.e., 

w = 0, 1, (3.12) 

and moreover each coordinate xi of the vector x can take on only a fixed 
number of values. Let us assume that each coordinate xi takes on 'i values 
dl), ... , ci(rJ Thus in the case under consideration the distribution 
laws of random variables P w=o(x) and P w= i(x) are defined by the expression 
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(3.12), where P w(xi) can be written as 

{
p~(l) 

Pw(x;) = :i 
Pw(t;) 

tj 

LP~U) = 1. 
j= 1 

(3.13) 

Here p~U) is the probability that for a vector belonging to the class w = {O, 1} 
the value of the xith coordinate equals c;U). To estimate the probability 
distribution for such a union means to find values of 

n 

r = 2 L ri + 1 
i= 1 

parameters (L7= 1 t; parameters for estimating each distribution P w(x), 
and one parameter-the proportion of the union). 

According to (3. 7) an optimal decision rule for the mixture formed by the 
two distributions (3.12) will be the following linear discriminant function: 

( ~ Pw=1(xi) P) 
F(x) = 0 _L, In p ( i) - In -1 _ , 

1=1 w=oX P 

where p, 1 - p are proportions of the union. 

3.2 Second Class of Distributions 

Here in each class w = {O, 1} vectors x are distributed according to the 
multivariate normal distribution 

1 1 T -1 
Pw(x) = (21tt12IAwl112exp{-½(x - µw) Aw (x - µw)}, 

where µw is the vector of mean values and Aw is the covariance matrix. 
It follows from (3. 7) that the optimal decision rule in this case becomes the 

quadratic discriminant function 

F(x) = 0[½(x - µ0 f A0 1(x - µ0 ) - ½(x - µ1f A11(x - µ1) 

+ In-- - ln--IAol P ] 
lA1I 1-p' 

(3.14) 

where µ0 , A0 ; µ 1, A1 are parameters of the normal distributions forming the 
union (3.5) and p, 1 - pare the corresponding proportions. In the particular 
case when A0 = L1 1 = L1 the quadratic discriminant function (3.14) reduces 
to a linear one: 

F(x) = 0[(µ 1 - µ0 f A- 1x + ½(µJA- 1µ0 - µTA- 1µ 1) - In 1 ~ pl 
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Thus the construction of a discriminant function based on empirical data 
reduces to an estimation of the probability distributions P(x I w = 0) and 
P(x I w = I) and of the parameter p. The parameter p determines the fraction 
of pairs x, w with w = 0 and may be estimated by the quantity p = m/1, 
where m is the number of pairs in the sample with w = 0 and I is the sample 
size.t 

What are the algorithms that one should utilize for estimating the prob­
ability densities P(x I w = 0), P(x I w = 1)? To answer this question one 
should first agree on the method of assessing qualities of estimating algo­
rithms on the basis of samples of fixed size. 

The quality of specific algorithm A which estimates the density P(x, rx0 ) 

from a sample x 1, ... , x1 is naturally defined as the distance between the 
density and the estimated function PA(xlx 1, ••. , x1), i.e., by the quantity 

p(P(x, tx0), PA(xlx 1, •.. , xJ) = Pao,A(x1, ... , x,). 

We shall define the closeness of densities in terms of the L 2 metric, i.e., 

Pao,ix1, ... ' x,) = (J<P(x, txo) - PA(xlx1, ... ' X1))2 dx r12
. (3.15) 

Since the choice of the density P A(x Ix 1, ..• , x 1) depends on the sample 
x 1, •.. , x1, the quantity Pao,A(x 1, ... , x1) is a random variable. We shall 
characterize the quality of the algorithm A by the mathematical expectation 
of p;0,A(x 1, •.• , x1): 

R(tx0 , A)= f p;0,ix1, ... , x1)P(x 1) · · · P(x1) dx 1 · · · dx 1• 

The smaller R( rx 0 , A) is, the better the algorithm is for estimating the density 
P(x, rx0 ) from a sample of size I. 

Thus we have determined how the quality of an algorithm A designed 
for estimating a specific density P(x, rx0) should be measured. It is now 
necessary to agree on how to measure the quality of an algorithm earmarked 
for estimating an arbitrary density belonging to a given class P(x, rx) (in 
our case the class of densities is defined up to values of a vector of parameters 
rx). Two principles are used in statistical decision theory in such a situation: 
Bayes's principle and the minimax principle. 

Bayes's principle asserts that the quality of an algorithm should be 
estimated as the mean quality over all the estimated densities. In order to 
estimate the mean value of an algorithm it is necessary to know how often 
any particular density belonging to P(x, rx) will be estimated, i.e., in our case 

t It will be shown in Section 6 that p = (m + I )/(I + 2) is a more precise estimator. 
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it is necessary to have information about the probability density P(a) of 
the vector of parameters a. In that case the quality of an algorithm is defined 
as 

R8(A) = J R(a, A)P(a) da. (3.16) 

The smaller RiA) is, the better the algorithm. 
The minimax principle asserts that one must estimate the quality of an 

algorithm on the basis of the most unfavorable probability density P(x, a*) 
for this algorithm. Here the densities which may be encountered in practice 
are not taken into account. It may therefore turn out that the quality of the 
algorithm is determined by a case which will never occur. The quality of an 
algorithm according to the minimax principle is defined as 

Rmn.CA) = sup R(a, A). (3.17) 
a 

The smaller the value of Rmnx(A), the better the algorithm. 

§5 The Bayesian Algorithm for Density Estimation 

We shall determine the structure of algorithms which assure the solution of 
the Bayesian estimation of density, i.e., which minimize the functional 

R8 (A) = J R(a, A)P(a) da. 

From a sample x 1, ... , Xi, let a density which belongs to the class P(x, a) 
be estimated and the prior probability density P(a) be given. Utilizing 
Bayes's formula, we obtain 

) _ P(x 1, ••. , xtla)P(a) 
P(alx 1, ••• ,x1 - P( ) , 

X1, ... ' Xi 

which is the density of posterior probabilities P(alx 1, ... , xi) which charac­
terizes the possibilities of realizations of various values of parameters a 
after the information about the sample x 1, ... , x1 has been added to the 
prior information P(a). Here P(x 1, ..• , x1 I a) is the conditional and P(x 1, ... , 

xi) is the unconditional density of occurrence of the sample x 1, ... , xi: 

P(x1, ... , Xi)= J P(x1, ... , xii a)P(a) da. 

Below we shall show that the posterior mean, i.e., the function 

P8(xlx 1, ... ,xi) = JP(x,a)P(alx 1, ••• ,xi)da 

is the solution of the Bayesian problem. 

(3.18) 
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In general the density P 8 (xjx 1, ••• , x1) obtained as a result of averaging 
functions P(x, a:) with respect to the measure P(a:jx 1, ... , x1) need not 
belong to the parametric family P(x, a:) under consideration. Therefore, 
strictly speaking, the method for constructing the posterior mean (3.18) 
cannot actually be called the estimation of a function belonging to the class 
P(x, a:). 

Thus we obtain a function n(x; x 1, ... , x1) which minimizes the functional 

Rin)= J(P(xla:)-n(x;x 1, ... ,x1))2 

x P(x 1, ... , xzla:)P(a:) da: dx dx 1 • · • dx, (3.19) 

Denote 

Interchanging the order of integration in (3.19), we arrive at 

R8(n) = J r(x; x 1, ... , x1) dx dx 1 • • • dx1. 

We now transform the function r(x; x 1, .•. , x1): 

r(x; x 1, ... , x1) = J P 2(xla:)P(x1, ... , x,la:)P(a:) da: 

(3.20) 

- 2n(x; x 1, ... , x1) J P(x I a:)P(x 1, ... , x1 I a:)P(a:) da: 

+ n2(x;x1, ... ,x1) JP(x1, ... ,x1la:)P(a:)da:. (3.21) 

Denote 

~ ) _ j P(x I a:)P(x1, ... , x1 I a:)P(a:) da: 
P(xjx1, ... ,x1 - P( ) , 

X 1, ... , x 1 

where 

and rewrite the equality (3.21) in the form 

r(x;x 1, ... , x1) = J P 2(xla:)P(x 1, ... , xzla:)P(a:)da: 

- P2(xlx1, ... , x1)P(x1, ... , x,) 

~ . 2 + [P(xlx1,···,X1)- n(X,X1,···,X1)] P(x1,···,X1), 
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Substitute the expression for r(x; x 1, ••• , x1) into (3.20). This results in a 
functional which can be expressed as the sum of two summands 

where 

The first summand does not depend on n(x; x 1, •.• , x1). Therefore minimiza­
tion of R8(n) is equivalent to the minimization of the second summand 
Rz(n). The minimum of this summand is zero and is attained if 

n(x; X 1, ••• , X 1) = .P(xlx1, ••• , x 1) = P8(xlx 1, •.• , x1). 

In succeeding sections, for prior distributions P(rx.) Bayesian approxima­
tions of densities will be obtained. The construction of a Bayesian approxima­
tion for a fixed prior distribution P(rx.) depends on whether the expression 
(3.18) can be integrated analytically. 

§6 Bayesian Estimators of Discrete 
Probability Distributions 

In Section 3 the probability distribution function of the discrete independent 
features (3.12) and (3.13) was introduced. Here we shall show that, under 
minimal prior information concerning the values of the parameters p;U), 
namely: for each i the parameters p;(l), ... , ptc:;) are uniformly distributed 
on the simplex 

The Bayesian estimator of the probability distribution of discrete independent 
features equals 

where 

n 

P 8 (x) = f1 P 8 (xi), 
i= 1 

t(l) = m;(l) + 1 , 
I+'; 

Ai( ) m;(,;) + 1 
p 'i = . 

I+'; 
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m;(j) is the number of vectors in the sample such that the rth coordinate 
takes the )th value, r; is the number of values taken by the ith coordinate, and 
/ is the sample size. 

We now obtain the Bayesian estimator of the probability distribution of the discrete 
independent features. For this purpose we compute the function 

, S P(x' lp)P(x'1, .•• , x) ip)P(p) dp 
Pe(X) = J 

P(x'i, ... , x)lp)P(p) dp 
(3.22) 

In our case 
for xi = ci(l ), 

for xi= ctr;). 

First compute the denominator of (3.22). Since the sample is random and independent, 
we obtain 

f P(xi1 .... , xi lp)P(p) dp = ~ f TT [iU)Jm,(j) dpi(l) · · · dpi(ri), (3.23) 
V C, J= 1 

where v is the volume of the simplex Ci. It is known (see, e.g. [52]) that the definite 
integral (3.23) may be computed analytically: 

; ; I f(mi(I) + I)··· f(m;(r;) + I) 
P(x 1, ... ,x1)=- -------, 

v f(mi(l) + · · · + mi(r;) + r;) 
where f(n) is the gamma function. For integer n this function is given by 

f(n) = (n - !)!. 

We now derive the numerator of the expression (3.22) for the case xi = c;(k): 

Ii= f P(x' = dk)lp)P(xL ... ,xilp)P(p)dp 
C, 

= ~ f pi(k) TT [p;(j)r·Ul dpi(l) ... dpi(r;). 
V C, }= I 

The definite integral Ii is equal to (cf. [52]) 

, I f(m.(l) + J) .. · f(m,(r.) + l)r(m.(k) + 2) 
Ik = - - -

v f(m,(1) + .. · + m,(r.) + r, + l)f(m,(k) + I) 

Dividing (3.25) by (3.24), we obtain 

. . r(m,(k) + 2)1(/ + r;) m;(k) + l 
P8(x' = c'(k)) = ----

f(m;(k) + l)r(/ + r, + I) / + r; 
Thus I pi( I) = '11;_~+_!_ for xi = c;( I), 

I+ r; 
Pe(x;) = : 

,; m;(r;) + I . . 
p(r;) = T+~;-- for x' = c'(r;). 

Since the features arc independent, we have P 8(x) = TT7= 1 P 8(x;). 

(3.24) 

(3.25) 
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§7 Bayesian Estimators for the Gaussian 
(Normal) Density 

We shall now obtain Bayesian estimators for the Gaussian (normal) density 
in some special cases of the prior distribution on the parameters. First we 
shall obtain Beyesian estimator for the univariate normal distribution 
N(µ, a 2) under the assumption that the parametersµ and a of this distribution 
are distributed uniformly on the rectangular region O ::; a ::; II, - T ::; µ ::; T. 
It turns out that if I1 and Tare sufficiently large, then the Bayesian estimators 
are equal to 

where 

- E(l) [ (x - Xemp)2]-(l-1)/2 
Pix) - - 1 + 2 , 

(Temp (/ + l)aemp 

( I - 1) 
E(l) = r -2-

J (I + 1 )n rG _ 1) · 
1 l 

Xemp = -/ L X;, 
i= 1 

2 1 ~ 2 
(Temp = [ ;:-\ (X; - Xemp) · 

(See the derivation below.) 

(3.26) 

Next we shall obtain the Bayesian estimators for the n-dimensional 
normal distribution for a special prior distribution on parameters µ and ~ 
(µ is an n-dimensional vector of the means and ~ is an n x n covariance 
matrix). It turns out that in this case the Bayesian approximation equals 

_ E(l) [ (x - Xemp)Ts- 1(x - Xemp)]-(l+n)/Z 

Pix) - 1s1112 1 + / + 1 ' 

where 

- r(1 ~ n) 
E(l) = ((/ + l)nt12 r(//2)' 

the vector xemp is an estimator for the vector of the means: 

1 l 

Xemp = -/ L X;, 
i= 1 

and S is the empirical covariance matrix: 

1 l 

S = l i~l (X; - Xemp)(x; - Xempl-

(3.27) 
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Note that neither of the estimators (3.26) and (3.27) belongs to the normal 
class. However, it is easy to verify that in both cases 

Pix)~ N(µ, d). 

as I-. oc. 

Yet another remark: In order to calculate explicitly the Bayesian estimators 
of a multidimensional normal distribution (see Section 7.2 below) it was 
necessary to consider a special prior distribution on the parameters which 
differs from the uniform one (used in the univariate case; see Section 7.1 
below). However, the Bayesian estimators for the univariate case obtained 
from (3.27) by setting n = 1 is close to the one obtained assuming the uniform 
distribution on the parameters in the univariate case (3.26). 

7.1 Bayesian Estimator for the Univariate Normal Distribution 

Let the variable x be distributed according to the normal distribution 

1 { (x - µ) 2} P(x; µ, a) = ;;;-:: exp - 2 . 

v' 27ra 2a 

Moreover, let the prior distribution of parametersµ and a be uniform in the rectangle 
0 s as fl, -Tsµ s T; since the sample x 1, .•. , x 1 is random and independent, 
we have 

In view of (3.18) the Bayesian estimator of the probability density is equal to 

Pa(x) = (2;fl (2nY:+ 1)/2 f Tr a'~ l exp{- 2:2 (t (xi - µ)2 + (x - µ)2)} dµ da) 

x ·-~- -exp - - '\' (x - µ) 2 dµda . ( J J f T Jn 1 { J 1 
} )-

1 

2Tfl(2n)112 -T O a1 2a2 i:-'1 ' 
(3.28) 

We shall assume that the intervals [ - T, T] and [O, fl] are so large that the limits of 
integration in (3.28) may be extended to ( - a::, oo) and (0, oo) respectively. This can 
evidently be done if I ;;:o: 2. In this case the integrals in (3.28) are convergent. We compute 
the numerator of (3.28): 

/(x) = -~ f 00 J'° ~exp{-~ ( I (xi - µ) 2 + (x - µ) 2)} dµ da. (3.29) 
v' 2n - co o a 2a ;~ 1 

Denote 

I 

T(µ) = L (xi - µ) 2 + (x - µ)2, 
i=l 

ftw y=--. 
(J 
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Then the integral (3.29) becomes 

} Joo f oo y1-1 
I(x)= r,;;:_ - 112-exp{-½Y2}dydµ 

v2n -oo o T (µ) 

I Joo dµ f 00 { y2} = fo -ooy112(µ) oy'-lexp -2 dy. 

Denoting 

c(I) = r y'- 1 exp{- ~} dy, 

where c(I) depends on neitherµ nor on a, this integral can be rewritten as 

I(x) = c(I) J oo dµ 
r,;;:_ yl/2(µ). 

v' 2n - oo 

We now transform the expression for T(µ). For this purpose we note that 

I 

where 

L (xi - µ)2 = /a;mp + /(µ - Xemp)2, 
i= 1 

1 I 

Xemp = - I xi, 
I i= 1 

2 1 ~ 2 <Temp = - L., (xi - Xemp) · 
I i= I 

The expression for T(µ) is transformed analogously to yield 

T(µ) = la;mp + /(µ - Xemp)2 + (x - µ)2. 

Now set 

_ Xemp/ + X 
x=-~--

1 + 1 

and rewrite T(µ): 

2 I 2 - 2 T(µ) = laemp + --(x - Xemp) + (x - µ) (I + 1). 
I+ 1 

We now write the integral /(x) in the form 

c(I) J +co dµ 
l(x) = r,;;:_ [ I ]112 

v' 2n - "' la;mp + I+! (x - xemp) 2 + (x - µ)2(1 + I) 

= ---,c=== / 2 + emp 
c(I) ( /(x-x )2 )-(l-l)/2 J00 dz 

J2n(/ + 1) <Temp (/ + 1) - 00 (1 + z2) 112 · 

Observe now that the integrand is independent of the parameters. We thus have 

( 
(X _ X )2)-(1-1)/2 

/(x) = c'(/, <Temp) 1 + (/ + l);LP (3.30) 
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To obtain a Bayesian estimator it is required only to normalize the expression (3.30): 

I(x) 
Pe(x) = J"' 00 /(x) dx · 

It is known (cf. [52]) that the integral in the denominator equals the following expression: 

f + 
00 

/(x) dx = c"(I, O"emp) f « ( dx T "" 
- oo -oo (x - Xemp) 

1 + 2 ([ + l)uemp 

c"(/, (Temp) CJ,mpjl+I. rG)rG - 1) 

r(~) 
Denote 

(/ - 1) 
E(l) = r --2-

J ---- (') (I ) t+ir 2 r 2-t 

Thus 

£(/) ( (x - Xemp)2)-(l-1)/2 
P8(x) = - - I + ~--

uemp (I+ l)u;mp 

7.2 Bayesian Estimator for then-dimensional Normal 
Distribution 

To obtain the Bayesian estimator for the n-dimensional normal distribution, the 
following two facts from the theory of multidimens10nal normal distributions are used: 

( I) The convolution of two multidimensional normal distributions N(O, !1) and N(µ, yM, 
where y is a positive number, is the normal distribution N(µ, (1 + 1·)!1). In other 
words the equality 

f. N(p - t, yi'1) · N(t, !1) dt = N(µ, (I + 1·)!1) 
En 

is valid (see [ 4]). 
(2) The distribution of empirical estimators S of the covariance matrix i'1 given by the 

formula 

is expressed by the Wishart distribution (see [5]): 

w, .• is, Al ~t··'l'I_,,_ ,,,, 1s1" ··-"" "P{- ~sr[A-'SJ) for 1s1 > 0, 

for 1s1 :S 0, 



60 3 Methods of Parametric Statistics for the Pattern Recognition Problem 

where it is assumed that I> n + 1, Spllaijll = Lt= 1 a;;- The quantity e •. 1 is a con­
stant and equals 

(( /)-(l-l)n12 n (/-i))-1 e = - n•(n - 1 )/4 TT r ~-
n. I 2 ,= I 2 

(3.31) 

Since the Wishart distribution sums to I, we have 

f 1src1-n-2)i2exp{-isp[~-1s]}ds = _1_1~rcl-l)/2_ (3.32) 
ISl>O 2 en.I 

We now derive the Bayesian estimator. Denote the matrix~ - I by £0. Clearly I~ I = 

I/ I £0 I. Let the prior distribution of parameters µ and ~ of an n-dimensional normal 
distribution N(µ, ~) be defined in the form 

where the vector µ is distributed according to the normal distribution 

here c 1 is a constant, w > 0 is a number, a is a vector, and £0 is a matrix distributed 

according to the Wishart distribution: 

Here v > n + 2 is a constant, A is a matrix. Observe that 

for 1£01 > 0, 

for 1£01 ::; 0. 

(3.33) 

where £0 is a symmetric matrix and xis a column vector. We now write the joint density 

P(x 1, ••• , x 1 jµ, £0) for a random independent sample x 1, ••• , x1: 

1;2 {-Il= 1 (x; - µ?£0(x; - µ)} 
P(x 1, .•. ,x11µ,£0)=c 2 1£01 exp 2 

= c2 If01112 exp{-½ Sp[/£0S + lf0(xemp - µ)(xemp - µ?]}. 

Here and below c0 , c1, c2 , and c3 are constants which are determined by normalizing 

conditions. In view of Bayes's formula the posterior density P(µ, £0lx 1, ... , x 1) equals 

Compute the right-hand side of (3.34): 

P(µ, £0lx 1, ••• , x1) 

= C0 If01112 exp{-½ Sp[/£0S + lf0(xemp - µ)(xemp - µ?]} 

x c 1 1£01112 exp{-½Sp[f0w(µ - a)(µ - a?]} 

X C2 · en. v I f0 icv-n- 2)12 lwA icv- l)/Z exp{-½ Sp[vf0Aw]} 

= C3I£01<1+v-n- l)/ 2 exp{-½ Sp[/£0S + 1£0(xemp - µ)(xemp - µ? 

+ w£0(µ - a)(µ - a?+ vw£0A]}. (3.35) 
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Transforming the expression in the exponent of (3.35), we obtain 

~(IS + l(xemp - µ)(xemp - µ? + w(µ - a)(µ - a? + vwA) 
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= _qc[(I + w)(µ - b)(µ - h? + (I+ v)B], 

where the notation 

Lxemp + aw 
h = -- --

( /w T) IS + wvA + -- (xemp - a)(xemp - a) 
I+ w 

B = ------------- (3.36) 
I+ V / + w 

is used. Using this notation we rewrite (3.35): 

P(µ, Snlx1,.' '. x,) = C310il(l+,-n-11,2 

x exp{-½ Sp[ft((I + w)(µ - h)(µ - h? +(I+ v)B)]}. (3.37) 

The normalizing condition allows us to determine the constant c 3: 

f { I+,, } C.31= 1'71(1+v-n-2!1lexp - i-Sp[<:tiB] d_{j; 

f { I+ o; . . } 
x l'/l 12 exp - 2 --Sp[.'.i(µ-b)(µ-h)r] dµ 

The outer integral was computed utilizing equality (3.32). Finally we obtain the Bayesian 
estimator 

P8(x) = f P(xl11. r:J)P(p, "./Ix 1, ...• x 1)d11d'..I 

= f (2n)-" 21'/11 2 exp{- ~(X - 11?'J:(x - 11)}c31 "./l(l+,-n- II 2 

{ I + ui . } { I + r } x exp - f (p - h?V(p - h) exp - - 2 - Sp[Q'B] dpdY 

= - - C310-"1 11 +v n- 212 exp - . -Sp[UB] d'J ( 2n )" 2 f { / + 1· } 

I+ w 2 

Observe that the inner integral with respect top is a convolution of two normal distribu­

tions; we thus obtain 

Pe(x) = C3 fo + (') + 1)-"21"./l(l+,-n 1)2 

x exp{-½ Sp[u(B(/ + 1·) + _l.2._''J - (x - h)(x - w)]} d.Q:. (3.38) 
I+ w + I 
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In view of (3.32) we have 

cil + W + l)-n/2 
Pa(x) = ------

c.,,+v+ 1 

I I+ w 1-<1+v>12 
x (I + v)B + 1 (x - b)(x - b? 

+w+l 

( / + W I )"12 Cn,/+V 

= I+w+12n c.,1+,+1 

1(1 + v)Blo+v-1>12 

X I / + W l(l+v)/2. 
(/ + v)B + ---(x - b)(x - W 

I+ w + 1 

We now transform the expression (3.39): 

(
1 / + w )n/2 r(1 ~ v) 

Pa(x)= ----
n I + w + 1 r(1 + ; - n) 

(3.39) 

1(1 + v)·Bl- 112 

X I I + w 1 l(l+v)/2. (3.40) 
I+ ----(x - b)(x - b)TB- 1 

l+w+ll+v 

In the denominator of this expression / is the unit matrix. Observe that the matrix 
(x - b)(x - b? and hence the matrix (x - b)(x - b?B- 1 are of rank 1. Thus only one 
of its eigenvalues is different from zero, which implies that the denominator of (3.40) 
is equal to 

I I + w I lo+vJ/2 
I+ I -1-(x - b)(x - b?B- 1 

+ w + I + V 

= 1 + --- (x - b?B- 1(x - b) . ( 
I + w I )<i+vJ/2 

I+w+ll+v 

Thus we finally obtain 

(
I / + w )n/2 r(1 ~ v) 

P8(x) = -----n I+ w + I r(1 +; - n) 
1(1 + v)Bl- 112 

X ( / + W I )(l+v)/2. 
I+ --- (x - b?B- 1(x - b) 

l+w+ll+v 

We now assign specific values for v and win order that under the conditions of the scheme 
we shall obtain the most general (undetermined) prior conditions: 

(I) v = n + e (e > 0). This condition is necessary for integrating Wishart's distribu­
tion. 

(2) w -+ 0, e -+ 0. This condition assures that each of the elements of the matrix A 

tends to zero. 
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Then in view of (3.36) we obtain that b-> xemp, (I + v)B-> IS, whence 

( I+ n) 
( 

1 )n/2r -2- 1s1-112 

Pe(x) = (/ + l)rr (/) ( 1 T -1 )(l+n)/2' r - I + --(x - Xemp) s (x - xkmp) 
2 I+ I 

Finally for the one-dimensional case (setting n = I) we obtain 

1 -1 - 1 r( ~ ') 
Pe(x) = '1 ~ aemp r(-2') _(_1 _+ __ -_1-=_-(-x---X-e-mp_)_2)_<_1+_1_J/2. 

I+ 1 a;mp 

§8 Unbiased Estimators 

In the preceding sections, the Bayesian estimators of a probability density 
for special prior distributions on parameters were obtained. However, in 
practical problems the prior distribution is usually unknown. The minimax 
scheme of estimating the density may lead to overly imprecise results. It 
would therefore be desirable to find a sufficiently reliable method of estimating 
densities which is not connected with the Bayesian approach. How can this 
be done? 

Assume that there exists a method of estimating densities which is best 
not only on the average (this corresponds to the Bayesian criterion), but also 
the best for estimating each specific density. For this uniformly best method 
to exist it must be independent of the prior distribution imposed on the 
density. 

Unfortunately there is no such (uniformly best) method of estimation in 
the class of all possible methods. Indeed there exists a trivial algorithm 
which estimates the density to have the same fixed values of parameters 
independently of the sample. Such an algorithm estimates a single density 
with complete precision, while it is a poor estimator for all the other ones. 
This estimator is of course the best for its own density. 

However, while there is no uniformly best method in the class of all 
possible estimation methods, there may perhaps exist such a method in a 
more restricted class. This prompts the idea of restricting the class of all 
possible methods of density estimation and attempting to find the best 
method within the class. It turns out that if we restrict the class of estimators 
to the so-called unbiased estimators of density, then the problem of finding a 
uniformly best one admits a solution. 

Definition. We say that the function n(x; x 1, •.• , x1) is an unbiased estimator 
of the density P(x, ct*) belonging to the class P(x, ct) constructed from a 
sample x 1, ... , x1 of size I obtained according to distribution P(x, ct*) if 
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the mathematical expectation of the estimator n(x1, ... , x1) equals the 
density P(x, llC*), i.e., if for any P(x, llC*) belonging to P(x, llC) the equality 

M~.n(x; x 1, .•. , x1) = P(x, llC*) 

is valid. 

Note that the unbiasedness property has no value on its own and it is 
introduced solely to narrow down the class of possible estimators. The 
reason why the class of unbiased estimators is widely used in statistics is that 
this class is accessible to analysis. 

What is the meaning of this accessibility? We write once again the defini­
tion of an unbiased estimator: 

J n(x; x 1, .•. , x1)P(x1, ..• , x1; llC) dx 1 • • • dx1 = P(x, llC). (3.41) 

This expression not only determines unbiased density estimators, but 
indicates a method for their construction: the set of unbiased estimators is 
the set of solutions of Fredholm's equation of type I. However, to obtain a 
solution of Equation (3.41) is usually a difficult problem. It was shown in 
Chapter 1 that even in the case when the solution of Fredholm's equation is 
unique, its numerical solution is an ill-posed problem. Therefore one can 
obtain unbiased estimators of the density P(x, llC) only if Equation (3.41) 
can be solved analytically. 

In Section 10 an optimal unbiased estimator of density for a multivariate 
normal distribution will be derived. Before proceeding to construct this 
estimator, we note that in Chapter 2 a more general problem of density 
estimation in the class of continuous functions was also reduced to a solution 
of Fredholm's equation of type I. In this case a special problem-obtaining 
an unbiased estimator of a density known up to its parameters-is reduced 
to Fredholm's equation. 

The substantial difference between these two situations is that in the 
general case considered in Chapter 2 the right-hand side of Fredholm's 
equation of type I is known up to the error term. Here, however, it is given 
precisely. 

§9 Sufficient Statistics 

The construction of the optimal unbiased estimator is possible in terms of 
the so-called sufficient statistics. Up until now, when studying estimators we 
assumed that the estimator of a density is of the form n(x; x 1, ••• , x1), i.e., 
the estimator is a function of l + 1 vectors: the vector x and l vector-valued 
variables x 1, ... , x 1• Fixing the last l variables we obtained a specific form 
of the estimated density. 

However, such a method of expressing the density estimator is not quite 
convenient. Evidently n(x; x 1, ••• , x1) should not depend on the order of 
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the vectors x 1, ••• , x1 of the sample. Moreover, for another sample size, say 
I + 1, it is necessary to give a new function (of dimensionality I + 2). 

Therefore it would be desirable to find k characteristics of the sample 

i = 1, ... , k, 

such that, first of all, the information concerning the density contained in the 
sample x 1, .•. , x1 would be included in these k numbers, and secondly, 
that the number of necessary characteristics k would depend not on the sample 
size but on the features of the class of estimated densities. It would be de­
sirable to obtain an unbiased estimator n*(x; t 1, ... , tk) in terms of these 
characteristics of the sample. Sufficient statistics indeed serve this purpose 
(see [58]). 

Definition. We say that the functions ti = f;(x 1, ••• , x1) are sufficient statistics 

for the density P(x, IX) if the joint density P(x 1, ••• , x1; IX) of the sample can 
be represented in the form 

P(x 1 , ••• , x 1; IX)= P 1(t1, ••• , tk; 1X)Pi(x1, •.. , x1). 

In other words, the joint density P(x 1, ••• , x1; IX) is decomposed into the 
product of two terms. One of them, Pi(·), does not depend on the parameter 
IX, while the other involving IX depends only on the values t 1, .•. , tk (but not 
on the sample x 1, ••• , x1). 

It is easy to verify that for an n-dimensional normal distribution the following 
n(n + 3)/2 quantities serve as sufficient statistics: 

1 I 

t=-1 LXi, t=(t1,···,tn? 
j=I 

I 

lltiill = I (x, - t)(x, - t? 
r= 1 

(n values); 

( n(n + 1) ) 
2 values . 

Indeed, for an n-dimensional normal distribution we have 

P(x 1, ••• , x 1; µ, A) 

1 { 1 ~ T -1 } 
= (2n)"'i2 IAl';2 exp - 2 ;:"1 (x, - µ) A (x; - µ) 

= (2n)-n1;2 IAl-1;2 exp{-½ Sp[ A-1J (x; - µ)(x; - µl}] 

= (2n)-nl/21Al-l/2 

x exp{-½ Sp[ A - 1 (t (x1 - t)(x1 - t? + l(t - µ)(t - µ?) ]} 

= (2n)-"112 I Al- 112 exp{-½ Sp[A- 1(llt;jll + l(t - µ)(t - µ?)]}. 

In the derivation the equality zTBz = Sp[zzTB] was used. 
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Thus we seek an estimator of the density as a function of sufficient 
statistics. 

The remarkable feature of unbiased estimators n*(x; t 1, ... , tk) is that 
they are in some sense always at least as good as the estimators n(x; x 1, ... , 

x,). 

Theorem (cf. [35, 58]). For any estimator n(x; x 1, ... , x 1) there exists an 
estimator n*(x; t 1, ... , tk) such that for any density belonging to P(x, IX) the 
mathematical expectations of the estimators are the same: 

Mn*(x; t 1 , ... , tk) = Mn(x; x 1, .•. , x 1) = n(x), 

but the variance n*(x; t 1, .•. , tk) is not larger than the variance of the estimator 
n*(x; x 1, ••• , x 1), i.e., 

M(n(x)- n*(x;t1 , ••. ,tk))2 ~ M(n(x)- n(x;x1, ... ,x1))2. 

It follows from this theorem that the class of unbiased estimators­
expressed in terms of a sufficient statistic--contains the best one. 

§10 Computing the Best Unbiased Estimator 

We shall construct the best unbiased estimator of the density for a multi­
dimensional normal distribution. Here we utilize the fact that for distributions 
of the exponential type there exists a UQique unbiased estimator expressed 
in terms of sufficient statistics [26, 35]. In other words there exists a unique 
solution for Fredholm's equation of type I, 

f n*(x;t 1, ••• ,tk)P(t1, ••• ,tk;1X)dt1, ••• ,dtk = P(x,IX), (3.42) 

where P(x, IX) is the normal distribution and P(t 1, ••• , tk; IX) is the prob­
ability density of its sufficient statistics. 

According to the theorem cited in the preceding section, the solution of 
Equation (3.42), in view of its uniqueness, is the best unbiased estimator of 
the density of a multidimensional normal distribution. 

We shall show that an unbiased estimator of an n-dimensional normal 
density is 

rC ~ 1) 
Punb(x) = (/ l) 

[(1 - l)n]n/2r - ; - 1s1112 

1 _ emp emp [ 
( X - X ?S- l(X - X )](l-n-3)/2 

X /-1 + . 
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Here xemp = (1/1) Il= 1 X; is the vector of the means, 

1 I 

S = I i;l (x; - Xemp)(x; - Xemp)T 

67 

is the empirical estimator of the covariance matrix L\, and [z] + denotes 

[zJ+ = g for z 2 0, 

for z < 0. 

In deriving the best unbiased estimator of an n-dimensional density we shall utilize 
Bayes's formula 

q(x1, t; et.) 
<p(Xz It) = P(t; et.) , (3.43) 

where t = (t,, ... , tk)T, x 1 = (xl, ... , xW, the density q(x1, t; et.) defines the distribution 

of statistics x1 and t, P(t, et.) is the distribution oft, and <p(x1 It) is the conditional density. 
We shall show that the conditional density (3.43) is an unbiased estimator of the density 
P(x, et.). Indeed, 

f <p(x1lt)P(t;et.)dt = f q(x,t;et.)dt = P(x,et.). 

And since the unbiased estimator expressed in terms of sufficient statistics is unique, 
<p(x It) is the best unbiased estimator. 

We now compute <p(x It). First we shall find q(x, t; et.). For a normal distribution 
of the occurrence of vector x we have 

q(x, t; et.) = q(x, Xemp, S; µ, ii), 

where 

X = Xz, 
} I 

Xemp = / .L. Xi, 
1= 1 

Let the vectors x 1, ... , x1 which form the triples x, Xemp• S appear randomly and inde­
pendently according to the density N(µ, ii). 

Consider vectors y 1, ••• , y1 obtained from x, - µ, ... , x1 - µ by an orthogonal 
transformation 

C1 I Clll- I 0 

ff'= 
Cz-211 Cz-211- I 0 

1 1 

jt--=-T jt--=-T 
0 

0 0 

Vectors y 1, ... , y1 are distributed independently according to the N(O, ii) distribution. 
The following relations are valid: 

Xz = Y1 + µ, 
Jt--=-T Y1 

Xemp = --1-Y1-1 + / + µ. 
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We now express the matrix S in terms of the vectors y1, ... , y1• For this purpose we 
utilize the representation 

11-1 
S = - L (x; - µ)(x; - µ? 

I i=1 
+ (x, - µ)(X1 - µ?_I - 1 [li.i X; - µ]['i.1 X; - µ]T 

I I i=1 Ji=! ;=1 Ji=! 
1-1[1-1x.-µ] 1-1 [1-1x.-µ]T -- I-'-(x1-µ?--(x,-µ) I-'-1 i=1Ji=l I 1=1Ji=l 
1 T - p:(x1 - µ)(x1 - µ) , 

and the fact that the transformation It' satisfies 

We thus obtain 

Denote 

1-1 1-1 
L (x; - µ)(x; - µ? = L Y1Yi-
i=l i=1 

=~1~2. T (Y,-1-Ji=!Y1)·(Y1-1-Ji=!Y1)T 
S I ;~/,Y, + I I 

11-2 
9) = - L Y1Yi­

l i=l 

Observe that vectors y1, ..• , y1 are distributed according to the normal distribution 
N(O, 11). Moreover the variables Yi-i, y1, and 9fi are independent. Since Yi- 1, y1 are 
distributed according to the normal distribution and 9fi has a Wishart distribution, the 
joint distribution P(y1_ 1, y1, !ifi; 0, 11) equals 

where W1_ 1 (!ifi, 11) is the Wishart distribution: 

w,-1(!ifi, 11) 

{ 
l!ifil(l-n-Jl/2 exp{-½ Sp[l1- 19fi]} 

= c •. 1-1 1111<1-2)/2 forl!ifil > 0, 

0 for l!ifil ~ 0, 

and c •. , is a constant defined in (3.31). 
We now express P(y1_ i, y1, !ifi; 0, 11) in terms of x1, Xemp• and S. First observe that 

Y, = X1 - µ, 
I (x1 - µ) Y1-1 = /r,{Xemp - µ) - r,-, , 

yl-1 yl-1 

(3.45) 
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Taking into account that the Jacobian of the transformation (3.45) equals 
[n(n+ 3>12 /(I - 1)"12 , and substituting (3.45) into (3.44), we obtain 

["in+3J,2 ( / (x1 - µ) ) 
q(x,, Xemp, S; µ, ti) = n 2 P ~ (Xemp - µ) - -;,--;- ; 0, ti 

(I - 1) v I - 1 v / - 1 

x P(x, - µ;O,ti)W,_,(1s - _!_~(x, - xemp)(x, - xemp)T;ti), 
/- I 

whence 

q(x1, Xemp' S; µ, ti) 

["(n+3)/2C - 1/S - /(x, - Xemp)(x, - Xemp)Tl(l-n-3)/219£1'/2 
n,I I / _ J 

(2n:)"(I- l)"(l-l)/lfti(2expHSp[ti- 1(S + (xemp - µ)(xemp -//)]}' 

if is - (x, - xemp)(x, - Xemp) I > 0 
/- I ' 

0, if IS - (x, - Xemp)(x, - Xemp)T I = 0. 
I - I 

(3.46) 

We shall now determine the denominator of the expression (3.43). For a normal 
distribution of vectors x, the statistics xemr and IS are distributed independently: 

P(Xemp, S; µ, ti) = P(xemp; µ, ti)P(S; ti), (3.47) 

where xemr is normally distributed with N(µ, (1//)ti), and /S has the Wishart distribution 
Wi(S; ti). This implies that 

c 1n12iSl11-n-2>12 
P( S· ti) - n 1 

Xemp, 'µ, - (2n)nf2 , { I } ' 
I t.f'' 2 exp 2 Sp[ti - l(S + (xemp - µ)(xemp - µ/)] 

if IS I 2 0 and zero otherwise. C n, 1 is a constant defined in (3.31 ), 
Substituting (3.46) and (3.48) into (3.43) we obtain 

(/ I) (I (x x )(x x /l)(l-n-3)/2 
X t - r -2- [(/ - ) )n: r nr 2 S - e7 - 1 emp 

<fJ(I)- (t-n-1) ISi r --- 1s1112 
2 

(3.48) 

in the case when IS I > 0 and IS - [(x - xemp)(x - xemp)T/(1 - l)] I 2 0. Observe that 

I 
(x - Xemp)(x - Xemp)TI 

S---~~--~ ( T-1 ) 
_____ ! -_1 ___ = l _ (x - Xemp) S (x - Xemp) , 

I Sf I - 1 
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Hence we finally obtain 

q>(x I Xemp, S) 

where 

(/ - 1) 
f -2- [1 - (x - Xemp/S-l(X - Xemp)](l-n-3)/2 

(
/ - n - I) / - I ' [(/ - l)n]"12r 2 1s1112 + 

[zJ+ = {~ 
for z;::: 0, 

for z < 0. 

§11 The Problem of Estimating the 
Parameters of a Density 

It would thus seem that we have succeeded in achieving our goal of construct­
ing a Bayesian estimator of a density and computing the best unbiased 
estimator. However, the methods which were utilized in obtaining these 
estimators substantially utilize special properties of the estimated density. 
Therefore the methods studied above are not the common ones for estimating 
densities of various types. 

It is therefore of interest to study methods which perhaps do not yield 
such precise approximations as those studied above but which are regular, 
i.e., which could be used for estimating densities belonging to different 
parametric classes. 

To obtain these methods we shall reformulate our problem. We shall 
assume that our purpose is the estimation of parameters of a density rather 
than density estimation. We also assume that if one succeeds in solving the 
intermediate problem of obtaining a "nice" estimator for the parameters of 
the density, then the density itself can be satisfactorily estimated by choosing 
as an approximation the density function P(x, a*), where a* are the estimated 
values of the parameters. 

Observe that when the normal (Gaussian) distribution is estimated, 
neither the Bayes approximation nor the unbiased estimator of the density 
belongs to the class of normal distributions. In the case when the density is 
"assessed" by estimating its parameters, the approximations obtained 
belong to the Gaussian class. (This fact of itself is of no value. It only indirectly 
indicates how far the solution obtained may be from, say, the Bayesian 
one.) 

Thus we shall estimate the parameters a0 of the density P(x, a0). The 
quantity 
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will serve as the measure of the quality of the estimator & = &(x 1 •... , Xi) 

of the vector of parameters 'Y. = 'Y.o based on the sample x 1 , ... , Xi. The 
mathematical expectation of the quantity c/('Y. 0 ,&;x 1, ... ,xi), i.e., 

serves as the measure of the quality of estimators of 'Y. = 'Y.0 based on samples 
of size / (where P(x 1 , ... , xi; 'Y. 0 ) is the probability density of the sample 
X1, ... ' Xi), 

Finally the quality of an estimator used for estimating the parameter 'Y. 
under the prior distribution P('Y.) will be measured by 

RB(&,/) = J d('Y., &, l)P('Y.) d'Y.. (3.49) 

The estimator & which yields the minimum of the functional (3.49) is called 
a Bayesian estimator of'parameters. 

As in the case of density estimation, the prior distribution P('Y.) of para­
meters 'Y. is usually unknown; therefore, as before, the minimax criterion 

Rm0 ,(&, /) = sup d('Y., &, l) 

makes sense. The vector & which yields the minimum of Rm0 /:x, /) forms the 
minimax estimator of parameters. However, the construction of a regular 
method for parameter estimation of a density is associated with the idea of 
the best unbiased estimation rather than with the Bayesian or minimax 
estimation. 

Definition. We say that estimator & = &(x 1, •.. , Xi) is an unbiased estimator 
of the vector of parameters 'Y. 0 if 

Consider first the case when the probability density P(x, 'Y. 0 ) depends only 
on a scalar parameter 'Y. 0 . Then for the class of unbiased estimators, the 
remarkable Rao-Cramer inequality is valid: 

(3.50) 

where 
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The quantity //fl is called Fisher's information quantity. For an independent 
sample it equals 

I = - I Jd2 In P(x, 1X0) P( ) d 
<I> d1X2 x, IXo x. 

A derivation of the Rao-Cramer inequality is given in practically all modern 
texts in statistics (see, e.g., [35, 49, 58]). The meaning of this inequality is 
that the variance of an unbiased estimator (and this variance measures the 
precision of estimation in the case of unbiased estimators) is never less than 
the inverse of the Fisher's information quantity. 

Thus the right-hand side of the inequality (3.50) determines the limiting 
precision of unbiased estimation of a parameter. An estimator for which the 
inequality (3.50) becomes an equality is called efficient. The problem is to 
obtain a regular method for constructing efficient estimators of para­
meters for various parametric classes of densities. 

An inequality analogous to (3.50) may be obtained also for simultaneous 
unbiased estimation of several parameters. In this case the Fisher information 
matrix I whose elements are 

Jo2 ln P(x1, ... ' x,; IXo) 
lij = - 0 0 P(x1 , .•• , x 1; 1X0 ) dx 1 • • • dx1, 

IX; IX j 

i, j = 1, 2, ... , n, 

serves as an analog of the information quantity. 
For an independent sample x 1, .•• , x1 the elements Iij are equal to 

.. = - I Jo2 In P(x, 1X) d 
I,1 a a x. IX; IX j 

Let the Fisher information matrix I be nonsingular, and let the estimators 
&1(x1, ... , x1), •.• , &.(x1, ... , x1) be unbiased estimators of the parameters 
IX?, ... , IX~. Consider for these estimators a covariance matrix B, i.e., a matrix 
with the elements 

bij = M(IX? - &;(x1, ... , x1))(1XJ - &/x1, ... , x1)). 

Then a multidimensional analog of the Rao-Cramer inequality is the follow­
ing assertion: for any vector z and any unbiased estimators & 1 (x 1, ..• , x1), ••• , 

&.(x1, ... , x1), the inequality 
(3.51) 

is valid. The meaning of this inequality is as follows: let the quality of the 
joint estimator of n parameters IX?, ... , IX~ be determined by the square of 
weighted sums of deviation (with weights z = (z, ... , z.?, z; ~ 0) over all 
the estimated parameters: 

T(x1, ... , x 1) = (.± z;(IX? - &;(x1, ... , xI)))
2 

,= 1 
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Then the mathematical expectation of T(x 1, ..• , xn) is bounded from below 
by the quantity zTr 1z. In other words, no matter how the quality of the 
joint unbiased estimation of n parameters is measured (i.e., for any weights 
z;), the bound 

MT(x1, ... , X1) ~ zTr 1z 

is valid. In particular it follows from the inequality (3.51) that the variance 
of the estimator with respect to each parameter separately satisfies the 
inequality (3.50). Indeed, (3.50) is obtained from (3.51) for the specific 
vector z = (0, ... , 0, 1, 0, ... , O)T_ 

Estimation methods which yield equality in (3.51) for all z are called 
jointly efficient. When estimating several parameters our goal is to find 
jointly efficient estimators. 

§12 The Maximum-Likelihood Method 

Unfortunately there is no "regular" method to obtain efficient estimators 
of parameters of density based on a sample of a fixed size. There is only a 
method which allows us to construct asymptotically efficient estimators. 
This is the maximum-likelihood method developed by R. A. Fisher [58]. 
However, before considering this method we shall introduce several notions 
which are necessary for classifying estimators obtained from samples of 
large size. 

Biased 

Efficient 
e = 1 

Unbiased 

Figure 3 

In the preceding section the classification presented here in Figure 3 
was introduced for the characterization of estimators of parameters of a 
distribution based on samples of a fixed size. In this figure a measure of the 
efficiency of an unbiased estimator of parameters o: 0 is also shown. In the 
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case of a single parameter this measure is given by 

1 
e, = z . 

M(rt.0 - ix(x1, ... , xJ) /<1> 
(3.52) 

In the case of joint estimation of several parameters the measure of efficiency 
is defined by 

v(B, l) 
e, = v(l, I)' 

which equals the ratio of the volume v(B, l) of the ellipsoid 

zTBz = 1 

to the volume of the ellipsoid 

(3.53) 

For sample of large size a somewhat different classification is used which 
incorporates the notions of asymptotically unbiased, consistent, and asymp­
totically efficient estimators. Estimators satisfying 

M«o&(x1, ... ' x,) ~ rt.o 

are called asymptotically unbiased. Estimators satisfying 

for all B > 0 are called consistent. Asymptotic unbiased estimators satisfying 

Asymptotically 
biased 

Asymptotically 
efficient 

e1~1 

stimators 
with asymptotic 

efficiency 
O<e<l 

Figure 4 
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are called asymptotically efficient. Here e1 is given by (3.52) in the case of a 
single parameter oc and by (3.53) when several parameters are jointly esti­
mated. This classification is presented in Figure 4. 

The method of maximum likelihood involves examining the likelihood 
function P(x 1, ... , x1; oc). In our case, when the sample x 1, •.. , x1 is obtained 
as a result of random independent observations according to the density 
P(x, oc), the likelihood function can be represented as 

l 

P(x 1, ... , x1; oc) = TT P(xi, oc). 
i= I 

(3.54) 

The method of maximum likelihood chooses as the estimator those oc which 
yield the maximum for (3.54). Along with the likelihood function (3.54) it 
is common to consider the function 

l 

In P(x1 , ... , x 1; oc) = L In P(x;, oc). (3.55) 
i= 1 

The maxima of the functions (3.54) and (3.55) are the same, and hence to 
obtain maximum-likelihood estimators we need to solve the system of 
equations 

oP(x 1, ... , x1; oc) = 0 
(7(J(i ' 

i = I, 2 .... , n, (3.56) 

or the system of equations 

i = I, 2, ... , n. (3.57) 

The theory of maximum-likelihood estimation, which is well developed, 
aims to justify the applicability of this method. The substance of this theory 
is that for certain classes P(x, oc) (to which all the classes of densities con­
sidered in this book belong) the maximum-likelihood method assures the 
asymptotic efficiency of the estimators (cf. [24, 58]). 

We also remark that in the case of maximum-likelihood estimation the 
problem is reduced here to a simpler one than the one encountered in 
Bayesian estimation (multiple integration) or in constructing unbiased 
estimators (solution of Fredholm's equations of type I). 

To implement the maximum-likelihood method it is necessary to solve 
the system of equations (3.56) or (3.57). Although this is not always a linear 
system, its numerical solution is not usually too difficult, and moreover, 
for a wide class of functions there exists a unique solution. 
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§13 Estimation of Parameters of the Probability 
Density Using the Maximum-Likelihood Method 

In this section, utilizing the maximum-likelihood method, we shall obtain 
estimators for parameters of the distribution 

{
pi(l), for xi= c(l), 

P(x;) = ; i = 1, 2, ... , n, 

p (r;), for xi= c(r;), 
,, 
'[. piU) = 1, i = 1, 2, ... , n, 

j=J 

as well as for parameters of the normal distribution 

1 1 T - 1 
N(µ, Li) = (2nt12 I Li 1112 exp{ -z(x - µ) Li (x - µ)}. 

It turns out that for the distribution P(x;) the estimators are given by 

t(l) = m;(l) 
I 

Ai( ) mi(r;) 
p 'i =-,-

(3.58) 

where miU) is the number of vectors in the sample with the ith coordinate 
taking on the value xi = ciU). 

Maximum-likelihood estimators of parameters of a multidimensional 
normal distribution are given by 

1 I 

Xemp = / L, X;, 
i= 1 

1 I 

s = I i~l (xi - Xemp)(x; - Xemp?-

Thus we obtain the following estimator of the normal density: 

~ 1 1 T 
P(x) = (2nti2 IS 1112 exp{ -z(X - Xemp) S(x - Xemp)}. (3.59) 

13.1 Derivation in the Discrete Case 

We estimate the parameters of the distribution P(x;)_ First we form the likelihood 
function: 

I n 

P(x 1, ••• , x1; p) = TT TT P(x~, Pt 
j=I i=I 

where x~ is the value of the ith coordinate ofthej-vector in the sample. 
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Interchanging the order of the factors, we have 

I 

P(x1,---,X1;p) = n CTP(x},p\ 
i= 1 j= 1 

We now proceed to the function 

I 

lnP(x 1, ••• ,x1;p)= I IInP(x},p1). 
i = 1 j= 1 

Consider the quantity 

I 

I In P(x1, pi)_ 
} ~ 1 

It can be represented in the form 

I r, 

I In P(x1, p') = I mi(r) In pi(r), 
r=l 

where m;(r) is the number of vectors in the sample such that the ith coordinate takes the 
value x' = ci(r). Thus 

r, 

In P(x 1, ... , x,; p) = I I mi(r) In i(r). (3.60) 
i= 1 r= 1 

We now obtain the maximum with respect to p1(r) of function (3.60) subject to 
I:·~ 1 i(r) = I, i = l, 2, ... , n. For this purpose the method of Lagrange multipliers 
will be used. We form the Lagrange function 

,, 
L(p, A) = I I (mi(r) In pi(r) - Aip1(r)), (3.61) 

i= 1 r= 1 

where the Ai arc the Lagrange multipliers. The vector pi which yields the maximum of 
L(p, A) is determined by the system of equations 

oL(p\ A) m;(r) 
~~=---A=0 

oi(r) pi(r) I ' 

i =I, ... , n. (3.62) 

From (3.62), taking the condition 

,, 
L pi(r) = I, 

r= I 

into account, we obtain 

m-(r) Ai( ) I pr=~,-. 

Observe that here the maximum-likelihood estimators turn out to be unbiased. 
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13.2 Derivation in the Normal Case 

We now estimate the parameters µ and L'. of the normal distribution: 

1 
P(x; µ, t.) = (2n)•f2 If. 1112 exp{ -½(x - µ? t. - l(x - µ)}. 

We form the likelihood function 

1@11/2 { 1 I } 
P(x,, ... , x,; µ, @) = (2n)'•l2 exp - 2 ;~1 (x; - µ?@(x; - µ) ' 

where L'. - l = @. We obtain its logarithm 

nl I 1 1 T 
In P(x 1, .. • , x1;µ,@) = - -ln2n + -lnl@I - - L (x; - µ) @(x; - µ). 

2 2 2 i= 1 

Write 

oP(x1, ••• , x1; µ, @) _ ( ~ ) _ 
------ - @ L, X; - /µ - 0, 

oµ i=l 

oP(x 1, ... ,x1;µ,@) I _1 1 ~ T 

i)@ = 2@ - 2 ;:'1(X; - µ)(X; - µ) = 0. 

Here we have used the relationship 

From Equations (3.63) and (3.64) we obtain 

1 I 

Xemp = -/ L X;, 
i= 1 

-l 1 ~ T 
S = @ = - L, (X; - Xemp)(X; - Xemp) · 

I i= 1 

The estimator of the covariance matrix is biased. 

§14 Remarks on Various Methods for 
Density Estimation 

(3.63) 

(3.64) 

Three types of estimation for densities defined up to parameters were con­
sidered in this chapter: Bayesian, best unbiased, and those obtained using 
the maximum-likelihood method. For our specific problems of estimating 
densities of two classes (3.58) and (3.59), all three estimators were obtained. 
Which one is preferable for use in practice, then-which one should be 
substituted into (3.7) to obtain decision rules in a pattern recognition 
problem? 

Theoretically the Bayesian is undoubtedly the preferable one. This 
estimator optimizes a functional which defines the quality of the estimator 
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in a reasonable manner. However, in order to obtain a Bayes estimator the 
prior distribution of parameters of the density must be known, i.e., a dis­
tribution which determines how often in practice a particular density is 
estimated. Usually this information is not available. 

In Sections 6 and 7 Bayesian estimators were obtained for prior distribu­
tions which on the one hand contain fairly indefinite information but on the 
other yield a maximal simplification of calculations. How much confidence 
should be given to a Bayesian estimator based on one prior distribution if in 
practice another distribution is implemented? Only a qualitative answer is 
available to this question. As the sample size increases, the effect of the 
prior information on the Bayesian estimator decreases. Thus the use of the 
Bayesian estimator is justified by the belief that in practice the inconsistency 
in the choice of a prior distribution has little effect. 

When constructing the best unbiased estimator of a density there is no 
need to take prior information into account. In this class of estimators there 
exists a best estimator which is independent of a particular estimated density 
belonging to this class. It would seem that no risk is involved in choosing 
the best unbiased estimator in such a situation. Actually this is not the case. 
It does not follow at all that the class of unbiased estimators contains 
sufficiently "nice" estimators. It has already been mentioned that the 
unbiasedness by itself is of no value and is introduced only to restrict the 
class of estimators. The class of unbiased estimators is a narrow one (for 
example, an unbiased estimator of the normal distribution expressible in 
terms of sufficient statistics is unique). It is not excluded that the narrow 
class of unbiased estimators consists only of rather "inferior" estimators 
and then the choice of the best one in this class does not assure that the 
estimator is satisfactory. 

The example suggested by C. Stein indicates that this indeed is quite 
possible: when estimating the mean vector µ of the n-dimensional (n > 2) 
normal distribution with unit covariance matrix I, the biased estimator 

Xemp = (1 - / ~ - 2 )xemp 
XempXemp 

turns out to be a uniformly better estimator than the arithmetic mean 

I I 

xemp = -I IX;, 
i= 1 

which is the best unbiased one. (More details on Stein-type estimators are 
given in Chapter 5.) Stein's example is remarkable in that it is constructed 
for the simplest problems of parameter estimation and even here uniformly 
better biased estimators exist. 

Thus the choice of the best unbiased estimator can be justified only by 
the belief that the class of unbiased estimators contains an adequate one. 

Finally, the theory of maximum-likelihood estimators provides no 
answers to the question concerning the properties of estimators for samples 
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of finite size. The theory only guarantees that the maximum-likelihood 
estimators approach the efficient ones as the sample size increases, i.e., 
with an increase in sample size, the quality of a maximum-likelihood esti­
mator approaches that of the best unbiased estimator. 

Due to a lucky contingency, we were able in this chapter to find Bayesian 
estimators explicitly, i.e., to carry out the analytic integration of a multiple 
integral (numerical integration of multiple integrals of high dimensions is 
troublesome) to obtain explicitly the best unbiased estimator of the density. 
That is, we were able to arrive at an analytic solution of Fredholm's Type I 
equation (whereas a numerical solution of this equation is an ill-posed 
problem). This result is due to a specific feature of the parametric class of 
densities. 

In general, however, such approximations can hardly be anticipated. 
In this respect the maximum-likelihood method has an advantage in that 
it can be used for diverse classes of densities. This property of the maximum­
likelihood method is due to the fact that it reduces to the solution of alge­
braic equations, i.e., to a problem for which efficient computer methods 
exist. 

Yet another remark: The methods for estimating densities discussed 
in this chapter make sense only if the density under consideration belongs 
to a given parametric family of densities. In practice, however, the prior 
information which would allow us to select a parametric family of functions 
containing the unknown one is not available. It turns out, in fact, that not 
only the choice of a particular method of density estimation, but also the 
choice of a parametric formulation of the problem of estimating dependences 
from empirical data, is largely a matter of belief. 




