
Chapter 3 

NONINDUCTIVE METHODS OF INFERENCE: 

DIRECT INFERENCE INSTEAD OF 

GENERALIZATION (2000-· · ·) 

3 .1 INDUCTIVE AND TRANSDUCTIVE INFERENCE 

Chapter 10 of EDBED distinguishes between two different problems of estimation: 
estimation of the function and estimation of the values of the function at given points 
of interest. 

(1) Estimation of the function. Given training data 

(3.1) 

find in the set of admissible functions J(x, a), a E A the one which guarantees 
that its expected loss is close to the smallest loss. 

(2) Estimation of the value of the function at the points of interest. Given a set of 
training data (3.1) and a sequence of k test vectors 

X£+1,· · · ,Xf+k, (3.2) 

find among an admissible set of binary vectors 

the one that classifies the test vectors with the smallest number of errors. Here 
we consider 

X1, · .. , X£+k (3.3) 

459 

 V. Vapnik, Estimation of Dependences Based on Empirical Data
© Springer Science+Business Media, Inc. 2006
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to be random i.i.d. vectors drawn according to the same (unknown) distribution 
P(x). The classifications y of the vectors x are defined by some (unknown) 
conditional probability function P(ylx). 

This setting is quite general. In the book we considered a particular setting where 
the set of admissible vectors is defined by the admissible set of indicator func­
tions f ( x, a), a E A. In other words, every admissible vector of classification 
Y* is defined as follows 

In the mid-1990s (after understanding the relationship between the pattern recog­
nition problem and the philosophy of inference), I changed the technical terminology 
[139]. That is, I called the problem of function estimation that requires one to find a 
function given particular data inductive inference. I called the problem of estimating 
the values of the function at particular points of interest given the observations trans­
ductive inference. 

These two different ideas of inference reflect two different philosophies, which we 
will discuss next. 

3.1.1 TRANSDUCTIVE INFERENCE AND THE SYMMETRIZATION LEMMA 

The mechanism that provides an advantage to the transductive mode of inference over 
the inductive mode was clear from the very beginning of statistical learning theory. It 
can be seen in the proof of the very basic theorems on uniform convergence. This proof 
is based on the following inequality which is the content of the so-called symmetriza­
tion lemma (see Basic lemma in EDBED Chapter 6, Section A3): 

where 

(3.5) 

and 
2£ 

(2) - 1 ~ Remp(a) - C ~ IYi - f(xi, a)I 
i=£+1 

(3.6) 

are the empirical risks constructed using two different samples. 
The bound for uniform convergence was obtained as an upper bound of the right­

hand side of (3.4). 
Therefore the symmetrization lemma implies that to obtain a bound for inductive 

inference we first obtain a bound for transductive inference (for the right-hand side of 
(3.4)) and then obtain an upper bound for it. 
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It should be noted that since the bound on uniform convergence was introduced 
in 1968, many efforts were made to improve it. However, all attempts maintain some 
form of the symmetrization lemma. That is, in the proofs of the bounds for uniform 
convergence the first (and most difficult) step was to obtain the bound for transductive 
inference. The trivial upper bound of this bound gives the desired result for inductive 
inference. 

This means that transductive inference is a fundamental step in machine learning. 

3.1.2 STRUCTURAL RISK MINIMIZATION FOR TRANSDUCTIVE INFERENCE 

The proof of the symmetrization lemma is based on the following observation: The 
following two models are equivalent (see Chapter 10, Section 1 of EDBED): 

(a) one chooses two i.i.d. sets 1 

(b) one chooses an i.i.d. set of size 2€ and then randomly splits it into two subsets of 
size€. 

Using model (b) one can rewrite the right-hand side of (3.4) as follows 

P { s~p IRi;lp(a) - Ri~P(a) I > ~} = 

E{x 1 ,. ,xu}P { s~p IRi~,p(a) - Ri~p(a)I > ~ l{x1, ... , x2e}}. (3.7) 

To obtain the bound we first bound the conditional probability 

P { s~p IRi;}1p(a) - Ri~P(a)I > ~ l{x1, ... , x2e}} ::::; 

~A(x1, ... , xu) exp { -c2€} (3.8) 

where ~A(x1 , ... , x2c) is the number of equivalence classes on the set (3.3). The prob­
ability is obtained with respect to the random split data into two parts (training and 
testing). Then we take the expectation over working sets of size 2€. As a result, we 
obtain 

E{x 1 , ,x2 £}P { s~p IRi;},p(a) - Ri~p(a)[ > ~ l{x1, ... , x2c}} :=::; 

~i(2€) exp { -c2€}. (3.9) 

Note that for the transductive model of inference we do not even need to take the 
expectation over sets of size 2€. We can just use the bounds (3.8). 

1 For simplicity of the formulas we choose two sets of equal size. 
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Let us consider both models of inference, transductive and inductive from one uni­
fied point of view: In both cases we are given a set of functions defined on some space 
R. We randomly choose the training examples from this space. In the inductive case 
we choose by sampling from the space, and in the transductive case we choose by 
splitting the working set into the training and testing parts. We define the values of the 
function of interest over the domain of definition of the function: In the inductive case 
in the whole space, and in the transductive case on the working set. 

The difference is that in transductive inference the space of interest is discrete ( de­
fined on £ + k elements of the working set (3.3)), while in inductive inference it is 
Rn. 

One can conduct a nontrivial analysis of the discrete space but not the continuous 
space Rn. This is the key advantage of transductive inference. 

3.1.3 LARGE MARGIN TRANSDUCTIVE INFERENCE 

Let Fi, ... , FN be the set of equivalence classes defined by the working set (3.3). Our 
goal is to construct an appropriate structure on this set of equivalence classes. 

In Chapter 2, Section 2.6 we constructed a similar structure on the set of equiv­
alence classes for inductive inference. However, we violated one of the important 
requirements of the theory: The structure must be constructed before the training data 
appear. In fact we constructed it after (in the inductive mode of inference the set of 
equivalence classes was defined by the training data), creating a data-dependent struc­
ture. There are technical means to justify such an approach. However, the bound for a 
data-dependent structure will be worse [138]. 

In transductive inference we construct the set of equivalence classes using a joint 
working set of vectors that contain both the training and test sets. Since in constructing 
the equivalence class we do not use information about how our space will be split into 
training and test sets we do not violate the statistical requirements. 

Let us define the size of an equivalence class Fi by the value of the corresponding 
margin: We find, among the functions belonging to the equivalence class, the one 
that has the largest margin2 and use the value of the margin µ(Fi) as the size of the 
equivalence class Fi, 

Using this concept of the size of an equivalence class, SVM transductive inference 
suggests: 

Classify the test vectors (3.2) by the equivalence class (defined on the working set 
(3.3 )) that classifies the training data well and has the largest value of the ( soft) margin. 

Formally, this requires us to classify the test data using the rule 

Yi= sgn((wo, zi) + bo), i = £ + 1, ... ,£ + k, 

2We consider the hard margin setting just for the sake of simplicity. One can easily generalize this setting 
to the soft margin situation as described in Section 2.3.4. 
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Figure 3.1: Large margin defines a large equivalence class. 

where the parameters w0 , b0 are the ones that minimize the functional 

1 e e+k 
R(w) = 2(w, w) + Ci L 0(ti) + C2 L 0(tj ), Ci, C2 2: 0 

i =l j=t+l 

subject to the constraints 

yi[(zi ,w) + b] 2: l - t;, t i 2': O, i=l, ... ,£ 

( defined by the images of the training data (3. l)) and the constraints 

y; ( ( zj, w) + b) ::::: 1 - t j , tj ::::: o, J = e + 1, .. . , e + k 

(defined by the set (3.2) and its desired classification Y* = (yJ+i , . .. , yJ+k) . 

(3.10) 

(3.11) 

(3 .12) 

One more constraint. To avoid unbalanced solution Chapelle and Zien [174), 
following ideas of Joachims [154], suggested the following constraint: 

1 e+k 1 e 
k L ((w, Z j) + b) ~ e LYi· 

j = f +l i = l 

(3 .1 3) 

This constraint requires that the proportion of test vectors in the first and second cate­
gories be similar to the proportion observed in the training vectors. 
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For computational reasons we will replace the objective function (3.10) with the 
function 

l C C+k 

R(w) = 2(w,w) +c1I:~i,+C2 L G, C1,C2 2'. 0 (3.14) 
i=l s=C+l 

Therefore (taking into account kemelization based on Mercer's theorem) we can 
obtain the following solution of this problem (in the dual space). 

The classification rules for the test data in the dual space have the form 

C C+k 

yT=sgn(LafK(xi,X7 )+ L f3sy;K(xs,x)+bo), T=f+l, ... ,f+k, 
i=l 

where the coefficients a?, /3~, bo and desired classifications of test data are the solution 
of the following problem: Maximize (over a, (3, y*) the functional 

C Hk l C 

W(a,(3,y*) = L°'i + L f3s - 2 L °'i°'JYiYJK(xi,Xj) 
i=l s=C+l i,j=l 

C c+k l Hk 

-L L °'iYif3sy;K(xi, Xs) - 2 L f3sY:f3tYt K(xs, Xt) 
i=l s=C+l s,t=C+l 

subject to the constraint 
C Hk 

LYiO:i + L Y:f3s = 0, 
i=l s=C+l 

the constraints 
0 :S ai :S C 1 , i = 1, . . . , £ 

0 :S f3s :S C2, s = £ + 1, ... , £ + k, 

and the constraint (3 .13 ): 

Note that this problem does not have a unique solution. This makes transductive 
inference difficult. However, whenever one can maximize the functional well, one 
obtains an improvement over inductive SVMs. 

3 .1.4 EXAMPLES OF TRANSDUCTIVE INFERENCE 

Here are examples of real-life problems solved using transductive inference. 
1. PREDICTION OF MOLECULAR BIOACTIVITY FOR DRUG DISCOVERY [146]. 

The KDD CUP-2001 competition on data analysis methods required the construction 
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of a rule for predicting molecular bioactivity using data provided by the DuPont Phar­
maceutical company. The data belonged to a binary space of dimension 139,351, which 
contained a training set of 1909 vectors, and a test set of 634 vectors. 

The results are given here for the winner of the competition (among the 119 com­
petitors who used traditional approaches), SVM inductive inference and SVM trans­
ductive inference. 

Winner's accuracy 
SVM inductive mode accuracy 
SVM transductive mode accuracy 

68.1 % 
74.5 % 
82.3 % 

It is remarkable that the jump in performance obtained due to a new philosophy of 
inference (transductive instead of inductive) was larger than the jump resulting from 
the reinforcement of the technology in the construction of inductive predictive rules. 

2. TEXT CATEGORIZATION [138]. In a text categorization problem, using trans­
ductive inference instead of inductive inference reduced the error rate from 30% to 
15%. 

REMARK. The discovery of transductive inference and its advantages over induc­
tive inference is not just a technical achievement, but a breakthrough in the philosophy 
of generalization. 

Until now, the traditional method of inference was the inductive-deductive method, 
where one first defines a general rule using the available information, and then deduces 
the answer using this rule. That is, one goes from particular to general and then from 
general to particular. 

In transductive mode one provides direct inference from particular to particular, 
avoiding the ill-posed part of the inference problem (inference from particular to gen­
eral). 

3 .1.5 TRANSDUCTIVE INFERENCE THROUGH CONTRADICTIONS 

Replacing the maximal margin generalization principle with the maximal contradiction 
on the Universum (MCU) princple leads to the following algorithm: Using the working 
set (3.3) create a set of equivalence classes of functions, then using the Universum 
(2.67) calculate the size of the equivalence classes by the number of contradictions. 

The recommendation of SRM for such a structure would be: 

To classify test vectors (3.2), choose the equivalence class (defined on the work­
ing set ( 3.3)) that classifies the training data ( 3.1) well and has the largest num­
ber of contradictions on the Universum. 

The idea of maximizing the number of contradictions on the Universum can have 
the following interpretation: 

When classifying the test vectors, be very specific; try to avoid extra generaliza­
tions on the Universum (2.67). 
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Figure 3.2: Large number of contradictions on Universum (boxes inside the margin) 
defines a large equivalence class. 

From a technical point of view, the number of contradictions takes into account the in­
homogeneity of image space, especially when the input vectors are nonlinearly mapped 
into feature space. 

Technically, to implement transductive inference through contradictions one has to 
solve the following problem. 

Given the images of the training data (3.1 ), the images of the test data (3.2), and 
the images of the Universum (2.67), construct the linear decision rule 

I(x) = B[(wo , z) + bol, 

where the vector w0 and threshold b0 are the solution of the following optimization 
problem: Minimize the functional 

l e f+ k u 

R(w) = 2(w, w) + C1 I)((i ) + C2 L 0((1 ) + C3 L 0((;), C1 , C2, C3 ~ 0 
i= l j =f+l s=l 

subject to the constraints 

yi[( zi , w) + b] ~ 1 - (i , (i ~ 0, i = 1, ... , £ 

( defined by the images of the training data (3 .1) ), the constraints 

y;((z1,w)+b)~l-(1, (1 ~0,j=£+1, ... ,£+k 

(3.15) 

(3.16) 

(3.17) 
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(defined by the set (3.2) and the desired vector (Ye+i, ... , Ye+k) ), and the constraints 

l(z_;,w)+bl:Sa+~;, ~;2>0, s=l, ... ,u, a2>0 (3.18) 

(defined by the images of the Universum (2.67)). 

As before (for computational reasons), we replace 0(0 in the objective function 
with ~. Therefore we minimize the functional 

1 e e+k u 

R(w)=2(w,w)+c1z:=~i+C2 L ~j+c3z:=~;, C1,C2,C32>0 (3.19) 
i=l j=£+1 s=l 

subject to the constraints (3.16), (3.17), and (3.18). 

DUAL FORM SOLUTION 

The solutions to all of the above problems in the dual space of Lagrange multipliers 
can be unified as follows. Find the function 

£ f+k u 

J(x) = L afyiK(x, xi)+ L f3fy; K(x, xt) + L (µ~ - v~,)K(x, :x::n) + bo 
i=l t=f+l m=l 

(3.20) 
whose test classifications YJ and coefficients a 0 , {3°, ;1,0 , v0 , b0 maximise the functional 

e e+k u 

W(a, /3, r, µ, v, y*) = L Doi+ L f3t - a L(µn + Vn) (3.21) 
i=l n=l 

l £ l Hk 

2 L aiOojYiYjK(;i;i,Xj) - 2 L f3tY;f3sY_;K(xt,·Ts) 
i.j=l s.t=f+l 

I u e e+k 

2 L (µm - Vm)(µn - Vn)K(x:n, .T~) - L L a;y;f3tY; K(:1:;, Xt) 
m,n=l i=l t=R+l 

e u u e+k 
-L L °'iYi(µm - Vm)K(x;, x;,) - L L (µm - Vm)/Jty; K(x;11 , J;t) 

i=l m=l m=l t=£+1 

subject to the constraints 

and the constraint 

0 :S ai :S C1, 

0 :S f3t, :S C2, 

£ f+k u 

L °'iYi + L f3tY; + L (µm - Vm) = 0. 
i=l t=f+l m=l 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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In particular, when C2 = C3 = 0 we obtain the solution for the conventional SVM, 
when C2 = 0 we obtain the solution for inductive SVMs with the Universum, and 
when C3 = 0 we obtain the solution for transductive SVMs. 

Note that just taking into account the Universum (C2 = 0) does not change the 
convexity of the optimization task. The problem becomes nonconvex (and therefore 
can have a nonunique solution) only for transductive mode. 

It is good to use hint (3.13) when solving transductive problems. 

3.2 BEYOND TRANSDUCTION: THE TRANSDUCTIVE 

SELECTION PROBLEM 

The transductive selection problem was not discussed in the original Russian edition of 
EDBED. It was written at the last moment for the English translation. In EDBED the 
corresponding section (Chapter 10, Section 13) has a very technical title "The Prob­
lem of Finding the Best Point of a Given Set." Here we call this type of inference 
transductive selection. 

3.2. l FORMULATION OF TRANSDUCTIVE SELECTION PROBLEM 

The transductive selection problem is the following: Given the training examples (pairs 
(xi,Yi),x E Rn, y E {-1,+1}, i = 1, ... ,£)andgivenaworkingset(x; E 
R*, j = 1, ... , m), find in the working set the k elements that belong to the first class 
(y = + 1) with the highest probability. 

Here are some examples of the selection problem: 

- Drug discovery. In this problem, we are given examples of effective drugs 
(Xi, + 1) and examples of ineffective drugs ( x s, -1). The goal is to find among 
the given candidates (xi, ... , x;,,) the k candidates with the highest probability 
of being effective drugs. 

- National security. In this problem, we are given examples (descriptions) ofter­
rorists (xi, +1) and examples of non-terrorists (xs, -1). The goal is to find 
among the given candidates (xi, ... , x;,,) the k most likely terrorists. 

Note that in contrast to general transductive inference, this setting does not require 
the classification of all candidates3• The key to solving the selective inference problem 
is to create an appropriate factorization of a given set of functions that contains fewer 
equivalence classes than the factorization for transductive inference. The transduc­
tive selective models are the main instrument for solving decision-making problems in 
high-dimensional spaces. However, this instrument has not yet been developed. 

3In such problems, the most difficult cases are "border candidates." In transductive selection problems, 
we exclude this most difficult part of the task (classification of border candidates). Here again we obtain the 
same advantage that we obtained by replacing the model identification scheme by the prediction scheme and 
replacing the predictive scheme by the transductive scheme: we replaced a not very well-posed problem by 
a better-posed problem. 
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3.3 DIRECTED AD Hoc INFERENCE (DAHi) 

3.3.1 THE IDEA BEHIND DAHI 

This section discusses directed ad hoc inference, inference that occupies an intermedi­
ate position between inductive-deductive inference and transductive inference. 

The main idea of DAHI is a reconsideration of the roles of the training and test­
ing stages during the inference process. The classical inductive-deductive model of 
inference contains two different stages: 

( 1) The training (inductive) stage, where one constructs a rule for classification using 
the training data, and 

(2) The testing (deductive) stage where one classifies the test data using the con­
structed rule. 

The transductive model of inference solves the classification problem in one step: 

- Given a set of training data and a set of test data, it finds the labels for the test 
data directly. 

DAHi works differently. During the training stage, DAHi looks for a principal 
direction (concept) used to construct different rules for future inferences. This is dif­
ferent from the inductive stage of inference where the goal is to find one fixed rule. 
During the test stage DAHI uses this principal direction to construct a specific rule for 
each given test vector (the ad hoc rule). Therefore, DAHi contains elements of both 
inductive and transductive inference: 

(1) It constructs one general direction of inference (as in inductive inference). 

(2) It constructs an individual (ad hoc) rule for each given test example (as in trans­
ductive inference). 

The idea of DAHi is: To construct a linear ( in feature space) decision rule that has 
fixed homogeneous terms and individual (for different test vectors) thresholds. 

The problem is how to find thresholds that make inferences more accurate than 
ones based on one fixed threshold (as in SVM). 

From a technical point of view DAHi is a combination of ideas from statistical 
learning theory (in particular, support vector machines), and from nonparametric statis­
tics (methods for conditional probability estimation). 

3.3.2 LOCAL AND SEMI-LOCAL RULES 

To discuss the details of DAHi let us consider the idea of local algorithms suggested 
by nonparametric statistics and in particular the k-nearest neighbors method. 
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k-NEAREST NEIGHBORS METHOD 

According to the k-nearest neighbours method for any point of interest x0 one chooses 
from the training data the k-nearest (in a given metric) vectors x;, i = 1, ... , k and 
classifies the point of interest x 0 depending on which class dominates among these k 
chosen vectors. 

The k-nearest neighbors method can be described as a local estimating method. 
Consider the set of constant-valued functions. For a set of indicator functions it con­
tains only two functions: one takes the value -1; another takes the value 1. Consider 
the following local algorithm: define the spherical vicinity of the point of interest x 0 

based on the given metric and a value for the radius ( defined by the distance from a 
point of interest x 0 to its k nearest neighbors). Then choose from the admissible set of 
functions the function that minimizes the empirical loss on the training vectors belong­
ing to the vicinity of the point of interest x 0 . Finally use this function to classify the 
point of interest. 

This description of the k-nearest neighbors method as a local algorithm immedi­
ately allows one to generalize it in two respects: 

(1) One can use a richer set of admissible functions (for example, the set of large 
margin linear decision rules, see Section 2.3) 

(2) One can use different rules to specify the value of the radius that defines the 
locality (not just the distance to the kth nearest neighbor). 

In 1992 the idea of local algorithms for pattern recognition was used where (local) 
linear rules (instead of local constant rules) and VC bounds (instead of the distance 
to the kth nearest neighbor) were utilized [145]. The local linear rules demonstrated 
a significant improvement in performance (3.2% error rate instead of 4.1 % for digit 
recognition on the US Postal Service database). 

For the regression estimation problem a similar idea was used in the Nadaraya­
Watson estimator [147, 148] with a slightly different concept of locality. Nadaraya and 
Watson suggested considering "soft locality": they introduced a weight function (e.g., 
a monotonically decreasing nonnegative function from the distance between a point of 
interest xo and elements x; of training data f ( I lxo - x; 11), i = 1, ... , £), and used 
this function for estimating the value of interest 

e 

Yo= L T;(xo)Y;, 
i=l 

where coefficients T; ( x0 ) were defined as follows, 

T;(xo) = / (llxo - x;II) 
I:i=l f(llxo - x;II) 

(3.26) 

(3.27) 

This concept is a generalization of the hard locality concept. We will use this construc­
tion later. 
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However in all of these methods the concept of locality is the same: it is a sphere 
(a "soft sphere" in the Nadaraya-Watson method) defined by a given metric with the 
center at the point of interest. 

SEMI-LOCAL RULE 

In DAHi we use a new concept of vicinity. We map input vectors :r into a feature 
space z where we specify the vicinity. We consider a cylinder (or more generally a 
"soft cylinder"; see Section 3.3.4 below) whose axis passes through the image zo of 
the point of interest x0 . The defined vicinity is unbounded in one direction ( defined by 
the axis of the cylinder) and bounded in all other directions. We call such a vicinity a 
semi-local vicinity. 

The difference between the local and semi-local concepts of vicinity is the follow­
ing. In a sphere with a fixed center there are no preferable directions in a feature space, 
while a cylinder has one preferable direction (along the axis of the cylinder). DAHi 
uses this direction to define vicinities for all points of interest. 

During the training stage DAHi looks for the direction of the cylinder that defines 
the axis (in feature space) for all possible vicinities (cylinders). To find this direction 
one can use the methods of statistical learning theory (e.g., SVMs). 

During the test stage DAHi uses only data from the (semi-local) vicinity of the 
point of interest z0 and constructs a one-dimensional conditional probability function 
defined on the axis of the cylinder passing in the specified direction w0 through the 
point of interest z0 . DAHi then uses this conditional probability P(y0 = 1/z0 ) to 
classify z0 , where zo is the image of the point of interest x0 in feature space. 

Note that DAHi generalizes the SVM idea. In SVM one chooses both the direction 
w0 and the threshold b0 for the decision rule. In DAHi one chooses only the direction 
w0 , and for any test vector constructs an individual decision rule (threshold). 

3.3.3 ESTIMATION OF CONDITIONAL PROBABILITY ALONG THE LINE 

To solve the classification part of the problem we estimate the conditional probability 
P(y(t) = 1/t) that the point ton the axis of a cylinder (passing through the point of 
interest t0 ) belongs to the first class. To do this we have to solve the integral equation 

1t P(y = 1/t')dF(t') = F(y = 1, t), (3.28) 

where both the cumulative distribution function of the point on the line F( t) and the 
probability function F(y = 1, t) of that point on the line with t' ::; t belong to the first 
class are unknown, but data (inside cylinder) are given. 

Note that when the density function p( t) exists for F( t), the conditional probability 

P(y = 1/t) = p(y = l, t) 
p(t) 

defines the solution of Equation (3.28). 
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To solve this problem given data one must first estimate the cumulative distribution 
functions along the line and then use these estimates Fest ( t), Fest ( 1, t) in Equation 
(3.28) instead of the actual functions F(~) and F(y = 1, ~)-

1t P(y = llt')dFmp(t') = Femp(Y = 1, t). (3.29) 

This Equation forms an ill-posed problem where not only the right-hand side of 
the equation is an approximation of the real right-hand side but also the operator is an 
approximation of the real operator (since we use Femp(t) instead of F(t)). 

In [140] it is shown that if the approximations Femp(t), and Femp(Y = 1, t) are 
consistent then there exists a law 'Ye = "!(£) such that the Tikhonov regularization 
method 

R(P) = I 11t P(y = llt')dFemp(t') - Femp(Y = 1, t) 11
2 + "(ef2(P) (3.30) 

provides the solutions that converge to the solution of Equation (3.28) as £ --, oo. 

3.3.4 ESTIMATION OF CUMULATIVE DISTRIBUTION FUNCTIONS 

A consistent method of estimating cumulative distribution functions along a line was 
first suggested by Stute in 1986 [149]. He considered a cylinder of radius r whose 
axis coincides with the line, projected on this line the vectors z of the training data that 
were inside the cylinder (suppose that there are r(£) such vectors), and constructed a 
one-dimensional empirical distribution function using these projections: 

(3.31) 

Stute showed that under some general law of choosing the radius of the cylinder (which 
depends on the number of observations £) with an increasing number of observations, 
this empirical cumulative distribution function converges with probability one to the 
desired function. To estimate conditional probability one can use in (3.30) the approx­
imation (3.31) and the approximation 

1 r(f) 

Fr(R)(l, t) = 2r(£) 2)1 + Yi)0(t - ti)-
i=l 

(3.32) 

Also one can estimate a cumulative distribution function along the line in the 
N adaraya-Watson style using the distances between images of training vectors and the 
line passing through the point of interest z0 in direction wo , 

(3.33) 
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where t0 = (z0 , w0 ) is the projection of the vector z0 on the direction w0 . Using d;(z0 ) 

instead of [[x0 - x;[[ in (3.27) one obtains the Nadaraya-Watson type approximations 
of the elements of Equation (3.29): 

e 
Femp(t) = L T;(zo)0(t - ti), 

i=l 

1 e 
Femp(Y = 1, t) = 2 L (1 + y;)Ti(zo)0(t - ti)-

i=l 

(3.34) 

(3.35) 

Both the Stute estimate and modified Nadaraya-Watson estimate are step functions. 
The difference is that in Stute' s estimate there are r ( £) steps where all values of the 
step are equal to 1/r(£) while in the Nadarya-Watson estimate there are£ steps but the 
step values Ti ( z0 ) are different, and depend on the distance between the vector Zi and 
the line passing through the point z0 in the direction w0 . 

3.3.5 SYNERGY BETWEEN INDUCTIVE AND AD Hoc RULES 

In DAHi we combine two consistent methods: the SVM method for estimating the 
direction in feature space, and the method for estimating the conditional probability 
along the line passing through the point of interest. 

However, when the number of training data is not large (and this is always the case 
in a high-dimensional problem) one needs to provide both methods with additional in­
formation: In order to choose a good SVM solution one has to map the input vectors 
into a "good" Hilbert space (to choose a "good" kernel). In order to obtain a good solu­
tion for solving the ill-posed problem of estimating a conditional probability function 
along the line one has to use a priori information about the admissible set of functions 
that contain the desired conditional probability function. 

By combining the above two methods, one tries to construct a robust classification 
method that reduces the dependency on a priori information. 

This is because: 

(1) When one chooses a direction that is "reasonably close" to the one that defines 
a "good" separating hyperplane, the corresponding conditional probability func­
tion belongs to the set of monotonic functions (the larger the SVM score is, the 
larger is the probability of the positive class). Finding a direction that main­
tains the monotonicity property for the conditional probabilities requires fewer 
training examples than finding a direction that provides a good classification. 

(2) The problem of finding a conditional probability function from the set of mono­
tonic nondecreasing functions is much better posed than the more general prob­
lem of finding a solution from the set of continuous nonnegative functions. 4 

Therefore, in the set of monotonic functions one can solve this problem well, 
using a restricted (small) number of observations. 

4 A set of monotonically increasing ( or monotonically decreasing) functions has VC dimension one while 
a set of continuous nonnegative functions has an infinite VC dimension. 
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(3) Using the leave-one-out technique one can use the same training data for con­
structing the main direction and later for constructing conditional probability 
functions. 

The minimization of functional (3.30) in a set of monotonic functions is not too difficult 
a computational problem. The idea behind DAHi is to use this possible synergy. 

Figure 3.3 shows two examples of the binary classification problem: separating 
digit 3 from digit 5. Two examples of conditional probabilities P(3Jt) estimated along 
the line are presented in Figure 3.3. For each example the figure shows the image of 
interest, the functions Femp(t) and Femp(3, t), and the solution of Equation (3.29). 
The position of the point of interest on the line corresponds to an ordinate value of 0. 
Part (a) of the figure shows the probability that the image is a 3 is 0.34, but in part (b) 
the probability that the image is a 3 is 0. 

3.3.6 DAHi AND THE PROBLEM OF EXPLAINABILITY 

The idea of DAHi is appealing from a philosophical point of view since it addresses 
the question of explainability of complex rules [169]. DAHi divides the model of 
explainability for complex rules into two parts: the "main direction" and the "ad hoc" 
parts where only the "main direction" part of the rule has to be explained ( described by 
the formal model). 

One speculation on the DAHi model of explainability can be given by the example 
of how medical doctors distinguish between cancer and benign cases. They use prin­
cipal rules to evaluate the cancer and if the corresponding score exceeds a threshold 
value, they decide the case is cancer. 

The threshold, however, is very individual: it depends on the family history of the 
patient, and many other factors. The success of a doctor depends on his experience 
in determining the individual threshold. The threshold can make all the difference in 
diagnostics. Nevertheless the explainability is mostly related to the "main direction" 
part of the rule. 

3.4 PHILOSOPHY OF SCIENCE FOR A COMPLEX 

WORLD 

3.4.1 EXISTENCE OF DIFFERENT MODELS OF SCIENCE 

The limitations of the classical model of science when dealing with the real-life com­
plex world have been discussed for quite some time. For example, according to Ein­
stein, the classical model of science is relevant for a simple world. For a complex world 
it is inapplicable. 
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Figure 3.3: Solutions of the integral equation for different data. 
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- Einstein on the simple world: 

When the solution is simple, God5 is answering. 

- Einstein on the complex world: 

When the number of factors coming into play in a phenomenological complex is 
too large, scientific methods in most cases fail. 6 

One can see the idea of limitation of scientific models and existence of non-scientific 
ones in the following Richard Feynman's remark (Lectures on physics): 

If something is said not to be a science, it does not mean that there is something 
wrong with it ... it just means that it is not a science. 

In other words there was an understanding that: 

Classical science is an instrument for a simple world. When a world is complex, 
in most cases classical science fails. For a complex world there are methods that 
do not belong to classical science. 

Nevertheless, the success of the physical sciences strongly influenced the method­
ology used to analyze the phenomena of a complex world ( one based on many factors). 
In particular, such a methodology was adopted in the biological, behavioural, and so­
cial sciences where researchers tried to construct low-dimensional models to explain 
complex phenomena. 

The development of machine learning technology challenged the research in the 
methodology of science. 

3.4.2 IMPERATIVE FOR A COMPLEX WORLD 

Statistical learning theory stresses that the main difficulties of solving generalization 
problems arise because, in most cases, they are ill-posed. 

To be successful in such situations, it suggests to give up attempts of solving ill­
posed problems of interest replacing them by less demanding but better posed prob­
lems. In many cases this leads to renunciation of explainability of obtained solutions 
(which is one of the main goals declared by the classical science). Therefore, a science 
for a complex world has different goals (may be it should be called differently). 

For solving specific ill-posed problems the regularization technique was suggested 
[20, 21, 54, 55]. However, to advance high-dimensional problems of inference just 
applying classical regularization ideas is not enough. The SRM principle of inference 
is another way to control the capacity of admissible sets of functions. Recently a new 
general idea of capacity control was suggested in the form of the following imperative 
[139]: 

5Here and below Einstein uses the word God as a metaphor for nature. 
6Great theoretical physicist Lev Landau did not trust physical theories that combine more than a few 

factors. This is how he explained why: "With four free parameters one can draw an elephant, with five one 
can draw an elephant rotating its tail." 
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IMPERATIVE 

When solving a problem of interest, do not solve a more general problem as an 
intermediate step. Try to get the answer that you really need but not a more 
general one. 

According to this imperative: 
- Do not estimate a density if you need to estimate a function. 
(Do not use the classical statistics paradigm for prediction in a high­
dimensional world: Do not use generative models for prediction.) 
- Do not estimate a function if you only need to estimate its values at given 
points. (Try to perform direct inference rather than induction.) 
- Do not estimate predictive values if your goal is to act well. 
(A good strategy of action does not necessary rely on good predictive ability.) 

3.4.3 RESTRICTIONS ON THE FREEDOM OF CHOICE IN INFERENCE MODELS 

In this Afterword we have discussed three levels of restrictions on the freedom of 
choice in the inference problem: 

( 1) Regularization, which controls the smoothness properties of the admissible set 
of functions (it forbids choosing an approximation to the desired function from 
not a "not smooth enough set of functions"). 

(2) Structural risk minimization, which controls the diversity of the set of admissible 
functions (it forbids choosing an approximation to the desired function from too 
diverse a set of functions, that is, from the set of functions which can be falsified 
only using a large number of examples). 

(3) Imperatives, which control the goals of possible inferences in order to consider 
a better-posed problem. In our case it means creating the concept of equivalence 
classes of functions and making an inference using a large equivalence class (it 
forbids an inference obtained using a "small" equivalence class). 

It should be noted that an understanding of the role of a general theory as an in­
strument to restrict directions of inference has existed in philosophy for a long time. 
However, the specific formulations of the restrictions as described above were devel­
oped only recently. The idea of using regularization to solve ill-posed problems was 
introduced in the mid-1960s [21, 55]. Structural risk minimization was introduced in 
the early 1970s [EDBED], and the imperative was introduced in the mid-1990s [139]. 

In order to develop the philosophy of science for a complex world it is important 
to consider different forms of restriction on the freedom of choice in inference prob­
lems and then analyze their roles in obtaining accurate predictive rules for the pattern 
recognition problem. 

One of the main goals of research in the methodology of analysis of a complex 
world is to introduce new imperatives and for each of them establish interpretations in 
the corresponding branches of science. 
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3.4.4 METAPHORS FOR SIMPLE AND COMPLEX WORLDS 

I would like to finish this part of the Afterword with metaphors that stress the difference 
in the philosophy for simple and complex worlds. As such metaphors let me again use 
quotes from Albert Einstein. 

Two METAPHORS FOR A SIMPLE WORLD 

l. I want to know God's thoughts. (A. Einstein) 
2. When the solution is simple, God is answering. (A. Einstein) 

INTERPRETATION 

Nature is a realization of the simplest conceivable mathematical ideas. I am convinced 
that we can discover, by means of purely mathematical constructions, concepts and 
laws, connect them to each other, which furnish the key to understanding of natural 
phenomena. (A. Einstein.) 

THREE METAPHORS FOR A COMPLEX WORLD 

FIRST METAPHOR 

Subtle is the Lord, but malicious He is not. (A. Einstein) 

INTERPRETATION7 

Subtle is the Lord - one can not understand His thoughts. 

But malicious He is not - one can act well without understanding them. 

SECOND METAPHOR 

The devil imitates God. 8 (Medieval concept of the devil.) 

INTERPRETATION 

Actions based on your understanding of God's thoughts can bring you to catastrophe. 

THIRD METAPHOR 

If God does exist then many things must be forbidden. (F. Dostoevsky) 

INTERPRETATION 

If a subtle and nonmalicious God exists, then many ways of generalization must be 
forbidden. The subject of the complex world philosophy of inference is to define cor­
responding imperatives (to define what should be forbidden). These imperatives are 
the basis for generalization in real-life high-dimensional problems. 

The imperative described in Section 3.4.2 is an example of the general principle 
that forbids certain ways of generalization. 

7 Surely what Einstein meant is that the laws of nature may be elusive and difficult to discover, but not 
because the Lord is trying to trick us or defeat our attempts to discover them. Discovering the laws of nature 
may be difficult, but it is not impossible. Einstein considered comprehensibility of the physical world as a 
"mystery of the world". My interpretation of his metaphor for a complex world given below is different. 

8This includes the claim that for humans the problem of distinguishing imitating ideas of the devil from 
thoughts of God is ill-posed. 




