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Preface

Estimating dependences on the basis of empirical data has been, and will
probably remain, a central problem in applied analysis. This problem is a
mathematical interpretation of one of the basic questions of science: how to
extract the existing law-like relationship from scattered data.

The simplest attack on this problem is to construct (estimate) a function
from its values at certain points. Here we will formulate some general
principles of estimating a functional dependence, and then develop an
algorithm for the estimation using these principles.

Usually, when one seeks a general principle, intended for a solution of a
wide class of problems, one focuses first upon the simplest, most basic
problem. This simple version of the problem is treated theoretically with great
thoroughness and the scheme obtained for a solution is then extended to all
the problems of the class under consideration.

When studying the estimation of functional dependences, the functions
which take only one value (i.e., constants) are usually chosen as the simplest
problem. One assumes that the measurements of a constant are subject to
errors. Given several such measurements, one must determine this constant.
There are various ways to state this problem specifically. These are based on
different models of measurements with errors. However, regardless of the
model, the study of the basic problem leads to the following classical principle
of estimating functional dependence based on empirical data:

Select, from an admissible set of functions, the one which yields the best
approximation of the totality of the available empirical data.

This princtiple is sufficiently general. It leaves the measure of the quality of
the relation between the function and the empirical data undefined. Various
definitions of this measure are available ; for example, the amount of the mean
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X Preface

square deviation of the functional values, the amount of the mean deviation,
the maximal deviation, etc. Each definition generates its own method of
estimating dependences, such as the least-squares method, the least absolute
values method, etc. However, in all cases the principle of the solution (i.e.,
the search for a function which best approximates the data) remains un-
changed.

The main content of this book deals with a study of a different, nonclassical
principle of estimating dependences:

Select, from an admissible set of functions, a function which fulfills a
definite relationship between a quantity characterizing the quality of the
approximation and a quantity characterizing the ““complexity” of the
approximating function.

This principle may need some clarification. With increasing complexity of
the approximating function, one obtains successively better approximations
to the available data, and may even be able to construct a function which will
pass through all of the given points. This new principle, unlike the classical
one, asserts that we should not strive to get close to empirical data at all
costs; that is, we should not excessively complicate the approximating
function. For any given amount of data, there exists a specific relationship
between the complexity of the approximating function and the quality of the
approximation thus obtained. By preserving this relationship, the estimated
dependence most accurately characterizes the actual (unknown) dependence.
Further improvements of the approximation by increasing the complexity
may result in the estimated function approximating the given data better, but
representing the actual function less accurately. This nonclassical principle
of estimation reflects an attempt to take into account that dependence is
estimated with a limited amount of data.

The idea that, with a limited amount of data, the selected function should
not merely approximate empirical data but also possess some extremal
properties has existed for a long time. It first received theoretical justification
in the investigation of the problems of pattern recognition. The mathematical
statement of pattern recognition necessarily leads to estimating a function
which admits not one (as is the case in our basic problem) but two values.
This additional complexity is unexpectedly of fundamental importance. The
set of functions taking on two values is much more ““varied ”” than the set of
constants (i.e., functions taking on one value).

The important point is that the structure of the set of constant functions is
“simple and homogeneous ™, while that of the set of functions taking on two
values is rich and admits ordering according to its complexity. The latter is
essential for estimating dependences with limited amounts of empirical data.

Thus the study of pattern recognition problems has shown that the
simplest classical problem does not encompass all the problems of estimating
dependences, since the class of functions associated with estimating a constant
is so limited that no problem of its stratification arises.
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The simplest problem of this book is the problem of pattern recognition.
We use methods based on classical ideas of statistical analysis as well as those
associated with the nonclassical principle of estimation for its solution.
All of these methods are adopted for two other problems of estimation:
regression estimation and interpretation of the results of indirect experiments.

For our new basic problem, we distinguish between two formulations:
estimating functions and estimating values of a function at given points.
(These two formulations coincide in the case of estimation of constants.)
We distinguish between these formulations since, with a limited amount of
data, there may not be enough information to estimate a function satis-
factorily as a whole, but at the same time it may be enough to estimate k
numbers—the values of a function at given points.

Thus this book is devoted to problems of estimating dependences with
limited amounts of data. The basic idea is as follows: the attempt to take
into account the fact that the amount of empirical data is limited leads us to
the nonclassical principle of estimating dependences. Utilizing this principlé
allows us to solve delicate problems of estimation. These include determina-
tion of optimal set of features in the case of pattern recognition, determina-
tion of the structure of the approximating function in the case of regression
estimation, and construction of regularizing functions for solving ill-posed
problems of interpretation of indirect experiments (i.e., problems which arise
due to the limited amount of data and which cannot be solved within the
framework of classical setups).

The book contains ten chapters. Chapters 1 and 2 are introductory. In
these, various problems of estimating dependences are considered from the
common positions of minimizing the expected risk based on the empirical
data and various possible approaches to minimizing risks are discussed.

Chapters 3, 4, and 5 are devoted to the study ot classical ideas of risk
minimization: estimating probability density functions by means of para-
metric methods and utilization of this density for minimization of the risk.
Chapter 3 applies these ideas to pattern recognition problems. Chapters 4 and
5 apply them to regression estimation problems. Beginning with Chapter 6
nonclassical methods of minimization of risk are studied. Chapters 6 and 7
establish the conditions for applying the method of minimization of empirical
risk to solutions of problems of minimization of the expected risk for
samples of limited size, while Chapters 8-10 utilize these conditions to con-
struct a method of risk minimization based on limited data: the so-called
method of structural minimization. (In Chapter 8, we consider the application
of the method of structural risk minimization to the problems of pattern
recognition and regression. In Chapter 9, we give an application to the
solutions to ill-posed problems of interpreting results of indirect experiments.
In Chapter 10, we investigate the problem of estimating values of functions
at given points based on structural minimization). Finally, Addenda I and II
are devoted to algorithms for structural risk minimization.

This book is intended for a wide class of readers: students in upper-level
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courses, graduate students, engineers, and scientists. The exposition is such
that the proofs do not interfere with the basic flow of the arguments. How-
ever, all of the main assertions are proved in toto.

We try to avoid generalizations which are possibly important but less
indicative of the basic ideas developed in this book. Therefore, in the main
part of the book we consider only simple cases (such as quadratic loss
functions, equally spaced observations, independent errors, etc.). As a rule,
the corresponding generalizations may be achieved using standard methods.
The most important of these generalizations concerning arbitrary loss
functions are given at the end of the respective chapters.

The main part of the book does not require a knowledge of special
branches of mathematics. However, in order to follow the proofs the reader
should possess some experience in dealing with mathematical concepts.

The book is not a survey of the standard theory, and it may be biased to
some extent. Nevertheless, it is our hope that the reader will find it interesting
and useful.

Moscow, 1982 V. VAPNIK
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Chapter 1

The Problem of Estimating Dependences
from Empirical Data

§1 The Problem of Minimizing the Expected Risk on
the Basis of Empirical Data

Each time a problem of selecting a functional dependence arises the same
model is considered : among the totality of possible dependences it is necessary
to find one which satisfies a given quality criterion in the best possible
manner. Formally this means that on a vector space Z a class of functions
{g(2)}, z € Z, (the class of possible dependences) is given, and a functional

I'=1g) (1L.1)

is defined which is the criterion of quality of the chosen dependence. It is
then required to find g*(z) belonging to {g(z)} such that it will minimize the
functional (1.1). (We shall assume that the minimum of the functional
corresponds to the best quality and that the minimum of (1.1) exists in
{g(2)}.) In the case when the class of functions {g(z)} and functional I(g) are
explicitly given, the search for g*(z) which minimizes I(g) is the subject of
the calculus of variations.

In this book another case is considered, namely when a probability
density function P(z) is defined on Z and the functional is defined as the
mathematical expectation t

I(g) = J(D(z, g(2))P(z) dz. (1.2)

T For the sake of simplicity we require the existence of a density. For the main part of the theory
to be valid, the existence of a probability measure is sufficient.
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The problem is to minimize the functional (1.2) in the case when P(z) is
unknown but when a sample

Zys e 2, (1.3)

of observations resulting from random and independent trials according to
P(z) is available.

Below in Sections 2, 3, and 4 we shall verify that all the basic problems in
estimating functional dependences are reduced to a minimization of (1.2)
based on empirical data (1.3). Meanwhile we shall note that there is a sub-
stantial difference between problems arising when the functional (1.1) is
minimized and those encountered when the functional (1.2) is minimized,
on the basis of empirical data (1.3). In the case of minimizing (1.1) the problem
is to organize the search for a function g*(z) belonging to the class {g(z)}
which minimizes (1.1). When (1.2) is minimized on the basis of the data
(1.3), the basic problem is to formulate a constructive criterion for choosing
the function rather than organizing a search of the function in {g(z)}. (The
functional (1.2) by itself cannot serve as a criterion for choosing, since the
density P(z) appearing in it is unknown.) Thus in the first case the question is
“How do we obtain the minimum of a functional in a given class of func-
tions?” while in the second the question is “What should be minimized in
order to select from {g(z)} a function which will assure that the functional
(1.2) will be ‘small’?”

The minimization of the functional (1.2) on the basis of the data (1.3)
is a problem of mathematical statistics. We shall call it the problem of mini-
mizing the expected risk on the basis of empirical data.

When formulating the minimization problem for the expected risk, the
class of functions {g(z)} will be given in the parametric form {g(z, ®)}.T
Here o is a parameter belonging to the set A whose specific value o« = o*
defines a specific function g(z, «*) belonging to the class g(z, ). To find the
required function means to determine the required value of the parameter a.
The study of only a parametric class of functions is not a serious restriction
on the problem, since the set A to which the parameter « belongs is arbitrary:
it can be a set of scalar quantities, of vectors, or of abstract elements.

In terms of the new notation the functional (1.2) is rewritten as

I(x) = fQ(z, 0)P(z) dz, aeA, (1.4)

where
0z, ®) = ¥z, g(z, 1))

The function Q(z, «)—which depends on two groups of variables z and
a—is called the loss function.

+ Below we shall always omit the braces when writing a class of functions. A single function is
distinguished from a class of functions by indicating whether the parameter a is fixed or not.
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The problem of minimizing the expected risk admits a simple interpreta-
tion: it is assumed that each function Q(z, «*), a* € A (i.e., each function of z
for a fixed a« = a*) determines the amount of the loss resulting from the
realization of vector z. The expected loss (with respect to z) for the function
Q(z, o*) is thus determined by the integral

I(a*) = fQ(z, oa*)P(z) dz.

The problem is to choose in Q(z, &) a function Q(z, «*) which minimizes the
expected loss when random independent observations z,, ..., z, from an
unknown probability distribution of z are given.

This problem is rather general. We shall now state a particular case.
In this case the vector z consists of n + 1 coordinates, the coordinate y
and n coordinates x!, ..., x" which form the vector x. The loss function
0O(z, ) is given in the form

Q(Z, (X) = q)(y - F(x’ ('X)),

where F(x, ) is a parametric class of functions. It is necessary to minimize
the functional

I(o) = f@(y — F(x, a))P(x, y)dx dy, (1.5)

when the density P(x, y) is unknown but a random independent sample of
pairs

X1, V1o 3 X0L 0 (1.6)

(the training sequence) is given.

The problem of minimizing the functional (1.5) on the basis of the empirical
data (1.6) is called the problem of estimating a functional dependence, and is
the subject of this book.t Three basic problems of estimating functional
dependences are considered:

(1) the problem of pattern recognition,
(2) the problem of regression estimation,
(3) the problem of interpreting results obtained from indirect experiments.

In the succeeding sections we shall verify that all these problems are
reduced to a minimization of the functional (1.5) on the basis of the empirical
data (1.6).

+ Below we shall use a quadratic loss function ®(y — F(x, a)) = (y — F(x, ®))>. However, the
basic results to be obtained herein do not depend upon the form of loss function.
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§2 The Problem of Pattern Recognition

The problem of pattern recognition was formulated in the late 1950s.
In essence it can be stated as follows: a person (the instructor) observes
occurring situations and determines to which of k classes each one of them
belongs. It is required to construct a device which, after observing the
instructor’s procedure, will carry out the classification approximately in
the same manner as the instructor.

Using formal language this statement can be expressed simply as follows:
in a certain environment which is characterized by a probability density
function P(x), situations x appear randomly and independently. The instruc-
tor classifies these situations into one of the k classes. (For simplicity we
shall assume in what follows that k = 2; this assumption does not limit the
generality, since by subsequent subdivisions of situations into two classes
one can obtain a subdivision into k classes as well.) Assume that the in-
structor carries out this classification using the conditional probability
distribution function P(w!x), where w = {0, 1} (v = 0 indicates that the
instructor assigns situation x to the first class, and » = 1 that he assigns it
to the second class). Neither the properties of the environment P(x) nor the
decision rule P(w]|x) is known. However, it is known that both functions
exist.

Now let a parametric set of functional dependences F(x, o) (the class of
decision rules) be given. All functions in the class F(x,) are indicator
functions, i.e., they take on only the two values zero or one. By observing !
pairs

X1 Wy ene s Xy, U

(the situation being x, and instructor’s reaction w), it is required to choose
in the class of indicator functions F(x, «) a function for which the probability
of classification different from the instructor’s classification is minimal.
In other words, the minimum of the functional

(o)=Y J(w — F(x, 0))*P(w|x)P(x) dx

w=0,1

must be attained. The functional I(x) will be written in the form

I(a) = (0 — F(x, ®))*P(x, w) dx dw

X, 0

and the function P(x, w) = P(w|x)P(x) will be called the joint density of
the pair x, w defined on the space X, w.

The problem of pattern recognition has thus been reduced to the problem
of minimizing the expected risk on the basis of empirical data. The special
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feature of this problem is that the class of functions Q(z, «) is not as arbitrary
as in the general case. The following restrictions are imposed:

(1) The vector z consists of n + 1 coordinates: coordinate w, which takes
on only two values (zero and one), and n coordinates x', ..., x" which
form the vector x.

(2) The class of functions Q(z, «) is given by

Q(Z’ a) = ((1) - F(X, a))Z’
where F(x, o) also takes on only the two values zero and one.

Thus in the pattern recognition problem the value of the loss function
is either zero or one. This particular feature of the risk minimization problem
characterizes the pattern recognition problem.}

§3 The Regression Estimation Problem

Two sets of elements X and Y are connected by a functional dependence
if to each element xe X there corresponds uniquely an element yeY.
This relationship is called a function if the set X is a set of vectors and the
set Y is that of scalars. However, there exist relationships (dependences)
where to each vector x there corresponds a number y which is obtained
as a result of random trials according to the conditional density P(y|x).
In other words, to each x there corresponds a probabilistic law P(y|x)
according to which the selection of y is realized in a random trial.

The existence of such dependences reflects the presence of a stochastic
relationship between the vector x and the scalar y. A complete knowledge
of these stochastic relations requires the estimation of the conditional
density P(y|x). This problem is extremely difficult. However, often in
practice (for example, in problems of measurement data processing)
it is not necessary to know the function P(y|x) but only one of its charac-
teristics—the conditional mathematical expectation function, i.e., the function
which assigns to each x a number y(x) equal to the expectation of the scalar

y:
Wx) = j VYP(y1%) dy.

The function y(x) is called the regression, and the problem of estimating the
conditional mathematical expectation function is referred to as the problem
of regression estimation.

1 In the formulation of the problem one can take into account the differences in the values of
errors of the first and second kind. However, this does not change the essence of the problem:
the point is that the loss function takes on only a finite number (three) of values.
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We shall now consider the statement of this problem. In a certain environ-
ment which is characterized by the probability density P(x), a situation x
arises randomly and independently. In this environment a transformer
acts which assigns to each vector x a number y obtained as a result of the
realization of a random trial according to the distribution P(y|x). Neither
the properties of P(x) nor those of P(y|x) are known. However, it is known
that the regression

¥ = yx)

exists.
Based on a random sample of pairs

Xis YViseo s X Vs

it is required to estimate the regression; in other words, given the class of
functions F(x, a), one needs to find a function F(x, a*) which is closest to
the regression y(x).

The problem of estimating the regression is one of the basic problems of
applied statistics. The problem of interpreting the results of direct experi-
ments can be reduced to the regression problem. Let a lawlike relationship
connect the quantity y with the vector x by means of a functional relationship

y = y(x).

Let our purpose be to determine the functional relationship y = y(x)
in the situation when at each point x* one can conduct a direct experiment
to determine this relationship, i.c., direct measurements on the quantity
y* = y(x*) are carried out. However, since the experiment is imperfect, the
results of the measurements will determine the true value subject to a certain
random error. In other words, at each point x a value y = y, rather than the
value y(x) is obtained. (Here y, — y(x) = ¢ is the experimental error;
ME? < )

It is assumed (and this hypothesis determines the possibility of inter-
preting experiments) that at no point x is there a systematic error, i.ec., the
mathematical expectation of the measured function y, at each fixed point x
is equal to the value of the function y(x) at this point:

My, = y(x). (1.7

Moreover, we shall assume that the random variables y,, and y. (i #))
are independent.

Under these conditions it is required, on the basis of a finite number of
direct experiments, to estimate the function y = y(x). Thus the relationship
under consideration is the regression (1.7), and the essence of the problem is
to estimate regressions based on a sequence of pairs

Xy Yis oo s X V1o
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The problem of estimating regression includes the problem of inter-
preting results of direct experiments. In such problems it is customary to
distinguish between two types of experiments: closed and open. A closed
experiment is one in which the probabilistic law P(x)}—according to which
the selection of experimental points is determined—is unknown to the
investigator. An open experiment is one in which the law P(x) is known to
(and often determined by) the investigator.

The problem of regression estimation reduces to the problem of estimating
dependences. Indeed, consider the functional

16 = [ = Fox,)?Px, ) dx dy, (18)
where P(x, y) = P(y|x)P(x). We show that if the regression j = y(x) belongs
to the class F(x, o) (y(x) = F(x, o)), then it minimizes the functional (1.8);
if, however, the regression does not belong to F(x, ), then the minimum is

obtained at the function F(x,o*) which is closest to the regression. The
proximity between the functions f,(x) and f,(x) is taken in the L% metric:

1/2
pL(f1(x), f2(x)) = <f(f 1(x) = f2(x))*P(x) dx)

To show this, denote
AF(x, o) = F(x, o) — p(x). (1.9)

Then the functional (1.8) can be written in the form

160 = [ = s dy + f (AF(x, 0))2P(x) dx

-2 JAF (x, )y — y(x)P(x, y)dx dy.

In this expression the third summand is zero, since in view of (1.7),

f AF(x, 2)(y — y(x))P(x, y) dx dy

- f AF(x, a)P(x)[ f v — Y)PGI) dy] dx = 0.

Thus we have verified that
1) = f (v — y)2P(x, ) dx dy + f (F(x,2) — (x))*P(x) dx.

Since the first summand does not depend on «, the minimum point of I(x)
coincides with the minimum point of the second summand, and hence the
minimum I(x) is attained on the regression if y(x) € F(x, «), or at the closest
function to it if y(x) ¢ F(x, a).
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Thus the problem of estimating regression also reduces to the scheme of
minimization of expected risk. The special feature of this problem is that
the class of functions Q(z, &) admits the following restrictions:

(1) The vector z consists of n + 1 coordinates: the coordinate y and n
coordinates x, ..., x" forming the vector x. However, unlike the case
of the pattern recognition problem, the coordinate y as well as function
F(x, ) may take on any values in the interval (— oo, o).

(2) The class of functions Q(z, &) is of the form

0z, ®) = (v — F(x,2))".

The functions Q(z, «) take on arbitrary values on the interval (0, o).

§4 The Problem of Interpreting Results of Indirect
Experiments

In the preceding section the problem of regression estimation was considered.
It was shown that the problem of interpreting the results of direct experi-
ments is reduced to the regression problem. (Recall that in direct experi-
ments the dependence of interest may be measured at any fixed point.)
However, it is often the case that the required function f(¢) can be measured
at no point of . At the same time some other function F(x) which is connected
with f(t) by the operator equation

Af(t) = F(x) (1.10)

may admit measurements. It is then required, on the basis of the measure-
ments y,, ..., y, of function F(x) at points x;, ..., X;, to obtain in the class
f(t, @) a solution for Equation (1.10). This problem will be called the problem
of interpreting the results of indirect experiments.

The formation of the problem is as follows: given a continuous operator
A which maps in a one-to-one manner the elements f (¢, «) of a metric space
E, into the elements F(x, o) of a metric space E,, it is required to obtain a
solution of the operator equation (1.10) in the class of functions f(t, &)
provided the function F(x) is unknown, but the measurements y,...,
of F(x) at points x4, ..., X; are given.

As with the interpretation of direct measurements, the measuring experi-
ment of F(x) does not involve systematic error, ie., My,, = F(x;), and the
random variables y,, and y,, (i # j) are independent. Moreover, we shall
assume for simplicity that the function F(x) is defined on the interval [a, b].
The experiment is open: points x at which measurements of the function
F(x) are carried out are randomly and independently distributed on [a, b]
according to the uniform distribution.t

+ The points x can be defined by any nonvanishing density on [a, b].
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The problem of interpreting results of indirect experiments also reduces to
the problem of minimizing the expected risk based on empirical data.
Indeed, consider the functional

I(o) = f(y — Af(t,0))*P(y|x) dy dx = J(y — F(x,0))*P(y|x) dy dx.

Analogously to the manipulations carried out in Section 3, we obtain

16) = [ = Fex, )P 1) dy dx
- [0 - ForPoIndyax + [P0y ax
-2 [aFes a)[ [ - Fappoin dy] dx,
where
AF(x, o) = F(x, o) — F(x).
Here the third summand vanishes (as was the case in the preceding section),
which implies that the minimum of the functional

I(e) = J(y — Af(t,0))’P(y|x) dy dx (1.11)

1s attained at the solution f(¢) of the operator equation (1.10).

We have thus again arrived at the setup for minimizing the expected risk
(1.4) on the basis of empirical data. In this problem the loss function Q(z, &)
is such that

(1) the vector z consists of two coordinates y and x, admitting values
in the intervals (— o0, 00) and [q, b],
(2) the loss function is given by

Q(Z’ (X) = (y - Af(t3 a))z'
The specific feature of interpreting results of indirect experiments is that

we seek a function f (¢, «*) which minimizes the functional (1.11) even though
the problem of solving the operator equation

Af(@t) = F(x), fOef@ta)
may be ill posed.
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§5 Ill-posed Problems

We say that a solution of the operator equation

Af (1) = F(x)

is stable if the small variation in the right-hand side F(x) € F(x, a) results
in a small change in the solution, i.e., if for any ¢ a d(¢) can be found such
that the inequality

pEl(f(t’ al)’ f(t)) <¢

is valid as long as the inequality

Pe(F(x, a,), F(x)) < &(¢)

holds. Here the indices E, and E, denote that the distance is defined in the
metrics of spaces E, and E, respectively (the operator equation (1.10)
maps space E, into space E,).

We say that a problem of solving an operator equation is well posed in
the Hadamard sense if the solution of the equation

(1) exists,
(2) is unique, and
(3) is stable.

A problem of solving an operator equation is considered ill posed if the solution
of this equation violates at least one of the abovementioned requirements.

Below, in the main portion of the book, we shall confine ourselves to
solutions of ill-posed problems of interpreting the results of indirect experi-
ments defined by the Fredholm integral equation of type 1:

fK(t, x)f(t) dt = F(x).

However, all the results obtained will be valid also for equations defined by
any other linear continuous operators.

The necessary background on the theory of solutions of ill-posed problems
is given in the Appendix to this chapter.

Thus we shall consider Fredholm’s integral equation of type I:

f 1K(x, 0 f (@) dt = F(x), (1.12)
[0}

defined by a kernel K(x,t) which is continuous almost everywhere on
0<t<1,0< x <1, and which maps the set of functions f(t) continuous
on [0, 17 into the set of functions F(x) continuous on [0, 1].
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We shall now show that the problem of solving Equation (1.12) is an
ill-posed one. For this purpose we note that a continuous function G,(x)
formed by means of the kernel K(x, t),

1
G,(x) = f K(x, t) sin vt dt,
0

possesses the property

sup G(x) 52 0.
Consider the integral equation

J 1K(x, 0f (@) dt = F(x) + G,(x). (1.13)

Since the Fredholm equation is linear, a solution of Equation (1.13) is
of the form

F(@) = f(t) + sin vz,

where f(t) is a solution of Equation (1.12). For v sufficiently large the right-
hand sides of Equations (1.12) and (1.13) differ only slightly (by the amount
G,(x)), while their solutions differ by the amount sin vt.

The Fredholm integral equation of type I is one of the basic equations
for the problem of interpreting results of indirect experiments. Here are
examples of problems connected with a solution of this equation:

EXAMPLE 1 (The Inverse Problem of Spectroscopy). Let the spectrum F(x)
be observed using a “real-world” spectroscope. This instrument possesses
a finite resolving ability, and the observed spectrum differs in general from
the one that would have been observed by means of an ideal spectroscope
(i.e., one with an infinitely high resolving power). It is required to calibrate
the spectrum obtained by means of the “real-world” spectroscope to the
“true” spectrum.

This problem can often be solved. It is known, for example, that the
“smoothing” characteristic of certain real-world spectroscopes is of the
form

K(x,0) = : ex {—(L——t—)i}
RV B

The observed spectrum F(x) is connected. with the true spectrum f(t) by
the relation

7217; J:O exp{ (x = } f(t)dt = F(x).
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The better the instrument (i.e., the smaller the o), the less the spectral picture
is distorted. As o - 0 the characteristic of the apparatus approaches the

ideal one:
_ 2
exp{— x -1 } -4t — x),

202

1
NCT
and hence
F(x) = f(x).

However, no matter how poor the real-world spectroscope is, one can in
principle derive the actual spectrum from the observed one. For this purpose
it is necessary to solve the inverse problem of spectroscopy, i.e., to solve the

integral equation
© _ )2
L exp{—(x ) }f(t)dt=F(x),

\/2‘710 ) 2¢°

utilizing the empirical data y, ..., y, in place of the function F(x).

EXAMPLE 2 (The Problem of Identifying Linear Objects). It is known that
dynamic properties of linear homogeneous objects with one output are
completely described by the pulse-transfer (weight) function f(zr). The
function f(z) is the reaction of the object to a unit pulse served at the system
attimet = 0.

Knowing this function one can compute the reaction of the object to
any disturbance x(t) using the formula

y(t) = Lx(r ~ )f@du.

Thus the determination of the dynamic characteristics of an object reduces
to the determination of the weight function f ().

It is known that for a linear homogeneous object the Wiener—Hopf
equation

waxx(t — 1) f(r)dt = R, (t) (1.14)

0

is valid. Equation (1.14) connects the autocorrelation function R,,(z) of a
stationary random process at the input of the object with the weight function
f(z) and joint correlation function of the input and output signals R ().
Thus the problem of identifying a linear object involves the determination
of a weight function based on the known autocorrelation function of the
input signal and the measured (observed) joint correlation function of the
input and output signals, i.e., it is the problem of solving the integral equation
(1.14) on the basis of empirical data.
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ExampLE 3 (The Problem of Estimating Derivatives). Let the measure-
ments of smooth function F(x) at [ points of the interval [0, 1] be given. The
points at which the measurements were taken are distributed randomly and
independently according to a uniform distribution. It is required to estimate
on [0, 1] the derivative f(x) of the function F(x).

It is easy to see that the problem is reduced to solving the Volterra integral
equation of type I,

[ r0dt = Fe9 - Fo0)
¢
under the condition that the | measurements y,,...,y, of the function

F(x) carried out at points x, ..., X, are known. Equivalently it reduces to
the solution of the type-1 Fredholm equation (under the same conditions),

flf)(x — Of @) dt = F(x) — FO),
0

where

1 forz>0
0(z) = -
@) {0 forz < 0.

In a more general case when the kth derivative is to be estimated, the
following integral equation must be solved:

1 k—1 k-1 j
(x —1t) X FYO(0)
S0 = 0f0dt = Fx) = Y
o (k—1)! ’ j;o j!
where in place of function F(x) the empirical data y,,...,y, are used.

Here FYX0) is the value of the jth derivative at zero.

§6 Accuracy and Confidence of Risk Minimization
Based on Empirical Data

We have thus considered three basic problems of estimating dependences
from the empirical data: pattern recognition, regression estimation and
interpretation of indirect experiments. They are all based on the same
general setup: the model of minimizing the expected risk based on empirical
data. In other words, it is required to find o* which minimizes the functional

I(x) = JQ(Z, o0)P(z) dz,

where the density P(z) is unknown but a random independent sample
Zy, ...,z of size | is given.
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Moreover, for all these problems the same structure of the loss function,

Oz, ) = (y — F(x,2))

was chosen. Thus in all cases it is required to obtain a function F(x, a*)
which minimizes the functional

I(a) = f(y — F(x,0))*P(x, y) dx dy, (1.15)

where the density P(x, y) is unknown but a sample x,, y;; ... ; X;, y, obtained
from random and independent trials according to this density is given.
Actually we have distinguished between two variant formulations of the
problem of regression estimation: the case when the density P(x) is unknown
(a closed experiment) and the case when P(x) is known (an open experiment).
But these two formulations do not differ fundamentally, the main point
being that the joint density P(x, y) is unknown in both cases.

We have established that various problems of estimating dependences
differ as the loss functions for risk minimization differ, and that in each
problem it is the parameter o which yields the exact minimum for the cor-
responding functional determines the required functional relationship.
However, to obtain the exact minimum of the functional (1.15) from a sample
of a fixed size is generally an insoluble problem, since a sample is only a
“realization” of the underlying distribution law and is in no way equivalent
to it. Therefore one should consider the problem of determining, from a
sample of a fixed size, a function which yields the value of the functional
“close” to the minimal one rather than the exact minimum of the functional
(1.15).

Moreover, one cannot guarantee that a value “close” to the minimum
will be obtained unconditionally, but only with a certain probability (since,
given any density, there is a certain probability that the sample obtained in
random trials will consist of [ pairs of elements x, y repeated I times). Thus the
preassigned accuracy of minimizing the expected risk (1.15) can be obtained
from a sample of a fixed size only with a certain confidence.

We say that the value of the functional I(a*) is x-close to the minimal
(min, I(x)) if the inequality

I(a*) — min I(o) < %
is fulfilled. Now let an algorithm A which determines the value of parameter
o* from a sample of size | be given. Since the sample is random, this algorithm
determines a random value of the parameter o* to which the random number
I(a*) corresponds. We say that an algorithm A yields with o confidence level
1 — n a value of the functional I(x) which is x-close to the minimal if for any
given 0 < 5 < 1 the inequality

P{I(a*) — min I(a) > u} <n

a
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is valid. When solving problems of expected-risk minimization our purpose
is to obtain algorithms which for a sample of a fixed size and with a given
confidence level will determine functions yielding the value of functional I(x)
that is, closest to the minimum.

§7 The Accuracy of Estimating Dependences on the
Basis of Empirical Data

At the end of the preceding section the purpose of our investigation was
formulated: to find algorithms which guarantee that the risk closest to the
minimal will be attained. This book is devoted to the construction and
justification of such algorithms. However, when formulating the goal of the
investigation the problem was in essence replaced by another. Indeed the
initial goal was to estimate functional dependences. In Sections 2, 3, and 4
it was shown that a function which yields the exact minimum of a corres-
ponding functional of the expected risk determines the required dependence.
On the other hand, to obtain an exact minimum from a sample of a fixed
size is an unrealistic problem. It was therefore suggested to search for a
function which yields a value of the expected risk close to the minimal.

However, it does not follow at all that close functions will correspond to
close values of the functionals. Determining the value of a functional which
is close to the minimal one is in general a different problem. Therefore,
before solving the problem of estimating functional dependences from
empirical data using the method of minimizing expected risk, it is necessary
to find out whether this substitution of the problem will be adequate,
i.e.,, whether the closeness of the functionals assures the closeness of the
functions.

In order to begin an investigation in this direction, it is first necessary
to define precisely the “closeness” of functions. Unlike the closeness of
functionals, which can be defined naturally as the distance between two
points on the real line (which represent the values of these functionals),
the closeness between functions has to be defined as the distance between
two elements of a function space.

There are various methods of metrization (introduction of the notion of
distance) in functional analysis. We shall utilize two such metrics: a weighted
mean-square deviation and a uniform deviation. The distance between two
functions f;(x) and f,(x) in the mean-square sense with weight P(x) (the
L2 metric) is defined by the functional

1/2
pr(f1(x), f2(x)) = (f(fl(X) — f2(x))*P(x) dx) .
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where P(x) is a nonnegative function such that | P(x) dx = 1. The distance in
the uniform deviation sense (the C metric) is defined by the functional

pc(f1(x), f2(x)) = sup| f1(x) — fr(x)I.

Thus two functions are close in the L3 metric if

1/2
(f(f 1(x) = f2(x))*P(x) dX)) <% (1.16)

and are close in the C metric if

sup| f1(x) — f2(x)| < x. (L17)

Note that the requirement of uniform closeness (1.17) is stronger than that of
mean-square closeness. The inequality (1.17) implies (1.16), but the converse
is generally not true.

Thus we shall use the notion of closeness (proximity) in the following
senses:

(1) Closeness of qualities of functions (values of functionals).
(2) Closeness of functions in the L2 metric.
(3) Closeness of functions in the C metric.

The choice of the closeness measure is determined by the nature of the
problem and not formally.

How is closeness defined in various problems of estimating dependences?

In a pattern recognition problem it is required, in a given class of indicator
functions, to find a function which minimizes the probability of erroneous
classification (i.e., it is required to minimize a functional). Therefore it is
natural here to consider two functions to be close if their “qualities” are
close; here the proximity is defined by the proximity of the functionals.

In the case of regression estimation, the problem is to find a function
which is close to the regression rather than to minimize a functional. In
this problem the proximity is defined by means of L or C metrics, depending
on how the estimated function is to be used later on.

For example, consider the problem of estimating the regression y = y(x)
in the setup for interpreting direct experiments. The estimated dependence
y = F(x, o*) is to be used to forecast the value of 7 for different values of the
situation x. The accuracy of the forecast for a given x is natural to measure
by the quantity

((x) — F(x, %)%

The overall accuracy of the forecast based on the estimated function is often
measured as the average accuracy with respect to the measure of the set x,
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i.e., by the quantity

1/2
pu(y(), F(x, 2)) = ( f ((x) — Fx, 0))*P(x) dx) .

In other words, the proximity is determined here by the L} metric.

There are, however, problems where the proximity in the L3 metric is
not sufficient. Let, for example, a quantity y be functionally related to techno-
logical parameters x. It is required to obtain a vector of parameters x*
which will yield the maximum of y. This problem is solved according to the
following scheme: first the functional relationship y = y(x) is estimated,
and then a value x* is sought which yields the maximum of the estimated
function. However, if in this case a function F(x, «*) close to the actual one
in the L} metric is chosen, then the situation shown in Figure 1 may occur.

0

Figure 1

The estimated function may approximate the true function sufficiently well
almost everywhere except for a set x of small measure where a large outlier
occurs. The maximum of the estimated function, however, does not reflect
the point yielding the maximum of , but the outlier of the estimated function.

In order to exclude such a situation it is necessary that the estimated
function should approximate the true one uniformly over the whole domain
of the definition of the function, i.e., in the metric C

pc(y(x), F(x, ) = sup|y(x) — F(x, a)|.

Thus in problems of regression estimation, closeness both in the L3 metric
and in the C metric are used.

In the problem of interpreting data from indirect experiments, two notions
of closeness are also used: closeness in the L3 metric (which is L2 with the
weight P(x) = 1)

1/2
pr(f(t o), f(t, 2,)) = (J(f(t’ ) — f(t, a,))? dt)) >



18 1 The Problem of Estimating Dependences from Empirical Data

and in the C metric

pc(f (t, ar), f (8, ¢3)) = sup| f(t, 1) — f (£ 22)|.

As in the case of a regression problem, the choice of the metric is determined
by the manner in which the estimated function is further utilized.

§8 Special Features of Problems of Estimating
Dependences

We have thus established that all three problems of estimating dependences
are reduced to the same setup—the problem of minimizing the expected
risks—and that only an approximate solution of the latter problem is
possible on the basis of empirical data. The question arises: Does an approxi-
mate solution assure the required closeness of the dependence obtained to
the actual one?

The answer to this question depends on the problem at hand. For a
pattern recognition problem the answer is unequivocally yes by definition
(since according to the statement of the problem it is required to find a
function which yields a value of the functional close to the minimal one).

In the case of regression estimation the answer is not as clearcut. It can
be easily shown that if we interpret the proximity of functions in the L}
sense, then the proximity of a functional to a minimal one yields the proximity
of the function obtained to the regression. A proof of this assertion follows
directly from the identity

f (v — F(x, 2))*P(x, y) dx dy

- f (v — Y)2P(x, y) dx dy + f (/) — F(x, @))*Px) dx,

where j = y(x)is the regression and F(x, o) is an arbitrary function belonging
to a given class. However, the proximity of a functional to the minimal one
does not in any way imply the proximity in the C sense of the corresponding
function to the regression. To assure such a proximity it is not sufficient
simply to minimize the functional. It is necessary that certain special require-
ments be satisfied.

Finally for the problem of interpreting the results of indirect experiments
the proximity of a functional to the minimal one does not assure the proxi-
mity of the estimated function to the actual one, either in the L} or in the C
metrics. The basic difficulty in solving this problem is that the solution of
the corresponding operator equation may be an ill-posed problem, and in
this case functions which yield values of the functional close to the minimal
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one may differ significantly from the desired solution. Therefore the main
problem here is to determine what additional conditions should be imposed
on the chosen solution in order that the proximity of the functional obtained
to the minimal one will result in the proximity of the solution to the desired
function.

Thus, in spite of the fact that in all the problems of estimating dependences
the functions yielding an exact minimum of the functional determine a
solution, an approximate minimization does not always result in achieving
this goal. Therefore, before applying a specific method of minimizing
expected risks based on empirical data, it is necessary to make sure that the
minimization method assures an approximation to the desired solution.

In subsequent chapters various methods of minimization of expected
risks based on empirical data are considered. They are all studied in con-
nection with each of the specific problems of estimating dependences.



Appendix to Chapter 1

Methods for Solving Ill-posed Problems

§A1 The Problem of Solving an Operator Equation

We say that two sets of elements, .# and 4] are functionally dependent if
given any element of f € .# there corresponds a unique element F € 4.
This functional dependence is called a function if the sets .# and A~
are sets of numbers; it is called a functional if .# is a set of functions and A~
is a set of numbers, and it is called an operator if both sets are sets of functions.
Each operator 4 uniquely maps elements of the set .# into elements of the
set A This is denoted by the equality

AM = N

In a collection of operators we shall single out those which realize a one-to-
one mapping of .# into 4. For these operators the problem of solving the
operator equation

Af(t) = F(x) (A.1)

can be considered as the problem of finding an element f(¢) in .# to which
an element F(x) corresponds in .4,

For operators which realize a one-to-one mapping of elements .# into
A" and a function F(x) € 4" there exists a unique solution of the operator
equation (A.1). However, to obtain a method for solving an operator equation
of such generality is a hopeless task. Therefore we shall investigate operator
equations with continuous operators only.

Let the elements f € .# belong to a metric space E; with metric p,(-),
and the elements F € 4" belong to a metric space E, with metric p,(-).
An operator A is called continuous if “close” elements (with respect to metric
p,) in E, are mapped into “close” elements (with respect to metric p,) in
E,.

20
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We shall consider an operator equation defined by a continuous operator
which maps in a one-to-one manner .# into 4. The solution of such an
operator equation exists and is unique, i.e., there exists the inverse operator
A~ ! from A into 4 :

M= AN

The basic problem is whether the inverse operator is continuous.

If operator A~ ! is continuous, then close preimages will correspond to
close functions in .4, i.e., the solution of the operator equation will be stable.
If, however, the inverse operator is not continuous, then the solution of
the operator equation will generally be unstable. In the latter case, in view
of Hadamard’s definition (Chapter 1, Section 5) the problem of solving an
operator equation is considered ill posed. It turns out that in many important
cases, for example, for completely continuous operators A4, the inverse
operator A~! is not continuous and hence the problem of solving the
corresponding operator equation is ill posed.

Definition. We say that a linear operator A defined in a linear normed space
E, with the range of values in a linear normed space E, is completely con-
tinuous if it maps any bounded set in space E, into a compact set of the space
E,,ie., if each bounded infinite sequence in £,

Sosfosoos fisens 1l < ¢ (A.2)
(here || f;l is the norm in E,) is mapped in E, into a sequence
Af (o L Af e, (A3)
such that a convergent subsequence
Af iy s Af s - (Ad)

can be extracted from it.

We shall show that if the space E, contains bounded noncompact sets,
then the inverse operator A~ ' for a continuous operator 4 need not be
continuous. Indeed, consider in E, a bounded noncompact set. Select
in this set an infinite sequence (A.2) such that no subsequence of it is con-
vergent. An infinite sequence (A.3) from which a convergent subsequence
(A.4) may be selected (since operator 4 is absolutely continuous) cor-
responds in E, to this sequence. If the operator 4~ were continuous, then
a convergent sequence

Jivseos fir oo (A.5)

would correspond to the sequence (A.4) in E, which will be a subsequence
of (A.2). This, however, contradicts the choice of (A.2).



22 App. to Ch. 1 Methods for Solving Ill-posed Problems

Thus the problem of solving an operator equation defined by a completely
continuous operator is an ill-posed problem. In the main part of this book
we shall consider linear integral operators

Af = f K@, x)f(t) dt (A.6)

with a continuous kernel K(t,x) in the domain a <t <b, a<x <bh.
Operators (A.6) are completely continuous from C[a, b] into C[a, b]. The
proof of this fact can be found in all texts on functional analysis (see, for
example, [28]).

§A2 Problems Well Posed in Tihonov’s Sense

The problem of solving the operator equation
Af =F

is called well posed (correct) in Tihonov’s sense on the set . #' < .#, and the
set ./’ is called the set (class) of correctness, provided:

(1) the exact solution of the problem exists for each Fe A/ = A.#' and
belongs to .#’;

(2) the solution belonging to .#’ is unique for any Fe A’ = N";

(3) solutions belonging to .#" are stable with respect to F e A",

If #4' = # and /7 = A then correctness in Tihonov’s sense corresponds
to correctness in Hadamard’s sense. The meaning of Tihonov’s correctness
is that correctness can be achieved by restricting the set of solutions .# to a
class of correctness .#".

The following lemma shows that if we narrow the set of solutions .#
to a compact set .4, then it constitutes a correctness class.

Lemma. If a continuous one-to-one operator A is defined on a compact M’ <
M, then the inverse operator A~ is continuous on the set N = AM'.

PrROOE. Choose an arbitrary element F,e 4" and an arbitrary sequence
convergent to it:

(F} < N, F,—F,.

P p—s oo
It is required to verify the convergence
fn = A—Ian—_.—ogA—-lFO = fO'

Since {f,} = ', and .4’ is a compact set, the limit points of the sequence
{f.} belong to .#". Let f,, be such a limit point. Since f, is a limit point, there
exists a sequence {f,} convergent ot it, to which there corresponds a
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sequence {F, } convergent to F,. Therefore, approaching the limit in the
equality

Afnk = Fnk
and utilizing the continuity of the operator 4, we obtain
Afo = Fo.

Since the operator 4! is unique, we have 4™ 'F, = f,,, which implies the
uniqueness of the limit point of the sequence {f,, }. It remains to verify
that the whole sequence { f,, } converges to f,,. Indeed, if the whole sequence
is not convergent to f,, one could find a neighborhood of the point f,
outside of which there would be infinitely many members of the sequence
{fu)- Since .#' is compact, this sequence possesses a limit point f{, which,
by what was proven above, coincides with f,. This, however, contradicts
the assumption that the selected sequence lies outside a neighborhood of
point f,,. The lemma is thus proved. O

Hence correctness in Tihonov’s sense on a compactum .’ follows from
the conditions of the existence and uniqueness of a solution of an operator
equation. The third condition (the stability of the solution) is automatically
satisfied. This fact is essentially the basis for all constructive ideas for solving
ill-posed operator equations. We shall consider one of them.

§A3 The Regularization Method

The regularization method was proposed by A. N. Tihonov in 1963.
It is required to solve the operator equation

Af = F, (A7)

defined by a continuous one-to-one operator A acting from .4 into A"
Let the solution of (A.7) exist.

We introduce a lower semicontinuous functional €Q(f), which we shall
call the stabilizer and which possesses the following three properties:

(1) the solution of the operator equation belongs to the domain of definition
D(Q) of functional Q(f);

(2) on the domain of the definition functional Q(f) admits real-valued
nonnegative values;

(3) the sets

M= Af)<c}k, =0,

are all compact.
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The idea of regularization is to find a solution for (A.7) as an element
minimizing a certain functional. It is not the functional

p = py(Af, F)

(this problem would be equivalent to the solution of Equation (A.7) and
therefore would also be ill posed), but an “improved” functional

R(f,F) = p¥(4f, F) + yUf),  feD@), (A.8)

with regularization parametery > 0.The problem of minimizing the functional
(A.8) is stable, i.e., to the close functions F and F; (where p,(F, F;) < )
there correspond close elements f* and f} which minimize the functionals
R,(f,F)and R(f, F,).

The problem is to determine a relationship between é and y such that the
sequence of solutions f} of regularized problems R,(f; F;) will converge as
6 — 0 to the solution of the operator equation (A.7). The following theorem
establishes these relations.

Theorem A.1. Let E, and E, be metric spaces, and let there exist for F € &~

a solution of Equation (A.7) for f € D(Q). Then if in place of an exact right-

hand side F of Equation (A.7), approximationst Fs€ E, are known such that

p.(F, F;) < 6 and the values of parameter y are chosen in such a manner that
2

7(0) >0 ford — 0, lim L <r< oo, (A9)
3-07(0)

it follows that the elements f}® minimizing the functionals R, (f,F;) on

D(Q) converge to the exact solution f as 6 — 0.

ProoF. The proof of the theorem utilizes the following fact: for any fixed
y > 0 and an arbitrary F € 4" an element f? € D(Q) exists which minimizes
the functional R,(f, F) on D(Q).

Let y and § satisfy the relation (A.9). Consider a sequence of elements
£3® minimizing R,(f, F5), and show that the convergence

(%)
3953

is valid. By definition we have
Ry(é)(f;w)a Fg) < Rye(f, Fs) = P3(Af, F5) + 7(O)QS)

2 _ _52_)
sé+wwmu»w@(mn+ﬂ®.

Taking into account that
Ryo(f19,F5) = pYAf3®, Fy) + pO)AS4?),

+ The elements F need not belong to the set A
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we conclude
2

) 5
Q1) < Q) + )

52

PHAS}O, Fs) < y(é)(Q(f )+ 70 5))-

Since the conditions (A.9) are fulfilled, all the elements of the sequence
f19 for a § > O sufficiently small belong to a compactum .#., where c¢* =
Q(f) + r + & & > 0, and their images F}® = Af}® are convergent:

P2(F}P, F) < po(F}®, F5) + 6
< 6 + /37 + 10)f) ;=3 0.

This implies, in view of the lemma, that their preimages

f19 - f foré6 -0

are also convergent, q.e.d. |

In a Hilbert space the functional Q(f) may be chosen to be equal to
|| £ ||? for a linear operator A. Although the sets .# are (only) weakly compact
in this case, the convergence of regularized solutions—in view of the pro-
perties of Hilbert spaces—will be, as shown below, a strong one. Such a
choice of a regularizing functional is convenient also because its domain of
definition D(Q) coincides with the whole space E,. However, in this case the
conditions imposed on the parameter y are more rigid than in the case of
Theorem A.1: y should converge to zero slower than 62.

Thus the following theorem is valid.

Theorem A.2. Let E, be a Hilbert space and Q(f) = | f12. Then for y(5)
satisfying the relations (A.9) with r = 0, the regularized elements f}'® con-
verge as 0 — 0 to the exact solution f in the metric of the space E .

ProoF. It is known from the geometry of Hilbert spaces that the sphere
| flI* < cis a weak compactum and that from the properties of weak con-
vergence of elements f; to the element f and convergence of the norms
I il to || f] there follows the strong convergence

Ifi = £l == 0.

Moreover it follows from the weak convergence f; — f that

A1 < Lmil £l (A.10)

Utilizing these properties of Hilbert spaces, we shall now prove the theorem.
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First we note that for a weak convergence in the space E, the preceding
theorem is valid: £} converges weakly to f as & — 0. Therefore in view of
(A.10) the inequality

I£1 < lim|| £39
-0
is valid. On the other hand, taking into account that Q(f) = | f||* and that
r = 0, we obtain

. 52
Iim| 19| < lim ( 2+ —) = |fI>
MIIf.s | lim (BAl 20) f

Hence the convergence of the norms is valid:

1F30 52 1A 1

and along with it the validity of weak convergence implies, in view of the
properties of Hilbert spaces, the strong convergence

1£39 = f1 3530,
q.ed. O

The theorems presented above are basic in regularization theory. Using
these theorems the feasibility of solving ill-posed problems is established.
However, for solving practical problems the question of convergence of a
sequence of regularized solutions is not the most topical. Usually the right-
hand side of an operator equation is defined with finite accuracy J, and the
problem is to determine the value of the constant of regularization y(6)
which will assure the best approximation to the desired solution. In this
situation the assertions of Theorems A.1 and A.2, in which the value of y
is determined only up to a constant r (and only for & sufficiently small),
are obviously insufficient.

At present there are no reliable methods for choosing the constant of
regularization. However, there are numerous examples where for a suitable
choice of constant y sufficiently good approximations to solutions of ill-
posed problems can be obtained.

A detailed treatment of the theory of ill-posed problems is given in the
monograph [56].



Chapter 2

Methods of Expected-Risk Minimization

§1 Two Approaches to Expected-Risk Minimization

There are two approaches to solving the problem of minimizing the expected
risk

I(o) = JQ(Z, o)P(z) dz 2.1

on the basis of empirical data
Ziyenns Zpe 2.2)

The first approach is connected with the idea of constructing, from the
sample (2.2) and the function Q(z, «), an empirical functional

Iemp(a) = (D(Q(Zl’ O(), cee Q(Zla (X); Zysenes Zl)’ (23)

i.e., a functional which does not depend on the unknown probability density
P(z). Unlike (2.1), the functional (2.3) can be minimized. We choose its
minimum point as that of the initial functional (2.1). This is called the
method of minimizing empirical functionals.

The basic problem encountered in studying this method is to determine
the error size for each type of approximation (2.3) and to obtain an approxi-
mation for the functional (2.1) in terms of the empirical functional (2.3) so as
to assure the determination of a function which will yield the value of the
functional (2.1) close to the minimum.

The second approach connects the determination of the minimum of
the functional (2.1) with the use of the iterative procedure

a(i) = oi — 1) + y()S(@, z,)- 24)
27
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According to this procedure the improvement of the vector of parameters
o at the ith step is determined by the size y(i) and the direction S(i, z;) of the
ith step. It turns out that if one chooses the direction S(i, z;) in such a manner
that at each step the inequalityt

(V I(a(i — D)™™MS(i,z2) =6 >0 2.9

is satisfied, where V,I(«) is the gradient with respect to o of the functional
(2.1), MS(i, z) is the mathematical expectation of the direction of the ith
step, then under some additional conditions which restrict the growth of
the vector S(i, z) (for example, by means of the function |z|) and that of the
size of the step y(i) (by assuming that Y 2, y%(i) < oo but at the same time

2, 9(i) = o0), the procedure (2.4) and the random sample z,..., z,, ...
generate a sequence a(i) which converges to the vector of parameters ),
yielding the minimum of the functional (2.1) (cf. [45]).

The iterative procedure (2.4) is a development of gradient methods of search for
minima. Indeed, if the density P(z) were known, then one could under certain conditions
compute the gradient

V,I(0) = f V,0(z, 9)P(z) dz. (2.6)

Then the descent procedure would be the following rule:
a(i) = a(i — 1) — )V, I(a(i — 1)). @7

The procedure (2.4) differs from (2.7) in that at each step, it chooses a direction of
motion that is “on the average, approximately the same as along the gradient” rather
than the direction of the gradient itself. The inequality (2.5) formalizes the expression
“on the average, approximately in the same direction”.

Thus the basic result of the theory of iterative methods is that, even under
quite general conditions on the direction of motion and the size of a step,
the iterative procedures (2.4) achieve their purpose. However, due to the
very universality of the iterative procedure, the determination of the value of
a functional close to the minimal is assured only asymptotically. For solving
problems of minimizing the expected risk on the basis of a sample of fixed
size, iterative methods are of little use. Therefore we will not consider these
methods. Solutions of the problem of minimizing the functional (2.1) on
the basis of empirical data (2.2) will therefore be associated with the con-
struction of empirical functional (2.3) and its subsequent minimization.

+ Here and below, a vector is assumed to be a column vector and T denotes transposition.
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§2 The Problem of Large Deviations

Our purpose is to construct a method which will assure with a given prob-
ability the determination of a function yielding the value of functional

(o) = fQ(z, %)P(z) dz

which is close to minimal (where the density P(z) is unknown but the sample
Zyy ..., 2 IS given).

Without utilizing prior information this problem cannot be solved.
Indeed, consider one of the simplest problems of estimating relationships
based on empirical data. It is required to minimize the functional

I'e) = f (t — 0)?P(t) dt, (2.8)

provided P(t) is unknown (it is known only that a variance exists) but a
random independent sample ¢, . . ., t;is given. The minimum of the functional
(2.8) 1s attained at

o= f tP(t) dt. (2.9)

Thus the problem is to find for an unknown density P(t) a method which
will assure, with a given probability, a sufficiently accurate estimator of
the mean based on a sample of a fixed size L.

It turns out that without a priori information on the density P(t) one
cannot obtain a guaranteed estimator of the mean. Indeed, let the random
variable ¢ take on the two values 0 and K, and let P(t = 0) = 1 — ¢ and
P(t = K) = ¢. Assume now that ¢ is so small that with a high probability
1 — 6 the random independent sample ¢4, ..., t, consists solely of zeros and
hence the value of the empirical mean

1
O(emp = Z ti
i=1
is zero. (The probability of this event is (1 — ¢)' = | — §.) On the other hand,
the mathematical expectation of the random variable 1 equals

Mt =0(1 —¢) + Ke = Kg,

and depending on the value of K may admit arbitrary values including
large ones (for example, when K = 1/¢?). Thus in our example, in spite of
the fact that almost any (random) value of the empirical mean based on a
sample of size | is zero, one can come to no reliable conclusions concerning
the value of the mathematical expectation. This is because the product Ke
may be large even for small &. In other words the distribution of the random
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variable ¢ is such that a large value K is concentrated on a “small measure”
¢. Such situations are termed in statistics “large deviations” of random
variables.

When, then, can one reach a reliable conclusion about the value of the
mathematical expectation, based on the value of the empirical mean? The
answer to this question follows from Chebyshev’s inequality. According to
this inequality the probability of deviation of a random variable ¢t from its
expected value Mt is bounded by

1
P{|t — Mt| > ox} < "

where o7 is the variance of the variable t. Consider now the random variables

1 l
= 7 Z tia
i=1
where ¢, ..., t,; is a random independent sample of size I. Observe that

g
M5=Mt, 0'§=_.

7

Chebyshev’s inequality for this variable becomes
1 1
P{ ] Yt — Mt
i=1

We write (2.10) in a different form. Denote the right-hand side by 7, i.e.,
1/x* = porx = 1 /ﬁ . In this notation our assertion is that with probability
1 — n the inequalities

> %} < % (2.10)

1
<Mt <= Zt + @.11)

DX 7

are valid. (This assertion is completely equivalent to (2.10).)

If the variance o2 of the random variable t were known, the inequalities
(2.11) would determine the size of the confidence interval for the mathematical
expectation Mt and thus provide a guaranteed estimator of the mean, ie.,
an estimator which is valid with a given probability. Therefore in order to
obtain a guaranteed estimator of the mean based on the value of the empirical
mean it is sufficient to know either an absolute bound t%, on the variance

o? < 14, (2.12)

or—provided the true mean value is a positive quantity—a bound on the
relative value of the variance
2
o
<_) <<, @13)
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Indeed, (2.11) and (2.12) imply that the knowledge of an absolute bound on
the variance immediately leads to the construction of a guaranteed estimator
of the form

1 ¢ Tab 1 Tab
Y- =< Mi<= ) t; + —=. (2.14
1255 55 )

Also (2.11) and (2.13) imply that the knowledge of a bound on the relative
variance leads for [ > t2,/5 to the construction of a guaranteed estimator
of the form

1 1
14"

L
-1 i

!
<Mi< —ZL (2.15)

Trel

i L

Now let the random variable ¢t be nonnegative (this is the case studied in
this book, since t, = Q(z,a) = (y — F(x,a))?). Then a fortiori Mt > 0,
and hence one can utilize information on the bound of the relative variance.

To obtain confidence intervals (2.14) and (2.15), Chebyshev’s inequality
was utilized. This inequality is valid for arbitrary distributions, with finite
variances and therefore for some distributions it may be very coarse. In
particular, if a distribution is such that the variable ¢ is positive and is bounded
by 7 (in this case ¢ < 1/2), then a more refined bound than Chebyshev’s
inequality is valid (Hoeffding inequality):

11
7

=Yt — Mt
L=

Using (2.16), a more precise guaranteed estimator of the value of the mathe-

matical expectation may be derived.

In order to be able to utilize the inequality (2.16), we shall require, instead
of prior knowledge of the absolute bound on the variance of a positive
random variable, information about the absolute bound t of the random
variable ¢ itself (when such a bound exists). Thus in order to be able to esti-
mate the mean based on the value of an empirical mean, it is sufficient to
know either the absolute bound 7 on the random variable ¢t or a bound
T,¢; ON the relative variance of the random variable ¢.

In this book we shall study the distribution of a collection of random

variables 5
ta = Q(Z, (1) = (y - F(x, (1)) s

depending on parameter o, rather than a single random variable t. To obtain
uniformly guaranteed estimators of the mean values of these variables a
uniform characteristic of large deviations for the variables will be required.

A possible deviation on the set t, = Q(z, o) will be characterized by an
absolute bound on the loss function

Tabs = SUP Q(Z, a) (217)

a4z

1+

> x} < e U, (2.16)
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or by a bound on the relative variance

D{Q(z, %)} MQ’Gzo)
e SuP[(MQ(z a»Z] =W\ roG,ay ~ T 219

Below it will be shown that if at least one of these characteristics of deviations
(an absolute or relative bound) is known, then based on a random sample
of fixed size ! one can provide a guaranteed estimator of the value of the
expected risk, and under some additional restriction the problem of mini-
mizing the expected risk can be solved.

Remark. In this section we have used the Chebyshev’s inequality for the
second central moment. The above reasoning can be made on the basis of
the Chebyshev’s inequality for an absolute central moment of any order p > 1
(even if p is not integer). In this case the possible deviations are characterized

by
oo o] 2@
p M MoG s ~

§3 Prior Information in Problems of Estimating
Dependences on the Basis of Empirical Data

:p

= Tp-

Thus to obtain a guaranteed solution for the problem of minimizing the
expected risk on the basis of a limited amount of empirical data, it is necessary
to utilize prior information concerning possible large deviations of random
variables t, = Q(z,a). The size of possible deviations is characterized
by either an absolute bound on the loss (2.17) or a bound on the relative
variance (2.18). How bothersome is it to obtain prior information about
absolute or relative bounds for the three problems of estimating dependences
discussed in this book: pattern recognition, regression estimation, and
interpretation of results of indirect experiments?

A remarkable property of the pattern recognition problem is that the
absolute value of the loss is bounded here by 1. Indeed, according to the
formulation of the recognition problem, the loss function

0(z,0) = (w — F(x, a))Z

is either O or 1. Thus the prior absolute bound on the value of the loss exists
trivially in this case.

In problems of regression estimation or interpretation of indirect experi-
ments the existence of an absolute bound on the value of the loss is far from
trivial. More often than not, no such bound exists. This may happen even

+ The symbol D is used here and below to denote the variance operator.
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in the case of estimating linear regression. Indeed, the loss function in this
case equals

Q(Z5 a) = (y - F(X, a))z,

and if there are no restrictions on the value of parameters o, then one can
find—in the class of linear functions F(x, «)—a function such that the value
of the loss may be arbitrarily large even if the variables y and x are bounded.
Therefore for solving problems of regression estimation and interpretation
of indirect experiments we shall utilize information about a bound on the
relative variance of losses rather than an absolute bound on possible losses.

What then is the relation between this prior information and the prior
information usually utilized in problems of estimating dependencies?
Fix a function F(x,a*) in Q(z,a) = (y — F(x,«))>. Then the probability
density P(x, y) generates a random variable

tee =y — F(x, %),

and hence a bound on the relative variance is the prior information on the
probability density of random variables (t,+)2.

If the distribution of ¢ is Gaussian for any o*, then a bound on the relative
variance of losses is equal to

_ [MeE
= iy
1 © ; _ 2 )
T e
oooo 7 2 1=/2
(\/; f (t;)Z exp{_ (ta 2—0—-2#)2} dt:z)
Mo V-

independently of the parameters of the distribution. If the distribution of
t,» is uniform for any o*, then the bound is

1 b
[ s
Tre1 = SUP 4 1=\/;=~/08

b 1 b 5 P
a, ’ d '
(—b — [ ta)

Finally, if the distribution of ¢« for any a* is Laplacian (double-exponential)

then the bound is
1 © "4 t; - :u ’
n f_ 00(ta,) exp{ A } dt, 1

" : fm (1) ex fa — dt, T =ﬁ.
2A w a p o

A
This bound does not depend on the parameters of the distributions.

T




34 2 Methods of Expected-Risk Minimization

Prior information on the distribution in terms of a bound on the relative
variance of losses is the minimal prior information which is utilized in this
book.

Another kind of prior information which is usually utilized for the esti-
mation of functional dependence (see Chapters 3, 4, and 5) is the type of
probability density of the random variable ¢« = y — F(x, «*) (for example,
the Gaussian law or Laplacian law). The necessity of providing this prior
information is a much stronger requirement than the provision of a bound
on the relative variance of losses. Indeed the assumption that 7, < 2.5
may be satisfied for Gaussian, uniform, Laplace, and many other distributions,
while the assumption of a specific form of distribution allows us to obtain
results which are guaranteed only for this particular type of distribution.

§4 Two Procedures for Minimizing the Expected Risk

In this section we shall assume that an absolute bound on the value of possible
losses is given:

Sup Q(Z, (1) = Tabs-

zZ,a

Our purpose, based on a random independent sample
Ziseens Zls (2.19)
is to construct an empirical functional

Iemp(a) = (I)(Q(Zl’ (Z), LA Q(Zh a);zla AR} Zl)’

whose minimum point o« = a* yields (with a given probability 1 —#) a
value for the expected-risk functional

I(0) = JQ(z, )P(z) dz (2.20)

close to the minimal one.

There is a “natural” method for constructing such a functional. One
estimates, from the sample (2.19), the probability density P(z), and then
substitutes into (2.20) the estimated density P(z) in place of P(z). The func-
tional obtained does not depend on the unknown density and at least in
principle may be minimized.

It seems that the problem of minimizing the expected risk on the basis of
empirical data is reduced to an estimation of the probability density. In
turn, the problem of estimating the probability density from a random
independent sample is a central problem of mathematical statistics. Thus a
solution to a particular problem of statistics, the minimization of the expected
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risk on the basis of empirical data, depends on a solution to its central
problem.

In the next section we shall discuss in detail the formulation of the problem
of the estimation of a density; in this section we shall establish two distinct
procedures which allow us to solve the problem of minimizing the expected
risk on the basis of empirical data. One of these procedures is indeed based
on the fact that the estimated density P(z) approaches the actual one,
while the other procedure has a completely different theoretical basis.

Thus let 0 < Q(z,2) < 1. Consider two types of empirical functionals:
one of the type

Implo) = J 0(z, 0)P(z) dz, (2.21)

where P(z) is an empirical density estimated from the sample z,, ..., z,
and the other of the type

1 i
Temp(0) = 7 2, 0z, ). (222)

=1

The functional (2.22) is usually called a functional of empirical risk.
Formally a functional of empirical risk is a particular case of (2.21).
Indeed, if for the approximating density in (2.21) one chooses the density

1

by =" S -z (2.23)

LS

where, for example

n,(2) ! ex { ZTZ}
£ (\/ﬂs)n p 282
(n 1s the dimension of the vector z), then as ¢ — 0 it can be shown that
Tomp(@) = Iopmp(a). (Here we utilize the relationship lim, ., 7(z) = d(2).)
However, it makes sense to single out the functional (2.22), since the success
of minimizing the expected risk by minimizing (2.21) and by minimizing
(2.22) is determined by different factors. In the first case the success is due to
the proximity between the estimated density and the actual one, while in
the second case the density P,(z) for small ¢ does not approach P(z). Neverthe-
less under certain conditions the minimum point for a functional of empirical
risk yields a value of the functional (2.20) which is close to the minimal.
Indeed, let P(z) be close to P(z), i.e.,

f P(2) — P)|dz < ¢,

and let the minimum of the empirical functional be attained at o = oy,
while the minimum of the expected risk is attained at o = a,. Then the
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following chain of inequalities is valid

I(aemp) - I(“o) < I(“emp) - I;mp(aemp) + I;mp(aO) - I(aO)
< f 02, temp) | P(2) — P(2)|dz + f 0z, 20)| P(2) — P(2)]dz

< 270665

which implies the proximity between the minima of the functionals (2.20)
and (2.21).

We now show that the approximating density (2.23) does not approach
the actual one as ¢ — 0. Let P(z) be a bounded function. Subdivide the set
Z into two subsets: a set Z of a small measure containing all the sample

elements, and the complementary set Z\Z. _
It is easy to verify that for ¢ sufficiently small a set Z can be chosen so that

LIP(Z) — P(2)|dz ~ L\ZP(Z) dz + Lf)a(z) dz ~ 2.

Thus success in minimizing the expected risk (2.20) using the method of
minimizing a functional of empirical risk (2.22) is determined not by proximity
between densities but by some other mechanism. Below in Section 6 it will
be shown that this mechanism is based on the property of uniform conver-
gence of empirical means to mathematical expectations over some set of
events.

§5 The Problem of Estimating the Probability Density

Problems which are solved in probability theory on the one hand and mathe-
matical statistics on the other are interrelated as direct and inverse.

Problems in probability theory can be described by the following setup:
the composition of a general population and the probability distribution
law are known. It is required for a given scheme of experiments to estimate
the probabilities of outcomes of the experiment.

Mathematical statistics solves inverse problems: based on the results of
an experiment, it is required to determine properties of the distribution
law. An “exhaustive” characteristic of a distribution law is the probability
density (if the latter exists).

Thus the problem of estimating the probability density from a sample is
a central problem of mathematical statistics. In this section we shall verify
that the problem of density estimation is usually an ill-posed one.

Let a sample ¢,,...,t, be given, and a class of functions to which the
probability density P(t) belongs to broadly defined (i.., it is known only
that P(t) belongs to continuous functions). It is required to estimate the
probability density.
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First consider the one-dimensional case. By definition the probability
density P(t) is related to the cumulative distribution function F(z) = P{t < z}
as follows:

f P(t)dt = F(z),
or equivalently

Jmo 0(z — H)P(t) dt = F(z), (2.24)
where

1 forx >0,
0(x) = {0 forx < 0.

For continuous densities there is a unique solution of the integral equation
(2.24).

Now define an empirical cumulative distribution function: F(z) = k/I
if z exceeds k terms of the sample z,, ..., z,. The basic theorem of mathema-
tical statistics—the Glivenko—Cantelli theorem—asserts that as the sample
size | increases, the empirical cumulative distribution function uniformly
approaches the actual one.

Theorem (Glivenko-Cantelli). Let F(z) be a cumulative distribution function
of a random variable z, and F|(z) be the empirical cumulative distribution
function. Then

P{suplF(z) — F(2)] ;—00»0} =1

We shall not prove this theorem here. In Chapter 6 a theorem on uniform
convergence of relative frequencies of occurences of events to their prob-
abilities is proved. The Glivenko-Cantelli theorem follows from it as a
particular case.

We now return to the integral equation (2.24) whose solution determines
the probability density. We seek an approximate solution of this equation
in those situations when instead of a cumulative distribution function
F(z) an empirical cumulative distribution function F,(z) is known from a
finite sample. In Chapter 9, utilizing a bound on the rate of uniform conver-
gence of F(z)to F(z), we shall show that there exists a procedure for obtaining
approximate solutions of Equation (2.24) such that as / increases the sequence
of solutions tends to the required probability density.

Thus it is possible in principle to estimate a continuous probability
density. However, estimating a density is associated with the solution of the
ill-posed problem of numerical differentiation of (2.24) under conditions
where the right-hand side of the equation is imprecisely defined.
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Actually, in the case of estimating a probability density it is known a
priori that a solution for the integral equation (2.24) is not an arbitrary
continuous function but rather a function P(¢) which takes on nonnegative
values only and satisfies the condition

o
f P(@)dt = 1.
However, this prior information is not sufficient for a problem of solving
integral equation (2.24) to become well posed.

Analogously to the one-dimensional case, the problem of estimating a multi-
dimensional density can be posed. For this purpose we write the integral equation which
connects a multidimensional density with a multidimensional cumulative distribution
function:

f f P(e*, ..., dtt - di" = Pt < 2L < 2, 2.25)
and define a multidimensional empirical cumulative distribution function by
1 n k
F,(z,...,z)=7, (2.26)
where k is the number of elements of the sample z,, ..., z, which fall into the region

<z, <

It turns out that a multivariate analog of the Glivenko-Cantelli theorem is valid:
as the sample size increases the empirical cumulative distribution function converges
uniformly to the population cumulative distribution function. The validity of the gener-
alized Glivenko-Cantelli theorem also follows from the general theory of uniform
convergence of frequencies to the corresponding probabilities discussed in Chapter 6.
Using this theorem analogously to the one-dimensional case, one establishes the possi-
bility—in principle—of estimating the multidimensional density from empirical data.

Thus the problem of estimating the density in the class of continuous
functions is reduced to an ill-posed problem of numerical differentiation of a
cumulative distribution function.}

Observe that the formulation of the problem of numerical differentiation
presented here differs from the problem of numerical differentiation con-
sidered in Example 3 of Chapter 1. There an ill-posed measurement problem
was considered, i.., formulations of ill-posed problems for which the errors
were results of measurements (observations) and the values of the right-hand
side of the integral equation (2.24) were defined statistically independently
at [ points. In the present case the difference between the exact value of the

t There are nonparametric methods for estimating the density (e.g., Parzen’s method) which
seem to avoid the necessity of solving ill-posed problems. However, as will be shown in Chapter
9, problems which arise in the actual realization of these methods are equivalent to ill-posed
problems of numerical differentiation.
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right-hand side and the function obtained as a result of observations is a
random function.

Thus the problem of estimating the probability density is more general
than the interpretation of results of indirect experiments. Hence it would
seem unreasonable to solve the problem of minimizing the expected risk
on the basis of empirical data by means of estimating a probability density.
(Quite the reverse, in Chapter 9 we shall consider the problem of density
estimation as a problem of minimizing expected risk based on empirical
data.)

However, some degenerate cases are possible where there is available
substantial prior information about the density to be estimated, so that the
problem ceases to be ill posed. For example, the problem of density estimation
may turn out to be well posed if the density is known up to a finite number of
parameters. Methods of estimation of a density defined up to a finite number
of parameters are called methods of parametric statistics. They form a special
class of methods which are significantly different from the general methods
of density estimation. (The latter are sometimes called methods of non-
parametric statistics.)

§6 Uniform Proximity Between Empirical Means and
Mathematical Expectations

Above it was established that there exist two procedures for minimizing
the expected risk on the basis of empirical data.

The first is connected with minimization of an empirical functional
constructed from the estimated density. However, the intermediate problem—
the density estimation—is in general more complex than the problem of
risk minimization based on empirical data. Therefore it is generally un-
reasonable to solve the problem of minimizing the expected risk by means of
density estimation.

Here we shall consider the second procedure. We shall minimize the
expected risk

I(a) = fQ(z, «)P(z) dz

on the basis of the data

Z1y sy

by minimizing the functional of the empirical risk,

1 1
Iemp(a) = 7 z Q(Zi’ (X).

=1
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For each fixed o = o* the functional I(«*) determines the mathematical
expectation for a random variable t,» = Q(z,a*), while the functional
I my(a*) is the empirical (arithmetic) mean of this random variable.

According to the classical theorems of probability theory, in sufficiently
general cases the empirical mean of the random variable t,. converges as /
increases to the mathematical expectation of this random variable. However,
these theorems do not imply that the value of parameter o, which yields
the minimum of the empirical risk I.,(a) will also yield a value of the expected
risk I(a) which is close to the minimal one. This is an important assertion,
and we shall discuss it in greater detail.

Assume for concreteness that the parameter o is a scalar in the interval
[0, 1]. A value I(«) corresponds to each . Consider the function I(x). Along
with this function consider the function I.,,,(«) which for each a determines
the empirical mean obtained on the basis of a sample of size | (Figure 2).

The method of minimizing empirical risk proposes to decide about the
minimum of the function I(x) on the basis of the minimum of the function
I.p(®). In order to be able to do this it is sufficient that the curve I, ()
be located entirely within a x-tube of the curve I(x). A large deviation at
even one point (as in Figure 2) may result in a point of large deviation
of I.,() being chosen as the minimizing point of I(x). In this case the mini-
mum of I.,,(«) does not in any way characterize the minimum of I(a). If,
however, the function I,,,(«) approximates I(«) uniformly in o with precision
x, then the minimum of I.,,,(«) deviates from the minimum of I(«) by an
amount not exceeding 2x. Formally this means that we are interested not
in the classical condition that for any « and « the relation

P{I(®) — Iemp(@)] > %} ;2 0 2.27)
is valid, but in a more stringent condition that for any » the relation

P{sup (o) = Iemp(@)| > x} =20 (2.28)

holds. When (2.28) is satisfied we say that a uniform convergence in the
parameter a of empirical means to their mathematical expectation occurs.

Figure 2
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The second procedure for minimizing risk is connected with uniform
convergence in parameter « of empirical means to their mathematical
expectations. However, for our purposes—the minimization of expected
risk based on a sample of fixed size—the simple fact of uniform convergence
is not sufficient. In order to be able, with a given probability, to guarantee
obtaining solutions which yield a value of the functional close to the minimal
one, it is necessary to know a bound on the rate of uniform convergence.
Indeed the fulfillment of the inequality

P{Sup [I((X) - Iemp(a)| > X} < ’I(l, %)’

limn(l,%) =0

1=

is equivalent to the following assertion: with probability 1 — n(l,x) the
bound

Temp(®) — % < I(0t) < Iopp(@) + % (2.29)

is valid simultaneously for all «. If, however #(l, %) is a decreasing function
in | and x, then for the given confidence level 1 — 7,

n(l, %) = n, (2.30)

the size of the confidence interval » = %(l, ) obtained as the solution of
Equation (2.30) decreases with increasing I Consequently for [ large the
point o, of the minimum of empirical risk will yield a value of the expected
risk close to the minimal one. For any fixed ! one can assert that with prob-
ability 1 — # the point a.,,, yields a value of the expected risk belonging to
the interval

Iemp(aemp) —x < I(aemp) < Iemp(aemp) + %

§7 A Generalization of the Glivenko—Cantelli
Theorem and the Problem of Pattern
Recognition

In this section we shall consider the particular case where the loss function Q(z, «)
of the functional

I(o) = JQ(Z, 2)P(z)dz (2.31)

admits only the two values, 0 and 1. As we already noted, the problem of pattern recogni-
tion reduces to this case.

Denote by S(a*) the set of vectors z for which the given loss function Q(z, «*) admits
the value 1. In other words S(a*) is the event S(a*) = {z:Q(z, a*) = 1}. For a fixed
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o = o* the functional (2.31) determines the probability that the vector z belongs to the
set S(a*), i.e., the probability of the event S(a*).
Correspondingly, for each fixed o = o* the functional of empirical risk

1 1
Iemp(a*) = 7 Z Q(zia a*) (232)

determines the frequency of the event S(a*) obtained from the sample z,, ..., z, of
size I. In order to single out this important particular case we shall denote the functional
(2.31) by P(a) and the functional (2.32) by v(«). In this notation the condition (2.28)
will be written in the form

P{sup]P(a) — ()| > x} P 0.

This indicates a uniform convergence of frequencies of occurrence of events to their
probabilities over the class of events S(a). In these terms the assertion of the Glivenko-
Cantelli theorem that the empirical cumulative distribution function uniformly con-
verges to the population cumulative distribution function is an assertion about the
existence of the uniform convergence of frequencies of events to their probabilities for a
special system of events.

Indeed, consider the line z and a set of rays z < a. This set of rays defines a system of
events S(«) (the event S'(«*) is that the point z belongs to the ray z < o*). In these
terms the assertion of the Glivenko-Cantelli theorem is as follows: “a uniform con-
vergence of frequencies of events to their probabilities is valid over a class of events
S ).

Consider now the following class of events §"(a): a vector z = (z%, ..., z")T belongs
to the event S"(a*) (here a* = «¥, ..., a¥)T) if simultaneously for all n coordinates the
inequalities z! < o¥, ..., 2" < of are fulfilled. The set of all events S"(a*) is the class
S"(«). In these terms the multivariate analog of the Glivenko—Cantelli lemma is the
assertion of uniform convergence of frequencies of occurrences of events to their
probabilities over the class of events S"(«).

Thus the condition of uniform convergence of frequencies of occurrences of events to
their probabilities for various systems of events which occurs in the study of the pattern
recognition problem leads to a generalization of the Glivenko-Cantelli lemma.

§8 Remarks on Two Procedures for Minimizing
Expected Risk on the Basis of Empirical Data

Thus there exist two methods for minimizing the expected risk on the basis
of empirical data. One is connected with the feasibility of estimating the
probability density, and the other with the possibility of assuring a uniform
convergence of empirical means to their mathematical expectations.

It makes sense to estimate the density only in the trivial case when sub-
stantial prior information is given. If the prior information is limited, then
the solution of the intermediate problem—estimation of the density—
turns out to be no simpler than the problem of minimizing the expected
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risk. In this case the possibility of density estimation is based on the Glivenko-
Cantelli theorem, i.e., on the existence of uniform convergence of frequencies
of events to their respective probabilities for a special class of events.

The second procedure for risk minimization is directly based on the
existence of uniform convergence of empirical means to their mathematical
expectations.

Below, in Chapters 6-7, it will be shown that sufficient conditions for the
existence of uniform convergence of the means to mathematical expectations
are determined by special features of the loss functions. For the problem of
estimating dependences the requirement is that the class in which estimation
is carried out should be a rather narrow one.

The existence of two procedures of minimizing the expected risk reflects
the presence of conditions of two types under which minimization of the
expected risk based on empirical data is feasible in principle. Conditions of
the first type connect the feasibility of risk minimization with the information
available about the class of densities to which the estimated density belongs.
In those cases when the density can be estimated one can successfully
minimize the expected risk, regardless of the loss function (provided it does
not admit large deviations). Conditions of the second type impose restrictions
on the properties of loss functions and then independently of the structure
of P(z) so that it is possible to successfully minimize the expected risk.

When solving problems of estimating dependences on the basis of empirical
data under the condition that the loss function does not admit large devia-
tions, the difference between these two approaches is reflected in the set-ups
of possible assertions:

Assertions of the first type. If the nature of the problem is well diagnosed
(a “narrow” class of densities { P(z)} to which the required density belongs is
found), then independently of the special features of the class of functions
in which the estimation takes place, the minimum of the empirical functional
will be close to the minimum of the expected risk.

Assertions of the second type. If the estimation is taking place in a suffi-
ciently “narrow” class of functions F(x, «), then regardless of the nature of
the problem (i.e., the density P(z)), the minimum of the empirical risk will
be close to the minimum of the expected risk.

It should be noted that formally there is a certain advantage to utilizing
algorithms for which assertions of the second type are feasible. Indeed,
assertions of the first type require that:

(1) theclassdensities in which estimation is carried out be sufficiently narrow,
and
(2) the required density belong to this class.

Assertions of the second type involve only one requirement: that the class of
functions in which estimation takes place be sufficiently narrow. In practice,
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it is not difficult to control the width of the class of densities as well as that of
the functions.

The problem of whether the estimated density belongs to a given class
is always open.

The main thrust of this book is to determine conditions of uniform
convergence and utilize these for the estimation of dependences based on
samples of a fixed size. Utilizing bounds on the rate of uniform convergence
of means to their mathematical expectations, it becomes possible not only to
establish the method of minimizing empirical risk, but also to construct a
new method for minimizing risk (the method of structural minimization)
which allows us under conditions of limited empirical data to arrive at a
solution which yields the smallest guaranteed value of the expected risk.

Chapters 6-10 are devoted to a description of the methods of risk mini-
mization utilizing procedures of uniform convergence. However, before
studying this procedure systematically we shall consider classical methods of
risk minimization based on the idea of minimizing a functional constructed
by means of the estimated density. As was mentioned above, in exceptional
cases (when the density is known up to a finite number of parameters) the
estimation problem may be stable and its solution—as well as that of
estimation of dependences from empirical data—may be successfully
achieved using methods of parametric statistics. In Chapter 3 the application
of parametric statistics to solutions of problems of pattern recognition
is discussed, and in Chapters 4 and 5 these methods are applied to regression
estimation.



Chapter 3

Methods of Parametric Statistics for the
Pattern Recognition Problem

§1 The Pattern Recognition Problem

It is required to minimize the functional
16) = [ = Feo2)?P(x. ) v dy (3.1)

under the conditions when the density P(x, y) is unknown but the sample

X Y155 X Vi (3.2)

is given, based on random independent trials according to P(x, y).
We shall solve this problem applying the following scheme:

(1) Estimate the density from the sample (3.2). Denote the estimated
density by P(x, ).
(2) Construct the functional

Ton(@) = f (y — F(x, 0))?P(x, ) dx dy (33)

using the estimated density.

(3) Obtain the minimum of this functional, and declare the function F(x, Uemp)
which yields the minimum of (3.3) to be the solution of the original
minimization problem (3.1).

As was pointed out in Chapter 2, this scheme can be successfully carried
out only if substantial prior information concerning the density P(x, y)
is available (namely, when the density is completely specified up to its
parameters). In other words, success can be achieved if the model of the

45
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estimated density is known. The model of the required density turns out to
be quite different for different problems of estimating dependences.

In this chapter we shall consider the pattern recognition problem. A
characteristic feature of this problem is that the unknown probability
densityt P(x, w) can be represented as a union of two densities P(x|w = 0)
and P(x|w = 1) defined on different subspaces X, 0 and X, 1:

P(x,w) = P(x|w = 0)P(w = 0)(1 — w)
+ P(x|w = 1)P(w = No. (3.9

The set of pairs x, w consists of two nonoverlapping subspaces of dimen-
sionality n, namely

XcE, wo=0 and XcE, w=1

The formula (3.4) asserts that on the first subspace the density is equal to
P(x|w = 0)P(w = 0), and on the second P(x|w = 1)P(w = 1). In formula
(34) P(x|w = 0)and P(x|w = 1) are the components of the union; P(w = 0)
and P(w = 1) = 1 — P(w = 0) are the proportions.

Let the density P(x, w) be known up to a finite number m; + m, + 1 of
parameters

P(x,w) = Py(x|w = 0)P(w = 0)(1 — w)
+ P(x|w = DP(w = Do, 3.5

where f is an unknown m,-dimensional vector of parameters of density
Py(x]w = 0),y is an unknown m,-dimensional vector of parameters of the
density P(x|w = 1), and P(w = 0) is a scalar parameter.

Now in order to implement our scheme it is necessary to be able to solve
two problems:

(1) to find the minimum of functional (3.3) for a given density P(x, w);
(2) based on the sample (3.2), to estimate the density of P(x, w).

The first problem is referred to in statistics as the problem of discriminant
analysis; the second is called the problem of estimating the density in a para-
metric class of functions. We now consider these two problems.

§2 Discriminant Analysis

It is required to obtain the minimum of the functional (3.3) for a given density
(given components of union P(x|w = 0), P(x|w = 1) and proportions
Pw=0),Plw=1)=1- Plw=0).

First consider the simple case: the class of possible decision rules F(x, )
is in no way restricted. In this situation it is easy to construct a minimizing

T We use the letter w instead of y to emphasize that it takes only the two values 0 and 1.
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rule which minimizes the functional (3.3). Indeed, according to Bayes’s
formula the probability that the vector x belongs to the first (second) class
is determined by

P(x|w = 0)P(w = 0)

P(w = 0]x) = P(x|w = 0)P(w = 0) + P(x|w = DP(w = 1)
(3.6)
1 P(x|ow = 1)(1 = P(w = 0))
(P(w = 1|x) = P(x|w = 0)P(w = 0) + P(x|w = 1)P(w = 1))

Minimal loss (the minimum probability of error) can be obtained for the
classification in which the vector x is assigned to the first class if its affiliation
to the first class is more probable than to the second, i.e., if

P(w = 0]x) > P(w = 1|x).

Otherwise the vector x is assigned to the second class. In other words,
taking (3.6) into account, the vector x should be assigned to the first class
provided the inequality

Pxlo=1) P = 0)
Pxlw=0) 1- Plw=0)

is fulfilled, or equivalently, the optimal classification of vectors is carried
out by means of the indicator function

I — Plw=0)

F(x) = 9[1n Px|o =1) — In P(x|w = 0) + In P(w = 0)

], (3.7)

where

1 forz >0,
6z) = {0 forz < 0.

Therefore the knowledge of the probability density (composition and
proportion of the union (3.5)) allows us to construct an optimal decision
rule immediately.

However, the problem of finding an optimal decision rule becomes
substantially more complex if the class of admissible decision rules F(x, o)
is restricted. In particular, the problem of finding an optimal linear decision
rule of the form

F(x,0) = 0[a"™x + a,] (3.8)

is a difficult one. The vector o = (a5, ..., a,)" determines the direction of a
linear discriminant function, and the parameter o, its threshold value.
The problem of finding the minimum of (3.3) in the class (3.8) is called the
problem of linear discriminant analysis.
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In the thirties R. A. Fisher proposed as the direction of the linear discriminant
function a direction along which the maximum of the relative distance between the
mathematical expectations of projections of vectors of different classes is obtained,
i.e., the direction « along which the maximum of

_ (my(@ — my@)?

T =" 36 1 ol

3.9)
where

my(a) = faTxPﬂ(xlw = 0)dx,
my(e) = J «"xP(x|w = 1) dx,
71 = (@ - m@)PPyxlo = 0)d,

3@ = [@x - m@PP,xlo = Dax

ala =1
is attained.

The determination of the maximum of (3.9) for arbitrary densities is a very difficult
problem. Therefore basic investigations in the area of linear discriminant analysis
were directed first toward verifying for specific types of densities that Fisher’s linear
discriminant function indeed determines a solution of linear discriminant analysis, and
secondly toward finding algorithms for computing the discriminant function. The
basic result was that for the union of two normal laws

P(x|o = 0) = N(u;,A,),  P(x|o = 1) = N(uy, A,)

(u, is the mean vector, A, is the covariance matrix for the first multivariate normal
distribution, and u,, A, are the analogous parameters for the second distribution),
taken in proportions P(w = 0) and 1 — P(w = 0), the optimal linear discriminant
function is given by the direction vector

o = (g — 1) (t* Ay + (1 — t9)A) 7 (3.10)

where 0 < t* < 1. The value t* is determined as the root of the so-called resolvent
function

P(w = 0) 0’%(%)). G11)

[ = toi(@) + (1 — Dod(e) — 1n<1 T Pw=0) @)

For P(w = 0) = 4 the direction (3.10) of the linear discriminant function maximizes
the functional

oy = @) = ma@)?
ol + (1 — 3@’

The calculation of the roots of the resolvent equation (3.11) is quite a difficult task.
Therefore in practice when constructing a linear discriminant function it is assumed that
t* = 1 and Fisher’s linear discriminant is taken to be the solution of the problem.
(More details are given in [71].)
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Thus problems arising in discriminant analysis are due to the fact that
the class of possible decision rules on which the minimum of functional
(3.3) is to be determined is bounded. Therefore it may seem that the problem
of discriminant analysis is artificial. Indeed, if it is possible to estimate
probability density, what is the need for seeking a decision rule which yields
a conditional minimum of the functional, when it is easy to find a decision
rule (cf. (3.7)) which yields an absolute minimum for the functional (3.3)?

The fact of the matter is that if the density is estimated imprecisely, then
the value of the guaranteed deviation of the minimum for the empirical
functional from the minimum for the expected risk functional becomes
larger for a function chosen from a wider class. Therefore it may happen
that the smaller value of the guaranteed expected risk will be achieved, not
at a function yielding the absolute minimum for the empirical functional,
but rather on a function belonging to a narrower class and yielding the
conditional minimum.

This result is connected with the effect of the second procedure for
minimizing the expected risk (cf. Chapter 2, Section 4). The idea of narrowing
the class of decision rules in order to obtain a smaller guaranteed value of the
expected risk will be implemented below in Chapters 8 and 9. In the present
chapter we shall consider parametric methods of estimating densities.
In view of (3.7), the knowledge of the density immediately leads to the
construction of a decision rule yielding the absolute minimum for (3.3).

§3 Decision Rules in Problems of
Pattern Recognition

Algorithms of pattern recognition based on estimation of the density
(gives components of the union (mixture) P(x|w = 0)and P(x|w = 1)andits
proportion P(w = 0)) are traditionally associated with two classes of
distributions.

3.1 First Class of Distributions

The probability distribution P (x) = P(x|w) is such that coordinates of the
vector x = (x!, ..., x")T are statistically independent, i.e.,

P(x) = P(x') - Py(x"), w=01, (3.12)

and moreover each coordinate x' of the vector x can take on only a fixed
number of values. Let us assume that each coordinate x' takes on t; values
c'(1),...,c'(r;). Thus in the case under consideration the distribution
laws of random variables P, _,(x) and P, (x) are defined by the expression
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(3.12), where P(x’) can be written as
pu(1)  for x' = ci(1),
Py(x') = : (3.13)
po(w) for x' = ci(zy),
Y () = L.
j=1
Here pl,(j) is the probability that for a vector belonging to the class w = {0, 1}

the value of the x'th coordinate equals c(j). To estimate the probability
distribution for such a union means to find values of

n
r = 2 Z Ti + 1
i=1
parameters () 7., 7, parameters for estimating each distribution P (x),
and one parameter—the proportion of the union).
According to (3.7) an optimal decision rule for the mixture formed by the
two distributions (3.12) will be the following linear discriminant function:

o PensC)
R = o £ =t - L)

where p, 1 — p are proportions of the union.

3.2 Second Class of Distributions

Here in each class w = {0, 1} vectors x are distributed according to the
multivariate normal distribution

1 _
Py(x) = WCXP{—%(X — 1) AL (X — py)}

where p,, is the vector of mean values and A, is the covariance matrix.
It follows from (3.7) that the optimal decision rule in this case becomes the
quadratic discriminant function

F(x) = 003(x — 1o)" Ag'(x — po) — 3(x — )T AT Y(x — py)

|Ao| p :I
—In——|, 3.14
I (3.14)

where pg, Ag; uy, A, are parameters of the normal distributions forming the
union (3.5) and p, 1 — p are the corresponding proportions. In the particular
case when A, = A; = A the quadratic discriminant function (3.14) reduces
to a linear one:

+ In

F(x) = 9[(#1 — po) AT x + Hu§ AT o — i AT ) — In - f p].
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§4 Evaluation of Qualities of Algorithms for
Density Estimation

Thus the construction of a discriminant function based on empirical data
reduces to an estimation of the probability distributions P(x|w = 0) and
P(x|w = 1) and of the parameter p. The parameter p determines the fraction
of pairs x, w with @ = 0 and may be estimated by the quantity p = m/l,
where m is the number of pairs in the sample with w = 0 and I is the sample
size.}

What are the algorithms that one should utilize for estimating the prob-
ability densities P(x|w = 0), P(x|w = 1)? To answer this question one
should first agree on the method of assessing qualities of estimating algo-
rithms on the basis of samples of fixed size.

The quality of specific algorithm A which estimates the density P(x, a)
from a sample x,, ..., x; is naturally defined as the distance between the
density and the estimated function P (x|x;, ..., x;), i.e,, by the quantity

PP(x, 00), Pa(x]Xq, ooy X)) = Py, a(Xq, oo s XD

We shall define the closeness of densities in terms of the L? metric, i.c.,

1/2
Pag, a(X1s - -0y X)) = (f(P(x, o) — Pa(x|xy, ..., x))? dx) . (3.15)

Since the choice of the density P,(x|x,,...,x;) depends on the sample
Xy, ..., X, the quantity p, 4(x,...,x;) is a random variable. We shall
characterize the quality of the algorithm A4 by the mathematical expectation
of p2. 4(xq, ..., X))t

R(og, A) = fpfo,A(xla e XPP(xy) - P(x) dxy - - - dxy.

The smaller R(a,, 4) is, the better the algorithm is for estimating the density
P(x, ao) from a sample of size .

Thus we have determined how the quality of an algorithm A designed
for estimating a specific density P(x, «;) should be measured. It is now
necessary to agree on how to measure the quality of an algorithm earmarked
for estimating an arbitrary density belonging to a given class P(x,a) (in
our case the class of densities is defined up to values of a vector of parameters
o). Two principles are used in statistical decision theory in such a situation:
Bayes’s principle and the minimax principle.

Bayes’s principle asserts that the quality of an algorithm should be
estimated as the mean quality over all the estimated densities. In order to
estimate the mean value of an algorithm it is necessary to know how often
any particular density belonging to P(x, «) will be estimated, i.e., in our case

+ It will be shown in Section 6 that § = (m + 1)/(I + 2) is a more precise estimator.
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it is necessary to have information about the probability density P(x) of
the vector of parameters o. In that case the quality of an algorithm is defined
as

Ry(A) = f R(a, A)P() dov. (3.16)

The smaller Ry(A4) is, the better the algorithm.

The minimax principle asserts that one must estimate the quality of an
algorithm on the basis of the most unfavorable probability density P(x, a*)
for this algorithm. Here the densities which may be encountered in practice
are not taken into account. It may therefore turn out that the quality of the
algorithm is determined by a case which will never occur. The quality of an
algorithm according to the minimax principle is defined as

R nx(A) = sup R(a, A). 3.17)

The smaller the value of R, (A4), the better the algorithm.

§5 The Bayesian Algorithm for Density Estimation

We shall determine the structure of algorithms which assure the solution of
the Bayesian estimation of density, i.e., which minimize the functional

Ry(A) = fR(cx, A)P(a) do.

From a sample x,, ..., x;, let a density which belongs to the class P(x, &)
be estimated and the prior probability density P(x) be given. Utilizing
Bayes’s formula, we obtain
P(xq, ..., x;|a)P(x)

P(xgy.oox)

Pla|Xqy ..., %) =
which is the density of posterior probabilities P(xt|x;, . .., x;) which charac-
terizes the possibilities of realizations of various values of parameters o
after the information about the sample x,, ..., x; has been added to the

prior information P(a). Here P(x,, ..., x;|a) is the conditional and P(x,, ...,
x;) is the unconditional density of occurrence of the sample x,,..., x;:

P(xy...,x) = jP(xl, ooy X | ) P() dot.
Below we shall show that the posterior mean, i.e., the function
Po(x|xqy ...y x) = J'P(x, )P(a|xy, ..., x;)da (3.18)

is the solution of the Bayesian problem.
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In general the density Pg(x|xy, ..., x;) obtained as a result of averaging
functions P(x,«) with respect to the measure P(x|x,,..., x;) need not
belong to the parametric family P(x,«) under consideration. Therefore,
strictly speaking, the method for constructing the posterior mean (3.18)
cannot actually be called the estimation of a function belonging to the class
P(x, o).

Thus we obtain a function n(x; x,, ..., x;,) which minimizes the functional

Ry() = j (P(x|2) — n(xixpn .. X))
X P(xy, ..., x;|0)P(a) dadx dx, - - - dx;. (3.19)

Denote
(XX, .., X)) = J(P(x|oz) — (x; Xy, .0, X))2P(xy, . .., x| 0)P(ar) do.
Interchanging the order of integration in (3.19), we arrive at
Rg(n) = fr(x; Xy, .oy Xpdxdx, - dx,. (3.20)
We now transform the function r(x; x, ..., x):
XX, ..., X) = JPZ(x]oc)P(xl, oo X |0 P(o) dot
— 21(X; Xy, ooy Xp) JP(x|oc)P(x1, ooy X ) P(o) da
+ 12X Xy, .00 X)) ~[P(xl, X oP@de. (3.21)

Denote

_ [ P(x|a)P(xy, ..., x;| ) P(ar) dot

P(x|xy, ..., x) P(x x)
Loy X

where
P(xy,...,x) = fP(xl, ooy X ) P(a) da,
and rewrite the equality (3.21) in the form
XX, .., X)) = jPz(xloc)P(xl, o X ) P() do

— PX(x|xq, ..., X)P(xy, ..., X))

+ [P(x|xy, oy X)) — (X5 %45 -0y X)TPP(Xg, - ooy X))
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Substitute the expression for r(x; x,, ..., x;) into (3.20). This results in a
functional which can be expressed as the sum of two summands

Rg(m) = Ry + Ry(m),
where

R, = J[Pz(xla)P(x,, veey X 0)P() dot
— P(xy, ..., x)P¥x|x,, ..., x)]dxdx, ---dx,,

R,(n) = f[f’(xlxl, v X)) — (X5 Xq, ey X)) dx dxy -+ dx,.

The first summand does not depend on n(x; x, . . ., x;). Therefore minimiza-
tion of Ry(m) is equivalent to the minimization of the second summand
R, (). The minimum of this summand is zero and is attained if

(XX .., %) = P(x|xy, ..., x) = Pg(x|xy, ..., x).

In succeeding sections, for prior distributions P(x) Bayesian approxima-
tions of densities will be obtained. The construction of a Bayesian approxima-
tion for a fixed prior distribution P(x) depends on whether the expression
(3.18) can be integrated analytically.

§6 Bayesian Estimators of Discrete
Probability Distributions

In Section 3 the probability distribution function of the discrete independent
features (3.12) and (3.13) was introduced. Here we shall show that, under
minimal prior information concerning the values of the parameters p'(j),
namely: for each i the parameters p(1), ..., p'(r;) are uniformly distributed
on the simplex

Ci = {Pi _;ilpiO) =1,p(j) = 0}

The Bayesian estimator of the probability distribution of discrete independent
features equals

Po(x) = [ Palx),

where
iy my(1) + 1
P =—7 .
Py(x') =
ai myt;) + 1
(ry =
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myj) i1s the number of vectors in the sample such that the rth coordinate
takes the jth value, t; is the number of values taken by the ith coordinate, and
lis the sample size.

We now obtain the Bayesian estimator of the probability distribution of the discrete
independent features. For this purpose we compute the function
[ PO | p)P(x, ..., xi| p)P(p) dp

P(xi, ..., xilp)P(p) dp

Py(x’) = (3.22)

In our case
pi(l)y  forx' = (1),
P(x'|p) =
pP(r;) for x' = c'(x).
First compute the denominator of (3.22). Since the sample is random and independent,
we obtain

. . 1 AN oo .
fP(X'l- X pP(PYdp = — | [] P'D)I™Y dpi(1) - - - dp'(z)), (3.23)
Cj=1
where v is the volume of the simplex C;. It is known (see, e.g. [52]) that the definite
integral (3.23) may be computed analytically:
1Tm(1) + 1) Tlm(z) + 1)

PO o) = R o b ) +7)

(3.24)

where I'(n) is the gamma function. For integer n this function is given by
I'(n)=@m- 1N
We now derive the numerator of the expression (3.22) for the case x* = ci(k):

- f P(x' = ¢(k) | p)P( . ... x| P)P(p) dp
C

1 LI, N .
=- f P [T D()I™ dp'(1) - - - dp(z)).
vJe, j=1

The definite integral I} is equal to (cf. [52])
i L Tm(h) + 1) - T(myz) + 1)F(m(k)+2) (3.25)
CT e Tm() + -+ mx) + 7+ DRmk) + 1) '
Dividing (3.25) by (3.24), we obtain

F(n1 (k) + 2T + T,,) myk) +1 1

Polx = ) = T It s D Tax
Thus
5l = @f‘lf L forad = (1),
Py(x) =
pi(z) = ;52 1 forv = c'(ty).

Since the features are independent, we have Py(x) = [ [}=, Pg(x).
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§7 Bayesian Estimators for the Gaussian
(Normal) Density

We shall now obtain Bayesian estimators for the Gaussian (normal) density
in some special cases of the prior distribution on the parameters. First we
shall obtain Beyesian estimator for the univariate normal distribution
N(u, %) under the assumption that the parameters u and o of this distribution
are distributed uniformly on therectangularregion0 < ¢ < I, - T < u < T.
It turns out that if IT and T are sufficiently large, then the Bayesian estimators

are equal to
E() [ (* = Xem )2]“"“/2
Pg(x) = 1+ P , (3.26)
? emp (I + Doluy

where

1 i 1 1
xemp = —i Z Xiy o-zmp = 7 Z (xi - xemp)z'

(See the derivation below.)

Next we shall obtain the Bayesian estimators for the n-dimensional
normal distribution for a special prior distribution on parameters x and A
(u is an n-dimensional vector of the means and A is an n x n covariance
matrix). It turns out that in this case the Bayesian approximation equals

! ( — Xem )TS_I(X — Xem ) iz
Pa() = S|(132 [1 + L b . (62D

I+n
{—=
(=)

( + D21 (/2)’
the vector X, is an estimator for the vector of the means:
1 l
=T
and S is the empirical covariance matrix:

1
l;

where

E() =

Xemp

S=

(X,- - xemp)(xi - xemp)T'

|IM-...
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Note that neither of the estimators (3.26) and (3.27) belongs to the normal
class. However, it is easy to verify that in both cases

Py(x) ;=2 N(u, A).

1=

asl — oc.

Yetanother remark: In order to calculate explicitly the Bayesian estimators
of a multidimensional normal distribution (see Section 7.2 below) it was
necessary to consider a special prior distribution on the parameters which
differs from the uniform one (used in the univariate case; see Section 7.1
below). However, the Bayesian estimators for the univariate case obtained
from (3.27) by setting n = 1 is close to the one obtained assuming the uniform
distribution on the parameters in the univariate case (3.26).

7.1 Bayesian Estimator for the Univariate Normal Distribution

Let the variable x be distributed according to the normal distribution

1 (x — u)z}
P(x;p,0) = —- :
(<3 4.0) w/27zaexp{ 20°

Moreover, let the prior distribution of parameters 4 and ¢ be uniform in the rectangle

0<o<TIl, —T<pu<T,; since the sample x,,..., x, is random and independent,
we have
1 2
Zi: (x; — ) }
P(xy,...,x;; 4, 6) = ————€X s
( 1 1 H ) (27'[)’/20'1 p{ 202

In view of (3.18) the Bayesian estimator of the probability density is equal to

1 1 r I 1 1 1
0 = (sgrigen |, [ mroml- g (0=« -0 )

1 1 J‘T J‘”l 1 Zl( Y S dud >_1 (3.28)
- —eX —_— . — (03 . .
“Lrnan®l ), P T2 H T

We shall assume that the intervals [~ T, T] and [0, IT] are so large that the limits of
integration in (3.28) may be extended to (— oo, o0) and (0, co) respectively. This can
evidently be done if /| > 2. In this case the integrals in (3.28) are convergent. We compute
the numerator of (3.28):

1 © x© 1 1 1
I(x) = ——expd— — [ S = w? + (x — w?) Y dudo. (3.29)
\/27( -o o O 20" \iT4
Denote
1
T(w = Z(x,-—y)Z_}_(x_#)Z, y=\/—@,

i=1 (22
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Then the integral (3.29) becomes
I(x) = 1 fw Jm e exp{—3y*} dydu
V2r - do TP :

@ y2
lexpd — Lpdy.
,/_an T“(m Y e"p{ 2} Y

w y2
() = f y”lexp{——}dy,
0 2

where ¢(I) depends on neither y nor on g, this integral can be rewritten as

c(l )
I(x) - J T’/Z(ﬂ)

We now transform the expression for T(u). For this purpose we note that

Denoting

!
Z (xi - #)2 = lagmp + l(.u - xemp)27
i=1

where

2 1

emp_7

™M™~

xemp = Xis g ( Xi — xemp)z'

— -
uM...

i=1

The expression for T(u) is transformed analogously to yield

T(w) = lokny + Wit = Xemp)® + (x — p)>.

Now set
X = ‘efii{
I+1
and rewrite T(u):
l
T(ﬂ) = lagmp + [+ 1 (X - xemp)2 + (i - ”)2(1 + 1)

We now write the integral I(x) in the form

! d
1) = <0 f l H _
[ Oemp m(x — Xemp)® + (X — (U + 1)]

c(l) , I(x = Xopp)?\ "¢~ 12 dz
= laemp + . << f —"—21/_2 .
V2 + 1) g+ —w (1 +29)
Observe now that the integrand is independent of the parameters. We thus have

2\ —(—-1)/2
Ix) = c(, amp)<l + (X = Xemp) )

I+ Yol (3.30)
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To obtain a Bayesian estimator it is required only to normalize the expression (3.30):

I(x)

Py(x) = = 100 dx

It isknown (cf. [52]) that the integral in the denominator equals the following expression:

+ + oo dx
f I(x)dx = c"(l, Uemp)f (x —x. P\ 2
- T ®© 1+ o Temps
( (I+ l)rf?mp)

— N\l
"(, Temp) Tempn/ | + 1.r<§>r(E - 1)

=
)

J{l‘lr(%)re - 1) nl + 1)r<é - 1)1

Ew0+u-nmjﬂ“5

Denote

Thus

(I + Dolyp

Py(x) =

emp

7.2 Bayesian Estimator for the n-dimensional Normal
Distribution

To obtain the Bayesian estimator for the n-dimensional normal distribution, the
following two facts from the theory of multidimensional normal distributions are used:

(1) The convolution of two multidimensional normal distributions N(0, A) and N(y, yA),
where 7 is a positive number, is the normal distribution N(y, (1 + y)A). In other
words the equality

me—uM%MLMw=NmU+ﬂM
E,

is valid (see [4]).
(2) The distribution of empirical estimators S of the covariance matrix A given by the
formula
1

1 1!
S= 7 Z (Xi - Xemp)(xi - Xemp)Ts Xemp = 7 Z Xis
i=1 i=1
is expressed by the Wishart distribution (see [5]):
)

C A -~ 1)/2 S(l*n*l),"z __S Afls f S 0
W (5: ) —) Gl AT IS) em{zp[ ﬁ or| 5| > 0,
0 for|S| <0,
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where it is assumed that [ > n + 1, Splla;| = Z;‘:l a;. The quantity C, , is a con-

stant and equals
! —(-1)m/2 n 1 —i -1
C,.1= <<§> | F(——z )) . (3.31)
i=1

Since the Wishart distribution sums to 1, we have

! 1
[ sy exp{— ESP[A“S]}dS = Fo 1A (33
IS|>0

n.l

We now derive the Bayesian estimator. Denote the matrix A™! by 9. Clearly |A| =
1/|2]. Let the prior distribution of parameters u and A of an n-dimensional normal
distribution N(y, A) be defined in the form

Py 4, 2) = Pu|2) - P (D),

where the vector u is distributed according to the normal distribution
—_ 1/2 w T .
P(u|2) = c,|2| eXp{— 5(# —a) 2 — a)},

here ¢, is a constant, w > 0 is a number, g is a vector, and 2 is a matrix distributed
according to the Wishart distribution:

P (%) = C, A~ V2| g o202 exp{— X;Sp[A@]} for |2| > 0,

0 for|2| < 0.
Here v > n + 2is a constant, 4 is a matrix. Observe that
Sp[2xx™] = Sp[xx"2] = x"9x, (3.33)

where 2 is a symmetric matrix and x is a column vector. We now write the joint density
P(x,, ..., x| p, @) for a random independent sample x,, ..., x;:

- 5=1 (x; — ”)Tg(xi - #)}
2

=0 |@|1/2 exp{-—% Sp[l@S + I‘@(Xemp - lu)(xemp - .u')T]}

P(xy, ..., %1 D) = c;|2|"? exp{

Here and below ¢, ¢, ¢,, and c5 are constants which are determined by normalizing
conditions. In view of Bayes’s formula the posterior density P(u, 2|x,, ..., x;) equals

P(u, 21xy, ..., X)) = co Plxy, . . o, Xyl s DIP (1| DIP (D). (3.34)
Compute the right-hand side of (3.34):

P(u, 21x,...,x)
= ¢o|2|"? exp{—$SpIDS + ID(Xermp — 1) Xemp — )71}
x ¢;|2|"* exp{ -} Sp[Zw(u — a)(u — a)']}
X ¢y Cpy|2[07" P2 |0A |2 exp{—~3 Sp[vZAw]}
=¢3| D" D2 exp{—$ SPLIDS + 1D (Xemp — 1) (Xemp — W)
+ 02(u — a)u — a)T + vo2A7}. (3.35)
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Transforming the expression in the exponent of (3.35), we obtain

9(IS + I(XEmp - Au)(xemp - .u)T + U)(.u - a)(# - a)T + va)
= 9[( + w)u — b)(u — b)" + (I + v)B],

where the notation
IS+ ond + 2 X )T
WV e (Xemp — D Xemp — 4
emp ' I+ w P P

p o Demp a0 g (3.36)
I+ w I +v

is used. Using this notation we rewrite (3.35):
Py, ?|x,y, ..., X)) = 3 |@|U+V-"vw2
x exp{—3 Sp[Z((l + w)(u — b)(u — b)' + (I + v)B)]}. (3.37)

The normalizing condition allows us to determine the constant ¢;:
[+v
(.:; — J\| Q](Pr\‘*n* 22 exp{_ ,2,l Sp[@B]} do
- I+ o . N
x [l expy— - Sp[Z(u — b)(u — b)' ] dp
27'[ n2
= < ,7,,> (Cn.l+v!(1 + ‘y)B;‘l+\'“l)/2)' l.
)

The outer integral was computed utilizing equality (3.32). Finally we obtain the Bayesian
estimator

Pg(x) = fP(qu, DP(, Xy X)duds

1 3
= J(ZH)’"ZI?I1 ZCXP{— SO - W' (x — u)}(‘sl”fi””’"’ "

2

2n \"? [+ v
. T (I+v-n-2)2 , o .
= (1 w) J‘q}(jl pr{ 5 Sp[{/B]}d{f

x f(zm "2 e 2| )]

I+ i I+ v
x cxp{— = BT — b)} exp{— . Sp[@B]}d,u ds

1 I+ !
x cxp{f 5 (= ' — ll)} Cxp{f 5—(—) (0 — b)Y — h)} du.

Observe that the inner integral with respect to g is a convolution of two normal distribu-
tions; we thus obtain

Py(x) = 3 f(l O R L7 (e

\ [+
X cxp{—ZSp[9<B(1 +) + (o (x — b)(x — b)T)]}d(z. (3.38)
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In view of (3.32) we have

ol +o+ 1)
Py(x) = —Lé———
nl+v+1
I+ —(1+vy2
(+v)B + I—-G—j%(x — b)(x — b)"

- [+ w 1 " Coi+v
l+w+ 12z

X

Cn,l+v+1
I(l + v)B'(l+v-l)/2
I+ w
I+w+1

(3.39)

(+vy2 "

(' +v)B + (x — b)(x — b)F

We now transform the expression (3.39):
r I+
1 l+o0 " 2
Py(x) = {= ]
r +v—n
()

nl+ow+1
[(I+v)-B|" 2

(3.40)

I+ w 1 a+wiz:
- —b _ TB—l
+l+w+ll+v(x Yx = b)

In the denominator of this expression I is the unit matrix. Observe that the matrix
(x — b)(x — b)T and hence the matrix (x — b)(x — b)"B~! are of rank 1. Thus only one
of its eigenvalues is different from zero, which implies that the denominator of (3.40)
is equal to

I+ w 1 (42

I+o+1l+v

(x — b(x — b)'™B~!

l+o 1 a2
1+ % x—bBUx—b :
<+l+w+ll+v(x )BT )>

Thus we finally obtain

r<l+v>
1 I+ \*? 2
PB(X):<“ ) T+v—n

r( 2 )

nl+w+1
[(I + v)B|~'/?

X .
l ] (d+v)/2
(1 TP BB (x - b))

l+wo+11+v

We now assign specific values for vand w in order that under the conditions of the scheme
we shall obtain the most general (undetermined) prior conditions:

(1) v=n+ ¢ (¢ > 0). This condition is necessary for integrating Wishart’s distribu-

tion.
(2) w -0, e » 0. This condition assures that each of the elements of the matrix 4

tends to zero.
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Then in view of (3.36) we obtain that b — x.p,,, (I + v)B — IS, whence

[+n
1 )"/zr( 2 ) |S|712

(+ Dn I I ~ vz
l"(i) (1 + 7—+—1 (X — Xemp)TS l(x - kap)>

Pg(x) = (

Finally for the one-dimensional case (setting n = 1) we obtain

I+1
ot
1 1 2 1
TE(I + I)Uemp r 1 . 1 (X _ xemp)z (d+1)y2°
2 [+1 o2

emp

Py(x) =

§8 Unbiased Estimators

In the preceding sections, the Bayesian estimators of a probability density
for special prior distributions on parameters were obtained. However, in
practical problems the prior distribution is usually unknown. The minimax
scheme of estimating the density may lead to overly imprecise results. It
would therefore be desirable to find a sufficiently reliable method of estimating
densities which is not connected with the Bayesian approach. How can this
be done?

Assume that there exists a method of estimating densities which is best
not only on the average (this corresponds to the Bayesian criterion), but also
the best for estimating each specific density. For this uniformly best method
to exist it must be independent of the prior distribution imposed on the
density.

Unfortunately there is no such (uniformly best) method of estimation in
the class of all possible methods. Indeed there exists a trivial algorithm
which estimates the density to have the same fixed values of parameters
independently of the sample. Such an algorithm estimates a single density
with complete precision, while it is a poor estimator for all the other ones.
This estimator is of course the best for its own density.

However, while there is no uniformly best method in the class of all
possible estimation methods, there may perhaps exist such a method in a
more restricted class. This prompts the idea of restricting the class of all
possible methods of density estimation and attempting to find the best
method within the class. It turns out that if we restrict the class of estimators
to the so-called unbiased estimators of density, then the problem of finding a
uniformly best one admits a solution.

Definition. We say that the function n(x; x,, ..., x,) is an unbiased estimator
of the density P(x,a*) belonging to the class P(x,a) constructed from a
sample x,,...,x; of size | obtained according to distribution P(x, a*) if
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the mathematical expectation of the estimator 7(x,, ..., x;) equals the
density P(x, a*), i.e., if for any P(x, «*) belonging to P(x, &) the equality

M7(x; Xy, ..., X)) = P(x, 0%)

is valid.

Note that the unbiasedness property has no value on its own and it is
introduced solely to narrow down the class of possible estimators. The
reason why the class of unbiased estimators is widely used in statistics is that
this class is accessible to analysis.

What is the meaning of this accessibility? We write once again the defini-
tion of an unbiased estimator:

fn(x;xl, cees XPP(X4, ooy X0 dxy - dxy = P(x, ). (3.41)

This expression not only determines unbiased density estimators, but
indicates a method for their construction: the set of unbiased estimators is
the set of solutions of Fredholm’s equation of type I. However, to obtain a
solution of Equation (3.41) is usually a difficult problem. It was shown in
Chapter 1 that even in the case when the solution of Fredholm’s equation is
unique, its numerical solution is an ill-posed problem. Therefore one can
obtain unbiased estimators of the density P(x,o«) only if Equation (3.41)
can be solved analytically.

In Section 10 an optimal unbiased estimator of density for a multivariate
normal distribution will be derived. Before proceeding to construct this
estimator, we note that in Chapter 2 a more general problem of density
estimation in the class of continuous functions was also reduced to a solution
of Fredholm’s equation of type I. In this case a special problem—obtaining
an unbiased estimator of a density known up to its parameters—is reduced
to Fredholm’s equation.

The substantial difference between these two situations is that in the
general case considered in Chapter 2 the right-hand side of Fredholm’s
equation of type I is known up to the error term. Here, however, it is given
precisely.

§9 Sufficient Statistics

The construction of the optimal unbiased estimator is possible in terms of
the so-called sufficient statistics. Up until now, when studying estimators we
assumed that the estimator of a density is of the form n(x;x,, ..., x)), i.e.,
the estimator is a function of I + 1 vectors: the vector x and ! vector-valued
variables x,, ..., x;. Fixing the last | variables we obtained a specific form
of the estimated density.

However, such a method of expressing the density estimator is not quite
convenient. Evidently n(x;x,,..., x;) should not depend on the order of
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the vectors x, . .., x; of the sample. Moreover, for another sample size, say
I + 1, it is necessary to give a new function (of dimensionality [ + 2).
Therefore it would be desirable to find k characteristics of the sample

tizfi(xl""axl)a i=1,...,k,

such that, first of all, the information concerning the density contained in the
sample x,,...,x; would be included in these k numbers, and secondly,
that the number of necessary characteristics k would depend not on the sample
size but on the features of the class of estimated densities. It would be de-
sirable to obtain an unbiased estimator n*(x;ty,..., t,) in terms of these
characteristics of the sample. Sufficient statistics indeed serve this purpose

(see [58]).

Definition. We say that the functions t; = f{(x,, ..., x;) are sufficient statistics
for the density P(x, a) if the joint density P(x,, ..., x;; @) of the sample can
be represented in the form

P(x.,....,x50) =Pty ..., 4 )Py(xy, ..., xp).

In other words, the joint density P(x, ..., x;; &) is decomposed into the
product of two terms. One of them, P,(-), does not depend on the parameter
o, while the other involving o depends only on the values ¢, ..., £, (but not
on the sample x, ..., X,).

It is easy to verify that for an n-dimensional normal distribution the following
n(n + 3)/2 quantities serve as sufficient statistics:

1
r =% Z xj, t=(y...,t)"  (nvalues);
!
el =3 (x, = 0(x, — )T (n(n2+ D values).
r=1

Indeed, for an n-dimensional normal distribution we have

P(xy, ..., x5 1, A)

1 11
R Oe 3 S WA )

i=1
1
= Qm)~" AT CXP{—%SP[A” ¥ — p)x; — u)T}]
i=1

— (2n)7nl/2|A'—l/2
!
x exp{—%SP[A"< G = 00 = )T + It — p)(t — u)T)]}
i=1

= (2m)" " A7 exp{—3 Sp[A™ (lityll + It — p)(t — W1}

In the derivation the equality z'Bz = Sp[zz"B] was used.
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Thus we seek an estimator of the density as a function of sufficient
statistics.

The remarkable feature of unbiased estimators n*(x;t,,...,t,) is that
they are in some sense always at least as good as the estimators 7n(x; x,, ...,

X,).

Theorem (cf. [35, 58]). For any estimator n(x;x,, ..., x,) there exists an
estimator m¥*(x;t,, ..., t,) such that for any density belonging to P(x,a) the
mathematical expectations of the estimators are the same:

Mn*(x;t, ..., t) = Ma(x; x4, ..., x;) = n(x),

but the variance n*(x; ty,. .., t,) is not larger than the variance of the estimator
(X Xqy 0, X)), L€,

M(r(x) — T*(x;ty, ..., 6))* < M(a(x) — n(x; X4, ..., x))>%

It follows from this theorem that the class of unbiased estimators—
expressed in terms of a sufficient statistic—contains the best one.

§10 Computing the Best Unbiased Estimator

We shall construct the best unbiased estimator of the density for a multi-
dimensional normal distribution. Here we utilize the fact that for distributions
of the exponential type there exists a unique unbiased estimator expressed
in terms of sufficient statistics [26, 35]. In other words there exists a unique
solution for Fredholm’s equation of type I,

fn*(x; toeens )P(tyy .y i) dty, ..., dt, = P(x, a), (3.42)

where P(x, o) is the normal distribution and P(t,, ..., t,;a) is the prob-
ability density of its sufficient statistics.

According to the theorem cited in the preceding section, the solution of
Equation (3.42), in view of its uniqueness, is the best unbiased estimator of
the density of a multidimensional normal distribution.

We shall show that an unbiased estimator of an n-dimensional normal

density is
-1
(5)
S
¢ - vaper(= 5 isi

b [1 — G - xemp);s_l(x — xemp):'(l‘"—wz‘

Punb(x) =

+
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Here x.,,, = (1/1) Yi-, x; is the vector of the means,

1 !
7 ; - xemp)(xi - xemp)T

is the empirical estimator of the covariance matrix A, and [z], denotes

[]. = z forz>0,
247 forz<o.

In deriving the best unbiased estimator of an n-dimensional density we shall utilize
Bayes’s formula

(xl’t’a)

P(x]t) =
where t = (ty, ..., t)%, x; = (x1, ..., xP)T, the density g(x,, t; «) defines the distribution
of statistics x; and t, P(t, o) is the distribution of z, and ¢(x;,|t) is the conditional density.
We shall show that the conditional density (3.43) is an unbiased estimator of the density
P(x, a). Indeed,

J(p(x,|t)P(t; a)dt = fq(x, t; o) dt = P(x, o).

And since the unbiased estimator expressed in terms of sufficient statistics is unique,
@(x|t) is the best unbiased estimator.

We now compute ¢(x|t). First we shall find g(x, t; «). For a normal distribution
of the occurrence of vector x we have

q(x, t;0) = q(X, Xemp» S5 11, A),

where
l ! 1 1 .
X = Xy, xemp = 7 Z Xi, - 7 Z - xemp)(xi - xemp) .
Let the vectors xy, ..., x, which form the triples X, X, S appear randomly and inde-
pendently according to the density N(y, A).
Consider vectors y,,..., y; obtained from x, — g, ..., x; — u by an orthogonal
transformation
( C1 oo ey 0]
¥ = Cr-211 Ci-2)1-1 0
1 1 0
NI Ji-1
| 0 . 0 1]

Vectors y,, ..., y, are distributed independently according to the N(0, A) distribution.
The following relations are valid:

x1=,Vz+ll’ xemp'__
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We now express the matrix S in terms of the vectors y, ..., y,. For this purpose we
utilize the representation

1!—1
§=1 20— wi—

O = W =" 11 ["'1 xi = u]["‘ x —u]T
" ! ! i=21‘/l—1 i;,/l—l

_l—-—l l_lx.-—ll] B T_l'—l 3 ’_lxi—ll]T
! [-‘;,/I—-I(XI # l G =) i;./l—l

1
7 (x; — w)(x, — W),

and the fact that the transformation % satisfies

-1 -1
20— w0 — W =Yyt
i=1

i=1

We thus obtain

_1’_2 T Yier ==y (v =T =1p\"
S—TZJ’.'Y.‘*' ] : ] .
i=1

Denote
1!—2
D = 7 ZJ’iJ’;r-
i=1

Observe that vectors y,, ..., y, are distributed according to the normal distribution
N(0, A). Moreover the variables y,_;, y;, and 2 are independent. Since y,_,, v, are
distributed according to the normal distribution and 2 has a Wishart distribution, the
joint distribution P(y,_,, ¥;, 2,0, A) equals

P(yi-1, 1, 92,0, 8) = P(y,_1;0, A) P(y;;0, A) Wi ((2; A), (3.44)

where W,_, (2, A) is the Wishart distribution:

Wi-1(2,4)
| 214972 exp{ —1 Sp[A~'2])
Coi-1 |A'(,_2)f2 for |2| > 0,
0 for|2| <0,

and C, ,is a constant defined in (3.31).
We now express P(y,_y, y1, 2;0, A) in terms of x;, X, and S. First observe that

Y= X— it = e (x PRt
1= M T -1 = 7 ——Wemp — - B
JI-1 JI-1

D =1S - (%) = Xemp)(X) = Xemp)" (3.45)

-1



§10 Computing the Best Unbiased Estimator 69

Taking into account that the Jacobian of the transformation (3.45) equals
e+ 392 ] _ )2 and substituting (3.45) into (3.44), we obtain

[nln+3) 2 l (X, _ /J)
q(xi5 Xemps S5 1, A) = P( (Xemp — 1) — - 0, A)
e (=2 g NOS

[
X P(xl - Au707 A)Wl~1<ls - T:T(xl - xemp)(-xl - xemp)T; A)a
whence

q(xla Xempv S; K, A)

(I-n-3)/2

l(xl - xemp)(xl - xemp)T |9|”Z

-1

Quy'( — 1y Al exp{% SPIA™ (S + (Xemp — M)(Xemp — u)T)]}

n(n+ 3)/2
! “Chi-1

N

, (3.46)

= ifls — (xl - xem]p)(xl] - xemp)T - 0’
0’ ifls — (xl - xem[p)(xll— xemp)T -0

We shall now determine the denominator of the expression (3.43). For a normal
distribution of vectors x, the statistics X, and IS are distributed independently:
P(Xemp> S5 11, A) = P(Xemps 1, A)P(S; A), 3.47)

where X, is normally distributed with N(u, (1/))A), and IS has the Wishart distribution
W(S; A). This implies that

Cn.l ln/2|S|(l—n72)/2
P(Xemp’ S;Iu’ A) = (27_[),,/2

I ,  (3.48)
|AJ2 eXp{E SPLA™(S + (Xemp — W (Xemp — #)T)]}

if |S] = 0 and zero otherwise. C,, , is a constant defined in (3.31).
Substituting (3.46) and (3.48) into (3.43) we obtain

1 -1 - — T|{\(I—-n-3)2
T —)[(l _ l)n]f,,‘,z S — (.X xemp)()C Xemp)
|0 2 -1
x|t =

in the case when [S| > 0 and |S — [(x — X mp)(x — X YI/(I — 1)]] = 0. Observe that

emp.

(X - xemp)(x - Xemp)T
-1
IS]

lg_

— (1 _ (X - xemp)TS_l(x - xemp)).
I—1
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Hence we finally obtain

P(X[Xemp> S)

k)

-1
= F<T) [1 (= Xemp)"S T (x — xemp)]u—n-s)/z
fa- l)n]n/Zr(L___;_—_l)mll/z 1—1

+

where

2] z forz >0,
z =
* 0 forz<O.

§11 The Problem of Estimating the
Parameters of a Density

It would thus seem that we have succeeded in achieving our goal of construct-
ing a Bayesian estimator of a density and computing the best unbiased
estimator. However, the methods which were utilized in obtaining these
estimators substantially utilize special properties of the estimated density.
Therefore the methods studied above are not the common ones for estimating
densities of various types.

It is therefore of interest to study methods which perhaps do not yield
such precise approximations as those studied above but which are regular,
i.e., which could be used for estimating densities belonging to different
parametric classes.

To obtain these methods we shall reformulate our problem. We shall
assume that our purpose is the estimation of parameters of a density rather
than density estimation. We also assume that if one succeeds in solving the
intermediate problem of obtaining a “nice” estimator for the parameters of
the density, then the density itself can be satisfactorily estimated by choosing
as an approximation the density function P(x, «*), where o* are the estimated
values of the parameters.

Observe that when the normal (Gaussian) distribution is estimated,
neither the Bayes approximation nor the unbiased estimator of the density
belongs to the class of normal distributions. In the case when the density is
“assessed” by estimating its parameters, the approximations obtained
belong to the Gaussian class. (This fact of itself is of no value. It cnly indirectly
indicates how far the solution obtained may be from, say, the Bayesian
one.)

Thus we shall estimate the parameters o, of the density P(x, a,). The
quantity

d(otg, ;%4 ..., X)) = |ag — &(xy, ..., x)|?
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will serve as the measure of the quality of the estimator & = 4(x,...., x))
of the vector of parameters x = o, based on the sample x,,..., x;. The
mathematical expectation of the quantity d(z,,&:;x,.... X)), 1.e.,

d(ag, &, 1) = ftl(ao, Grxpy o X)P(xy, L xp ) dx g - dX

serves as the measure of the quality of estimators of « = %, based on samples
of size | (where P(xy,..., x;; a) is the probability density of the sample
Xia-nny X))

Finally the quality of an estimator used for estimating the parameter «
under the prior distribution P(x) will be measured by

Ry l) = f d(2, &, )P() do. (3.49)

The estimator & which yields the minimum of the functional (3.49) is called
a Bayesian estimator of parameters.

As in the case of density estimation, the prior distribution P(x) of para-
meters x is usually unknown; therefore, as before, the minimax criterion

Roox(@, D) = supd(a, &, 1)

makes sense. The vector & which yields the minimum of R, (&, [) forms the
minimax estimator of parameters. However, the construction of a regular
method for parameter estimation of a density is associated with the idea of
the best unbiased estimation rather than with the Bayesian or minimax
estimation.

Definition. We say that estimator & = 8(x,, ..., x;) is an unbiased estimator
of the vector of parameters a, if

f&(xl, e XPP(X g, L X ag) dxg e dX = .

Consider first the case when the probability density P(x, «,) depends only
on a scalar parameter a,. Then for the class of unbiased estimators, the
remarkable Rao-Cramer inequality is valid:

1
J‘(ocO — A%y, e, X)DPP(X Y, oy Xp5ag) dXy - dXy > o (3.50)
)

where

d?In P(x,, ..., X,
I,,,:—f n Plx, X %)P(xl,...,x,;ao)dxl--~dx,.

do?
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The quantity I is called Fisher’s information quantity. For an independent
sample it equals

2
lJ’d In P(x, g) P(x, a,) dx.
A derivation of the Rao—Crameér inequality is given in practically all modern
texts in statistics (see, e.g., [35, 49, 58]). The meaning of this inequality is
that the variance of an unbiased estimator (and this variance measures the
precision of estimation in the case of unbiased estimators) is never less than
the inverse of the Fisher’s information quantity.

Thus the right-hand side of the inequality (3.50) determines the limiting
precision of unbiased estimation of a parameter. An estimator for which the
inequality (3.50) becomes an equality is called efficient. The problem is to
obtain a regular method for constructing efficient estimators of para-
meters for various parametric classes of densities.

An inequality analogous to (3.50) may be obtained also for simultaneous
unbiased estimation of several parameters. In this case the Fisher information
matrix I whose elements are

J‘@Z In P(x,, ..., X;0)
I = —
Ou; Oar;

ij=12...,n

P(Xl, ...,xl;ao)dxl "‘dxl,

serves as an analog of the information quantity.
For an independent sample x, ..., x; the elements I;; are equal to

J‘(’)Z In P(x, oc)
l dx

u = -
Let the Fisher information matrix I be nonsingular, and let the estimators
@y (Xygyeees XDy oony Quxy, ..., X)) be unbiased estimators of the parameters
a?, ..., a2. Consider for these estimators a covariance matrix B, i.., a matrix
with the elements

by = M(a) — 8(xy, ..., XN — Bi(xy, ..., X))

Then a multidimensional analog of the Rao-Crameér inequality is the follow-
ing assertion: for any vector z and any unbiased estimators &,(x, ..., X;), ...,
&, (x4, ..., X)), the inequality

"Bz > "Iz 3.51)

is valid. The meaning of this inequality is as follows: let the quality of the
joint estimator of n parameters aJ, ..., a0 be determined by the square of
weighted sums of deviation (with weights z = (z, ..., z,)", z; > 0) over all
the estimated parameters:

n

2
T(xgy..., X)) = (Zzi(oc? — 8(xqy .., x,))) .

i=1
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Then the mathematical expectation of T(x, ..., x,) is bounded from below
by the quantity z"I™ 'z In other words, no matter how the quality of the
joint unbiased estimation of n parameters is measured (i.e., for any weights
z;), the bound

MT(x,,...,x)=z"1""z

is valid. In particular it follows from the inequality (3.51) that the variance
of the estimator with respect to each parameter separately satisfies the
inequality (3.50). Indeed, (3.50) is obtained from (3.51) for the specific
vectorz = (0,...,0,1,0,...,0)".

Estimation methods which yield equality in (3.51) for all z are called
jointly efficient. When estimating several parameters our goal is to find
jointly efficient estimators.

§12 The Maximum-Likelihood Method

Unfortunately there is no “regular” method to obtain efficient estimators
of parameters of density based on a sample of a fixed size. There is only a
method which allows us to construct asymptotically efficient estimators.
This is the maximum-likelihood method developed by R. A. Fisher [58].
However, before considering this method we shall introduce several notions
which are necessary for classifying estimators obtained from samples of
large size.

Estimators

I Unbiased J

Efficient Inefficient
e =1 e <1
Figure 3

In the preceding section the classification presented here in Figure 3
was introduced for the characterization of estimators of parameters of a
distribution based on samples of a fixed size. In this figure a measure of the
efficiency of an unbiased estimator of parameters «, is also shown. In the



74 3 Methods of Parametric Statistics for the Pattern Recognition Problem

case of a single parameter this measure is given by

1
O Mo — a0y X))y

(3.52)

In the case of joint estimation of several parameters the measure of efficiency
is defined by

(B, 1)
@ = (1,1’

(3.53)

which equals the ratio of the volume v(B, I) of the ellipsoid
zZ'Bz =1
to the volume of the ellipsoid
217 'z=1

For sample of large size a somewhat different classification is used which
incorporates the notions of asymptotically unbiased, consistent, and asymp-
totically efficient estimators. Estimators satisfying

Maoa(xl, Y xl) m 0(0
are called asymptotically unbiased. Estimators satisfying
Po{la(xy, ..., X)) — o] > &} 530

for all ¢ > 0 are called consistent. Asymptotic unbiased estimators satisfying

e =2 1

Asymptotically Asymptotically
biased unbiased
I Consistent ] l ‘Inconsistent l

/

Estimators

Asymptotically with asymptotic
efficient efficiency
O<e<l

Figure 4
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are called asymptotically efficient. Here ¢, is given by (3.52) in the case of a
single parameter o and by (3.53) when several parameters are jointly esti-
mated. This classification is presented in Figure 4.

The method of maximum likelihood involves examining the likelihood
function P(xy, ..., x;; ®). In our case, when the sample x,, ..., x, is obtained
as a result of random independent observations according to the density
P(x, o), the likelihood function can be represented as

i
P(xy, .., x;32) = [ P(x;, ). (3.54)
i=1

The method of maximum likelihood chooses as the estimator those « which
yield the maximum for (3.54). Along with the likelihood function (3.54) it
is common to consider the function

]
In P(xy, ..., x;50) = Y In P(x;, ). (3.55)
i=1

The maxima of the functions (3.54) and (3.55) are the same, and hence to
obtain maximum-likelihood estimators we need to solve the system of
equations

oP cey Xph
Xy X39) 0, i=12...,n (3.56)
oo
or the system of equations
Oln P(x,,...,x;
n (Xlﬂa X9 _ 0, i=12...,n (3.57)
Oo;

The theory of maximum-likelihood estimation, which is well developed,
aims to justify the applicability of this method. The substance of this theory
is that for certain classes P(x, ) (to which all the classes of densities con-
sidered in this book belong) the maximum-likelihood method assures the
asymptotic efficiency of the estimators (cf. [24, 58]).

We also remark that in the case of maximum-likelihood estimation the
problem is reduced here to a simpler one than the one encountered in
Bayesian estimation (multiple integration) or in constructing unbiased
estimators (solution of Fredholm’s equations of type I).

To implement the maximum-likelihood method it is necessary to solve
the system of equations (3.56) or (3.57). Although this is not always a linear
system, its numerical solution is not usually too difficult, and moreover,
for a wide class of functions there exists a unique solution.
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§13 Estimation of Parameters of the Probability
Density Using the Maximum-Likelihood Method

In this section, utilizing the maximum-likelihood method, we shall obtain
estimators for parameters of the distribution

p'(1), for x' = c(1),
P(x') =3 i=12...,n,
pi(ry), forx' = (1)),
Y. PG =1, i=1,2....n,
j=1

as well as for parameters of the normal distribution

1
NupA) = ————
W8 = Gayriamm

It turns out that for the distribution P(x’) the estimators are given by

.()

exp{—3(x — W' A" '(x — w}.

() = for x* = ci(1),

P(x’) = ; (3.58)
.( i)

pi(z) = =% forx' = ci(1),

where m;(j) is the number of vectors in the sample with the ith coordinate
taking on the value x' = c'(j).

Maximum-likelihood estimators of parameters of a multidimensional
normal distribution are given by

emp Z Xis

S = —[ _;l(xi - xemp)(xi - xemp)T'
Thus we obtain the following estimator of the normal density:

_ 1 1
P(X) = Wls—lf/—fexp{_f(x - xemp)TS(x - xemp)}‘ (359)

13.1 Derivation in the Discrete Case

We estimate the parameters of the distribution P(x’). First we form the likelihood
function:
P(xla'--’xl;p) HHP(xpp)
j=1i=
where x/ is the value of the ith coordinate of the j-vector in the sample.
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Interchanging the order of the factors, we have
n ! ) )
P(xy....oxnp)y =[] 1 PGS, p).
i=1j=1
We now proceed to the function
n 1 ) )
In P(xy,...,x;5p) = Z Z In P(x}, p').
i=1j=1

Constder the quantity
1
Y In P(xi, ph).
=1

It can be represented in the form

! T
Y In P(xi, pYy = Y my(r)In pi(r),
j=1 r=1
where m,(r) is the number of vectors in the sample such that the ith coordinate takes the
value x' = ¢i(r). Thus

In P(x,,...,x:p) = Zn: i my(r) In pi(r). (3.60)

i=tr=1

We now obtain the maximum with respect to pi(r) of function (3.60) subject to
Yio pi(r)=1,i=1,2,...,n For this purpose the method of Lagrange multipliers
will be used. We form the Lagrange function

noo

Lp. ) = 3 ) (m(r)Inp'(r) — A,p'(r)), (3.61)

i=lr=1
where the 4; are the Lagrange multipliers. The vector p' which yields the maximum of

L(p, 4) 1s determined by the system of equations

AL, ) m(r) .
A _ M) a0, i=1,....n 362
0 ) ’ " .

From (3.62), taking the condition
Yrin=1,
r=1

into account, we obtain

_myr)

P i

Observe that here the maximume-likelihood estimators turn out to be unbiased.



78 3 Methods of Parametric Statistics for the Pattern Recognition Problem

13.2 Derivation in the Normal Case
We now estimate the parameters u and A of the normal distribution:

P(x; p, A) = exp{—3(x — w)TAT (x — p)}.

1
@y 1A

We form the likelihood function
|21

1!
chP{_ 3 }Zl(xi = W'D(x; — u)},

where A™! = 9. We obtain its logarithm

P(xy ..., xp;u9) =

nl ! 1
In P(xyy ..., x5 10, D) = —51n2n+—ln|9|—— Z(x - WTD(x; — ).

i=1

Write
OP(Xy, .., %5 1 D !
(x, X5 U )= 9(2’@' _ l#) _ (3.63)
op i=1
OP(xy, .., xy2) 1 1 ! -
= —_ - - =0. .64
— AP R ORI S L)

Here we have used the relationship

din|A]|

=A%
dA

From Equations (3.63) and (3.64) we obtain

T

X ( Xi — xemp)(xi - xemp) .

emp

n[\/]_.

1
Xis S=@_l 7

IIM~

_1
I,

The estimator of the covariance matrix is biased.

§14 Remarks on Various Methods for
Density Estimation

Three types of estimation for densities defined up to parameters were con-
sidered in this chapter: Bayesian, best unbiased, and those obtained using
the maximum-likelihood method. For our specific problems of estimating
densities of two classes (3.58) and (3.59), all three estimators were obtained.
Which one is preferable for use in practice, then—which one should be
substituted into (3.7) to obtain decision rules in a pattern recognition
problem?

Theoretically the Bayesian is undoubtedly the preferable one. This
estimator optimizes a functional which defines the quality of the estimator
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in a reasonable manner. However, in order to obtain a Bayes estimator the
prior distribution of parameters of the density must be known, i.e., a dis-
tribution which determines how often in practice a particular density is
estimated. Usually this information is not available.

In Sections 6 and 7 Bayesian estimators were obtained for prior distribu-
tions which on the one hand contain fairly indefinite information but on the
other yield a maximal simplification of calculations. How much confidence
should be given to a Bayesian estimator based on one prior distribution if in
practice another distribution is implemented? Only a qualitative answer is
available to this question. As the sample size increases, the effect of the
prior information on the Bayesian estimator decreases. Thus the use of the
Bayesian estimator is justified by the belief that in practice the inconsistency
in the choice of a prior distribution has little effect.

When constructing the best unbiased estimator of a density there is no
need to take prior information into account. In this class of estimators there
exists a best estimator which is independent of a particular estimated density
belonging to this class. It would seem that no risk is involved in choosing
the best unbiased estimator in such a situation. Actually this is not the case.
It does not follow at all that the class of unbiased estimators contains
sufficiently “nice” estimators. It has already been mentioned that the
unbiasedness by itself is of no value and is introduced only to restrict the
class of estimators. The class of unbiased estimators is a narrow one (for
example, an unbiased estimator of the normal distribution expressible in
terms of sufficient statistics is unique). It is not excluded that the narrow
class of unbiased estimators consists only of rather “inferior” estimators
and then the choice of the best one in this class does not assure that the
estimator is satisfactory.

The example suggested by C. Stein indicates that this indeed is quite
possible: when estimating the mean vector p of the n-dimensional (n > 2)
normal distribution with unit covariance matrix I, the biased estimator

. n—2
xemp: I_IXT—.;— xemP

emp “vemp,

turns out to be a uniformly better estimator than the arithmetic mean

1 1
xemp = 7 _leia
i=

which is the best unbiased one. (More details on Stein-type estimators are
given in Chapter 5.) Stein’s example is remarkable in that it is constructed
for the simplest problems of parameter estimation and even here uniformly
better biased estimators exist.

Thus the choice of the best unbiased estimator can be justified only by
the belief that the class of unbiased estimators contains an adequate one.

Finally, the theory of maximum-likelihood estimators provides no
answers to the question concerning the properties of estimators for samples
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of finite size. The theory only guarantees that the maximum-likelihood
estimators approach the efficient ones as the sample size increases, i.e.,
with an increase in sample size, the quality of a maximum-likelihood esti-
mator approaches that of the best unbiased estimator.

Due to a lucky contingency, we were able in this chapter to find Bayesian
estimators explicitly, i.e., to carry out the analytic integration of a multiple
integral (numerical integration of multiple integrals of high dimensions is
troublesome) to obtain explicitly the best unbiased estimator of the density.
That is, we were able to arrive at an analytic solution of Fredholm’s Type I
equation (whereas a numerical solution of this equation is an ill-posed
problem). This result is due to a specific feature of the parametric class of
densities.

In general, however, such approximations can hardly be anticipated.
In this respect the maximum-likelihood method has an advantage in that
it can be used for diverse classes of densities. This property of the maximum-
likelihood method is due to the fact that it reduces to the solution of alge-
braic equations, i.e., to a problem for which efficient computer methods
exist.

Yet another remark: The methods for estimating densities discussed
in this chapter make sense only if the density under consideration belongs
to a given parametric family of densities. In practice, however, the prior
information which would allow us to select a parametric family of functions
containing the unknown one is not available. It turns out, in fact, that not
only the choice of a particular method of density estimation, but also the
choice of a parametric formulation of the problem of estimating dependences
from empirical data, is largely a matter of belief.



Chapter 4

Methods of Parametric Statistics for the
Problem of Regression Estimation

§1 The Scheme for Interpreting the Results of
Direct Experiments

In the preceding chapter methods of parametric statistics were applied to
solve the pattern recognition problem: to minimize the functional

I(o) = f (v — F(x, 0))*P(x, y) dx dy @.1)

with unknown density P(x, y), on the basis of empirical data
xlayl;-”;xl’yl’ (42)

first the density P(x, y) was estimated in the parametric class of densities
{P(x, y)}; then, using P(x, y), the empirical functional

Temp(@) = J(y — F(x, ))*P(x, y) dx dy 4.3)

was constructed; and finally a value a,,,, was determined which minimizes
4.3).

To implement this process it was essential that the coordinate y take on
only two values, zero and one; the set F(x, o) was a set of indicator functions,
and the density P(x, y) was a union of two densities. These were character-
istic features of the pattern recognition problem. In this chapter we shall
implement the same procedure of risk minimization, but in relation to the
problem of regression estimation.

For a solution of this problem using methods of parametric statistics a
specific model of density which differs from the one discussed in Chapter 3 is

81
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used. It is assumed that the random variable y and a random vector x are
related as follows:

y=F(x,°‘o)+f,

where F(x, a,) is a function which belongs to the class F(x, «) and ¢ is a noise
independent of x distributed according to the density P(£):

ME=0, ME? < 0.
Thus for any fixed x the distribution P(¢) induces the conditional density of y,

P(y|x) = P(y — F(x, a)). 44)
The joint density P(x, y) is defined by
P(x, y) = P(y|x)P(x) = P(y — F(x, 00))P(x), (4.5)

where P(x) is the probability density of the vector x.

The problem of regression estimation, F(x, o) € F(x, «), based on a
random and independent sample of pairs x,, y;,. .., X;, J;, can be interpreted
as the estimation of the functional dependence F(x, o) in the class F(x, «)
based on direct observations which are carried out subject to additive noise
at | randomly chosen points. In Chapter 1 this problem was called “inter-
pretation of results of direct experiments”.

We shall solve this problem using methods of parametric statistics. First
we estimate the density

P(y|x) = P(y — F(x, a*)),

and then we obtain the minimum point for the empirical functional

@ = [0 = Fx 0Py = FratDP) dedy. (46)

First we show that the minimum of the functional (4.6) is attained at
o = a*. We utilize the identity

Iemp(®) = f (v — F(x, ))*P(y — F(x, a*))P(x) dx dy
= = Fex, 4)PO = Fr 0P dx dy

+ f(F (x, @) — F(x, a*))*P(x) dx. 4.7

Since the first summand on the right-hand side does not depend on «, the
minimum of I,,(a) is attained if the second nonnegative summand vanishes,
i.e., at o = a*. Thus the value of the vector « = a* which defines the condi-
tional density P(y|x) = P(y — F(x, o*)) immediately determines the re-
gression. It equals F(x, o*).
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§2 A Remark on the Statement of the Problem of
Interpreting the Results of Direct Experiments

In the statement of the problem of interpreting results of direct experiments it is required
that the unknown function F(x, a,) belong to a given parametric family F(x, «). This
requirement 1s imposed because the density P(y — F(x, «)) is to be estimated by methods
of parametric statistics. However, another formulation is possible according to which
the unknown density P(x, y) belongs to a given parametric family of densities P(x, y; &)
and the desired dependence F(x, a,) does not belong to the given set of dependences
f(x, ). In other words, as the model for interpreting results of direct experiments the
following problem may be posed: find the minimum of the functional

Ip) = f(y — f(x, B)?P(y — F(x, 29))P(x) dy dx (4.8)
from the sample

Xy Yis -3 X W

if the joint density P(x, y) = P(y — F(x, 25))P(x) is unknown, F(x, a,) € F(x, o), and the
set of functions f(x, ) does not necessarily coincide with F(x, a). If F(x, o) ¢ f(x, B),
the minimum of the functional (4.8) is attained at a function belonging to f(x, ) which
is closest to F(x, o). The proximity is measured here in the L3 sense:

1/2
pu(F.f) = < f (F(x, %) — f (x, )*P(x) dx) :

If however F(x, ay) €f(x, B), then the minimum coincides with the regression. (This
fact also follows immediately from (4.7).) Thus the regression yields an absolute mini-
mum for the functional (4.8).

For a known density P(x) the solution of the minimization problem for the functional
(4.8) may also be carried out by means of the methods of parametric statistics: based on
sample (4.2), the density P(v — F(x, o)) is estimated and then the empirical functional

Lmp(B) = f(y ~ [ (x. ) P(y — F(x, a*)P(x) dx dy

is minimized.

Observe that for the problem of pattern recognition the search for a conditional
minimum (in the class f(x, §)) of a functional, rather than the absolute one, was the
subject matter of discriminant analysis. As it was pointed out in Section 2 of Chapter 3,
the raison d’étre for this formulation was based on the fact that the sample size is finite
and hence the density is estimated only approximately; thus the lower guaranteed
minimum for the value of the expected risk can be obtained for a function belonging to a
narrower class. An analogous situation arises for the interpretation of results of direct
experiments based on finite samples: due to imprecisions in density estimation, the
higher guaranteed proximity to regression may be attained at a function belonging to a
narrower class f(x, ). Methods for contracting classes of desired dependences in order
to achieve a lower guaranteed expected risk will be discussed in Chapter 8.
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§3 Density Models

Thus in order to estimate regression—under the conditions of the model for
interpreting the results of direct experiments—it is sufficient to estimate the
density P(y — F(x, ay)) defined up to the value of parameter a. In view of the
stipulated model, the parametric family of densities P(y — F(x, a)) which
contains the desired one is determined firstly by the given parametric family
of functions F(x, «) containing the regression F(x, a,), and secondly by the
known probability density for the noise P(&).

The assignment of a class of functions F(x, «) containing the regression
is an informal step in the formulation of the problem. This class should be
assigned a priori.

As far as the probability density of errors is concerned, here the choice is in
principle arbitrary. However, in the practice of direct experimentation certain
typical situations arise connected with common mechanisms which yield
observational errors. These mechanisms have been investigated. The
following three probability densities are of importance for interpreting
results of direct experiments: the uniform density, normal density, and

Laplace density.
The uniform probability density given by
1
— fi <A
P <l 3m foriei<a
0 for|é|>A

is used for roundoff errors. For example, let a value of a certain large quantity
x be measured up to its integer value. Then the error ¢ which arises from the
roundoff to the closest integer is often assumed to be distributed according to
the distribution

1 for|&] <05,

Py = {0 for |£] > 0.5.

The Normal (Gaussian) density given by

1 &2
P() = exps — ——
© Jﬂap{zﬁ}
is used to describe errors arising when repeated physical measurements are
performed under identical conditions. These conditions determine the value
of the variance o2. For example, errors resulting in measuring distances by
means of a theodolite carried out under the same conditions (the same
illumination, humidity, air temperature, degree of atmospheric pollution,
etc.) are commonly described by the normal density.
The Laplace density given by

Ho=§w%—%}
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is used to describe errors occurring in physical experiments carried out
under changing conditions. For example, if measurements of distances take
place in unequal cloudiness, at different times, and under different pollution
conditions, measurement errors are commonly described by a Laplace
distribution.

Each density P(&) generates its own parametric set of densities

P(y — F(x, a)).

In this chapter only the maximum-likelihood method will be used for
estimating the density in various parametric families. This method is chosen
because its implementation presents no technical difficulties. It is well suited
to all the parametric families of densities under consideration.

Thus we shall use the method of maximum likelihood for estimating
parameters of the conditional density

P(y|x) = P(y — F(x, 2))
from the random independent sample
X1, Vi35 X W
distributed according to the density
P(x, y) = P(y — F(x, 20))P(x).

For this purpose we write the likelihood function
4
P(xy, yine oo, X s ) = H P(y; — F(x;, 0))P(x;), 4.9)
i=1

and then express it as a product of two factors:

!
Pi(@) = []P(y; = F(x;, ), (4.10)
i=1

which is the likelihood function for the conditional density, and
1
P2 = n P(x,)
i=1

Since the factor P, does not depend on the parameter «, (4.9) and (4.10) have
the same maximum points. In what follows, the maximization of the function
(4.10) will also be called a method of maximum likelihood.

We shall now consider the likelihood function P,(«) for different distribu-
tions of the noise and find the corresponding maximum point.

The likelihood function (4.10) for the uniform distribution of ¢ is of the
form

l 1 1 1
Pi(A, 0) = — 0{0) = —— (o),
(8.2 = [ 5336 = 5 [16@)

=1
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where
. — ; <
5l(a) — 1 for 'yl F(XH a), - A’
0 for |y, — F(x;, 0)| > A.

The maximum of the likelihood function is determined by « and A for which
the minimum of the expression
A(x) = max|y; — F(x;, o)] 4.11)
Xiyi

is attained, i.e., « is chosen to minimize the largest deviation of F(x;, «) from
Yi-

For the normal density the distribution of the likelihood function is given
by the density

1 1 ¢
Py(a, 0) = m CXP{— Tcz .Zl(yi — F(x;, 0‘))2},

and the maximum-likelihood method is equivalent to the minimization of
the functional

Iemp(®) = _Z i — Flx;, m)*. (4.12)

The method of determining « by means of minimization of functional (4.12)
is called the least-squares method.

Finally, if the error is distributed according to the Laplace density, then
the corresponding likelihood function is

1 14
Pi(A o) = WCXP{— A .ZIU’.' - F(x;, Of)f},

and the maximum of the likelihood is attained for the vector « for which the
functional

i
I mp(0) = ;Iyi — F(x;0)] (4.13)

is minimized. The method of minimizing the functional (4.13) is called the
method of minimal modules.

As was indicated in Chapter 3, the method of maximum likelihood is an
asymptotically efficient method of estimating parameters; therefore ail
three algorithms are optimal in a certain sense. Unfortunately each one of
them is optimal only under its own conditions (of uniform, normal, or Lap-
lace distributions of errors), and solutions obtained by means of these
algorithms may differ significantly.

Indeed, consider the simplest problem of estimating dependences—the determina-

tion of the mean value of a random variable y from a sample of size /. This problem is
reduced to minimization of the functional

I@ = f (v — @)*P(y) dy @.14)
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on the basis ofa sample y, . . ., y,. Using the method of minimization of the largest devia-
tion (4.11), we obtain the solution

* Ymin + Ymax (415)

o 5 5

where y,.;, is the smallest and y,,, is the largest sample value; i.e., the estimator is the
half range of the sample. The method of least squares (4.12) yields the estimator

—_—

M~

o* = T Yis 4.16)

1

i.e., the estimator is the sample arithmetic mean. Finally, the method of minimal modules
(4.13) leads us to the following solution: order the observations according to their
magnitude,

Yipp»o o5 Yips
and compute the estimator using the formula

Vies forl =2k + 1,

o* =
Yad Vs for | = 2k

§4 Extremal Properties of Gaussian and
Laplace Distributions

In the preceding section it was shown that algorithms for estimating regression
obtained by methods of parametric statistics depend on the model adopted
for the errors. Therefore it is necessary to be able to identify situations in
which particular models are to be used. It was pointed out that the uniform
distribution is used for describing errors resulting from rounding off, Gaus-
sian distributions for measurement errors under identical conditions, and
the Laplace law for measurements under changing conditions. It would be
desirable to make these recommendations more precise.

In this section we shall establish certain remarkable properties for the
Gaussian and Laplace distributions. We shall see that the Gaussian distribu-
tion possesses certain extremal properties under the absolute stability of
measuring conditions, while the Laplace distribution possesses analogous
extremal properties under “maximal instability” of measuring conditions.

Thus we shall show that among all continuous densities with a given
variance, the normal distribution possesses the largest entropy. In other
words, the normal distribution is a “noise” distribution in which the size of
the measurement is undetermined to the largest possible extent.

We shall estimate the degree of uncertainty of measurements, in the case
when errors are determined by the probability density P(£), by means of
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Shannon’s entropy

H(P) = — J_ P(&) In P(¢) dE. 4.17)
We shall obtain a function P(&) obeying the restrictions
P($) =20, (4.18)
J‘_w P dé =1, 4.19
[ er@ac-o (420)
[Cerea-a @21)

for which the maximum of the entropy (4.17) is attained. Here the conditions
(4.18), (4.19) follow from the definition of the density, (4.20) reflects the
unbiasedness of the error, and (4.21) fixes the class of densities of a given
variance.

This problem is solved using the standard method of Lagrange multi-
pliers to take the conditions (4.19)-(4.21) into account:

L= —(PQ)In P&) + 4P + 2,£PE) + A3 E*P()).

We then write the Euler condition

Z—ﬁ = —(nPE) + 1+ A + A&+ A3 =0. 4.22)

The solution of Equation (4.22),
P(x) = exp{—(4; + 1 + &4, + £%4y)},

satisfies (4.18) and hence determines the desired density.
To obtain values of the constants A,, 4,, and A5 the conditions (4.19)-

(4.21) are utilized ; we obtain
1 & }
eXpi — == p» (4.23)
2no { 20

thus the normal density has the largest entropy among all densities with a
given variance (i.e., the random variable has the most “uncertain” distri-
bution).

Consider now a somewhat more complicated model for the error term £.
The value of random variable & is a realization of the normal distribution
Py(¢|0?) with mean 0 and variance o2. However, each time the normal
distribution has its own variance. The value of the variance is assigned
randomly and independently according to the density P(c*). Thus we have

P@) =
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the distribution
PA(x) = fPN(éloz)P(az) do. 4.249)

This model reflects well the practical situation when under fixed conditions
of measurements the normal distribution is valid. However, the measurement
conditions change randomly and independently, and thus the probability
density is a composition of two densities. In the example of measuring
distances the factor Py(x|a?) in (4.24) reflects the errors occurring under the
same atmospheric conditions. The factor P(a?) reflects the random nature
of the atmospheric conditions. If the measurement conditions do not change
(the extreme case when P(6?) = 8(6> — o) where d(z) is the delta function).
then the composition (4.24) defines a normal distribution. We, however,
shall consider the other extreme case when the experimental conditions
deviate from the mean in the ““most uncertain manner ”, i.e., when the function
P(c?) is such that the maximum of the entropy

H(P) = — f P(c?) In P(¢?) do? 4.25)
0
is attained and moreover the conditions
P(¢®) = 0, (4.26)
fP(o'z) do? =1, 4.27)
f 62P(c?) do? = 2A? (4.28)
0

are satisfied. The conditions (4.26) and (4.27) follow from the definition of
the probability density. The restriction (4.28) determines the average condi-
tions of conducting the experiment.

We thus derive the maximum of the entropy (4.25) under the conditions
(4.26)—-(4.28). Writing the corresponding Lagrange function—which takes
(4.27) and (4.28) into account

L = —(P(¢?) In P(¢?) + A,P(c?) + A,6°P(c?)),
we obtain the Euler equation

oL
5p =~ P(@®) + 1+ 44 + 1,0%) = 0. (4.29)

The solution of Equation (4.29) is
P(c?) = exp{—(4; + 1 + 4,07)}

which satisfies (4.26) and thus determines the desired density. To find the
values of constants 4, and 4, we substitute solution (4.29) into (4.27) and
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(4.28),whence 1, + 1 = —In 2A%and A, = 1/2A% Thusthe “most uncertain”
conditions for conducting the experiment are given by density

) 1 o?
P(O' ) = Wexp - ip . (430)

We shall show that the probability density P,(&) given as a composition
of densities (4.23) and (4.30) is a Laplace distribution, i.e.,

p(é)_—l_fwl _ & _6_2 do?
NS =t Jo 0O 202 P T A2 Y0

1 [
- exp{ - X}. (431)

In order to compute the integral (4.31) we shall use the following fact, which
is valid for any integrable function on (— oo, o0):

f ) f[(f - 9)2] dx = a J “fohdy  @b>0.  (432)
X 0

0 a

To prove this identity set y = z - g Then
RPN e FE AN [ S
[ rova=| f[(a x) ](a+x2 dx
1 [{x b\? © I'ix  b\*]dx
= L) Jere LG )5

Substituting the variable x = —ab/t in the last integral, we arrive at

LA
| _:f(yz) =+ wwf[(g - g)] ds.

Hence (since the integrand is even) we obtain the identity (4.32).
We now transform the left-hand side of (4.31):

1 ©1 G2 &2
P05 ), ool (3 -2 oo

® 1 (s £\
J‘o exp{— z (Z - 7‘—) }do: (4.33)

Thus

< el
J2nA? 7 a
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From (4.33) in view of (4.32) we obtain

1 © 1 2
PAO) = 5 exp{— 'K‘z'} fo N exp{— %} dy
1
=5 exp{— %} 4.34)

In other words the composition (4.31) of a normal distribution and distribu-
tion (4.30) results in Laplace density (4.34).

Thus we have shown that under fixed conditions of conducting an experi-
ment the most undetermined (uncertain) result is obtained when the error is
normally distributed; if however the conditions of the experiment oscillate
around some mean value in the most unfavorable manner, then the most
undetermined measurement result is obtained when the error is distributed
according to the Laplace law. Thus the choice between a Gaussian and a
Laplace law depends on whether the conditions of the experiment are per-
fectly stable or most unstable.

In practice, however, these two extreme cases seldom occur. Therefore
neither Gaussian nor Laplace distributions are usually fulfilled. It is custom-
ary to assume that an “intermediate” situation is valid.

Thus we are confronted with a situation where regression is estimated
under the assumption that some hypothetical distribution for the error is
valid (e.g., Gaussian or Laplace) while actually some other “intermediate”
distribution is the correct one. How useful will the algorithms given by (4.11)-
(4.13) then be? In other words, to what extent are the algorithms constructed
robust as far as the changes in the distribution of errors are concerned, and
how should one construct robust algorithms? The answer is given in the
succeeding sections.

§5 On Robust Methods of Estimating
Location Parameters

Let the probability density of the error be unknown. Suppose it is only known
that it belongs to a certain given set of densities {P(£)}. Below we shall define
such sets more precisely; for the time being we merely assume that they are
convex and that the density functions possess two continuous derivatives and
are symmetric around zero. (The symmetry is the basic requirement for the
theory discussed below.) The following problem will now be investigated.
How should one choose the hypothetical density for the noise from the given
class {P(£)} in order that the possible error shall have the least effect on the
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estimators of regression parameters if it is known that the true density belongs
to {P(&)}?

First consider the simple case: it is required to estimate the mathematical
expectation m of a random variable x on the basis of the sample x4, ..., x;.
If the mathematical expectation m exists the problem is equivalent to
estimating the location parameter m of the density P(x — m) (here we utilize
the fact that the noise ¢ is related to the measurement x by & = x — m).
For a known density P(&) the estimator A of location parameter m is carried
out by the maximum-likelihood method, i.e., by maximizing the expression

i

R(m) = : In P(x; — m). (4.35)

A

In this case the estimator i is consistent and asymptotically efficient.
However, if the function P(:) in (4.35) does not coincide with the density
function of the noise P(¢), estimator i yielding the maximum of (4.35) will in
general be neither consistent nor asymptotically efficient.

Denote the value i maximizing (4.35) under the assumption that P(&) =
PH&) by it = m(x, ..., x;; P(£)). We shall now determine how to measure
the accuracy of parameter estimation if it is assumed that the noise is distri-
buted according to the distribution Pr(¢) € {P(£)} while actually the true
distribution is Py(&) € {P(&)}.

It is natural to use the quantity

R(PL(&); X1, - -5 X)) = (hlxy, ..., x5 PH(E)) — m)?

as the accuracy of the estimator i based on a sample x, . . ., x;,assuming that
the noise is distributed according to the distribution P(¢). (This quantity is
the square of the deviation of the obtained value of the parameter from the
true one.) The accuracy of estimating a location parameter based on samples
of size [ is naturally measured by the mathematical expectation of the quantity

R(Pr(é), ITRRER xl):

D(Py, Pr) = MR(Pr(&); Xy, ., X))

- f (Axss - 323 PrE)) — m)*Po(xy — m) -

X Po(x; — m)dx, --- dx,. (4.36)

The quantity D(P,, Pr) depends on two probability densities belonging to
the same class {P(¢)}: the hypothetical density Pr(£) (according to which the
estimator i was constructed) and the true density P,(¢) (according to which
the mean square deviation was computed).
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Below we shall utilize the following representation of the function

D(POa PF):
PHE)
f ( - é)) Po(&) d

P’r(é)
( P é)) Py($) d&)

PH®)
N | (Pr(é)) Po(©) de
l( [, )
TP

We shall verify this representation by carrying out a not quite rigorous but
intuitively appealing argument. A rigorous theory of robust estimation is
presented in [88].

Without loss of generality it may be assumed that the true value of the
location parameter m is zero. Denote

Pr(d)
Pr(S)

Then using the maximum-likelihood method, the estimator # of the
parameter m = 0 is obtained from the condition

( 3 In Pr(s, - m))' = 3 S =) =

1
D(PO5PF)=7

4.37)

[ =

= (In Pr(0))"

We now utilize an approximation which is valid for large / and for the sym-
metric densities considered herein:

Z S — )~ ;f (x) — mZ S'(x) =0, (4.38)
hence
Z f(x)
o=
Y fx)

Let [ be so large that

f( x;)

—

||'M -

A

=
f FOPo(x) dx.
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(In the derivation of this relation it was assumed that the integral in the
denominator exists. For this purpose it is sufficient that the functions f’(x)
be bounded. Below we shall consider only densities satisfying |(In P(£))"|
< const).

Compute now D(P,, Py) = Mm?:

D(P,, Pr) = szpo(xl), coes Po(x)) dxy, ... dx;

1

f Y (xS (x)
[ f FIPo0) dx]

X Po(xq) - -+ Po(x)) dxq - - - dx;,.

Since the densities Py(x), Pr(x) are symmetric, we have

f FODFO)Po(x) -~ Polx) dxy - dxy =0, i #J.

Thus we obtain for large |
1
] J Y. fAx)Po(xy) dx; 1 sz(x)Po(x) dx
i=1
D(P09PF)=I_2 P =7 5.
( f S (X)Po(x) dx) (J F'(x)Po(x) dx)

Finally, returning to the original notation we obtain representation (4.37).

We have thus determined a criterion of quality for estimators of location
parameters given that the true density is Py(£) and the hypothetized one is
Pr(&). Our goal now is to choose a density P(&) which minimizes D(P,, Pr).
It is easy to show (see below) that if the density Py(&) were known, the mini-
mum of D(P,, Pr) would be obtained at P(&) = Py(&).

The problem is to choose Pr(¢) if it is known only that Py(&) belongs to
the class {P(£)}. As usual in such situations one of two approaches—the
Bayesian or the minimax—is taken.

In the first case, it is assumed that the probability for each density in
{P(&)} to be the true one is known a priori, and the measure of quality of
estimators is chosen to be the average (with respect to the measure u(P))
quality, i.e.,

Dy(Py) = f D(Po, Pr) dy(Po).

The minimax approach suggests that we choose as a measure of quality the
quantity D(P,, Py) evaluated for the least favorable density Py(¢) € {P(£)},
i.e,, to evaluate the quality from the condition

Dmnx(Pl") = max D(PO’ Pl')
Py
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Since the construction of a solution optimal in the Bayes sense encounters
substantial difficulties here, we shall study only minimax solutions below.
Thus we shall judge the quality of an estimator of a location parameter,
obtained by means of the hypothetized density P(), by the quantity

| ( ;g)zi’o(é) &
Dmnx(Pr)=n;ax D(PO,Pr):nLax PZ(é)P’o(é) s, (4.39)
’(f P(®) dé)

and attempt to obtain a hypothetical density P(£) minimizing (4.39).

Such a statement of the problem yields a game-theoretic interpretation.
Let there be two players—nature and a statistician—who possess the same
set of strategies (functions {P(£)}) but opposite goals. The first player
(nature) attempts to select a strategy (i.e., assign a true density Py(£)) which
will maximize the losses of the second player, while the second chooses a
strategy (hypothetized density P(£)) which minimizes his loss. The amount of
loss is determined by the functional (4.39).

It is required to obtain the optimal strategy for the second player, i.ec.,
to be able, for a given class of densities, to choose a hypothetized density
that will guarantee the minimum losses for the least favorable true density.
The density obtained will be called robust in the class { P(¢)}, and the method
of estimation of a location parameter obtained by applying the maximum-
likelihood method to the density obtained is called the method of robust
estimation of a location parameter.

An important fact in the theory of robust estimation of a location para-
meter is that the game with the loss function (4.39) possesses on the convex
set {P(¢)} a saddle point, i.e.,

max min D(P,, Pf) = min max D(P,, Py).
Poe(P(&)} Pre(P() Pr{P(&) Poe(P(&)

Using this fact one can obtain an optimal strategy against nature.
We now utilize the Cauchy-Schwarz inequality

< fa(x)b(x) du(x)) < f a’(x) du(x) f b2(x) du(x). (4.40)

Using this inequality we rearrange the denominator of (4.37):
PH(&))?
P
C ( - 5)) o) de 1
] >

Pr(&) Py(&) 2= G p) .
<f (Pr(é) Po(é))” o dé) : f(r@) Po(8) de

D(Py, Pr) =

(441)
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Observe that for P(£) = Py(&) the equality

)
| (PO( c)) Po(®) dé

is valid. It follows from (4.41) and (4.42) that the minimum of (4.39) is attained
if Pr(&) = Py(&), ie., the optimal strategies of nature and the statistician
result in the same density. To obtain this density it is necessary to maximize
(4.42) over the class {P(£)} or equivalently to obtain in the class {P(£)} a
density which will minimize the functional

g 2
Io(P) = I f (i@) P() d.

D(Py, Py) = 4.42)

P(%)

Observe that the functional I4(P) is the Fisher information quantity (cf.
Chapter 3, Section 11).

In Sections 7 and 8 we shall obtain for various classes of probability
densities those which minimize the Fisher information quantity and thus find
robust estimators (within these classes) of a location parameter. In the next
section we shall extend the result obtained here to the case of estimating
regression parameters.

§6 Robust Estimation of Regression Parameters

Let it be required to estimate the regression. We shall assume that the class
of functions in which the estimation is carried out and to which the regression
belongs is represented in the form

F(50) = 3 0,0,0)

where ¢,(x) is a system of linearly independent functions. As above, the
true and the hypothetized densities of errors Py(¢) and P(£) belong to the
convex class {P(¢)}. The densities are symmetric around zero and have a
bounded second logarithmic derivative.

To estimate regression parameters we shall use the maximum-likelihood
method, i.e., we shall obtain the vector « which maximizes the expression

1 n
In Pr(xy, yys--- 5%, y0) = 3. 1n Pr<yi - arwr(xf))- (4.43)
i=1 r=1

Let this vector be & = a*. Consider the vector of deviations of the obtained
values of regression parameters o* from the actual ones a,:

o= (ao - O(*).
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Form the covariance matrix B:
B=Mda-a,

which determines the quality of estimation of the vector of parameters a
(cf. Chapter 3, Section 11).
Below, analogously to (4.37), we shall obtain that for [ sufficiently large

the equalityt
’ 2
. (ﬁﬁg) Po(&) d
B= 17 RV o L (4.44)
( | ( . 5)) Po(®) dé)
1s valid, where
1 ]
by =7 L 0ol [0 Pax)d.

Thus the elements of matrix B are proportional to

)
. | ( = é)) Po(e) d¢
)

P® 2
( f ( 5 r@) P(©) d«:)

In the representation (4.44) it is important that only the proportionality
coefficient D(P,, Pr) (and not the matrix [k;;||) depends on the densities
Py(&) and Pr(¢). Therefore two quadratic forms z"B,z and z"B, z with the
same matrix ||k;;|| but different values of D(P,, Pr) correspond to two
different hypothetized densities Pr(£) and P(¢). These forms satisfy one of
two relations: either

D(Po,Pr) =

2B,z > z"B,z for any z
or
z'B,z < z"B,z for any z,

depending on whether D(P,, Pr) or D(P,, Pp) is the largest. It was shown in
Section 11 of Chapter 3 that the minimum of the quadratic form z"Bz
defines jointly efficient estimators of the parameters. Thus the value of the
coefficient D(P,, Pr) determines the quality of estimation of the parameters
of a linear regression: the smaller D(P,, Pyr) is, the better is the quality.
This means that in the case of estimating regression parameters the
problem of choosing a robust density leads to a game between nature and
the statistician. It was shown in the preceding section that in this game the
optimal strategy for the statistician is to choose a density belonging to the

+ We assume additionally that the matrix [ k;] is not singular.
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class of densities {P(¢)} which yields the minimum of Fisher’s information
quantity

4 2
Io(P) =1 J(%) P(&) dé. (4.45)

Thus, in order to obtain the best hypothetical model for the error in the class
{P(&)} it is necessary to find a function belonging to this class which mini-
mizes (4.45). This density will be used for the determination of regression
parameters using the maximum-likelihood method.

It remains to derive the relation (4.44). It is obtained analogously to (4.37).
Denote f(&) = Pr(&)/Pr(£). Then the maximum of the likelihood function
(4.43) is attained at values of « which satisfy the equations

1 n
Z f(‘fl - Z &r(pr(xi))(pk(xi) = 0’ k = 13 23 B (8
i=1 r=1
Utilizing the approximation (4.38), we have
1 n
Z f (5i - Z a, (Pr(xi)>(Pk(xi)
i=1 r=1
!

~ Z [f(fi) - f'¢&) gl&r(pr(xi):l(pk(xi) =0.

i=1

Due to the independence of &; and x; we then obtain, for [ sufficiently large,

1 1 1 n
1 Z:If(éi)‘/’k(xi) - J‘f'(é)Po(é) d;zl (Zl&r(pr(xi))(pk(xi) =0,

k=12,...,n,

or in vector form,

_ H

gl & 1 —————, (446)
[ roroe ae
where H is a column vector with coordinates h, = Y i_; @,(x;)f(&).
It follows from (4.46) that
1 1
a= Kl .

[rora

We now obtain the covariance matrix
| e
B = MaiT = 5 Nkl =

’ (ff’(é)Po(é) dé)

Returning to the original notation, we arrive at (4.44).
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§7 Robustness of Gaussian and Laplace Distributions

We shall show that Gaussian and Laplace distributions are robust, each in its
own class. As was shown in the preceding section, it is sufficient for this
purpose to show that in corresponding classes of densities {P(¢)} the Gaus-
sian and Laplace distributions yield the minimum of Fisher’s information
quantity (4.45).

For specific classes {P(£)} which are discussed below this problem be-
comes a difficult problem in the calculus of variations (the class {P(&)} is
defined by restrictions of the inequality type). Therefore we shall not obtain
the hypothetical density here by using a regular method, i.e., by solving
nonclassical variational problems, but rather we shall first identify these
solutions and then verify that they indeed define a saddle point of the function

()2
1 J (Pr(é)) PO
[T ((Pr®)\ 3
<f (Pr@) PO df)

In other words it will be required to verify that for a given density Pr(&) the
inequalities

D(P’Pl')=

D(P, Py) < D(Pr, Pr) < D(Pr, P)
are fulfilled. Observe that in view of (4.41) one of the inequalities, namely
D(Pr, Pr) < D(Pr, P)

is always valid. Thus in order to prove the optimality of the selected strategy
it is sufficient to establish the validity of the inequality

We consider the following classes of densities.

(1) The class of densities with a bounded variance. The corresponding
variational problem is to minimize the functional (4.45) in the class of
functions satisfying the conditions

) P&) > 0,
2 f P()dé =1,
3) f EP(E) dE = O, (4.48)

) fézP(g) dé < o
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Conditions (1), (2), and (3) determine the density of the error term, and
condition (4) is a bound on the variance. The solution of this nonclassical
problem (in view of (1) and (4)) of the calculus of variations is the density

P(¢) = L — 5_2
B \/271 o P 20*f
Indeed, substituting

P(&) = ! &
r()—ﬁ(;eXP sy

into the inequality (4.47), we obtain

2
[Sroa
71 1\~ ffzp(f) dé < o2, (4.49)
(;,—2 [ dé)

This inequality is valid for any density belonging to (4.48), since the class
(4.48) consists of densities for which the variance does not exceed ¢2. Thus
the normal probability density with zero mean and variance o2 is robust in
the class of all densities with the variance bounded by 2.

2. Now consider the class of nondegenerate at zero densities. Densities
for which P(0) > 1/2A belong to this class. We shall show that the Laplace
distribution is robust in this class of densities. For this purpose we substitute

_ 1 I
P& = 2A CXP{ —A_}
into (4.47). We obtain

: 2
| (—s‘g“ é) P(?) de

A |
= < A?
4 4P*0) —
or equivalently
1
P —.
© =33

And since the densities satisfying P(0) > 1/2A are included in the class { P(£)},
the inequality (4.47) is satisfied for any function belonging to this class. Thus
the Laplace distribution is robust in the class of densities for which P(0) >
1/2A.

The robustness of the Gaussian and Laplace densities (each in its own
class) is no less remarkable a fact than their extremal properties verified in
Section 4.



§8 Classes of Densities Formed by a Mixture of Densities 101

Although the Gaussian and Laplace densities are robust, the class in
which this property is valid often turns out to be exceedingly wide. In such
cases a more meaningful statistical model should be constructed on the basis
of other, narrower classes of densities.

Below in Sections 8 and 9 we shall consider certain specific classes of
densities and obtain robust densities for these classes.

§8 Classes of Densities Formed by a
Mixture of Densities

Consider the class H of densities formed by the mixture

P(&) = g(O)(1 — &) + &h(%) (4.50)

of a certain fixed density g(£) symmetric with respect to the origin and an
arbitrary density h(¢) symmetric with respect to the origin. The weights in
the mixture are 1 — ¢ and ¢ respectively. For classes of these densities the
following theorem is valid.

Theorem 4.1 (Huber). Let —In g(&) be a twice continuously differentiable
convex function. Then the class H possesses a robust density

(1 — &)g(&o) exp{k(& — &o)}s for & <&,
PH(&) =4 (1 — &)g(d), for &y < ¢ <&y, (451)
(1 — &)g(&,) exp{—k( — &y}, for ¢ =€y,

where o and &, are the end points of the interval [£,, &,] on which a monotone
(due to the convexity of —In g(&)) function g'(£)/g(&) is bounded in absolute
value by a constant k determined by the normalization condition

9(&o) + 9(&1)

. (1 — ¢).

&1
I=(1-¢ | g(&)d¢+
o

Prook. To prove this theorem it is required to show (as in the case of proving
robustness of Gaussian and Laplace densities) that functions belonging to
the class (4.50) satisfy

D(P, Pr) < D(Pr, Pr) < D(Pr, P).
As has already been mentioned, the validity of the bound
D(Pr’ Pr) < D(PI" P)’

follows from the Cauchy-Schwarz inequality (4.40). Therefore to prove the
theorem it is sufficient to verify that

D(PsPr)ﬁD(Pr,Pr)
for any function P(¢) € H.
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We represent the density Pr(¢) in the form of a mixture of a fixed density
g(&) and the density h(¢) = [Pr({) — (1 — &)g(&)]/e. We shall write the
density h(&) explicitly taking (4.51) into account:

1 —
—— (g exp{k(¢ — &)} — () for £ <o,

(&) =10 for o <& <&y, (452)

1 —
—— (g€ exp{—K(E — &} - g(@) for ¢,

It is easy to verify that h(¢) is a density. Indeed, | A(¢) d¢ = 1,and h(¢) = 0,
since by the assumption of the theorem —In g(¢) is a convex function and
hence is situated totally above the tangent:

~Ing(®) = —Ing&) ~ (=D& - &), i=0,1 (4.53)
This inequality is equivalent to the assertion
g(&) < g€ exp{(—=)k(¢ - &)}, i=0,1L
Consider the inequality

1 - — 2
f<Pr( €)> [(1 — &)g(&) + eh(&)] d¢ (1 —¢ J (Pr(ﬁ)) g(&) d& + ek

PO\, = (O o )
( | (P 20) 0 - 000 + son ) -0 ( | (Pr@)g(c)dé)

(4.54)

We shall verify that the right-hand side of this inequality is the least upper
bound for the expression appearing in the left-hand side for arbitrary sym-
metric densities h(&). For this purpose we observe that the function P(&)/P(€)
equals

k for ¢ <&,

PHO | g®
= f 1
P ") 9@ Oreests<t
—k for &> &,

where according to the condition of the theorem |g'(£)/g(¢)| < k, and the
function (Pr(&)/PH(&)) equals

0 for & < &,

PROY | (g©V
= f 1s
(Pr(é)) (g(é)) orco &<

0 for &> ¢,.
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Thus in order to maximize the left-hand side of the inequality it is necessary
to choose a density h(&) which is situated on the intervals (— o0, &,) and
(&,, ). Such a density simultaneously maximizes the numerator and mini-
mizes the denominator of the expression appearing on the left-hand side of
the inequality. The value of the expression appearing on the left will then
be exactly equal to the value of the right-hand side of the inequality. The
density (4.52) indeed belongs to the class of densities concentrated on the
intervals (— o0, &), (¢,, ). The theorem is proved. O

This theorem is remarkable in that it allows us to construct various robust
densities. In particular, if we choose for g(¢) the normal density

1 £2
g(é) - \/EEO' exp{_ 7‘2},
and consider the class of densities
Pe) = "% expl = SV ke
B J2ne P 26 ‘ ’

then in view of the theorem the density

— Kk
L—gexp{— - —|é|} for |¢] > ko,

\/ﬂg 2 o

1—c¢ £2
— - 2 k
\/Egaexp{ 202} for |&]| < ko

will be robust in this class, where k is determined from the normalization
condition

Pr($) =

2
: 1—¢ ko 62 y 2 exp{ 2}
\/2-710' J_kucxp{ 2‘72} -t k .
The density just derived is an intermediate density between Gaussian and
Laplace distributions. On the interval | £| < ko it coincides up to a normaliz-
ing constant with the Gaussian distribution and on the intervals |¢| > ko
with the Laplace distribution.

§9 Densities Concentrated on an Interval
We now consider yet another important class of densities and obtain a robust
probability density in it.

Consider the class K, of densities concentrated on the whole on the interval
[—A4, A], i.e, the class of densities P(¢) for which the condition

A
j PEdE>1—p
-4
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is satisfied (where p is a known parameter which defines the class K,). We
shall show that in this class the density

1 b , aé 14
o Z(l +bcos I) for 1 <1, s
r = .

1{ b , ¢ ¢

Z(l +bcos a) exp{—Zb( il 1)} for y >1

is robust, where the parameters a, b are related to the constant p—which
determines the class K—by the relations

_l_cosza
p= 1+b°
T
b= atanaq, O<a <§. (4.56)

Without loss of generality it will be assumed that 4 = 1 (the class 4 # 1 is
reduced to the case A = 1 by the substitution z = A¢). Thus the problem is
to show that in the class of densities satisfying the condition

1
f P@E)dE>1—p,
-1

the density
+bcoszfoc for |£] < 1,
Pr(¢) = , 4.57)
2 _ _
1_*_bcos aexp{—2b(|&| — 1)} for|&]>1

will be robust. To do this it is sufficient to show that P(£) given by (4.57)
minimizes in K, the Fisher functional

_ P'(9)\?
Ip=1 f (%) P(¢) de. (4.58)

Instead of directly minimizing the functional (4.58), however, we shall
utilize the fact that the necessary and sufficient condition for P{(£) to be the
minimum point for (4.58) is that the functional

R(Pr, P) =1 J(Z(—ln Pr(&))" = [(n PHOYNP(E) — Pr(&) dE (4.59)

is nonnegative in K. The functional R(Pr, P) is the derivative with respect
to ¢ of the expression

Io((1 — &)Pr(&) + eP(S)),
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evaluated at ¢ = 0, i.e,,

dlo((1 — &P() + eP(0))

= R(Pr, P). (4.60)
de

e=0

The nonnegativity of derivatives at ¢ = 0 (in any direction in K ) for densities
(1 — &)P(E) + eP(&) means that the minimum of I is attained on P(&).

Thus we shall verify that the expression R(Pr, P) is nonnegative. Since
the function under the integral R(Py, P)iseven, it is sufficient to verify that it is
positiveon theray 0 < ¢ < oo. First note that (4.57) implies that

(4.61)

. 2atan a¢ for |&]| < 1,
(=In Pr()) _{2bsigné for [£] > 1.

Substituting (4.61) into (4.69) and carrying out the calculations, we have

1 o
R(Pr, P) = 4a’l f (P(&) — Pr(&)) d¢ — 4b*] f (P(§) — Pr(&)) d¢. (4.62)
0 1

Transforming (4.62), we have

R(Pr, P) = 4a®| j (P(&) — Pr(&)) d& — 4b%] fn(P(é) — Pr(Q)) d¢

= 4@+ 00 [ (P&) - Pre e
0

Thus the expression R(Pr, P) is nonnegative for all P(¢) such that

fjlp(é) dé > f_llpr(c) dE=1-2 J;wpr(é) dE=1—p,

i.e.,, for all functions belonging to K ,.

§10 Robust Methods for Regression Estimation

In preceding sections we have considered several classes of densities and
obtained robust densities in these classes. It will now be possible in our
scheme for interpreting results of direct experiments to weaken the re-
quirements on prior information concerning the statistical properties of the
errors. It is sufficient to know the class of densities to which the errors belong.
In this case for estimating parameters of regression using methods of para-
metric statistics it is possible to use—instead of a true density—a density
which is robust in the given class. Obviously this replacement reduces the
asymptotic rate of convergence of parameters of the regression. This rate
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becomes proportional to some quantity I situated in the interval
Iiin < I < 1o,
where
1

max = sup ! 2 ’
POPO) | f (P (f)) P(¢) d¢
P(¢)

I

instead of being proportional to

o = o(©) ’
l f (P (é)) P(&) d¢

which is the limiting value attainable in the case of unbiased estimation of
the location parameter (cf. Chapter 3, Section 11) where Py(¢) is the true
density of the error. However, if the class {P(£)} of densities is not too wide,
then the possible loss of the rate is not overly large.

The basic constructive result of the theory of robust estimation considered
here is the determination of four classes of densities with specified robust
density.t We again identify these classes and their densities:

(1) The class of densities with variance bounded by a constant 6*. A robust
density in this class is the normal density

PO = exp] -
me J2no P 20°§
(2) The class of nondegenerate densities (for which P(0) > 1/2A). In this
class a robust density is

o) = 5 exp] - 1)

(3) The class of densities formed by a mixture of a known density (for example,
a normal Py(£) = (1/</2n0)e”%/??*) with an arbitrary density in pro-
portion 1 — ¢:¢.  In this class the density

2
c exp«{— %} for |€| < ko,
¢

Pr(&) =
= } for |&] > ko
c

2
c exp{7 —k

is robust (here ¢ and k are constants determined by means of ¢ and o).

+ There are other classes of densities for which robust densities have been found [46].
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(4) The class of densities concentrated on the whole in the interval [ — A, A]
(|24 P(&)d¢ = 1 — p). A density

4

¢ COS* — for
<

¢
2 — — —
¢ cos aexp{ 2b(| 1)} for

where ¢, a, and b are constants determined via 4 and p,is robust in this
class.

<1,

Pr({) =

>1

5

Now suppose instead of the true density for the error Py(£) we choose a
robust one in the class Pp(&); determine, by means of it, the density of the
conditional probability distribution

Pr(y - Z ('X,(p,.(x));
r=1
and finally utilize the maximum-likelihood method for parameter estimation.
Then we arrive at the following algorithm of regression estimation based on
the sample
X1, Vis-eos X Vi

One should minimize the functional

1 n
Iemp((x) = z d(yl - Z ar(pr(xi)>a
i=1 r=1
where
a@z) = z2,

provided the true density of the error belongs to the class of densities with a
bounded variance;
d(z) = |zl,

provided the true density of the error belongs to the class of nondegenerate
densities; 7
Z2
207
@) ="

——+ —|z| for|z| > ko,
2 o

for |z| < ko,

provided the true density is a mixture of a normal density with an arbitrary
one;

a
—2lncosZz for |z| < A4,

d(z) =
b(lzi— 1)—2lncos£z for |z]| > A,
a A
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provided the true density is concentrated on the whole on the interval
[—4, 4]

Among these four methods, the least-square method (d(z) = z?) and the
method of minimal absolute values (d(z) = |z]) do not involve free para-
meters. The latter method is the most universal—it is determined by a stable
density in a wider class of densities.

The other two methods of estimation involve parameters which are
computed from the quantities defining the classes of densities. These methods
should be used when possible to determine, as precisely as possible, the class
of densities containing the desired one.

Thus when estimating regression we were able to remove the condition
knowing exactly the error distribution. It is sufficient to know the class of
functions which contains the regression and a class of densities to which the
error density belongs. However, all of this theory developed for symmetric
densities is essentially asymptotic (since in deriving the basic relation (4.37)
the law of large numbers was substantially utilized). Therefore the belief that
the asymptotic situation will occur rather early is the only guarantee that the
algorithms obtained will be workable for samples of limited size.



Chapter 5

Estimation of Regression Parameters

§1 The Problem of Estimating Regression Parameters

In the previous section we considered methods for estimating regression
under conditions when the sample size increases indefinitely. However,
strictly speaking, the results were related to the problem of estimating regres-
sion parameters rather than the problem of regression estimation. This
substitution (instead of approximating functions we estimate their para-
meters) is legitimate for samples of sufficiently large size. As the sample size
increases, the estimated parameters approach the true values and hence the
function constructed using these parameters tends to the regression function.
However, for samples of limited size the estimation of the regression is not
always equivalent to the estimation of its parameters.

Indeed, the quality of the estimator & of the parameter a, of the regression
y(x) = F(x, a,) is determined by the proximity of the vectors a, and &:

p(og, &) = [|& — all, (5.1)
whereas the quality of the approximation of a function F(x, &) to the regres-
sion F(x, o) is measured by the proximity of functions. In Chapter 1 we
agreed to consider the mean-square measure of proximity

1/2
pLF(x, 00); F(x, &) = (J(F(x, &) — F(x, %9))*P(x) dX> . (52

The criteria (5.1) and (5.2) are not identical, and it is possible that a solution
which is the best according to one criterion may be the worst according to
another.

ExaMPLE. In the class of functions

F(x,0) = o«® + alx + o?x?

109
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Figure 5

on the interval [1, 2], let the regression
y=x*
be estimated. Consider two solutions (Figure 5): first the polynomial

F(x, &) = 0.5x2
and second the polynomial
F(x,&) = 3x — 2.

From the aspect of the parameter estimation criterion the first solution is
better than the second (in any norm (5.1) the vector & = (0, 0, 0.5) is closer
to the vector o, = (0, 0, 1) than the vector & = (=2, 3, 0)T is).

However, from the form of the criterion (5.2) the second solution F(x, &)
is better. For any measure P(x) the inequality

pL(3x - 2a xZ) < pL(O'sz’ x2)
is valid.

When then is the problem of estimation of parameters of a regression
based on samples of finite size equivalent to the problem of regression
estimation?

Assume that the class of functions to which the regression belongs is
linear in its parameters

Fon2) = ¥ 5009 (53)

and let @,(x), ..., @,(x) be a system of orthonormal functions with weight
P(x), i.e., functions such that

1 forp=q,

4
0 forp #q. 54

b
f 0, ()P (XP(x) dx = {
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In this case the quantities which characterize the proximity of functions in
the L} metric and the proximity of parameters in the Euclidean metric
coincide, and the problem of approximating a function on {a, b] to the
regression becomes equivalent to the problem of parameter estimation.
Indeed,

b n n 2
ﬁWMﬂm%J<®W% wmﬁww
a 1 i=1

i= i=

= Z (& — o). (5.5)

The conditions (5.3) and (5.4) are sufficient to replace the problem of
estimating the regression with that of estimating its parameters. However,
in order to construct an orthogonal system of functions the knowledge of
P(x)is needed. In this chapter we shall assume that the density P(x) is known.

§2 The Theory of Normal Regression

The estimation theory of regression parameters based on samples of fixed
size i1s developed for the case when the class of functions to which the regres-
sion belongs is linear in its parameters:

FOum) = Y o000, (56)

and secondly the structure of the measurement follows the Gauss—Markov
model. It is assumed that the measurements of functional dependence

y() = ) 2l pi(x)
i=1
are carried out at [ fixed points
Xiyoens X

(These points are not random.)

The measurements are subject to an additive noise which arises randomly
according to the density P(£), and has mean zero (ie., j EP(E) dE = 0) and
finite variance ([ £2P(£) d¢ < o0). The errors at points x; and x; (i # j) are
uncorrelated.

The result of measurements of the function y = y(x) at points x,, ..., x;
is the random vector Y = (y,, ..., y,)T whose coordinates are equal to

i=1
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Using vector notation, we have
Y = ®a, + ¢ 5.7

where @ is an | x n matrix with elements o(x;) (= 1,2,...,i=1,2,...,n),
o, is the vector of parameters, and ¢ is the noise vector. Thus the equalities

MY = ®x,, M{(Y — MYXY — MY)"} = 621, (5.8)

where I is the unit matrix, define the Gauss—Markov model.

In the theory of estimating regression parameters, the special case of the
Gauss—Markov model is considered for which the errors & are normally
distributed.

For the normal distribution of the errors the so-called theory of normal
regression is valid. It is based on the following fact: the extremal method of
estimating parameters of normal regression is the least-squares method,
according to which as an estimator of parameters o one should choose the
VeCtor ., which yields the minimum of the functional

1
Lo =1 ¥ (17~ S0

i=1

The following theorem is valid.

Theorem 5.1. The least-squares estimators of parameters of a normal regression
are jointly efficient.

Below we shall prove this theorem and then construct a method estimating
normal regression which is superior to the one based on the least-squares
method.

ProoF. We write the probability density of the error in the form

P(E) = ﬁexp{ 212( _ Z“ (p(xj)> } (5.9)

Here the problem of estimating regression parameters is equivalent to
estimating the parameter of the distribution (5.9) based on the results of
measuring the function y = y(x) at points x4, ..., X;.

We now write the likelihood functiont

P(yy, ..., yi50) = P(®)

- m { [i < ga qn(x,)) ]} (5.10)

+ For brevity we shall write P(a) in place of P(yy, ..., yi; ®).
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In view of the Cramér-Rao inequality (cf. Chapter 3, Section 11) the Fisher
information matrix || f;;|| (the matrix with elements

_y & P(a))

fy= Oo; 0u;

determines the limiting accuracy of the joint estimators of the vector of
parameters x in the class of unbiased estimators. Namely, for any vector z
the inequality

27 fyl 'z < 2"Bz

is valid, where B is the covariance matrix of unbiased estimators of the para-
meter vector. Thus the limiting accuracy in the class of unbiased estimators
is attained for the estimation method for which

B = fl™" (5.11)

We shall show that in the case of normal errors the equality (5.11) is attained
when the regression parameters are estimated using the least-squares method.
Indeed let us compute the elements f;; of the Fisher matrix. Taking (5.10)
into account we obtain

P 1 !
? iu 2.~ ot M L 9I00)
or in matrix form
1
1/l = = MO, (5.12)
where @ is an | x n matrix with elements @i(x;), i =1,...,n,j=1,..., 1L

We now compute the elements b;; of the covariance matrix B of estimators
obtained using the least-squares method. For this purpose we shall find the
estimator of regression parameters using the least-squares method, i.e.,
the vector «,,,, which minimizes the functional

emp
1 1 n 2
Iemp(a) = 1 Z (J’j - Zo‘i(/’i(xj)> - (5.13)

j=1 i=1

Minimization of /., () with respect to a is equivalent to the solution of the
following equation:

DTy = DTY. (5.14)

Equation (5.14) is called the normal equation. A solution of the normal
equation for the vector of parameters a equalst

o= (') 1OTY.

t It is assumed that (®T®) is nonsingular; otherwise the generalized inverse (®T®)" is used in
place of (®T®)™?,
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Observe that the least-squares estimator is unbiased:
Mo = M[(®T®) " '®TY] = «,.

We now write the vector a — a, of deviations of estimators of regression
parameters from the true value of parameters

o — g = (OT®)1PTE,

where £ is the vector of errors in measurement.
Now we shall obtain the covariance matrix:

B = M(x — a)(@ — o))" = (OT®)~ 'OTMEETD(® D).
Taking into account that MEET = ¢2], we arrive at
B = o¥(@T®)" 1.

Hence for the case of normally distributed errors the covariance matrix of
vectors of estimators is equal to the inverse of the Fisher information matrix.
We have thus shown the efficiency of the least-squares method for the problem
of estimating regression parameters when the observations are assumed to
follow the Gauss—-Markov model. O

It should be mentioned that the least-squares method is an efficient method
of estimating parameters only in the case of the Gauss-Markov model. In
models with nonfixed measurement points x;, even with normally distributed
errors, the least-squares method is only asymptotically efficient. Thus even
in the case of the estimation of one parameter,

y = ax,
when measurements subject to additive normal error
y=ax + ¢

are taken at points x,, ..., x; which are chosen randomly and independently
according to distribution P(x), the estimator of the parameter a is not ef-
ficient. Indeed, exactly as above one can find the value of the Fisher informa-
tion quantity:

and compute the variance of the estimator of parameter a:

O.2

D(a) = M —

¥

i=1
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Observe now that since the function 1/x? is convex, the inequality

1 1

I = 1

Yxi MY x}

i=1 i=1

M (5.15)

1s valid. This implies that in the example under consideration
D(a) > Ig".

The only case when the inequality (5.15) becomes equality is when the
observation points are fixed, which results in the Gauss—Markov model.

§3 Methods of Estimating the Normal Regression
that are Uniformly Superior to the Least-Squares
Method

Thus in the Gauss-Markov model the least-squares method is an efficient
procedure for estimating parameters of a normal regression. This assertion
required two stipulations:

(1) The observations are carried out with normal errors.
(2) The least-squares method is the best only among unbiased estimators.

The question arises: Are these stipulations essential? They are indeed.
The least-squares method retains its extremal properties only in the case of
normal errors £. When the number of observations | > 2n + 1 (n is the
dimensionality of the basis), then the efficiency of the least-squares method
implies that the errors are normally distributed [23].

No less important is the second stipulation: even under the conditions of
normally distributed errors in a class of biased estimators, there exist
estimators which are uniformly superior to the least-squares estimators.

Definition. We say that for the loss function

lle — ol = (& — at0) (ot — tp),

the estimation method o 4(y,, ..., y;) of a vector of parameters ay, is uniformly
better than the estimation method ag(y,, ..., y)) if for any «, the inequalities

Mlla (yy, - -5 y) — %oll* < Mllag(yy, ..., y) — %l°

are satisfied.

In this section we shall construct algorithms for approximating regression
which are uniformly better (i.e., better for any «,) than those which result
from the least-squares method. The bases for these algorithms are methods of
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estimating the mean vector of a multivariate normal distribution, and in
particular the following

Theorem 5.2 (James-Stein). Let x be an n-dimensional (n > 3) random vector
distributed according to a normal distribution N(«, 6>I) with the mean vector «
and covariance matrix o*I. Let S be a random variable independent of x
distributed according to the central 6*y? distribution with q degrees of freedom.
Then the estimator of the mean given by

n—2 S
ax,H=(1—- ———=] x,
09 < Q+2||X||2)+

5.16
@), = {z forz =0, (5.16)

0 forz<0

is uniformly better than &(x) = x.

In other words, the theorem asserts that the vector d(x, S) collinear to the
observed vector x but different from x in its absolute value should be chosen
as the estimator of a. This theorem is a particular case of a more general
assertion to be proven in the next section.

We shall now utilize Theorem 5.2 to construct an algorithm for estimating
regression which is uniformly superior to the one based on the least-squares
method. Let observations y,, ..., y, be carried out at the points x, ..., X;;
our purpose is to construct an approximation of a normal regression superior
to the least-squares one. As above, we shall define proximity of functions
using the L} metric:

1/2
p(F(x, &), F(x, a)) = <J‘(F(x, &) — F(x, 2))*P(x) dx) :

We now proceed to a doubly orthogonal basis

Yi(X), ..., Y(x), (5.17)
i.e., a basis which satisfies
_JA fori=j,
Jicow opee) ax = {0 i g
d 1 fori=j (18)
rgll//i(xr)l//j(xr) = {0 for l # j,

and seek the regression expanded with respect to the basis (5.17)F

n

F(x, o) = Z o Y ().

i=1

t According to the theorem on simultaneous reduction of two quadratic forms to a diagonal
form using a linear transformation, such a basis exists and may be constructed using linear
algebra.
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In the new basis the proximity of the function F(x, &) to the regression F(x, o)
is given by

pi(F(X, a)’ F(x’ 0‘0)) = pi(“? “o)
- (Z (o - a,-)wi(x))zp(x) dx = 3 2al — a)?
i=1 i=1

Thus our purpose is to obtain an algorithm &(y,, . . ., y;) for estimating the
parameter o, such that the quantity

Mpi@(yis -+ i %0) = M Y AB8i(yy, - > i) — of)? (5.19)
i=1

i

is less than

Mp%.(alse’ ‘xo) =M Z ii(a:se - a?)Z,
i=1

where oy, = (e, - - ., o) is the least-squares estimator.
Consider now the least-squares estimator of regression parameters. In
the basis (5.17) this estimator becomes

T
e = @Y,

where @ is an | x n matrix with elements y(x;),j=1,...,Li=1,...,n,
and Y is the vector of observations. The vector a,, is a random vector normal-
ly distributed with the mean vector

Moy, = MOTY = o,
and the covariance matrix o21:
M(alse - aO)(alse - aO)T = M(DTEET(D = 021-

Thus the problem of estimating the parameter «, of the regression is reduced
to the estimation of the mean vector «, of a normal distribution N(a,, 621I)
based on its realization ..

If in (5.19) all the 4; were equal, Theorem 5.2 could be used to construct
an algorithm for estimating regression which is better than the least-squares
one. Indeed, as will be shown below, the statistic

S=YTY — o (5.20)

does not depend on «,, and is distributed according to the central %y
distribution with | — n degrees of freedom. Therefore according to Theorem

5.2 the estimator
-2 Y'Y —aof
Q= (1 . “‘“”“) e (5.21)
+

Cl-n+2  af o
is uniformly better than a,., i.e., yields a value of the criterion (5.19) (in the
case when A, = --- 4,) smaller than «,,.. However, in the doubly orthogonal
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system (5.17) constructed above, not all 4; are generally equal. Thus obtaining
a better approximation to the regression in the case of unequal 4; involves
the determination of an estimation method yielding a value for the criterion
(5.19) which is lower than that due to the least-squares method.

Construction of such an estimating algorithm is also based on the results
of Theorem 5.2. We shall assume that the functions y; are enumerated in
increasing order of A, (A; = A, = --- = 4, = 0). We shall introduce the
following notation: let a,(p) be a vector of dimensionality p, consisting of the
first p coordinates of the vector oy = (a3, ..., a0)T; let ay,.(p) be the vector
consisting of the first p coordinates of the vector of estimators obtained by
the least-squares method o, .

Define n numbers fi, . .., f,:

f1=1’

S p—2 )
=\1- ) = 2, P (8
fp ( alTSe(p) alse(p) I - 14 + 2 + p

Using these numbers, we construct n numbers h, by the rule

DCEENY;
p =" 1 )

P

h where 4,,, =0, p=12...,n

The following theorem is valid.

Theorem 5.3 (Bhattacharya). For the risk function (5.19) the estimator
&(yl’ ""yl) = (allsehh ] a;'sehn)Ti nz= 3a (522)

is uniformly better than the estimator ay,, = (0, . .., Ahe) ™.

ProoF. The proof of Theorem 5.3 is based on Theorem 5.2, according to
which for any p the inequality

Ml (p)f, — 20(P)I* < Mllouee(p) — ao(P)II* (5.23)

is valid.
Consider the randomized estimator

Gse = (allsegl’ ) a?se gn)’ (524)

where g, are random variables independent of S and y distributed according
to

A= Ay
P{(g = f)} = L=

L — 2 k=12...,n j=k,...,n; i1 = 0.
Ay
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The value of this risk (5.19) for this estimator is equal to
pi(Galse’ aO) =M Z lk(gka{(se - al(())z
k=1

n Ly T
= L 3 S AM(foke - )™
=1 j= k
We now utilize the inequality (5.23):

n n

pi(Galse’ %) = Z k(’lj - lj+ I)M(ailcsefi - “1?)2

k=1 j=

n j
Z (}“J - AI‘*‘I)M Z (a’lcsef;' - al?)z
i=1 k=1

= 30 = e DMIa (), — o0

n

Z (lj - '1j+ DOM [oyee(7) — “0(77”2

i=1

AN

n
< Y A;M(af, — o)
=

J

Thus the value of the risk for the randomized estimator of the parameters
is less than the corresponding value for the least-squares estimator. On the
other hand, it follows from the convexity of the loss function (5.19) that the
nonrandomized estimator (5.22) is at least as good as the randomized esti-
mator (5.24). Thus the approximation to the regression determined by the
parameters (5.22) is uniformly better than the least-squares approximation.
The theorem is proved. U

It remains to show that statistics S = YTY — af. «,. does not depend on
oy, and is distributed according to the central a?y? distribution with | — n
degrees of freedom. For this purpose we shall complete the system of n
vectors ¥y, ..., ¥, orthonormal on x,, ..., x;:

‘pi = (l//i(xl)s RS lpi(xl))Ta

lﬁ-Tw-={1 fori = j,
i¥Y;

Lj=12,...,n,
0 fori+#j, hJ "

so that it becomes a complete orthonormal system consisting of  orthonormal
vectors

l//b"-alpn’ llln+1,'--’l/,l’

1 fori=j
T — ) -
tﬂ,l/f,—{o for i % J, Lj=1,2,...,1
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We now expand Y in terms of this system:

n i
Y=.ZIV"‘/"'+ X v (5.25)

j=n+1
where
T i :
‘yi=Yl/I,~=d;se, l=1,2,...,n,

yi =Yy, j=n+1,...,1L

Substituting (5.25) into (5.20), we obtain
!

s= % 9 (526)

and hence S does not depend on o}, (butonlyony;,j =n+ 1,...,1). Since
by assumption Y = Y, + & and the vector Y, can be expanded in terms of
this incomplete system (5.17)

Y, = i“? Yis
we have the inequality i
Vi = ET‘//,'-
Substituting the value of y; into (5.26), we obtain
l 1 1 2 1
S=.Z Y,z= Z (Zfi'//j(xi)) =.Z ff,
j=n+1 j=n+1 \i=1 j=n+1

and hence the statistic S is distributed according to the central 62y distribu-
tion with | — n degrees of freedom.

§4 A Theorem on Estimating the Mean Vector of
a Multivariate Normal Distribution

In this section we shall obtain a family of estimators of the mean vector
which are uniformly better than the estimator a(x, S) = x. The estimator
(5.21) belongs to this class.

Let x be a random vector distributed according to N(x,, 6*I), and S be a
random variable independent of x distributed according to the central
o2y? distribution with g degrees of freedom. We denote F = x"x/S.

The following theorem is valid.

Theorem 5.4 (Baranchik). An estimator of the n-dimensional (n > 3) mean

vector
8(x, S) = (1 - 1(£—))x
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where r(F) is a monotonic nondecreasing function satisfying

n—2
0<rF)<2——, 5.27
nF) <23 (527)

is uniformly better than the estimator a(x, S) = x.

Remark. Theorem 5.2 is a particular case of Theorem 5.4 obtained by setting

n—2 n-—2

or F > s

qg+2

r(F) = 5
n_

F for F < ——.

qg+2

PRrOOF. In the proof of Theorem 5.4 the following fact is used : the mathematical
expectation of a random variable f (32(n, b)) taken with respect to the measure
p(x*(n, b)), where y*(n, b) is a random variable with the noncentral y? distri-
bution with n degrees of freedom and noncentrality parameter b, can be
represented as

Mf(*(n, b)) = Mf (x7+ 20,

where y2, ,, is a random variable with the central y? distribution with n + 2k
degrees of freedom, and k is a random variable distributed according to the
Poisson distribution with parameter b:

k

b
P(k) = exp{—b} ik

(The mathematical expectation on the right-hand side is evaluated with
respect to x as well as with respect to k.)
Thus

MO0 B) = M) = exp(=b)} T 0 MFGaer). (529

We now proceed directly to the proof of the theorem: Our purpose is to show
that the difference

H = MJa(x, S) — aoll* — M|lx — o] (5.29)
is nonnegative. Denote

(F)

giF) =1- F

and transform (5.29)

H = M[xTxg*(F)] — 2ad Mg(F)x + |aoll*> — no?. (5.30)
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The expressions (5.31)-(5.34) below are derived under the assumption that S
is fixed. According to (5.28) we have

()]

||°‘o||2 S ”0‘0“2t 2.2 2 0 n s 21
= — M _Anrety | 31
exp{ 20,2 t;() t!(20'2)' 0" Xn+2: 9 S (5 3 )

We now transform the expression

T
agMg(F)x = cx}{Mg(xS—x)x.

For this purpose we shall perform an orthogonal transformation of vectors
x into vectors z such that in the new coordinate system the mean vector is
equal to (|, 0, ..., 0) (only the first coordinate does not vanish, and it is
equal to the norm of the mean vector). This transformation leaves S unaltered.

We obtain
xTx 2Tz
agMg(—S—)x = ||a0||Mg<—S—>zl

where z is the first coordinate of the vector z = (zy, ..., z,)T.
Observe now that

T 2 2
M[“’ (ES_Z)Z] G e"p{" ”;3! }

_c i=1 = 00O
xd”%” fg S exp 25 dz, ---dz,.

Thus we obtain

T 2 2
naonMg(%) =G ”f;’n'lz exp{— %] }

2 Y. 27 = 2laolz,

i=1
€Xpy — 20‘2

X dz, ---dz,
dlotoll '

||°‘0||2 d ||°‘o”2 02X3+ 2k
= g2 — M
ool exp{ 252 dlloo | eXp 252 g S s

where k is a random variable distributed according to the Poisson distribu-
tion with the mean |, 2/(262). Finally we obtain

Mg( ;x)x _ 20_ exp{ ||oto||7} i (”“o”z)t MQ(GZ;(;.+2:|S)‘ (532)
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Now taking into account that |a,|?/(26?%) is the mean of the random
variable k distributed according to the Poisson distribution, we express the
third summand in the sum (5.30) in the form

t=0 t!

||0<o||2)’
o 2 © ( 20.2
loll? = 207 exp{— %} Y L (5.33)

We can thus represent the expression (5.30) in the form

<||a0||2>'
2 © Y2
H o o exp{_ o } g \2

t

202 | 5 !
2.2 2.2
x [Mx3+z, gz(ﬂsf—*ﬁ) - 4tMg(g%2~'> —n+ 2t]. (5.34)

Now let S = ¢%x2 be a random variable distributed according to the
central o?y* distribution with g degrees of freedom. The theorem will be
proved if we verify that the expression

2 2
h= M[xfng(X"xzz') - 4tg<%) —n+ 2r] (5.35)

q q

1s nonpositive for all ¢.
Denote y; . ,,/x7 = u, and observe that

u(l — g(u)) = r(u). (5.36)
Therefore condition (5.27) implies that
n—2

>1-2
g(u) s

ut. (5.37)

We transform the expression (5.35) utilizing notation (5.36) and the fact that
My}, =n+ 2t:

h= M[—Zr(u)x,f + r)(1 — gyl + 4t ?J

= M[r(u)xf(—l — g(u) + X24t )]

Taking (5.37) into account, we obtain that the quantity h does not exceed
7 Yns 2
h = M(r(u)) = M[M{r( "Xz ')C xﬁ}],

q
n—2 1
o e foe2ri2a) ]
ta g+2%) 52,

where
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For any fixed 7 we determine a constant a such that

-2 ,\1
—2+<4t+2 51 ) = 0. (5.38)

Observe that for any y2, ,, > a the inequality { < 0is valid. Therefore taking
into account that in view of the condition of the theorem the function r(u) is
nondecreasing, we obtain the bound

ekl

(_Z)M{C|Xn+2! < a}P{Xn+2t < a}

a
+ r('i)M{C|X3+21 > a}P{Xf+21 > a}

_fa\ .| n—2 1
_r<ﬁ)xq[ z+<4t+zq+2x;)n+2t_2]

n—2 a X
=2——0 =1 ). 5.39
2n+2z—2<)""< 1+q+2> (5-39)
(We have used the equality M(1/x2) = 1/(m —2) (m = 3).)

Substitute now into (5.39) the value of a satisfying (5.38), and compute the
mathematical expectation of the last term in (5.39), which is

n—2 2t n—2 x2
2 "7 M + 2l _p 4 K[
n+ 2t -2 {(xq q+2)x"[ q+2]}

Taking into account that r(u) is a nondecreasing function we find the bound
2t n-—2 x2
Mir|S + —= 2 -1+ =4
{r<XZ+q+2)X“[ 61+2]}
_ 2
Srn+2t ZMX,? 14 e
q+2 qg+2
n42t—2 $2
—_— = ~\M 2 —1 q
o (e )
n+2t—2 x2
=r[———= M2 -1 + 24 =0
(e a7

(For a central y? distribution we have My? = g, M(x2)* = q(q + 2).)
Thus the quantity (5.35) is nonpositive and the theorem is proved. O
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§5 The Gauss—Markov Theorem

Up until now, when estimating regression it was assumed that the errors are
distributed according to the normal distribution. We shall now relax this
assumption. It will be assumed that the distribution of errors is unknown
but has a bounded variance. Under these conditions it is required to construct
the best algorithm for the regression estimation.

Above, when developing the theory of normal regression we first estab-
lished that in the class of algorithms leading to unbiased estimators of the
parameters the least-squares method was optimal, but for a wider class of
algorithms procedures which are better than the least-squares method were
obtained. We shall now proceed analogously. First we shall show that in
some narrow class of estimating algorithms the least-squares method is the.
best, and then we obtain estimation methods in a wider class of algorithms
which are superior to the least-squares method.

Under the assumption of normal errors the least-squares method is the
best in the class of unbiased methods of estimation. In this section we shall
show that in a narrower class of estimates which are both linear and unbiased,
the least-squares method yields the best estimating algorithms independently
of the distribution of the errors.

Definition. We say that an estimator of the parameter a is linear in the observa-

tions Y = (y,, ..., y)Tif it can be represented in the form
1
a=LY <ozj =) ﬂ,-jy,), (5.40)
i=1
where L is a matrix with the entries ;; (i = 1,...,1;j=1,...,n).

The following theorem is valid:

Theorem (Gauss-Markov). Among all the linear unbiased estimators the
least-squares estimator possesses the minimal variances of the coordinates.

We shall prove the Gauss—Markov theorem in its more general form for
the case of linear biased estimators. Denote by «, the vector of parameters
of the linear regression

MY = ®g, (Y = @,y + &). (5.41)
Define the estimator «(B) as the solution of the equation
(®T® + B)x(B) = @'Y, (5.42)

where B is a symmetric nonnegative definite » x n matrix which defines
the bias vector p,. We shall show that the estimator a(B) possesses extremal
properties. Namely, the following theorem is valid.
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Theorem 5.5. Among all the linear estimators of the vector of parameters o
with the bias vector equaling g, the estimator o(B) possesses the minimal
variance of coordinates.

PRrOOF. We obtain from (5.42)
Ma(B) = M(®™® + B)"'®"Y = (®"® + B) '@ dy,. (5.43)
Let 4 = LY be an arbitrary linear estimator such that
M@ = Mo(B) = py + 0g = p. (5.44)
Then we obtain from (5.42)
MLY = L®oa, = (P"® + B) ' ®Tda,. (5.45)
Since the equality (5.45) is valid for any o, then
L® = (®"® + B)"'0T0. (5.46)
We now write the variance of the ith coordinate of estimator &:
M(&; — 1) = M(& — a(B) + o(B) — )’
> M(a(B) — w)* + 2M(8; — a(B)No(B) — p),  (5:47)

where y; is the ith coordinate of the vector .
We shall show that the second summand on the right-hand side of (5.47)
vanishes. Indeed, utilizing (5.44) and (5.46), we obtain

M(8; — a(B))(B) — p)
= M(&; — a(B))a(B)
a?|(L — (@"® + B) ' ®"D@"® + B)'||;
= ¢?|(L® — (®"® + B) '0@T®)Y®'® + B)"'|; = 0,

where ||4]l;; denotes the element A;; of the matrix ||4].
Thus

M@ — w)* = M(ay(B) — p;)>.

The theorem is thus proved. O

The Gauss-Markov theorem follows from the theorem just proved by
setting ||B|| = ||0]| in (5.42). In that case puy = 0.

Further, in Chapter 8 to construct the regression estimators from small
samples we shall make use of this theorem. We shall search for the best
estimators among the estimators of the class a(yB) (where y > 0 is a constant
specifying the estimator of the class). The estimator a(y*B) is called a
ridge-regression estimator.
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§6 Best Linear Estimators

Thus, among linear unbiased estimators, the least-squares estimators are
the best regardless of the distribution of the errors. In the next sections we
shall consider a wider class of estimators—the class of linear estimators (not
necessarily unbiased), and we shall obtain the best estimators in this class.
These estimators will differ from the least-squares estimators provided
nontrivial prior information concerning the estimated parameters is avail-
able. In cases when no nontrivial prior information is available the best
linear estimator is still the least-squares method.
Let the parameters of the regression

¥=y(x)= ) aYix) (548)
i=1
in a Gauss-Markov model be estimated from empirical data x,, y;, ..., x;, y;.
Let ¢ ,(x), ..., ¥, (x) be a doubly orthogonal basis
o A fori=j,
; (xX)P = :
[ocomope as = {i e
: | fori— i (5.49)
N N _ ori=j,
,,:Zl‘//i(xr)lpj(xr) - {0 for i £ _]
Consider the class of linear estimators:
8, = 0,Y + B8, (5.50)
where
6, =05 ...,007, Y =)
We introduce the system of orthogonal vectors
I fori=j
e XIS Ty = ’ 5.51
X s Xk {0 for i # j, (5.51)
in which the first n vectors are
B= Wxy), - Pia)T,  i=1.,n
We represent the vector 6, in the expansion in terms of (5.51):
1
6,=Y B (5.52)
i=1

Then the equality (5.50) can be rewritten as

8= ¥ BIATY + 5. (5.53)
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We express the amount of deviation M(&, — «p)* in terms of the parameters
B. For this purpose we shall utilize the identity

M@, — o0 = (M(8, — a2))* + M(8, — M&,)". (5.54)

The first summand on the right-hand side equals
0466, ~ 2 = (15 pra + 5 — )
The second summand equals
M@, — M8,)* = laz.il(ﬁ{’)z.
Thus
M@, — a9)* = azl‘zl:l(ﬁ{’)2 + (lilﬁf’a? + p§ — ag)z = 2°(B|a, 6). (5.55)

The best linear estimator is the estimator which minimizes (5.55).

§7 Ceriteria for the Quality of Estimators

The best linear estimator can be obtained by directly minimizing with respect
to By, ..., B, the right-hand side of the equality (5.55). The minimum of
(5.55)isattained at p§ = 8 = --- = ff = OQand B = exg, and this minimum
is zero.

Thus for each specific problem (specific values of o, and o) a trivial biased
estimator can be found which yields the minimum of the square of deviations.
Now we wish to construct a linear estimator which will be suitable for a
solution of a class of problems rather than for a single one.

Let us define a class of problems R(a, o), to which the algorithm is appli-
cable, by means of the inequalities

b

a P>
e.

d" (5.56)

IA A

a, <
o<

We shall now determine the quality of an algorithm for estimating the
parameter o, in the class R(a, ). As usual in such situations, we shall con-
sider two approaches: Bayesian and minimax. For each approach a different
notion of the quality of a linear estimator will be introduced.

According to Bayes’s principle the best method for estimation is that for
which the mean value of the criterion over the set of problems belonging to
R(a, 0) is minimal (the measure on this set is given by the distribution
P(a, 0)).
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Definition. The estimator
o) =Y BIY + B8
is called linearly best in the mean if among all linear estimators it yields

the minimum of the functional

25(B) = J@"([Ha, a)P(a, 6) day - - - do, do. (5.57)

Below we shall compute a Bayesian estimator for the case when the
parameters o and ¢ are distributed independently according to the uniform
distribution on the corresponding intervals, i.e.,

i ! ifa,<oa,<b,,d<oc<
T g e
Pla,0) ={ ;-1 b; —a;e —d b=%=0p0=20=6 (5.58)
0 otherwise.
Thus the quality of the estimator is determined by the functional
"ody;  d
%99 (5.59)

256 = | 2Bl [1 =

In accordance with the minimax principle the best method of estimation is
considered to be the one which yields the minimum of 2°(8|a, o) for the least
favorable problem (pair a, o).

Definition. The estimator
A2 = 3 BTV + 8

is called the best linear minimax estimator in the class R(a, o) if it yields the
minimum of the functional

25(B) = sup 2°(B|a, o) (5.60)

a, o

in the class of linear estimators.

In general there may exist problems belonging to the class R(a, ¢) for which
the estimators ol and «? introduced above are worse than the least-
squares estimators B, = (0, ..., 1/I, ..., 0)T, B8 = 0 (only the pth co-
ordinate of the vector B2, is nonvanishing). Therefore we shall define the
third optimal estimator in such a manner that it will be uniformly better than
the least-squares estimator. For this purpose we introduce the loss function

D5(B) = sup(Z*(Bla, 0) — D*(Pise |, % 0)) (3.61)

and require that the optimal estimator minimize the expression (5.61).



130 S Estimation of Regression Parameters

Definition. The estimator
o = ¥ BIY + B3

is called linearly uniformly better than the least-squares estimator if it yields
the minimum of the functional (5.61) in the class of linear estimators and
minj, D3() < 0.

§8 Evaluation of the Best Linear Estimators

The following three theorems constitute the basic content of the theory of
the best linear estimator.

Theorem 5.6 (Koshcheev). The best linear estimator of parameter o, in the
class R(a, o) is of the form
c,
o + 7 Pp
0 _ ;
otp' = —‘—l—’._a 1= 1, 23 35 (5'62)
1+ 7 (pl)
where ¢, = (a, + b,)/2, of,, is the least-squares estimator, &} is the best in the
mean estimator,

d* + de + é*
W _
pp =4 — (5.63)
4 (ap _ bp)2
o2 is the best minimax estimator,
2
@4 ° 5.64)
Pr =", — b,y (
o' is the uniformly best estimator, and
d2
3 — (5.65)

Py = 4——(ap — bp)z'

It thus turns out that the best linear estimators are biased. The structure of
the estimators is given by the expression (5.62), where p are defined in
(5.63)-(5.65), depending on the specific notion of the quality of an estimator.
There exists a simple relationship which shows by how much a Bayes or
minimax estimator is superior to a least-squares estimator.

Theorem 5.7 (Koshcheev). The equality

. 1
9{'(0(},") = —— DUaf,), i=1,2 (5.66)
1+ 7 p(pi)

is valid.
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According to Theorem 5.7 the optimal estimators ai,” are superior to the
least-squares estimator by the factor (1 + (1/l)p‘”) Hence the smaller the
sample size [, the better the estimators o).

Below we shall present the proof of Theorem 5.6. The validity of Theorem
5.7 follows from a more general theorem considered in the next section.

PROOF OF THEOREM 5.6

(1) Derivation of the best linear estimator in the mean. We write the functional
whose minimum determines under our conditions the best estimator in the mean:

» _ hl.“ by e 21 ‘pz n - - n 7 do_
7= [ ﬁMLPg;m>+O;ﬁm+m a)]nb_ae_d

(5.67)
This integral can be easily evaluated:
1(33 _ d3 1
5B == 3r)?
1(/) 3 e — d i:zl(/l)
n 1 b by, n 2
+ f f (I /i{»’oc,-+/3"—oc) doy - do,.
e =al L UL o)
Denoting (a; + b))/2 = ¢;,(a; — b;))/2 = M, t; = o; — ¢;, and substituting the variables,
we obtain
led —ad ¢
25(P) = = 3r)?
=3 =g 0D
2 n n 2
7 f f (lz Br(t + ¢y + Bh — (1, + c,,)) dty -+ di,.
=1 i=1
(5.68)

Since the integration is carried out over the symmetric intervals [ —.#, .#], the terms
linear in ¢ vanish. We thus obtain

n 2
Z8(p) = *(? +ed + dZ)Z(B")Z (/3(’3 + Z, (g7 - 5,-,,)Cf>

P _ 5. )22
2/% — M lzl(lﬁl 5"’) i dt, dt,,. (5.69)

Here the notation

5. = 1 fori=p,
P70 forisp

is utilized. Finally we arrive at

H
SP) =+ &+ ed + )T B

i=1

i=1

n 2 n ﬂl
+ (/38 + 2 (B~ 5i,,)ci) + 2 —3' (BY = 3, (5.70)
i=1

In order to obtain the best linear estimator in the mean it remains only to minimize
the expression (5.70) with respect to parameters f.
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Equating the partial derivatives of (5.70) to zero, we obtain that
p? =0 fori+#p,
By = —c B — 1),
%

X+ ed + d
SRS 5.71
By % (5.71)

.+.—__
e’ + ed + d*

Substituting the values (5.71) obtained into (5.53), we have

M
2 2
= £ et d 2TY + &
P | LA} p + L #y
teltedtd er + ed + d*

Introduce the notation p{) = (e* + ed + d*)/.#2. Then

1 c
SaY

" ! l
o = ——-1———-
1 +7p;,”

Observe that the quantity (1/1)x1Y is the least-squares estimator of the parameter
af. Thus
of + L—l"p;“
) = .
1 (1)
1+ 7[7,,

The first part of the theorem is proved.
(2) Derivation of the best minimax estimator. The functional whose minimum

determines the best minimax estimator is equal to

! n 2
5%(B) = sup [Uzlz B + <IZ (Bfo; + g — Ot,,)> ] (5.72)
o, i=1 i=1
Utilizing the notation
b + g b; — a
¢ = 2a, M= za’ L =0o; — ¢,

and substituting the variables in (5.72), we have

D5(B) = €'l Y. (BN’ + sup [Z (IBF = 0ip)t: + ) + ﬂﬁ]

[t<#, Li=1

=Y (B + sup [i(lﬁf’—&ip)ti+ ﬁ(lﬂf’—éi,,)c.-ws]

i=1 ltil<#t; Li=1
]2

Z (BF = dip)ci + BB

i=1

n

= Y (B + [z |17 — 834, +

i=1
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Thus

DB = e’y (B + [Z UBP — Supl i + | 3 (UBY — Sip)ei + BE
i=1 i=1 i

i=1

}2
We shall now obtain the minimum of (5.73). By choosing 8§ to be equal to

py = — > UBr — d;,)ci,
i=1

133

(5.73)

the second term of the sum in the square brackets becomes zero. Therefore it is sufficient

to minimize

D5B) = *1 ), (D) + ( HBF — 6ip|'//[i> .
i=1 i=1

The minimum of (5.74) is attained for
pr =0 foris#p,
whence for g7 = 0 (i # p) the functional (5.74) becomes
DEB =0z = l(BY)* + (B — D).
The minimum of this expression is attained at

%

P — .
B e+ l,llﬁ

Substituting (5.75) and (5.77) into (5.53), we obtain the best minimax estimator

P+t et + L} ? et + 142

Introducing the notation pi?’ = ¢*/.#}, we arrive at

Cr (2
alpse + Tp(p)

al? = 1 '
P 1 +~?'pf)

(5.74)

(5.75)

(5.76)

(5.77)

(3) Derivation of the uniformly best linear estimator. To evaluate the uniformly

best estimator it is required to minimize the functional
8(B) = sup(2°(Bla, 0) — D*(Bise e, ),

or explicitly,

258 = sup [IGZ(Z(B?)Z— 1)}

d<o<e

n 2
+ sup [Z (BF — 0;p)a; + ﬁg] .

a,<a,<b;

(5.78)
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It is easy to verify that in this case all the calculations are the same as those carried out in
the preceding subsection, except that if

1
Y@ -1<0, (5.79)

then d = inf o should be taken instead of e = sup a.
Consequently

!
B(’; = - Z (lﬂxp - 5ip)cia
i=1

0 fori # p,

Br = M} ) (5-80)
EEwyT Y fori=p,

where s is either inf ¢ or sup g, depending on the sign of Y 7_, (87)> — 1. However, for
Br as given by (5.80) the expression (5.79) is negative:

S o= (=" ) Z1<0
i;(ﬁi) - _<sz+ﬂ51) T

Hence s = inf ¢ = d. Thus the uniformly best linear estimator is equal to

C
14 3
(lese + T p;, )
w3 =
4 1 ’
1+ 7p§,3’
where in this case

PR == O

§9 Utilizing Prior Information

According to Theorem 5.6 the availability of the following prior information:

(1) the interval [a;, b;] to which the estimated parameter o, belongs,
(2) the interval [d, €] to which the variance of the noise o belongs,

allows us to construct the best linear estimators. According to Theorem 5.7
the functional defining the quality of the best linear estimator is 1 + (p‘;’/l)
times smaller than the functional corresponding to the least-squares esti-
mator.

Usually it is not too difficult to obtain this prior information for solving
practical problems within the Gauss-Markov model. As a rule the intervals
in which the measured values of y are situated,

<y <T (5.81)
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are known. This knowledge results from long experience or from the knowl-
edge of the laws of nature. For example, when constructing the regression for
the temperature forecast in Moscow on the 166th day of the year, it is known
a priori that the forecast value of ¢ lies within the given limits +5°C < ¢
< 35°C. The knowledge of the bounds (5.81) allows us to obtain intervals
for the estimated parameters. The equality o) = M(1/l)y}Y implies that

b, = sup l xTY <- (Z Yp(x) + Z"T (% ))

Here the first sum )’ contains the positive coordinates of the vector y, =
(://p(xl), ey |//p(x,))T while the second contains the negative ones. Anal-
ogously the bounds

a, = inf; Ty > - ! (i T ,(x;) + Z”Txpp(x,)>
%

are obtained.

To estimate the interval for the variance we can also utilize our experi-
ence and knowledge of the laws which govern errors. However, if the interval
obtained for the variance is too wide, we can then use alternatively the prob-
abilistic approach, which consists of choosing the interval which contains
the true value of the variance with the highest probability.

It is known that the quantity

1 n
Y= 1) (k)
2 i=1 p=1

oemp =

I—n
is an unbiased estimator of the error variance. We shall utilize Chebyshev’s

inequality
2
P{ emp > -————} S '1’
n

which implies that with probability 1 — »
o > afmpn. (5.82)

The bound (5.82) may be refined if the nature of the error distribution is
known.

Based on the interval for the variance d < ¢ < e and the interval to which
the parameter «,, belongs, the parameters p and ¢{? are found by means of
which optimal linear estimators are constructed. Note that the more in-
definite the prior information is (the wider the interval is), the smaller the
value of p@ will be and the closer the best linear estimator will be to the
least-squares estimator. It can be shown that for trivial prior information
(-0 <a, < 0,0 <0 < o) the best linear estimator coincides with the
least-squares one.
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To complete the theory of the best linear estimation it remains to clarify
how sensitive the methods of linear estimation are to the precision of prior

information. Theorem 5.8 answers this question.

Theorem 5.8 (Koshcheev). Let &, = a,(pY, &,) be the best linear estimator
computed from approximate values of the parameters pY, ¢,, M ,, while the
true values of the parameters equal pQ, c,, M ,. Then the quality of the esti-
mator obtained is given by

A(IN2
1+ (p;), (3
208, &) = W 2.  (=12), (5.83)
14

where

A 2 —¢ 2
=1+ 3(ij c,,> v, = <1 + —""’j "') . (5.84)
¥4 p

Observe that Theorem 5.7 is a particular case of Theorem 5.8 for ¢, = ¢,
and pQ = p¥.
It follows from the equality (5.83) that if the value of parameter p¥ is

related to p{ and v; by the inequality

5@
. Dy)v;
(i) p
Py > 5 0 (5:85)
P24 9

then the estimator obtained using ¢, ¢, will be better than the least-squares
estimator. Consequently the choice of 4 is based on two contradictory
considerations. To obtain an estimator at least as good as the least-squares
one, the value of p{ should be reduced (so that (5.85) is fulfilled). But the gain,
which is approximately equal to 2,(af..)/(1 + p?), is decreased.

Proor oF THEOREM 5.8. First we shall compute the value of the criterion (5.55) for the
estimator &,(p%c,):

M(ap(ﬁg)’ é;p) - “g)z

é . A . 2 A . 2
of. + 7‘3 0 oS+ —IE 1% ad + 7” pY
=M 5 + —af
Pr s 1 s L
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The two relations (5.83) claimed in the theorem are verified by elementary calculations

Py 20)2
( )(E %) do  dod

a?
cpt My T
@p(&) f f - i 4
( Am) e—d M,

P
1 —a® (PN (M R 2)
— - _+ —_
_3e—d+<l 3 T8

1, 2 ’
()

D) J"P*““P do [¢0? do _ez+ed+d2
)= ) 2 Te—d 3l

)
70 A\l

vi=1+ 3(ép — Cp>2
D (oge) (1 1 A“))z ’ 1 M, .
+ Y,Dp

hence

We now compute
0.2 A(2)\ 2 A(2)
N O + (Y ey -+
%(8) = sup 2 = Nz
a0 1+ ’p_ 1 (2)
( 1) (*”1)

On the other hand,

0'2 82
gg(alsc) = sup T = Ta

hence
1 ﬁ(Z) 2
L4+ — =&
woy ) (1o )
- . vy = .
Do) Y M
2 (l + 7/7;;2)) ’
The theorem is proved. O

We have thus studied the theory of estimating regression parameters. This
theory is based on the fact that in a certain narrow class of estimators the
least-squares method is optimal (for normal regression this class is the class
of unbiased estimators, and for general regression theory it is the class of
linear unbiased estimators). It then turned out that in a class of biased esti-
mators, better estimators than those arising from the least-squares method
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may be constructed. Such nonlinear biased methods of estimation were
obtained for estimating parameters of normal regression, while linear biased
methods arise in the general model of regression estimation.

Estimation methods presented in this chapter can be utilized for regression
estimation provided the density P(x) is known and the regression is indeed a
linear function in the parameters.



Chapter 6

A Method of Minimizing Empirical Risk
for the Problem of Pattern Recognition

§1 A Method of Minimizing Empirical Risk

In the preceding three chapters the estimation of dependences was associated
with the methods of estimating probability densities. The determination of
the function which minimizes the expected risk

I(o) = f(y — F(x, a)*P(x, y) dx dy 6.1)

on the basis of the empirical data

X1 V155 X Vi (62)

was reduced to estimating the density P(x, y) on the basis of the sample
(6.2) and minimization of the functional

Lony(@) = f (v — F(x, )*P(x, y) dx dy.

As was mentioned in Chapter 2, this method of minimizing the risk (6.1)
generally is not reasonable, because the problem of density estimation is a
more difficult problem than the minimization of the expected risk. Only
when a substantial prior information is available about the desired density
P(x, y), so that the function P(x, y) can be defined up to its parameters, is
this approach plausible. Methods of parametric statistics developed for this
particular case were utilized in the preceding chapters.

However, in specific problems the structure of the density P(x, y) is
unknown. Thus the successful application of methods of parametric statistics
hinges on the assumption that the hypothesized density structure cor-
responds to the true one.

139
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Starting with this chapter, we shall study methods of estimating depen-
dences which do not require density estimation. The basis for these methods is
the principle of minimizing the empirical risk, according to which as the
minimum point of the functional (6.1) one takes the minimum point of the
empirical functional

1
lens@) = 7 % 03 = Flx, ), 63
constructed from a random independent sample (6.2). Let the minimum of
functional (6.3) be attained for F(X, &pp). The problem is to establish when
the obtained function F(x, t.mp) is close to the function F(x, ap) which
minimizes (6.1) in F(x, ).

Above (Chapter 2, Section 6) we have associated this problem with the
problem of the uniform convergence of the means to their mathematical
expectations, i.e., with the situation when for any given value of deviation »
the inequality

P{sup [1(o) — I.mp(a)| > x} <n 6.4)

can be asserted.
Let (6.4) be satisfied. Then the inequality

P{I(0temp) — I(0g) > 2} < 1 6.5)

is valid. In other words, if (6.4) holds, then with probability 1 — n the
deviation of the function (solution) F(x, a,) which is the best in the class
F(x, o) from the function which yields a minimum for the empirical risk
F(X, 0temp) does not exceed 2.

Indeed, the condition (6.4) implies that with probability 1 — # the two

inequalities
I(®emp) — Lemp(Cemp) < %,
(temp) p(@emp) 66)
Iemp(ao) - I(ao) <¥x

are simultaneously satisfied. Moreover, since m, and «, are the minimum
points of I, (o) and I(«), the inequality

Iemp(aemp) < Iemp(ao) (67)
is valid. The inequalities (6.6) and (6.7) yield that
I(emp) — I(2g) < 2. (6.8)

And since the inequalities (6.6) are both fulfilled simultaneously with proba-
bility 1 — #, so is (6.8). Consequently

P{I(emp) — 1(29) > 2%} < 1. 6.9)
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In this chapter we shall consider the theory of uniform convergence of the
means to the mathematical expectations as applied to the problem of pattern
recognition: ie., in the case when the loss function in the functional of
expected risk takes only two values, zero and one. In Chapter 7, for the
problem of regression estimation we shall extend the results obtained to the
case when the loss function takes on an arbitrary form in the interval (0, o).
It is important to note here that the validity of basic theorems proved in
these chapters does not depend on the form of the loss function. Therefore in
spite of a quadratic loss function used in the text we shall obtain a general
theory of risk minimization.

§2 Uniform Convergence of Frequencies of Events
to Their Probabilities

Consider the functional whose minimization is the essence of the pattern
recognition problem:

(o) = P(a) = J(w — F(x, ®))?P(x, o) dx do. (6.10)

As has already been mentioned, this functional defines for each decision rule
the probability of erroneous classification. The empirical functional

1 1
Iemp(a) = v(ot) = 7 Z (U),- - F(xi’ a))l’ (611)
i=1
computed by means of the sample
Xis Wys5 ... 5 Xy, Wy, (6.12)

defines for each decision rule the frequency of incorrect classification.
According to the classical theorems of probability theory the frequency
of occurrence of an event converges to the probability of this event as the
number of trials increases indefinitely. Formally this means that for any
fixed o and x the relation
lim P{|P(x) — v(a)| > x} =0 (6.13)
1=
holds. However (cf. Chapter 2, Section 6), the condition (6.13) does not
imply that the rule which minimizes (6.11) will yield a value of the functional
(6.10) close to the minimal. For [ sufficiently large the proximity between the
solution obtained and the best one does follow from a stronger condition
which stipulates that the equality

lim P{sup | P(a) — v(a)| > x} =0 (6.14)

- a
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is valid for any x. In this case we say that the uniform convergence of frequencies
of events to their probabilities over a class of events S(«) is valid. Each event
S(*) in the class S(«) is given by the decision rule F(x, a*) as a set of pairs
x, o for which the equality (w — F(x, a*))?> = 1 is satisfied.

Below we shall present conditions which assure uniform convergence of
frequencies of events to their probabilities and at the same time determine
the domain of applicability of the method of minimizing empirical risk.
However, we first note that application of the method of minimizing the
empirical risk does not guarantee a successful solution of the problem of
estimating dependences. Here is an example of an algorithm for pattern
recognition which minimizes the empirical risk but at the same time one
cannot guarantee that the constructed decision rule will be close to the
best in a given class: Elements of the sample are stored in memory, and each
situation to be recognized is compared with the examples available in
memory. If the situation at hand coincides with one of the examples it will
be attributed to the class to which the example belongs. If, however no
analogous example is available in memory, the situation is attributed to the
first class. It is obvious that such a device cannot improve itself, since usually
only a negligible fraction of the possible situations will correspond to the
sample. At the same time, such a device classifies the elements of the sample
without error, ie., the algorithm minimizes the empirical risk down to
Zero.

Below we shall verify that this algorithm uses a set of decision rules which
form a system of events over which uniform convergence does not hold.

§3 A Particular Case

When does the uniform convergence of frequencies to probabilities take
place? Consider the simple case where the class of decision rules F(x, a) is
finite, consisting of N rules:

F(x, o), ..., F(x, ay).

An event A; corresponds to each decision rule F(x, «;) consisting of pairs
x, o such that (0w — F(x, «;))*> = 1. This defines a finite number N of events
Ay, ..., Ay.

For each fixed event the law of large numbers is valid (the frequency
converges to the probability as the number of trials increases indefinitely).
One of the specific forms of this law is the Hoeffding inequality:

P{|P(a;) — v(o;)| > x} < 2exp{—2sI}. (6.15)

We are however interested in uniform convergence, i.e., in the probability of
simultaneous fulfillment of inequalities

|P(;)) — ()| <%, i=12,...,N.
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This probability can be easily bounded from above if the probability of
occurrence of each one of the inequalities (6.15) is assessed separately:

Plsup 1P) — )| > x} < 3 PIP@) — @) > ).

IS

Taking into account the inequality (6.15), we obtain
P{sup | P(2;) — ()] > %} < 2N exp{—2sl}. (6.16)

This inequality implies that for a finite number of events the uniform con-
vergence of frequencies of occurrences of events to the corresponding
probabilities is always valid, i.e., the limit

lim P{sup [ P(o;) — v(o)| > x} = 0.

- i

We now require that the probability of the realization of the event
{SUP | P(a;) — v(a;)| > %}

not exceed 7, i.e., that the inequality

P{sgp | P(a;) — v(a)| > x} <n (6.17)

will be fulfilled. It follows from the bound (6.16) that the inequality (6.17) is
definitely satisfied if the quantities N, [, %, and 5 are connected by

2N exp{—2#%l} = 1. (6.18)

If one solves Equation (6.18) for x, then for given N, [, and » an estimator of
the maximal deviation of the frequencies from the corresponding probability
in the class of events under consideration is obtained:

_ fa N @R
x_/——ir—ﬁ (6.19)

If, however we solve Equation (6.18) for I, then we obtain the size of the
sample such that with probability at least 1 — n one can assert that the
maximal deviation of the frequency from the probability over this class does
net exceed »:

_InN - In(1/2)
N 2x%? )

! (6.20)
We have thus proved the following theorem:

Theorem6.1. Let the set of decision rules consist of N elements, and for decision
rules F(x, o;) let the frequency of errors in the sample of size | be equal to
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v(a;). Then with probability | — n one may assert that the inequality

In N — In(y/2)
21

is valid simultaneously for all decision rules.

In N — In(yn/2)

(o) — < P@) W) + 5"

Remark. Since the inequalities are valid for all N rules, Theorem 6.1 deter-
mines a confidence interval for the quality of a decision rule F(x,
which minimizes the empirical risk among N rules. This interval is

In N — In(/2 In N — In(n/2
v(aemp) - —T(l/—) < P(aemp) < V(aemp) + —TIM

emp)

In what follows the upper bound will be of importance: with probability
1—n,
In N — In (n/2)

P(oy) < v(oy) + 31

is valid simultaneously for all decision rules (including those which minimize
empirical risk).

§4 A Deterministic Statement of the Problem

The size of the confidence interval computed based on Theorem 6.1 may be
excessive. Indeed, consider the case when the set consisting of N decision
rules contains a rule which solves perfectly the problem of pattern recognition,
i.e., a rule for which the possibility of erroneous classification will equal zero.
Such a formulation of the problem is sometimes called deterministic.t Then
this rule (or a rule close to it) should be found from the sample
X1, D15 v. 3 Xpy O

We seek this rule using the method of minimizing the empirical risk. Since
there exists among functions F(x, «;) (i = 1, ..., N) a function which solves
the problem perfectly, it is clear a priori that for any sample x,, w,;...;
X;, , the value of the minimum of empirical risk will be zero. This minimum,
however, can be obtained for several functions. Thus it becomes necessary to
estimate the probability that the quality of any function which yields a value
of zero for the empirical risk will not be worse than the given .

Introduce the function

1 forz=0,
0z) = {0 for z > 0.

+ The terminology is unfortunate, since the problem remains statistical. However, we use it
because it is widespread.
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Then an estimate of the rate of uniform convergence of frequencies to
probabilities over the set of events for which the frequency of errors is zero
is an estimate of the probability of an event

{ sup | P(e) — v(e) [B(v(e) > x}

(rather than the event {sup; | P(o;) — w(o;)| > »} as in Theorem 6.1).

Since the number of functions for which the zero value of empirical risk is
attained does not exceed N (the total number of the functions in this class),
the inequality

P{sqp | P(ot;) — v(o)|0(v(ery)) > x} < NP, (6.21)

is valid. Here P, is the probability that the decision rule for which the
probability of committing an error exceeding » will classify correctly all the
elements of the sample. This probability may be easily bounded:

P, < (1 —x) (6.22)

Substituting the bound for P, into (6.21), we obtain
P{sup | P(;) — v(;)|O(v(e)) > x} < N(1 — =)L (6.23)

In order that the probability

P{Sl}p |P(a) — v(o)|0(v(e)) > %}

may not exceed the value #, it is sufficient that the equality
N — %) =9 (6.24)
be fulfilled. Solving this equation with respect to I, we obtain

_InN—-Ing 6.25
T —In(l — %) (6.25)
Since for small » the approximation

—In(1 — %) ~x

is valid, (6.25) may be represented in the form

_InN—-Ingy
=

)

In contrast with (6.20), the denominator here is » rather than 252, i.e., in the
deterministic formulation the sufficient size of the sample is smaller than
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in the general case. Solving (6.24) with respect to », we obtain

%=1an—lnf1‘

Thus the following theorem is valid:

Theorem 6.2. If one chooses from the set of decision rules consisting of N
elements a rule that commits no errors in the sample, then with probability
1 — 5 one can assert that the probability of erroneous classification using the
selected rule is within the limits

0<P<ux,
where

x=lan—ln11.

§5 Upper Bounds on Error Probabilities

Despite their apparent simplicity, Theorems 6.1 and 6.2 are quite deep.
Essentially the subsequent development of the theory of minimizing empirical
risk consists of a generalization of these theorems to the case of infinitely
many decision rules. The basic points of this further theory are already
available. We shall dwell on them in some detail.

(1) Theorems 6.1 and 6.2 are immediately obtained from the bounds on
the rate of uniform convergence, over a class of events, of frequencies to
probabilities. Theorem 6.1 is based on the bound (6.16) on the rate of uniform
convergence over the class of events Sy: 4,, ..., Ay of frequencies towards
probabilities. Theorem 6.2 is based on a bound on the rate of uniform
convergence over a narrower class {|P(a;) — v(o;)|0(v(z;)) < x}. Denote this
class by Sy.

(2) In both cases the rate of uniform convergence was determined by the
product of two quantities: the number of events in a class, and a bound on
the probability that the frequency of any fixed event in the class deviates by
more than » from the probability of this event. For the events considered in
Theorem 6.1 this probability does not exceed exp{—2x2I}; for the events
considered in Theorem 6.2 the analogous probability does not exceed
(1 — x)! =~ exp{—=xl}. Thus a bound on the rate of uniform convergence of
frequencies to probabilities over a class of events is obtained from a bound
on the rate of the ordinary convergence which follows from the law of
large numbers, by multiplying it by the number of events in this class. When
constructing a theory of uniform convergence over a class of events with an
infinite number of members, this structure of a bound on the rate of uniform
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convergence is retained. However, instead of the number of events, in this
case other characteristics of the “capacity” of the class of events are utilized.

(3) In Theorem 6.1 two-sided bounds on the probability of erroneous
classification using a decision rule which minimizes the empirical risk were
obtained. However, for the subsequent theory the lower bound is of little
importance. Therefore it is of interest to obtain a bound on a uniform one-
sided deviation, i.e., a bound on

P{Sl}p(P(ai) = (o) > x},
and not on

P{ sup | P(;)) — v(a)| > %}.

The probability of the event {sup,(P(a;) — w(;)) > %} does not exceed the
probability of the event {sup; |P(a;) — v(o;)| > »}. Consequently a more
refined bound on the probability of a uniform one-sided deviation
P{sup; (P(a;) — v(;)) > x}, than that on the probability of a two-sided
uniform deviation P{sup;|P(a;) — v(a;)| > %} is possible. Such a bound
allows us to obtain from the above a bound on the probability of erroneous
classification which is better than the one obtained from Theorem 6.1.

(4) The bounds on the rate of uniform convergence given by (6.16) and
(6.23) depend substantially on bounds on the probability of deviation of a
frequency from the probability of events in the class under consideration
(Sy or Sy). The least favorable event A for the class Sy is that for which
P(A) = 4. Therefore only the bound (6.16) is possible. For the class of events
Sy the least favorable event is the one for which P(A) = ». The more refined
bound (6.22) is available for the probability of deviation of the frequency
from the probability of this event. Thus the bounds obtained for the classes
of events Sy and Sy differ in the same manner as the bound on the probability
of a deviation of an event 4 such that P(4) = 1 differs from the corresponding
bound on an event A" such that P(4") = ». This fact demands that more
careful attention be given to the requirements imposed on the amounts of
deviation of frequencies from the respective probabilities for different events
in the class. For our purposes of obtaining a uniform bound on the risk it is
reasonable not to require a uniform deviation of frequencies from proba-
bilities for all events in the class but to allow a larger deviation for events
such that P(A4) is close to 1 and a smaller one for events such that P(A4’) is
close to x. For example, it makes sense to bound the uniform relative value

of the deviation
sup T = V@) L
i o(x)

where o(a;) = P@)(l — P(a); for small P(x;) the approximation
o(a;) = / P(e;) is valid. We now obtain a bound on the probability of the
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one-sided relative deviation

P(x;) - v(a,)
p \ 6.26
{Sfp NN } (6:26)

and using it we shall construct an upper bound on the probability of erroneous
classification. To derive the bound (6.26) we shall utilize the inequality

P{P(t%i) — (o)
V P(e)

It follows from (6.27) that for a class consisting of N events the following
bound on the rate of uniform convergence is valid:

P{ P(o;) — (o)

> x} < exp{—¢*l}. (6.27)

su

ip N/ P(ai)
We shall require that the probability of uniform one-sided relative deviation
(6.28) not exceed 7:

> x} < N exp{—1x°1}. (6.28)

N exp{—1?l} = 1.
This is certainly satisfied if

InN—~Inp

1 (6.29)

= [2

Let the condition (6.29) be fulfilled. Then the inequality
P(o) — (o) < x
V P(e)

is satisfied simultaneously for all events A; with probability 1 — 5. Solving
(6.30) for P(a;), we obtain that

(6.30)

2

P(x) < “7 (1 + 1+ 4"(“')) + () (631)

is valid with probability 1 — 5 for all the events in the class simultaneously.
Substituting (6.29) into (6.31), we obtain that with probability 1 — 7,
the N simultaneous inequalities

lan—1n11(1 + s 2v(e)l

Pl < InN—1Inp

) + v(a)
are fulfilled. We have thus proved the following theorem:

Theorem 6.3. Let the set of decision rules consist of N elements, and for each
rule F(x, a;) let the frequency of errors in the sample equal v(o;). Then one can
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assert with probability 1 — n that the bounds
InN —Ingn (1 2v(a)!

S P Ty e

P(o) <

; ) + v(a;) (6.32)

are fulfilled simultaneously for all decision rules in the class.

Remark. Since the bound (6.32) is valid, with probability 1 — #, simul-
taneously for all the rules in the class, it also holds for the rule F(x, op,)
which minimizes the empirical risk.

Theorem 6.3 allows us to estimate the quality of the rule which minimizes
the empirical risk. Moreover, the bound (6.32) coincides with the bound
given in Theorem 6.2 obtained in the extreme case when P(a*) & 0, and it is
close to the bound given in Theorem 6.1 for the second extreme case when
P(a*) ~ 1. The structure of bounds for an infinite class of decision rules
is the same.

§6 An e-net of a Set

In the preceding sections we established the existence of a uniform convergence of
frequencies of occurrences of events to the corresponding probabilities over a class of
events consisting of a finite number of elements; we obtained bounds on the rate of this
convergence and using it, bounds on the quality of a decision rule which minimizes the
empirical risk. Our task is to generalize these results to the case of infinitely many
events.

In general. however, in the infinite case the uniform convergence of frequencies to
probabilities may not occur: for example, if the set of events is defined as consisting of all
open subsets of the set X, w. In this case a situation may arise where (cf. the example in
Section 2) an algorithm for minimizing the empirical risk yields the value zero for the
risk but it is not capable of learning. Therefore the problem is to determine conditions
which will assure uniform convergence for an infinite number of events, to bound its
rate, and finally to obtain an upper bound on the probability of erroneous classification
for a rule which minimizes the empirical risk.

In mathematics the necessity often arises of extending results valid for a finite set of
elements to the infinite case. Usually such a generalization is possible if the infinite
set can be covered by a finite e-net.

Definition. The set B of elements in a metric space R is called an ¢-net of the set G if
any point ¢ € G is distant from some point b € B by an amount not exceeding ¢, i.c.,
pb, ) < e

We say that the set G admits a covering by a finite ¢-net if for each ¢ there exists an
e-net B consisting of a finite number of elements.

In this section, for an infinite set of decision rules admitting a covering by a finite
¢-net we shall obtain assertions analogous to the assertions of Theorems 6.1 and 6.3.
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Thus let an infinite set of decision rules F(x,«) be given on which the metric
poey, ay) = p(F(x, ay), F(x, o)) is defined and a finite e-net is singled out. Let this finite
e-net consist of N(¢) elements. Moreover, let it be given that if two decision rules
F(x,o,) and F(x,a,) are distant from each other by an amount not exceeding ¢
(p(aq, @3) < &), then the quality of these rules differs by an amount not exceeding d(c),
ie.,

U(w ~ F(x, 2,))*P(x, w) dx deo» — ~l.(co — F(x, 0,))*P(x, ) dx dw| < ().

In other words, a small variation in the decision rule implies a small variation in the
quality of classification.
Under these conditions Theorems 6.1 and 6.3 can be generalized as follows:

Theorem 6.4. Let the set of decision rules F(x, a) be covered by a finite ¢-net. Then with
probability 1 — n the quality of the decision rule F(x, o.,,) which minimizes the empirical
risk is bounded by

W (temy)) — [ V) — In/2)

H 21 - 5(8) < P(aemp)

In N(¢) — In(n/2)

51 + 8(e),

< v(ai(aemp)) +
where F(x, 0(0temp)) is an element of the e-net which is closest to F(x, terp)-

Theorem 6.5. Let the set of decision rules F(x, a) be covered by a finite e-net. Then with
probability 1 — n the quality of the decision rule F(x, ot.y,) which minimizes the empirical
risk is bounded by

2 v(ai(aemp))l

| g - iFemp/
+lnN(s)—lr117

P(aemp) < v(ai(acmp)) + lnN(g)—_ln'l (1

; ) + 6(e),

where F(X, a(®emp)) is an element of the e-net which is closest to F(x, temp)-

Remark. Theorems 6.4 and 6.5 are valid for any e-net given a priori (before the appear-
ance of the sample). In particular the value of ¢ which defines the e-net can be chosen
in Theorem 6.4 from the condition of the minimum of expression

in N(z) — In(n/2)

T + 6(e),

and in Theorem 6.5 from the condition of the minimum of expression

In N(g) — Inn 2¢l
—1——<1+ L+ o N@ +ng) TO@

where 0 < ¢ < 1 is a constant (for example ¢ = 0.5).

Theorems 6.4 and 6.5 are proved in the same way:
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PROOF.
(1) A finite e-net consisting of N(e) elements
F(x, o), ..., F(x, ayg) (6.33)

is given for the set of decision rules F(x, o). According to Theorem 6.1 (6.3) the inequalities

v() = n M@ = ;101/2) < P(oy) < v(o) + III_N_(%—I_IM ,

/ In N(g) — Inn 2v(a)l
(‘P(ai) < 2SR (1 " v S n) + v(ot,-))

are fulfilled with probability 1 — # simultaneously for all N(e) elements of (6.33).

(2) For any decision rule F(x, «*) (including the one which minimizes in F(x, &)
the value of the empirical risk), the closest element of the e-net F(x, o («*)) can be found,
for which this element satisfies

| P(a*) — P(o(a*))| < d(e). (6.35)

The inequalities (6.34) and (6.35) imply that for the decision rule F(x, a{aem,)) the
relations

InN —1 2
v(ori(aemp)) - @ - 5(8)
< Plttany) < Wati(tomy)) + ‘L’V—@{l“‘—(’@ + 56,

In N@) — Inn 2v(%i(otemp))!
(P(aemp) < ‘-1-__ 1 + 1+ m + 5(8) + v(ai(aemp))
are valid with probability I — 7. The theorems are thus proved. O

Thus if the set of decision rules F(x, «) admits a cover by a finite ¢-net and the distribu-
tion P(x, w) is such that close values of the probability of erroneous classification
correspond to close decision rules, then as the sample size increases the method of
minimizing the empirical risk should in principle successfully yield the desired result.t
Moreover for each fixed ¢ the probability of erroneous classification using the rule
which minimizes the empirical risk is bounded in terms of the inequalities (6.34).

However, in order to utilize these bounds the value of 6(¢) is required. To compute
this value the density P(x) is used, which in the formulation of the problem of pattern
recognition is assumed to be unknown. In the next chapter, when solving the problem of
estimating regression, we shall obtain the value of d(¢) and be able to utilize bounds
on the quality of a function expressed in terms of the value of empirical risk (¢) and
N(e). In this chapter, to obtain the rate of uniform convergence of frequencies to the
respective probabilities over an infinite class of events, a new idea will be utilized. This
will eventually lead us to the construction of necessary and sufficient conditions for
uniform convergence, to the derivation of a bound on the rate of uniform convergence
based on these conditions, and finally to a constructive bound on the quality of a
decision rule obtained using the method of minimizing the empirical risk.

T Although this assertion does not follow formally from Theorem 6.4, its proof is completely
analogous.
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§7 Necessary and Sufficient Conditions for Uniform
Convergence of Frequencies to Probabilities

Up until now we have utilized quite rough “capacity” characteristics of
the set of decision rules (the number of elements in the set) to obtain bounds
on the rate of uniform convergence. In this section we introduce a more
refined characteristic of capacity—the entropy of a system of events on samples
of size l. Using this characteristic one can establish exhaustive necessary and
sufficient conditions for uniform convergence of frequencies of events to
their respective probabilities, i.c., for the equality

lim P{sup | P(et) — V()| > %} =0
- a
to be valid for any x«.

Thus let a set S of decision rules F(x, «) be defined and a sample x,, ..., x;
be given. This sample can generally be subdivided into two classes in 2
ways. However, only those subdivisions of the sample which can be accom-
plished using the rules F(x, «) will be of interest. (Uusing the rule F(x, «*),
the set x,, ..., x; is subdivided into two subsets: one on which F(x, a*) = 1,
and the other on which F(x, o*) = 0.) The number of different subdividing
methods depends on the class of decision rules F(x, ) as well as on the
sample. We shall denote this number by

AS(xqy . evs X))
Consider the system of events
S(@) = {x, w: (w — F(x, a))?> = 1}
formed by the set of decision rules F(x, a). Let a random independent sample
X1y W1 ...} X, O (6.36)

be given. The system of events S(x) induces A(S(a); xq, @y ... ; X, )
different subsamples on the sample (6.36). Clearly the number of these
subsamples equals AS(x,, ..., x;). Since x,, ..., X, is a random independent
sample the number of subdivisions AS(x,, ..., x;) is a random variable.

Definition. The quantity
HS() = M In AS(xy, ..., x)
is called the entropy of a system of events S() on a sample of size I.
It turns out that for the uniform convergence of frequencies w(a) to the

respective probabilities P(a) over the set of events, it is necessary and
sufficient that as the sample size increases, the portion of the entropy due to
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a single element of the sample approach zero, i.e., that the sequence
H(1) H%Q2) H%())
1’2 777
approach zero as [ increases. In other words the condition
. H5(I
lim U =

[ A~ ) l

0 (6.37)

should be fulfilled. The proof of this assertion follows from Theorem A.1 of
the Appendix to Chapter 7.

Like any exhaustive conditions, the necessary and sufficient conditions
stated above for the uniform convergence of frequencies to their respective
probabilities utilize some refined concepts. In our case such a concept is the
entropy H5(l) of a system of events S(a) on samples of size [, which is con-
structed by means of the density P(x). In the case of the problem of pattern
recognition the density is unknown, as stated above. Therefore, in order to
establish the feasibility of minimizing the expected risk via the determination
of the minimum of empirical risk, the necessary and sufficient conditions
(6.37) cannot be used.

For this reason it is important to obtain less refined sufficient conditions
which firstly will not depend on the properties of the measure P(x) and
secondly will admit a bound on the rate of uniform convergence. Such
conditions may be stated in terms of a capacity measure of the system of
events S(«) which is obtained from the entropy H5(l) by abstracting it from
measure properties.

Definition. The function

m3(l) = max A(x,, ..., x),

X1y eeey X1

where the maximum is taken over all possible samples of size [, is called the
growth function of a system of events formed by the decision rules F(x, a).

The growth function is constructed in such a manner that it does not
depend on the properties of measure P(x) and the inequality
In m*(l) > H3(I) (6.38)
is always satisfied. Now if the quantity

In m%(l)
)

approaches zero as | increases, then in view of (6.38) the ratio H%(/)/ tends
to zero a fortiori. Therefore the condition

. InmS()
lim =

[ l

0
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is a sufficient condition for the uniform convergence of frequencies to their
probabilities. Below we shall show that the growth function can be easily
obtained for the events defined by various classes of decision rules F(x, o)
and hence the uniform convergence can be established. Moreover, as will
be shown below, the rate of uniform convergence can also be estimated using
the growth function m3(J).

§8 Properties of Growth Functions

A growth function has a simple interpretation: it counts the maximal number
of ways for subdividing [/ points into two classes using the decision rules
F(x, o). For growth functions the following remarkable theorem is valid.

Theorem 6.6. A growth function is either identically equal to 2" or for | > h is
majorized by the function
h

l
S
m(l) < 1.5 Ak
where h + 1 is the smallest sample size such that the condition m*(l) = 2" is
violated. In other words

“either = 2!,
m®(l) [t
or <15— (>h).
h!
The proof of this theorem is presented in the appendix to this chapter.
In order to bound a growth function it is necessary to show that either (1)
for any [, points x,, ..., x; exist such that using the decision rules F(x, a)
it would be possible to subdivide them into two classes by any one of the 2!
ways, or (2) a number h exists such that h points can be subdivided into classes
in all possible ways, but h + 1 points cannot. In the first case the growth
function is exponential; in the second it is polynomial. The number h can
serve as the measure of diversity of the class of decision rules.

Definition. We say that the class of indicator functions has capacity h if the
inequality
h

m3(l) < 1.5}11—! (>h) (6.39)

is valid. If the equality
mS(l) = 2!

is satisfied we say that the capacity h of the class of indicator functions
F(x, ) is infinite.
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It is easy to verify that if the capacity of the class of indicator functions is
finite, then the uniform convergence of frequencies to the respective proba-
bilities always occurs. Indeed, in this case the relation

h
hinl— ) Ini
0 < lim <lim—52 =0

[Sadd] [Eadd] l

In m3())

is valid and the sufficient condition is fulfilled.
The following class of decision rules, which are linear in the parameter,
plays an important role in the subsequent theory:

i 1 forz >0,

F(x, a) = 9(2_:1 o; (p,.(x)), 0(z) = { 0 forz <0, (6.40)

It is easy to obtain a growth function for a class of events defined by

linear decision rules (6.40). For this purpose it is sufficient to determine

the maximal number h of points in the space of dimensionality n which

can be subdivided into two classes using a hyperplane in any one of the 2"

ways. It is known that this number equals n. Therefore according to Theorem
6.6 the growth function is bounded by

n

m3(l) < 1.5% (I>n)

for the class of linear decision rules (6.40). Consequently for the class of
linear decision rules sufficient conditions for uniform convergence are
fulfilled.

It was shown in Chapter 2 that uniform convergence of frequencies of
events to their probabilities over a class of events defined by one-dimensional
linear decision rules F(x, o) = 8(x + «) makes up the content of the
Glivenko—-Cantelli theorem, which asserts the uniform convergence of the
empirical cumulative distribution function to the population one.

§9 Bounds on Deviations of Empirically Optimal
Decision Rules

In the appendix to this chapter a bound on the rate of uniform convergence
of frequencies to probabilities over a class of events S(a) is obtained. It is
shown that the inequality

P{sup [P(a) — ()| > x} < 6m520) exp{—- KTZI} (6.41)

is valid. The bound (6.41) is of the same form as the above: it is formed by
multiplying the quantity 6m®(2])—which is the capacity characteristic of the
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system of events—by a bound on the probability that the deviation of the
frequency from its probability exceeds % (the quantity exp{ — »1/4}).

If the capacity of the class of decision rules is infinite (m5({) = 2I), then the
bound (6.41) is trivial, since for all » the right-hand side of the inequality
exceeds 1. The bound (6.41) is meaningful when the capacity of the class of

decision rules is finite:
S, lh
m>(l) < 1.5 W

In this case it takes the form

P{sup [ P(a) — v(o)] > x} < 9(:;—1')" exp{~ %21} (6.42)

As lincreases, the right-hand side of the inequality (6.42) tends to zero and the
approach is faster for smaller values of the capacity h. We shall require that
the probability

P{sup | P(at) — W) > x}

not exceed 5. This is certainly true if

Q@i 20|

Equation (6.43) can be solved for k (using Stirling’s formula):

%m§+Q—mﬁ
h 9
2 1 .

n= (6.44)

Then (6.42)—(6.44) imply the following theorem:

Theorem 6.7. Let F(x, o) be the class of decision rules of bounded capacity h,
and let v(a) be the frequency of errors computed from the sample for the rule
F(x, a). Then with probability 1 — n one may assert that for | > h, and simul-
taneously for all decision rules F(x, &), the probability of erroneous classifica-
tion is within the limits

%m%+ﬁ-mg
(o) — 2 i

h(ln%+ 1) -1
< P(a) < v(a) + 2 7

=3
O3
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Remark. Theorem 6.7 implies that for the rule F(x, otp,,), which minimizes
the empirical risk, the upper bound

21 n
Z41)=m?2
lnh+ ) ln9

|
P(ttemp) < V(0emp) + 2 (I>h)

l
is valid with probability 1 — #.

In the appendix to this chapter it is shown that along with (6.41) the
bound

Slip </ P(a)

is valid. This bound is nontrivial for a class of decision rules of bounded
capacity:

P{ Pl = v x} < 8m(2lye~ M

P(x) — v(a) Qnt 24
P{sgp —-}\/T“)— > x} < 12—h!~ e x4, (6.45)

We shall require that the right-hand side of the inequality be equal to #:

Qn* e
12 W e /4 =
This is fulfilled if
k 2
1n%—1n% h(lnﬁlqtl)—lnln—z
n=2 . ~ 2 . (6.46)

l /

On the other hand, the inequality (6.45) can be stated as follows: with proba-
bility #, simultaneously for all « the inequality

4v(a)
% 2

2
P(o) < % (1 + 1+ ) + () (6.47)
is valid. The relations (6.46) and (6.47) imply the following theorem.
Theorem 6.8. Let F(x, o) be a class of decision rules of bounded capacity h,

and for each rule F(x, a) let the frequency of errors computed in the sample
equal V(o). Then with probability 1 — n one can assert that the bound

h(l 2 1) InJt
n-+1)—In-%
Pl <2 h 12 W)l

1+ /1 + + V(%lemp)
! h(lng+1)—lnn

h 12
(6.48)

is valid for | > h simultaneously for all rules in the class.
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Remark. It follows from Theorem 6.8 that for the rule F(x, tep,) Which
minimizes the empirical risk the bound

P(0temp)
21 n
h(ln W + 1) —In o W)
<2 1+ I+ + v(aem )
! 2 4 1) =" ’
h 12
is valid.

§10 Remarks on the Bound on the Rate of Uniform
Convergence of Frequencies to Probabilities

In this chapter we have obtained bounds on the rate of uniform convergence
of frequencies to the respective probabilities:

2Ne~ 2x21

P{sgp | P(o) — v(a)| > x} < {6m‘(21)e"‘2” .

and bounds on the uniform one-sided relative deviations of frequencies from
their probabilities:

P(2) — v(a) Ne 2,
P{st:p \/IT(o?) > x} < {8m5(21)e‘”2”4
Using these bounds, Theorems 6.1, 6.3, 6.7, and 6.8 were obtained, which allow
us to estimate the quality of a decision rule minimizing the empirical risk.

All the estimates obtained have the same structure, consisting of two
factors: one which bounds the probability of the corresponding deviation
(separately) for each event in the class, and another which characterizes the
variety of the class of decision rules. Different characteristics of the variety
of the class of decision rules are used for the bounds. The simplest is the
number of decision rules in the class. The simplicity of this characteristic is
due to the fact that it does not, for example, take into account whether the
decision rules in the class are “substantially different” or whether all the
rules are “equivalent.”

An adequate measure of the variety of the class of decision rules, by which
it is possible to construct necessary and sufficient conditions for the uniform
convergence of frequencies to their probabilities, is the entropy of the system
of events defined by the decision rules. However, to compute the entropy
of a system of events on samples of length [ is possible only if the density
P(x) is known, and it is assumed to be unknown in the formulation of the
pattern recognition problem. Therefore a new measure of variety was intro-
duced which is obtained from entropy by choosing the least favorable distri-
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bution. This measure is expressed in terms of the capacity of the class of
decision rules and can easily be computed.

Various definitions of measures of variety of a class of decision rules
generate different theorems on the quality of algorithms minimizing the
empirical risk. However, in all these theorems the very same fact is asserted:
if the measure of variety of a class of decision rules is small compared with the
sample size, then the method of minimizing empirical risk allows us to choose
a rule which is close to the best one in the class.

A characteristic feature of the theory of minimizing empirical risk presented
above is the complete absence of any indications as to the constructive
feasibility of determining an algorithm. This feature has negative as well as
positive aspects. On one hand, the theory does not give regular procedures
for minimizing empirical riks; they should be implemented by a corresponding
program. On the other hand, the theory is quite general. The method can be
applied to various classes of decision rules: linear discriminant functions,
piecewise linear discriminant functions, logistic functions of a particular
kind, and so on. This is due to the fact that the theory of the method of
minimizing empirical risk answers the question “what to do,” leaving the
question “how to do it " unsettled. Therefore various methods can be applied,
including heuristic ones.

The application of heuristic methods in this case has some theoretical
justification: if in a class of decision rules whose capacity is small compared
to the sample size one chooses a rule which, while it does not yield the
minimum of the empirical risk, results in a sufficiently small value of it, then
in view of the theorems proved above, the decision rule selected will be of
sufficiently high quality.

Constructive ideas for such algorithms admit a simple geometric interpre-
tation: It is required to construct in a space X a hypersurface belonging to a
given class of hypersurfaces which—with the smallest possible number of
errors—will separate the vectors of the sample in one class from the corres-
ponding vectors in the other. The assignment of vectors (including those
which do not belong to a learning sequence) to a particular class is carried out
according to the side of the subdividing hypersurface on which the vector is
located.

Methods of constructing separating hypersurfaces constitute a con-
structive part of the theory of pattern recognition. These methods are
presented in Addendum L.

§11 Remark on the General Theory of
Uniform Estimating of Probabilities
We have thus developed a theory of uniform estimating of error probabilities

in pattern recognition for arbitrary classes of decision rules. Formally, in the
functional which computes the probabilities of errors we wrote a quadratic
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loss function. In proving the related theorems, however, the form of the loss
function was unimportant. What is important is that Q(z, &), « € A, is a class
of indicator functions.

In fact, this chapter presents a theory more general than the uniform
estimation of error probabilities in pattern recognition. Here a general
theory has been developed for uniform estimation of probabilities from
their frequencies in a class of events of limited capacity. We now formulate
the basic assertions of this theory. The proofs are identical to those of similar
theorems given in the chapter.

Assume that a space Z is given on which a probability measure P(z) has
been defined and a system of events S,, & € A, is specified (subsets measurable
with respect to the given measure and belonging to Z). Let Q(z, o), x € A
be a family of indicator functions on the sets S,, « € A (i.e., the function

{0 ifz¢s,
Q(z’“)”{l ifzeSa)'

Let the capacity of the family of indicator functions Q(z, a), € A, be
finite and equal to h (there exists such an h that m>(h) = 2", mS=(h + 1) #
2h + 1).

Under these conditions the following assertions hold on two-sided and
one-sided uniform bounds of probabilities

P(@) = | dP(z) = JQ(Z, o) dP(z)
S«

by virtue of associated frequencies

1 l
W) =7 =ZIQ(Zi’ a)

computed on a sample

Zyyaees ).

Assertion 1. For any | > (A/(A — 1))%, A > 1 with probability 1 — n simul-
taneously for all events S,, « € A, the two-sided bound

h(ln%-ﬁ—l)—lng h(ln%+1)—lng
o) — A i < P(a) < v(o) + A ]

holds.
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Assertion 2. With probability 1 — n simultaneously for all events S, a € A,
the one-sided bound

21 n
h(ln— + 1) —In—
P < wa) + 2" 2y s V@i
I h( 20 )

In—+1
nh+

"
—InL
"2

holds.



Appendix to Chapter 6

Theory of Uniform Convergence of
Frequencies to Probabilities: Sufficient
Conditionst

§A1 Sufficient Conditions for Uniform Convergence
of Frequencies to Probabilities

According to Bernoulli’s classical theorem the frequency of occurrence of a
certain event A4 in a sequence of independent trials converges (in probability)
to the probability of this event. Often, however, it becomes necessary to
assess simultaneously the probabilities of a class of events S based on the
very same sample. Moreover, it is required that the frequencies converge to
the probabilities uniformly over all events in the class S. More precisely, the
probability that the maximal deviation over the class of frequencies from
probabilities exceeds a given, arbitrarily small positive constant must tend
to zero as the number of trials increases indefinitely.

It turns out that even in the simplest cases uniform convergence may not
occur. Therefore a criterion is required which will test whether such conver-
gence is present.

Let X be a set of elementary events on which a probability measure P(x)
is defined. Let S be a collection of random events, i.e., subsets of a space
measurable with respect to the measure P(x) (S is included in the o-algebra
of random events, but does not necessarily coincide with it). Denote by X(I)
the space of random independent samples taken from X of length I.

For each sample X' = x,, ..., x, and event A4 € S, the frequency of occur-
rence of event A is defined as the ratio of the number n(A4) of elements of the
sample belonging to A to the common sample size I:

n(A)

Vi(A) = v(xy, ..., x) = I

+ Necessary and sufficient conditions for uniform convergence of frequencies to probabilities
will follow from the results presented in the Appendix to Chapter 7.

162
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Bernoulli’s theorem asserts that for a fixed event A the deviation of the fre-
quency from the probability tends to zero (in probability) with increasing
sample size, i.e., for any »

P{|P(A) — V'(4)| > x} == 0.

Here, however, we are concerned with the maximal (over the class S) devia-
tion of the frequency from the probability:

n(l) = sup|v(4) — P(4)|.
AeS
The quantity n([) is a function of a point in the space X (). We shall assume
that this function is measurable with respect to a measure in X(J), i.e., n(l) is
a random variable. The theorems below deal with bounds on the probabil-
ities of the event n(l).

§A2 The Growth Function

Let X be a set, S be a system of its subsets, and X' = x,, ..., x; be a sequence
of elements x of length /. Each set 4 € S determines a subsequence X 4 of this
sequence consisting of elements belonging to 4. We say that A induces a
subsequence X 4 on the sequence X

Denote by

AS(xy, ..., X))
the number of different subsequences X , induced by the sets 4 € S. Clearly,
AS(xy, ..., x) <2

The number AS(x,, ..., x,) is called the index of the system S relative to the
sample x, ..., x;.

The index of a system may be defined in another way as well. We shall
consider 4, € S to be equivalent to 4, € S relative to the sample x4, ..., x;
if X,, = X,,. Then the index A%(xy, ..., x;) is the number of equivalence
classes into which the system S is subdivided by this equivalence relation.

Clearly the two definitions are equivalent. The function

m3() = max AS(x,,..., x), (A.1)
X1yeees X]
where the maximum is taken over all the sequences of length [ is called the
growth function of the system S. Here the maximum is always attained, since
the index AS(x,, ..., x;) takes on a finite number of values.
The growth function of a class of events possesses the following remarkable
property.
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Theorem A.1. The growth function either is identically equal to 2" or is bounded
by the function

n—1
Y. Ci
i=0

where n is the minimal value of | such that

m3(l) # 2.
In other words
either =2
m5(l n-1 A2
Ol <o (A2
i=o0

To prove this assertion the following lemma is required.

Lemma A.1. If for some sequence x,, ..., X; and some n

n—1
As(xl, vy xl) > Z C;,
i=0
then there exists a subsequence X" of length n such that
AS(X") = 2™

ProOF. Denote
n-1
Z Ci= ®n,l)
i=0

(here and below we shall assume that Ci = 0 for i > [). For this function, as
it is easy to verify, the relations

o, ) =1,

d(n,N=2" fl<n+1,

o, N =0n, - 1) +®n—-1,1-1), ifn>2,1>1 (A3)
are valid. In turn these relations uniquely determine the function ®(n, )
for/>0and n > 0.

We shall prove the lemma by an induction on [ and n. For n = 1 and any
I > 1 the assertion of the lemma is obvious. Indeed, in this case

AS(xy,...,x) > 1

implies that an element of the sequence x; exists such that for some A* € S we
have x; € A*, while for some other 4** € S we have x; ¢ A**. Consequently,

AS(x) = 2.
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For | < n the assertion of the lemma is valid because the premise is false.
Indeed, in this case the premise is

AS(x,, ..., x) > 2,
which is impossible, since
As(xl, ey x,) < 2’.

Finally assume that the lemma is valid for n < ny (ny > 1) for all L
Consider now the case n = ny + 1. We show that the lemma is vahd in this
case also for all .

We fix n = ny + 1 and carry out the induction on I. As was pointed out,
for | <l,+ 1 the lemma is valid. We shall assume that it is valid for I <,
and show thatitis valid for I = I, + 1. Indeed, let the condition of the lemma,

AS(x,, ..., Xig» Xig+1) > ®lng + 1,1 + 1)

be fulfilled for some sequence x,, ..., x;,, X;,+;- The lemma will be proved
if we find a subsequence of length ny + 1, say X™*! = x,, ..., x, 4+, such
that

S _ +1
A(Xq, ooy Xpppq) = 2770
Consider the subsequence X' = x,, ..., x;,. Two cases are possible:

(@) A%(xy, ..., x) > D(ng + 1, 1),
(b) AS(xy, ..., x;,) < Dng + 1, Iy).

In case (a), in view of the induction assumption, there exists a subsequence
of length ny, + 1 such that AS(X™*1) = 2m*! ged.

In case (b) we subdivide subsequences of the sequence X" induced by
the sets in S into two types. We assign to the first type subsequences X" such
that on the whole sequence X' *?! events belonging to S induce X" as well as
(X", X154+ 1)- Sequences X" such that either X" or (X", x,, ) is induced on the
sequence X' *! are assigned to the second type. Denote the number of sub-
sequences of the first type by K, and of the second by K, . It is easy to see that

As(xl, ...,x,o) = Kl + Kz,

As(xl, ceey xlo, x,0+1) = 2K1 + Kz;
and hence
AS(Xq, e vy Xpgs X 1) = A5(xy, ..., x3.) + K. (A4)

Denote by S’ the system of all subsets 4 € S that induce subsequences of
the first type on the sequence X*. Then if

() Ky = A5(xy, ..., x,)) > B(ng, ly),

in view of the induction assumption there exists a subsequence X™ =
X;,, ..., X;_such that

A¥ (g X, ) = 2% (X™ = XN,

1584

ing
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However, in that case we have

AS,(XI,_.,,X 5xlo+1)= 2"0+1

ing

for the sequence x; ..., x;, ,Xi,+1, since for each subsequence X" induced on

110

the sequence X™, two subsequences induced on X', x,,,; can be found,
namely X" and (X", x,,+,). Thus the required subsequence is obtained in
case (b).

If, however

(") Ky = AS(xy, ..., x;.) < Dlng, lo),
we then obtain in view of (A.4) and (b)
AS(xy ..oy Xpge1) < Dng + 1, lp) + B(ng, lo),
which by virtue of the properties (A.3) of the function ®(n, I) implies that
AS(xqy ..oy Xpp41) S Bng + 1, 1p + 1)
This however contradicts the condition of the lemma (i.e., (b”) is impossible).

The lemma is proved. O

We shall now prove the theorem. As was pointed out, m5([) < 2'. Let
m>(I) not be identically equal to 2', and let n be the first value of [ such that
m3(l) # 2'. Then for any sample of size [ larger than n, the inequality

AS(xy,...,x) < ®(n, )

is valid. Indeed, otherwise, in view of the lemma’s assertion, one could find
a subsample x, ..., x, such that

AS(xy, ..y x,) = 20, (A.5)

which is impossible, since by assumption m3(n) # 2".
Thus the function m3(l) either is identically equal to 2' or is majorized by
®(n, ). The theorem is proved. O

Remark. The function ®(n, I) can be bounded from the above for n < 1
and | > n as follows:

n—1

o(n, 1) < 1.5

Since the relation (A.3) is fulfilled for ®(n, 1), to prove (A.6) it is sufficient
to verify that for n > 1 and I > n the inequality

n— 1 n n
! r_d+1

m=—1! n = (A7)

is valid and to verify (A.6) on the boundary, ie,forn=1andl=n + 1.
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The inequality (A.7) is clearly equivalent to

P 4en)y — (L + 1) <0,

whose validity follows from Newton’s binomial expansion.
It thus remains to verify A.6 on the boundary. For n = 1 the verification
is direct. Next we shall verify the bound for small values of n and I:

I=n+1 | 2 3 4 S 6
D(n, ) 1 4 11 26 57
lnfl
—— L. 4. 12 1.25 1
LSy | 15 4 3 8

To check (A.6) for n > 6 we shall utilize Stirling’s formula for an upper
bound on I!:

Il < /2nl e t+a207"

whence for [ = n + 1

It _a—1w““>1—1
(n—1)! I ./ 2xll

—l+q2nt

£}

and furthermore for [ > 6
A > 0.8 !
(m—D!'" """ Janl

On the other hand, ®(n, ) < 2' always. Therefore it is sufficient to verify that
forl > 6

e

1

/27l

Actually it is sufficient to verify the inequality for ! = 6 (which is carried out
directly) since as [ increases the right-hand side of the inequality grows
faster than the left-hand side (for [ > 2).

Thus we have seen that either the growth function is identically 2!, or for
some n the equality is violated for the first time (i.e., m5(n) # 2"), and then the
growth function is bounded by a polynomial function

el

2'<12

ln—l
S
nMD<LSGtTﬂ

Therefore in order to estimate the behavior of a growth function it is
sufficient to find the smallest n such that on no sequence of length [ does the
system S induce all possible subsequences.
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§A3 The Basic Lemma

Let a sample of size 2] be chosen:
21
X =x1,...,x’,x’+1,...,x21,

and the frequencies of occurrence of the event 4 € S on the first half sample
X1, - .., X; and on the second half sample x;. 4, . .., x,; be computed. Denote
these frequencies by v'(4) and v"(A4) respectively, and consider the deviations
of these quantities:

PaX1s - oy X21) = [V(A) = V'(4)].

We are interested in the maximal deviation of the frequencies over all
events of the class S:

P5 (X1 - s X1) = SUD P4(X1s - . 5 X21):
AeS

~ Introduce the notation

ns(xl, tees x2!) = SupIV/(A) - P(A)"

AeS

Furthermore we shall assume that n5(x,, ..., x;) and p%(xy, ..., x,,) are
measurable functions.

The Basic Lemma. The distributions of the quantities n°(x,, ..., x;) and
p5(x4, . .., X)) are related as follows:

P{nS(xy, ..., x) > %} < 2P{ps(x1, ey Xgp) > g},

provided that | > 2/%?

PRrOOF. By definition
P{pS(XZ') > 5} - f O[pS(X”) - f] dP(X?),
2 X2 2

where

1 ifz>0,
o) = {o ifz <0,

Taking into account that the space X(2[) of samples of size 2! is a direct
product of X,(I) and X (/) of half samples of size I, we have the equality

j w(xl,...,xz,)dX“=f U <p<x1,...,x2,>dxa]dxa
b, (V1)) X1() X2()

for any measurable function @(x,, ..., X5;), by Fubini’s theorem [28].
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Therefore

P{p%X”) > ;} = | apxt) e[p%X”) - ;] dP(X})

X1(0) Xa(l)

(in the inner integral the first half sample is fixed). Denote by Q the event in
the space X,(I)

{(nS(xy, ..., %) > %},

and bounding the domain of integration, we obtain

P{pS(XZ’) > f} > J dP(X? a[ps(xﬂ) - 1‘] dP(XL). (A8)
2( = J, 2

Xa(l)

We now bound the inner integral on the right-hand side of the inequality
and denote it by I. Here the sample x, ..., x; is fixed and is such that

5(xy, ..., X)) > %
Consequently there exists an A* € § such that

| P(A*) — v(4*; x4, ..., x))| > *%.
Then

I= f B[SUP paX?) — E] dP(X3) > J 9[/)A‘(X 2 — E] dP(X?).
X2y |LA<S 2 X2() 2

Let, for example,
V(A*; X1, ..., x) < P(A*) — %

(the case v'(4*) = P(A*) + x is dealt with completely analogously). Then
in order that the conditions

! " u
IV(A*;XI, v xl) -V (A*;xl+1, ey x21)| > 5
may be satisfied, it is sufficient that the relation

%
V'(A*) > P(A*) — >
be fulfilled, whence we obtain

I> f G[V”(A*) — P(A%) + 5] dP(XY)
Xo() 2

= Y C{PAMIL — P(4*)]~

/1> P(A*)—x/2
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As is known, the last sum exceeds 4 provided only that / > 2/x. Returning
to (A.8), we obtain that for | > 2/x

P{ps(Xz') > ;} > % f dP(XY = 1P{rS(X") > ),
Q

§A4 Derivation of Sufficient Conditions

The following theorem is valid.

Theorem A.2. The probability that for at least one event in the class S the
Sfrequency will deviate from the corresponding probability in an experiment of
size | by an amount exceeding w is bounded by

P{nS(xy, ..., x) > w} < 6m®(2le™**!*, (A.9)

Corollary. In order that the frequency of events in class S shall converge (in
probability) to the corresponding probabilities uniformly over the class S, it is
sufficient that there exist finite n such that for | > n

ln—l

m() < 1.5 T

PROOF. In view of the basic lemma it is sufficient to bound the quantity
% %
P{ps(X 2 > —} = f O[pS(X 2~ —] dP(X?.
2 x@n 2

Consider the mapping of the space X(2I) into itself obtained by a permutation
T; of the elements of the sequence X2 In view of the symmetry of the defini-
tion of the measure, the equality

f(X*) dP(X*) = S(TX?) dP(X?)
X2 X2
holds for any integrable function f(X). Therefore

(zme[ps(?:- X2y — ;]
P{pS(XZ') >§} = f l i=1 ani dP(X?),  (A.10)
X2 .

where the sum is taken over all (2])! permutations.
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First we observe that

e[pS(XZ') - ;]

9[sup1v'(A) — V()] - ;]
A

sup 9[| V(A4) — V()| — ;]

Clearly if two sets 4, and A, induce the same subsample on the sample
XiseovsXpy Xpa1s .-, Xg, then

V(A TX?) = vi(Ay; TX,
V(A TX?) = v'(4,; TX?),
and hence

Pa(TiX?) = po(T,X?)

for any permutation T;. In other words, if two events are equivalent with
respect to the sample x,, ..., x,,, then deviations of frequencies for these
events are the same for all permutations T;. Therefore if from each equivalence
class one chooses one set and forms a finite system §’, then

sup p4(T;,X*) = sup p(T; X?).
AeS AeS’

The number of events in the system S is finite and is denoted by A% (x,,.. ., x5)).
Replacing the sup operation by a summation, we obtain

sup Q[PA(TiX”) - ;] = sup 0[;04(7",-)(2') - ;]

AeS AeS’

<y e[pA(TiX”) - 32‘]

AeS’

These relations allow us to bound the integrand in (A.10):

@yt

1 %
sup —— » 0 T,X?) — =
SUP G &, [” ATXT) 2] iy

@t y Z O[PA(TiX“) _ ;]
= @)v' sup B[PA(T,-XZ’) _ E] < Z & |

i1 des A @h!

The expression in the square brackets is the ratio of the number of orderings
in the sample (of a fixed composition) such that

IV(4) — v'(A)] > g,
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to the total number of permutations. It is easy to see that this expression is
equal to

CkCht
=y m2om
e,

k m-k %
"-ﬂ?‘—z‘ >§}’

where m equals the number of elements in the sample x,, ..., x,;, belonging
to A.
In Section A.5 we bound the expression I', with the result that

w2l
* -
I'*<3 exp{ 2 }
Qe

2 i
Z . 2D! 20[04(TX h - —] ) 3exx>{— %}

AeS’

Thus

w2l
= 3As(x1, LY le) exp{— T}

2
< 3m5Q2) exp{ - 54—1}
Substituting this bound into the integral (A.10), we obtain

P {ps(Xz’) > g} < 3m%Q2)) exp{— “Tzl}

whence in view of the basic lemma
, s %2l
P{n(X") > u} < 6m°(2]) exp{ — T
The theorem is proved. 0

PrOOF OF THE COROLLARY. Let n exist such that for [ > n
ln -1

ms(l) < 1.5 G——T)!.

Then clearly

2] n—1 Zl
lim P{n5(X") > x} < 9 lim (( ) D1 exp{— L} =0,
1= - o -

i.e., the uniform convergence in probability is valid. O



§AS A Bound on the Quantity I' 173

The sufficient condition obtained does not depend on the properties of
the distribution (the only condition is the measurability of functions n° and
p%), but depends on the inner properties of the system S.

Remark. As it was proved in Section A.2 only if the function m%(l) is not

identically 2!, there exists n such that for [ > n

m—1
(n— 1V
Therefore the sufficient condition is always fulfilled when

m3(l) # 2\

m3(l) < 1.5

§AS5 A Bound on the Quantity I'

We bound the expression
CkChLik
=Yy m2=m
27e,

where k runs over the values satisfying the inequalities

k. m-—k

[ [

> A, max(0, m — ) < k < min(m, [),

or equivalently the inequalities

m
k— =
B

I
> %, max(0, m — ) < k < min(m, [),

and [ and m < 2l are arbitrary positive integers.
We decompose I into two summands, I' = T'y + I',.

Ck Chix )
Flzz%, wherek>%+m.
21

x 2
Fzzgﬁ%ﬁ—m, wherek<%l—%.
Introduce the notation
p(k) = Ci‘"g—,’f”‘ (A.11)
a(k) = ptk +1) (m— k)l — k) (A12)

pky  k+DI+k+1—-m)
where
max(0, m — ) < k < min(m, ).
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Furthermore denote

s = min(m, l), T = max(0, m — I);
d(k) = 3. p(i).
i=k
Clearly the relation

s s—1 s—1
dk+1)= ) pli)= ka(i +1)= ';‘p(i)q(i) (A.13)

i=k+1 i

is valid. Furthermore it follows directly from (A.12) that for i < j, g(i) < q(j),
i.e., q(i) is monotonically decreasing. Therefore the inequality

e+ 1) = T p4O < a3 p0)

follows from (A.13). Furthermore by definition of d(k) we have
d(k + 1) < g(k) d(k).

Applying this relation successively, we obtain for arbitrary k and j satisfying
the condition T <j <k <'s

k-1
d(ky < d(j) [ ] 900).
i=j
Furthermore, since d(j) < 1,
k-1
dk) < l_[q(i), (A.14)
i=j
where j is an arbitrary integer smaller than k.

Set

kM
! 2

Then

q(t) = -

Moreover, as long as T < k < s, the inequality

] < min(™ L m !
2 2

is clearly valid.
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To approximate g(k) we study the function

a—t b—1t
F(t) = —— ——,
® a+t b+t

assuming that a and b are both positive.
For |t| < min(a, b)

InF(@)=In(a—1t)—In(a + 1) + In(b — t) — In(b + 1).

Furthermore we have

d 2a 2b
In F(0) = 0, E(lnF(t))= _{az_t2+b2_t2j|‘

This implies that for |t} < min(a, b)

d 1 1

Correspondingly for |¢| < min(a, b) and t > 0 the inequality

In F(t) < —2[1 + 1Jt
a

b
is fulfilled.
Returning to ¢(t), we obtain for t > 0
2 2 I+1
)< — = — .
nq(t) < 2[m+1+21—m+1:|t m+ DR —m+ 1)

We now bound
k—1
ln(,r[qa)),
i=j
assuming that(im — 1)2 <j <k — 1:

k—1 k—1
ln( I1 q(l‘)) = Y Ingq(i)

i=j i=j

8+ 1) kSl om—1
ST DA —miD > (” 2 )

=Jj

Returning to (A.14), we obtain

—8U+ 1) RS m—1)
hdl) < G DR —m T D & (’_ 2 )

here j is an arbitrary number smaller than k. Therefore for k > (m — 1)/2
one can set j = (m — 1)/2 for m odd and j = m/2 for m even, obtaining a
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stronger bound. Next, summing the arithmetic progression, we obtain

al + 1) m o \?
_ k=" 1) &
m+ D2l —m+ 1)< 7 " ) or even m,

a0+ 1) m— 1 m— 1
"(m+1)(21—m+1)(k' 2 “)(_ 2)

In d(k) <

for odd m.
Finally I', is d(k) for the first integer k such that
m %3
k — 5 > —2—,
whence
T, < [+ 1 22,

Tmr DR —m+ D"

In the same manner one can bound I',, since the distribution (A.11) is sym-
metric with respect to the point k = m/2. Thus

(I + Dl
F<2 e"p{_ m+ D2 —m+ 1)}

The right-hand side of (A.15) attains its maximum at m = I, and consequently

(A.15)

2]2

<2 exp{— ;:_l 1} < 3exp{—x2l}.

§A6 A Bound on the Probability of
Uniform Relative Deviation

In this section we shall prove

Theorem A.3. For any p (1 < p < 2) the bound
P{Su w > %
AeS

I/P(4)

2

} < 8m(2)) exp{— "T 12-(2/“} (A.16)

is valid.

ProoF. Consider two events constructed from a random and independent
sample of size 2I: The event Q,:

Q1={ 5(;4)_‘_”'(1)>u}

sup

aes Y/ P(A4)
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and the event Q,:

0, - {Sup V() = VA u}
27 laes IA) + 121

where v'(4) is the frequency of the event 4 computed from the first half-
sample of length I; v'(4) is the frequency of the event 4 computed from the
second half-sample; v"(A4) is the frequency of the event computed from the
sample of length 21

Observe that in the case | < » "~ 1 the theorem is trivial. Accordinly we
shall prove the theorem as follows: First we show that for [ > %~ #/?~ 1 the
inequality

P(Q,) < 4P(Q2)

is valid, and then we bound the probability of the event Q,. Thus we shall
prove the lemma:

Lemma A.2. For [ > »~??~ 1 the inequality
P(Q,) < 4P(Q,) (A.17)
is valid.

PROOF. Assume that event Q, occurred. This means that there exists A* such
that for the first half sample the inequality

P(A*) — V'(A*) > n Y/ P(A*)
is fulfilled. Since v'(A4) > 0, this implies that
P(A*) > yxPlp—1),

Assume that for the second half sample the frequency of occurrence of event
A* exceeds the probability P(A4*):

V(A¥) > P(A%).

Recall now that I > %~ P/?=Y_Under these conditions event Q, will definitely
occur.
To show this we bound the quantity

_ VA®) - vAan| _vi4r) — vidr)

AR + 121 PvA4*) + 12

(A.18)

under the conditions
V(4*) < P(A*) — »J/ P(A*)
V'(4¥*) > P(A%),

P(A*) > 3PP~ 1
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For this purpose we find the minimum of the function
X—-Y
Ix+y+ec

inthedomain0 <a <x < 1,0<y<b,c>0 Wehaveforp>1

?I_l(p—l)x+(p+1)y+pc>0
x p  (x+y+c) et ’

OT _ 1+ DDx+(p+1y+pc
& P (x+y+oerim

T =

< 0.

Consequently T attains its minimum in the admissible domain for x = a
and y = b. Therefore the quantity u will be bounded from below if one

replaces v/(4*) by P(4*) — w7/ P(A*) and v'(4*) by P(4*) in (A.18). Thus
o nF/2P(A*)
2P(4*) — % 2/P(A%) + 1

Furthermore, since P(4*) > P/~ 1) | > 3~ PI?~ 1 we have

#2/2P(A¥)

'u > B
\‘72P(A*) — yPle—1) 4 4eplp— 1)

Thus if @, occurs and the conditions P(4*) < v'(4*) and | > %~ 7?1 are
fulfilled, then Q, occurs as well.

Observe that the second half sample is chosen independently of the first
and, as is known, for | > 2/P(4*) the frequency of occurrence of the event 4*
exceeds P(A*) with probability 1. Therefore, provided Q, is fulfilled, the
event

V'(A*) > P(A4*)

occurs with probability exceeding 4 as long as [ > »~?®~ 1, Thus for
| > xp/p—1)

P(Q,) > 2P(Qy).

The lemma is proved. O

Lemma A.3. For any p (1 < p < 2) the bound

P(Q,) < 2m*(2]) exp{— %2 12—(2/p)}
is valid.
PROOF. Denote by R ,(X*) the quantity

WA + 121

RA(X 21) =
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Then the estimated probability equals

P(Q,) = f 0[sup R, (X*) — x] dP(X?).
X2 AeS
Here the integration is carried out over the space of all possible samples of
size 2/.
Consider now all possible permutations T; (i = 1, 2, ..., (2))!) of the
sequence x, ..., X,;. For each such permutation T, the equality

f G[SUp R (X?) — x:I dP(X?) = f o[sup RAT,X?) — x] dP(X?)
X2 AeS X))

AeS

is valid. Therefore the equality

J e[sup R, (X2 — u] dP(X?)
X2y

AeS

@

_ f Ly 9[sup R(T, X — ] dP(X?)
X2h (21)‘ AeS

is valid.

Consider now the integrand. Since the sample x,, ..., x,, is fixed, instead
of the system of events S one can consider a finite system of events S’ which
contains one representative for each one of the equivalence classes. Thus the
equality

1 Qen r 2l 2n! .
O sup R (T, X?") — » O] sup R(T; X*") — »
@nt 0| sup RaTiX™) (zz)'Z [p MBS ]

is valid. Furthermore

1 enr 7] @n!

(21)' Z 0 3‘:15) RATX) — K_ (21)1 Z Z H[RA(TXZI) %]
Qnt
= A‘E‘S {(21)‘ Z O[R (T X?") — %} (A.19)

The expression in the braces is the probability of the deviation of frequencies
in two half samples for a fixed event 4 and a given composition of the complete
sample. This probability equals

ckch;
I' = 4"',
; CZI
where m is the number of occurrences of events A4 in the complete sample, and
k is the number of occurrences of the events in the first half sample; k runs
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over the values

max(0, m — ) < k < min(m, ),

k m-—k
l [
—_— >
m+ 1
j /)
21
Denote by %’ the quantity
,mt1 T
20 7

Using this notation the restrictions become
max(0, m — ) < k < min(m, I),

!k m—kl . (A.20)

l l

In Section A.5 the following bound on the quantity I" under the restrictions
(A.20) was obtained:

(1 4+ D)) 12
I'<2 exp{— mt DA —m+ 1)}. (A.21)

Expressing (A.19) in terms of %, we obtain

2 2 2/p
< ZCxp{— (1 + DI (m;l— 1) }

220—m+ D(m + 1)

The right-hand side of the inequality attains its maximum at m = 0. Thus

<2 exp{— %2 12_‘2/"’}. (A.22)

Substituting (A.22) into the right-hand side of (A.19) and integrating, we have
P(Q,) < 2m5(2]) exp{—- %2 lz"‘z"”}. (A.23)

The lemma is thus proved. O

The inequalities (A.17) and (A.23) yield the assertion of the theorem. [J]



Chapter 7

A Method of Minimizing Empirical Risk
for the Problem of Regression Estimation

§1 Uniform Convergence of Means to
Mathematical Expectations

In this book the problem of pattern recognition is formulated as the simplest
problem of estimating dependences from empirical data. The simplicity of
the problem is due to the fact that it reduces to minimizing the functional

(%) = f(y — F(x, 2))?P(x, y) dx dy, 7.1

with an unknown density P(x, y), from the sample
X Viseoo s X6 Vi (7.2)

when y takes on only two values 0 and 1 and F(x, «) is a class of indicator
functions.

The problem of regression estimation is considered to be more complex.
It also reduces to minimizing a functional with unknown density P(x, y)
on the basis of the sample (7.2), but in this case y may take on an arbitrary
value and the class F(x, a) consists of square-integrable functions. Therefore
the construction of the theory of minimizing the risk (7.1) in a class of not
necessarily indicator functions F(x, a) by means of minimization of an
empirical functional
1 !
Temp(2) = 5 _Zl (i — F(x;, )° (7.3)
can be viewed as a generalization of results of the theory obtained in the
preceding chapter to a wider class of functions. In this chapter we shall

181
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construct the theory of regression estimation using the method of minimizing
the empirical risk (7.2) as a natural generalization of the solution for the
pattern recognition problem.

This is our first opportunity to implement this approach. It was not
possible to do this utilizing parametric methods as in problems of pattern
recognition (Chapter 3) and regression estimation (Chapters 4 and 5).
Solutions of problems were carried out there under stipulations of intrinsic-
ally different models for densities P(x, y): in the pattern recognition problem
the structure of the density was determined by a union of two densities; in
the regression estimation problem it was given by a measurement model with
additive noise. Here, however, the principle for solving the problem is the
same: a search for a function which minimizes (7.1) is carried out by means
of minimizing the empirical functional (7.3).

In the preceding chapter conditions were obtained under which this
approach can be successfully implemented for a class of indicator functions
F(x, o). Now we shall obtain conditions which assure a successful application
of the method of minimizing empirical risk when the class F(x, «) is of a
more general nature.

In the problem of pattern recognition, the functional (7.1) determines for
each fixed o the probability of a certain event (an incorrect classification
of the vector which is to be “recognized™), and the empirical functional
(7.3) determines the frequency of this event computed from the sample.
Conditions for applicability of the method of minimizing empirical risk are
associated here with the uniform convergence, over a class of events, of
frequencies of events to their probabilities.

In the problem of regression estimation the functional (7.1) determines
for each fixed « the mathematical expectation of the random variable

é(a) = (y - F(X, (1))2,

and the empirical functional (7.3) determines the empirical mean of this
random variable computed from the sample (7.2).

Above (Chapter 6, Section 1) it was shown that a successful application
of the method of minimizing an empirical risk might be associated with the
validity of the uniform convergence of the means to their mathematical
expectations:

P{Sup |I((X) - Iemp(a)l > %} < ’1(1, %)s
) 74
lim n(l, %) = 0. (74)
-
It was shown that under the condition (7.4) the value of the functional (7.1)
at the point of empirical minimum F(x, a.r,,) deviates with probability 1 — »
from the minimal value of I(x) in the class F(x, o) by an amount not exceed-
ing 2x:
P{I(aemp) - I(aO) > 2”} <.
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Thus the problem is reduced to the determination of the conditions for the
existence of uniform convergence of the means to their mathematical
expectations and to the estimation of the rate of convergence.

As in the previous chapter the validity of basic theorems on uniform
convergence does not depend on the form of the loss function. Therefore, in
spite of a quadratic loss function used in the text a general theory is obtained.

§2 A Particular Case

As above, we shall start with simple case: the set of functions F(x, a) consists
of a finite number N of elements

F(x, ay), ..., F(x, ay).

For this case the inequality

P{Sl}p [ 1() = L emp(a)| > %} < i P{{1(o)) — Lemp(a)| > %}
< N sup P{[I(&)) — Lemp(@)| > %} (7.5)

is valid.

In Chapter 6, for an analogous situation of bounding the rate of uniform
convergence of frequencies of events to their probabilities, a nontrivial
bound on the second factor was used. In this case a nontrivial bound on

Sup P{ll(al) - Iemp(ai)l > %}

is generally unavailable—since the random variable I, (x;) may possess
“large deviations”, and therefore its deviation from the mean I(x;) may be
arbitrary. We have already encountered such a situation in Chapter 2,
where it was necessary to take into account the measure of “possible large
deviations” when determining a guaranteed bound on the mathematical
expectation based on the value of the empirical mean. In particular it was
shown (cf. Chapter 2, Section 2) that for this purpose it is sufficient to know
either a bound on possible losses,

Sup(y - F(X, a))l < T,
a, x,y
or a bound on the relative variance of losses,

sup |30~ FOo @)*P(x, y) dx dy
P _

PG = Foo )P, pydxdy)? "

Thus to obtain a bound on the rate of uniform convergence of the means to
their mathematical expectations the prior information on the magnitude of
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possible large deviations should be uitilized. We remark that for solving the
problem of pattern recognition there was no need for such information. In
view of the statement of the problem, the loss function (y — F(x, ))* was
bounded by 1, i.e., the prior information about the large deviations was
contained in the statement of the problem.

In this chapter we shall utilize both types of prior information on large
deviations, and for each of them obtain a bound on the rate of uniform
convergence,

The simplest condition under which it is possible to obtain a bound on the
rate of uniform convergence of the means to mathematical expectations is the
condition of uniform boundedness of the losses.}

(- Fx,0)* <t (7.6)

foralla, xe X and ye Y.
Let the inequality (7.6) hold. We show that in this case the bound

P{sup [1(2t;) — I emp(ots)] > %r} < 18Nle™*W4

is valid. To obtain this bound we write the functionals I(x;) and Ip,(%;)
using the Lebesgue integrals:

n

I() = lim 3, %P{(y - F(x, @))* > %}
e a.m

Iemp(ai) = lim Z E V{(,V - F(X, ai))z > ]—T}’
n—w j=1 N h
where v{(y — F(x, a;))*> > jt/n} denotes the frequency of the event
{(y — F(x, a;))* > jt/n} computed from the sample (7.2). Denote by A4
the event

e j

2 T
{o - Foar >,

Then in view of (7.7)

n

1) = Lompf@)| < lim Y, = P4, ) = W4, )]

n—w j=1

< Tsup |P(4,, ;) = W(Aq, )l

J

Thus

P{Il(at) - Iemp(ai)l > T%} < P{Sup |P(Aa,-,j) - v(Aa,-,j)l > %}-

J

+ Below, various sufficient conditions for uniform convergence will be presented. Necessary
and sufficient conditions are given in the appendix to this chapter.
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Consider now the class of events A4, 4:

{(y = F(x, w))* > B},

where f§ is a nonnegative quantity. Clearly this class contains the events
{A,, j} whence

P{sup |P(A4,, ;) — W(Aq, )] > %} < P{sup P|(A,, 5) — WAy, )| > x}.
j B

The problem has thus been reduced to bounding the uniform convergence of
frequencies to their probabilities over the class S, of events 4,, 5 (with fixed
values of «;).

Utilizing the results of the preceding chapter, we bound the rate of uniform
convergence of frequencies to probabilities over the class of events

SB = {X, y: (y - F(X, fxi))2 > ﬁ}

For this purpose we bound the growth function m>#(l). Since using the
rules

0Ly — F(x, 0))* — B]

(o; is fixed) one can subdivide only one point x, y in all possible ways, we
have in view of Theorem 6.6

m35(l) < 1.51.

Consequently, utilizing Theorem A.2 of the Appendix to Chapter 6, we
obtain

P{| () — Iemp(:)| > ¢}

< P{Sup |P(Aaz.-.ﬂ) - v(Azz.-,ﬂ), > 7"}
B

< 6m 3 (2l)e” ¥4 < 18le™**H4, (7.8)

The right-hand side of the inequality does not depend on a. Therefore, along
with (7.8), a more refined bound,

sup P{l(a) - Iemp(a)l > T%} < 18[6-’{21/4,
is valid. Returning to the bound (7.5), we have
P{Sum 1) — Iemp(0)| > r%} < 18Nle~ ¥4,

We shall require that this probability be equal to 5:
18Nle "% =y,



186 7 Minimizing Empirical Risk of Regression Estimation

Therefore the deviation % should not be less than

v 2\/1n N +In ll— In(y/18)

The result obtained can be stated as

Theorem 7.1. Let the class F(x, &) consist of N functions for which the losses
(y — F(x, ®))?* inthe domain x € X, y € Y are uniformly bounded by a constant .
Then one can assert with probability 1 — n that the inequality

Fon(@) — 2¢ \F N + In [ — In(n/18) < 1)

l

is valid simultaneously for all N functions F(x, o).

Remark. The theorem is valid simultaneously for all N functions, including
the function F(x, ¢.n,) Which yields the minimum for the value of the
empirical risk. Hence the inequality

InN+Inl—
I(demp) < Iemp(aemp) + 21’\/ n +In ll ln(}’l/18)

is valid. Thus if the loss function is uniformly bounded and the number of
functions F(x, «;) in the class is finite, then the uniform convergence of the
means to their mathematical expectations holds. Theorem 7.1 is a direct
generalization of Theorem 6.1.

§3 A Generalization to a Class with
Infinitely Many Members

Now let the class F(x, «) consist of infinitely many elements while admitting
a cover by a finite ¢-net in either the C metric or the L7 metric. As before, let
the restriction (7.6) be valid. We show that in this case a bound on the quality
of the rule minimizing the empirical risk exists which is analogous to the one
that follows from Theorem 7.1.

Theorem 7.2. Let the set of functions F(x,®) be covered by a finite e-net
F(x, &), . .., F(x, oty()). Then with probability 1 — n the quality of the function
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F(x, 0tepmp) Which minimizes the empirical risk is bounded by

Htemg) < Lo 0mp)) + 2¢ \/ mNQ iD= DORS) 4 e fi

where F(x, a(0temp)) is a function in the e-net closest to F(X, 0epmp)-
The proof is carried out along the lines of the proof of Theorem 6.4.

(1) Select on the set of functions F(x, &) a finite ¢-net consisting of N(g)
elements

F(x,ay), ..., F(x, oyg).

According to Theorem 7.1 the inequalities

1) < Loy + 20 f“ NG ¥ T = a1

79
are valid simultaneously for all elements of the ¢-net with probability 1 — #.
(2) We bound the amount of deviation of the functionals I(a,) and I(«x,)

for functions F(x, a,) and F(x, a,) separated from each other by at most &,
i.e., we find the smallest §(¢) such that the inequality

[(oy) — I(2;)] < d(e)
is fulfilled provided only the conditions

1/2
prlay, ay) = (f(F(x, o;) — F(x, a,))*P(x) dX) <e (7.10)

(Pc(ala ay) = sup |F(x;0,) — F(xq, 0)| < 8)

X

are satisfied. For this purpose we carry out the transformations

() — 1(oy)] = ‘ f (v — F(x, 2))P(x, y) dx dy
- j (v — F(x, 22))*P(x, y) dx dyl

_ ‘ J(F(x, a)) — F(x, %))

x 2y — F(x, ay) — F(x, o;))P(x, y) dx dy’

< a\/f(2y — F(x, a;) — F(x, a,))*P(x, y) dx dy.
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Here we have utilized the Cauchy-Schwarz inequality and the bound (7.10).
Next we utilize the convexity of the function (y — F(x, a))2:

J(Zy — F(x, 0) — F(x, a3))*P(x, y) dx dy
<2 f(y — F(x, 2,))*P(x, y) dx dy

+2 f(y — F(x, 0,))*P(x, y) dx dy.

We thus obtain

H(ay) = I(a)| < ey/2(1(ay) + 1(a2)). (7.11)

However, by the condition, I(«) < 7. Finally we obtain
H(ay) — I(ay)] < 26/ (7.11a)

(3) Now let F(x, a,,) be the function which yields the minimum for the
empirical risk. We choose a function F(x, a{(.mp)) in the e-net F(x, o), ...,
F(x, ayg) closest to F(x, tepp). For this function the inequality (7.9) is
satisfied with probability 1 — 5. We strengthen this inequality utilizing the
bound (7.11a). This leads to

Htamg) < Tomttemg)) + 26/ + 21\/ )

The theorem is proved. O

Remarks. The theorem is valid for any ¢ (assigned before sampling). Therefore
¢ may be selected from the condition of the minimum for the expression

o) = o + Tfn N(e) + 1nlz — 1n(r1/18).

Note also that for any set F(x, «) and any ¢ the minimal number of elements
in an e-net constructed in the Lf, metric does not exceed the minimal number
of elements in an ¢-net in the C metric. Therefore the bound (7.12) is more
precise if the e-net is constructed in the Lj metric. However, in order to
define this metric the density P(x) should be known.

§4 The Capacity of a Set of Arbitrary Functions

In Chapter 6 we introduced the notion of capacity for a set of indicator
functions. The capacity was determined by a maximal number of points
Xy, ..., X, which can be subdivided in all possible ways into two classes by
means of a given set of indicator functions.
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We shall now extend the notion of capacity to sets of functions F(x, a) of
an arbitrary nature. For this purpose we shall introduce the following param-
etric set of indicator functions:

F(x, y;0, B) = 0((y — F(x, 0))* + p)

in the parameters a and f (f is a real number).

Definition. The capacity of the set of indicator functions F(x, y; a, §) is called
the capacity of the set F(x, ).

Thus the capacity of the set F(x, o) determines the largest number h of
pairs x;, y; which can be subdivided in all possible ways into two classes by
means of the rules F(x, y; o, p).

The capacity of a set of functions linear in its parameters,

F(x,a) = '21 o; @ix),
equaln + 1.
Under this definition of capacity, the growth function for the system of
events
Sa,/l = {x’ y: (y - F(X, a))z > .B}
is bounded by

h

}
Se, -
m>=A(l) < 1.5 i

for [ > h. Let the capacity of a set of functions F(x, ) be equal to h, and as
above, let the loss function be bounded by 7. Under these conditions the
following theorem is valid.

Theorem 7.3. For | > h simultaneously for the whole class of functions F(x, o),
the inequality

h(ln%+ 1) - lng
Topp(a) — 27 < I(a)

[

< Lop(@) + 21 ;

is satisfied with probability 1 — ».

ProOF: We express functionals I(«) and I.,,(«) in terms of Lebesgue integrals:

n

I(@) = lim Y %P{(y — F(x, 0))> > %}

n—ow i=1

n

Imp(@) = lim Y %v{(y — F(x, 0)* > %}

n—o i=1
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Here P{(y — F(x,®))* > it/n} denotes the probability of the event
{(y — F(x, ®))* > it/n}, and v{(y — F(x, ®))* > it/n} is the frequency of this
event computed from the training sequence.

The event
{(y = Fx, 0))* > B}
will be denoted by 4, ;€ S,;5. Then

A 4
II(!X) - Iemp(a)l < hm Z ; |P(Aa.i) - v(Aa,i)l'
n->ow i=1

Whence
[1(0) = Iemp(0)| < Tsup |P(4,,5) — (A4, 6)|-
B

Furthermore it follows that

P{sup [1(0) — I pmp(0)| > rx}

< P{sup [P(A,,5) — WAy, p)| > x}.
B

Since for I > h the growth function of the system of events S, ; is bounded
by 1.5I*/h!, utilizing Theorem A.2 of the Appendix to Chapter 6 we obtain

P{sup [ () — Temp(@)| > rx}

h
< 6m5Q2le™ ¥+ < 9 (i—l,) e X4, (7.13)

Setting the right-hand side of the inequality equal to # and solving the
resulting equation for », we have

Wi+ 1) —m?
5 h 9
l .

It thus follows from (7.13) and (7.14) that for | > h the inequality

21

h(ln—+ 1) — 2
h 9
Lom(0) — 21 ; < I(®)

(7.14)

’X =

21 n
h<lnﬁ + 1) — ln§

< empla) + 21

l

is satisfied with probability 1 — 5 simultaneously for all functions of the
set F(x, «). The theorem is proved. a
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§5 Uniform Boundedness of a Ratio of Moments

Now let for some p > 1 the conditions

\7 f (v — F(x, 0)**P(x, y) dx dy
sup <7 (7. 15)

* f(y — F(x, 2))?P(x, y) dx dy

be fulfilled, i.e., for any fixed & = o* let the ratio of the pth order meant of
the random variable

%) = (y — F(x, a*)?

to the first order mean be bounded by t. The fulfillment of the conditions
(7.15) is the basic requirement imposed for solving problems of dependence
estimation and ill-posed problems.

In the next sections we shall show that if (7.15) holds fora p > 1a theory of
uniform relative deviation of the means from their mathematical expecta-
tions can be constructed. The case (7.15) for p = 2 will be the most impor-
tant. For p > 2 maximum rate of convergence is achieved in the order of
magnitude. For p = 2 the requirement (7.15) is equivalent to the condition
of uniform boundedness of the relative variance considered in Section 2 of
Chapter 2; moreover the number t,,; which bounds the relative variance is
related to 7, which bounds the mean of the second order, as follows:

=3, + L

The condition (7.15) is quite weak. All parametric models of regression
extimation considered in Chapters 4 and 5 satisfy this condition with ©
within the narrow limits 1.35 < t < 2.45 (cf. Chapter 2, Section 3).

We shall show below that if along with (7.15) one of the following three
conditions is fulfilled:

(1) the set F(x, «) consists of a finite number of elements,
(2) the set F(x, ) may be covered by a finite e-net,
(3) the set of functions F(x, o) possess a finite capacity,

then the method of minimizing empirical risk yields a solution to the problem
of estimating dependences. Thus we shall bound the rate of uniform con-
vergence of the means to mathematical expectations under the condition (7.15)
and the condition that the class of functions possesses a bounded capacity in
any one of the above-stated senses.

+The mean of the pth order of a random variable ¢ is defined as \’VMé”.
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§6 Two Theorems on Uniform Convergence

In this section we shall prove two theorems which bound the rate of uniform
convergence of the means to the mathematical expectations. We shall con-
sider the case when the set of functions F(x, &) consists of a finite number of
elements and the case when the set of functions can be covered by a finite
e-net in either the C or the L2 metric.

The proof of both theorems rely heavily on the following fact: let a
function F(x, a*) be such that the condition

ﬂ (v — F(x, a*))*?P(x, y) dx dy

f@—-ﬂ&aﬂfﬂ&yﬁkdy

<t p>1 (7.16)

is satisfied. Then if restriction (7.16) is stipulated for p > 2, the inequality

P{W > ra(P)”} < 24le™ U4 (7.17)

" =17
= [~ 7.18
ar) = Joo = (1.18)
If restriction (7.16) is stipulated for 1 < p < 2, then the inequality

x 2
P{{&)I_(a—{"?&) > IV,,(%)} <24l exp{— % 12“2/’”} (7.19)

is valid, where

where

P In » p-1
el
PN T e -

holds. Note that for p > 3 the values of a(p) in (7.18) is close to 1. A large
value for a(p) is attained only when p is close to 2.

These bounds will be obtained as a corollary of Theorem 7.6 presented in
Section 7.

Theorem 7.4. Let the condition (7.15) be fulfilled, and the class of functions
F(x, &) consist of a finite number N of elements. Then under (7.15) with p > 2,
the inequality

(@) < l’*“‘"(“)l — (1.20)
I — 2ca(p) nN +In 1— n(n/24)
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is fulfilled with probability 1 — n simultaneously for all functions in the class
F(x, a); if, however 1 < p < 2, then the inequality

Lemp(®)
(2 /m N + In [ — In(n/24)

Ko) < , (7.21)

1 — 1V

p

2-(2
12=@/p) -

where

p -1
V(%) = (%)\/(1 — _ll”‘*>p ’
! EVIICER))
{z forz =0,

0 forz <O,

z]e =
is fulfilled with probability 1 — n simultaneously for all functions F(x, a).
PROOF. Let p > 2 in the condition (7.15). We utilize the inequality

P{sup &) - Iemp(ai)

@) > %‘L’d(p)}

I(ai) - Iemp(ai)
I(o;)

We bound the second factor on the right-hand side of (7.22) using (7.17). We
thus obtain

<N sup P{ > ma(p)}. (7.22)

I(o;) — 1 ; )
P{sup 1) = Temp(*) i (a.e)m"(a') > ‘L'%a(p)} < 24Nle™ 4,

which can be written in the following equivalent form: with probability
1 — 5 the inequalities
Iemp(ai)

I() < 4
1 — 2ta(p) InN + In ll+ In(n/24)

o0

are valid simultaneously for all a;. The first assertion of the theorem is proved.
Analogously in the case 1 < p < 2 we shall use the bound (7.19). Applying

this bound to the right-hand side of (7.22), we obtain a bound on the rate of

uniform convergence which is equivalent to the assertion of the theorem.

a

Theorem 7.5. Let the condition (7.15) be satisfied, and let the set F(x, o) be
covered by a finite ¢-net. Then one can assert with probability 1 ~ n that the
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quality of the function F(x, ap,) which yields the minimum for the empirical
risk is bounded by

I(aemp) < (8 + \/82 + [Iﬂ;l{‘ai—(;fz'g";’»il )2’

where F(X, a(%emp)) is an element of the e-net closest to F(x, temp),

In N(¢) + In | — In(y/24)

= 2ta(p) i forp > 2;
s In N( Inl — In(n/24
n N()+Inl—In
- rvp(z\/ ) T (nf )) forl<p<2.

Remark. Theorem 7.5 is valid for any ¢, which defines a ¢-net chosen a priori,
i.e., before the sample is taken.
In particular ¢ may be chosen from the condition of the minimum for the

expression
e+ [e 4+ |—
1-T() |

where ¢ is a constant. It is reasonable to choose ¢ to be close to the minimum
of functional I(x,). Thus a priori information on the value of I(x,) is utilized
for choosing an appropriate &.

The proof of this theorem is basically analogous to the proof of Theorem
7.2.
(1) We choose an arbitrary ¢-net. For p > 2, in view of Theorem 7.4, the
inequality
Iemp((xi)
In N(¢) + In ! — In(n/24)
! ©

I(e) < (7.23)

1 — 27a(p)

is satisfied with probability 1 — 5 simultaneously for all elements of the e-net.

(2) In view of the bound (7.11) obtained in the proof of Theorem 7.2, the
values of the functionals I(x) for functions F(X, @emp) and F(x, ot(0emp))
which are separated in either the C or the L2 metric by an amount smaller
than ¢, differ by an amount not exceeding

[ (@emp) = 1 emp))| < 263/ Max(T (%emp)s 1(0(otemp)))- (7.24)
(3) We shall consider two cases: I(0emp) > I(a0emp)) and I(demp) <
I(0t(%temp))- In the first case it follows from (7.23) and (7.24) that the bound
Iemp(ai(aemp))
In N(g) + In ! — In(n/24)
l

I(%ermp) < + 26/ 1I(ctemp)

1 — 2za(p)
® (7.25)
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is valid with probability 1 — #. In the second case we have the bound

L e mp(0(%temp))
I emp emp. 2 I(o:
(Utemp) < NG 1 In | = G50 + 26/ 1(0(%emp))
1 — 2za(p) ;
(7.25a)

with the same probability.
(4) Solving the inequality (7.25) for I(a.,,) we obtain

I(aemp)

Iemp(ai(aemp)) (726)

L~ 2%a(p) \/m N(e) + 1nlz — In(n/24)

e+ [e* +

e o]

Taking (7.23) into account we verify that the bound (7.26) is valid also in the
case (7.25a).

The theorem for the case 1 < p < 2 is proved in the same manner. ]
Remark. As in the case in Theorem 7.2, the bound (7.26) will be smaller

(N(e) 1s smaller) provided the e-net is constructed in the Lf, metric, i.e., when
the information about the density P(x) is utilized.

§7 Theorem on Uniform Relative Deviation
We now prove the basic theorem.

Theorem 7.6. Let the condition (7.15) be satisfied and the set of functions
F(x, a) possess a finite capacity h < I; then if p > 2, the inequality

Iemp(a)

]
h(ln%+ 1) _ ln%
1 — 2za(p) i

I(x) <

where
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is fulfilled with probability 1 — n simultaneously for all functions F(x, o),
if however 1 < p < 2, the inequality

I emp(a)

h(ln%+ 1)—ln%
1 -1V )2

p

I(@) <

>

12— @/p)

a

where

In x p-1
Lo (=
»Ypp — 1)

is fulfilled with probability 1 — n simultaneously for all functions F(x, ).

We prove the theorem first for the case p > 2 and thenfor 1 < p < 2.
To begin with we express the functional I(«) in terms of the Lebesgue
integral

K@==fwPKy—1«&a»2>t}m. (7.27)
0

Observe that for any fixed o and arbitrary ¢ the probability of the event
{(y — F(x, a))*> > t} is expressed in terms of the distribution function of a
positive random variable &(a) = (y — F(x, ®))?; namely, the cumulative
distribution function of &(«),

D(&(0) < 1) = D),

is related to the probability of occurrence of event {(y — F(x, ®))* > t} as
follows:

P{(y — F(x,2)> >t} = 1 — ®1).
Thus the functional (7.27) can be written in the form
(o) = J(l — ®1)) dt.
We introduce a new functional
R(x) = f 1 — @) dr.

It is easy to see that this functional exceeds I(«), since

1 - 0,0 < /1 - 0,0).

The following lemma is valid.
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Lemma. If for each function of the set F(x, a) the functional R(a) exists and
the set of functions F(x, ) has a finite capacity h < I, then the inequality

P{sup I(a);(—i‘;’“p(a) > x}

@D" e

< 8mSQ2Ne ¥ < 12 = X

(7.28)

is valid.

Proor. Denote by 4, ; the event {(y — F(x, ))> > i/n}. Consider the expres-
sion

nm[z Lpa,y - f%v(Aa,i)]

I((X) B Iemp(a) nswli=1 1 i=1 (729)
R(x) R(®)
We show that if the inequality
P(A, ) — v(A, ;
( a,l) V( a,l) < (730)

su
a.ip VP4,
is fulfilled, then the inequality
I(o) — 1
up @ R(aamp(a) <y
is fulfilled as well. Indeed, (7.29) and (7.30) imply that
. lim % VP, )
I(a) - Iemp(a) n— o 121 ( %R(a)

R@  — WP R(@) =P R

xX

Thus the probability that the inequality

o 1) = Lnp(®)
up — P

PR

is valid does not exceed the corresponding probability for the validity of

P(4,,) — v(4,,)
Sup —_— T > K
a, i ~/ P(Aa, i)

On the other hand, in view of Theorem A.3 of the Appendix to Chapter 6,
the bound

P{sup P(A,,) — W 4.9 > x} < 8mS(2De M4,

@i vV P(Aa, i)
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holds, which implies that
o) — 2
P{sgp W > x} < 8m5(2Ne™ ¥4, (7.31)

Noting that m%(]) < 1.5I"/h!, we arrive at the bound (7.28). The lemma is
thus proved.

PROOF OF THE THEOREM. The statement of the lemma involves the following
condition: for any function F(x, «) there exists a functional R(a). We now
show that the functional R(x) exists provided the random variable &(a)
= (y — F(x, «))* possesses a moment of order greater than second (even a
noninteger one). Moreover for p > 2 the relation

R(2) < &/ MéEP(a) - a(p),

o=
a(p) = W,

is valid. Indeed, the transformation

where

Mé (o) = f (v = F(x, 0))2?P(x, y) dx dy

= [(wdo0 = p [0 - o0 a

0 0

is valid. On the other hand, by definition
R(a) = f 1 — @) dt.
0
Now let the pth moment be m(«):

p f P71 = Q1)) dt = my(a).

]

We shall obtain a distribution ®@,(t) such that R(«) is maximized.
For this purpose we construct the Lagrange function

L(®) = R(o) — AM&P(2)

_ f ST dt — ap f "ol — e yd. (132)
0 0

We determine a probability distribution function ®@,(t) for which the
maximum of L(a) is obtained. Denote z2 = 1 — @(t), b = Ap, and rewrite
(7.32) using this notation:

L) = f z(1 — bzt~ Y) dt. (7.33)

o]
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The function z at which the maximum of the functional (7.33) is attained is
defined by

1 — 2bzt?P~ 1 = 0,

()
t
where t, = (1/2b)/1 7P,

Since z(t) varies between 1 and 0 as ¢ varies between 0 and o, the optimal
function z(t) is

which implies that

1 ift <tg,
— p—1
o) = (%9) ift >t,.

We now compute max, R(x) (recalling that p > 2):

max R(@) = fmz(t) dt =ty + fw (t—")p_ldz _P- ;to. (1.34)

a 0 0 t D —

On the other hand, express t, in terms of m,:

m, (o) = p J:Ozz(t)t”_1 dt

to © tO 2p-2 p - 1
= pf Pl + pf <_) P lde = 2[5( ) (7.35)
0 to t p— 2

Substituting the value of ¢, obtained from (7.35) into (7.34), we arrive at

R@ _ 7/t (p—1\/7t _
Slip V(@) =3 (p*_ 2) a(p),

which implies that for p > 2
R(x) < J/ME(@)a(p). (7.36)

Utilizing the lemma and the bound (7.36), we prove the first part of the
theorem. Note that under the conditions of the theorem the inequality

R(a) < ta(p)l(x) (7.37)
is valid. We utilize the bound (7.37) to improve the inequality (7.28):

P{sup I(“) _I-(i;mp(a)

_ h
< P{sgp I—(“)—m%)'""ﬂ > u} <12 (i—l‘) e ¥4, (7.38)

The first assertion of the theorem is equivalent to this inequality.

> ta(p) x}
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We now prove the second part of the theorem. Consider the difference

o

6) = Longl®) = lim > (P(A) ~ ¥(4,)). (7.39)

n—-ow i=1

Assume that for all events A4, ; the condition
P(4,) — W(A4,,) < x¥/P(4,,) (7.40)
is fulfilled. Moreover the inequality
P(A4,,) — W(4,,) = P(4,.) (7.41)

is always valid. To compute the sum (7.39) we apply the bound (7.40) to
the summands corresponding to the events A, ; for which P(4, ;) > »P/®?~ Y.
For the summands for which the events A, ; satisfy P(4, ;) < »”®~! we
shall utilize the trivial bound (7.41). We thus obtain

I(d) - Iemp(a)

<x f 1 = o(t)dt + f -, dt. (7.42)
1 —@u(t)>xpP/(P-1) 1

— Qo)< xP/P=1)

We now find the maximal value (with respect to ®@,(t)) of the right-hand side
of the inequality under the condition that the pth moment takes on some
fixed value m,, i.c.,

pf P71 — )P dt = m,
0

For this purpose we again use the method of Lagrange multipliers, denoting
2P =1 — @1).

We thus seek the maximum of the expression

L(x) = f wz dt + f P dt — lf tP~1zP dt.
z>x"P+1 zgx~P+L 0

Represent L(«) in the form
<x—P*1

L) = f ez — AP~ 120y dt + f (2P — AP~ 1zP) dt,

where the first summand defines the function z(t) in the domain z > x» and
the second in the domain z < x». The first summand attains its absolute

maximum at
gz = P-1 il
pAt
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However, taking into account that z is a monotonically decreasing function
from 1 to %, we obtain

p—1

1 if  o0<t< X,

pA
z(t) =

P=1f4 1 P=1fy P11/

—— if — <t < —.

Vpit \p Vpi

The second summand attains its maximum in the doamin z < »”*1 for the

function
p—1 1 p-ll
Y if [=<t< \/—
pA A
(1) =
f e
0 i t> -
)
We thus finally obtain
p—-1
1 if 0<t< 1,
pA
P—\l/—}gl p—\l/? p—1 1
—- if [=<t< ,
pAt p )
z(1) = 4
P11 P
p—\l/; lf IT‘ S t < I,
P11

We now express the pth moment m,, in terms of the Lagrange multiplier 4.
For this purpose we compute the pth moment

o plip—1) In
m, = PP dt = E) (1 — 7) 7.43)
=r), G oo -

Analogously we compute the quantity

P-V1/pi

(o) = Temp(a) < % f zdt

0

© 1(p-1)
+f ﬂﬂzu@) O“T%EL_> (7.43a)
Py A »Ypp - 1)
It follows from (7.43) and (7.43a) that

su I(a) - Iemp(a)

ap ‘p/ mp(a)
V(%) = x\7(1 - \y;(l:_ 1))‘,—1.

< V(#), (7.44)

where
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Thus we have shown that the condition (7.40) implies the inequality (7.44).
Therefore the probability of the event

{Sup I(a) - Iemp(a)
@ 7/ my(e)
does not exceed the probability of the event
P(4,,) — W(4,,) }
SUp ————" > X,
{“ 'p \p/ P(Aa, i)

According to the assertion of Theorem A.3 in the Appendix to Chapter 6,
the probability of this event for I > h is bounded by (A.16); this implies that

P{Sgp I—(E)p—_r;\/_:é%(oo > Vp(x)} < 12(—2—12)—‘1exp{— %2 12“2“”}

On the other hand, in view of the condition of the theorem (Equation (7.15)),

Imy(2) < tl(w).

Taking this into account, we obtain

P{st:p L(“)_;(i;'f@ > er(x)} < P{sgp%ﬁé‘(‘)ﬂ > Vp(x)}.

We thus finally arrive at the inequality

P{sgp@%mp(a) > er(x)} <12 %")f exp{— % 12““/1’)} (7.45)

> V,,(x)}

for I > h. This inequality is equivalent to the assertion of the second part
of the theorem. O

Remark. For the proofs of Theorems 7.4 and 7.5 we have utilized bounds
on relative deviations, (7.17) and (7.19). These bounds may be easily obtained
from the inequalities (7.38) and (7.45), taking into account that the capacity
of the class of decision rules F(x, ) formed by a fixed function F(x, a*)
equals 1.

§8 Remarks on a General Theory of Risk Estimation

We have thus constructed a theory of uniform convergence of the means to
their mathematical expectations. Formally this theory was constructed for
quadratic loss functions. However, the results obtained are also valid for
general loss functions.
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Below we state the basic assertions of the theory of uniform deviations of
empirical estimators from the means in a general setup. The proofs of these
assertions are identical to the proofs of the analogous theorems considered
above.

Let Q(z, «) be a parametric family of nonnegative functions satisfying the
following conditions:

(1) for any fixed value of the parameter a* € A the functions Q(z, o) are
measurable in z;

(2) the set of functions Q(z, «) has a finite capacity h (the indicator functions
0(Q(z, @) + B) have a finite capacity h).

Then the following assertions on the rate of uniform convergence of empirical
means

I

1
Iemp(a) = 7 Z Q(Zi’ (X),

=1

constructed from a sample z,, ..., z, to their mathematical expectations

I(0) = JQ(Z, ®)P(z) dz
are valid.

Assertion 1. If for functions Q(z, &) the functional

R,(x) = f 1 — P{Q(z,0) < t} dr

exists, then for | > h the inequality

h 2
< 12%—? exp{— %7 12“2/’”} forl <p<2,
P{sup 1) = Lmg(®) u} (7.46)
- R @l 2
< 12~h'—exp{—b—(p)l} for p>2,

where

_p p pp_zp—Z
b(p)_\/4<P—1) (p—l)

is valid.
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Assertion 2. If for functions Q(z, ) the pth moment (1 < p < 2)
m,(a) = JQ"(Z, 0)P(z) dz

exists, then the inequality

I(0) — Iemp(@) » ( Inx )" - l}
Plsup ~ 2~ Tems® o pffy 0%
{ a M, (@) \/ "'_I/I_)(P -1

is valid for | > h.
Assertion 3. If for functions Q(z, a) the pth moment (p > 2)
m@ = [0z, P dz

exists, then for | > h we have the inequality

P{S 1@ - mpcx) }<12< L.

m(oc

where

1
a(p) = >

Assertion 4. If the condition

is fulfilled for p > 2, then for | > h the inequality

I(a) < d °"‘P(;)l (1.47)
h(ln =+ 1) In Tni
1 — 27a(p) ]

is satisfied with probability 1 — n simultaneously for all a. If, however, the
condition

14
sup my(%)

Rl
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is fulfilled for 1 < p < 2, then for all | > h the inequality

I
I(2) < e‘“"z(;‘) (7.48)
n
h(lnﬁ + 1) —In v
1 —V,\2 7= B

is satisfied with probability 1 — n simultaneously for all a, where

V(x) = %\7(1 — _ln_x_)"‘l
! Y -1

In Chapters 8 and 9 we shall utilize the theory of uniform convergence
developed herein to construct extremal algorithms for estimating depen-
dences in the case of samples of finite sizes. Here we shall note that if the
condition (7.15) is satisfied and the capacity of the class of functions F(x, o)
is bounded, then according to the theory described the method of minimizing
empirical risk leads us to the determination of a function which is close to the
best in the class (provided the sample size is sufficiently large). Indeed, in this
case the denominator in the bounds (7.47) and (7.48) is close to 1 and the
value of the expected risk determines the value of the empirical risk.




Appendix to Chapter 7

Theory of Uniform Convergence of
Means to Their Mathematical
Expectations: Necessary and Sufficient
Conditions

§A1 e-entropy

In the Appendix to Chapter 6 sufficient conditions for the uniform
convergence of frequencies to probabilities were established. These con-
ditions are sufficient in order that the equality

lim P{sup
[ -] aeA
be fulfilled for a given set of indicator functions F(x, o), « € A as the sample
size of a random indepedent sample of vectors x,, ..., X; increases.

In this Appendix we shall indicate necessary and sufficient conditions
for the uniform convergence of means to their mathematical expectations in
the case of uniformly bounded families of functions

0< F(x,a) < C, a€A. (A2)

(These are conditions which are necessary and sufficient for the fulfillment
of the equality (A.1) for the family (A.2).) Below we shall assume without
loss of generality that C = 1.} To state these conditions precisely we introduce
several notions.

Let A be a bounded set of vectors in E,. A finite set T < E, such that for
any y € A there exists an element ¢ € T satisfying p(t, y) < ¢is called a relative
e-net of Ain E,.

Below we shall assume that the metric is defined by

p(t’ y) = max Iti - yila t= (tl, L] tn)’ y= (yla . --,,V"),

1<i<n

and the norm of a vector z is given by ||z|| = max, .;., |Z'[.

1 !
MF(x, o) — ] Y. F(x;, o)
i=1

> s} =0 (A1)

+ Note that indicator functions satisfy the condition (A.2).

206
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If an ¢-net T of a set A is such that T < A, then we call it a proper ¢-net
of the set A.

The minimal number of elements in an e-net of the set A relative to E,
will be denoted by N(g, A), the minimal number of elements in a proper ¢-net
is denoted by N (e, A). It is easy to see that

No(e, A) = N(e, A). (A.3)
On the other hand
Ny(2¢, A) < N(e, A). (A.4)

Indeed, let T be a minimal ¢-net of A relative to E,. We assign to each
element t € T an element ye A such that p(t, y) < ¢ (such an element y
always exists, since otherwise the ¢-net could have been reduced). The totality
Ty, of elements of this kind forms a proper 2¢-net in A (for each y € A4 there
exists t € T such that p(y,t) < ¢, and for such a te T there exists te€ T,
such that p(t, 7) < ¢ and hence p(y, 7) < 2¢).

Let F(x, ) be a class of numerical functions in the variable x € X depending
on parameter a € A. Let x,, ..., x; be a sample. Consider in the space E, a
set A of vectors z with coordinates z'e F(x;, ®), i = 1,..., [, formed by all
aeA.

If the condition 0 < F(x, a) < 1is fulfilled, then the set 4 = A(x,, ..., X))
belongs to an [-dimensional cube 0 < z' < 1 and is therefore bounded and
possesses a finite e-net. The number of elements of a minimal relative e-net
of AinE,is N(g; A(xy, ..., x))) = N¥x,, ..., x;; &). The number of elements
of a minimal proper &-net is N§(xy, ..., x;; ). If a probability measure Py
is defined on X and x,,...,x, is an independent random sample and
N™(x,, ..., x;¢) is a function measurable with respect to this measure on
sequences X, ..., x; then there exists an average e-entropy (or simply an
e-entropy)

He, ) = M log, NMx,, ..., x;; ).
It is easy to verify that a minimal relative e-net satisfies
NAXy ooy X4k 8) S NMoxgy ooy X N Xy 1y - Xaks )0 (ALS)
(Recall that

p(zy,25) = max |z} — z73).
1<ign

Indeed, in this case a direct product of relative e-nets is also a relative ¢-net.
Thus

HAe, I + k) < HAe, D) + Hg, k). (A.6)
In the end of this section it will be shown that there exists the limit
HA 1
c(e) = lim (&, l), 0 < c(e) < log, [1 + E]
-
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and the convergence

log, NMxy, ..., x;
0g, (xll, ) Xp5 €) zjx~ () (A7)

holds.
Consider two cases:

(1) lim,_, , HMe, D/l = c(¢) = O for all ¢ > 0.
(2) There exists an ¢, such that c(g,) > 0 (then also for all ¢ < ¢, the quantity
c(e) > 0).

It follows from (A.4) and (A.7) that in the first case

log, N§(xs,...,x158)

1=

lim

1= l

0 (A8)

for all ¢ > 0. It follows from (A.3) and (A.7) that in the second case

llm P{logZ Ng(xll’ ] xl; 8)

> c(g) — 5} =1 (A9)
[Aad- ]
foralle < gy,6 > 0.
Below it will be shown that (A.8) implies uniform convergence of the
means to their mathematical expectations, while under (A.9) such a con-
vergence is not valid. Thus the following theorem is valid.

Theorem A.l. The equality

A
fim 720

[Aad- o}

=0, Ve >0

is a necessary and sufficient condition for the uniform convergence of means
to their mathematical expectations for a bounded family of functions F(x, a),
ae AT

The next sections are devoted to the proof of this theorem.

We now prove (as in the information theory {65a]) that the limit (A.7) exists and
the convergence (A.8) is valid.

1.1 Proof of the Existence of the Limit

As 0 < HM@s, 1)/l < 1, for any g, > O there is a lower bound

H%e,,
li_m _._S._Ol)_ =cp-
o 1
+ For indicator functions F(x, o) we have H*g, ) = M log, A%(x,,...,x,) for all 0 < e < 1

(cf. Section A.2 of the Appendix to Chapter 6).
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Therefore for any é > 0 such an [, can be found that

A
HYeo,lo) _

+ 6.
lo 0

Now take arbitrary | > [,. Let | = nly + m where n = [I/l]. Then by virtue of (A.6)

Ho. D) _ H"eq, nly + m) < nH" e, lo) + m < H%&,, lo) + 1

l nly + m nly Iy n

Strengthen the latter inequality

HMeo, ) Hs,, | 1 1
CosD) _HGCok) 1]
n n

1 Iy
Since n —» o when [ — oo we have
— HMg,, |
lim *(‘jﬁ <co+ o
- o

As 9 > 0 is arbitrary, the upper bound coincides with the lower one.

1.2 Proof of the Convergence of the Sequence

We prove that when [ increases the sequence of random values

_log, NMxy, .o v 0 Xy 80)
I

rl

converges in probability to the limit ¢,. For this it is sufficient to show that for any
0>0

P;(r) = P{r' > cy + 6} l——»O
and for any 4 > 0
P (") = P{r' < co — u}—>0.
[add
Consider a random sequence

1 n
ge = yre
i=1

n ;
of independent random values r}. Evidently

Mo = Mglo = H”(g,, 10)‘
ly
AsO < rl* < 1, we have
M@ — Mi)? =D, < 1,

M(ro — Mr)* =D, < 1.
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Therefore

1 4
n D2<_2
n

D
Mgy — Mgp)* = — + 3=

Write the Chebyshev’s inequality for the fourth moment

4
P < .
-] <t

Consider a random value g,, where | = nl, + m. By virtue of (A.5)

0 H o lo)
n 10

1
rh=priorm < glo 4 —
n

Now let x = 9/3, I, and [ = nl, + mbe so large that

A

H (80,10) — ¢ Sé,

lo 3

1 6

- < -

n= 3

Then

2 o 244
Pi(r'y = P{r' — ¢y > 8} < P{ g’ = ¢o - 35’ 3} §*n®

As n —»oo when [ - oc

P; (rH—>0.
-

To bound the value P, () consider the equality

HM o, L (M ] 1 Meg, [
f ( (80, ) _ rl) dP(rI) - f <rl — fl (80’ )) dP(rl)
Aeo, DI

0 ! H !

Mark its left part with R, the right one with R, and bound R; and R, for such [ that

Heo. )

o <t
! o

The lower bound of R, is
HA (0, /1 { A I - u
R, = f (# _ ,r) ap() = J aP(h =4 P (Y
0 (0]
and the upper bound of R, is
o+d A, 1 HA , [
R, = J‘ (ﬂ B D l)) dP(r') + f (r’ LG L) )) dP(r")

HA(eo, /1 I cot+d !

<

+ P ().

H™e,, !
CO+5——(§—O—)‘
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Combining these bounds we obtain

HA(£0 ’ l)

gPﬂMgcb+5— | P
Since
HA(go > l)
Co»
l 1=
PH(Hy—0,
1=
we obtain

26
lim P, () < —.
U

[l
As ¢ and p are arbitrary, we conclude that

P; (r')—0.

=

§A2 The Quasicube

We shall define by induction an n-dimensional quasicube with an edge a.

Definition. A set Q in the space E, is called a one-dimensional quasicube
with an edge a if Q is a segment [c, ¢ + a].

A set Q in the space E,, is called an n-dimensional quasicube with an edge
a if there exists a coordinate subspace E, _, (for simplicity it will be assumed
below that this subspace is formed by the first n — 1 coordinates) such that a
projection Q' of the set Q on this subspace is an (n — 1)-dimensional quasi-
cube with an edge a and for each point z, € Q' (z,, = (z}, ..., 2} 1)) the set

of numerical values z" such that (z),...,z5 ', z")eQ forms a segment
[c, ¢ + a], where c in general does not depend on z,,.

The space E,_, is called an (n — 1)-dimensional canonical space. In
turn an (n — 2)-dimensional canonical space E,_, can be constructed for
this space and so on.

The totality of subspaces E,, ..., E, is called a canonical structure.

The following lemma is valid.

Lemma A.1. Let a convex set A belong to an l-dimensional cube whose co-
ordinates satisfy

0<z <1, i=1...,1

Let V(A) be the l-dimensional volume of the set A.
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If for some 1 <n<1,0<a <1,1> 1 the condition
V(A) > Cja'~" (A.10)

is fulfilled, one can then find a coordinate n-dimensional subspace such that
the projection of the set A on this subspace contains a quasicube with an edge a.

ProOF. We shall prove the lemma using an induction method.
(1) For n = [ the condition (A.10) is
V(4) > C} = 1. (A.11)
On the other hand
V(4) < 1. (A.12)

Therefore the condition (A.1) is never fulfilled and the assertion of the
lemma is trivially valid.

(2) For n = 1 and any ! we shall prove the lemma by contradiction. Let
there exist no one-dimensional coordinate space such that the projection of
the set 4 on this space contains the segment [c, ¢ + a]. The projection of a
bounded convex set on the one-dimensional axis is either an open interval
or a segment or a semiclosed interval. Consequently by assumption the
length of this interval does not exceed a. However, then the set A itself is
contained in an (ordinary) cube with an edge a. This implies that

V(A) <d.
Taking into account that a < 1, we obtain
V(4) <d <ld !,

which contradicts the condition (A.10) of the lemma.

(3) Consider now the general inductive step. Let the lemma be valid for
all n < ng for all [, and for n = ny, + 1 for all I such that n <1 < [;,. We
shall show that it is valid forn = ny + 1,1 =1, + 1.

Consider a coordinate subspace E,, of dimension [, consisting of vectors

z=(z!,..., 2").

Let A' be a projection of 4 on this subspace. (Clearly 4" is convex.)
If

V(AY) > Clgo", (A.13)

then by the induction assumption there exists a subspace of dimension n
such that the projection of the set A' on this subspace contains a quasicube
with an edge a. The lemma is thus proved in the case (A.13).

Let

V(4Y) < CpLab . (A.14)
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Consider two functions

(24 ..., 2% =sup {z:(z, ..., 2% z) e A},
oz}, ..., 2% =inf {z: (z*,..., 2, z) e A}.

These functions are convex upward and downward respectively. Therefore
the function

0s3(z', ..., 2% = @,z ..., %) — @,z ..., ZP)

is convex upward.
Consider the set

AV = {(zY, ..., 2 052, ..., 2°) > a). (A.15)

This set is convex and is located in E, .
For the set A" one of two inequalities is fulfilled: either

V(Y > Cp tale (A.16)
or
V(A" < Cp lalo T, (A.17)

Assume that (A.16) is fulfilled. Then by the induction assumption there
exists a coordinate space E,_, of the space E, such that the projection A™
of the set A" on it ¢contains an (n — 1)-dimensional quasicube Q,_, with an
edge a. Consider now the n-dimensional coordinate subspace E, formed by
E,_; and the coordinate z". Furthermore let A" be the projection of the set
A on the subspace E,. For a given point (z}, ..., z4 ') e A™ consider the set
d=d(zi,..., 2} ") of values of z such that (z}, ..., 24 !, z) e A"™.

It is easy to see that the set d contains an interval with end points

rzh o2 ) = sup’ 9,2, ..., 2"),
ze A

r(zh, .., 2" = inf @,z ..., '),
ze A1

where sup’ and inf’ are taken over the points z € A" which are projected
onto a given point (zj, ..., z4 '). Clearly, in view of (A.15), r; — r; > a.
We now assign to each point (z!,..., 2" !)e A™ a segment c(z!,..., 2" ")
of length a on the axis z'*!:

GG 2 ) + ., 2" ) — a)2,

L@ Y o, L 2 Y) + a)2].

Clearly, c(z',..., 2" V) < d(z', ..., 2" ).

Consider now the set Q = E, consisting of points (z',...,z" !, zlo*!)
such that

..., " hHeq, (A.18)

2ot ez, ..., 2" ). (A.19)
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This set is the required quasicube Q,. Indeed, in view of (A.18) and (A.19)
the set Q satisfies the definition of an n-dimensional quasicube with an edge a.
At the same time we have Q € A'Y by construction.

To prove the lemma it remains to consider the case when the inequality
(A.17) is fulfilled, i.e.,

V(All) < C;lo— lalg—n+ 1'
Then

V(A) = J (P3(Zl,...,zl°) dzt ... dzb
Al
= f (P3(Zl,...,Z’°) dzt ... dz"

+ f (p3(zla cees Zlo) dzl P dzlo
Al

< aV(4Y) + V(4"
and in view of (A.14) and (A.17) we obtain

V(A) S C;’Oa’°_"“ + Cn—lalu—n+1 = C;lo+1a(lo+1)—n’

lo

which contradicts the lemma’s condition. O

§A3 e-extension of a Set

Let A be a convex bounded set in E;. We assign to each point z € 4 an open
cube Q(z) with the center at z and the edge ¢ oriented along the coordinate
axes.

Consider the set

4,= 1) 90,

along with the set 4, which we shall call an e-extension of the set A. The set
A, is the set of points y = (y, ..., y) for each of which there exists a point
z € A such that

&
p(z,y) < 7

It is easy to show that an ¢-extension A, of the convex set A4 is convex.

Now choose a minimal proper ¢-net on the set 4. Let the minimal number
of elements of a proper &-net of the set A be Ny(e, 4). Denote byV(4,) the
volume of the set 4,.
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Lemma A.2. The inequality
No(1.5¢, A)e' < V(A,) (A.20)
is valid.

PRrOOF. Let T be a proper &/2-net of the set A. Select a subset T of the set T
according to the following rule:

(1) The first point 2, of the set T'is an arbitrary point of T.
(2) Let m distinct points 2,, ..., 2,, be chosen. An arbitrary point of ze T
such that

min p(z, 2;) > ¢
1<i<m
is selected as an (m + 1)th point of T.
(3) If there is no such point or if T has been exhausted, then the construction
is completed.

The set T constructed in the manner described above is a 1.5e-net in A.
Indeed, for any z € A, there exists ¢t € T such that p(z, t) < ¢/2. For such a t
there exists £ € T such that p(2, t) < & Consequently, p(z, 2) < 1.5¢ and the
number of elements in T is at least Ny(1.5¢, A).

Furthermore, the union of open cubes with edge ¢ and centers at the points
of T'is included in 4,. At the same time cubes with centers at different points
do not intersect. (Otherwise, there would exist 2e€Q(z,) and 2eQ(z,),
2y, z, € T, and hence p(z,, 2) < ¢/2 and p(z,, z) < ¢/2, whence p(z,, z;) < &
and z, = z,.) Consequently

V(A,) > No(1.5¢, A)é.

The lemma is proved. a

Lemma A.3. Let a convex set A belong to the unit cube in E,;, and A, be its
e-extension (0 < ¢ < 1); and for some y > In(1 + &) let the inequality

No(1.5¢, A) > e

befulfilled. Then there exist t(s, y) and a(e, y) such that—providedn = [ty,l] > 0
—one can find a coordinate subspace of dimension n = [tol] such that a
projection of A, on this space contains an n-dimensional quasicube with an
edge a.

PROOF. In view of Lemmas A.1 and A.2 and the condition (A.20), which is
valid for this lemma, in order that there exist an n-dimensional coordinate
subspace such that the projection of A4, on this space contains an n-dimen-
sional quasicube with an edge q, it is sufficient that

C;tbl—n < e}’lsl(l + 8)_1,
where b = a/(1 + ¢).
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In turn it follows from Stirling’s formula that for this purpose it is sufficient
that

ngh
bl—n . < e}’llgl’
n

where y; = yIn(1 + ¢). Setting t = n/l and taking 0 < t < $, we obtain

_t(lnt—1)+1nb<ln£+y1,
1—1¢ 1—1¢

using an equivalent transformation.
Under the stipulated restrictions this equality will be fulfilled if the
inequality

—3t(lnt—1)+Inb<(1+2)Ine+ 3y, (A21)
is satisfied. Now choose t4(y, &) such that the conditions
0 <10, 7) <3,
—3to(In to — 1) < 7,/6,
—2tglne < y,/6

will be satisfied. This can always be achieved, since by assumption y, > 0.
Clearly for 0 < t < t, these conditions are also fulfilled and in this case
(A.21) will be fulfilled for

Inb=In¢+ y—l,
3
or
— In(1 —
a=(1+ee exp{y——l’%—g—)}. (A22)
The lemma is thus proved. O

§A4 An Auxiliary Lemma

Now consider a class of functions ® = F(x, «) parametrized by means of
o€ A defined on X. We shall assume that the class is convex in the sense
that if

F(x, ), ..., F(x,a,) < ®, (A.23)

then

Y 1 F(x, o) = @, Yu=1 1,=0.
i=1

i=1
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Now define two sequences: the sequence
Xy« ey X, x;€X,
and a random independent numerical sequence
Vis -5 Vo (A24)
which has the property
1 with probability 3,

Yi= {—1 with probability 1.

Using these sequences, we define the quantity

1 1
1 2 F(x;, )y

i=1

Q(®) = M, sup

F(x,x)e®

(The expectation is taken over the random sequences (A.24).)

In Section A.1 we denoted by A the set of [-dimensional vectors z with co-
ordinates z' = F(x;, a),i = 1,..., [, for all possible a € A. Clearly 4 belongs
to the unit /-dimensional cube in E, and is convex.

We rewrite the function Q(®) in the form

14
7 Z Z’yi"

i=1

Q(®) = M, sup

zed

The following lemma is valid.

Lemma A 4. If for ¢ > O the inequality
No(1.5¢, 4) > €, y>In(1 + ¢),

is fulfilled for the set A, then the inequality

0@) = £<exp{%ﬂ} _ 1) <§ 1 )

is valid, where t > 0 does not depend on I.

PRrOOF. As was shown in the preceding section, if the conditions of the lemma
are fulfilled, there exist t(e, y) and a(e, y) such that there exists a coordinate
subspace of dimension n = [t/] with the property that a projection of the
set A, on this subspace contains an n-dimensional quasicube with edge a.
We have assumed here without loss of generality that this subspace forms
the first n coordinates and the corresponding n-dimensional subspace forms
a canonical subspace of this quasicube.

We define the vertices of the quasicube using the following iterative rule:

(1) The vertices of the one-dimensional cube are the end points of the
segment ¢ and ¢ + a.
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(2) To define vertices of an n-dimensional quasicube in an n-dimensional
canonical space, we proceed as follows. Let the vertices of an (n — 1)-
dimensional quasicube be determined. Assign the segment

- n— a n—17a an— a
[(pn 1(2119"'92k 1)"5¢‘P I(Zl:"”’zk 1)+§]

to each such vertex (21, ..., 22~ 1) (k is the number of the vertex), where
n 1(zka veey 2:—1) = %((pl(flta seey 22_1) + (p2(2117 LRER} 2;:_1))’
e,(2% ..., 2" )y = max {#":(¢%,..., 2", M eQ,},

Z
0,8, ..., 2" Y =min {2 2, ..., 2" 1, M eQ,),
le

and Q, is an n-dimensional quasicube.

This segment is formed by the intersection of the line (2;,..., 271, z")
with the quasicube. The endpoints of the segment form the vertlces of the
quasicube. Thus if

@L..., 2" YeE,_,

is the kth vertex of an (n — 1)-dimensional quasicube, then

an— e a
(2‘%,.. Zk 1, (Dn I(Zk,‘..,fk 1)+§),

(2,1,.. P l(zk,...,zg—l)—g)

are correspondingly the (2k — 1)th and the 2kth vertices of the n-dimensional
quasicube.
Now we assign to an arbitrary sequence

e (={*1)

a vertex 2, of a quasicube defined as follows:

tl=(c+2)+2

* T 2 2.V1’

5i — i 1(3l pi-1y 4 @ .

Iy =@ (Z*,...,Z* )+‘2‘y1, ]—-‘2,...,71.

In turn, to each vertex 2, of a quasicube in E, we assign a point z, =

(z1, ..., z}) € A such that the distance between the projection (zj, ..., zj)
of this point in E, and the vertex 2, is at most /2, i.e.,

. . € i

,Zi—fi|<§, j=12...,n

This is possible because z, € Pr 4, on E,,.
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Thus we introduce two functions
Zy = 2*()’1, ceey yn)’

an

— 5 (81
Zy = Z,(24, ..., 25).

We shall denote the difference zj, — 2, by 6; j = 1,...,n) (|4;] < &/2) and
bound the quantity

1L .
Q@) = Msup—~| ) Z'y;
zea i1
1
M Z 2y

z 1 .
Z Myl( + 5,) + 7 Z Myiz:*.

i=n+1
Observe that the second summand in the sum is zero, since every term of the

sum is a product of two independent random variables y; and z., i > n, one
of which (y;) has zero mean.

We shall bound the first summand. For this purpose consider the first
term in the first summand:

1 a a
TM[yl(C'FE‘FEyl +51>]
1]a
=l[§+My151]

1
ZZ(OC—GI)

To bound the kth term
1 PR ki a
Ik=7M|:yk((pk l(zi"":zi 1)+§yk+5k):|’

we observe that the vertex (2, ..., 257 ') was chosen in such a manner that
it would not depend on y, but only on Vis - -+» Yx-1. Therefore

11a 1
I :l[i + Mykék] 2—2~l(a — &)
Thus we obtain

Q(<m>Msup Z ey ==
zeA = 21

Choosing the quantity a in accordance with (A.22), we arrive at

— @ 1
(@) > s(exp{y-—n;—ii)} - 1) (% - Z)'

The lemma is thus proved. O

1
(a—6)>(a—s)(—ﬁ)
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§AS Necessary and Sufficient Conditions for Uniform
Convergence: The Proof of Necessity

Theorem A.2. For the uniform convergence of the means to their mathematical
expectations over a uniformly bounded class of functions F(x, a), a € A, it is
necessary and sufficient that for any € > 0 the equality

lim H® D

- l

=0 (A.25)
be satisfied.

To prove the necessity we can assume without loss of generality that the
class F(x, o) is convex in the sense of (A.23), since from the uniform con-
vergence of the means to their mathematical expectations for an arbitrary
class follows the same convergence for its convex closure, and the condition
(A .25) for a convex closure implies the same for the initial class of functions.

Proor OF NECESSITY. Assume the contrary. For some ¢, > 0 let the equality

HA(30 H l)

li
m ]

[ Aad- o)

= c(gy) > 0 (A.26)

be fulfilled, and at the same time let uniform convergence hold, i.e., for all ¢
let the relationship

MF(x, a) — % i F(x;, @)
i=1

lim P{sup > 8} =0 (A.27)

- aeA

be satisfied. This will lead to a contradiction.
Since the functions MF(x, o), (1/]) Z£=1 F(x;, ®), o€ A, are uniformly
bounded by 1, it follows from (A.27) that

This implies that if I, - o0 and | — I; — oo, then the equality

lim M{sup MF(x, a) — = Z F(x;, o)

aeA

]
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1
lim M{sup LY Foqm) - o Y FGx)

aeA |1 i=1 - ll i=l+1

} =0 (A28)

l,l>©

is fulfilled.
Consider the expression

iF(xl,a) )

i=n+1

l Cn
I(Xg, ..., x) =) sup[

]
n=0 aeA 2

|
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We subdivide the summation with respect to n into two “regions”:

I: n—£ < I*3,

I: |n—=|> 1%

Then taking into account that

1 n 1
*ZF(X,‘,(X)— ZF(xi’a)Sla
Hi< i=n+1
we obtain
C"
Ixy,....x) < ) 727'
nell
+ Z L Z F(x;, o)
— ~ = X;, o
nel 21 zlelx/z n lz:l l

(L L )

Note that in region I (3 — 1/I'3 < n/l <% + 1/1'3),

while in region 11

1
> o (A29)
nell
Furthermore
. . -
m MI(x,....x) < lim [ ) —
ald l>x \nell 2

1
+ -max M sup
2 ne | xeA

It follows from (A.28) that

IZF(X %) — 1’ Z F(x;, %) Z€">

i=n+