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Preface 

Estimating dependences on the basis of empirical data has been, and will 
probably remain, a central problem in applied analysis. This problem is a 
mathematical interpretation of one of the basic questions of science: how to 
extract the existing law-like relationship from scattered data. 

The simplest attack on this problem is to construct (estimate) a function 
from its values at certain points. Here we will formulate some general 
principles of estimating a functional dependence, and then develop an 
algorithm for the estimation using these principles. 

Usually, when one seeks a general principle, intended for a solution of a 
wide class of problems, one focuses first upon the simplest, most basic 
problem. This simple version of the problem is treated theoretically with great 
thoroughness and the scheme obtained for a solution is then extended to all 
the problems of the class under consideration. 

When studying the estimation of functional dependences, the functions 
which take only one value (i.e., constants) are usually chosen as the simplest 
problem. One assumes that the measurements of a constant are subject to 
errors. Given several such measurements, one must determine this constant. 
There are various ways to state this problem specifically. These are based on 
different models of measurements with errors. However, regardless of the 
model, the study of the basic problem leads to the following classical principle 
of estimating functional dependence based on empirical data: 

Select, from an admissible set of functions, the one which yields the best 
approximation of the totality of the available empirical data. 

This principle is sufficiently general. It leaves the measure of the quality of 
the relation between the function and the empirical data undefined. Various 
definitions of this measure are available; for example, the amount of the mean 

ix 
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square deviation of the functional values, the amount of the mean deviation, 
the maximal deviation, etc. Each definition generates its own method of 
estimating dependences, such as the least-squares method, the least absolute 
values method, etc. However, in all cases the principle of the solution (i.e., 
the search for a function which best approximates the data) remains un­
changed. 

The main content of this book deals with a study of a different, nonclassical 
principle of estimating dependences: 

Select, from an admissible set of functions, a function which fulfills a 
definite relationship between a quantity characterizing the quality of the 
approximation and a quantity characterizing the "complexity" of the 
approximating function. 

This principle may need some clarification. With increasing complexity of 
the approximating function, one obtains successively better approximations 
to the available data, and may even be able to construct a function which will 
pass through all of the given points. This new principle, unlike the classical 
one, asserts that we should not strive to get close to empirical data at all 
costs; that is, we should not excessively complicate the approximating 
function. For any given amount of data, there exists a specific relationship 
between the complexity of the approximating function and the quality of the 
approximation thus obtained. By preserving this relationship, the estimated 
dependence most accurately characterizes the actual (unknown) dependence. 
Further improvements of the approximation by increasing the complexity 
may result in the estimated function approximating the given data better, but 
representing the actual function less accurately. This nonclassical principle 
of estimation reflects an attempt to take into account that dependence is 
estimated with a limited amount of data. 

The idea that, with a limited amount of data, the selected function should 
not merely approximate empirical data but also possess some extremal 
properties has existed for a long time. It first received theoretical justification 
in the investigation of the problems of pattern recognition. The mathematical 
statement of pattern recognition necessarily leads to estimating a function 
which admits not one (as is the case in our basic problem) but two values. 
This additional complexity is unexpectedly of fundamental importance. The 
set of functions taking on two values is much more "varied" than the set of 
constants (i.e., functions taking on one value). 

The important point is that the structure of the set of constant functions is 
"simple and homogeneous", while that of the set of functions taking on two 
values is rich and admits ordering according to its complexity. The latter is 
essential for estimating dependences with limited amounts of empirical data. 

Thus the study of pattern recognition problems has shown that the 
simplest classical problem does not encompass all the problems of estimating 
dependences, since the class offunctions associated with estimating a constant 
is so limited that no problem of its stratification arises. 
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The simplest problem of this book is the problem of pattern recognition. 
We use methods based on classical ideas of statistical analysis as well as those 
associated with the nonclassical principle of estimation for its solution. 
All of these methods are adopted for two other problems of estimation: 
regression estimation and interpretation of the results of indirect experiments. 

For our new basic problem, we distinguish between two formulations: 
estimating functions and estimating values of a function at given points: 
(These two formulations coincide in the case of estimation of constants.) 
We distinguish between these formulations since, with a limited amount of 
data, there may not be enough information to estimate a function satis­
factorily as a whole, but at the same time it may be enough to estimate k 
numbers-the values of a function at given points. 

Thus this book is devoted to problems of estimating dependences with 
limited amounts of data. The basic idea is as follows: the attempt to take 
into account the fact that the amount of empirical data is limited leads us to 
the nonclassical principle of estimating dependences. Utilizing this principle 
allows us to solve delicate problems of estimation. These include determina­
tion of optimal set of features in the case of pattern recognition, determina­
tion of the structure of the approximating function in the case of regression 
estimation, and construction of regularizing functions for solving ill-posed 
problems of interpretation of indirect experiments (i.e., problems which arise 
due to the limited amount of data and which cannot be solved within the 
framework of classical setups). 

The book contains ten chapters. Chapters l and 2 are introductory. In 
these, various problems of estimating dependences are considered from the 
common positions of minimizing the expected risk based on the empirical 
data and various possible approaches to minimizing risks are discussed. 

Chapters 3, 4, and 5 are devoted to the study ot classical ideas of risk 
minimization: estimating probability density functions by means of para­
metric methods and utilization of this density for minimization of the risk. 
Chapter 3 applies these ideas to pattern recognition problems. Chapters 4 and 
5 apply them to regression estimation problems. Beginning with Chapter 6 
nonclassical methods of minimization of risk are studied. Chapters 6 and 7 
establish the conditions for applying the method of minimization of empirical 
risk to solutions of problems of minimization of the expected risk for 
samples of limited size, while Chapters 8-10 utilize these conditions to con­
struct a method of risk minimization based on limited data: the so-called 
method of structural minimization. (In Chapter 8, we consider the application 
of the method of structural risk minimization to the problems of pattern 
recognition and regression. In Chapter 9, we give an application to the 
solutions to ill-posed problems of interpreting results of indirect experiments. 
In Chapter 10, we investigate the problem of estimating values of functions 
at given points based on structural minimization). Finally, Addenda I and II 
are devoted to algorithms for structural risk minimization. 

This book is intended for a wide class of readers: students in upper-level 
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courses, graduate students, engineers, and scientists. The exposition is such 
that the proofs do not interfere with the basic flow of the arguments. How­
ever, all of the main assertions are proved in toto. 

We try to avoid generalizations which are possibly important but less 
indicative of the basic ideas developed in this book. Therefore, in the main 
part of the book we consider only simple cases (such as quadratic loss 
functions, equally spaced observations, independent errors, etc.). As a rule, 
the corresponding generalizations may be achieved using standard methods. 
The most important of these generalizations concerning arbitrary loss 
functions are given at the end of the respective chapters. 

The main part of the book does not require a knowledge of special 
branches of mathematics. However, in order to follow the proofs the reader 
should possess some experience in dealing with mathematical concepts. 

The book is not a survey of the standard theory, and it may be biased to 
some extent. Nevertheless, it is our hope that the reader will find it interesting 
and useful. 

Moscow, 1982 V. VAPNIK 
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Chapter 1 

The Problem of Estimating Dependences 
from Empirical Data 

§1 The Problem of Minimizing the Expected Risk on 
the Basis of Empirical Data 

Each time a problem of selecting a functional dependence arises the same 
model is considered: among the totality of possible dependences it is necessary 
to find one which satisfies a given quality criterion in the best possible 
manner. Formally this means that on a vector space Z a class of functions 
{g(z)}, z E Z, (the class of possible dependences) is given, and a functional 

I = l(g) (1.1) 

is defined which is the criterion of quality of the chosen dependence. It is 
then required to find g*(z) belonging to {g(z)} such that it will minimize the 
functional (1.1). (We shall assume that the minimum of the functional 
corresponds to the best quality and that the minimum of (1.1) exists in 
{g(z)}.) In the case when the class of functions {g(z)} and functional J(g) are 
explicitly given, the search for g*(z) which minimizes l(g) is the subject of 
the calculus of variations. 

In this book another case is considered, namely when a probability 
density function P(z) is defined on Z and the functional is defined as the 
mathematical expectation t 

J(g) = J <l>(z, g(z))P(z) dz. (1.2) 

t For the sake of simplicity we require the existence of a density. For the main part of the theory 
to be valid, the existence of a probability measure is sufficient. 
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The problem is to minimize the functional (1.2) in the case when P(z) is 
unknown but when a sample 

(1.3) 

of observations resulting from random and independent trials according to 
P(z) is available. 

Below in Sections 2, 3, and 4 we shall verify that all the basic problems in 
estimating functional dependences are reduced to a minimization of (1.2) 
based on empirical data (1.3). Meanwhile we shall note that there is a sub­
stantial difference between problems arising when the functional (1.1) is 
minimized and those encountered when the functional (1.2) is minimized, 
on the basis of empirical data (1.3). In the case ofminimizing(l.1) the problem 
is to organize the search for a function g*(z) belonging to the class {g(z)} 
which minimizes (1.1). When (1.2) is minimized on the basis of the data 
(1.3), the basic problem is to formulate a constructive criterion for choosing 
the function rather than organizing a search of the function in {g(z)}. (The 
functional (1.2) by itself cannot serve as a criterion for choosing, since the 
density P(z) appearing in it is unknown.) Thus in the first case the question is 
"How do we obtain the minimum of a functional in a given class of func­
tions?" while in the second the question is "What should be minimized in 
order to select from {g(z)} a function which will assure that the functional 
(1.2) will be 'small'?" 

The minimization of the functional (1.2) on the basis of the data (1.3) 
is a problem of mathematical statistics. We shall call it the problem of mini­
mizing the expected risk on the basis of empirical data. 

When formulating the minimization problem for the expected risk, the 
class of functions {g(z)} will be given in the parametric form {g(z, a)}.t 
Here a is a parameter belonging to the set A whose specific value a = a* 
defines a specific function g(z, a*) belonging to the class g(z, a). To find the 
required function means to determine the required value of the parameter a. 
The study of only a parametric class of functions is not a serious restriction 
on the problem, since the set A to which the parameter a belongs is arbitrary: 
it can be a set of scalar quantities, of vectors, or of abstract elements. 

In terms of the new notation the functional (1.2) is rewritten as 

/(a) = J Q(z, a)P(z) dz, 0( EA, (1.4) 

where 

Q(z, a) = <l>(z, g(z, a)). 

The function Q(z, a)-which depends on two groups of variables z and 
a-is called the loss function. 

t Below we shall always omit the braces when writing a class of functions. A single function is 
distinguished from a class of functions by indicating whether the parameter ex is fixed or not. 
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The problem of minimizing the expected risk admits a simple interpreta­
tion: it is assumed that each function Q(z, a*), a* EA (i.e., each function of z 
for a fixed a = a*) determines the amount of the loss resulting from the 
realization of vector z. The expected loss (with respect to z) for the function 
Q(z, a*) is thus determined by the integral 

/(a*) = f Q(z, a*)P(z) dz. 

The problem is to choose in Q(z, a) a function Q(z, a*) which minimizes the 
expected loss when random independent observations z1, ... , z1 from an 
unknown probability distribution of z are given. 

This problem is rather general. We shall now state a particular case. 
In this case the vector z consists of n + 1 coordinates, the coordinate y 
and n coordinates x1, ... , xn which form the vector x. The loss function 
Q(z, a) is given in the form 

Q(z, a) = <l>(y - F(x, a)), 

where F(x, a) is a parametric class of functions. It is necessary to minimize 
the functional 

/(a) = f <l>(y - F(x, a))P(x, y) dx dy, (1.5) 

when the density P(x, y) is unknown but a random independent sample of 
pairs 

(1.6) 

(the training sequence) is given. 
The problem of minimizing the functional (1.5) on the basis of the empirical 

data ( 1.6) is called the problem of estimating a functional dependence, and is 
the subject of this book.t Three basic problems of estimating functional 
dependences are considered: 

(1) the problem of pattern recognition, 
(2) the problem of regression estimation, 
(3) the problem of interpreting results obtained from indirect experiments. 

In the succeeding sections we shall verify that all these problems are 
reduced to a minimization of the functional (1.5) on the basis of the empirical 
data (1.6). 

t Below we shall use a quadratic loss function <l>(y - F(x, a)) = (y - F(x, a))2. However, the 
basic results to be obtained herein do not depend upon the form of loss function. 
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§2 The Problem of Pattern Recognition 

The problem of pattern recognition was formulated in the late 1950s. 
In essence it can be stated as follows: a person (the instructor) observes 
occurring situations and determines to which of k classes each one of them 
belongs. It is required to construct a device which, after observing the 
instructor's procedure, will carry out the classification approximately in 
the same manner as the instructor. 

Using formal language this statement can be expressed simply as follows: 
in a certain environment which is characterized by a probability density 
function P(x), situations x appear randomly and independently. The instruc­
tor classifies these situations into one of the k classes. (For simplicity we 
shall assume in what follows that k = 2; this assumption does not limit the 
generality, since by subsequent subdivisions of situations into two classes 
one can obtain a subdivision into k classes as well.) Assume that the in­
structor carries out this classification using the conditional probability 
distribution function P(wlx), where w = {O, l} (w = 0 indicates that the 
instructor assigns situation x to the first class, and w = 1 that he assigns it 
to the second class). Neither the properties of the environment P(x) nor the 
decision rule P(wlx) is known. However, it is known that both functions 
exist. 

Now let a parametric set of functional dependences F(x, (l() (the class of 
decision rules) be given. All functions in the class F(x, (l() are indicator 
functions, i.e., they take on only the two values zero or one. By observing I 
palfS 

(the situation being x, and instructor's reaction w), it is required to choose 
in the class of indicator functions F(x, (l() a function for which the probability 
of classification different from the instructor's classification is minimal. 
In other words, the minimum of the functional 

/((l() = "'~,i J<w - F(x,0())2P(wlx)P(x)dx 

must be attained. The functional /((l() will be written in the form 

/((l() = J (w - F(x, 0())2P(x, w) dx dw 
X,w 

and the function P(x, w) = P(wlx)P(x) will be called the joint density of 
the pair x, w defined on the space X, w. 

The problem of pattern recognition has thus been reduced to the problem 
of minimizing the expected risk on the basis of empirical data. The special 
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feature of this problem is that the class of functions Q(z, ix) is not as arbitrary 
as in the general case. The following restrictions are imposed: 

(I) The vector z consists of n + 1 coordinates: coordinate w, which takes 
on only two values (zero and one), and n coordinates x 1, •.• , x" which 
form the vector x. 

(2) The class of functions Q(z, ix) is given by 

Q(z, ix) = (w - F(x, ix))2 , 

where F(x, ix) also takes on only the two values zero and one. 

Thus in the pattern recognition problem the value of the loss function 
is either zero or one. This particular feature of the risk minimization problem 
characterizes the pattern recognition problem.t 

§3 The Regression Estimation Problem 

Two sets of elements X and Y are connected by a functional dependence 
if to each element x EX there corresponds uniquely an element y E Y. 
This relationship is called a function if the set X is a set of vectors and the 
set Y is that of scalars. However, there exist relationships (dependences) 
where to each vector x there corresponds a number y which is obtained 
as a result of random trials according to the conditional density P(y Ix). 
In other words, to each x there corresponds a probabilistic law P(ylx) 
according to which the selection of y is realized in a random trial. 

The existence of such dependences reflects the presence of a stochastic 
relationship between the vector x and the scalar y. A complete knowledge 
of these stochastic relations requires the estimation of the conditional 
density P(y Ix). This problem is extremely difficult. However, often in 
practice (for example, in problems of measurement data processing) 
it is not necessary to know the function P(y Ix) but only one of its charac­
teristics-the conditional mathematical expectation function, i.e., the function 
which assigns to each x a number y(x) equal to the expectation of the scalar 
y: 

y(x) = f yP(ylx) dy. 

The function y(x) is called the regression, and the problem of estimating the 
conditional mathematical expectation function is referred to as the problem 
of regression estimation. 

t In the formulation of the problem one can take into account the differences in the values of 
errors of the first and second kind. However, this does not change the essence of the problem: 
the point is that the loss function takes on only a finite number (three) of values. 
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We shall now consider the statement of this problem. In a certain environ­
ment which is characterized by the probability density P(x), a situation x 
arises randomly and independently. In this environment a transformer 
acts which assigns to each vector x a number y obtained as a result of the 
realization of a random trial according to the distribution P(ylx). Neither 
the properties of P(x) nor those of P(ylx) are known. However, it is known 
that the regression 

y = y(x) 

exists. 
Based on a random sample of pairs 

it is required to estimate the regression; in other words, given the class of 
functions F(x, a), one needs to find a function F(x, a*) which is closest to 
the regression y(x ). 

The problem of estimating the regression is one of the basic problems of 
applied statistics. The problem of interpreting the results of direct experi­
ments can be reduced to the regression problem. Let a lawlike relationship 
connect the quantity y with the vector x by means of a functional relationship 

y = y(x). 

Let our purpose be to determine the functional relationship y = y(x) 
in the situation when at each point x* one can conduct a direct experiment 
to determine this relationship, i.e., direct measurements on the quantity 
y* = y(x*) are carried out. However, since the experiment is imperfect, the 
results of the measurements will determine the true value subject to a certain 
random error. In other words, at each point x a value y = Yx rather than the 
value y(x) is obtained. (Here Yx - y(x) = ~ is the experimental error; 
M~ 2 < oo.) 

It is assumed (and this hypothesis determines the possibility of inter­
preting experiments) that at no point x is there a systematic error, i.e., the 
mathematical expectation of the measured function Yx at each fixed point x 
is equal to the value of the function y(x) at this point: 

Myx = y(x). (1.7) 

Moreover, we shall assume that the random variables Yx, and Yx1 (i I= j) 
are independent. 

Under these conditions it is required, on the basis of a finite number of 
direct experiments, to estimate the function y = y(x). Thus the relationship 
under consideration is the regression (1.7), and the essence of the problem is 
to estimate regressions based on a sequence of pairs 



§3 The Regression Estimation Problem 7 

The problem of estimating regression includes the problem of inter­
preting results of direct experiments. In such problems it is customary to 
distinguish between two types of experiments: closed and open. A closed 
experiment is one in which the probabilistic law P(x)----according to which 
the selection of experimental points is determined-is unknown to the 
investigator. An open experiment is one in which the law P(x) is known to 
(and often determined by) the investigator. 

The problem of regression estimation reduces to the problem of estimating 
dependences. Indeed, consider the functional 

J(rx) = J (y - F(x, rx}}2 P(x, y) dx dy, (1.8) 

where P(x, y) = P(ylx)P(x). We show that if the regression ji = y(x) belongs 
to the class F(x, rx) (y(x) = F(x, rx0}}, then it minimizes the functional (1.8); 
if, however, the regression does not belong to F(x, ex), then the minimum is 
obtained at the function F(x, rx*) which is closest to the regression. The 
proximity between the functionsf1(x) and fi(x) is taken in the L: metric: 

PLU1(x),fi(x)) = (Ju1(x) - fi(x)) 2P(x) dx r12 

To show this, denote 

AF(x, rx) = F(x, rx) - y(x). 

Then the functional (1.8) can be written in the form 

J(rx) = J<Y - y(x)}2P(x,y)dxdy + J(AF(x,rx}}2P(x)dx 

- 2 J AF(x, cx)(y - y(x))P(x, y) dx dy. 

In this expression the third summand is zero, since in view of ( 1. 7), 

J AF(x, cx)(y - y(x})P(x, y) dx dy 

(1.9) 

= JAF(x,rx)P(x{J<y-y(x))P(ylx)dy]dx = 0. 

Thus we have verified that 

J(rx) = J<Y - y(x)}2P(x,y)dxdy + J(F(x,cx) - y(x)}2P(x)dx. 

Since the first summand does not depend on rx, the minimum point of J(rx) 
coincides with the minimum point of the second summand, and hence the 
minimum J(rx) is attained on the regression if y(x) E F(x, rx), or at the closest 
function to it if y(x) ff: F(x, rx). 
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Thus the problem of estimating regression also reduces to the scheme of 
minimization of expected risk. The special feature of this problem is that 
the class of functions Q(z, ex) admits the following-restrictions: 

(1) The vector z consists of n + 1 coordinates: the coordinate y and n 
coordinates x1, ... , x" forming the vector x. However, unlike the case 
of the pattern recognition problem, the coordinate y as well as function 
F(x, ex) may take on any values in the interval ( - oo, oo ). 

(2) The class offunctions Q(z, ex) is of the form 

Q(z, ex) = (y - F(x, ex))2. 

The functions Q(z, ex) take on arbitrary values on the interval (0, oo ). 

§4 The Problem of Interpreting Results of Indirect 
Experiments 

In the preceding section the problem of regression estimation was considered. 
It was shown that the problem of interpreting the results of direct experi­
ments is reduced to the regression problem. (Recall that in direct experi­
ments the dependence of interest may be measured at any fixed point.) 
However, it is often the case that the required functionf(t) can be measured 
at no point oft. At the same time some other function F(x) which is connected 
withf(t) by the operator equation 

Af(t) = F(x) (1.10) 

may admit measurements. It is then required, on the basis of the measure­
ments Yi, ... , y1 of function F(x) at points x1, ••• , x,, to obtain in the class 
f(t, ex) a solution for Equation (1.10). This problem will be called the problem 
of interpreting the results of indirect experiments. 

The formation of the problem is as follows: given a continuous operator 
A which maps in a one-to-one manner the elements f (t, ex) of a metric space 
E 1 into the elements F(x, ex) of a metric space E2 , it is required to obtain a 
solution of the operator equation (1.10) in the class of functions f (t, ex) 
provided the function F(x) is unknown, but the measurements yi, ... , y1 

of F(x) at points xi, ... , x1 are given. 
As with the interpretation of direct measurements, the measuring experi­

ment of F(x) does not involve systematic error, i.e., My"1 = F(xi), and the 
random variables Yx1 and YxJ (ii= j) are independent. Moreover, we shall 
assume for simplicity that the function F(x) is defined on the interval [a, b]. 
The experiment is open: points x at which measurements of the function 
F(x) are carried out are randomly and independently distributed on [a, b] 
according to the uniform distribution. t 
t The points x can be defined by any nonvanishing density on [a, b ]. 
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The problem of interpreting results of indirect experiments also reduces to 
the problem of minimizing the expected risk based on empirical data. 
Indeed, consider the functional 

/(ix) = fey - Af (t, ix))2 P(y Ix) dy dx = fey - F(x, ix))2 P(yl x) dy dx. 

Analogously to the manipulations carried out in Section 3, we obtain 

where 

/(ix)= fey - F(x, ix))2P(ylx)dydx 

= fey- F(x))2P(ylx)dydx + feAF(x,ix))2dx 

- 2 JM(x,ix{J(y- F(x))P(ylx)dy]dx, 

AF(x, ix) = F(x, ix) - F(x). 

Here the third summand vanishes (as was the case in the preceding section), 
which implies that the minimum of the functional 

/(ix)= J(y - Af(t,ix))2P(ylx)dydx (1.11) 

is attained at the solutionf(t) of the operator equation (1.10). 
We have thus again arrived at the setup for minimizing the expected risk 

(1.4) on the basis of empirical data. In this problem the loss function Q(z, ix) 
is such that 

(1) the vector z consists of two coordinates y and x, admitting values 
in the intervals ( - oo, oo) and [a, b ], 

(2) the loss function is given by 

Q(z, ix) = (y - Af(t, ix))2 • 

The specific feature of interpreting results of indirect experiments is that 
we seek a functionf(t, ix*) which minimizes the functional (1.11) even though 
the problem of solving the operator equation 

Af(t) = F(x), f (t) Ej(t, ix) 

may be ill posed. 
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§5 Ill-posed Problems 

We say that a solution of the operator equation 

Af(t) = F(x) 

is stable if the small variation in the right-hand side F(x) E F(x, ll() results 
in a small change in the solution, i.e., if for any i; a b(s) can be found such 
that the inequality 

is valid as long as the inequality 

holds. Here the indices E1 and E2 denote that the distance is defined in the 
metrics of spaces E 1 and E2 respectively (the operator equation (1.10) 
maps space £ 1 into space £ 2 ). 

We say that a problem of solving an operator equation is well posed in 
the Hadamard sense if the solution of the equation 

(1) exists, 
(2) is unique, and 
(3) is stable. 

A problem of solving an operator equation is considered ill posed if the solution 
of this equation violates at least one of the abovementioned requirements. 

Below, in the main portion of the book, we shall confine ourselves to 
solutions of ill-posed problems of interpreting the results of indirect experi­
ments defined by the Fredholm integral equation of type I: 

[ K(t, x)f (t) dt = F(x). 

However, all the results obtained will be valid also for equations defined by 
any other linear continuous operators. 

The necessary background on the theory of solutions of ill-posed problems 
is given in the Appendix to this chapter. 

Thus we shall consider Fredholm's integral equation of type I: 

f K(x, t)f(t) dt = F(x), (1.12) 

defined by a kernel K(x, t) which is continuous almost everywhere on 
0 ::;; t ::;; 1, 0 ::;; x ::;; 1, and which maps the set of functions f (t) continuous 
on [O, 1] into the set of functions F(x) continuous on [O, 1]. 
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We shall now show that the problem of solving Equation (1.12) is an 
ill-posed one. For this purpose we note that a continuous function Gv(x) 
formed by means of the kernel K(x, t), 

G.(x) = f K(x, t) sin vt dt, 

possesses the property 

sup G.(x) ~ 0. 
X 

Consider the integral equation 

f K(x, t)](t) dt = F(x) + G.(x). (1.13) 

Since the Fredholm equation is linear, a solution of Equation (1.13) is 
of the form 

](t) = f(t) + sin vt, 

wheref(t) is a solution of Equation (1.12). For v sufficiently large the right­
hand sides of Equations (1.12) and (1.13) differ only slightly (by the amount 
G.(x)), while their solutions differ by the amount sin vt. 

The Fredholm integral equation of type I is one of the basic equations 
for the problem of interpreting results of indirect experiments. Here are 
examples of problems connected with a solution of this equation: 

EXAMPLE 1 (The Inverse Problem of Spectroscopy). Let the spectrum F(x) 

be observed using a "real-world" spectroscope. This instrument possesses 
a finite resolving ability, and the observed spectrum differs in general from 
the one that would have been observed by means of an ideal spectroscope 
(i.e., one with an infinitely high resolving power). It is required to calibrate 
the spectrum obtained by means of the "real-world" spectroscope to the 
"true" spectrum. 

This problem can often be solved. It is known, for example, that the 
"smoothing" characteristic of certain real-world spectroscopes is of the 
form 

K(x,t) = foa exp{- (\~;)
2

} • 

The observed spectrum F(x) is connected. with the true spectrum f (t) by 
the relation 

1 Joo { (x - t)2
} .Jina 

O 
exp - 2a2 f(t)dt = F(x). 
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The better the instrument (i.e., the smaller the a), the less the spectral picture 
is distorted. As a ~ 0 the characteristic of the apparatus approaches the 
ideal one: 

1 { (x - t)2 } -- exp - 2 ~ c5(t - x), 
fo,a 2a 

and hence 

F(x) ~ J(x). 

However, no matter how poor the real-world spectroscope is, one can in 
principle derive the actual spectrum from the observed one. For this purpose 
it is necessary to solve the inverse problem of spectroscopy, i.e., to solve the 
integral equation 

1 Joo { (x - t)2
} r,,: exp - 2 f(t) dt = F(x), 

....;2na o 2o-

utilizing the empirical data y 1, ... , y1 in place of the function F(x). 

EXAMPLE 2 (The Problem of Identifying Linear Objects). It is known that 
dynamic properties of linear homogeneous objects with one output are 
completely described by the pulse-transfer (weight) function f ( r ). The 
functionf(r) is the reaction of the object to a unit pulse served at the system 
at timer= 0. 

Knowing this function one can compute the reaction of the object to 
any disturbance x(t) using the formula 

y(t) = {x(t - r)f(r) dr. 

Thus the determination of the dynamic characteristics of an object reduces 
to the determination of the weight functionf(r). 

It is known that for a linear homogeneous object the Wiener-Hopf 
equation 

(1.14) 

is valid. Equation (1.14) connects the autocorrelation function RxxCt) of a 
stationary random process at the input of the object with the weight function 
f(r) and joint correlation function of the input and output signals Ryx(t). 
Thus the problem of identifying a linear object involves the determination 
of a weight function based on the known autocorrelation function of the 
input signal and the measured (observed) joint correlation function of the 
input and output signals, i.e., it is the problem of solving the integral equation 
(1.14) on the basis of empirical data. 
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EXAMPLE 3 (The Problem of Estimating Derivatives). Let the measure­
ments of smooth function F(x) at l points of the interval [0, 1] be given. The 
points at which the measurements were taken are distributed randomly and 
independently according to a uniform distribution. It is required to estimate 
on [0, 1] the derivative f(x) of the function F(x). 

It is easy to see that the problem is reduced to solving the Volterra integral 
equation of type I, 

s: f(t) dt = F(x) - F(0), 

under the condition that the l measurements Yi, ... , y1 of the function 
F(x) carried out at points x 1, ... , x1 are known. Equivalently it reduces to 
the solution of the type-I Fredholm equation (under the same conditions), 

{ 0(x - t)f(t) dt = F(x) - F(0), 

where 

O(z) = {1 forz :2: 0, 
0 for z < 0. 

In a more general case when the kth derivative is to be estimated, the 
following integral equation must be solved: 

Ji (x _ t?- i k- i FUl(0) 
(k _ l) 1 0(x - t)f(t) dt = F(x) - _L ~.,-, 

0 · 1=0 J. 

where in place of function F(x) the empirical data Yi, ... , y1 are used. 
Here F(j)(0) is the value of the jth derivative at zero. 

§6 Accuracy and Confidence of Risk Minimization 
Based on Empirical Data 

We have thus considered three basic problems of estimating dependences 
from the empirical data: pattern recognition, regression estimation and 
interpretation of indirect experiments. They are all based on the same 
general setup: the model of minimizing the expected risk based on empirical 
data. In other words, it is required to find o:* which minimizes the functional 

J(o:) = f Q(z, o:)P(z) dz, 

where the density P(z) is unknown but a random independent sample 
z1, ... , z1 of size I is given. 
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Moreover, for all these problems the same structure of the loss function, 

Q(z, IX) = (y - F(x, 1X))2 

was chosen. Thus in all cases it is required to obtain a function F(x, 1X*) 
which minimizes the functional 

J(1X) = fey - F(x, 1X))2P(x, y) dx dy, (1.15) 

where the density P(x, y) is unknown but a sample x 1, y 1 ; .•. ; x1, y1 obtained 
from random and independent trials according to this density is given. 
Actually we have distinguished between two variant formulations of the 
problem of regression estimation: the case when the density P(x) is unknown 
(a closed experiment) and the case when P(x) is known (an open experiment). 
But these two formulations do not differ fundamentally, the main point 
being that the joint density P(x, y) is unknown in both cases. 

We have established that various problems of estimating dependences 
differ as the loss functions for risk minimization differ, and that in each 
problem it is the parameter IX which yields the exact minimum for the cor­
responding functional determines the required functional relationship. 
However, to obtain the exact minimum of the functional (1.15) from a sample 
of a fixed size is generally an insoluble problem, since a sample is only a 
"realization" of the underlying distribution law and is in no way equivalent 
to it. Therefore one should consider the problem of determining, from a 
sample of a fixed size, a function which yields the value of the functional 
"close" to the minimal one rather than the exact minimum of the functional 
(1.15). 

Moreover, one cannot guarantee that a value "close" to the minimum 
will be obtained unconditionally, but only with a certain probability (since, 
given any density, there is a certain probability that the sample obtained in 
random trials will consist of I pairs of elements x, y repeated I times). Thus the 
preassigned accuracy of minimizing the expected risk (1.15) can be obtained 
from a sample of a fixed size only with a certain confidence. 

We say that the value of the functional J(1X*) is x-close to the minimal 
(min~ J(1X)) if the inequality 

J(1X*) - min J(1X) s x 

is fulfilled. Now let an algorithm A which determines the value of parameter 
1X* from a sample of size I be given. Since the sample is random, this algorithm 
determines a random value of the parameter IX* to which the random number 
J(1X*) corresponds. We say that an algorithm A yields with IX confidence level 
1 - '1 a value of the functional J(1X) which is x-close to the minimal if for any 
given O < 1J < 1 the inequality 

P{ J(1X*) - m:n J(1X) > x} < 1J 
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is valid. When solving problems of expected-risk minimization our purpose 
is to obtain algorithms which for a sample of a fixed size and with a given 
confidence level will determine functions yielding the value of functional /(a) 
that is, closest to the minimum. 

§7 The Accuracy of Estimating Dependences on the 
Basis of Empirical Data 

At the end of the preceding section the purpose of our investigation was 
formulated: to find algorithms which guarantee that the risk closest to the 
minimal will be attained. This book is devoted to the construction and 
justification of such algorithms. However, when formulating the goal of the 
investigation the problem was in essence replaced by another. Indeed the 
initial goal was to estimate functional dependences. In Sections 2, 3, and 4 
it was shown that a function which yields the exact minimum of a corres­
ponding functional of the expected risk determines the required dependence. 
On the other hand, to obtain an exact minimum from a sample of a fixed 
size is an unrealistic problem. It was therefore suggested to search for a 
function which yields a value of the expected risk close to the minimal. 

However, it does not follow at all that close functions will correspond to 
close values of the functionals. Determining the value of a functional which 
is close to the minimal one is in general a different problem. Therefore, 
before solving the problem of estimating functional dependences from 
empirical data using the method of minimizing expected risk, it is necessary 
to find out whether this substitution of the problem will be adequate, 
i.e., whether the closeness of the functionals assures the closeness of the 
functions. 

In order to begin an investigation in this direction, it is first necessary 
to define precisely the "closeness" of functions. Unlike the closeness of 
functionals, which can be defined naturally as the distance between two 
points on the real line (which represent the values of these functionals), 
the closeness between functions has to be defined as the distance between 
two elements of a function space. 

There are various methods of metrization (introduction of the notion of 
distance) in functional analysis. We shall utilize two such metrics: a weighted 
mean-square deviation and a uniform deviation. The distance between two 
functions f 1(x) and fi(x) in the mean-square sense with weight P(x) (the 
Li metric) is defined by the functional 
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where P(x) is a nonnegative function such that J P(x) dx = 1. The distance in 
the uniform deviation sense (the C metric) is defined by the functional 

X 

Thus two functions are close in the Ll, metric if 

(1.16) 

and are close in the C metric if 

suplf1(x) - fi(x)I ~ x. (1.17) 
X 

Note that the requirement of uniform closeness (1.17) is stronger than that of 
mean-square closeness. The inequality (1.17) implies (1.16), but the converse 
is generally not true. 

Thus we shall use the notion of closeness (proximity) in the following 
senses: 

(1) Closeness of qualities of functions (values of functionals). 
(2) Closeness of functions in the L;, metric. 
(3) Closeness of functions in the C metric. 

The choice of the closeness measure is determined by the nature of the 
problem and not formally. 

How is closeness defined in various problems of estimating dependences? 
In a pattern recognition problem it is required, in a given class of indicator 

functions, to find a function which minimizes the probability of erroneous 
classification (i.e., it is required to minimize a functional). Therefore it is 
natural here to consider two functions to be close if their "qualities" are 
close; here the proximity is defined by the proximity of the functionals. 

In the case of regression estimation, the problem is to find a function 
which is close to the regression rather than to minimize a functional. In 
this problem the proximity is defined by means of Ll, or C metrics, depending 
on how the estimated function is to be used later on. 

For example, consider the problem of estimating the regression y = y(x) 
in the setup for interpreting direct experiments. The estimated dependence 
y = F(x, cx*) is to be used to forecast the value of y for different values of the 
situation x. The accuracy of the forecast for a given x is natural to measure 
by the quantity 

(y(x) - F(x, cx*))2• 

The overall accuracy of the forecast based on the estimated function is often 
measured as the average accuracy with respect to the measure of the set x, 
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i.e., by the quantity 

PL(y(x), F(x, a)) = (J(y(x)- F(x,a))2P(x)dxr
12

• 

In other words, the proximity is determined here by the Li metric. 
There are, however, problems where the proximity in the Li metric is 

not sufficient. Let, for example, a quantity y be functionally related to techno­
logical parameters x. It is required to obtain a vector of parameters x* 
which will yield the maximum of y. This problem is solved according to the 
following scheme: first the functional relationship y = y(x) is estimated, 
and then a value x* is sought which yields the maximum of the estimated 
function. However, if in this case a function F(x, a*) close to the actual one 
in the Li metric is chosen, then the situation shown in Figure 1 may occur. 

Figure l 

The estimated function may approximate the true function sufficiently well 
almost everywhere except for a set x of small measure where a large outlier 
occurs. The maximum of the estimated function, however, does not reflect 
the point yielding the maximum of y, but the outlier of the estimated function. 

In order to exclude such a situation it is necessary that the estimated 
function should approximate the true one uniformly over the whole domain 
of the definition of the function, i.e., in the metric C 

Pc(y(x), F(x, a)= sup/y(x) - F(x, a)/. 
X 

Thus in problems of regression estimation, closeness both in the Li metric 
and in the C metric are used. 

In the problem of interpreting data from indirect experiments, two notions 
of closeness are also used : closeness in the Li metric (which is Li with the 
weight P(x) = 1) 

PL(f(t. !X1)J(t. !X2)) = (J (f(t. !X1) _ f(t . !X2))2 dt) r12
• 
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and in the C metric 

As in the case of a regression problem, the choice of the metric is determined 
by the manner in which the estimated function is further utilized. 

§8 Special Features of Problems of Estimating 
Dependences 

We have thus established that all three problems of estimating dependences 
are reduced to the same setup-the problem of minimizing the expected 
risks-and that only an approximate solution of the latter problem is 
possible on the basis of empirical data. The question arises: Does an approxi­
mate solution assure the required closeness of the dependence obtained to 
the actual one? 

The answer to this question depends on the problem at hand. For a 
pattern recognition problem the answer is unequivocally yes by definition 
(since according to the statement of the problem it is required to find a 
function which yields a value of the functional close to the minimal one). 

In the case of regression estimation the answer is not as clearcut. It can 
be easily shown that if we interpret the proximity of functions in the Lf, 
sense, then the proximity of a functional to a minimal one yields the proximity 
of the function obtained to the regression. A proof of this assertion follows 
directly from the identity 

J(y - F(x,r.x.))2P(x,y)dxdy 

= J(y - y(x))2P(x,y)dxdy + J(y(x) - F(x,r.x.))2P(x)dx, 

where ji = y(x) is the regression and F(x, r.x.) is an arbitrary function belonging 
to a given class. However, the proximity of a functional to the minimal one 
does not in any way imply the proximity in the C sense of the corresponding 
function to the regression. To assure such a proximity it is not sufficient 
simply to minimize the functional. It is necessary that certain special require­
ments be satisfied. 

Finally for the problem of interpreting the results of indirect experiments 
the proximity of a functional to the minimal one does not assure the proxi­
mity of the estimated function to the actual one, either in the Lf, or in the C 
metrics. The basic difficulty in solving this problem is that the solution of 
the corresponding operator equation may be an ill-posed problem, and in 
this case functions which yield values of the functional close to the minimal 
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one may differ significantly from the desired solution. Therefore the main 
problem here is to determine what additional conditions should be imposed 
on the chosen solution in order that the proximity of the functional obtained 
to the minimal one will result in the proximity of the solution to the desired 
function. 

Thus, in spite of the fact that in all the problems of estimating dependences 
the functions yielding an exact minimum of the functional determine a 
solution, an approximate minimization does not always result in achieving 
this goal. Therefore, before applying a specific method of minimizing 
expected risks based on empirical data, it is necessary to make sure that the 
minimization method assures an approximation to the desired solution. 

In subsequent chapters various methods of minimization of expected 
risks based on empirical data are considered. They are all studied in con­
nection with each of the specific problems of estimating dependences. 



Appendix to Chapter 1 

Methods for Solving Ill-posed Pro bl ems 

§Al The Problem of Solving an Operator Equation 

We say that two sets of elements, ..i and %, are functionally dependent if 
given any element off E ..i there corresponds a unique element FE ff. 

This functional dependence is called a function if the sets ..i and JV 
are sets of numbers; it is called a functional if ..i is a set of functions and JV 
is a set ofnumbers, and it is called an operator if both sets are sets offunctions. 

Each operator A uniquely maps elements of the set ..i into elements of the 
set JV: This is denoted by the equality 

A..i = JV: 

In a collection of operators we shall single out those which realize a one-to­
one mapping of A into ff. For these operators the problem of solving the 
operator equation 

Af(t) = F(x) (A.1) 

can be considered as the problem of finding an elementf(t) in ..i to which 
an element F(x) corresponds in ff. 

For operators which realize a one-to-one mapping of elements ..i into 
JV and a function F(x) E JV there exists a unique solution of the operator 
equation (A.1). However, to obtain a method for solving an operator equation 
of such generality is a hopeless task. Therefore we shall investigate operator 
equations with continuous operators only. 

Let the elements f E ..i belong to a metric space E 1 with metric p 1 ( • ), 

and the elements FE JV belong to a metric space E2 with metric pi(·). 
An operator A is called continuous if "close" elements (with respect to metric 
p 1) in £ 1 are mapped into "close" elements (with respect to metric p2 ) in 
E2, 

20 
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We shall consider an operator equation defined by a continuous operator 
which maps in a one-to-one manner A into %. The solution of such an 
operator equation exists and is unique, i.e., there exists the inverse operator 
A - 1 from % into A: 

The basic problem is whether the inverse operator is continuous. 
If operator A - 1 is continuous, then close preimages will correspond to 

close functions in JV; i.e., the solution of the operator equation will be stable. 
If, however, the inverse operator is not continuous, then the solution of 
the operator equation will generally be unstable. In the latter case, in view 
of Hadamard's definition (Chapter 1, Section 5) the problem of solving an 
operator equation is considered ill posed. It tu'rns out that in many important 
cases, for example, for completely continuous operators A, the inverse 
operator A - 1 is not continuous and hence the problem of solving the 
corresponding operator equation is ill posed. 

Definition. We say that a linear operator A defined in a linear normed space 
£ 1 with the range of values in a linear normed space £ 2 is completely con­
tinuous if it maps any bounded set in space E 1 into a compact set of the space 
E 2 , i.e., if each bounded infinite sequence in E 1 

Ji,J2,···,fi,···, llf)I ~ c, 

(here llfjll is the norm in £ 1) is mapped in E 2 into a sequence 

Af 1, · · · , Af;, · · · , 

such that a convergent subsequence 

Af;,, · · ·, Af;k, · · · 

can be extracted from it. 

(A.2) 

(A.3) 

(A.4) 

We shall show that if the space £ 1 contains bounded noncompact sets, 
then the inverse operator A - 1 for a continuous operator A need not be 
continuous. Indeed, consider in E 1 a bounded noncompact set. Select 
in this set an infinite sequence (A.2) such that no subsequence of it is con­
vergent. An infinite sequence (A.3) from which a convergent subsequence 
(A.4) may be selected (since operator A is absolutely continuous) cor­
responds in £ 2 to this sequence. If the operator A - 1 were continuous, then 
a convergent sequence 

fi1' " .. ,fik' ... , (A.5) 

would correspond to the sequence (A.4) in £ 1 which will be a subsequence 
of (A.2). This, however, contradicts the choice of (A.2). 
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Thus the problem of solving an operator equation defined by a completely 
continuous operator is an ill-posed problem. In the main part of this book 
we shall consider linear integral operators 

Af = [ K(t, x)f(t) dt (A.6) 

with a continuous kernel K(t, x) in the domain a s t s b, a s x s b. 
Operators (A.6) are completely continuous from C[a, b] into C[a, b]. The 
proof of this fact can be found in all texts on functional analysis (see, for 
example, [28]). 

§A2 Problems Well Posed in Tihonov's Sense 

The problem of solving the operator equation 

Af= F 

is called well posed (correct) in Tihonov's sense on the set A' c A, and the 
set A' is called the set (class) of correctness, provided: 

(1) the exact solution of the problem exists for each FE JV = AA' and 
belongs to A'; 

(2) the solution belonging to A' is unique for any FE AA' = JV'; 
(3) solutions belonging to A' are stable with respect to FE JV'. 

If A' = A and JV' = JV then correctness in Tihonov's sense corresponds 
to correctness in Hadamard's sense. The meaning of Tihonov's correctness 
is that correctness can be achieved by restricting the set of solutions A to a 
class of correctness A'. 

The following lemma shows that if we narrow the set of solutions A 
to a compact set A', then it constitutes a correctness class. 

Lemma. If a continuous one-to-one operator A is defined on a compact A' c 

A, then the inverse operator A - i is continuous on the set JV' = AA'. 

PROOF. Choose an arbitrary element F O E JV' and an arbitrary sequence 
convergent to it: 

It is required to verify the convergence 

fn = A- 1Fn~A- 1Fo = Jo. 

Since Un} c A', and A' is a compact set, the limit points of the sequence 
Un} belong to A'. Letf O be such a limit point. Sincef O is a limit point, there 
exists a sequence {fnk} convergent ot it, to which there corresponds a 
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sequence { F .J convergent to F O • Therefore, approaching the limit in the 
equality 

and utilizing the continuity of the operator A, we obtain 

Afo = Fo. 

Since the operator A - 1 is unique, we have A - 1 F O = f O , which implies the 
uniqueness of the limit point of the sequence {f.J. It remains to verify 
that the whole sequence {f.J converges tof0 • Indeed, if the whole sequence 
is not convergent to fo, one could find a neighborhood of the point fo 
outside of which there would be infinitely many members of the sequence 
{f.J. Since A' is compact, this sequence possesses a limit point/~ which, 
by what was proven above, coincides with f O • This, however, contradicts 
the assumption that the selected sequence lies outside a neighborhood of 
point/0 . The lemma is thus proved. D 

Hence correctness in Tihonov's sense on a compactum A' follows from 
the conditions of the existence and uniqueness of a solution of an operator 
equation. The third condition (the stability of the solution) is automatically 
satisfied. This fact is essentially the basis for all constructive ideas for solving 
ill-posed operator equations. We shall consider one of them. 

§A3 The Regularization Method 

The regularization method was proposed by A. N. Tihonov in 1963. 
It is required to solve the operator equation 

Af = F, (A.7) 

defined by a continuous one-to-one operator A acting from A into JV: 
Let the solution of (A. 7) exist. 

We introduce a lower semicontinuous functional Q(f), which we shall 
call the stabilizer and which possesses the following three properties: 

(1) the solution of the operator equation belongs to the domain of definition 
D(Q) of functional Q(f); 

(2) on the domain of the definition functional Q(f) admits real-valued 
nonnegative values; 

(3) the sets 

Ac= {f :O.(f) Sc}, C 2 0, 

are all compact. 
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The idea of regularization is to find a solution for (A.7) as an element 
minimizing a certain functional. It is not the functional 

P = pi(Af,F) 

(this problem would be equivalent to the solution of Equation (A.7) and 
therefore would also be ill posed), but an "improved" functional 

Ry(], F) = p~(A], F) + yQ(]), ]eD(Q), (A.8) 

with regularization parameter y > 0. The problem of minimizing the functional 
{A.8) is stable, i.e., to the close functions F and F/J (where pi(F, Fa)::; b) 
there correspond close elements r and n which minimize the functionals 
Ry(f, F) and Ry(f, Fa). 

The problem is to determine a relationship between (5 and y such that the 
sequence of solutionsn of regularized problems Ry(f; Fl,) will converge as 
(5 -+ 0 to the solution of the operator equation (A. 7). The following theorem 
establishes these relations. 

Theorem A.1. Let E 1 and E 2 be metric spaces, and let there exist for F E JV 
a solution of Equation (A.7) for f E D(Q). Then if in place of an exact right­
hand side F of Equation (A. 7), approximationst F /J E E2 are known such that 
pi(F, F /J) ::; (5 and the values of parameter y are chosen in such a manner that 

y(b) -+ 0 for (5 -+ 0, 
(52 

lim (~) ::; r < oo, 
/J-+O y u 

(A.9) 

it follows that the elements n<0> minimizing the functionals Rrcalf, F 0) on 
D(Q) converge to the exact solution fas (5 -+ 0. 

PROOF. The proof of the theorem utilizes the following fact: for any fixed 
y > 0 and an arbitrary FE JV an element fY E D(Q) exists which minimizes 
the functional Ry(f, F) on D(Q). 

Let y and (5 satisfy the relation (A.9). Consider a sequence of elements 
n<0> minimizing Rrcalf, F0), and show that the convergence 

is valid. By definition we have 

f y(l,) ~f 
/J a-+O 

Rr<a>Ut0>, F0) ::; Rr<b>(f, Fa)= p~(Af, Fa)+ y((5)Q(f) 

::; ()2 + y((5)Q(f) = y(b)( Q(f) + y~;)). 

Taking into account that 

Rrcaln<a>, Fa)= p~(An<a>, Fl,)+ y(b)O.(JI<lJ>), 

t The elements J;; need not belong to the set A< 
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we conclude 

Q(f fl)) s Q(f) + y~;) ' 

p~(An<b>, Fb) s y(J)( Q(f) + y~;)). 

Since the conditions (A.9) are fulfilled, all the elements of the sequence 
n<b> for a J > 0 sufficiently small belong to a compactum Ac•, where c* = 
Q(f) + r + £, i; > 0, and their images F~(b) = Af tb> are convergent: 

p2(F~<b>, F) s pi(F~<b>, Fb) + b 

s J + JJ2 + y(J)Q(f) ~ 0. 

This implies, in view of the lemma, that their preimages 

n<o) --+ f for J --+ 0 

are also convergent, q.e.d. D 

In a Hilbert space the functional Q(f) may be chosen to be equal to 
Ill 11 2 for a linear operator A. Although the sets Ac are (only) weakly compact 
in this case, the convergence of regularized solutions-in view of the pro­
perties of Hilbert spaces-will be, as shown below, a strong one. Such a 
choice of a regularizing functional is convenient also because its domain of 
definition D(Q) coincides with the whole space E 1. However, in this case the 
conditions imposed on the parameter y are more rigid than in the case of 
Theorem A.1: y should converge to zero slower than J2• 

Thus the following theorem is valid. 

Theorem A.2. Let E 1 be a Hilbert space and Q(!) = 11]11 2• Then for y(J) 
satisfying the relations (A.9) with r = 0, the regularized elements Jt> con­
verge as J --+ 0 to the exact solution fin the metric of the space E 1 . 

PROOF. It is known from the geometry of Hilbert spaces that the sphere 
II f 11 2 s c is a weak compact um and that from the properties of weak con­
vergence of elements f; to the element f and convergence of the norms 
II J;il to II f II there follows the strong convergence 

llf; -fll ~0. 

Moreover it follows from the weak convergence f; --+ f that 

11111 s limllfdl- (A.10) 
i---+oo 

Utilizing these properties of Hilbert spaces, we shall now prove the theorem. 
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First we note that for a weak convergence in the space E 1 the preceding 
theorem is valid: n<01 converges weakly to fas <J -t 0. Therefore in view of 
(A.10) the inequality 

is valid. On the other hand, taking into account that Q(f) = II f 11 2 and that 
r = 0, we obtain 

limllft1ll 2 ~ lim (11Jll 2 + <J(:)) = llf 11 2 -
o-+o o-+O Y u 

Hence the convergence of the norms is valid: 

11n<01 11~llfll, 

and along with it the validity of weak convergence implies, in view of the 
properties of Hilbert spaces, the strong convergence 

lln<01 -fll ~0, 

q.e.d. D 

The theorems presented above are basic in regularization theory. Using 
these theorems the feasibility of solving ill-posed problems is established. 
However, for solving practical problems the question of convergence of a 
sequence of regularized solutions is not the most topical. Usually the right­
hand side of an operator equation is defined with finite accuracy <J, and the 
problem is to determine the value of the constant of regularization y(D) 
which will assure the best approximation to the desired solution. In this 
situation the assertions of Theorems A.1 and A.2, in which the value of y 
is determined only up to a constant r (and only for <J sufficiently small), 
are obviously insufficient. 

At present there are no reliable methods for choosing the constant of 
regularization. However, there are numerous examples where for a suitable 
choice of constant y sufficiently good approximations to solutions of ill­
posed problems can be obtained. 

A detailed treatment of the theory of ill-posed problems is given in the 
monograph [56]. 



Chapter 2 

Methods of Expected-Risk Minimization 

§1 Two Approaches to Expected-Risk Minimization 

There are two approaches to solving the problem of minimizing the expected 
risk 

/(a) = f Q(z, a)P(z) dz 

on the basis of empirical data 

(2.1) 

(2.2) 

The first approach is connected with the idea of constructing, from the 
sample (2.2) and the function Q(z, a), an empirical functional 

I emp(a) = <l>(Q(z 1, a), ... , Q(z,, a); z 1, ... , z1), (2.3) 

i.e., a functional which does not depend on the unknown probability density 
P(z). Unlike (2.1), the functional (2.3) can be minimized. We choose its 
minimum point as that of the initial functional (2.1). This is called the 
method of minimizing empirical functionals. 

The basic problem encountered in studying this method is to determine 
the error size for each type of approximation (2.3) and to obtain an approxi­
mation for the functional (2.1) in terms of the empirical functional (2.3) so as 
to assure the determination of a function which will yield the value of the 
functional (2.1) close to the minimum. 

The second approach connects the determination of the minimum of 
the functional (2.1) with the use of the iterative procedure 

a(i) = a(i - 1) + y(i)S(i, zJ (2.4) 

27 
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According to this procedure the improvement of the vector of parameters 
a at the ith step is determined by the size y(i) and the direction S(i, z;) of the 
ith step. It turns out that if one chooses the direction S(i, z;) in such a manner 
that at each step the inequalityt 

(Val(a(i - l)W MS(i, z) 2::: b > 0 (2.5) 

is satisfied, where Val(a) is the gradient with respect to a of the functional 
(2.1), MS(i, z) is the mathematical expectation of the direction of the ith 

step, then under some additional conditions which restrict the growth of 
the vector S(i, z) (for example, by means of the function I z I) and that of the 
size of the step y(i) (by assuming that Ir; 1 y2(i) < oo but at the same time 
Ir;, 1 y(i) = oo), the procedure (2.4) and the random sample z1 , ... , z1, ••• 

generate a sequence a(i) which converges to the vector of parameters a0 , 

yielding the minimum of the functional (2.1) ( cf. [ 45]). 

The iterative procedure (2.4) is a development of gradient methods of search for 
minima. Indeed, if the density P(z) were known, then one could under certain conditions 
compute the gradient 

VJ(r.<) = f V,Q(z, r.<)P(z) dz. (2.6) 

Then the descent procedure would be the following rule: 

r.<(i) = r.<(i - 1) - y(i)V,/(r.<(i - 1)). (2.7) 

The procedure (2.4) differs from (2.7) in that at each step, it chooses a direction of 
motion that is "on the average, approximately the same as along the gradient" rather 
than the direction of the gradient itself. The inequality (2.5) formalizes the expression 
"on the average, approximately in the same direction". 

Thus the basic result of the theory of iterative methods is that, even under 
quite general conditions on the direction of motion and the size of a step, 
the iterative procedures (2.4) achieve their purpose. However, due to the 
very universality of the iterative procedure, the determination of the value of 
a functional close to the minimal is assured only asymptotically. For solving 
problems of minimizing the expected risk on the basis of a sample of fixed 
size, iterative methods are of little use. Therefore we will not consider these 
methods. Solutions of the problem of minimizing the functional (2.1) on 
the basis of empirical data (2.2) will therefore be associated with the con­
struction of empirical functional (2.3) and its subsequent minimization. 

t Here and below, a vector is assumed to be a column vector and T denotes transposition. 
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§2 The Problem of Large Deviations 

Our purpose is to construct a method which will assure with a given prob­
ability the determination of a function yielding the value of functional 

I(a) = f Q(z, a)P(z) dz 

which is close to minimal (where the density P(z) is unknown but the sample 
z i, ... , z1 is given). 

Without utilizing prior information this problem cannot be solved. 
Indeed, consider one of the simplest problems of estimating relationships 
based on empirical data. It is required to minimize the functional 

I'(r:t.) = f (t - r:1.)2 P(t) dt, (2.8) 

provided P(t) is unknown (it is known only that a variance exists) but a 
random independent sample t 1, ••• , t1 is given. The minimum of the functional 
(2.8) is attained at 

r:t. = f tP(t) dt. (2.9) 

Thus the problem is to find for an unknown density P(t) a method which 
will assure, with a given probability, a sufficiently accurate estimator of 
the mean based on a sample of a fixed size /. 

It turns out that without a priori information on the density P(t) one 
cannot obtain a guaranteed estimator of the mean. Indeed, let the random 
variable t take on the two values O and K, and let P(t = 0) = 1 - i and 
P(t = K) = £. Assume now that s is so small that with a high probability 
1 - J the random independent sample t 1 , ... , t1 consists solely of zeros and 
hence the value of the empirical mean 

1 I 

'.Xemp = -[ Lt; 
i = 1 

is zero. (The probability of this event is (1 - s)1 = 1 - J.) On the other hand, 
the mathematical expectation of the random variable t equals 

Mt= 0(1 - i;) + Ks= Ks, 

and depending on the value of K may admit arbitrary values including 
large ones (for example, when K = 1/i2). Thus in our example, in spite of 
the fact that almost any (random) value of the empirical mean based on a 
sample of size l is zero, one can come to no reliable conclusions concerning 
the value of the mathematical expectation. This is because the product Ks 
may be large even for smalls. In other words the distribution of the random 
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variable tis such that a large value K is concentrated on a "small measure" 
e. Such situations are termed in statistics "large deviations" of random 
variables. 

When, then, can one reach a reliable conclusion about the value of the 
mathematical expectation, based on the value of the empirical mean? The 
answer to this question follows from Chebyshev's inequality. According to 
this inequality the probability of deviation of a random variable t from its 
expected value Mt is bounded by 

1 
P{lt - Mt! 2".: ax} s 2 , 

X 

where a2 is the variance of the variable t. Consider now the random variables 

1 I 

~=,i~/i• 
where t 1, .•• , t1 is a random independent sample of size l. Observe that 

M~ = Mt, 
a 

a{= J"i. 
Chebyshev's inequality for this variable becomes 

(2.10) 

We write (2.10) in a different form. Denote the right-hand side by r,, i.e., 

1/x2 = r,, or x = 1/Jry. In this notation our assertion is that with probability 
1 - r, the inequalities 

1 I IT 1 I IT 

-/ It; - r,:_ <Mt< -[ Lt;+ r,:_ 
i = 1 v Ir, ; = 1 v Ir, 

(2.11) 

are valid. (This assertion is completely equivalent to (2.10).) 
If the variance a2 of the random variable t were known, the inequalities 

(2.11) would determine the size of the confidence interval for the mathematical 
expectation Mt and thus provide a guaranteed estimator of the mean, i.e., 
an estimator which is valid with a given probability. Therefore in order to 
obtain a guaranteed estimator of the mean based on the value of the empirical 
mean it is sufficient to know either an absolute bound ,;bs on the variance 

(2.12) 

or-provided the true mean value is a positive quantity-a bound on the 
relative value of the variance 

(2.13) 
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Indeed, (2.11) and (2.12) imply that the knowledge of an absolute bound on 
the variance immediately leads to the construction of a guaranteed estimator 
of the form 

1 I T 1 I T 
- Lt; - ~<Mt < - It;+~-
l i;l fa l i;l fa (2.14) 

Also (2.11) and (2.13) imply that the knowledge of a bound on the relative 
variance leads for l > r;eilYf to the construction of a guaranteed estimator 
of the form 

1 I 

I-~ t; 
,-1 <Mt< 

l + 'rel 

fa 

1 I 

- Iti 
/ i; 1 

l _ 'rel 

fa 

(2.15) 

Now let the random variable t be nonnegative (this is the case studied in 
this book, since t, = Q(z, a) = (y - F(x, ex))2). Then a fortiori Mt > 0, 
and hence one can utilize information on the bound of the relative variance. 

To obtain confidence intervals (2.14) and (2.15), Chebyshev's inequality 
was utilized. This inequality is valid for arbitrary distributions, with finite 
variances and therefore for some distributions it may be very coarse. In 
particular, if a distribution is such that the variable tis positive and is bounded 
by r (in this case a s r/2), then a more refined bound than Chebyshev's 
inequality is valid (Hoeffding inequality): 

P{lf J/i -Mtl ~ x} S 2e- 2 "
211'

2
• (2.16) 

Using (2.16), a more precise guaranteed estimator of the value of the mathe­
matical expectation may be derived. 

In order to be able to utilize the inequality (2.16), we shall require, instead 
of prior knowledge of the absolute bound on the variance of a positive 
random variable, information about the absolute bound r of the random 
variable t itself (when such a bound exists). Thus in order to be able to esti­
mate the mean based on the value of an empirical mean, it is sufficient to 
know either the absolute bound r on the random variable t or a bound 
'rel on the relative variance of the random variable t. 

In this book we shall study the distribution of a collection of random 
variables 

t, = Q(z, ex) = (y - F(x, ex))2, 

depending on parameter ex, rather than a single random variable t. To obtain 
uniformly guaranteed estimators of the mean values of these variables a 
uniform characteristic of large deviations for the variables will be required. 

A possible deviation on the set t, = Q(z, ex) will be characterized by an 
absolute bound on the loss function 

'abs = sup Q(z, ex) (2.17) 
a, z 
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or by a bound on the relative variance 

[ D{ Q(z, oc)} ] 112 MQ2(z, oc) 1 
r,e1 = s~p (MQ(z, oc))2 = s~p (MQ(z, oc))2 - . t (2.18) 

Below it will be shown that if at least one of these characteristics of deviations 
(an absolute or relative bound) is known, then based on a random sample 
of fixed size I one can provide a guaranteed estimator of the value of the 
expected risk, and under some additional restriction the problem of mini­
mizing the expected risk can be solved. 

Remark. In this section we have used the Chebyshev's inequality for the 
second central moment. The above reasoning can be made on the basis of 
the Chebyshev's inequality for an absolute central moment of any order p > 1 
(even if pis not integer). In this case the possible deviations are characterized 
by 

P I Q(z, oc) IP 
s~p M MQ(z, oc) - 1 = •v· 

§3 Prior Information in Problems of Estimating 
Dependences on the Basis of Empirical Data 

Thus to obtain a guaranteed solution for the problem of minimizing the 
expected risk on the basis of a limited amount of empirical data, it is necessary 
to utilize prior information concerning possible large deviations of random 
variables t~ = Q(z, oc). The size of possible deviations is characterized 
by either an absolute bound on the loss (2.17) or a bound on the relative 
variance (2.18). How bothersome is it to obtain prior information about 
absolute or relative bounds for the three problems of estimating dependences 
discussed in this book: pattern recognition, regression estimation, and 
interpretation of results of indirect experiments? 

A remarkable property of the pattern recognition problem is that the 
absolute value of the loss is bounded here by 1. Indeed, according to the 
formulation of the recognition problem, the loss function 

Q(z, oc) = (w - F(x, oc))2 

is either O or 1. Thus the prior absolute bound on the value of the loss exists 
trivially in this case. 

In problems of regression estimation or interpretation of indirect experi­
ments the existence of an absolute bound on the value of the loss is far from 
trivial. More often than not, no such bound exists. This may happen even 

t The symbol D is used here and below to denote the variance operator. 



§3 Prior Information in Estimation 33 

in the case of estimating linear regression. Indeed, the loss function in this 
case equals 

Q(z, ct) = (y - F(x, ct))2, 

and if there are no restrictions on the value of parameters ct, then one can 
find-in the class of linear functions F(x, ct)-a function such that the value 
of the loss may be arbitrarily large even if the variables y and x are bounded. 
Therefore for solving problems of regression estimation and interpretation 
of indirect experiments we shall utilize information about a bound on the 
relative variance of losses rather than an absolute bound on possible losses. 

What then is the relation between this prior information and the prior 
information usually utilized in problems of estimating dependencies? 
Fix a function F(x, ct*) in Q(z, ct) = (y - F(x, a))2. Then the probability 
density P(x, y) generates a random variable 

t~. = y - F(x, ct*), 

and hence a bound on the relative variance is the prior information on the 
probability density of random variables (t:. )2 • 

If the distribution oft:. is Gaussian for any ct*, then a bound on the relative 
variance of losses is equal to 

rrel = 
M(t:)4 _ l 

(M(t:)2)2 

1 Joo ( ')4 { (t: - µ)2} d , r,: ta exp - 2 2 ta 

('" :· { ' a '} r 1 - fi _l_ J (t:)2 exp - (ta - f) dt: 
foa -oo 2a 

independently of the parameters of the distribution. If the distribution of 
t~. is uniform for any ct*, then the bound is 

1 Jb(')4d' --,;=-; a ta ta {4 

(b ~ a J.'c,;i' a,; r 1 - ..j 5 - joJ, 
rrel = sup 

a,b 

Finally, if the distribution of ta• for any ct* is Laplacian ( double-exponential) 
then the bound is 

1 Joo ( , )4 { I t~ - µ I } d , u -00 ta exp - -.1- ta - 1 = 5 

( 1 Joo { It' _ µ I } )2 fi. 
2.1 _ 

00 
(t:)2 exp - T dt~ 

rrel = 

This bound does not depend on the parameters of the distributions. 
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Prior information on the distribution in terms of a bound on the relative 
variance of losses is the minimal prior information which is utilized in this 
book. 

Another kind of prior information which is usually utilized for the esti­
mation of functional dependence (see Chapters 3, 4, and 5) is the type of 
probability density of the random variable t~· = y - F(x, ix*) (for example, 
the Gaussian law or Laplacian law). The necessity of providing this prior 
information is a much stronger requirement than the provision of a bound 
on the relative variance of losses. Indeed the assumption that •rel < 2.5 
may be satisfied for Gaussian, uniform, Laplace, and many other distributions, 
while the assumption of a specific form of distribution allows us to obtain 
results which are guaranteed only for this particular type of distribution. 

§4 Two Procedures for Minimizing the Expected Risk 

In this section we shall assume that an absolute bound on the value of possible 
losses is given: 

sup Q(z, ix) = "abs· 
z,a 

Our purpose, based on a random independent sample 

(2.19) 

is to construct an empirical functional 

whose minimum point ix = ix* yields (with a given probability 1 - 17) a 
value for the expected-risk functional 

/(ix) = f Q(z, ix)P(z) dz (2.20) 

close to the minimal one. 
There is a "natural" method for constructing such a functional. One 

estimates, from the sample (2.19), the probability density F(z), and then 
substitutes into (2.20) the estimated density P(z) in place of P(z). The func­
tional obtained does not depend on the unknown density and at least in 
principle may be minimized. 

It seems that the problem of minimizing the expected risk on the basis of 
empirical data is reduced to an estimation of the probability density. In 
turn, the problem of estimating the probability density from a random 
independent sample is a central problem of mathematical statistics. Thus a 
solution to a particular problem of statistics, the minimization of the expected 
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risk on the basis of empirical data, depends on a solution to its central 
problem. 

In the next section we shall discuss in detail the formulation of the problem 
of the estimation of a density; in this section we shall establish two distinct 
procedures which allow us to solve the problem of minimizing the expected 
risk on the basis of empirical data. One of these procedures is indeed based 
on the fact that the estimated density f\z) approaches the actual one, 
while the other procedure has a completely different theoretical basis. 

Thus let O s Q(z, o:) s r. Consider two types of empirical functionals: 
one of the type 

/~mp(o:) = f Q(z, o:)?(z) dz, (2.21) 

where P(z) is an empirical density estimated from the sample z 1, ... , z1, 

and the other of the type 

(2.22) 

The functional (2.22) is usually called a functional of empirical risk. 
Formally a functional of empirical risk is a particular case of (2.21). 

Indeed, if for the approximating density in (2.21) one chooses the density 

s 1 I 

P,(z) = I ;~1 n,(z - z;), (2.23) 

where, for example 

(n is the dimension of the vector z), then as s - 0 it can be shown that 
/~mp(o:) - /em/o:). (Here we utilize the relationship lim,-o n,(z) = b(z).) 
However, it makes sense to single out the functional (2.22), since the success 
of minimizing the expected risk by minimizing (2.21) and by minimizing 
(2.22) is determined by different factors. In the first case the success is due to 
the proximity between the. estimated density and the actual one, while in 
the second case the density P,(z) for smalls does not approach P(z). Neverthe­
less under certain conditions the minimum point for a functional of empirical 
risk yields a value of the functional (2.20) which is close to the minimal. 

Indeed, let P(z) be close to P(z), i.e., 

f IP(z) - P(z)ldz s s, 

and let the minimum of the empirical functional be attained at o: = o:emp, 
while the minimum of the expected risk is attained at o: = o:0 • Then the 
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following chain of inequalities is valid 

J(rx.emp) - J(rx.o) ~ J(rx.emp) - J~m/rx.emp) + J~m/rx.o) - J(rx.o) 

~ J Q(z, rx.emp)IP(z) - .P(z)ldz + J Q(z, rx.0 )IP(z) - .P(z)jdz 

which implies the proximity between the minima of the functionals (2.20) 
and (2.21). 

We now show that the approximating density (2.23) does not approach 
the actual one as e-+ 0. Let P(z) be a bounded function. Subdivide the set 
Z into two subsets: a set Z of a small measure containing all the sample 
elements, and the complementary set Z\Z. 

It is easy to verify that for e sufficiently small a set Z can be chosen so that 

f IP(z) - P,(z)ldz ~ f P(z)dz + f P,(z)dz ~ 2. 
Z Z\Z Z 

Thus success in minimizing the expected risk (2.20) using the method of 
minimizing a functional of empirical risk (2.22) is determined not by proximity 
between densities but by some other mechanism. Below in Section 6 it will 
be shown that this mechanism is based on the property of uniform conver­
gence of empirical means to mathematical expectations over some set of 
events. 

§5 The Problem of Estimating the Probability Density 

Problems which are solved in probability theory on the one hand and mathe­
matical statistics on the other are interrelated as direct and inverse. 

Problems in probability theory can be described by the following setup: 
the composition of a general population and the probability distribution 
law are known. It is required for a given scheme of experiments to estimate 
the probabilities of outcomes of the experiment. 

Mathematical statistics solves inverse problems: based on the results of 
an experiment, it is required to determine properties of the distribution 
law. An "exhaustive" characteristic of a distribution law is the probability 
density (if the latter exists). 

Thus the problem of estimating the probability density from a sample is 
a central problem of mathematical statistics. In this section we shall verify 
that the problem of density estimation is usually an ill-posed one. 

Let a sample ti, ... , t1 be given, and a class of functions to which the 
probability density P(t) belongs to broadly defined (i.e., it is known only 
that P(t) belongs to continuous functions). It is required to estimate the 
probability density. 
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First consider the one-dimensional case. By definition th~ probability 
density P(t) is related to the cumulative distribution function F(z) = P{t s;; z} 
as follows: 

or equivalently 

where 

J_00

00
0(z - t)P(t)dt = F(z), 

e(x) = {1 for x ~ 0, 
0 for X < 0. 

(2.24) 

For continuous densities there is a unique solution of the integral equation 
(2.24). 

Now define an empirical cumulative distribution function: F1(z) = k/1 
if z exceeds k terms of the sample z 1, ... , z1• The basic theorem of mathema­
tical statistics-the Glivenko-Cantelli theorem-asserts that as the sample 
size I increases, the empirical cumulative distribution function uniformly 
approaches the actual one. 

Theorem (Glivenko-Cantelli). Let F(z) be a cumulative distribution .function 
of a random variable z, and Fi(z) be the empirical cumulative distribution 
.function. Then 

We shall not prove this theorem here. In Chapter 6 a theorem on uniform 
convergence of relative frequencies of occurences of events to their prob­
abilities is proved. The Glivenko-Cantelli theorem follows from it as a 
particular case. 

We now return to the integral equation (2.24) whose solution determines 
the probability density. We seek an approximate solution of this equation 
in those situations when instead of a cumulative distribution function 
F(z) an empirical cumulative distribution function Fi(z) is known from a 
finite sample. In Chapter 9, utilizing a bound on the rate of uniform conver­
gence of Fi(z) to F(z), we shall show that there exists a procedure for obtaining 
approximate solutions of Equation (2.24) such that as I increases the sequence 
of solutions tends to the required probability density. 

Thus it is possible in principle to estimate a continuous probability 
density. However, estimating a density is associated with the solution of the 
ill-posed problem of numerical differentiation of (2.24) under conditions 
where the right-hand side of the equation is imprecisely defined. 
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Actually, in the case of estimating a probability density it is known a 
priori that a solution for the integral equation (2.24) is not an arbitrary 
continuous function but rather a function P(t) which takes on nonnegative 
values only and satisfies the condition 

f _00

00 
P(t) dt = 1. 

However, this prior information is not sufficient for a problem of solving 
integral equation (2.24) to become well posed. 

Analogously to the one-dimensional case, the problem of estimating a multi­
dimensional density can be posed. For this purpose we write the integral equation which 
connects a multidimensional density with a multidimensional cumulative distribution 
function: 

fz' s=" 
_

00 
• • • _

00
P(t1, ... , t")dt 1 · • ·dt" = P(t 1 $ z1 ; ... ; t~ $ z"), (2.25) 

and define a multidimensional empirical cumulative distribution function by 

1 n k 
Fi(z , ... , z ) = /' (2.26) 

where k is the number of elements of the sample z 1, ••• , z1 which fall into the region 
t 1 $ z 1, •.. , t" $ z". 

It turns out that a multivariate analog of the Glivenko-Cantelli theorem is valid: 
as the sample size increases the empirical cumulative distribution function converges 
uniformly to the population cumulative distribution function. The validity of the gener­
alized Glivenko-Cantelli theorem also follows from the general theory of uniform 
convergence of frequencies to the corresponding probabilities discussed in Chapter 6. 
Using this theorem analogously to the one-dimensional case, one establishes the possi­
bility-in principle-of estimating the multidimensional density from empirical data. 

Thus the problem of estimating the density in the class of continuous 
functions is reduced to an ill-posed problem of numerical differentiation of a 
cumulative distribution function.t 

Observe that the formulation of the problem of numerical differentiation 
presented here differs from the problem of numerical differentiation con­
sidered in Example 3 of Chapter 1. There an ill-posed measurement problem 
was considered, i.e., formulations of ill-posed problems for which the errors 
were results of measurements (observations) and the values of the right-hand 
side of the integral equation (2.24) were defined statistically independently 
at I points. In the present case the difference between the exact value of the 

t There are nonparametric methods for estimating the density (e.g., Parzen's method) which 
seem to avoid the necessity of solving ill-posed problems. However, as will be shown in Chapter 
9, problems which arise in the actual realization of these methods are equivalent to ill-posed 
problems of numerical differentiation. 
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right-hand side and the function obtained as a result of observations is a 
random function. 

Thus the problem of estimating the probability density is more general 
than the interpretation of results of indirect experiments. Hence it would 
seem unreasonable to solve the problem of minimizing the expected risk 
on the basis of empirical data by means of estimating a probability density. 
(Quite the reverse, in Chapter 9 we shall consider the problem of density 
estimation as a problem of minimizing expected risk based on empirical 
data.) 

However, some degenerate cases are possible where there is available 
substantial prior information about the density to be estimated, so that the 
problem ceases to be ill posed. For example, the problem of density estimation 
may turn out to be well posed if the density is known up to a finite number of 
parameters. Methods of estimation of a density defined up to a finite number 
of parameters are called methods of parametric statistics. They form a special 
class of methods which are significantly different from the general methods 
of density estimation. (The latter are sometimes called methods of non­
parametric statistics.) 

§6 Uniform Proximity Between Empirical Means and 
Mathematical Expectations 

Above it was established that there exist two procedures for minimizing 
the expected risk on the basis of empirical data. 

The first is connected with minimization of an empirical functional 
constructed from the estimated density. However, the intermediate problem­
the density estimation-is in general more complex than the problem of 
risk minimization based on empirical data. Therefore it is generally un­
reasonable to solve the problem of minimizing the expected risk by means of 
density estimation. 

Here we shall consider the second procedure. We shall minimize the 
expected risk 

J(rx) = J Q(z, rx)P(z) dz 

on the basis of the data 

by minimizing the functional of the empirical risk, 
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For each fixed et = et* the functional !(et*) determines the mathematical 
expectation for a random variable ta• = Q(z, et*), while the functional 
I.m/oc*) is the empirical (arithmetic) mean of this random variable. 

According to the classical theorems of probability theory, in sufficiently 
general cases the empirical mean of the random variable ta• converges as l 
increases to the mathematical expectation of this random variable. However, 
these theorems do not imply that the value of parameter Ctemp which yields 
the minimum of the empirical risk I em/ et) will also yield a value of the expected 
risk /(oc) which is close to the minimal one. This is an important assertion, 
and we shall discuss it in greater detail. 

Assume for concreteness that the parameter et is a scalar in the interval 
[O, 1]. A value /{et) corresponds to each IX. Consider the function /(1X). Along 
with this function consider the function I.m/et) which for each IX determines 
the empirical mean obtained on the basis of a sample of size l (Figure 2). 

The method of minimizing empirical risk proposes to decide about the 
minimum of the function /(1X) on the basis of the minimum of the function 
/ 0 mp{1X). In order to be able to do this it is sufficient that the curve I.m/et) 
be located entirely within a x-tube of the curve /(1X). A large deviation at 
even one point (as in Figure 2) may result in a point of large deviation 
of I.m/et) being chosen as the minimizing point of /(et). In this case the mini­
mum of I.m/1X) does not in any way characterize the minimum of !(et). If, 
however, the function / 0 mp{et) approximates /(1X) uniformly in IX with precision 
x, then the minimum of Iemp(1X) deviates from the minimum of /(1X) by an 
amount not exceeding 2u. Formally this means that we are interested not 
in the classical condition that for any IX and K the relation 

P{11(1X) - I.mp{1X)I > x} ~ 0 (2.27) 

is valid, but in a more stringent condition that for any x the relation 

P{s~p ll(et) - I 0 m/et)I > X} ~ 0 (2.28) 

holds. When (2.28) is satisfied we say that a uniform convergence in the 
parameter et of empirical means to their mathematical expectation occurs. 

Figure 2 
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The second procedure for minimizing risk is connected with uniform 
convergence in parameter !Y. of empirical means to their mathematical 
expectations. However, for our purposes-the minimization of expected 
risk based on a sample of fixed size-the simple fact of uniform convergence 
is not sufficient. In order to be able, with a given probability, to guarantee 
obtaining solutions which yield a value of the functional close to the minimal 
one, it is necessary to know a bound on the rate of uniform convergence. 
Indeed the fulfillment of the inequality 

P{ s~p I l(!Y.) - I emp{!Y.) I ~ X} < 11([, x), 

lim 11(1, x) = 0 
1-00 

is equivalent to the following assertion: with probability 1 - 11(1,x) the 
bound 

(2.29) 

is valid simultaneously for all !Y.. If, however 11(1, x) is a decreasing function 
in l and x, then for the given confidence level 1 - 11, 

11(1,x) = 11, (2.30) 

the size of the confidence interval x = x(I, 11) obtained as the solution of 
Equation (2.30) decreases with increasing l. Consequently for I large the 
point !Y.emp of the minimum of empirical risk will yield a value of the expected 
risk close to the minimal one. For any fixed lone can assert that with prob­
ability 1 - 11 the point !Y.emp yields a value of the expected risk belonging to 
the interval 

§7 A Generalization of the Glivenko-Cantelli 
Theorem and the Problem of Pattern 
Recognition 

In this section we shall consider the particular case where the loss function Q(z, e<) 
of the functional 

/(e<) = f Q(z, e<)P(z) dz (2.31) 

admits only the two values, 0 and 1. As we already noted, the problem of pattern recogni­
tion reduces to this case. 

Denote by S(e<*) the set of vectors z for which the given loss function Q(z, e<*) admits 
the value 1. In other words S(e<*) is the event S(e<*) = {z: Q(z, e<*) = 1 }. For a fixed 
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ex = ex* the functional (2.31) determines the probability that the vector z belongs to the 
set S(ex*), i.e., the probability of the event S(ex*). 

Correspondingly, for each fixed ex = ex* the functional of empirical risk 

1 I 

/ 0mp(ex*) = I J
1 
Q(zi, ex*) (2.32) 

determines the frequency of the event S(ex*) obtained from the sample zi, ... , z1 of 
size I. In order to single out this important particular case we shall denote the functional 
(2.31) by P(ex) and the functional (2.32) by v(ex). In this notation the condition (2.28) 
will be written in the form 

This indicates a uniform convergence of frequencies of occurrence of events to their 
probabilities over the class of events S(ex). In these terms the assertion of the Glivenko­
Cantelli theorem that the empirical cumulative distribution function uniformly con­
verges to the population cumulative distribution function is an assertion about the 
existence of the uniform convergence of frequencies of events to their probabilities for a 
special system of events. 

Indeed, consider the line z and a set of rays z ~ ex. This set of rays defines a system of 
events S1(ex) (the event S1(ex*) is that the point z belongs to the ray z ~ ex*). In these 
terms the assertion of the Glivenko-Cantelli theorem is as follows: "a uniform con­
vergence of frequencies of events to their probabilities is valid over a class of events 
S1(ex) ". 

Consider now the following class of events S"(ex): a vector z = (z1, ... , z"? belongs 
to the event S"(ex*) (here ex* =ex!, ... , ex:?) if simultaneously for all n coordinates the 
inequalities z1 ~ ex!, ... , z" ~ ex: are fulfilled. The set of all events S"(ex*) is the class 
S"(ex). In these terms the multivariate analog of the Glivenko-Cantelli lemma is the 
assertion of uniform convergence of frequencies of occurrences of events to their 
probabilities over the class of events S"(ex). 

Thus the condition of uniform convergence of frequencies of occurrences of events to 
their probabilities for various systems of events which occurs in the study of the pattern 
recognition problem leads to a generalization of the Glivenko-Cantelli lemma. 

§8 Remarks on Two Procedures for Minimizing 
Expected Risk on the Basis of Empirical Data 

Thus there exist two methods for minimizing the expected risk on the basis 
of empirical data. One is connected with the feasibility of estimating the 
probability density, and the other with the possibility of assuring a uniform 
convergence of empirical means to their mathematical expectations. 

It makes sense to estimate the density only in the trivial case when sub­
stantial prior information is given. If the prior information is limited, then 
the solution of the intermediate problem-estimation of the density­
turns out to be no simpler than the problem of minimizing the expected 
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risk. In this case the possibility of density estimation is based on the Glivenko­
Cantelli theorem, i.e., on the existence of uniform convergence of frequencies 
of events to their respective probabilities for a special class of events. 

The second procedure for risk minimization is directly based on the 
existence of uniform convergence of empirical means to their mathematical 
expectations. 

Below, in Chapters 6-7, it will be shown that sufficient conditions for the 
existence of uniform convergence of the means to mathematical expectations 
are determined by special features of the loss functions. For the problem of 
estimating dependences the requirement is that the class in which estimation 
is carried out should be a rather narrow one. 

The existence of two procedures of minimizing the expected risk reflects 
the presence of conditions of two types under which minimization of the 
expected risk based on empirical data is feasible in principle. Conditions of 
the first type connect the feasibility of risk minimization with the information 
available about the class of densities to which the estimated density belongs. 
In those cases when the density can be estimated one can successfully 
minimize the expected risk, regardless of the loss function (provided it does 
not admit large deviations). Conditions of the second type impose restrictions 
on the properties of loss functions and then independently of the structure 
of P(z) so that it is possible to successfully minimize the expected risk. 

When solving problems of estimating dependences on the basis of empirical 
data under the condition that the loss function does not admit large devia­
tions, the difference between these two approaches is reflected in the set-ups 
of possible assertions: 

Assertions of the first type. If the nature of the problem is well diagnosed 
(a "narrow" class of densities {P(z)} to which the required density belongs is 
found), then independently of the special features of the class of functions 
in which the estimation takes place, the minimum of the empirical functional 
will be close to the minimum of the expected risk. 

Assertions of the second type. If the estimation is taking place in a suffi­
ciently "narrow" class of functions F(x, ix), then regardless of the nature of 
the problem (i.e., the density P(z)), the minimum of the empirical risk will 
be close to the minimum of the expected risk. 

It should be noted that formally there is a certain advantage to utilizing 
algorithms for which assertions of the second type are feasible. Indeed, 
assertions of the first type require that: 

(1) the class densities in which estimation is carried out be sufficiently narrow, 
and 

(2) the required density belong to this class. 

Assertions of the second type involve only one requirement: that the class of 
functions in which estimation takes place be sufficiently narrow. In practice, 
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it is not difficult to control the width of the class of densities as well as that of 
the functions. 

the problem of whether the estimated density belongs to a given class 
is always open. 

The main thrust of this book is to determine conditions of uniform 
convergence and utilize these for the estimation of dependences based on 
samples of a fixed size. Utilizing bounds on the rate of uniform convergence 
of means to their mathematical expectations, it becomes possible not only to 
establish the method of minimizing empirical risk, but also to construct a 
new method for minimizing risk (the method of structural minimization) 
which allows us under conditions of limited empirical data to arrive at a 
solution which yields the smallest guaranteed value of the expected risk. 

Chapters 6-10 are devoted to a description of the methods of risk mini­
mization utilizing procedures of uniform convergence. However, before 
studying this procedure systematically we shall consider classical methods of 
risk minimization based on the idea of minimizing a functional constructed 
by means of the estimated density. As was mentioned above, in exceptional 
cases (when the density is known up to a finite number of parameters) the 
estimation problem may be stable and its solution -as well as that of 
estimation of dependences from empirical data-may be successfully 
achieved using methods of parametric statistics. In Chapter 3 the application 
of parametric statistics to solutions of problems of pattern recognition 
is discussed, and in Chapters 4 and 5 these methods are applied to regression 
estimation. 



Chapter 3 

Methods of Parametric Statistics for the 
Pattern Recognition Problem 

§1 The Pattern Recognition Problem 

It is required to minimize the functional 

/(('J.) = J (y - F(x, ('J.)) 2 P(x, y) dx dy (3.1) 

under the conditions when the density P(x, y) is unknown but the sample 

X1,Y1; ... ;x,,y, (3.2) 

is given, based on random independent trials according to P(x, y). 
We shall solve this problem applying the following scheme: 

(1) Estimate the density from the sample (3.2). Denote the estimated 
density by P(x, y). 

(2) Construct the functional 

/emp(('J.) = J (y - F(x, ('J.))2P(x, y) dx dy (3.3) 

using the estimated density. 
(3) Obtain the minimum of this functional, and declare the function F(x, ('J.emp) 

which yields the minimum of (3.3) to be the solution of the original 
minimization problem (3.1 ). 

As was pointed out in Chapter 2, this scheme can be successfully carried 
out only if substantial prior information concerning the density P(x, y) 
is available (namely, when the density is completely specified up to its 
parameters). In other words, success can be achieved if the model of the 

45 
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estimated density is known. The model of the required density turns out to 
be quite different for different problems of estimating dependences. 

In this chapter we shall consider the pattern recognition problem. A 
characteristic feature of this problem is that the unknown probability 
densityt P(x, w) can be represented as a union of two densities P(x I w = 0) 
and P(xlw = 1) defined on different subspaces X, 0 and X, 1: 

P(x, w) = P(xlw = 0)P(w = 0)(1 - w) 

+ P(xlw = l)P(w = l)w. (3.4) 

The set of pairs x, w consists of two nonoverlapping subspaces of dimen­
sionality n, namely 

X c E., w = 0 and X c E., w = 1. 

The formula (3.4) asserts that on the first subspace the density is equal to 
P(xlw = 0)P(w = 0), and on the second P(xlw = l)P(w = 1). In formula 
(34)P(xlw = O)andP(xlw = l)arethecomponentsoftheunion;P(w = 0) 
and P(w = 1) = 1 - P(w = 0) are the proportions. 

Let the density P(x, w) be known up to a finite number m1 + m2 + 1 of 
parameters 

P(x,w) = Pp(xlw = 0)P(w = 0)(1 - w) 

+ Py(xlw = l)P(w = l)w, (3.5) 

where f3 is an unknown m1-dimensional vector of parameters of density 
P p(x I w = 0), y is an unknown mi-dimensional vector of parameters of the 
density P y(x I w = 1 ), and P( w = 0) is a scalar parameter. 

Now in order to implement our scheme it is necessary to be able to solve 
two problems: 

(1) to find the minimum of functional (3.3) for a given density P(x, w); 
(2) based on the sample (3.2), to estimate the density of P(x, w). 

The first problem is referred to in statistics as the problem of discriminant 
analysis; the second is called the problem of estimating the density in a para­
metric class of functions. We now consider these two problems. 

§2 Discriminant Analysis 

It is required to obtain the minimum of the functional (3.3) for a given density 
(given components of union P(x I w = 0), P(x I w = 1) and proportions 
P(w = 0), P(w = 1) = 1 - P(w = 0)). 

First consider the simple case: the class of possible decision rules F(x, ix) 
is in no way restricted. In this situation it is easy to construct a minimizing 

t We use the letter w instead of y to emphasize that it takes only the two values O and 1. 
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rule which m1mm1zes the functional (3.3). Indeed, according to Bayes's 
formula the probability that the vector x belongs to the first (second) class 
is determined by 

) P(xlw=0)P(w=0) 
P(w = 0lx = -------------­

P(xlw = 0)P(w = 0) + P(xlw = l)P(w = 1) 

( 
P(xlw = 1)(1 - P(w = 0)) ) 

P(w = 1 Ix)=------------- · 
P(xlw = 0)P(w = 0) + P(xlw = l)P(w = 1) 

(3.6) 

Minimal loss (the minimum probability of error) can be obtained for the 
classification in which the vector xis assigned to the first class if its affiliation 
to the first class is more probable than to the second, i.e., if 

P(w = 0lx) > P(w = 1 Ix). 

Otherwise the vector x is assigned to the second class. In other words, 
taking (3.6) into account, the vector x should be assigned to the first class 
provided the inequality 

P(xlw= 1) P(w=0) 
----<-----, 
P(x I w = 0) 1 - P(w = 0) 

is fulfilled, or equivalently, the optimal classification of vectors is carried 
out by means of the indicator function 

F(x) = 0[1n P(xlw = 1) - In P(xlw = 0) + In 1 - P(w = O)], (3.7) 
P(w = 0) 

where 

0 {1 for z 2 0, 
(z) = 

0 for z < 0. 

Therefore the knowledge of the probability density (composition and 
proportion of the union (3.5)) allows us to construct an optimal decision 
rule immediately. 

However, the problem of finding an optimal decision rule becomes 
substantially more complex if the class of admissible decision rules F(x, il() 
is restricted. In particular, the problem of finding an optimal linear decision 
rule of the form 

(3.8) 

is a difficult one. The vector il( = (()( 1, ... , il(.? determines the direction of a 
linear discriminant function, and the parameter 1)(0 its threshold value. 
The problem of finding the minimum of (3.3) in the class (3.8) is called the 
problem of linear discriminant analysis. 
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In the thirties R. A. Fisher proposed as the direction of the linear discriminant 
function a direction along which the maximum of the relative distance between the 
mathematical expectations of projections of vectors of different classes is obtained, 
i.e., the direction a along which the maximum of 

where 

T(a) = (m1(a) - mi{rx)) 2 

O'f(a) + a~(a) ' 

m1(a) = f aTxPp(xlw = 0)dx, 

m2(a) = f aTxPy(xlw = l)dx, 

af(a) = f (aTx - m1(a))2Pp(xlw = 0)dx, 

O'~(a) = f (aTx - mi(a))2Py(xlw = l)dx, 

aTa = 1 

is attained. 

(3.9) 

The determination of the maximum of (3.9) for arbitrary densities is a very difficult 
problem. Therefore basic investigations in the area of linear discriminant analysis 
were directed first toward verifying for specific types of densities that Fisher's linear 
discriminant function indeed determines a solution of linear discriminant analysis, and 
secondly toward finding algorithms for computing the discriminant function. The 
basic result was that for the union of two normal laws 

P(xlw = 1) = N(µ 2 ,fl2) 

(µ 1 is the mean vector, fl. 1 is the covariance matrix for the first multivariate normal 
distribution, and µ 2 , fl. 2 are the analogous parameters for the second distribution), 
taken in proportions P(w = 0) and 1 - P(w = 0), the optimal linear discriminant 
function is given by the direction vector 

(3.10) 

where O :o:; t* :o; 1. The value t* is determined as the root of the so-called resolvent 

function 

2 2 ( P(w = 0) ai(a,)) 
f(t) = t0" 1(a,) + (1 - t)O"i{rx,) - In 1 _ P(w = 0) · O"f(a,) . (3.11) 

For P(w = 0) = ½ the direction (3.10) of the linear discriminant function maximizes 
the functional 

(m 1(a) - mi(a))2 

J(a) = -~----c--­
t*O"f(a) + (1 - t*)ai(a) 

The calculation of the roots of the resolvent equation (3.11) is quite a difficult task. 
Therefore in practice when constructing a linear discriminant function it is assumed that 
t* = ½, and Fisher's linear discriminant is taken to be the solution of the problem. 
(More details are given in [71].) 
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Thus problems arising in discriminant analysis are due to the fact that 
the class of possible decision rules on which the minimum of functional 
(3.3) is to be determined is bounded. Therefore it may seem that the problem 
of discriminant analysis is artificial. Indeed, if it is possible to estimate 
probability density, what is the need for seeking a decision rule which yields 
a conditional minimum of the functional, when it is easy to find a decision 
rule (cf. (3.7)) which yields an absolute minimum for the functional (3.3)? 

The fact of the matter is that if the density is estimated imprecisely, then 
the value of the guaranteed deviation of the minimum for the empirical 
functional from the minimum for the expected risk functional becomes 
larger for a function chosen from a wider class. Therefore it may happen 
that the smaller value of the guaranteed expected risk will be achieved, not 
at a function yielding the absolute minimum for the empirical functional, 
but rather on a function belonging to a narrower class and yielding the 
conditional minimum. 

This result is connected with the effect of the second procedure for 
minimizing the expected risk (cf. Chapter 2, Section 4). The idea of narrowing 
the class of decision rules in order to obtain a smaller guaranteed value of the 
expected risk will be implemented below in Chapters 8 and 9. In the present 
chapter we shall consider parametric methods of estimating densities. 
In view of (3.7), the knowledge of the density immediately leads to the 
construction of a decision rule yielding the absolute minimum for (3.3). 

§3 Decision Rules in Problems of 
Pattern Recognition 

Algorithms of pattern recognition based on estimation of the density 
(gives components of the union (mixture) P(x I w = 0) and P(x I w = 1) and its 
proportion P(w = 0)) are traditionally associated with two classes of 
distributions. 

3.1 First Class of Distributions 

The probability distribution P w(x) = P(x I w) is such that coordinates of the 
vector x = (x 1, ... , x")T are statistically independent, i.e., 

w = 0, 1, (3.12) 

and moreover each coordinate xi of the vector x can take on only a fixed 
number of values. Let us assume that each coordinate xi takes on 'i values 
dl), ... , ci(rJ Thus in the case under consideration the distribution 
laws of random variables P w=o(x) and P w= i(x) are defined by the expression 
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(3.12), where P w(xi) can be written as 

{
p~(l) 

Pw(x;) = :i 
Pw(t;) 

tj 

LP~U) = 1. 
j= 1 

(3.13) 

Here p~U) is the probability that for a vector belonging to the class w = {O, 1} 
the value of the xith coordinate equals c;U). To estimate the probability 
distribution for such a union means to find values of 

n 

r = 2 L ri + 1 
i= 1 

parameters (L7= 1 t; parameters for estimating each distribution P w(x), 
and one parameter-the proportion of the union). 

According to (3. 7) an optimal decision rule for the mixture formed by the 
two distributions (3.12) will be the following linear discriminant function: 

( ~ Pw=1(xi) P) 
F(x) = 0 _L, In p ( i) - In -1 _ , 

1=1 w=oX P 

where p, 1 - p are proportions of the union. 

3.2 Second Class of Distributions 

Here in each class w = {O, 1} vectors x are distributed according to the 
multivariate normal distribution 

1 1 T -1 
Pw(x) = (21tt12IAwl112exp{-½(x - µw) Aw (x - µw)}, 

where µw is the vector of mean values and Aw is the covariance matrix. 
It follows from (3. 7) that the optimal decision rule in this case becomes the 

quadratic discriminant function 

F(x) = 0[½(x - µ0 f A0 1(x - µ0 ) - ½(x - µ1f A11(x - µ1) 

+ In-- - ln--IAol P ] 
lA1I 1-p' 

(3.14) 

where µ0 , A0 ; µ 1, A1 are parameters of the normal distributions forming the 
union (3.5) and p, 1 - pare the corresponding proportions. In the particular 
case when A0 = L1 1 = L1 the quadratic discriminant function (3.14) reduces 
to a linear one: 

F(x) = 0[(µ 1 - µ0 f A- 1x + ½(µJA- 1µ0 - µTA- 1µ 1) - In 1 ~ pl 
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Thus the construction of a discriminant function based on empirical data 
reduces to an estimation of the probability distributions P(x I w = 0) and 
P(x I w = I) and of the parameter p. The parameter p determines the fraction 
of pairs x, w with w = 0 and may be estimated by the quantity p = m/1, 
where m is the number of pairs in the sample with w = 0 and I is the sample 
size.t 

What are the algorithms that one should utilize for estimating the prob­
ability densities P(x I w = 0), P(x I w = 1)? To answer this question one 
should first agree on the method of assessing qualities of estimating algo­
rithms on the basis of samples of fixed size. 

The quality of specific algorithm A which estimates the density P(x, rx0 ) 

from a sample x 1, ... , x1 is naturally defined as the distance between the 
density and the estimated function PA(xlx 1, ••. , x1), i.e., by the quantity 

p(P(x, tx0), PA(xlx 1, •.. , xJ) = Pao,A(x1, ... , x,). 

We shall define the closeness of densities in terms of the L 2 metric, i.e., 

Pao,ix1, ... ' x,) = (J<P(x, txo) - PA(xlx1, ... ' X1))2 dx r12
. (3.15) 

Since the choice of the density P A(x Ix 1, ..• , x 1) depends on the sample 
x 1, •.. , x1, the quantity Pao,A(x 1, ... , x1) is a random variable. We shall 
characterize the quality of the algorithm A by the mathematical expectation 
of p;0,A(x 1, •.• , x1): 

R(tx0 , A)= f p;0,ix1, ... , x1)P(x 1) · · · P(x1) dx 1 · · · dx 1• 

The smaller R( rx 0 , A) is, the better the algorithm is for estimating the density 
P(x, rx0 ) from a sample of size I. 

Thus we have determined how the quality of an algorithm A designed 
for estimating a specific density P(x, rx0) should be measured. It is now 
necessary to agree on how to measure the quality of an algorithm earmarked 
for estimating an arbitrary density belonging to a given class P(x, rx) (in 
our case the class of densities is defined up to values of a vector of parameters 
rx). Two principles are used in statistical decision theory in such a situation: 
Bayes's principle and the minimax principle. 

Bayes's principle asserts that the quality of an algorithm should be 
estimated as the mean quality over all the estimated densities. In order to 
estimate the mean value of an algorithm it is necessary to know how often 
any particular density belonging to P(x, rx) will be estimated, i.e., in our case 

t It will be shown in Section 6 that p = (m + I )/(I + 2) is a more precise estimator. 
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it is necessary to have information about the probability density P(a) of 
the vector of parameters a. In that case the quality of an algorithm is defined 
as 

R8(A) = J R(a, A)P(a) da. (3.16) 

The smaller RiA) is, the better the algorithm. 
The minimax principle asserts that one must estimate the quality of an 

algorithm on the basis of the most unfavorable probability density P(x, a*) 
for this algorithm. Here the densities which may be encountered in practice 
are not taken into account. It may therefore turn out that the quality of the 
algorithm is determined by a case which will never occur. The quality of an 
algorithm according to the minimax principle is defined as 

Rmn.CA) = sup R(a, A). (3.17) 
a 

The smaller the value of Rmnx(A), the better the algorithm. 

§5 The Bayesian Algorithm for Density Estimation 

We shall determine the structure of algorithms which assure the solution of 
the Bayesian estimation of density, i.e., which minimize the functional 

R8 (A) = J R(a, A)P(a) da. 

From a sample x 1, ... , Xi, let a density which belongs to the class P(x, a) 
be estimated and the prior probability density P(a) be given. Utilizing 
Bayes's formula, we obtain 

) _ P(x 1, ••. , xtla)P(a) 
P(alx 1, ••• ,x1 - P( ) , 

X1, ... ' Xi 

which is the density of posterior probabilities P(alx 1, ... , xi) which charac­
terizes the possibilities of realizations of various values of parameters a 
after the information about the sample x 1, ... , x1 has been added to the 
prior information P(a). Here P(x 1, ..• , x1 I a) is the conditional and P(x 1, ... , 

xi) is the unconditional density of occurrence of the sample x 1, ... , xi: 

P(x1, ... , Xi)= J P(x1, ... , xii a)P(a) da. 

Below we shall show that the posterior mean, i.e., the function 

P8(xlx 1, ... ,xi) = JP(x,a)P(alx 1, ••• ,xi)da 

is the solution of the Bayesian problem. 

(3.18) 
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In general the density P 8 (xjx 1, ••• , x1) obtained as a result of averaging 
functions P(x, a:) with respect to the measure P(a:jx 1, ... , x1) need not 
belong to the parametric family P(x, a:) under consideration. Therefore, 
strictly speaking, the method for constructing the posterior mean (3.18) 
cannot actually be called the estimation of a function belonging to the class 
P(x, a:). 

Thus we obtain a function n(x; x 1, ... , x1) which minimizes the functional 

Rin)= J(P(xla:)-n(x;x 1, ... ,x1))2 

x P(x 1, ... , xzla:)P(a:) da: dx dx 1 • · • dx, (3.19) 

Denote 

Interchanging the order of integration in (3.19), we arrive at 

R8(n) = J r(x; x 1, ... , x1) dx dx 1 • • • dx1. 

We now transform the function r(x; x 1, .•. , x1): 

r(x; x 1, ... , x1) = J P 2(xla:)P(x1, ... , x,la:)P(a:) da: 

(3.20) 

- 2n(x; x 1, ... , x1) J P(x I a:)P(x 1, ... , x1 I a:)P(a:) da: 

+ n2(x;x1, ... ,x1) JP(x1, ... ,x1la:)P(a:)da:. (3.21) 

Denote 

~ ) _ j P(x I a:)P(x1, ... , x1 I a:)P(a:) da: 
P(xjx1, ... ,x1 - P( ) , 

X 1, ... , x 1 

where 

and rewrite the equality (3.21) in the form 

r(x;x 1, ... , x1) = J P 2(xla:)P(x 1, ... , xzla:)P(a:)da: 

- P2(xlx1, ... , x1)P(x1, ... , x,) 

~ . 2 + [P(xlx1,···,X1)- n(X,X1,···,X1)] P(x1,···,X1), 
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Substitute the expression for r(x; x 1, ••• , x1) into (3.20). This results in a 
functional which can be expressed as the sum of two summands 

where 

The first summand does not depend on n(x; x 1, •.• , x1). Therefore minimiza­
tion of R8(n) is equivalent to the minimization of the second summand 
Rz(n). The minimum of this summand is zero and is attained if 

n(x; X 1, ••• , X 1) = .P(xlx1, ••• , x 1) = P8(xlx 1, •.• , x1). 

In succeeding sections, for prior distributions P(rx.) Bayesian approxima­
tions of densities will be obtained. The construction of a Bayesian approxima­
tion for a fixed prior distribution P(rx.) depends on whether the expression 
(3.18) can be integrated analytically. 

§6 Bayesian Estimators of Discrete 
Probability Distributions 

In Section 3 the probability distribution function of the discrete independent 
features (3.12) and (3.13) was introduced. Here we shall show that, under 
minimal prior information concerning the values of the parameters p;U), 
namely: for each i the parameters p;(l), ... , ptc:;) are uniformly distributed 
on the simplex 

The Bayesian estimator of the probability distribution of discrete independent 
features equals 

where 

n 

P 8 (x) = f1 P 8 (xi), 
i= 1 

t(l) = m;(l) + 1 , 
I+'; 

Ai( ) m;(,;) + 1 
p 'i = . 

I+'; 
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m;(j) is the number of vectors in the sample such that the rth coordinate 
takes the )th value, r; is the number of values taken by the ith coordinate, and 
/ is the sample size. 

We now obtain the Bayesian estimator of the probability distribution of the discrete 
independent features. For this purpose we compute the function 

, S P(x' lp)P(x'1, .•• , x) ip)P(p) dp 
Pe(X) = J 

P(x'i, ... , x)lp)P(p) dp 
(3.22) 

In our case 
for xi = ci(l ), 

for xi= ctr;). 

First compute the denominator of (3.22). Since the sample is random and independent, 
we obtain 

f P(xi1 .... , xi lp)P(p) dp = ~ f TT [iU)Jm,(j) dpi(l) · · · dpi(ri), (3.23) 
V C, J= 1 

where v is the volume of the simplex Ci. It is known (see, e.g. [52]) that the definite 
integral (3.23) may be computed analytically: 

; ; I f(mi(I) + I)··· f(m;(r;) + I) 
P(x 1, ... ,x1)=- -------, 

v f(mi(l) + · · · + mi(r;) + r;) 
where f(n) is the gamma function. For integer n this function is given by 

f(n) = (n - !)!. 

We now derive the numerator of the expression (3.22) for the case xi = c;(k): 

Ii= f P(x' = dk)lp)P(xL ... ,xilp)P(p)dp 
C, 

= ~ f pi(k) TT [p;(j)r·Ul dpi(l) ... dpi(r;). 
V C, }= I 

The definite integral Ii is equal to (cf. [52]) 

, I f(m.(l) + J) .. · f(m,(r.) + l)r(m.(k) + 2) 
Ik = - - -

v f(m,(1) + .. · + m,(r.) + r, + l)f(m,(k) + I) 

Dividing (3.25) by (3.24), we obtain 

. . r(m,(k) + 2)1(/ + r;) m;(k) + l 
P8(x' = c'(k)) = ----

f(m;(k) + l)r(/ + r, + I) / + r; 
Thus I pi( I) = '11;_~+_!_ for xi = c;( I), 

I+ r; 
Pe(x;) = : 

,; m;(r;) + I . . 
p(r;) = T+~;-- for x' = c'(r;). 

Since the features arc independent, we have P 8(x) = TT7= 1 P 8(x;). 

(3.24) 

(3.25) 
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§7 Bayesian Estimators for the Gaussian 
(Normal) Density 

We shall now obtain Bayesian estimators for the Gaussian (normal) density 
in some special cases of the prior distribution on the parameters. First we 
shall obtain Beyesian estimator for the univariate normal distribution 
N(µ, a 2) under the assumption that the parametersµ and a of this distribution 
are distributed uniformly on the rectangular region O ::; a ::; II, - T ::; µ ::; T. 
It turns out that if I1 and Tare sufficiently large, then the Bayesian estimators 
are equal to 

where 

- E(l) [ (x - Xemp)2]-(l-1)/2 
Pix) - - 1 + 2 , 

(Temp (/ + l)aemp 

( I - 1) 
E(l) = r -2-

J (I + 1 )n rG _ 1) · 
1 l 

Xemp = -/ L X;, 
i= 1 

2 1 ~ 2 
(Temp = [ ;:-\ (X; - Xemp) · 

(See the derivation below.) 

(3.26) 

Next we shall obtain the Bayesian estimators for the n-dimensional 
normal distribution for a special prior distribution on parameters µ and ~ 
(µ is an n-dimensional vector of the means and ~ is an n x n covariance 
matrix). It turns out that in this case the Bayesian approximation equals 

_ E(l) [ (x - Xemp)Ts- 1(x - Xemp)]-(l+n)/Z 

Pix) - 1s1112 1 + / + 1 ' 

where 

- r(1 ~ n) 
E(l) = ((/ + l)nt12 r(//2)' 

the vector xemp is an estimator for the vector of the means: 

1 l 

Xemp = -/ L X;, 
i= 1 

and S is the empirical covariance matrix: 

1 l 

S = l i~l (X; - Xemp)(x; - Xempl-

(3.27) 
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Note that neither of the estimators (3.26) and (3.27) belongs to the normal 
class. However, it is easy to verify that in both cases 

Pix)~ N(µ, d). 

as I-. oc. 

Yet another remark: In order to calculate explicitly the Bayesian estimators 
of a multidimensional normal distribution (see Section 7.2 below) it was 
necessary to consider a special prior distribution on the parameters which 
differs from the uniform one (used in the univariate case; see Section 7.1 
below). However, the Bayesian estimators for the univariate case obtained 
from (3.27) by setting n = 1 is close to the one obtained assuming the uniform 
distribution on the parameters in the univariate case (3.26). 

7.1 Bayesian Estimator for the Univariate Normal Distribution 

Let the variable x be distributed according to the normal distribution 

1 { (x - µ) 2} P(x; µ, a) = ;;;-:: exp - 2 . 

v' 27ra 2a 

Moreover, let the prior distribution of parametersµ and a be uniform in the rectangle 
0 s as fl, -Tsµ s T; since the sample x 1, .•. , x 1 is random and independent, 
we have 

In view of (3.18) the Bayesian estimator of the probability density is equal to 

Pa(x) = (2;fl (2nY:+ 1)/2 f Tr a'~ l exp{- 2:2 (t (xi - µ)2 + (x - µ)2)} dµ da) 

x ·-~- -exp - - '\' (x - µ) 2 dµda . ( J J f T Jn 1 { J 1 
} )-

1 

2Tfl(2n)112 -T O a1 2a2 i:-'1 ' 
(3.28) 

We shall assume that the intervals [ - T, T] and [O, fl] are so large that the limits of 
integration in (3.28) may be extended to ( - a::, oo) and (0, oo) respectively. This can 
evidently be done if I ;;:o: 2. In this case the integrals in (3.28) are convergent. We compute 
the numerator of (3.28): 

/(x) = -~ f 00 J'° ~exp{-~ ( I (xi - µ) 2 + (x - µ) 2)} dµ da. (3.29) 
v' 2n - co o a 2a ;~ 1 

Denote 

I 

T(µ) = L (xi - µ) 2 + (x - µ)2, 
i=l 

ftw y=--. 
(J 
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Then the integral (3.29) becomes 

} Joo f oo y1-1 
I(x)= r,;;:_ - 112-exp{-½Y2}dydµ 

v2n -oo o T (µ) 

I Joo dµ f 00 { y2} = fo -ooy112(µ) oy'-lexp -2 dy. 

Denoting 

c(I) = r y'- 1 exp{- ~} dy, 

where c(I) depends on neitherµ nor on a, this integral can be rewritten as 

I(x) = c(I) J oo dµ 
r,;;:_ yl/2(µ). 

v' 2n - oo 

We now transform the expression for T(µ). For this purpose we note that 

I 

where 

L (xi - µ)2 = /a;mp + /(µ - Xemp)2, 
i= 1 

1 I 

Xemp = - I xi, 
I i= 1 

2 1 ~ 2 <Temp = - L., (xi - Xemp) · 
I i= I 

The expression for T(µ) is transformed analogously to yield 

T(µ) = la;mp + /(µ - Xemp)2 + (x - µ)2. 

Now set 

_ Xemp/ + X 
x=-~--

1 + 1 

and rewrite T(µ): 

2 I 2 - 2 T(µ) = laemp + --(x - Xemp) + (x - µ) (I + 1). 
I+ 1 

We now write the integral /(x) in the form 

c(I) J +co dµ 
l(x) = r,;;:_ [ I ]112 

v' 2n - "' la;mp + I+! (x - xemp) 2 + (x - µ)2(1 + I) 

= ---,c=== / 2 + emp 
c(I) ( /(x-x )2 )-(l-l)/2 J00 dz 

J2n(/ + 1) <Temp (/ + 1) - 00 (1 + z2) 112 · 

Observe now that the integrand is independent of the parameters. We thus have 

( 
(X _ X )2)-(1-1)/2 

/(x) = c'(/, <Temp) 1 + (/ + l);LP (3.30) 
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To obtain a Bayesian estimator it is required only to normalize the expression (3.30): 

I(x) 
Pe(x) = J"' 00 /(x) dx · 

It is known (cf. [52]) that the integral in the denominator equals the following expression: 

f + 
00 

/(x) dx = c"(I, O"emp) f « ( dx T "" 
- oo -oo (x - Xemp) 

1 + 2 ([ + l)uemp 

c"(/, (Temp) CJ,mpjl+I. rG)rG - 1) 

r(~) 
Denote 

(/ - 1) 
E(l) = r --2-

J ---- (') (I ) t+ir 2 r 2-t 

Thus 

£(/) ( (x - Xemp)2)-(l-1)/2 
P8(x) = - - I + ~--

uemp (I+ l)u;mp 

7.2 Bayesian Estimator for then-dimensional Normal 
Distribution 

To obtain the Bayesian estimator for the n-dimensional normal distribution, the 
following two facts from the theory of multidimens10nal normal distributions are used: 

( I) The convolution of two multidimensional normal distributions N(O, !1) and N(µ, yM, 
where y is a positive number, is the normal distribution N(µ, (1 + 1·)!1). In other 
words the equality 

f. N(p - t, yi'1) · N(t, !1) dt = N(µ, (I + 1·)!1) 
En 

is valid (see [ 4]). 
(2) The distribution of empirical estimators S of the covariance matrix i'1 given by the 

formula 

is expressed by the Wishart distribution (see [5]): 

w, .• is, Al ~t··'l'I_,,_ ,,,, 1s1" ··-"" "P{- ~sr[A-'SJ) for 1s1 > 0, 

for 1s1 :S 0, 
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where it is assumed that I> n + 1, Spllaijll = Lt= 1 a;;- The quantity e •. 1 is a con­
stant and equals 

(( /)-(l-l)n12 n (/-i))-1 e = - n•(n - 1 )/4 TT r ~-
n. I 2 ,= I 2 

(3.31) 

Since the Wishart distribution sums to I, we have 

f 1src1-n-2)i2exp{-isp[~-1s]}ds = _1_1~rcl-l)/2_ (3.32) 
ISl>O 2 en.I 

We now derive the Bayesian estimator. Denote the matrix~ - I by £0. Clearly I~ I = 

I/ I £0 I. Let the prior distribution of parameters µ and ~ of an n-dimensional normal 
distribution N(µ, ~) be defined in the form 

where the vector µ is distributed according to the normal distribution 

here c 1 is a constant, w > 0 is a number, a is a vector, and £0 is a matrix distributed 

according to the Wishart distribution: 

Here v > n + 2 is a constant, A is a matrix. Observe that 

for 1£01 > 0, 

for 1£01 ::; 0. 

(3.33) 

where £0 is a symmetric matrix and xis a column vector. We now write the joint density 

P(x 1, ••• , x 1 jµ, £0) for a random independent sample x 1, ••• , x1: 

1;2 {-Il= 1 (x; - µ?£0(x; - µ)} 
P(x 1, .•. ,x11µ,£0)=c 2 1£01 exp 2 

= c2 If01112 exp{-½ Sp[/£0S + lf0(xemp - µ)(xemp - µ?]}. 

Here and below c0 , c1, c2 , and c3 are constants which are determined by normalizing 

conditions. In view of Bayes's formula the posterior density P(µ, £0lx 1, ... , x 1) equals 

Compute the right-hand side of (3.34): 

P(µ, £0lx 1, ••• , x1) 

= C0 If01112 exp{-½ Sp[/£0S + lf0(xemp - µ)(xemp - µ?]} 

x c 1 1£01112 exp{-½Sp[f0w(µ - a)(µ - a?]} 

X C2 · en. v I f0 icv-n- 2)12 lwA icv- l)/Z exp{-½ Sp[vf0Aw]} 

= C3I£01<1+v-n- l)/ 2 exp{-½ Sp[/£0S + 1£0(xemp - µ)(xemp - µ? 

+ w£0(µ - a)(µ - a?+ vw£0A]}. (3.35) 
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Transforming the expression in the exponent of (3.35), we obtain 

~(IS + l(xemp - µ)(xemp - µ? + w(µ - a)(µ - a? + vwA) 

61 

= _qc[(I + w)(µ - b)(µ - h? + (I+ v)B], 

where the notation 

Lxemp + aw 
h = -- --

( /w T) IS + wvA + -- (xemp - a)(xemp - a) 
I+ w 

B = ------------- (3.36) 
I+ V / + w 

is used. Using this notation we rewrite (3.35): 

P(µ, Snlx1,.' '. x,) = C310il(l+,-n-11,2 

x exp{-½ Sp[ft((I + w)(µ - h)(µ - h? +(I+ v)B)]}. (3.37) 

The normalizing condition allows us to determine the constant c 3: 

f { I+,, } C.31= 1'71(1+v-n-2!1lexp - i-Sp[<:tiB] d_{j; 

f { I+ o; . . } 
x l'/l 12 exp - 2 --Sp[.'.i(µ-b)(µ-h)r] dµ 

The outer integral was computed utilizing equality (3.32). Finally we obtain the Bayesian 
estimator 

P8(x) = f P(xl11. r:J)P(p, "./Ix 1, ...• x 1)d11d'..I 

= f (2n)-" 21'/11 2 exp{- ~(X - 11?'J:(x - 11)}c31 "./l(l+,-n- II 2 

{ I + ui . } { I + r } x exp - f (p - h?V(p - h) exp - - 2 - Sp[Q'B] dpdY 

= - - C310-"1 11 +v n- 212 exp - . -Sp[UB] d'J ( 2n )" 2 f { / + 1· } 

I+ w 2 

Observe that the inner integral with respect top is a convolution of two normal distribu­

tions; we thus obtain 

Pe(x) = C3 fo + (') + 1)-"21"./l(l+,-n 1)2 

x exp{-½ Sp[u(B(/ + 1·) + _l.2._''J - (x - h)(x - w)]} d.Q:. (3.38) 
I+ w + I 
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In view of (3.32) we have 

cil + W + l)-n/2 
Pa(x) = ------

c.,,+v+ 1 

I I+ w 1-<1+v>12 
x (I + v)B + 1 (x - b)(x - b? 

+w+l 

( / + W I )"12 Cn,/+V 

= I+w+12n c.,1+,+1 

1(1 + v)Blo+v-1>12 

X I / + W l(l+v)/2. 
(/ + v)B + ---(x - b)(x - W 

I+ w + 1 

We now transform the expression (3.39): 

(
1 / + w )n/2 r(1 ~ v) 

Pa(x)= ----
n I + w + 1 r(1 + ; - n) 

(3.39) 

1(1 + v)·Bl- 112 

X I I + w 1 l(l+v)/2. (3.40) 
I+ ----(x - b)(x - b)TB- 1 

l+w+ll+v 

In the denominator of this expression / is the unit matrix. Observe that the matrix 
(x - b)(x - b? and hence the matrix (x - b)(x - b?B- 1 are of rank 1. Thus only one 
of its eigenvalues is different from zero, which implies that the denominator of (3.40) 
is equal to 

I I + w I lo+vJ/2 
I+ I -1-(x - b)(x - b?B- 1 

+ w + I + V 

= 1 + --- (x - b?B- 1(x - b) . ( 
I + w I )<i+vJ/2 

I+w+ll+v 

Thus we finally obtain 

(
I / + w )n/2 r(1 ~ v) 

P8(x) = -----n I+ w + I r(1 +; - n) 
1(1 + v)Bl- 112 

X ( / + W I )(l+v)/2. 
I+ --- (x - b?B- 1(x - b) 

l+w+ll+v 

We now assign specific values for v and win order that under the conditions of the scheme 
we shall obtain the most general (undetermined) prior conditions: 

(I) v = n + e (e > 0). This condition is necessary for integrating Wishart's distribu­
tion. 

(2) w -+ 0, e -+ 0. This condition assures that each of the elements of the matrix A 

tends to zero. 
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Then in view of (3.36) we obtain that b-> xemp, (I + v)B-> IS, whence 

( I+ n) 
( 

1 )n/2r -2- 1s1-112 

Pe(x) = (/ + l)rr (/) ( 1 T -1 )(l+n)/2' r - I + --(x - Xemp) s (x - xkmp) 
2 I+ I 

Finally for the one-dimensional case (setting n = I) we obtain 

1 -1 - 1 r( ~ ') 
Pe(x) = '1 ~ aemp r(-2') _(_1 _+ __ -_1-=_-(-x---X-e-mp_)_2)_<_1+_1_J/2. 

I+ 1 a;mp 

§8 Unbiased Estimators 

In the preceding sections, the Bayesian estimators of a probability density 
for special prior distributions on parameters were obtained. However, in 
practical problems the prior distribution is usually unknown. The minimax 
scheme of estimating the density may lead to overly imprecise results. It 
would therefore be desirable to find a sufficiently reliable method of estimating 
densities which is not connected with the Bayesian approach. How can this 
be done? 

Assume that there exists a method of estimating densities which is best 
not only on the average (this corresponds to the Bayesian criterion), but also 
the best for estimating each specific density. For this uniformly best method 
to exist it must be independent of the prior distribution imposed on the 
density. 

Unfortunately there is no such (uniformly best) method of estimation in 
the class of all possible methods. Indeed there exists a trivial algorithm 
which estimates the density to have the same fixed values of parameters 
independently of the sample. Such an algorithm estimates a single density 
with complete precision, while it is a poor estimator for all the other ones. 
This estimator is of course the best for its own density. 

However, while there is no uniformly best method in the class of all 
possible estimation methods, there may perhaps exist such a method in a 
more restricted class. This prompts the idea of restricting the class of all 
possible methods of density estimation and attempting to find the best 
method within the class. It turns out that if we restrict the class of estimators 
to the so-called unbiased estimators of density, then the problem of finding a 
uniformly best one admits a solution. 

Definition. We say that the function n(x; x 1, •.• , x1) is an unbiased estimator 
of the density P(x, ct*) belonging to the class P(x, ct) constructed from a 
sample x 1, ... , x1 of size I obtained according to distribution P(x, ct*) if 
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the mathematical expectation of the estimator n(x1, ... , x1) equals the 
density P(x, llC*), i.e., if for any P(x, llC*) belonging to P(x, llC) the equality 

M~.n(x; x 1, .•. , x1) = P(x, llC*) 

is valid. 

Note that the unbiasedness property has no value on its own and it is 
introduced solely to narrow down the class of possible estimators. The 
reason why the class of unbiased estimators is widely used in statistics is that 
this class is accessible to analysis. 

What is the meaning of this accessibility? We write once again the defini­
tion of an unbiased estimator: 

J n(x; x 1, .•. , x1)P(x1, ..• , x1; llC) dx 1 • • • dx1 = P(x, llC). (3.41) 

This expression not only determines unbiased density estimators, but 
indicates a method for their construction: the set of unbiased estimators is 
the set of solutions of Fredholm's equation of type I. However, to obtain a 
solution of Equation (3.41) is usually a difficult problem. It was shown in 
Chapter 1 that even in the case when the solution of Fredholm's equation is 
unique, its numerical solution is an ill-posed problem. Therefore one can 
obtain unbiased estimators of the density P(x, llC) only if Equation (3.41) 
can be solved analytically. 

In Section 10 an optimal unbiased estimator of density for a multivariate 
normal distribution will be derived. Before proceeding to construct this 
estimator, we note that in Chapter 2 a more general problem of density 
estimation in the class of continuous functions was also reduced to a solution 
of Fredholm's equation of type I. In this case a special problem-obtaining 
an unbiased estimator of a density known up to its parameters-is reduced 
to Fredholm's equation. 

The substantial difference between these two situations is that in the 
general case considered in Chapter 2 the right-hand side of Fredholm's 
equation of type I is known up to the error term. Here, however, it is given 
precisely. 

§9 Sufficient Statistics 

The construction of the optimal unbiased estimator is possible in terms of 
the so-called sufficient statistics. Up until now, when studying estimators we 
assumed that the estimator of a density is of the form n(x; x 1, ••• , x1), i.e., 
the estimator is a function of l + 1 vectors: the vector x and l vector-valued 
variables x 1, ... , x 1• Fixing the last l variables we obtained a specific form 
of the estimated density. 

However, such a method of expressing the density estimator is not quite 
convenient. Evidently n(x; x 1, ••• , x1) should not depend on the order of 
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the vectors x 1, ••• , x1 of the sample. Moreover, for another sample size, say 
I + 1, it is necessary to give a new function (of dimensionality I + 2). 

Therefore it would be desirable to find k characteristics of the sample 

i = 1, ... , k, 

such that, first of all, the information concerning the density contained in the 
sample x 1, .•. , x1 would be included in these k numbers, and secondly, 
that the number of necessary characteristics k would depend not on the sample 
size but on the features of the class of estimated densities. It would be de­
sirable to obtain an unbiased estimator n*(x; t 1, ... , tk) in terms of these 
characteristics of the sample. Sufficient statistics indeed serve this purpose 
(see [58]). 

Definition. We say that the functions ti = f;(x 1, ••• , x1) are sufficient statistics 

for the density P(x, IX) if the joint density P(x 1, ••• , x1; IX) of the sample can 
be represented in the form 

P(x 1 , ••• , x 1; IX)= P 1(t1, ••• , tk; 1X)Pi(x1, •.. , x1). 

In other words, the joint density P(x 1, ••• , x1; IX) is decomposed into the 
product of two terms. One of them, Pi(·), does not depend on the parameter 
IX, while the other involving IX depends only on the values t 1, .•. , tk (but not 
on the sample x 1, ••• , x1). 

It is easy to verify that for an n-dimensional normal distribution the following 
n(n + 3)/2 quantities serve as sufficient statistics: 

1 I 

t=-1 LXi, t=(t1,···,tn? 
j=I 

I 

lltiill = I (x, - t)(x, - t? 
r= 1 

(n values); 

( n(n + 1) ) 
2 values . 

Indeed, for an n-dimensional normal distribution we have 

P(x 1, ••• , x 1; µ, A) 

1 { 1 ~ T -1 } 
= (2n)"'i2 IAl';2 exp - 2 ;:"1 (x, - µ) A (x; - µ) 

= (2n)-n1;2 IAl-1;2 exp{-½ Sp[ A-1J (x; - µ)(x; - µl}] 

= (2n)-nl/21Al-l/2 

x exp{-½ Sp[ A - 1 (t (x1 - t)(x1 - t? + l(t - µ)(t - µ?) ]} 

= (2n)-"112 I Al- 112 exp{-½ Sp[A- 1(llt;jll + l(t - µ)(t - µ?)]}. 

In the derivation the equality zTBz = Sp[zzTB] was used. 
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Thus we seek an estimator of the density as a function of sufficient 
statistics. 

The remarkable feature of unbiased estimators n*(x; t 1, ... , tk) is that 
they are in some sense always at least as good as the estimators n(x; x 1, ... , 

x,). 

Theorem (cf. [35, 58]). For any estimator n(x; x 1, ... , x 1) there exists an 
estimator n*(x; t 1, ... , tk) such that for any density belonging to P(x, IX) the 
mathematical expectations of the estimators are the same: 

Mn*(x; t 1 , ... , tk) = Mn(x; x 1, .•. , x 1) = n(x), 

but the variance n*(x; t 1, .•. , tk) is not larger than the variance of the estimator 
n*(x; x 1, ••• , x 1), i.e., 

M(n(x)- n*(x;t1 , ••. ,tk))2 ~ M(n(x)- n(x;x1, ... ,x1))2. 

It follows from this theorem that the class of unbiased estimators­
expressed in terms of a sufficient statistic--contains the best one. 

§10 Computing the Best Unbiased Estimator 

We shall construct the best unbiased estimator of the density for a multi­
dimensional normal distribution. Here we utilize the fact that for distributions 
of the exponential type there exists a UQique unbiased estimator expressed 
in terms of sufficient statistics [26, 35]. In other words there exists a unique 
solution for Fredholm's equation of type I, 

f n*(x;t 1, ••• ,tk)P(t1, ••• ,tk;1X)dt1, ••• ,dtk = P(x,IX), (3.42) 

where P(x, IX) is the normal distribution and P(t 1, ••• , tk; IX) is the prob­
ability density of its sufficient statistics. 

According to the theorem cited in the preceding section, the solution of 
Equation (3.42), in view of its uniqueness, is the best unbiased estimator of 
the density of a multidimensional normal distribution. 

We shall show that an unbiased estimator of an n-dimensional normal 
density is 

rC ~ 1) 
Punb(x) = (/ l) 

[(1 - l)n]n/2r - ; - 1s1112 

1 _ emp emp [ 
( X - X ?S- l(X - X )](l-n-3)/2 

X /-1 + . 



§10 Computing the Best Unbiased Estimator 

Here xemp = (1/1) Il= 1 X; is the vector of the means, 

1 I 

S = I i;l (x; - Xemp)(x; - Xemp)T 
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is the empirical estimator of the covariance matrix L\, and [z] + denotes 

[zJ+ = g for z 2 0, 

for z < 0. 

In deriving the best unbiased estimator of an n-dimensional density we shall utilize 
Bayes's formula 

q(x1, t; et.) 
<p(Xz It) = P(t; et.) , (3.43) 

where t = (t,, ... , tk)T, x 1 = (xl, ... , xW, the density q(x1, t; et.) defines the distribution 

of statistics x1 and t, P(t, et.) is the distribution oft, and <p(x1 It) is the conditional density. 
We shall show that the conditional density (3.43) is an unbiased estimator of the density 
P(x, et.). Indeed, 

f <p(x1lt)P(t;et.)dt = f q(x,t;et.)dt = P(x,et.). 

And since the unbiased estimator expressed in terms of sufficient statistics is unique, 
<p(x It) is the best unbiased estimator. 

We now compute <p(x It). First we shall find q(x, t; et.). For a normal distribution 
of the occurrence of vector x we have 

q(x, t; et.) = q(x, Xemp, S; µ, ii), 

where 

X = Xz, 
} I 

Xemp = / .L. Xi, 
1= 1 

Let the vectors x 1, ... , x1 which form the triples x, Xemp• S appear randomly and inde­
pendently according to the density N(µ, ii). 

Consider vectors y 1, ••• , y1 obtained from x, - µ, ... , x1 - µ by an orthogonal 
transformation 

C1 I Clll- I 0 

ff'= 
Cz-211 Cz-211- I 0 

1 1 

jt--=-T jt--=-T 
0 

0 0 

Vectors y 1, ... , y1 are distributed independently according to the N(O, ii) distribution. 
The following relations are valid: 

Xz = Y1 + µ, 
Jt--=-T Y1 

Xemp = --1-Y1-1 + / + µ. 
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We now express the matrix S in terms of the vectors y1, ... , y1• For this purpose we 
utilize the representation 

11-1 
S = - L (x; - µ)(x; - µ? 

I i=1 
+ (x, - µ)(X1 - µ?_I - 1 [li.i X; - µ]['i.1 X; - µ]T 

I I i=1 Ji=! ;=1 Ji=! 
1-1[1-1x.-µ] 1-1 [1-1x.-µ]T -- I-'-(x1-µ?--(x,-µ) I-'-1 i=1Ji=l I 1=1Ji=l 
1 T - p:(x1 - µ)(x1 - µ) , 

and the fact that the transformation It' satisfies 

We thus obtain 

Denote 

1-1 1-1 
L (x; - µ)(x; - µ? = L Y1Yi-
i=l i=1 

=~1~2. T (Y,-1-Ji=!Y1)·(Y1-1-Ji=!Y1)T 
S I ;~/,Y, + I I 

11-2 
9) = - L Y1Yi­

l i=l 

Observe that vectors y1, ..• , y1 are distributed according to the normal distribution 
N(O, 11). Moreover the variables Yi-i, y1, and 9fi are independent. Since Yi- 1, y1 are 
distributed according to the normal distribution and 9fi has a Wishart distribution, the 
joint distribution P(y1_ 1, y1, !ifi; 0, 11) equals 

where W1_ 1 (!ifi, 11) is the Wishart distribution: 

w,-1(!ifi, 11) 

{ 
l!ifil(l-n-Jl/2 exp{-½ Sp[l1- 19fi]} 

= c •. 1-1 1111<1-2)/2 forl!ifil > 0, 

0 for l!ifil ~ 0, 

and c •. , is a constant defined in (3.31). 
We now express P(y1_ i, y1, !ifi; 0, 11) in terms of x1, Xemp• and S. First observe that 

Y, = X1 - µ, 
I (x1 - µ) Y1-1 = /r,{Xemp - µ) - r,-, , 

yl-1 yl-1 

(3.45) 
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Taking into account that the Jacobian of the transformation (3.45) equals 
[n(n+ 3>12 /(I - 1)"12 , and substituting (3.45) into (3.44), we obtain 

["in+3J,2 ( / (x1 - µ) ) 
q(x,, Xemp, S; µ, ti) = n 2 P ~ (Xemp - µ) - -;,--;- ; 0, ti 

(I - 1) v I - 1 v / - 1 

x P(x, - µ;O,ti)W,_,(1s - _!_~(x, - xemp)(x, - xemp)T;ti), 
/- I 

whence 

q(x1, Xemp' S; µ, ti) 

["(n+3)/2C - 1/S - /(x, - Xemp)(x, - Xemp)Tl(l-n-3)/219£1'/2 
n,I I / _ J 

(2n:)"(I- l)"(l-l)/lfti(2expHSp[ti- 1(S + (xemp - µ)(xemp -//)]}' 

if is - (x, - xemp)(x, - Xemp) I > 0 
/- I ' 

0, if IS - (x, - Xemp)(x, - Xemp)T I = 0. 
I - I 

(3.46) 

We shall now determine the denominator of the expression (3.43). For a normal 
distribution of vectors x, the statistics xemr and IS are distributed independently: 

P(Xemp, S; µ, ti) = P(xemp; µ, ti)P(S; ti), (3.47) 

where xemr is normally distributed with N(µ, (1//)ti), and /S has the Wishart distribution 
Wi(S; ti). This implies that 

c 1n12iSl11-n-2>12 
P( S· ti) - n 1 

Xemp, 'µ, - (2n)nf2 , { I } ' 
I t.f'' 2 exp 2 Sp[ti - l(S + (xemp - µ)(xemp - µ/)] 

if IS I 2 0 and zero otherwise. C n, 1 is a constant defined in (3.31 ), 
Substituting (3.46) and (3.48) into (3.43) we obtain 

(/ I) (I (x x )(x x /l)(l-n-3)/2 
X t - r -2- [(/ - ) )n: r nr 2 S - e7 - 1 emp 

<fJ(I)- (t-n-1) ISi r --- 1s1112 
2 

(3.48) 

in the case when IS I > 0 and IS - [(x - xemp)(x - xemp)T/(1 - l)] I 2 0. Observe that 

I 
(x - Xemp)(x - Xemp)TI 

S---~~--~ ( T-1 ) 
_____ ! -_1 ___ = l _ (x - Xemp) S (x - Xemp) , 

I Sf I - 1 
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Hence we finally obtain 

q>(x I Xemp, S) 

where 

(/ - 1) 
f -2- [1 - (x - Xemp/S-l(X - Xemp)](l-n-3)/2 

(
/ - n - I) / - I ' [(/ - l)n]"12r 2 1s1112 + 

[zJ+ = {~ 
for z;::: 0, 

for z < 0. 

§11 The Problem of Estimating the 
Parameters of a Density 

It would thus seem that we have succeeded in achieving our goal of construct­
ing a Bayesian estimator of a density and computing the best unbiased 
estimator. However, the methods which were utilized in obtaining these 
estimators substantially utilize special properties of the estimated density. 
Therefore the methods studied above are not the common ones for estimating 
densities of various types. 

It is therefore of interest to study methods which perhaps do not yield 
such precise approximations as those studied above but which are regular, 
i.e., which could be used for estimating densities belonging to different 
parametric classes. 

To obtain these methods we shall reformulate our problem. We shall 
assume that our purpose is the estimation of parameters of a density rather 
than density estimation. We also assume that if one succeeds in solving the 
intermediate problem of obtaining a "nice" estimator for the parameters of 
the density, then the density itself can be satisfactorily estimated by choosing 
as an approximation the density function P(x, a*), where a* are the estimated 
values of the parameters. 

Observe that when the normal (Gaussian) distribution is estimated, 
neither the Bayes approximation nor the unbiased estimator of the density 
belongs to the class of normal distributions. In the case when the density is 
"assessed" by estimating its parameters, the approximations obtained 
belong to the Gaussian class. (This fact of itself is of no value. It only indirectly 
indicates how far the solution obtained may be from, say, the Bayesian 
one.) 

Thus we shall estimate the parameters a0 of the density P(x, a0). The 
quantity 



~I I The Problem of Estimating the Parameters of a Density 71 

will serve as the measure of the quality of the estimator & = &(x 1 •... , Xi) 

of the vector of parameters 'Y. = 'Y.o based on the sample x 1 , ... , Xi. The 
mathematical expectation of the quantity c/('Y. 0 ,&;x 1, ... ,xi), i.e., 

serves as the measure of the quality of estimators of 'Y. = 'Y.0 based on samples 
of size / (where P(x 1 , ... , xi; 'Y. 0 ) is the probability density of the sample 
X1, ... ' Xi), 

Finally the quality of an estimator used for estimating the parameter 'Y. 
under the prior distribution P('Y.) will be measured by 

RB(&,/) = J d('Y., &, l)P('Y.) d'Y.. (3.49) 

The estimator & which yields the minimum of the functional (3.49) is called 
a Bayesian estimator of'parameters. 

As in the case of density estimation, the prior distribution P('Y.) of para­
meters 'Y. is usually unknown; therefore, as before, the minimax criterion 

Rm0 ,(&, /) = sup d('Y., &, l) 

makes sense. The vector & which yields the minimum of Rm0 /:x, /) forms the 
minimax estimator of parameters. However, the construction of a regular 
method for parameter estimation of a density is associated with the idea of 
the best unbiased estimation rather than with the Bayesian or minimax 
estimation. 

Definition. We say that estimator & = &(x 1, •.. , Xi) is an unbiased estimator 
of the vector of parameters 'Y. 0 if 

Consider first the case when the probability density P(x, 'Y. 0 ) depends only 
on a scalar parameter 'Y. 0 . Then for the class of unbiased estimators, the 
remarkable Rao-Cramer inequality is valid: 

(3.50) 

where 
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The quantity //fl is called Fisher's information quantity. For an independent 
sample it equals 

I = - I Jd2 In P(x, 1X0) P( ) d 
<I> d1X2 x, IXo x. 

A derivation of the Rao-Cramer inequality is given in practically all modern 
texts in statistics (see, e.g., [35, 49, 58]). The meaning of this inequality is 
that the variance of an unbiased estimator (and this variance measures the 
precision of estimation in the case of unbiased estimators) is never less than 
the inverse of the Fisher's information quantity. 

Thus the right-hand side of the inequality (3.50) determines the limiting 
precision of unbiased estimation of a parameter. An estimator for which the 
inequality (3.50) becomes an equality is called efficient. The problem is to 
obtain a regular method for constructing efficient estimators of para­
meters for various parametric classes of densities. 

An inequality analogous to (3.50) may be obtained also for simultaneous 
unbiased estimation of several parameters. In this case the Fisher information 
matrix I whose elements are 

Jo2 ln P(x1, ... ' x,; IXo) 
lij = - 0 0 P(x1 , .•• , x 1; 1X0 ) dx 1 • • • dx1, 

IX; IX j 

i, j = 1, 2, ... , n, 

serves as an analog of the information quantity. 
For an independent sample x 1, .•• , x1 the elements Iij are equal to 

.. = - I Jo2 In P(x, 1X) d 
I,1 a a x. IX; IX j 

Let the Fisher information matrix I be nonsingular, and let the estimators 
&1(x1, ... , x1), •.• , &.(x1, ... , x1) be unbiased estimators of the parameters 
IX?, ... , IX~. Consider for these estimators a covariance matrix B, i.e., a matrix 
with the elements 

bij = M(IX? - &;(x1, ... , x1))(1XJ - &/x1, ... , x1)). 

Then a multidimensional analog of the Rao-Cramer inequality is the follow­
ing assertion: for any vector z and any unbiased estimators & 1 (x 1, ..• , x1), ••• , 

&.(x1, ... , x1), the inequality 
(3.51) 

is valid. The meaning of this inequality is as follows: let the quality of the 
joint estimator of n parameters IX?, ... , IX~ be determined by the square of 
weighted sums of deviation (with weights z = (z, ... , z.?, z; ~ 0) over all 
the estimated parameters: 

T(x1, ... , x 1) = (.± z;(IX? - &;(x1, ... , xI)))
2 

,= 1 
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Then the mathematical expectation of T(x 1, ..• , xn) is bounded from below 
by the quantity zTr 1z. In other words, no matter how the quality of the 
joint unbiased estimation of n parameters is measured (i.e., for any weights 
z;), the bound 

MT(x1, ... , X1) ~ zTr 1z 

is valid. In particular it follows from the inequality (3.51) that the variance 
of the estimator with respect to each parameter separately satisfies the 
inequality (3.50). Indeed, (3.50) is obtained from (3.51) for the specific 
vector z = (0, ... , 0, 1, 0, ... , O)T_ 

Estimation methods which yield equality in (3.51) for all z are called 
jointly efficient. When estimating several parameters our goal is to find 
jointly efficient estimators. 

§12 The Maximum-Likelihood Method 

Unfortunately there is no "regular" method to obtain efficient estimators 
of parameters of density based on a sample of a fixed size. There is only a 
method which allows us to construct asymptotically efficient estimators. 
This is the maximum-likelihood method developed by R. A. Fisher [58]. 
However, before considering this method we shall introduce several notions 
which are necessary for classifying estimators obtained from samples of 
large size. 

Biased 

Efficient 
e = 1 

Unbiased 

Figure 3 

In the preceding section the classification presented here in Figure 3 
was introduced for the characterization of estimators of parameters of a 
distribution based on samples of a fixed size. In this figure a measure of the 
efficiency of an unbiased estimator of parameters o: 0 is also shown. In the 
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case of a single parameter this measure is given by 

1 
e, = z . 

M(rt.0 - ix(x1, ... , xJ) /<1> 
(3.52) 

In the case of joint estimation of several parameters the measure of efficiency 
is defined by 

v(B, l) 
e, = v(l, I)' 

which equals the ratio of the volume v(B, l) of the ellipsoid 

zTBz = 1 

to the volume of the ellipsoid 

(3.53) 

For sample of large size a somewhat different classification is used which 
incorporates the notions of asymptotically unbiased, consistent, and asymp­
totically efficient estimators. Estimators satisfying 

M«o&(x1, ... ' x,) ~ rt.o 

are called asymptotically unbiased. Estimators satisfying 

for all B > 0 are called consistent. Asymptotic unbiased estimators satisfying 

Asymptotically 
biased 

Asymptotically 
efficient 

e1~1 

stimators 
with asymptotic 

efficiency 
O<e<l 

Figure 4 
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are called asymptotically efficient. Here e1 is given by (3.52) in the case of a 
single parameter oc and by (3.53) when several parameters are jointly esti­
mated. This classification is presented in Figure 4. 

The method of maximum likelihood involves examining the likelihood 
function P(x 1, ... , x1; oc). In our case, when the sample x 1, •.. , x1 is obtained 
as a result of random independent observations according to the density 
P(x, oc), the likelihood function can be represented as 

l 

P(x 1, ... , x1; oc) = TT P(xi, oc). 
i= I 

(3.54) 

The method of maximum likelihood chooses as the estimator those oc which 
yield the maximum for (3.54). Along with the likelihood function (3.54) it 
is common to consider the function 

l 

In P(x1 , ... , x 1; oc) = L In P(x;, oc). (3.55) 
i= 1 

The maxima of the functions (3.54) and (3.55) are the same, and hence to 
obtain maximum-likelihood estimators we need to solve the system of 
equations 

oP(x 1, ... , x1; oc) = 0 
(7(J(i ' 

i = I, 2 .... , n, (3.56) 

or the system of equations 

i = I, 2, ... , n. (3.57) 

The theory of maximum-likelihood estimation, which is well developed, 
aims to justify the applicability of this method. The substance of this theory 
is that for certain classes P(x, oc) (to which all the classes of densities con­
sidered in this book belong) the maximum-likelihood method assures the 
asymptotic efficiency of the estimators (cf. [24, 58]). 

We also remark that in the case of maximum-likelihood estimation the 
problem is reduced here to a simpler one than the one encountered in 
Bayesian estimation (multiple integration) or in constructing unbiased 
estimators (solution of Fredholm's equations of type I). 

To implement the maximum-likelihood method it is necessary to solve 
the system of equations (3.56) or (3.57). Although this is not always a linear 
system, its numerical solution is not usually too difficult, and moreover, 
for a wide class of functions there exists a unique solution. 
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§13 Estimation of Parameters of the Probability 
Density Using the Maximum-Likelihood Method 

In this section, utilizing the maximum-likelihood method, we shall obtain 
estimators for parameters of the distribution 

{
pi(l), for xi= c(l), 

P(x;) = ; i = 1, 2, ... , n, 

p (r;), for xi= c(r;), 
,, 
'[. piU) = 1, i = 1, 2, ... , n, 

j=J 

as well as for parameters of the normal distribution 

1 1 T - 1 
N(µ, Li) = (2nt12 I Li 1112 exp{ -z(x - µ) Li (x - µ)}. 

It turns out that for the distribution P(x;) the estimators are given by 

t(l) = m;(l) 
I 

Ai( ) mi(r;) 
p 'i =-,-

(3.58) 

where miU) is the number of vectors in the sample with the ith coordinate 
taking on the value xi = ciU). 

Maximum-likelihood estimators of parameters of a multidimensional 
normal distribution are given by 

1 I 

Xemp = / L, X;, 
i= 1 

1 I 

s = I i~l (xi - Xemp)(x; - Xemp?-

Thus we obtain the following estimator of the normal density: 

~ 1 1 T 
P(x) = (2nti2 IS 1112 exp{ -z(X - Xemp) S(x - Xemp)}. (3.59) 

13.1 Derivation in the Discrete Case 

We estimate the parameters of the distribution P(x;)_ First we form the likelihood 
function: 

I n 

P(x 1, ••• , x1; p) = TT TT P(x~, Pt 
j=I i=I 

where x~ is the value of the ith coordinate ofthej-vector in the sample. 
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Interchanging the order of the factors, we have 

I 

P(x1,---,X1;p) = n CTP(x},p\ 
i= 1 j= 1 

We now proceed to the function 

I 

lnP(x 1, ••• ,x1;p)= I IInP(x},p1). 
i = 1 j= 1 

Consider the quantity 

I 

I In P(x1, pi)_ 
} ~ 1 

It can be represented in the form 

I r, 

I In P(x1, p') = I mi(r) In pi(r), 
r=l 

where m;(r) is the number of vectors in the sample such that the ith coordinate takes the 
value x' = ci(r). Thus 

r, 

In P(x 1, ... , x,; p) = I I mi(r) In i(r). (3.60) 
i= 1 r= 1 

We now obtain the maximum with respect to p1(r) of function (3.60) subject to 
I:·~ 1 i(r) = I, i = l, 2, ... , n. For this purpose the method of Lagrange multipliers 
will be used. We form the Lagrange function 

,, 
L(p, A) = I I (mi(r) In pi(r) - Aip1(r)), (3.61) 

i= 1 r= 1 

where the Ai arc the Lagrange multipliers. The vector pi which yields the maximum of 
L(p, A) is determined by the system of equations 

oL(p\ A) m;(r) 
~~=---A=0 

oi(r) pi(r) I ' 

i =I, ... , n. (3.62) 

From (3.62), taking the condition 

,, 
L pi(r) = I, 

r= I 

into account, we obtain 

m-(r) Ai( ) I pr=~,-. 

Observe that here the maximum-likelihood estimators turn out to be unbiased. 
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13.2 Derivation in the Normal Case 

We now estimate the parameters µ and L'. of the normal distribution: 

1 
P(x; µ, t.) = (2n)•f2 If. 1112 exp{ -½(x - µ? t. - l(x - µ)}. 

We form the likelihood function 

1@11/2 { 1 I } 
P(x,, ... , x,; µ, @) = (2n)'•l2 exp - 2 ;~1 (x; - µ?@(x; - µ) ' 

where L'. - l = @. We obtain its logarithm 

nl I 1 1 T 
In P(x 1, .. • , x1;µ,@) = - -ln2n + -lnl@I - - L (x; - µ) @(x; - µ). 

2 2 2 i= 1 

Write 

oP(x1, ••• , x1; µ, @) _ ( ~ ) _ 
------ - @ L, X; - /µ - 0, 

oµ i=l 

oP(x 1, ... ,x1;µ,@) I _1 1 ~ T 

i)@ = 2@ - 2 ;:'1(X; - µ)(X; - µ) = 0. 

Here we have used the relationship 

From Equations (3.63) and (3.64) we obtain 

1 I 

Xemp = -/ L X;, 
i= 1 

-l 1 ~ T 
S = @ = - L, (X; - Xemp)(X; - Xemp) · 

I i= 1 

The estimator of the covariance matrix is biased. 

§14 Remarks on Various Methods for 
Density Estimation 

(3.63) 

(3.64) 

Three types of estimation for densities defined up to parameters were con­
sidered in this chapter: Bayesian, best unbiased, and those obtained using 
the maximum-likelihood method. For our specific problems of estimating 
densities of two classes (3.58) and (3.59), all three estimators were obtained. 
Which one is preferable for use in practice, then-which one should be 
substituted into (3.7) to obtain decision rules in a pattern recognition 
problem? 

Theoretically the Bayesian is undoubtedly the preferable one. This 
estimator optimizes a functional which defines the quality of the estimator 
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in a reasonable manner. However, in order to obtain a Bayes estimator the 
prior distribution of parameters of the density must be known, i.e., a dis­
tribution which determines how often in practice a particular density is 
estimated. Usually this information is not available. 

In Sections 6 and 7 Bayesian estimators were obtained for prior distribu­
tions which on the one hand contain fairly indefinite information but on the 
other yield a maximal simplification of calculations. How much confidence 
should be given to a Bayesian estimator based on one prior distribution if in 
practice another distribution is implemented? Only a qualitative answer is 
available to this question. As the sample size increases, the effect of the 
prior information on the Bayesian estimator decreases. Thus the use of the 
Bayesian estimator is justified by the belief that in practice the inconsistency 
in the choice of a prior distribution has little effect. 

When constructing the best unbiased estimator of a density there is no 
need to take prior information into account. In this class of estimators there 
exists a best estimator which is independent of a particular estimated density 
belonging to this class. It would seem that no risk is involved in choosing 
the best unbiased estimator in such a situation. Actually this is not the case. 
It does not follow at all that the class of unbiased estimators contains 
sufficiently "nice" estimators. It has already been mentioned that the 
unbiasedness by itself is of no value and is introduced only to restrict the 
class of estimators. The class of unbiased estimators is a narrow one (for 
example, an unbiased estimator of the normal distribution expressible in 
terms of sufficient statistics is unique). It is not excluded that the narrow 
class of unbiased estimators consists only of rather "inferior" estimators 
and then the choice of the best one in this class does not assure that the 
estimator is satisfactory. 

The example suggested by C. Stein indicates that this indeed is quite 
possible: when estimating the mean vector µ of the n-dimensional (n > 2) 
normal distribution with unit covariance matrix I, the biased estimator 

Xemp = (1 - / ~ - 2 )xemp 
XempXemp 

turns out to be a uniformly better estimator than the arithmetic mean 

I I 

xemp = -I IX;, 
i= 1 

which is the best unbiased one. (More details on Stein-type estimators are 
given in Chapter 5.) Stein's example is remarkable in that it is constructed 
for the simplest problems of parameter estimation and even here uniformly 
better biased estimators exist. 

Thus the choice of the best unbiased estimator can be justified only by 
the belief that the class of unbiased estimators contains an adequate one. 

Finally, the theory of maximum-likelihood estimators provides no 
answers to the question concerning the properties of estimators for samples 
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of finite size. The theory only guarantees that the maximum-likelihood 
estimators approach the efficient ones as the sample size increases, i.e., 
with an increase in sample size, the quality of a maximum-likelihood esti­
mator approaches that of the best unbiased estimator. 

Due to a lucky contingency, we were able in this chapter to find Bayesian 
estimators explicitly, i.e., to carry out the analytic integration of a multiple 
integral (numerical integration of multiple integrals of high dimensions is 
troublesome) to obtain explicitly the best unbiased estimator of the density. 
That is, we were able to arrive at an analytic solution of Fredholm's Type I 
equation (whereas a numerical solution of this equation is an ill-posed 
problem). This result is due to a specific feature of the parametric class of 
densities. 

In general, however, such approximations can hardly be anticipated. 
In this respect the maximum-likelihood method has an advantage in that 
it can be used for diverse classes of densities. This property of the maximum­
likelihood method is due to the fact that it reduces to the solution of alge­
braic equations, i.e., to a problem for which efficient computer methods 
exist. 

Yet another remark: The methods for estimating densities discussed 
in this chapter make sense only if the density under consideration belongs 
to a given parametric family of densities. In practice, however, the prior 
information which would allow us to select a parametric family of functions 
containing the unknown one is not available. It turns out, in fact, that not 
only the choice of a particular method of density estimation, but also the 
choice of a parametric formulation of the problem of estimating dependences 
from empirical data, is largely a matter of belief. 



Chapter 4 

Methods of Parametric Statistics for the 
Problem of Regression Estimation 

§1 The Scheme for Interpreting the Results of 
Direct Experiments 

In the preceding chapter methods of parametric statistics were applied to 
solve the pattern recognition problem: to minimize the functional 

l(a) = J<Y - F(x, a))2P(x, y) dx dy 

with unknown density P(x, y), on the basis of empirical data 

(4.1) 

(4.2) 

first the density F'(x, y) was estimated in the parametric class of densities 
{P(x, y)}; then, using F'(x, y), the empirical functional 

I emp(a) = J (y - F(x, a))2 F'(x, y) dx dy (4.3) 

was constructed; and finally a value aemp was determined which minimizes 
(4.3). 

To implement this process it was essential that the coordinate y take on 
only two values, zero and one; the set F(x, a) was a set of indicator functions, 
and the density P(x, y) was a union of two densities. These were character­
istic features of the pattern recognition problem. In this chapter we shall 
implement the same procedure of risk minimization, but in relation to the 
problem of regression estimation. 

For a solution of this problem using methods of parametric statistics a 
specific model of density which differs from the one discussed in Chapter 3 is 

81 
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used. It is assumed that the random variable y and a random vector x are 
related as follows: 

y = F(x, 0(0 ) + ~. 
where F(x, 0(0 ) is a function which belongs to the class F(x, (J() and ~ is a noise 
independent of x distributed according to the density P( ~): 

M ~ = 0, Me < oo. 

Thus for any fixed x the distribution P( ~) induces the conditional density of y, 

P(ylx) = P(y - F(x, 0(0)). (4.4) 

The joint density P(x, y) is defined by 

P(x, y) = P(ylx)P(x) = P(y - F(x, (J(0))P(x), (4.5) 

where P(x) is the probability density of the vector x. 
The problem of regression estimation, F(x, 0(0) E F(x, (J(), based on a 

random and independent sample of pairs x 1, y 1, •.. , x1, y1, can be interpreted 
as the estimation of the functional dependence F(x, 0(0 ) in the class F(x, (J() 
based on direct observations which are carried out subject to additive noise 
at I randomly chosen points. In Chapter 1 this problem was called "inter­
pretation of results of direct experiments". 

We shall solve this problem using methods of parametric statistics. First 
we estimate the density 

F(ylx) = P(y - F(x, ()(*)), 

and then we obtain the minimum point for the empirical functional 

J.mp((J() = J<y - F(x, (J())2F(y - F(x, (J(*))P(x) dx dy. (4.6) 

First we show that the minimum of the functional ( 4.6) is attained at 
_(J( = (J(*. We utilize the identity 

J.mp((J() = J<y - F(x, (J())2F(y - F(x, (J(*))P(x) dx dy 

= J<y - F(x, a*))2 F(y - F(x, (J(*))P(x) dx dy 

+ J<F(x, (J() - F(x, 0(*))2 P(x) dx. (4.7) 

Since the first summand on the right-hand side does not depend on (J(, the 
minimum of J.mp((J() is attained if the second nonnegative summand vanishes, 
i.e., at (J( = (J(*. Thus the value of the vector (J( = (J(* which defines the condi­
tional density F(ylx) = P(y - F(x, ()(*)) immediately determines the re­
gression. It equals F(x, ()(*). 
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§2 A Remark on the Statement of the Problem of 
Interpreting the Results of Direct Experiments 

83 

In the statement of the problem of interpreting results of direct experiments it is required 
that the unknown function F(x, a0 ) belong to a given parametric family F(x, a). This 
requirement is imposed because the density P(y - F(x, a)) is to be estimated by methods 
of parametric statistics. However, another formulation is possible according to which 
the unknown density P(x, y) belongs to a given parametric family of densities P(x, y; a) 
and the desired dependence F(x, a0 ) does not belong to the given set of dependences 
f(x, /J). In other words, as the model for interpreting results of direct experiments the 
following problem may be posed: find the minimum of the functional 

1(/3) = f (y - f(x, /3)) 2 P(y - F(x, a0))P(x) dy dx (4.8) 

from the sample 

if the joint density P(x, y) = P(y - F(x, a 0 ))P(x) is unknown, F(x, a0 ) E F(x, a), and the 
set of functions f (x, /3) does not necessarily coincide with F(x, a). If F(x, a0 ) r/J(x, /3), 
the minimum of the functional ( 4.8) is attained at a function belonging to f (x, fJ) which 
is closest to F(x, a0 ). The proximity is measured here in the Li sense: 

( )
1/2 

flL(FJ) = f (F(x, a0 ) - f(x, /3)) 2 P(x) dx . 

If however F(x, a0 ) Ef (x, /J), then the minimum coincides with the regression. (This 
fact also follows immediately from (4.7).) Thus the regression yields an absolute mini­
mum for the functional (4.8). 

For a known density P(x) the solution of the minimization problem for the functional 
( 4.8) may also be carried out by means of the methods of parametric statistics: based on 
sample (4.2), the density ?(y - F(x, a)) is estimated and then the empirical functional 

/emrC/3) = f (y - f(x, /3)) 2 ?(y - F(x, a*))P(x) dx dy 

is minimized. 
Observe that for the problem of pattern recognition the search for a conditional 

minimum (in the class f (x, /3)) of a functional, rather than the absolute one, was the 
subject matter of discriminant analysis. As it was pointed out in Section 2 of Chapter 3, 
the raison d'etre for this formulation was based on the fact that the sample size is finite 
and hence the density is estimated only approximately; thus the lower guaranteed 
minimum for the value of the expected risk can be obtained for a function belonging to a 
narrower class. An analogous situation arises for the interpretation of results of direct 
experiments based on finite samples: due to imprecisions in density estimation, the 
higher guaranteed proximity to regression may be attained at a function belonging to a 
narrower class f (x, /J). Methods for contracting classes of desired dependences in order 
to achieve a lower guaranteed expected risk will be discussed in Chapter 8. 



84 4 Parametric Statistics of Regression Estimation 

§3 Density Models 

Thus in order to estimate regression -under the conditions of the model for 
interpreting the results of direct experiments-it is sufficient to estimate the 
density P(y - F(x, oc0)) defined up to the value of parameter oc. In view of the 
stipulated model, the parametric family of densities P(y - F(x, oc)) which 
contains the desired one is determined firstly by the ·given parametric family 
of functions F(x, oc) containing the regression F(x, oc0), and secondly by the 
known probability density for the noise P(~). 

The assignment of a class of functions F(x, oc) containing the regression 
is an informal step in the formulation of the problem. This class should be 
assigned a priori. 

As far as the probability density of errors is concerned, here the choice is in 
principle arbitrary. However, in the practice of direct experimentation certain 
typical situations arise connected with common mechanisms which yield 
observational errors. These mechanisms have been investigated. The 
following three probability densities are of importance for interpreting 
results of direct experiments: the uniform density, normal density, and 
Laplace density. 

The uniform probability density given by 

P(~) ={ 2~ for l~I s A, 

o for I ~I > A 

is used for roundoff errors. For example, let a value of a certain large quantity 
x be measured up to its integer value. Then the error ~ which arises from the 
roundoff to the closest integer is often assumed to be distributed according to 
the distribution 

P ~ = {1 for I~ I s o.s, 
( ) o for I~ I > o.s. 

The Normal (Gaussian) density given by 

1 { ~2
} PG) = r-:.= exp - _ 

v 2na 2a2 

is used to describe errors arising when repeated physical measurements are 
performed under identical conditions. These conditions determine the value 
of the variance a2 • For example, errors resulting in measuring distances by 
means of a theodolite carried out under the same conditions (the same 
illumination, humidity, air temperature, degree of atmospheric pollution, 
etc.) are commonly described by the normal density. 

The Laplace density given by 

P(~) = -1 exp{- ill} 
2A A 
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is used to describe errors occurring in physical experiments carried out 
under changing conditions. For example, if measurements of distances take 
place in unequal cloudiness, at different times, and under different pollution 
conditions, measurement errors are commonly described by a Laplace 
distribution. 

Each density P(O generates its own parametric set of densities 

P(y - F(x, rx)). 

In this chapter only the maximum-likelihood method will be used for 
estimating the density in various parametric families. This method is chosen 
because its implementation presents no technical difficulties. It is well suited 
to all the parametric families of densities under consideration. 

Thus we shall use the method of maximum likelihood for estimating 
parameters of the conditional density 

P(ylx) = P(y - F(x, rx 0)) 

from the random independent sample 

X1,Y1; ... ;x,,y1 

distributed according to the density 

P(x, y) = P(y - F(x, rx0))P(x). 

For this purpose we write the likelihood function 

l 

P(x 1, y1, ... , x 1, y1; rx) = TT P(y; - F(x;, a.))P(x;), (4.9) 
i = 1 

and then express it as a product of two factors: 

l 

P 1(rx) = TT P(y; - F(x;, rx)), 
i= 1 

which is the likelihood function for the conditional density, and 

l 

P 2 = TT P(x;). 
i= 1 

( 4.10) 

Since the factor P 2 does not depend on the parameter rx, ( 4.9) and ( 4.10) have 
the same maximum points. In what follows, the maximization of the function 
(4.10) will also be called a method of maximum likelihood. 

We shall now consider the likelihood function P 1(a.) for different distribu­
tions of the noise and find the corresponding maximum point. 

The likelihood function ( 4.10) for the uniform distribution of ~ is of the 
form 
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where 
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b;(o:) = {1 for IY; - F(x;, o:)I :5 ~. 
0 for IY; - F(x;, o:)I > ~-

The maximum of the likelihood function is determined by o: and ~ for which 
the minimum of the expression 

~(o:) = maxly; - F(x;, o:)I (4.11) 

is attained, i.e., o: is chosen to minimize the largest deviation of F(x;, o:) from 
Y;-

For the normal density the distribution of the likelihood function is given 
by the density 

pi (o:, a) = (2n)~12a1 exp{- 2~2 J1 (y; - F(x;, o:))2 }, 

and the maximum-likelihood method is equivalent to the minimization of 
the functional 

l 

/em/o:) = L (y; - F(x;, o:))2. (4.12) 
i= 1 

The method of determining o: by means of minimization of functional (4.12) 
is called the least-squares method. 

Finally, if the error is distributed according to the Laplace density, then 
the corresponding likelihood function is 

P1(~, o:) = (2~)' exp{-¼ ;tlY; - F(x;, o:)I}, 

and the maximum of the likelihood is attained for the vector o: for which the 
functional 

l 

/em/o:) = L IY; - F(x;o:)I ( 4.13) 
i= 1 

is minimized. The method of minimizing the functional (4.13) is called the 
method of minimal modules. 

As was indicated in Chapter 3, the method of maximum likelihood is an 
asymptotically efficient method of estimating parameters; therefore all 
three algorithms are optimal in a certain sense. Unfortunately each one of 
them is optimal only under its own conditions ( of uniform, normal, or Lap­
lace distributions of errors), and solutions obtained by means of these 
algorithms may differ significantly. 

Indeed, consider the simplest problem of estimating dependences-the determina­
tion of the mean value of a random variable y from a sample of size I. This problem is 
reduced to minimization of the functional 

(4.14) 
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on the basis of a sample y 1, ••• , y1• Using the method of minimization of the largest devia­
tion ( 4.11 ), we obtain the solution 

(I(* = Ymin + Ymax 

2 ' 
(4.15) 

where Ymin is the smallest and Ymax is the largest sample value; i.e., the estimator is the 
half range of the sample. The method of least squares (4.12) yields the estimator 

} I 

(I(*= - LY;; 
I i ~ I 

(4.16) 

i.e., the estimator is the sample arithmetic mean. Finally, the method of minimal modules 
(4.13) leads us to the following solution: order the observations according to their 
magnitude, 

and compute the estimator using the formula 

a*= { 
Yi,+ 1 for/ = 2k + 1, 

Y;, + Yi,+1 for/= 2k 
2 . 

§4 Extremal Properties of Gaussian and 
Laplace Distributions 

In the preceding section it was shown that algorithms for estimating regression 
obtained by methods of parametric statistics depend on the model adopted 
for the errors. Therefore it is necessary to be able to identify situations in 
which particular models are to be used. It was pointed out that the uniform 
distribution is used for describing errors resulting from rounding off, Gaus­
sian distributions for measurement errors under identical conditions, and 
the Laplace law for measurements under changing conditions. It would be 
desirable to make these recommendations more precise. 

In this section we shall establish certain remarkable properties for the 
Gaussian and Laplace distributions. We shall see that the Gaussian distribu­
tion possesses certain extremal properties under the absolute stability of 
measuring conditions, while the Laplace distribution possesses analogous 
extremal properties under "maximal instability" of measuring conditions. 

Thus we shall show that among all continuous densities with a given 
variance, the normal distribution possesses the largest entropy. In other 
words, the normal distribution is a "noise" distribution in which the size of 
the measurement is undetermined to the largest possible extent. 

We shall estimate the degree of uncertainty of measurements, in the case 
when errors are determined by the probability density P(~), by means of 
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Shannon's entropy 

We shall obtain a function P(e) obeying the restrictions 

P(e) ~ 0, 

J:
00 

P(e) de = 1, 

J_00

00 
eP<e) de = o, 

J:
00 

e2P(e) de= a2, 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

for which the maximum of the entropy ( 4.17) is attained. Here the conditions 
(4.18), (4.19) follow from the definition of the density, (4.20) reflects the 
unbiasedness of the error, and (4.21) fixes the class of densities of a given 
variance. 

This problem is solved using the standard method of Lagrange multi­
pliers to take the conditions (4.19)-(4.21) into account: 

We then write the Euler condition 

oL 
oP = -(In P(O + 1 + A.1 + A.2e + A.3e2) = 0. (4.22) 

The solution of Equation (4.22), 

P(x) = exp{ -(l1 + 1 + el2 + e2l 3)}, 

satisfies (4.18) and hence determines the desired density. 
To obtain values of the constants Ai, l 2 , and ).3 the conditions (4.19)­

(4.21) are utilized; we obtain 

l { e2
} P(e) = Jhr_a exp - 2a2 ' (4.23) 

thus the normal density has the largest entropy among all densities with a 
given variance (i.e., the random variable has the most "uncertain" distri­
bution). 

Consider now a somewhat more complicated model for the error term e. 
The value of random variable e is a realization of the normal distribution 
PN(ela2 ) with mean 0 and variance a2• However, each time the normal 
distribution has its own variance. The value of the variance is assigned 
randomly and independently according to the density P(a2). Thus we have 
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the distribution 

(4.24) 

This model reflects well the practical situation when under fixed conditions 
of measurements the normal distribution is valid. However, the measurement 
conditions change randomly and independently, and thus the probability 
density is a composition of two densities. In the example of measuring 
distances the factor P N(x I CJ 2) in ( 4.24) reflects the errors occurring under the 
same atmospheric conditions. The factor P(CJ2) reflects the random nature 
of the atmospheric conditions. If the measurement conditions do not change 
(the extreme case when P(CJ2) = b(CJ2 - O"l) where b(z) is the delta function). 
then the composition (4.24) defines a normal distribution. We, however, 
shall consider the other extreme case when the experimental conditions 
deviate from the mean in the "most uncertain manner", i.e., when the function 
P( CJ2) is such that the maximum of the entropy 

H(P) = - 1" P(CJ2) ln P(CJ2) dCJ2 

is attained and moreover the conditions 

P(CJ2) :2: 0, 

f P(CJ2) dCJ2 = 1, 

1" 0"2 P( CJ2) dCJ2 = 2~ 2 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

are satisfied. The conditions (4.26) and (4.27) follow from the definition of 
the probability density. The restriction (4.28) determines the average condi­
tions of conducting the experiment. 

We thus derive the maximum of the entropy (4.25) under the conditions 
(4.26)-(4.28). Writing the corresponding Lagrange function-which takes 
(4.27) and (4.28) into account 

L = -(P(CJ2) ln P(CJ2) + J 1P(CJ2) + J 2CJ2P(CJ2)), 

we obtain the Euler equation 

oL 
oP = -(ln P(CJ2) + 1 + ,1, 1 + A2CJ2) = 0. 

The solution of Equation (4.29) is 

P(CJ2) = exp{-(,1,1 + 1 + A2CJ2)} 

(4.29) 

which satisfies (4.26) and thus determines the desired density. To find the 
values of constants J 1 and ,1,2 we substitute solution (4.29) into (4.27) and 
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( 4.28), whencd1 + 1 = - In 2A 2 and ,l2 = l/2A 2. Thus the" most uncertain" 
conditions for conducting the experiment are given by density 

1 { a2
} P(a2) = 2A2 exp - 2A2 . (4.30) 

We shall show that the probability density PA(') given as a composition 
of densities (4.23) and (4.30) is a Laplace distribution, i.e., 

_ 1 Joo 1 { , 2 
} { a2 

} 2 
p A(') - ,j'2n2A2 o ;exp - 2a2 exp - 2A2 da 

= 2~ exp{- 111}- (4.31) 

In order to compute the integral (4.31) we shall use the following fact, which 
is valid for any integrable function on ( - oo, oo): 

(a, b > 0). 

T h. 'd . X b h o prove t 1s 1 entity set y = - - -. T en 
a X 

Substituting the variable x = -ab/tin the last integral, we arrive at 

Thus 

~ f 001[ (~ - trJ dt. 

s:<X)f(y2) dy = ~ s:001[ (~ - ~r] dx. 

Hence (since the integrand is even) we obtain the identity (4.32). 
We now transform the left-hand side of (4.31): 

1 Joo 1 { ( a2 , 2 
)} 2 

p A(') = -2,j'2n~2-n_A_2 o -;;: exp - 2A2 + 2a2 da 

(4.32) 

= 1 exp{-lli}J
00
exp{-!(~-W)

2
}da. (4.33) 

,j'2nA2 A O 2 A a 
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From (4.33) in view of (4.32) we obtain 

(4.34) 

In other words the composition (4.31) of a normal distribution and distribu­
tion (4.30) results in Laplace density (4.34). 

Thus we have shown that under fixed conditions of conducting an experi­
ment the most undetermined (uncertain) result is obtained when the error is 
normally distributed; if however the conditions of the experiment oscillate 
around some mean value in the most unfavorable manner, then the most 
undetermined measurement result is obtained when the error is distributed 
according to the Laplace law. Thus the choice between a Gaussian and a 
Laplace law depends on whether the conditions of the experiment are per­
fectly stable or most unstable. 

In practice, however, these two extreme cases seldom occur. Therefore 
neither Gaussian nor Laplace distributions are usually fulfilled. It is custom­
ary to assume that an "intermediate" situation is valid. 

Thus we are confronted with a situation where regression is estimated 
under the assumption that some hypothetical distribution for the error is 
valid (e.g., Gaussian or Laplace) while actually some other "intermediate" 
distribution is the correct one. How useful will the algorithms given by ( 4.11 )­
( 4.13) then be? In other words, to what extent are the algorithms constructed 
robust as far as the changes in the distribution of errors are concerned, and 
how should one construct robust algorithms? The answer is given in the 
succeeding sections. 

§5 On Robust Methods of Estimating 
Location Parameters 

Let the probability density of the error be unknown. Suppose it is only known 
that it belongs to a certain given set of densities { P( e)}. Below we shall define 
such sets more precisely; for the time being we merely assume that they are 
convex and that the density functions possess two continuous derivatives and 
are symmetric around zero. (The symmetry is the basic requirement for the 
theory discussed below.) The following problem will now be investigated. 
How should one choose the hypothetical density for the noise from the given 
class {P(e)} in order that the possible error shall have the least effect on the 
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estimators of regression parameters if it is known that the true density belongs 
to {P(e)}? 

First consider the simple case: it is required to estimate the mathematical 
expectation m of a random variable x on the basis of the sample x 1, •.. , x 1• 

If the mathematical expectation m exists the problem is equivalent to 
estimating the location parameter m of the density P(x - m) (here we utilize 
the fact that the noise e is related to the measurement X by e = X - m). 
For a known density P( e) the estimator m of location parameter m is carried 
out by the maximum-likelihood method, i.e., by maximizing the expression 

I 

R(m) = L In P(xi - m). (4.35) 
i= 1 

In this case the estimator m is consistent and asymptotically efficient. 
However, if the function P(,) in (4.35) does not coincide with the density 
function of the noise P(e), estimator m yielding the maximum of(4.35) will in 
general be neither consistent nor asymptotically efficient. 

Denote the value m maximizing (4.35) under the assumption that P(~) = 
Pr(~) by m = m(x1, ... , x1; Pr(~)). We shall now determine how to measure 
the accuracy of parameter estimation if it is assumed that the noise is distri­
buted according to the distribution Pr{~) E {P(~)} while actually the true 
distribution is Po(~) E {P(~)}. 

It is natural to use the quantity 

as the accuracy of the estimator m based on a sample x 1, •.. , x1, assuming that 
the noise is distributed according to the distribution Pr(~). {This quantity is 
the square of the deviation of the obtained value of the parameter from the 
true one.) The accuracy of estimating a location parameter based on samples 
of size l is naturally measured by the mathematical expectation of the quantity 
R(Pr(~); x 1, ••• , x,): 

(4.36) 

The quantity D(P0 , Pr) depends on two probability densities belonging to 
the same class {P(~)}: the hypothetical density Pr(~) (according to which the 
estimator m was constructed) and the true density Po(~) (according to which 
the mean square deviation was computed). 
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Below we shall utilize the following representation of the function 
D(P0 , Pr): 

f (Pi-(¢))2 p (¢) d¢ 
1 Pr(¢) 0 

D(P0 , Pr)= I (J(Pi-(¢))' )2 
Pr(O Po(¢) d¢ 

(4.37) 

We shall verify this representation by carrying out a not quite rigorous but 
intuitively appealing argument. A rigorous theory of robust estimation is 
presented in [88]. 

Without loss of generality it may be assumed that the true value of the 
location parameter m is zero. Denote 

/(¢)=:~~~;=(In Pr(O)'. 

Then using the maximum-likelihood method, the estimator m of the 
parameter m = 0 is obtained from the condition 

We now utilize an approximation which is valid for large land for the sym­
metric densities considered herein: 

hence 

l l l 

I f(xi - m) ~ I f(x;) - m I f'(x;) = O, (4.38) 
i= 1 i= 1 

l 

I rcxJ 
A. i= 1 
m=-,--

L f'(xJ 
j= 1 

i= 1 

Let l be so large that 

m~ f f'(x)Po(x) dx 
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(In the derivation of this relation it was assumed that the integral in the 
denominator exists. For this purpose it is sufficient that the functions f'(x) 
be bounded. Below we shall consider only densities satisfying l(ln PG))"I 
< const). 

Compute now D(P0 , Pr)= M1n 2 : 

D(Po, Pr)= f 1n2P 0(x1), ••• , Po(x1) dx 1, ••• , dx1 

x P0(x 1) · · · Po(x1) dx 1 • • • dx1• 

Since the densities Po(x), Pr(x) are symmetric, we have 

f f(x;)f(xi)Po(x 1) .. · P0(x1) dx 1 .. • dx1 = 0, i =I j. 

Thus we obtain for large l 

1 J JJ 2(x;)Po(xi) dxi 1 J J2(x)P0(x) dx 

D(P,, Pr) -r (f f'(x)P,(x) dx )' - I (f f'(x)P,(x) dx r 
Finally, returning to the original notation we obtain representation (4.37). 

We have thus determined a criterion of quality for estimators of location 
parameters given that the true density is Po(~) and the hypothetized one is 
Pr(~). Our goal now is to choose a density Pr(~) which minimizes D(P0 , Pr), 
It is easy to show ( see below) that if the density P 0( ~) were known, the mini­
mum of D(P0 , Pr) would be obtained at Pr(~) = P 0(~). 

The problem is to choose Pr(~) if it is known only that Po(~) belongs to 
the class {P(~)}. As usual in such situations one of two approaches-the 
Bayesian or the minimax-is taken. 

In the first case, it is assumed that the probability for each density in 
{P(~)} to be the true one is known a priori, and the measure of quality of 
estimators is chosen to be the average (with respect to the measure µ(P)) 
quality, i.e., 

The minimax approach suggests that we choose as a measure of quality the 
quantity D(P0 , Pr) evaluated for the least favorable density Po(~) E {P(O}, 
i.e., to evaluate the quality from the condition 

DmnxCPr) = max D(P0 , Pr), 
Po 
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Since the construction of a solution optimal in the Bayes sense encounters 
substantial difficulties here, we shall study only minimax solutions below. 
Thus we shall judge the quality of an estimator of a location parameter, 
obtained by means of the hypothetized density Pr(¢), by the quantity 

Dmn,(Pr) = max D(P0 , Pr)= max ( '(!') '(!') ) 2, 
Po Po [ J Pr ',, p O ',, d¢ 

Pr(O 

(4.39) 

and attempt to obtain a hypothetical density Prm minimizing (4.39). 
Such a statement of the problem yields a game-theoretic interpretation. 

Let there be two players-nature and a statistician-who possess the same 
set of strategies (functions {P(¢)}) but opposite goals. The first player 
(nature) attempts to select a strategy (i.e., assign a true density Po(¢)) which 
will maximize the losses of the second player, while the second chooses a 
strategy (hypothetized density Pr(¢)) which minimizes his loss. The amount of 
loss is determined by the functional ( 4.39). 

It is required to obtain the optimal strategy for the second player, i.e., 
to be able, for a given class of densities, to choose a hypothetized density 
that will guarantee the minimum losses for the least favorable true density. 
The density obtained will be called robust in the class {P(¢)}, and the method 
of estimation of a location parameter obtained by applying the maximum­
likelihood method to the density obtained is called the method of robust 
estimation of a location parameter. 

An important fact in the theory of robust estimation of a location para­
meter is that the game with the loss function (4.39) possesses on the convex 
set { P( ¢)} a saddle point, i.e., 

max min D(P0 , Pr)= min max D(P0 , Pr)-
Poe{P(~Jl Pre(PW} Pr(P(W Poe{P(rn 

Using this fact one can obtain an optimal strategy against nature. 
We now utilize the Cauchy-Schwarz inequality 

( f a(x )b(x) dµ(x) r ~ J a2(x) dµ(x) f b2(x) dµ(x ). ( 4.40) 

Using this inequality we rearrange the denominator of (4.37): 

f (Pr(¢)) 2 

1 P(0 Po(¢) d¢ 1 

D(Po, Pr) = I (f (P' (!')r P' (!')) )2 ?: f (P' (!'))2 . _r _.., _o_.., p (0 d¢ l _o_.., p (¢) d¢ 
Pr(¢) Po(¢) 0 Po(¢) 0 

(4.41) 
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Observe that for Pr(e) = Po(e) the equality 

(4.42) 

is valid. It follows from (4.41) and (4.42) that the minimum of(4.39) is attained 
if pr( e) = po( e), i.e., the optimal strategies of nature and the statistician 
result in the same density. To obtain this density it is necessary to maximize 
(4.42) over the class {P(e)} or equivalently to obtain in the class {P(e)} a 
density which will minimize the functional 

Observe that the functional I0 (P) is the Fisher information quantity (cf. 
Chapter 3, Section 11 ). 

In Sections 7 and 8 we shall obtain for various classes of probability 
densities those which minimize the Fisher information quantity and thus find 
robust estimators (within these classes) of a location parameter. In the next 
section we shall extend the result obtained here to the case of estimating 
regression parameters. 

§6 Robust Estimation of Regression Parameters 

Let it be required to estimate the regression. We shall assume that the class 
offunctions in which the estimation is carried out and to which the regression 
belongs is represented in the form 

n 

F(x, ix) = L ix,<p,(x), 
r= 1 

where <p,(x) is a system of linearly independent functions. As above, the 
true and the hypothetized densities of errors P0(e) and Pr(e) belong to the 
convex class {P(e)}. The densities are symmetric around zero and have a 
bounded second logarithmic derivative. 

To estimate regression parameters we shall use the maximum-likelihood 
method, i.e., we shall obtain the vector ix which maximizes the expression 

In Pr(x1, y1 ; ... ; x 1, y1; ix) = J
1
1n Pr(Y; - ,ti ix,<p,(x;) )- (4.43) 

Let this vector be ix = ix*. Consider the vector of deviations of the obtained 
values of regression parameters ix* from the actual ones ix0 : 

a = (ix0 - ix*). 
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Form the covariance matrix B: 

B = Mfi.. fi.T, 

which determines the quality of estimation of the vector of parameters a 
(cf. Chapter 3, Section 11). 

Below, analogously to (4.37), we shall obtain that for I sufficiently large 
the equalityt 

f (Pr{~)) 2 

1 Pr«) Po(~) d~ -1 

B = 1 (f (Pr(~))' )2 llk;)I 
Pr(~) Po(~) d~ 

(4.44) 

is valid, where 

k;i = { J
1 
<P;(xt)<p/xt) ~ f <P;(x)cp/x)Po(x) dx. 

Thus the elements of matrix B are proportional to 

f (Pr(~))\ (~) d~ 
1 Pr(~) 0 

D(Po, Pr)= I (f (Pr(~))' ) 2 -

Pr(~) Po(~) d~ 

In the representation (4.44) it is important that only the proportionality 
coefficient D(P0 , Pr) (and not the matrix llkiill) depends on the densities 
Po(~) and Pr(~). Therefore two quadratic forms zTB 1z and zTB2 z with the 
same matrix llkiill but different values of D(P0 , Pr) correspond to two 
different hypothetized densities Pr(~) and PrG). These forms satisfy one of 
two relations: either 

or 

zTB 1z < zTB2 z for any z, 

depending on whether D(P0 , Pr) or D(P0 , Pr) is the largest. It was shown in 
Section 11 of Chapter 3 that the minimum of the quadratic form z T Bz 
defines jointly efficient estimators of the parameters. Thus the value of the 
coefficient D(P O, Pr) determines the quality of estimation of the parameters 
of a linear regression: the smaller D(P O, Pr) is, the better is the quality. 

This means that in the case of estimating regression parameters the 
problem of choosing a robust density leads to a game between nature and 
the statistician. It was shown in the preceding section that in this game the 
optimal strategy for the statistician is to choose a density belonging to the 

t We assume additionally that the matrix II k,)I is not singular. 
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class of densities {PG)} which yields the minimum of Fisher's information 
quantity 

J(P'(~)) 2 

lq,(P) = I P(~) P(~) dr (4.45) 

Thus, in order to obtain the best hypothetical model for the error in the class 
{ P( ~)} it is necessary to find a function belonging to this class which mini­
mizes ( 4.45). This density will be used for the determination of regression 
parameters using the maximum-likelihood method. 

It remains to derive the relation (4.44). It is obtained analogously to (4.37). 
Denote f(~) = P'r(~)/PrG). Then the maximum of the likelihood function 
(4.43) is attained at values of IX which satisfy the equations 

J/(~; - J/,<,0,(x;))<,0lx;) = 0, k = 1, 2, ... , n. 

Utilizing the approximation (4.38), we have 

J/(~i - J/,<,0,(X;))<,0lx;) 

~ ;t [!(~;) - f'(~;),t ix,<p,(x;)]<pix;) = 0. 

Due to the independence of~; and x; we then obtain, for I sufficiently large, 

i J/<~;)<,0lx;) - J f'(~)Po(~) d~J
1 
(t ix,<p,(x;))<pix;) = 0, 

k = 1, 2, ... , n, 
or in vector form, 

1 H 
llkijllix ~ - ----, 

I J P(~)Po(~) d~ 

(4.46) 

where His a column vector with coordinates h, = LI= 1 <p,(x;)f(~;). 
It follows from ( 4.46) that 

1 1 -1 
~ = - llk'ijll H. 

I J f'(~)P0(~) d~ 

We now obtain the covariance matrix 

Returning to the original notation, we arrive at (4.44). 
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§7 Robustness of Gaussian and Laplace Distributions 

We shall show that Gaussian and Laplace distributions are robust, each in its 
own class. As was shown in the preceding section, it is sufficient for this 
purpose to show that in corresponding classes of densities { P( ~)} the Gaus­
sian and Laplace distributions yield the minimum of Fisher's information 
quantity ( 4.45). 

For specific classes {P(~)} which are discussed below this problem be­
comes a difficult problem in the calculus of variations (the class {P(~)} is 
defined by restrictions of the inequality type). Therefore we shall not obtain 
the hypothetical density here by using a regular method, i.e., by solving 
nonclassical variational problems, but rather we shall first identify these 
solutions and then verify that they indeed define a saddle point of the function 

In other words it will be required to verify that for a given density P,(~) the 
inequalities 

D(P, P,) s D(Pr, P,) s D(Pr, P) 

are fulfilled. Observe that in view of (4.41) one of the inequalities, namely 

D(P,, P,) s D(Pr, P) 

is always valid. Thus in order to prove the optimality of the selected strategy 
it is sufficient to establish the validity of the inequality 

D(P, P,) s D(Pr, P,). (4.47) 

We consider the following classes of densities. 

(1) The class of densities with a bounded variance. The corresponding 
variational problem is to minimize the functional ( 4.45) in the class of 
functions satisfying the conditions 

(1) P(O > 0, 

(2) JP(~) d~ = 1, 

(3) J ~P(~) d~ = 0, ( 4.48) 

(4) J ~2P(~) d~ s a2 • 



100 4 Parametric Statistics of Regression Estimation 

Conditions (1), (2), and (3) determine the density of the error term, and 
condition (4) is a bound on the variance. The solution of this nonclassical 
problem (in view of(l) and (4)) of the calculus of variations is the density 

Indeed, substituting 

1 { e2
} Pr(e) = foa exp - 2a2 

into the inequality (4.47), we obtain 

Je: P(e) de 
(J J 2 2 

( 
1 )2 = e P(e) de ::;; a . 

a2 J P(e) de 

( 4.49) 

This inequality is valid for any density belonging to (4.48), since the class 
(4.48) consists of densities for which the variance does not exceed a2 • Thus 
the normal probability density with zero mean and variance a2 is robust in 
the class of all densities with the variance bounded by a2 • 

2. Now consider the class of nondegenerate at zero densities. Densities 
for which P(0) ~ l/2A belong to this class. We shall show that the Laplace 
distribution is robust in this class of densities. For this purpose we substitute 

Pr(e) = _l exp{- !fl} 
2A A 

into (4.47). We obtain 

J (~r P(e) de = _l - < A2 

4 2 4P2(0) - ' 
A2 p (0) 

or equivalently 

1 
P(0) ~ 2A· 

And since the densities satisfying P(0) ~ 1/2A are included in the class {P(e)}, 
the inequality (4.47) is satisfied for any function belonging to this class. Thus 
the Laplace distribution is robust in the class of densities for which P(0) ~ 
1/2A. 

The robustness of the Gaussian and Laplace densities (each in its own 
class) is no less remarkable a fact than their extremal properties verified in 
Section 4. 
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Although the Gaussian and Laplace densities are robust, the class in 
which this property is valid often turns out to be exceedingly wide. In such 
cases a more meaningful statistical model should be constructed on the basis 
of other, narrower classes of densities. 

Below in Sections 8 and 9 we shall consider certain specific classes of 
densities and obtain robust densities for these classes. 

§8 Classes of Densities Formed by a 
Mixture of Densities 

Consider the class H of densities formed by the mixture 

P(~) = g(~)(l - s) + sh(~) (4.50) 

of a certain fixed density g( ~) symmetric with respect to the origin and an 
arbitrary density h( ~) symmetric with respect to the origin. The weights in 
the mixture are 1 - s and s respectively. For classes of these densities the 
following theorem is valid. 

Theorem 4.1 (Huber). Let -Ing(~) be a twice continuously differentiable 
convex function. Then the class H possesses a robust density 

l (1 - s)g(~o) exp{k(~ - ~on, 

Pr(~)= (1 - s)g(~), 

(1 - s)g(~ 1) exp{ -k(~ - ~1)}, 

for ~ < ~o, 

for ~o s ~ < ~ 1, 

for ~ ~ ~1, 

( 4.51) 

where ~o and ~1 are the end points of the interval [~0 , ~ 1] on which a monotone 
(due to the convexity of - In g( ~)) function g'( ~)/g( ~) is bounded in absolute 
value by a constant k determined by the normalization condition 

1 = (1 - s) 1\m d~ + g(~o) + g(~i) (1 - s). 
J~o k 

PROOF. To prove this theorem it is required to show (as in the case of proving 
robustness of Gaussian and Laplace densities) that functions belonging to 
the class (4.50) satisfy 

D(P, Pr) s D(Pr, Pr) s D(Pr, P). 

As has already been mentioned, the validity of the bound 

D(Pr, Pr) s D(Pr, P), 

follows from the Cauchy-Schwarz inequality (4.40). Therefore to prove the 
theorem it is sufficient to verify that 

for any function P( ~) EH. 
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We represent the density Pr(~) in the form of a mixture of a fixed density 
g(~) and the density fi(~) = [Pr(~) - (1 - i::)g(~)]/i::. We shall write the 
density fi(~) explicitly taking (4.51) into account: 

1 - i:: 
- (g(~0 ) exp{k(~ - ~0 )} - g(~)) 

i:: 
for ~ < ~0 , 

fi(~) = 0 for ~o ~ ~ < ~1, (4.52) 

1 - i:: 
-- (g(~ 1) exp{ -k(~ - ~1)} - g(~)) for ~?: ~1. 

i:: 

It is easy to verify that fi( ~) is a density. Indeed, J fi( ~) d~ = 1, and fiG) ?: 0, 
since by the assumption of the theorem - In g( ~) is a convex function and 
hence is situated totally above the tangent: 

i = 0, 1. (4.53) 

This inequality is equivalent to the assertion 

i = 0, 1. 

Consider the inequality 

f (~)\(1 - i::)g(~) + i::h(e)] d~ < (1 - e) f (~rg(~) d~ + i;k2 

(f (;~ig)' [(1 - i::)g(~) + i::h(~)] d~) 2 
- (1 - i::)2(J (;~~~~)'g(~) d~) 2 

• 

(4.54) 

We shall verify that the right-hand side of this inequality is the least upper 
bound for the expression appearing in the left-hand side for arbitrary sym­
metric densities h( ~). For this purpose we observe that the function Pr(~)/ Pr(~) 
equals 

! k for ~ < ~o, 

Pr(~) _ g'(~) < 
PL(~) - g(~) for ~o _ ~ < ~i, 

-k for ~ ?: ~1, 

where according to the condition of the theorem lg'(~)/g(~)I ~ k, and the 
function (Pr(~)/Pr(rn' equals 
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Thus in order to maximize the left-hand side of the inequality it is necessary 
to choose a density h(¢) which is situated on the intervals ( - oo, ¢0 ) and 
( ¢ 1, oo ). Such a density simultaneously maximizes the numerator and mini­
mizes the denominator of the expression appearing on the left-hand side of 
the inequality. The value of the expression appearing on the left will then 
be exactly equal to the value of the right-hand side of the inequality. The 
density ( 4.52) indeed belongs to the class of densities concentrated on the 
intervals ( - oo, ¢0 ), (¢ 1, oo ). The theorem is proved. D 

This theorem is remarkable in that it allows us to construct various robust 
densities. In particular, if we choose for g( ¢) the normal density 

1 { ¢2
} g( ¢) = J2rr, (J exp - 2(J2 , 

and consider the class of densities 

1 - i; { ¢2
} P( O = J2rr, (J exp - 2(J2 + i;h( ¢), 

then in view of the theorem the density 

~ exp{k
2 

- ~ I¢ 1} 
J2rr,(J 2 (J 

Pr(¢)= 

for\¢\ 2 k(J, 

for\¢\< ku 

will be robust in this class, where k is determined from the normalization 
condition 

1 _ c [sku { ¢2} 2 exp{-~}] 
1 = J2rr,(J -k/XP - 2(J2 d¢ + k . 

The density just derived is an intermediate density between Gaussian and 
Laplace distributions. On the interval \ ¢ \ < k(J it coincides up to a normaliz­
ing constant with the Gaussian distribution and on the intervals I¢\ 2 k(J 
with the Laplace distribution. 

§9 Densities Concentrated on an Interval 

We now consider yet another important class of densities and obtain a robust 
probability density in it. 

Consider the class KP of densities concentrated on the whole on the interval 
[ -A, A], i.e., the class of densities P(¢) for which the condition 

s:AP(¢) d¢ 2 1 _ p 
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is satisfied (where pis a known parameter which defines the class KP). We 
shall show that in this class the density 

for Ii I< 1. 

for Ii I~ 1 

(4.55) 

is robust, where the parameters a, b are related to the constant p-which 
determines the class K-by the relations 

_ 1 _ cos2 a 
P- l+b' 

b = a tan a, 
n 

0 <a< 2. (4.56) 

Without loss of generality it will be assumed that A = 1 (the class A #- 1 is 
reduced to the case A = 1 by the substitution z = AO. Thus the problem is 
to show that in the class of densities satisfying the condition 

the density 

(4.57) 

will be robust. To do this it is sufficient to show that Pr(~) given by (4.57) 
minimizes in KP the Fisher functional 

(4.58) 

Instead of directly minimizing the functional (4.58), however, we shall 
utilize the fact that the necessary and sufficient condition for Pr(~) to be the 
minimum point for ( 4.58) is that the functional 

R(Pr, P) = l f (2( -In Pr(~))" - [(In Pr(0)'] 2)(P(~) - Pr(~)) d~ (4.59) 

is nonnegative in KP. The functional R(Pr, P) is the derivative with respect 
to c of the expression 
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evaluated at e = 0, i.e., 

dl~((l - e)Pr(e) + eP(e)) I = R(Pr, P). (4.60) 
de e=O 

The nonnegativity of derivatives ate = 0 (in any direction in K p) for densities 
(1 - e)Pr(~) + eP(e) means that the minimum of I~ is attained on Pr(e). 

Thus we shall verify that the expression R(Pr, P) is nonnegative. Since 
the function under the integral R(Pr, P) is even, it is sufficient to verify that it is 
positive on the ray0 ~ e < oo. First note that (4.57) implies that 

{2a tan ae for 1e1 < 1, 
( -ln P (;;))' = 

r "' 2b sign e for I e I ~ 1. 
(4.61) 

Substituting (4.61) into (4.69) and carrying out the calculations, we have 

R(Pr, P) ,= 4a21 L (P(e) - Pr(e)) de - 4h21 I:X)(P(e) - Pr(e)) de. (4.62) 

Transforming (4.62), we have 

R(Pr, P) = 4a21 L (P(e) - Pr(e)) de - 4h21 i00

(P(e) - Pr(rn de 

= 4(a2 + b2 )1 L (P(e) - Pr(e)) de. 

Thus the expression R(Pr, P) is nonnegative for all P(e) such that 

i.e., for all functions belonging to KP. 

§10 Robust Methods for Regression Estimation 

In preceding sections we have considered several classes of densities and 
obtained robust densities in these classes. It will now be possible in our 
scheme for interpreting results of direct experiments to weaken the re­
quirements on prior information concerning the statistical properties of the 
errors. It is sufficient to know the class of densities to which the errors belong. 
In this case for estimating parameters of regression using methods of para­
metric statistics it is possible to use-instead of a true density-a density 
which is robust in the given class. Obviously this replacement reduces the 
asymptotic rate of convergence of parameters of the regression. This rate 
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becomes proportional to some quantity I situated in the interval 

where 

/max= sup 
P(~)e(P@} 

1 

f (P'(e)) 2 ' 
1 P(e) P(e) de 

instead of being proportional to 

which is the limiting value attainable in the case of unbiased estimation of 
the location parameter ( cf. Chapter 3, Section 11) where P 0( e) is the true 
density of the error. However, if the class { P( e)} of densities is not too wide, 
then the possible loss of the rate is not overly large. 

The basic constructive result of the theory of robust estimation considered 
here is the determination of four classes of densities with specified robust 
density.t We again identify these classes and their densities: 

(1) The class of densities with variance bounded by a constant a 2 • A robust 
density in this class is the normal density 

1 { e} Pr(e) = foa exp - 2a2 . 

(2) The class of nondegenerate densities (for which P(O) > 1/2d). In this 
class a robust density is 

1 { 1e1} Pr(e) = 2d exp - T . 

(3) The class of densities formed by a mixture of a known density (for example, 
a normal PN(e) = (l/foa)e-'212" 2) with an arbitrary density in pro­
portion 1 - i; : £. In this class the density 

for 1¢1 ~ ka 

is robust (here c and k are constants determined by means of i; and a). 

t There are other classes of densities for which robust densities have been found [ 46]. 
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(4) The class of densities concentrated on the whole in the interval [ -A, A] 
(J~A P(~) d~ 2:: 1 - p). A density 

Pr(O = [ 
c cos 2 :~ for Ii I < 1, 

ccos2 aexp{-2b(\i\- 1)} for\il 2:: 1, 

where c, a, and b are constants determined via A and p, is robust in this 
class. 

Now suppose instead of the true density for the error Po(O we choose a 
robust one in the class Pr(~); determine, by means of it, the density of the 
conditional probability distribution 

Pr(Y - Jt,cp,(x)} 

and finally utilize the maximum-likelihood method for parameter estimation. 
Then we arrive at the following algorithm of regression estimation based on 
the sample 

One should minimize the functional 

where 
d(z) = z2, 

provided the true density of the error belongs to the class of densities with a 
bounded variance; 

d(z) = lzl, 
provided the true density of the error belongs to the class of nondegenerate 
densities; 

[ 

;;2 for lzl < ka, 

d(z) = 
k2 k 

- 2 +-;; lzl for lzl 2:: ka, 

provided the true density is a mixture of a normal density with an arbitrary 
one; I a 

- 2 In cos A z for I z I < A, 

d(z) = 

b( I ; I - 1) - 2 In cos~ z for I z I 2:: A, 



108 4 Parametric Statistics of Regression Estimation 

provided the true density is concentrated on the whole on the interval 
[-A,A]. 

Among these four methods, the least-square method (d(z) = z2) and the 
method of minimal absolute values (d(z) = I z I) do not involve free para­
meters. The latter method is the most universal-it is determined by a stable 
density in a wider class of densities. 

The other two methods of estimation involve parameters which are 
computed from the quantities defining the classes of densities. These methods 
should be used when possible to determine, as precisely as possible, the class 
of densities containing the desired one. 

Thus when estimating regression we were able to remove the condition 
knowing exactly the error distribution. It is sufficient to know the class of 
functions which contains the regression and a class of densities to which the 
error density belongs. However, all of this theory developed for symmetric 
densities is essentially asymptotic (since in deriving the basic relation (4.37) 
the law of large numbers was substantially utilized). Therefore the belief that 
the asymptotic situation will occur rather early is the only guarantee that the 
algorithms obtained will be workable for samples of limited size. 



Chapter 5 

Estimation of Regression Parameters 

§1 The Problem of Estimating Regression Parameters 

In the previous section we considered methods for estimating regression 
under conditions when the sample size increases indefinitely. However, 
strictly speaking, the results were related to the problem of estimating regres­
sion parameters rather than the problem of regression estimation. This 
substitution (instead of approximating functions we estimate their para­
meters) is legitimate for samples of sufficiently large size. As the sample size 
increases, the estimated parameters approach the true values and hence the 
function constructed using these parameters tends to the regression function. 
However, for samples of limited size the estimation of the regression is not 
always equivalent to the estimation of its parameters. 

Indeed, the quality of the estimator ix of the parameter a0 of the regression 
y(x) = F(x, a 0 ) is determined by the proximity of the vectors a0 and&: 

p(ao, ix)= II& - 1Xoll, (5.1) 
whereas the quality of the approximation of a function F(x, ix) to the regres­
sion F(x, a0 ) is measured by the proximity of functions. In Chapter l we 
agreed to consider the mean-square measure of proximity 

P1.(F(x, a0 ); F(x, &)) = (J (F(x, ix) - F(x, a0 ))2 P(x) dx) 
112 

(5.2) 

The criteria (5.1) and (5.2) are not identical, and it is possible that a solution 
which is the best according to one criterion may be the worst according to 
another. 

EXAMPLE. In the class of functions 

F(x, a)= a0 + a 1x + a 2x 2 

109 
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y 

4 

3 

2 

0 

Figure 5 

on the interval [1, 2], let the regression 

y = x2 

be estimated. Consider two solutions (Figure 5): first the polynomial 

F(x, &) = 0.5x 2 

and second the polynomial 

F(x, &) = 3x - 2. 

From the aspect of the parameter estimation criterion the first solution is 
better than the second (in any norm (5.1) the vector a = (0, 0, 0.5? is closer 
to the vector o:0 = (0, 0, ll than the vector & = ( -2, 3, O)T is). 

However, from the form of the criterion (5.2) the second solution F(x, &) 
is better. For any measure P(x) the inequality 

PL(3x - 2, x 2 ) < PL(0.5x 2 , x 2) 

is valid. 

When then is the problem of estimation of parameters of a regression 
based on samples of finite size equivalent to the problem of regression 
estimation? 

Assume that the class of functions to which the regression belongs is 
linear in its parameters 

n 

F(x, o:) = z:0:icpi(x), (5.3) 
i= I 

and let <p 1(x), ... , <p.(x) be a system of orthonormal functions with weight 
P(x), i.e., functions such that 

Jb {l for p = q, 
<pp(x)<pq(x)P(x) dx = 0 f 

a or p # q. 
(5.4) 



§2 The Theory of Normal Regression 111 

In this case the quantities which characterize the proximity of functions in 
the Li metric and the proximity of parameters in the Euclidean metric 
coincide, and the problem of approximating a function on [a, b] to the 
regression becomes equivalent to the problem of parameter estimation. 
Indeed, 

Jb ( n n )2 
pi,(F(x, &), F(x, c.<)) = a J/i<t>;(x) - Jti<p;(x) P(x) dx 

n 

= I(&; - c.<;)2. (5.5) 
i= 1 

The conditions (5.3) and (5.4) are sufficient to replace the problem of 
estimating the regression with that of estimating its parameters. However, 
in order to construct an orthogonal system of functions the knowledge of 
P(x) is needed. In this chapter we shall assume that the density P(x) is known. 

§2 The Theory of Normal Regression 

The estimation theory of regression parameters based on samples of fixed 
size is developed for the case when the class of functions to which the regres­
sion belongs is linear in its parameters: 

n 

F(x, c.<) = L c.<;<p;(x), (5.6) 
i= 1 

and secondly the structure of the measurement follows the Gauss-Markov 
model. It is assumed that the measurements of functional dependence 

n 

y(x) = L c.<?<t>;(x) 
i= 1 

are carried out at I fixed points 

(These points are not random.) 
The measurements are subject to an additive noise which arises randomly 

according to the density P(~), and has mean zero (i.e., J ~P(~) d~ = 0) and 
finite variance (J ~2 P( ~) d~ < oo ). The errors at points X; and xi (i # j) are 
uncorrelated. 

The result of measurements of the function ji = y(x) at points x 1, ... , x1 

is the random vector Y = (y 1, ... , y1)T whose coordinates are equal to 

n 

Yi = L c.<?<t>;(x) + ~i = Yi + ~i' j = 1, 2, ... , I. 
i= 1 
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Using vector notation, we have 

y = <l>IXo + ~' (5.7) 

where <I> is an l x n matrix with elements <p;(xi) U = 1, 2, ... , l; i = 1, 2, ... , n), 
IXo is the vector of parameters, and ~ is the noise vector. Thus the equalities 

MY = <l>IX0 , M{(Y - MY)(Y - MY)T} = a2I, (5.8) 

where I is the unit matrix, define the Gauss-Markov model. 
In the theory of estimating regression parameters, the special case of the 

Gauss-Markov model is considered for which the errors t are normally 
distributed. 

For the normal distribution of the errors the so-called theory of normal 
regression is valid. It is based on the following fact: the extremal method of 
estimating parameters of normal regression is the least-squares method, 
according to which as an estimator of parameters IX one should choose the 
vector 1Xemp which yields the minimum of the functional 

Jem/1X) = f J1 (Yi - it;({J;(x)r 

The following theorem is valid. 

Theorem 5.1. The least-squares estimators of parameters of a normal regression 
are jointly efficient. 

Below we shall prove this theorem and then construct a method estimating 
normal regression which is superior to the one based on the least-squares 
method. 

PROOF. We write the probability density of the error in the form 

P(e) = ~ exp{- 2\ (Yi - .± 1X?({J;(x)) 2
}. (5.9) 

....;2na a ,;1 

Here the problem of estimating regression parameters is equivalent to 
estimating the parameter of the distribution (5.9) based on the results of 
measuring the function y = y(x) at points x 1, ... , Xi, 

We now write the likelihood functiont 

P(y1, ... , Yi; IX) = P(1X) 

= (2n;i1 2ai exp{- 2!2 Lt1 (Yi - it;({J;(x)Y]} (5.10) 

t For brevity we shall write P(cx) in place of P(y1, ••• , y1; ex). 
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In view of the Cramer-Rao inequality (cf. Chapter 3, Section 11) the Fisher 
information matrix II /;)I (the matrix with elements 

J;- = -M a2 Jn P(a)) 
!J aai aaj 

determines the limiting accuracy of the joint estimators of the vector of 
parameters <"J. in the class of unbiased estimators. Namely, for any vector z 
the inequality 

zTll/;)l- 1z s zTBz 

is valid, where Bis the covariance matrix of unbiased estimators of the para­
meter vector. Thus the limiting accuracy in the class of unbiased estimators 
is attained for the estimation method for which 

(5.11) 

We shall show that in the case of normal errors the equality (5.11) is attained 
when the regression parameters are estimated using the least-squares method. 
Indeed let us compute the elements J;i of the Fisher matrix. Taking (5.10) 
into account we obtain 

a2 In P(rx) 1 1 

J;j = -M a a = 2 ML <r>lx,)<p/x,), 
IY.i IY.j (j r= 1 

or in matrix form 

1 T 11/;)I = 2 M<I> <I>, 
(j 

(5.12) 

where <I> is an I x n matrix with elements <r>lx), i = 1, ... , n,j = 1, ... , l. 
We now compute the elements bii of the covariance matrix B of estimators 

obtained using the least-squares method. For this purpose we shall find the 
estimator of regression parameters using the least-squares method, i.e., 
the vector aemp which minimizes the functional 

J I ( n )2 
lemp(rx) = -1 _L Yi - _L IY.;<plx) 

1=1 ,=1 

(5.13) 

Minimization of /emp(a) with respect to a is equivalent to the solution of the 
following equation: 

(5.14) 

Equation (5.14) is called the normal equation. A solution of the normal 
equation for the vector of parameters a equalst 

t It is assumed that (<I> T<I>) is nonsingular; otherwise the generalized inverse (<I> T<I>) + is used in 
place of (<I> T<I>)- 1. 
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Observe that the least-squares estimator is unbiased: 

Ma.= M[(<l>T<l>)-1<l>TY] = !X.o, 

We now write the vector rx. - rx.0 of deviations of estimators of regression 
parameters from the true value of parameters 

IX._ !X.o = (<f>T<f>)-l<f>Te, 

where e is the vector of errors in measurement. 
Now we shall obtain the covariance matrix: 

B = M(rx. - !X.o)(rx. - rx.ol = (<l>T<l>)-l<l>TMeeT<l>(<l>T<l>)-1. 

Taking into account that MeeT = <121, we arrive at 

B = <12(<l>T<l>)-1. 

Hence for the case of normally distributed errors the covariance matrix of 
vectors of estimators is equal to the inverse of the Fisher information matrix. 
We have thus shown the efficiency of the least-squares method for the problem 
of estimating regression parameters when the observations are assumed to 
follow the Gauss-Markov model. D 

It should be mentioned that the least-squares method is an efficient method 
of estimating parameters only in the case of the Gauss-Markov model. In 
models with nonfixed measurement points x;, even with normally distributed 
errors, the least-squares method is only asymptotically efficient. Thus even 
in the case of the estimation of one parameter, 

ji = ax, 

when measurements subject to additive normal error 

y=ax+~ 

are taken at points x 1, ..• , x1 which are chosen randomly and independently 
according to distribution P(x), the estimator of the parameter a is not ef­
ficient. Indeed, exactly as above one can find the value of the Fisher informa­
tion quantity: 

I 

Mixf 
i= 1 

I..,, =-<1-2-

and compute the variance of the estimator of parameter a: 

(12 

D(a) = M-1-. 

Ixf 
i= 1 
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Observe now that since the function 1/x2 is convex, the inequality 

1 1 
M-1-~ 1 

Ixf M Ixf 
i= I i= I 

is valid. This implies that in the example under consideration 

D(a) ~ 1; 1 • 
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( 5.15) 

The only case when the inequality (5.15) becomes equality is when the 
observation points are fixed, which results in the Gauss-Markov model. 

§3 Methods of Estimating the Normal Regression 
that are Uniformly Superior to the Least-Squares 
Method 

Thus in the Gauss-Markov model the least-squares method is an efficient 
procedure for estimating parameters of a normal regression. This assertion 
required two stipulations: 

(1) The observations are carried out with normal errors. 
(2) The least-squares method is the best only among unbiased estimators. 

The question arises: Are these stipulations essential? They are indeed. 
The least-squares method retains its extremal properties only in the case of 
normal errors r When the number of observations / ~ 2n + 1 (n is the 
dimensionality of the basis), then the efficiency of the least-squares method 
implies that the errors are normally distributed [23]. 

No less important is the second stipulation: even under the conditions of 
normally distributed errors- in a class of biased estimators, there exist 
estimators which are uniformly superior to the least-squares estimators. 

Definition. We say that for the loss function 

110( - 0(011 2 = (0( - O(o)T(O( - O(o), 

the estimation method O(A(Y 1, ... , y1) of a vector of parameters 0(0 is uniformly 
better than the estimation method O(a(y 1, ... , y1) if for any 0(0 the inequalities 

MIIO(A(Y1, ... , Y1) - 0(011 2 < MIIO(iY1, ... , Y1) - 0(011 2 

are satisfied. 

In this section we shall construct algorithms for approximating regression 
which are uniformly better (i.e., better for any 0(0) than those which result 
from the least-squares method. The bases for these algorithms are methods of 
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estimating the mean vector of a multivariate normal distribution, and in 
particular the following 

Theorem 5.2 (James-Stein). Let x be an n-dimensional (n 2 3) random vector 
distributed according to a normal distribution N(a, a2I) with the mean vector a 
and covariance matrix a2 I. Let S be a random variable independent of x 
distributed according to the central a2x2 distribution with q degrees of freedom. 
Then the estimator of the mean given by 

&(x, S) = (1 -; ~ ~ ll~l 2t x, 

{
z for z 2 0, 

(z)+ = 0 
for z < 0 

is uniformly better than &(x) = x. 

(5.16) 

In other words, the theorem asserts that the vector &(x, S) collinear to the 
observed vector x but different from x in its absolute value should be chosen 
as the estimator of a. This theorem is a particular case of a more general 
assertion to be proven in the next section. 

We shall now utilize Theorem 5.2 to construct an algorithm for estimating 
regression which is uniformly superior to the one based on the least-squares 
method. Let observations y 1, ••• , y1 be carried out at the points x 1, •.. , x1; 

our purpose is to construct an approximation of a normal regression superior 
to the least-squares one. As above, we shall define proximity of functions 
using the L} metric: 

PL(F(x, &), F(x, a)) = (J (F(x, &) - F(x, a))2 P(x) dx) 
112 

We now proceed to a doubly orthogonal basis 

1/1 1(x), ... , lj;.(x), 

i.e., a basis which satisfies 

J lj;;(x)lj;/x)P(x) dx = {~; 
for i = j, 
for i =I j, 

for i = j, 
for i =I j, 

and seek the regression expanded with respect to the basis (5.17)t 

n 

F(x, a)= L a;I/J;(x). 
i= I 

(5.17) 

(5.18) 

t According to the theorem on simultaneous reduction of two quadratic forms to a diagonal 
form using a linear transformation, such a basis exists and may be constructed using linear 
algebra. 
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In the new basis the proximity of the function F(x, a) to the regression F(x, a0 ) 

is given by 

pf.(F(x, a), F(x, a0 )) = pf.(a, a0 ) 

= f (t (af - IX;)if;;(x)) 
2 
P(x) dx = J1 A;(af - a;)2. 

Thus our purpose is to obtain an algorithm &(y1, ... , y1) for estimating the 
parameter a0 such that the quantity 

n 

Mpi,(&(y1, · · ·, Y,), 1Xo) =ML ,1,;(&;(yi, · · ·, Y,) - af)2 (5.19) 
i= I 

is less than 

where 1Xise = (ai1.e, ... , a?se? is the least-squares estimator. 
Consider now the least-squares estimator of regression parameters. In 

the basis (5.17) this estimator becomes 

where <I> is an / x n matrix with elements lj;;(x), j = 1, ... , I, i = 1, ... , n, 
and Y is the vector of observations. The vector 1Xise is a random vector normal­
ly distributed with the mean vector 

Maise= M<l>TY = IXo 

and the covariance matrix a2 I: 

M(alse - 1Xo)(1X1se - 1Xo) T = M<I> T l~T<I> = a2 I. 

Thus the problem of estimating the parameter a0 of the regression is reduced 
to the estimation of the mean vector a0 of a normal distribution N(a0 , a2 I) 
based on its realization 1Xise. 

If in (5.19) all the A; were equal, Theorem 5.2 could be used to construct 
an algorithm for estimating regression which is better than the least-squares 
one. Indeed, as will be shown below, the statistic 

(5.20) 

does not depend on 1Xise and is distributed according to the central a2x2 

distribution with I - n degrees of freedom. Therefore according to Theorem 
5.2 the estimator 

A (l n - 2 yTy - IX~elXlse) 
IX - T 1X1se 

I - n + 2 1X1se IX1se + 
(5.21) 

is uniformly better than IXise• i.e., yields a value of the criterion ( 5.19) (in the 
case when ,1, 1 = · · · ,1,n) smaller than 1Xise· However, in the doubly orthogonal 
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system (5.17) constructed above, not all A; are generally equal. Thus obtaining 
a better approximation to the regression in the case of unequal A; involves 
the determination of an estimation method yielding a value for the criterion 
(5.19) which is lower than that due to the least-squares method. 

Construction of such an estimating algorithm is also based on the results 
of Theorem 5.2. We shall assume that the functions t/J; are enumerated in 
increasing order of A; (J1 ~ A.2 ~ • • • ~ An ~ 0). We shall introduce the 
following notation: let a0(p) be a vector of dimensionality p, consisting of the 
first p coordinates of the vector a0 =(a?, ... , a~)T; let a18e{p) be the vector 
consisting of the first p coordinates of the vector of estimators obtained by 
the least-squares method a,se-

Define n numbers/1, .•. ,f,,: 

/1 = 1, 

( S p-2 ) 
fp = l - IY. l~e(p) IY.1se(P) / - P + 2 +' p = 2, ... , n. 

Using these numbers, we construct n numbers hP by the rule 

n 

L (A; - A;+ 1)h 
hp= _;;~p-----, where An+l = 0, 

JP 

The following theorem is valid. 

p = 1, 2, ... , n. 

Theorem 5.3 (Bhattacharya). For the risk function (5.19) the estimator 

n ~ 3, 

is uniformly better than the estimator IY.ise = (afse, ... , afs.) T_ 

(5.22) 

PROOF. The proof of Theorem 5.3 is based on Theorem 5.2, according to 
which for any p the inequality 

(5.23) 

is valid. 
Consider the randomized estimator 

(5.24) 

where gk are random variables independent of S and y distributed according 
to 

An+i=O. 
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The value of this risk (5.19) for this estimator is equal to 

" 
Pi(Ga1 •• , ao) = ML -1igkaf •• - aZ)2 

k=I 

_ ~ ~ Aj - Ai+ 1 k o 2 
- k~1 j~k Ak AkM(Jja1 •• - ak) . 

We now utilize the inequality (5.23): 

" " 
Pi(Ga1 •• , a0 ) = L L (,1,i - Ai+ 1)M(af •• Jj - aZ)2 

k= 1 j=k 
" j 

= L (,1,j - Aj+ 1)M L (af •• Jj - af)2 

j=l k=l 

" 
= L (,1,j - Aj+1)Mlla1 •• U)Jj - aoU)ll 2 

j= 1 

" 
~ L (,1,j - Ai+ 1)Mlloc1 •• U) - aoU,11 2 

j= 1 
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Thus the value of the risk for the randomized estimator of the parameters 
is less than the corresponding value for the least-squares estimator. On the 
other hand, it follows from the convexity of the loss function (5.19) that the 
nonrandomized estimator (5.22) is at least as good as the randomized esti­
mator (5.24). Thus the approximation to the regression determined by the 
parameters (5.22) is uniformly better than the least-squares approximation. 
The theorem is proved. D 

It remains to show that statistics S = yTy - a~0 a1 •• does not depend on 
a1 •• and is distributed according to the central a2 x2 distribution with I - n 
degrees of freedom. For this purpose we shall complete the system of n 
vectors t/1 1, ... , t/1., orthonormal on x1, ••• , x1: 

t/J; = (t/J;(x1), · · ·, t/J;(X1))\ 

t/JTt/J. = {1 for i = j, 
' 1 0 for i 'I= j, 

i,j = 1, 2, ... , n, 

so that it becomes a complete orthonormal system consisting of I orthonormal 
vectors 

t/JTt/J·={l fori=j, 
' 1 0 for i 'I= j, 

i, j = 1, 2, ... , I. 
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We now expand Yin terms of this system: 

n I 

y = L Yir/li + L yjr/Jj, (5.25) i=l j=n+l 
where 

i = 1, 2, ... , n, 

j = n + 1, ... , I. 

Substituting (5.25) into (5.20), we obtain 
l 

s = I yJ, (5.26) j=n+l 
and hence S does not depend on Ol'.lse (but only on Yi,j = n + 1, ... , I). Since 
by assumption Y = Y0 + ~ and the vector Y0 can be expanded in terms of 
this incomplete system (5.17) 

n 

Yo = L Ol'.?r/li, i= 1 
we have the inequality 

-T 
Yi = e I/Ji. 

Substituting the value of Yi into (5.26), we obtain 

s = j=t/f = j=t+l (tei r/Jj(xi)r 
I 

I eJ, 
j=n+ 1 

and hence the statistic Sis distributed according to the central a2x2 distribu­
tion with I - n degrees of freedom. 

§4 A Theorem on Estimating the Mean Vector of 
a Multivariate Normal Distribution 

In this section we shall obtain a family of estimators of the mean vector 
which are uniformly better than the estimator Ol'.(x, S) = x. The estimator 
(5.21) belongs to this class. 

Let x be a random vector distributed according to N(Ol'.0 , <121), and S be a 
random variable independent of x distributed according to the central 
a2x2 distribution with q degrees of freedom. We denote F = x T x/S. 

The following theorem is valid. 

Theorem 5.4 (Baranchik). An estimator of the n-dimensional (n 2!: 3) mean 
vector 

( r(F)) &(x, S) = 1 - F x, 
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where r(F) is a monotonic nondecreasing function satisfying 

n - 2 
0 ~ r(F) ~ 2--2, 

q+ 

is uniformly better than the estimator ct(x, S) = x. 

121 

(5.27) 

Remark. Theorem 5.2 is a particular case of Theorem 5.4 obtained by setting 

!
n - 2 n - 2 
--2 for F 2:'. --2, 
q + q + 

r(F) = 
n - 2 

F for F <--2 . 
q+ 

PROOF. In the proof of Theorem 5.4 the following fact is used: the mathematical 
expectation of a random variable f (x2( n, b)) taken with respect to the measure 
µ(x2(n, b)), where x2(n, b) is a random variable with the noncentral x2 distri­
bution with n degrees of freedom and noncentrality parameter b, can be 
represented as 

Mf(x2(n, b)) = Mf(x;+2k), 

where x;+ 2k is a random variable with the central x2 distribution with n + 2k 
degrees of freedom, and k is a random variable distributed according to the 
Poisson distribution with parameter b: 

bk 
P(k) = exp{ -b} k!" 

(The mathematical expectation on the right-hand side is evaluated with 
respect to x as well as with respect to k.) 

Thus 

00 bt 
Mf(x2(n, b)) = Mf(x;+2k) = exp{ -b} I , Mf(x;+2r)-

r=o t · 
(5.28) 

We now proceed directly to the proof of the theorem: Our purpose is to show 
that the difference 

H = Mll&(x, S) - ctoll 2 - Mllx - ctoll 2 

is nonnegative. Denote 

and transform (5.29) 

g(F) = 1 - r(F) 
F 

H = M[xTxg2(F)] - 2ctJMg(F)x + ilctoll 2 - mr2. 

(5.29) 

(5.30) 
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The expressions (5.31)-(5.34) below are derived under the assumption that S 
is fixed. According to (5.28) we have 

= exp{- llaoll 2
} ~ llaoll 21 M[ 2 2 g2(a2x;+21)] (S.3l) 

. 2a2 rf'o t!(2a2y a Xn+2t S . 

We now transform the expression 

T T (XTX) a0 Mg(F)x = a0 Mg S x. 

For this purpose we shall perform an orthogonal transformation of vectors 
x into vectors z such that in the new coordinate system the mean vector is 
equal to (llaoll, 0, ... , 0) (only the first coordinate does not vanish, and it is 
equal to the norm of the mean vector). This transformation leaves S unaltered. 
We obtain 

where z is the first coordinate of the vector z = (z 1, ... , zn?· 
Observe now that 

Thus we obtain 

2 { llaoll 2
} d {llaoll 2

} (a2x;+2k) = a llaoll exp - 2a2 dllaoll exp 2a2 Mg S , 

where k is a random variable distributed according to the Poisson distribu­
tion with the mean II a0 II 2 /(2a2). Finally we obtain 

aJMg(XTX)x = 2a2 exp{- llaor} f t(llaor)t Mg(a2x,;+21IS). (5.32) 
S 2a i=o 2a t. 
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Now taking into account that II ix0 II 2 /(2a2 ) is the mean of the random 
variable k distributed according to the Poisson distribution, we express the 
third summand in the sum (5.30) in the form 

( llixoll 2
)

1 

II 11 2 = 2 2 {- llixoll 2} ~ t ~ 
1Xo a exp 2 z ~ ' • 

CJ' t=O t. 
(5.33) 

We can thus represent the expression (5.30) in the form 

( llixof)r 
2 { llixoll 2} 00 2a2 

H = rr exp - --2 L ~--
2a t=O t ! 

x [ Mx~+ 2r g2 (a
2xf + 21) - 4tMg(a

2xf + 21) - n + 2r} (5.34) 

Now let S = a2 x~ be a random variable distributed according to the 
central a2x2 distribution with q degrees of freedom. The theorem will be 
proved if we verify that the expression 

h = M[ 2 2(X~+2 1) _ 4t (X~+2 1) _ + 2t] Xn+219 2 g 2 n 
Xq Xq 

is nonpositive for all t. 
2 2 Denote X,.+ 2r/Xq = u, and observe that 

u(l - g(u)) = r(u). 

Therefore condition (5.27) implies that 

n - 2 
g( u) > 1 - 2 -- u - 1. 

q + 2 

(5.35) 

(5.36) 

(5.37) 

We transform the expression (5.35) utilizing notation (5.36) and the fact that 
Mx~+2r = n + 2t: 

[ r(u)·J 
h = M -2r(u)x: + r(u)(l - g(u))x: + 4t -u-

= M[r(u)x:(-1 - g(u) + +)]· 
Xn+ 2r 

Taking (5.37) into account, we obtain that the quantity h does not exceed 

where 

2 [ ( n - 2 2 ) 1 ] ( = Xq - 2 + 4t + 2 --2 Xq - 2~ · 

q + Xn+21 
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For any fixed x; we determine a constant a such that 

- 2 + 4t + 2 -- x2 - = o. ( n-2 )1 
q + 2 q a 

(5.38) 

Observe that for any x; + 21 > a the inequality ( < 0 is valid. Therefore taking 
into account that in view of the condition of the theorem the function r(u) is 
nondecreasing, we obtain the bound 

M {r( x~r1), I x;} 
~ r(;;)MWx;+21 ~ a}P{x;+2r ~ a} 

+ r(~)Mmx;+2r > a}P{x;+2r > a} 

= r(;;)Mmx;} 
= r(~ )x; [ -2 + ( 4t + 2 : : ~ x;) n + ;t _ 2] 

= 2 n:; ~ 2 r(;;)x;(-1 + q 12)- (5.39) 

(We have used the equality M(l/x;.) = 1/(m - 2) (m ~ 3).) 
Substitute now into (5.39) the value of a satisfying (5.38), and compute the 

mathematical expectation of the last term in (5.39), which is 

n - 2 { (2t n - 2) 2 [ 1 x; ] } 2 n + 2t - 2 M r x; + q + 2 Xq - + q + 2 · 

Taking into account that r(u) is a nondecreasing function we find the bound 

M{rG: +;: ~)x;[-1+q1 2]} 

~ r(n: ~; 2)M{x;[-1 + q 12] Ix;~ q + 2} 

+ r(n: ~; 2)M{x;(-1 + q 12) Ix; > q + 2} 

= r(n: ~; 2)M{x;[-1 + q 12]} = o. 

(For a central x2 distribution we have Mx; = q, M(x;)2 = q(q + 2).) 
Thus the quantity (5.35) is nonpositive and the theorem is proved. D 
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§5 The Gauss-Markov Theorem 

Up until now, when estimating regression it was assumed that the errors are 
distributed according to the normal distribution. We shall now relax this 
assumption. It will be assumed that the distribution of errors is unknown 
but has a bounded variance. Under these conditions it is required to construct 
the best algorithm for the regression estimation. 

Above, when developing the theory of normal regression we first estab­
lished that in the class of algorithms leading to unbiased estimators of the 
parameters the least-squares method was optimal, but for a wider class of 
algorithms procedures which are better than the least-squares method were 
obtained. We shall now proceed analogously. First we shall show that in 
some narrow class of estimating algorithms the least-squares method is the. 
best, and then we obtain estimation methods in a wider class of algorithms 
which are superior to the least-squares method. 

Under the assumption of normal errors the least-squares method is the 
best in the class of unbiased methods of estimation. In this section we shall 
show that in a narrower class of estimates which are both linear and unbiased, 
the least-squares method yields the best estimating algorithms independently 
of the distribution of the errors. 

Definition. We say that an estimator of the parameter rx is linear in the observa­
tions Y = (y 1, •.. , y1) T if it can be represented in the form 

rx = LY (5.40) 

where Lis a matrix with the entries f3ii (i = 1, ... , l;j = 1, ... , n). 

The following theorem is valid: 

Theorem (Gauss~ Markov). Among all the linear unbiased estimators the 
least-squares estimator possesses the minimal variances of the coordinates. 

We shall prove the Gauss~Markov theorem in its more general form for 
the case of linear biased estimators. Denote by rx0 the vector of parameters 
of the linear regression 

( y = <l>rxo + ~). ( 5.41) 

Define the estimator rx(B) as the solution of the equation 

(5.42) 

where B is a symmetric nonnegative definite n x n matrix which defines 
the bias vector µ 0 • We shall show that the estimator rx(B) possesses extremal 
properties. Namely, the following theorem is valid. 
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Theorem 5.S. Among all the linear estimators of the vector of parameters (X 
with the bias vector equaling µ0 , the estimator (X(B) possesses the minimal 
variance of coordinates. 

PROOF. We obtain from (5.42) 

M(X(B) = M(<l>T<I> + B)- 1<1>TY = (<l>T<I> + B)- 1<1>T<l>(X0 • (5.43) 

Let 12 = LY be an arbitrary linear estimator such that 

Ml2 = M(X(B) = µo + (Xo = µ. 

Then we obtain from (5.42) 

MLY = L<l>(Xo = (<l>T<I> + B)-l<l>T<l>(Xo· 

Since the equality (5.45) is valid for any (Xo, then 

L<I> = (<l>T<I> + B)-l<l>T<I>. 

We now write the variance of the ith coordinate of estimator 12: 

M(l2i - µ;)2 = M(l2i - (XiB) + (XiB) - µ1)2 

(5.44) 

(5.45) 

(5.46) 

~ M((XiB) - µ;)2 + 2M(l2i - (XlB))((XiB) - µi), (5.47) 

where µi is the ith coordinate of the vector µ. 
We shall show that the second summand on the right-hand side of (5.47) 

vanishes. Indeed, utilizing (5.44) and (5.46), we obtain 

M(l2; - (XiB))((XiB) - µ;) 

= M(l2; - (X;(B))(Xi(B) 

= u2ll(L - (<l>T<I> + B)-1<l>T)<l>(<l>T<I> + B)-1llii 

= u2ll(L<I> - (<l>T<I> + B)- 1<1>T<l>)(<l>T<I> + B)- 1llu = 0, 

where IIAllii denotes the element Au of the matrix IIAII-
Thus 

The theorem is thus proved. D 

The Gauss-Markov theorem follows from the theorem just proved by 
setting IIBII = 11011 in (5.42). In that case µ0 = 0. 

Further, in Chapter 8 to construct the regression estimators from small 
samples we shall make use of this theorem. We shall search for the best 
estimators among the estimators of the class (X(yB) (where y > 0 is a constant 
specifying the estimator of the class). The estimator (X(y*B) is called a 
ridge-regression estimator. 
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§6 Best Linear Estimators 

Thus, among linear unbiased estimators, the least-squares estimators are 
the best regardless of the distribution of the errors. In the next sections we 
shall consider a wider class of estimators-the class of linear estimators (not 
necessarily unbiased), and we shall obtain the best estimators in this class. 
These estimators will differ from the least-squares estimators provided 
nontrivial prior information concerning the estimated parameters is avail­
able. In cases when no nontrivial prior information is available the best 
linear estimator is still the least-squares method. 

Let the parameters of the regression 

n 

y = y(x) = L r1.?l/f;(x) (5.48) 
i= 1 

in a Gauss-Markov model be estimated from empirical data x1, y 1, ... , x 1, y1• 

Let i{, 1(x), ... , i{,n(x) be a doubly orthogonal basis 

f {l for i = j, 
il,;(x)i{,/x)P(x) dx = Oi 

for i # j, 

~ A A {l 
,~11/J;(x,)l/f /x,) = 0 

Consider the class oflinear estimators: 

aP = 0JY + pg, 

where 

for i = j, 
for i # j. 

ep = (0f, ... , er?, Y = (Y1, · · ·, Y,l. 
We introduce the system of orthogonal vectors 

X1, · · ·, x,; T {I for i = j, 
X; Xi = 0 for i # j, 

in which the first n vectors are 

i = 1, ... , n. 

We represent the vector 0P in the expansion in terms of (5.51): 

l 

0P = Lf3fXi· 
i= 1 

Then the equality (5.50) can be rewritten as 

l 

&p = I Pfx{Y + pg. 
i= 1 

(5.49) 

(5.50) 

(5.51) 

(5.52) 

(5.53) 
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We express the amount of deviation M(&P - 1X~)2 in terms of the parameters 
p. For this purpose we shall utilize the identity 

M(&p - 1X~)2 = (M(rxp - 1X~))2 + M(rxp - Mrxp)2. (5.54) 

The first summand on the right-hand side equals 

(M(&p - 1X~))2 = ctPflX? + pg - IX~ r-

The second summand equals 
l 

M(&p - M&p)2 = la2 L (Pf)2. 
i= 1 

Thus 

(5.55) 

The best linear estimator is the estimator which minimizes (5.55). 

§7 Criteria for the Quality of Estimators 

The best linear estimator can be obtained by directly minimizing with respect 
to p1, ... , Pi the right-hand side of the equality (5.55). The minimum of 
(5.55) is attained at Pf = P~ = · · · = Pf = 0 and pg = IX~, and this minimum 
is zero. 

Thus for each specific problem (specific values of IXo and a) a trivial biased 
estimator can be found which yields the minimum of the square of deviations. 
Now we wish to construct a linear estimator which will be suitable for a 
solution of a class of problems rather than for a single one. 

Let us define a class of problems R(a, a), to which the algorithm is appli­
cable, by means of the inequalities 

ap ::;; IXP ::;; bp, 

d::;; a::;; e. 
(5.56) 

We shall now determine the quality of an algorithm for estimating the 
parameter IXP in the class R(IX, a). As usual in such situations, we shall con­
sider two approaches: Bayesian and minimax. For each approach a different 
notion of the quality of a linear estimator will be introduced. 

According to Bayes's principle the best method for estimation is that for 
which the mean value of the criterion over the set of problems belonging to 
R(IX, a) is minimal (the measure on this set is given by the distribution 
P(1X, a)). 
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Definition. The estimator 

a~1) = I /3fxTY + {Jg 

is called linearly best in the mean if among all linear estimators it yields 
the minimum of the functional 

(5.57) 

Below we shall compute a Bayesian estimator for the case when the 
parameters a and CJ are distributed independently according to the uniform 
distribution on the corresponding intervals, i.e., 

{ 

n 1 1 
( ) _ TI ~b _ ----=-d if aP ~ aP ~ bp, d ~ CJ ~ e, 

p c~, CJ - i = i i a; e 

0 otherwise. 

(5.58) 

Thus the quality of the estimator is determined by the functional 

f n da; dCJ 
fi21f(/3) = fi2JP(f3 I a, CJ) I\ b; - a; e - d · (5.59) 

In accordance with the minimax principle the best method of estimation is 
considered to be the one which yields the minimum of fi2JP(f3 I a, CJ) for the least 
favorable problem (pair a, CJ). 

Definition. The estimator 

a~2 ) = I /Jf xTY + {Jg 

is called the best linear minimax estimator in the class R(a, CJ) if it yields the 
minimum of the functional 

fi21~(/3) = sup fi2JP(f3 I a, CJ) (5.60) 

in the class of linear estimators. 

In general there may exist problems belonging to the class R(a, CJ) for which 
the estimators a~1l and a~2l introduced above are worse than the least­
squares estimators /Jf.. = (0, ... , 1//, ... , O?, {Jg = 0 (only the pth co­
ordinate of the vector /Jf.. is nonvanishing). Therefore we shall define the 
third optimal estimator in such a manner that it will be uniformly better than 
the least-squares estimator. For this purpose we introduce the loss function 

fi21~(/3) = sup(fi2JP(f3 I a, CJ) - fi21P(f31se I, a, CJ)) (5.61) 
a,a 

and require that the optimal estimator minimize the expression (5.61). 
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Definition. The estimator 

°'~31 = L Pfxf Y + PS 
is called linearly uniformly better than the least-squares estimator if it yields 
the minimum of the functional (5.61) in the class of linear estimators and 
min11 D~(P) < 0. 

§8 Evaluation of the Best Linear Estimators 

The following three theorems constitute the basic content of the theory of 
the best linear estimator. 

Theorem 5.6 (Koshcheev). The best linear estimator of parameter °'P in the 
class R(rJ., u) is of the form 

aP + cP p<il 
lse l p 

oc<il =---­
P 

1 + !p(i) 
l P 

i = 1, 2, 3, (5.62) 

where cP = (ap + bp)/2, ocfse is the least-squares estimator, oc~1> is the best in the 
mean estimator, 

(ll - 4 d2 + de + e2 
Pp - (ap - bp)2 ' (5.63) 

oc~2> is the best minimax estimator, 
2 

c2> - e 
Pp - 4 (ap - bp)2' (5.64) 

oc~31 is the uniformly best estimator, and 

(3) - d2 
PP - 4 (ap - bp)2· (5.65) 

It thus turns out that the best linear estimators are biased. The structure of 
the estimators is given by the expression (5.62), where p~> are defined in 
(5.63)-(5.65), depending on the specific notion of the quality of an estimator. 
There exists a simple relationship which shows by how much a Bayes or 
minimax estimator is superior to a least-squares estimator. 

Theorem 5.7 (Koshcheev). The equality 

m,p( (i)) - 1 m,p( p ) ::o; (1.P - l ::o; °'Ise , 

1 + - p<il l p 

i = 1, 2 (5.66) 

is valid. 
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According to Theorem 5. 7 the optimal estimators rJ.~l are superior to the 
least-squares estimator by the factor (1 + (1//)p~>). Hence the smaller the 
sample size /, the better the estimators rJ.~>. 

Below we shall present the proof of Theorem 5.6. The validity of Theorem 
5.7 follows from a more general theorem considered in the next section. 

PROOF OF THEOREM 5.6 

(I) Derivation of the best linear estimator in the mean. We write the functional 
whose minimum determines under our conditions the best estimator in the mean: 

:»1;(/J) = f b, ... fb" r [fo2 ± <fJn2 + (1 ± /Jfrx; + wo - rxp)2] fI b d~i . ~ d. 
lit a 11 Jd 1=1 1=1 1=1 I a,e 

(5.67) 

This integral can be easily evaluated: 

I e3 - d3 i 

9J'!(/J) = - ~-- I c/Jnz 
3 e - d i= 1 

+ Il ~ fb' · · · fb" (1 I f3frx; + {ig - rxv) 2 
drx 1 · · · drx". 

j=l(bj a;) a1 Un i=! 

Denoting (a;+ b;)/2 = c;, (a; - b;)/2 = .It;, t; = rx; - c;, and substituting the variables, 
we obtain 

Since the integration is carried out over the symmetric intervals [ - .. H, .. HJ, the terms 
linear in I vanish. We thus obtain 

Here the notation 

is utilized. Finally we arrive at 

b = {I 
Ip 0 

for i = p, 

for i ¥- p 

I i 

f!ti'{(/3) = - (e 2 + ed + d2 ) L (/3f) 2 

3 i= I 

(5.69) 

(5.70) 

In order to obtain the best linear estimator in the mean it remains only to minimize 
the expression (5.70) with respect to parameters /3. 
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Equating the partial derivatives of (5.70) to zero, we obtain that 

Pf = 0 for i #- p, 

pg= -cp(IP~ - 1), 

A; 
e2 + ed + d2 

p~ = l.$12 

1 + P 

e2 + ed + d2 

Substituting the values (5.71) obtained into (5.53), we have 

1)((1) = 
p 

e2 + ed + d2 cP 

I JJ,2, x:Y + , 
Jn 1 + /.lfp 

1 + e2 + ed + d 2 e2 + ed + d2 

Introduce the notation p~1l = (e 2 + ed + d 2)/..i~. Then 

1 C - xTY + _I'_ p!l) 
1)((1) = / P I P 

p 1 
1 + - pol 

I P 

(5. 71) 

Observe that the quantity (1/l)x:Y is the least-squares estimator of the parameter 
I)(~. Thus 

C 
IJ(p + _I'_ p(l) 

lse / p 

I)(~!) = ---1--
1 + -p(l) 

I p 

The first part of the theorem is proved. 
(2) Derivation of the best minimax estimator. The functional whose mmtmum 

determines the best minimax estimator is equal to 

Utilizing the notation 

b- - Q-
A-=-'--' 

I 2 ' 

and substituting the variables in (5.72), we have 

I [ n n ]2 
= e2/I?f)2 + 1,~~':, i~/lf3f - Dip)ti + I (/f3f - Dip)ci + pg 

= e2/t(Pf)2 + [t11pf - ()iplA; + I JyPr - ()jp)cj + pg Ir 
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Thus 

We shall now obtain the minimum of (5.73). By choosing /3fi to be equal to 

/Jfi = - I U/3f - c5;p)c;, 
i= 1 

the second term of the sum in the square brackets becomes zero. Therefore it is sufficient 
to minimize 

The minimum of (5.74) is attained for 

/3f = 0 for i =f p, 

whence for /Jf = 0 (i =f p) the functional (5.74) becomes 

f:c1;;(/J) lpf ~ o <i" Pl = le2(/3~) 2 + (//3~ - 1)2..i;. 

The minimum of this expression is attained at 

Substituting (5.75) and (5.77) into (5.53), we obtain the best minimax estimator 

(ll A; T ( Ut; ) IA;cx.f,e + cpe2 
Ct. = --~-x y + --~- -1 C = ------

P e2 + IA; P e2 + IA; P e2 + Lit; 

Introducing the notation p~2 l = e2 /.It;, we arrive at 

cx.<2) = 
p 

Ct.p + /}: p(2) 
lse / p 

I + -p<2) 
l p 

(5.74) 

(5.75) 

(5.76) 

(5.77) 

(3) Derivation of the uniformly best linear estimator. To evaluate the uniformly 
best estimator it is required to minimize the functional 

f!j)Pi/3) = sup(r!i)P(/31 ex, a) - f!j)P(/3,,e I ex, a)), 
a.a 

or explicitly, 

(5.78) 
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It is easy to verify that in this case all the calculations are the same as those carried out in 

the preceding subsection, except that if 

l 

L. (Pf)2 - I < 0, (5.79) 
i=l 

then d = inf <1 should be taken instead of e = sup <1. 

Consequently 

l 

pg = - L. (lpf - h;p)c;, 
i=l 

Pf ={o .112 
I S2 + ;.llr 

for i ¥- p, 

for i = p, 
(5.80) 

where s is either inf <1 or sup <1, depending on the sign of Li= 1 (Pf)2 - I. However, for 

Pf as given by (5.80) the expression (5.79) is negative: 

I (Pf)2 - I = ( 2 .It; .21)
2 - I < 0. 

i=l s + .llp 

Hence s = inf <1 = d. Thus the uniformly best linear estimator is equal to 

where in this case 

C 
a.P + _!!. p(3) 

Jse / p 

a.~3>=----
1 1 + -p(3) 
I P 

(3) - d2 
PP - -2· 

.llp 

§9 Utilizing Prior Information 

D 

According to Theorem 5.6 the availability of the following prior information: 

(1) the interval [ai, ha to. which the estimated parameter r:,.P belongs, 
(2) the interval [d, e] to which the variance of the noise u belongs, 

allows us to construct the best linear estimators. According to Theorem 5. 7 
the functional defining the quality of the best linear estimator is 1 + (p~>//) 
times smaller than the functional corresponding to the least-squares esti­
mator. 

Usually it is not too difficult to obtain this prior information for solving 
practical problems within the Gauss-Markov model. As a rule the intervals 
in which the measured values of y are situated, 

(5.81) 
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are known. This knowledge results from long experience or from the knowl­
edge of the laws of nature. For example, when constructing the regression for 
the temperature forecast in Moscow on the 166th day of the year, it is known 
a priori that the forecast value of t lies within the given limits + 5°C ~ t 
~ 35°C. The knowledge of the bounds (5.81) allows us to obtain intervals 
for the estimated parameters. The equality a~ = M(l/l)xJY implies that 

Here the first sum I' contains the positive coordinates of the vector Xv = 
(t[lp(x 1), ... , t[lp(x1))T, while the second contains the negative ones. Anal­
ogously the bounds 

av= inf ~I xJY 2 ~/ (.I'r;t[lp(x;) + _I"T;t[lp(x;)) 
Y ,=1 ,=1 

are obtained. 
To estimate the interval for the variance we can also utilize our experi­

ence and knowledge of the laws which govern errors. However, if the interval 
obtained for the variance is too wide, we can then use alternatively the prob­
abilistic approach, which consists of choosing the interval which contains 
the true value of the variance with the highest probability. 

It is known that the quantity 

2 
aemp 

I n 

L yf - I L (afse)2 

i=l p=l 

I - n 

is an unbiased estimator of the error variance. We shall utilize Chebyshev's 
inequality 

P{a;mp 2 ~
2

} ~ ~' 

which implies that with probability 1 - ~ 

2 2 
a 2 aemp~· (5.82) 

The bound (5.82) may be refined if the nature of the error distribution is 
known. 

Based on the interval for the variance d ~ a ~ e and the interval to which 
the parameter aP belongs, the parameters p~> and c~> are found by means of 
which optimal linear estimators are constructed. Note that the more in­
definite the prior information is (the wider the interval is), the smaller the 
value of p~> will be and the closer the best linear estimator will be to the 
least-squares estimator. It can be shown that for trivial prior information 
( - oo < av < oo, 0 < a < oo) the best linear estimator coincides with the 
least-squares one. 
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To complete the theory of the best linear estimation it remains to clarify 
how sensitive the methods of linear estimation are to the precision of prior 
information. Theorem 5.8 answers this question. 

Theorem 5.8 (Koshcheev). Let &~ = ap(p~>, cp) be the best linear estimator 
computed from approximate values of the parameters p~>, cp, .ii P' while the 
true values of the parameters equal p~>, cp, .A p· Then the quality of the esti­
mator obtained is given by 

where 

(/J~))2 
1 + V;--(i)-

!!)P( A ( A(i) A )) - pp !!)P( p ) 
; t:1.P Pp, cP - (l + p~>)2 i t:1.1se 

(c c ) 2 
V1 = 1 + 3 P .Jl P P , 

(i = 1, 2), (5.83) 

(5.84) 

Observe that Theorem 5. 7 is a particular case of Theorem 5.8 for cP = cP 

and p~> = p~>. 
It follows from the equality (5.83) that if the value of parameter p~> is 

related to p~> and v; by the inequality 

A(i) 
(i) Pp V; 

Pp > 2 + p~>' (5.85) 

then the estimator obtained using p~>, cP will be better than the least-squares 
estimator. Consequently the choice of p~> is based on two contradictory 
considerations. To obtain an estimator at least as good as the least-squares 
one, the value of p~> should be reduced (so that (5.85) is fulfilled). But the gain, 
which is approximately equal to !!);(af..)/(1 + µCil), is decreased. 

PROOF OF THEOREM 5.8. First we shall compute the value of the criterion (5.55) for the 
estimator &p(p~>cp): 

( 
c . 

c,:f, +~PA (•) 
se / p 

=M A(i) 

1 +~ 
I 

c,:o + ~ p(il)2 (c,:o + ~ pU> )
2 

P I p P I P 

---- + ---- c,:o 
1 1 P 

1 + p(i) - 1 + p(i) -
P I P I 
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The two relations ( 5.83) claimed in the theorem are verified by elementary calculations 

hence 

(J2 ('(1))2 
~ + I!.!!___ (c - a0)2 

P - fcp+Atp fe l I P P _!!.!!_ da~ 
.1\(&) - ( 1 )2 e - d .,JI cp-Atp d l + _ •(!) P 

I Pp 

____ + _P_ __P + (c _ c )2 1 e3 _ d3 (/P>)2 (.Jt2 
) 

3e-d I 3 p P 

(1 + f p~'J 
P _ Jcp+Alp _!,rJ._ Je (J2 _!!.!!_ _ e2 + ed + d2 

~,(afs.) - 2.Jt I - d - 31 ' 
cp-J{,p p d e 

~Hix) 

~Ha,s.) 
(c c ) 2 

v1 =1+3 PAPP. 

We now compute 

On the other hand, 

hence 

~~(&p) 

~~(IX1se) 

The theorem is proved. D 

We have thus studied the theory of estimating regression parameters. This 
theory is based on the fact that in a certain narrow class of estimators the 
least-squares method is optimal (for normal regression this class is the class 
of unbiased estimators, and for general regression theory it is the class of 
linear unbiased estimators). It then turned out that in a class of biased esti­
mators, better estimators than those arising from the least-squares method 
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may be constructed. Such nonlinear biased methods of estimation were 
obtained for estimating parameters of normal regression, while linear biased 
methods arise in the general model of regression estimation. 

Estimation methods presented in this chapter can be utilized for regression 
estimation provided the density P(x) is known and the regression is indeed a 
linear function in the parameters. 



Chapter 6 

A Method of Minimizing Empirical Risk 
for the Problem of Pattern Recognition 

§ 1 A Method of Minimizing Empirical Risk 

In the preceding three chapters the estimation of dependences was associated 
with the methods of estimating probability densities. The determination of 
the function which minimizes the expected risk 

/(a) = f (y - F(x, a)) 2 P(x, y) dx dy 

on the basis of the empirical data 

X1,Y1; ... ;x1,Y1 

(6.1) 

(6.2) 

was reduced to estimating the density F(x, y) on the basis of the sample 
(6.2) and minimization of the functional 

f 2-I.mp(a) = (y - F(x, a)) P(x, y) dx dy. 

As was mentioned in Chapter 2, this method of minimizing the risk (6.1) 
generally is not reasonable, because the problem of density estimation is a 
more difficult problem than the minimization of the expected risk. Only 
when a substantial prior information is available about the desired density 
P(x, y), so that the function P(x, y) can be defined up to its parameters, is 
this approach plausible. Methods of parametric statistics developed for this 
particular case were utilized in the preceding chapters. 

However, in specific problems the structure of the density P(x, y) is 
unknown. Thus the successful application of methods of parametric statistics 
hinges on the assumption that the hypothesized density structure cor­
responds to the true one. 

139 
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Starting with this chapter, we shall study methods of estimating depen­
dences which do not require density estimation. The basis for these methods is 
the principle of minimizing the empirical risk, according to which as the 
minimum point of the functional (6.1) one takes the minimum point of the 
empirical functional 

(6.3) 

constructed from a random independent sample (6.2). Let the minimum of 
functional (6.3) be attained for F(x, aemp). The problem is to establish when 
the obtained function F(x, aemp) is close to the function F(x, a0 ) which 
minimizes (6.1) in F(x, a). 

Above (Chapter 2, Section 6) we have associated this problem with the 
problem of the uniform convergence of the means to their mathematical 
expectations, i.e., with the situation when for any given value of deviation x 
the inequality 

(6.4) 

can be asserted. 
Let (6.4) be satisfied. Then the inequality 

P{I(aemp) - I(a0 ) > 2x} < 17 (6.5) 

is valid. In other words, if (6.4) holds, then with probability 1 - 17 the 
deviation of the function (solution) F(x, a0 ) which is the best in the class 
F(x, a) from the function which yields a minimum for the empirical risk 
F(x, aemp) does not exceed 2x. 

Indeed, the condition (6.4) implies that with probability 1 - '1 the two 
inequalities 

I ( aemp) - I em/ aemp) < X' 

Iem/ao) - I(ao) < X 

(6.6) 

are simultaneously satisfied. Moreover, since aemp and a0 are the minimum 
points of /em/a) and /(a), the inequality 

is valid. The inequalities (6.6) and (6.7) yield that 

J(aemp) - I(ao) < 2x. 

(6.7) 

(6.8) 

And since the inequalities (6.6) are both fulfilled simultaneously with proba­
bility 1 - 17, so is (6.8). Consequently 

P{J(aemp) - J(ao) > 2x} < 11· (6.9) 
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In this chapter we shall consider the theory of uniform convergence of the 
means to the mathematical expectations as applied to the problem of pattern 
recognition: i.e., in the case when the loss function in the functional of 
expected risk takes only two values, zero and one. In Chapter 7, for the 
problem of regression estimation we shall extend the results obtained to the 
case when the loss function takes on an arbitrary form in the interval (0, oo ). 
It is important to note here that the validity of basic theorems proved in 
these chapters does not depend on the form of the loss function. Therefore in 
spite of a quadratic loss function used in the text we shall obtain a general 

theory of risk minimization. 

§2 Uniform Convergence of Frequencies of Events 
to Their Probabilities 

Consider the functional whose minimization is the essence of the pattern 
recognition problem: 

J(rx) = P(rx) = J (w - F(x, rx))2P(x, w) dx dw. (6.10) 

As has already been mentioned, this functional defines for each decision rule 
the probability of erroneous classification. The empirical functional 

1 I 

/emp(rx) = v(rx) = l J
1 

(w; - F(x;, rx)) 2, (6.11) 

computed by means of the sample 

X;, W1; ... ; Xi, W1, (6.12) 

defines for each decision rule the frequency of incorrect classification. 
According to the classical theorems of probability theory the frequency 

of occurrence of an event converges to the probability of this event as the 
number of trials increases indefinitely. Formally this means that for any 
fixed rx and x the relation 

lim P{IP(rx) - v(rx)I > x} = 0 (6.13) 
1-00 

holds. However (cf. Chapter 2, Section 6), the condition (6.13) does not 
imply that the rule which minimizes (6.11) will yield a value of the functional 
(6.10) close to the minimal. For I sufficiently large the proximity between the 
solution obtained and the best one does follow from a stronger condition 
which stipulates that the equality 

lim P{sup IP(rx) - v(rx)I > x} = 0 (6.14) ,-co a: 
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is valid for any x. In this case we say that the uniform convergence of frequencies 
of events to their probabilities over a class of events S(ix) is valid. Each event 
S(ix*) in the class S(ix) is given by the decision rule F(x, ix*) as a set of pairs 
x, w for which the equality (w - F(x, ix*))2 = 1 is satisfied. 

Below we shall present conditions which assure uniform convergence of 
frequencies of events to their probabilities and at the same time determine 
the domain of applicability of the method of minimizing empirical risk. 
However, we first note that application of the method of minimizing the 
empirical risk does not guarantee a successful solution of the problem of 
estimating dependences. Here is an example of an algorithm for pattern 
recognition which minimizes the empirical risk but at the same time one 
cannot guarantee that the constructed decision rule will be close to the 
best in a given class: Elements of the sample are stored in memory, and each 
situation to be recognized is compared with the examples available in 
memory. If the situation at hand coincides with one of the examples it will 
be attributed to the class to which the example belongs. If, however no 
analogous example is available in memory, the situation is attributed to the 
first class. It is obvious that such a device cannot improve itself, since usually 
only a negligible fraction of the possible situations will correspond to the 
sample. At the same time, such a device classifies the elements of the sample 
without error, i.e., the algorithm minimizes the empirical risk down to 
zero. 

Below we shall verify that this algorithm uses a set of decision rules which 
form a system of events over which uniform convergence does not hold. 

§3 A Particular Case 

When does the uniform convergence of frequencies to probabilities take 
place? Consider the simple case where the class of decision rules F(x, ix) is 
finite, consisting of N rules: 

F(x, ix 1), ..• , F(x, ixN). 

An event A; corresponds to each decision rule F(x, ix;) consisting of pairs 
x, w such that (w - F(x, ix;))2 = 1. This defines a finite number N of events 
A,, ... , AN. 

For each fixed event the law of large numbers is valid (the frequency 
converges to the probability as the number of trials increases indefinitely). 
One of the specific forms of this law is the Hoeffding inequality: 

P{IP(ix;) - v(ix;)I > x} < 2exp{-2x2 /}. (6.15) 

We are however interested in uniform convergence, i.e., in the probability of 
simultaneous fulfillment of inequalities 

i = 1, 2, ... , N. 
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This probability can be easily bounded from above if the probability of 
occurrence of each one of the inequalities (6.15) is assessed separately: 

P{s~p IP(a;) - v(a;)I > x} ~ it P{IP(ai) - v(a;)I > x}. 

Taking into account the inequality (6.15), we obtain 

P{s~p IP(a;) - v(a;)I > x} < 2N exp{-2x2 l}. (6.16) 

This inequality implies that for a finite number of events the uniform con­
vergence of frequencies of occurrences of events to the corresponding 
probabilities is always valid, i.e., the limit 

Jim P{sup IP(ai) - v(ai)I > x} = 0. 
1-00 ' 

We now require that the probability of the realization of the event 

{s~p IP(ai) - v(ai)I > x} 

not exceed Y/, i.e., that the inequality 

P{s~p IP(a;) - v(ai)I > x} < 1J (6.17) 

will be fulfilled. It follows from the bound (6.16) that the inequality (6.17) is 
definitely satisfied if the quantities N, l, x, and '1 are connected by 

2N exp{ -2x2 l} = IJ. (6.18) 

If one solves Equation (6.18) for x, then for given N, l, and '7 an estimator of 
the maximal deviation of the frequencies from the corresponding probability 
in the class of events under consideration is obtained: 

X= 
In N - ln(11/2) 

21 
(6.19) 

If, however we solve Equation (6.18) for l, then we obtain the size of the 
sample such that with probability at least 1 - '7 one can assert that the 
maximal deviation of the frequency from the probability over this class does 
net exceed r. : 

1 = In N - ln(11/2) 
2x2 

We have thus proved the following theorem: 

(6.20) 

Theorem 6.1. Let the set of decision rules consist of N elements, and for decision 
rules F(x, a;) let the frequency of errors in the sample of size l be equal to 
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v(ix;). Then with probability 1 - I'/ one may assert that the inequality 

v(ixi) -
In N - ln(l'//2) 

21 ::; P( ixJ ::; v( ixi) + 

is valid simultaneously for all decision rules. 

In N - ln(l'//2) 

21 

Remark. Since the inequalities are valid for all N rules, Theorem 6.1 deter­
mines a confidence interval for the quality of a decision rule F(x, 1Xemp) 

which minimizes the empirical risk among N rules. This interval is 

In N - ln(l'//2) 
21 ::; P( 1Xemp) ::; v{ 1Xemp) + 

In N - In(l'//2) 

21 

In what follows the upper bound will be of importance: with probability 
1 - ,,, 

In N - In (l'//2) 
21 

is valid simultaneously for all decision rules (including those which minimize 
empirical risk). 

§4 A Deterministic Statement of the Problem 

The size of the confidence interval computed based on Theorem 6.1 may be 
excessive. Indeed, consider the case when the set consisting of N decision 
rules contains a rule which solves perfectly the problem of pattern recognition, 
i.e., a rule for which the possibility of erroneous classification will equal zero. 
Such a formulation of the problem is sometimes called deterministic.t Then 
this rule (or a rule close to it) should be found from the sample 
X1, W1; ... ; X1, W1. 

We seek this rule using the method of minimizing the empirical risk. Since 
there exists among functions F(x, ixi) (i = 1, ... , N) a function which solves 
the problem perfectly, it is clear a priori that for any sample x 1, w 1 ; ••• ; 

x1, w1 the value of the minimum of empirical risk will be zero. This minimum, 
however, can be obtained for several functions. Thus it becomes necessary to 
estimate the probability that the quality of any function which yields a value 
of zero for the empirical risk will not be worse than the given x. 

Introduce the function 

i'J(z) = {1 for z = 0, 
0 for z > 0. 

t The terminology is unfortunate, since the problem remains statistical. However, we use it 
because it is widespread. 
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Then an estimate of the rate of uniform convergence of frequencies to 
probabilities over the set of events for which the frequency of errors is zero 
is an estimate of the probability of an event 

{s~p IP(llC;) - v(llC;) IB(v(llCi)) > x} 
(rather than the event {supi IP(llCi) - v(llC;)I > x} as in Theorem 6.1). 

Since the number of functions for which the zero value of empirical risk is 
attained does not exceed N (the total number of the functions in this class), 
the inequality 

P{s~p IP(llC;) - v(llC;)IB(v(llC;)) > x} :=:; NPx (6.21) 

is valid. Here Px is the probability that the decision rule for which the 
probability of committing an error exceeding x will classify correctly all the 
elements of the sample. This probability may be easily bounded: 

Substituting the bound for Px into (6.21), we obtain 

P{s~p IP(llC;) - v(llC;)IB(v(llC;)) > x} :=:; N(l - x)1. 

In order that the probability 

may not exceed the value 17, it is sufficient that the equality 

N(l - x)1 = 11 

be fulfilled. Solving this equation with respect to I, we obtain 

l=lnN-ln17 
-ln(l-x)" 

Since for small x the approximation 

-ln(l - x) ~ x 

is valid, (6.25) may be represented in the form 

l=lnN-ln17_ 
X 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

In contrast with (6.20), the denominator here is x rather than 2x2 , i.e., in the 
deterministic formulation the sufficient size of the sample is smaller than 
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in the general case. Solving (6.24) with respect to x, we obtain 

lnN-ln11 
X = [ . 

Thus the following theorem is valid: 

Theorem 6.2. If one chooses from the set of decision rules consisting of N 

elements a rule that commits no errors in the sample, then with probability 
1 - IJ one can assert that the probability of erroneous classification using the 
selected rule is within the limits 

0 ~ P ~ X, 

where 

In N - In 1J 
X=--[--. 

§5 Upper Bounds on Error Probabilities 

Despite their apparent simplicity, Theorems 6.1 and 6.2 are quite deep. 
Essentially the subsequent development of the theory of minimizing empirical 
risk consists of a generalization of these theorems to the case of infinitely 
many decision rules. The basic points of this further theory are already 
available. We shall dwell on them in some detail. 

(1) Theorems 6.1 and 6.2 are immediately obtained from the bounds on 
the rate of uniform convergence, over a class of events, of frequencies to 
probabilities. Theorem 6.1 is based on the bound (6.16) on the rate ofuniform 
convergence over the class of events SN: A1, ..• , AN of frequencies towards 
probabilities. Theorem 6.2 is based on a bound on the rate of uniform 
convergence over a narrower class { IP(oc;) - v(oc;)I O(v(oc;)) ~ x}. Denote this 
class by SN. 

(2) In both cases the rate of uniform convergence was determined by the 
product of two quantities: the number of events in a class, and a bound on 
the probability that the frequency of any fixed event in the class deviates by 
more than x from the probability of this event. For the events considered in 
Theorem 6.1 this probability does not exceed exp{ -2x 2 l}; for the events 
considered in Theorem 6.2 the analogous probability does not exceed 
(1 - x)1 ~ exp{ -xi}. Thus a bound on the rate of uniform convergence of 
frequencies to probabilities over a class of events is obtained from a bound 
on the rate of the ordinary convergence which follows from the law of 
large numbers, by multiplying it by the number of events in this class. When 
constructing a theory of uniform convergence over a class of events with an 
infinite number of members, this structure of a bound on the rate of uniform 
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convergence is retained. However, instead of the number of events, in this 
case other characteristics of the "capacity" of the class of events are utilized. 

(3) In Theorem 6.1 two-sided bounds on the probability of erroneous 
classification using a decision rule which minimizes the empirical risk were 
obtained. However, for the subsequent theory the lower bound is of little 
importance. Therefore it is of interest to obtain a bound on a uniform one­
sided deviation, i.e., a bound on 

and not on 

P{ s~p IP(C.t;) - v(C.t;)I > ,f 
The probability of the event {suplP(C.t;) - v(C.t;)) > x} does not exceed the 
probability of the event {sup; IP(C.t;) - v(C.t;)I > x}. Consequently a more 
refined bound on the probability of a uniform one-sided deviation 
P{sup; (P(C.t;) - v(C.t;)) > x}, than that on the probability of a two-sided 
uniform deviation P{sup; IP(C.t;) - v(C.t;)I > x} is possible. Such a bound 
allows us to obtain from the above a bound on the probability of erroneous 
classification which is better than the one obtained from Theorem 6.1. 

(4) The bounds on the rate of uniform convergence given by (6.16) and 
(6.23) depend substantially on bounds on the probability of deviation of a 
frequency from the probability of events in the class under consideration 
(SN or SN). The least favorable event A for the class SN is that for which 
P(A) = ½. Therefore only the bound (6.16) is possible. For the class of events 
SN the least favorable event is the one for which P(A) = x. The more refined 
bound (6.22) is available for the probability of deviation of the frequency 
from the probability of this event. Thus the bounds obtained for the classes 
of events SN and SN differ in the same manner as the bound on the probability 
of a deviation of an event A such that P(A) = ½ differs from the corresponding 
bound on an event A' such that P(A') = x. This fact demands that more 
careful attention be given to the requirements imposed on the amounts of 
deviation of frequencies from the respective probabilities for different events 
in the class. For our purposes of obtaining a uniform bound on the risk it is 
reasonable not to require a uniform deviation of frequencies from proba­
bilities for all events in the class but to allow a larger deviation for events 
such that P(A) is close to ½ and a smaller one for events such that P(A') is 
close to x. For example, it makes sense to bound the uniform relative value 
of the deviation 

{ P(C.t;) - v(C.t;) } 
sup ( ) > x , 

i (J C.t; 

where a(C.t;) = JP(C.t;)(l - P(C.t;)); for small P(C.t;) the approximation 

a(C.t;) ~ jP{a;) is valid. We now obtam a bound on the probability of the 
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one-sided relative deviation 

{ P(a;) - v(a;) } 
P sup ~ > x, 

i v P(a;) 
(6.26) 

and using it we shall construct an upper bound on the probability of erroneous 
classification. To derive the bound (6.26) we shall utilize the inequality 

p{P(~a;) > x} < exp{ -½x2 l}. (6.27) 

It follows from (6.27) that for a class consisting of N events the following 
bound on the rate of uniform convergence is valid: 

P{sup P(~a;) > x} < N exp{ -½x 2 l}. 
; P(a;) 

(6.28) 

We shall require that the probability of uniform one-sided relative deviation 
( 6.28) not exceed Y/: 

N exp{ -½x2 l} = Yf. 

This is certainly satisfied if 

Let the condition (6.29) be fulfilled. Then the inequality 

P(a;) - v(a;) < x 
.jNiJ 

(6.29) 

(6.30) 

is satisfied simultaneously for all events Ai with probability 1 - r,. Solving 
(6.30) for P(a;), we obtain that 

x2 
( P(ai) < 2 1 + 4v(a-)) 

1 +7 + v(ai) (6.31) 

is valid with probability 1 - Y/ for all the events in the class simultaneously. 
Substituting (6.29) into (6.31), we obtain that with probability 1 - Y/, 

the N simultaneous inequalities 

In N - In Y/ ( 
P(a;) :s; l 1 + 1 2v(a;)/ ) ( ) +---- + vai 

ln N - ln Y/ 

are fulfilled. We have thus proved the following theorem: 

Theorem 6.3. Let the set of decision rules consist of N elements, and for each 
rule F(x, a;) let the.frequency of errors in the sample equal v(aJ Then one can 
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assert with probability l - 1J that the bounds 

In N - In 1J ( 
P(!Y.;) ~ l 1 + 

2v( ry_;)l ) 
1 + ln N - In 1J + v( ry_;) (6.32) 

are fulfilled simultaneously for all decision rules in the class. 

Remark. Since the bound (6.32) is valid, with probability 1 - IJ, simul­
taneously for all the rules in the class, it also holds for the rule F(x, !Y.emp) 
which minimizes the empirical risk. 

Theorem 6.3 allows us to estimate the quality of the rule which minimizes 
the empirical risk. Moreover, the bound (6.32) coincides with the bound 
given in Theorem 6.2 obtained in the extreme case when P(!Y.*) ~ 0, and it is 
close to the bound given in Theorem 6.1 for the second extreme case when 
P(!Y.*) ~ ½- The structure of bounds for an infinite class of decision rules 
is the same. 

§6 An a-net of a Set 

In the preceding sections we established the existence of a uniform convergence of 
frequencies of occurrences of events to the corresponding probabilities over a class of 
events consisting of a finite number of elements; we obtained bounds on the rate of this 
convergence and using it, bounds on the quality of a decision rule which minimizes the 
empirical risk. Our task is to generalize these results to the case of infinitely many 
events. 

In general.. however, in the infinite case the uniform convergence of frequencies to 
probabilities may not occur: for example, if the set of events is defined as consisting of all 
open subsets of the set X, w. In this case a situation may arise where (cf. the example in 
Section 2) an algorithm for minimizing the empirical risk yields the value zero for the 
risk but it is not capable of learning. Therefore the problem is to determine conditions 
which will assure uniform convergence for an infinite number of events, to bound its 
rate, and finally to obtain an upper bound on the probability of erroneous classification 
for a rule which minimizes the empirical risk. 

In mathematics the necessity often arises of extending results valid for a finite set of 
elements to the infinite case. Usually such a generalization is possible if the infinite 
set can be covered by a finite r,-net. 

Definition. The set B of elements in a metric space R is called an r,-net of the set G if 
any point c E G is distant from some point b E B by an amount not exceeding r,, i.e., 
p(b, c) < r,. 

We say that the set G admits a covering by a finite c-net if for each r, there exists an 
r,-net B consisting of a finite number of elements. 

In this section, for an infinite set of decision rules admitting a covering by a finite 
r,-net we shall obtain assertions analogous to the assertions of Theorems 6.1 and 6.3. 
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Thus let an infinite set of decision rules F(x, 0() be given on which the metric 
p(0( 1 , 0(2 ) = p(F(x, 0( 1 ), F(x, 0(2 )) is defined and a finite e-net is singled out. Let this finite 
e-net consist of N(e) elements. Moreover, let it be given that if two decision rules 
F(x, O(i) and F(x, 0(2) are distant from each other by an amount not exceeding e 
(p(0( 1, 0( 2) s e), then the quality of these rules differs by an amount not exceeding b(e), 
i.e., 

I Jew - F(x, 0( 1))2P(x, w) dx dw - J (w - F(x, 0(2))2P(x, w) dx dwl s b(e). 

In other words, a small variation in the decision rule implies a small variation in the 
quality of classification. 

Under these conditions Theorems 6.1 and 6.3 can be generalized as follows: 

Theorem 6.4. Let the set of decision rules F(x, 0() be covered by a finite e-net. Then with 
probability 1 - 17 the quality of the decision rule F(x, O(emp) which minimizes the empirical 
risk is bounded by 

In N(e) - ln(17/2) 
21 - b(e) S P(O(emp) 

In N(e) - ln(17/2) 
21 + b(e), 

where F(x, O(;(O(emp)) is an element of thee-net which is closest to F(x, O(emp). 

Theorem 6.5. Let the set of decision rules F(x, 0() be covered by a finite e-net. Then with 
probability 1 - 17 the quality of the decision rule F(x, O(emp) which minimizes the empirical 
risk is bounded by 

In N(e) - In '1 ( 
P(O(emp) S V(O(;(O(emp)) + l I + l + 2V(O(;(O(emp))l ) + b(e), 

In N(e) - In '1 

where F(x, O(;(O(emp)) is an element of thee-net which is closest to F(x, O(emp). 

Remark. Theorems 6.4 and 6.5 are valid for any e-net given a priori (before the appear­
ance of the sample). In particular the value of e which defines thee-net can be chosen 
in Theorem 6.4 from the condition of the minimum of expression 

In N(e) - ln(17/2) 
21 + b(e), 

and in Theorem 6.5 from the condition of the minimum of expression 

In N(e) - In 17 ( 
l 1 + 2d ) 1 + ---- + b(e), 

In N(e) + In 17 

where O s c s I is a constant (for example c = 0.5). 

Theorems 6.4 and 6.5 are proved in the same way: 
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PROOF. 

(1) A finite 1:-net consisting of N(s) elements 

F(x, 0( 1), ... , F(x, O(N(tJ) (6.33) 

is given for the set of decision rules F(x, 0(). According to Theorem 6.1 (6.3) the inequalities 

v(O(;) -
In N(s) - ln(11/2) 

21 

(

1 lnN(1:)-ln11( 
P(O(;) s I 1 + 

In N(s) - ln(11/2) 

21 

1 + I + V(O() 2V(O(.)/ ) ) 
In N(s) - In I/ ' 

are fulfilled with probability 1 - I/ simultaneously for all N(s) elements of (6.33). 

(6.34) 

(2) For any decision rule F(x, O(*) (including the one which minimizes in F(x, 0() 
the value of the empirical risk), the closest element of the 1:-net F(x, O(;(O(*)) can be found, 
for which this element satisfies 

I P(O(*) - P(O(;(O(*)) I s b(s). (6.35) 

The inequalities (6.34) and (6.35) imply that for the decision rule F(x, O(;(O(emp)) the 
relations 

In N - ln(11/2) 
21 - b(s) 

( In N(s) - In I/ ( 
P(O(emp) S / 1 + 

In N(s) - ln(11/2) ,5 
21 + (s), 

I+ 2V(O(;(O(emp))I) + b(s) + V(O(;(O(emp))) 
N(s) - In I/ 

are valid with probability I - 1/· The theorems are thus proved. D 

Thus if the set of decision rules F(x, 0() admits a cover by a finite 1:-net and the distribu­
tion P(x, w) is such that close values of the probability of erroneous classification 
correspond to close decision rules, then as the sample size increases the method of 
minimizing the: empirical risk should in principle successfully yield the desired result. t 
Moreover for each fixed s the probability of erroneous classification using the rule 
which minimizes the empirical risk is bounded in terms of the inequalities (6.34). 

However, in order to utilize these bounds the value of b(s) is required. To compute 
this value the density P(x) is used, which in the formulation of the problem of pattern 
recognition is assumed to be unknown. In the next chapter, when solving the problem of 
estimating regression, we shall obtain the value of b(s) and be able to utilize bounds 
on the quality of a function expressed in terms of the value of empirical risk b(s) and 
N(s). In this chapter, to obtain the rate of uniform convergence of frequencies to the 
respective probabilities over an infinite class of events, a new idea will be utilized. This 
will eventually lead us to the construction of necessary and sufficient conditions for 
uniform convergence, to the derivation of a bound on the rate of uniform convergence 
based on these conditions, and finally to a constructive bound on the quality of a 
decision rule obtained using the method of minimizing the empirical risk. 

t Although this assertion does not follow formally from Theorem 6.4, its proof is completely 
analogous. 
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§7 Necessary and Sufficient Conditions for Uniform 
Convergence of Frequencies to Probabilities 

Up until now we have utilized quite rough "capacity" characteristics of 
the set of decision rules (the number of elements in the set) to obtain bounds 
on the rate of uniform convergence. In this section we introduce a more 
refined characteristic of capacity-the entropy of a system of events on samples 
of size l. Using this characteristic one can establish exhaustive necessary and 
sufficient conditions for uniform convergence of frequencies of events to 
their respective probabilities, i.e., for the equality 

lim P{sup IP(ix) - v(ix)I > x} = 0 
I-+ co « 

to be valid for any x. 
Thus let a set S of decision rules F(x, ix) be defined and a sample xi, ... , x1 

be given. This sample can generally be subdivided into two classes in 21 

ways. However, only those subdivisions of the sample which can be accom­
plished using the rules F(x, ix) will be of interest. (Uusing the rule F(x, ix*), 
the set x1, •.. , x1 is subdivided into two subsets: one on which F(x, ix*) = 1, 
and the other on which F(x, ix*) = 0.) The number of different subdividing 
methods depends on the class of decision rules F(x, ix) as well as on the 
sample. We shall denote this number by 

L\5(x1, ... , X1), 

Consider the system of events 

S(ix) = {x, w: (w - F(x, ix))2 = l} 

formed by the set of decision rules F(x, ix). Let a random independent sample 

Xi, Wi; ... ; X1, W1 (6.36) 

be given. The system of events S(ix) induces A(S(ix); Xi, Wi; ... ; xi, w1) 
different subsamples on the sample (6.36). Clearly the number of these 
subsamples equals A5(xi, ... , x1). Since Xi, ... , x1 is a random independent 
sample the number of subdivisions A5(xi, ... , x1) is a random variable. 

Definidon. The quantity 

is called the entropy of a system of events S(ix) on a sample of size l. 

It turns out that for the uniform convergence of frequencies v(ix) to the 
respective probabilities P(ix) over the set of events, it is necessary and 
sufficient that as the sample size increases, the portion of the entropy due to 
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a single element of the sample approach zero, i.e., that the sequence 

H5(1) Hs(2) Hs(l) 
-1-, -2-, ... ' I 

approach zero as l increases. In other words the condition 

Jim Hs(l) = 0 
I-+ oo [ 
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(6.37) 

should be fulfilled. The proof of this assertion follows from Theorem A.1 of 
the Appendix to Chapter 7. 

Like any exhaustive conditions, the necessary and sufficient conditions 
stated above for the uniform convergence of frequencies to their respective 
probabilities utilize some refined concepts. In our case such a concept is the 
entropy H 5(l) of a system of events S(a) on samples of size /, which is con­
structed by means of the density P(x). In the case of the problem of pattern 
recognition the density is unknown, as stated above. Therefore, in order to 
establish the feasibility of minimizing the expected risk via the determination 
of the minimum of empirical risk, the necessary and sufficient conditions 
(6.37) cannot be used. 

For this reason it is important to obtain less refined sufficient conditions 
which firstly will not depend on the properties of the measure P(x) and 
secondly will admit a bound on the rate of uniform convergence. Such 
conditions may be stated in terms of a capacity measure of the system of 
events S(a) which is obtained from the entropy Hs(I) by abstracting it from 
measure properties. 

Definition. The function 

Xt,•••,Xl 

where the maximum is taken over all possible samples of size l, is called the 
growth function of a system of events formed by the decision rules F(x, a). 

The growth function is constructed in such a manner that it does not 
depend on the properties of measure P(x) and the inequality 

In ms([) ~ Hs(l) 

is always satisfied. Now if the quantity 

In ms(l) 

l 

(6.38) 

approaches zero as I increases, then in view of (6.38) the ratio Hs(l)/l tends 
to zero a fortiori. Therefore the condition 

1. In m5(l) 
1m --- = 0 

I-+ oo [ 
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is a sufficient condition for the uniform convergence of frequencies to their 
probabilities. Below we shall show that the growth function can be easily 
obtained for the events defined by various classes of decision rules F(x, ix) 
and hence the uniform convergence can be established. Moreover, as will 
be shown below, the rate of uniform convergence can also be estimated using 
the growth function ms([). 

§8 Properties of Growth Functions 

A growth function has a simple interpretation: it counts the maximal number 
of ways for subdividing l points into two classes using the decision rules 
F(x, ix). For growth functions the following remarkable theorem is valid. 

Theorem 6.6. A growth function is either identically equal to 21 or for l > his 
majorized by thefunction 

lh 
ms([)< 1.5 h!' 

where h + I is the smallest sample size such that the condition ms([) = 21 is 
violated. In other words 

The proof of this theorem is presented in the appendix to this chapter. 
In order to bound a growth function it is necessary to show that either ( 1) 

for any l, points x 1, ..• , x1 exist such that using the decision rules F(x, ix) 
it would be possible to subdivide them into two classes by any one of the 21 

ways, or (2) a number h exists such that h points can be subdivided into classes 
in all possible ways, but h + I points cannot. In the first case the growth 
function is exponential; in the second it is polynomial. The number h can 
serve as the measure of rliversity of the class of decision rules. 

Definition. We say that the class of indicator functions has capacity h if the 
inequality 

([ > h) (6.39) 

is valid. If the equality 
ms([)= 21 

is satisfied we say that the capacity h of the class of indicator functions 
F(x, ix) is in.finite. 
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It is easy to verify that if the capacity of the class of indicator functions is 
finite, then the uniform convergence of frequencies to the respective proba­
bilities always occurs. Indeed, in this case the relation 

h 

I s I h In I - L In i 
. nm(). i=t 

0 _-:::; hm 1 _-:::; hm ------ = 0 
l-oo l-+oo 

is valid and the sufficient condition is fulfilled. 
The following class of decision rules, which are linear in the parameter, 

plays an important role in the subsequent theory: 

e(z) = {1 for z 2". 0, 
0 for z < 0. 

(6.40) 

It is easy to obtain a growth function for a class of events defined by 
linear decision rules (6.40). For this purpose it is sufficient to determine 
the maximal number h of points in the space of dimensionality n which 
can be subdivided into two classes using a hyperplane in any one of the t' 
ways. It is known that this number equals n. Therefore according to Theorem 
6.6 the growth function is bounded by 

{n 
ms({) < 1.5 1 n. 

(/ > n) 

for the class of linear decision rules (6.40). Consequently for the class of 
linear decision rules sufficient conditions for uniform convergence are 
fulfilled. 

It was shown in Chapter 2 that uniform convergence of frequencies of 
events to their probabilities over a class of events defined by one-dimensional 
linear decision rules F(x, ix) = 0(x + ix) makes up the content of the 
Glivenko~Cantelli theorem, which asserts the uniform convergence of the 
empirical cumulative distribution function to the population one. 

§9 Bounds on Deviations of Empirically Optimal 
Decision Rules 

In the appendix to this chapter a bound on the rate of uniform convergence 
of frequencies to probabilities over a class of events S(ix) is obtained. It is 
shown that the inequality 

P{s~p IP(ix) - v(ix)I > x} < 6ms(2I) exp{- x:/} (6.41) 

is valid. The bound (6.41) is of the same form as the above: it is formed by 
multiplying the quantity 6m5(2l)-which is the capacity characteristic of the 
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system of events-by a bound on the probability that the deviation of the 
frequency from its probability exceeds x (the quantity exp{ -x2 l/4}). 

If the capacity of the class of decision rules is infinite (ms([)= 21), then the 
bound (6.41) is trivial, since for all x the right-hand side of the inequality 
exceeds 1. The bound (6.41) is meaningful when the capacity of the class of 
decision rules is finite: 

In this case it takes the form 

{ } (2lt { x 2l} P s~p I P(ix) - v(ix) I > x < 9 h! exp - 4 . (6.42) 

As l increases, the right-hand side of the inequality (6.42) tends to zero and the 
approach is faster for smaller values of the capacity h. We shall require that 
the probability 

P{s~p IP(ix) - v(ix)I > x} 
not exceed r,. This is certainly true if 

Equation (6.43) can be solved for K (using Stirling's formula): 

( 21 ) r, _ h In,;-+ 1 -In 9 
X- 2 [ . 

Then (6.42)-(6.44) imply the following theorem: 

(6.43) 

(6.44) 

Theorem 6.7. Let F(x, ix) be the class of decision rules of bounded capacity h, 
and let v(ix) be the frequency of errors computed from the sample for the rule 
F(x, ix). Then with probability 1 - r, one may assert that for l > h, and simul­
taneously for all decision rules F(x, ix), the probability of erroneous classifica­
tion is within the limits 

v(ix) - 2 
( 21 ) r, h In h + 1 - In 9 

l 

< P(ix) < v(ix) + 2 
( 21 ) r, h In h + 1 - In 9 

l 
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Remark. Theorem 6.7 implies that for the rule F(x, 1Xemp), which minimizes 
the empirical risk, the upper bound 

h(ln ¥ + 1) - In ~ 
P( 1Xemp) < v( 1Xemp) + 2 [ ([ > h) 

is valid with probability I - 17. 

In the appendix to this chapter it is shown that along with (6.41) the 
bound 

P{sup P(IX) - v(IX) > x} < Sm•(2l)e-x2114 

a ft{aj 
is valid. This bound is nontrivial for a class of decision rules of bounded 
capacity: 

P{ P(IX) - v(IX) > x} < 12 (2/t -x>i/4 
sup ~ h' e . 

a yP(1X) · 
(6.45) 

We shall require that the right-hand side of the inequality be equal to 1J: 

12 (2/l e - x2//4 = 
h ! 17. 

This is fulfilled if 

x=2 

(2ll 11 ( 21 ) 1J In - - In - h In - + 1 - In -
h! 12 ,.._, 2 h 12 

I "" I . (6.46) 

On the other hand, the inequality (6.45) can be stated as follows: with proba­
bility 17, simultaneously for all IX the inequality 

x2 
( P(1X) ~ 2 1 + 1 4v(1X)) ( ) +-2- +VIX 

X 
(6.47) 

is valid. The relations (6.46) and (6.47) imply the following theorem. 

Theorem 6.8. Let F(x, IX) be a class of decision rules of bounded capacity h, 
and for each rule F(x, IX) let the frequency of errors computed in the sample 
equal v(IX). Then with probability l - 1J one can assert that the bound 

( 21 ) 1J ( ) h In h + l - In 12 v(IX)l 

P(1X)~2 I l +JI+ ( ZI ) ~ + ,<a..,) 
hln-+1 -ln-

h 12 
(6.48) 

is valid for I > h simultaneously for all rules in the class. 
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Remark. It follows from Theorem 6.8 that for the rule F(x, ixemp) which 
minimizes the empirical risk the bound 

P(1Xemp) 

( 21 ) '7 
h In h + 1 - In 12 Ii 

'>2 I \+ v(ixemp)/ ) 
I + ( 21 ) '7 + V(1Xemp) 

h In-+ I - In~ 
h 12 

is valid. 

§10 Remarks on the Bound on the Rate of Uniform 
Convergence of Frequencies to Probabilities 

In this chapter we have obtained bounds on the rate of uniform convergence 
of frequencies to the respective probabilities: 

P sup IP(ix) - v(ix)I > x < e _' 2114 
{ } {

2N -2, 21 

a 6m5(2l)e " , 

and bounds on the uniform one-sided relative deviations of frequencies from 
their probabilities: 

{ 
P(ix) - v(ix) } {Ne- ,2 112, 

P sup---=- > x < 2 

' jP{ix) 8ms(2l)e-" 1/4 

Using these bounds, Theorems 6.1, 6.3, 6.7, and 6.8 were obtained, which allow 
us to estimate the quality of a decision rule minimizing the empirical risk. 

All the estimates obtained have the same structure, consisting of two 
factors: one which bounds the probability of the corresponding deviation 
(separately) for each event in the class, and another which characterizes the 
variety of the class of decision rules. Different characteristics of the variety 
of the class of decision rules are used for the bounds. The simplest is the 
number of decision rules in the class. The simplicity of this characteristic is 
due to the fact that it does not, for example, take into account whether the 
decision rules in the class are "substantially different" or whether all the 
rules are "equivalent." 

An adequate measure of the variety of the class of decision rules, by which 
it is possible to construct necessary and sufficient conditions for the uniform 
convergence of frequencies to their probabilities, is the entropy of the system 
of events defined by the decision rules. However, to compute the entropy 
of a system of events on samples of length l is possible only if the density 
P(x) is known, and it is assumed to be unknown in the formulation of the 
pattern recognition problem. Therefore a new measure of variety was intro­
duced which is obtained from entropy by choosing the least favorable distri-
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bution. This measure is expressed in terms of the capacity of the class of 
decision rules and can easily be computed. 

Various definitions of measures of variety of a class of decision rules 
generate different theorems on the quality of algorithms minimizing the 
empirical risk. However, in all these theorems the very same fact is asserted: 
if the measure of variety of a class of decision rules is small compared with the 
sample size, then the method of minimizing empirical risk allows us to choose 
a rule which is close to the best one in the class. 

A characteristic feature of the theory of minimizing empirical risk presented 
above is the complete absence of any indications as to the constructive 
feasibility of determining an algorithm. This feature has negative as well as 
positive aspects. On one hand, the theory does not give regular procedures 
for minimizing empirical riks; they should be implemented by a corresponding 
program. On the other hand, the theory is quite general. The method can be 
applied to various classes of decision rules: linear discriminant functions, 
piecewise linear discriminant functions, logistic functions of a particular 
kind, and so on. This is due to the fact that the theory of the method of 
minimizing empirical risk answers the question "what to do," leaving the 
question" how to do it" unsettled. Therefore various methods can be applied, 
including heuristic ones. 

The application of heuristic methods in this case has some theoretical 
justification: if in a class of decision rules whose capacity is small compared 
to the sample size one chooses a rule which, while it does not yield the 
minimum of the empirical risk, results in a sufficiently small value of it, then 
in view of the theorems proved above, the decision rule selected will be of 
sufficiently high quality. 

Constructive ideas for such algorithms admit a simple geometric interpre­
tation: It is required to construct in a space X a hypersurface belonging to a 
given class of hypersurfaces which-with the smallest possible number of 
errors-will separate the vectors of the sample in one class from the corres­
ponding vectors in the other. The assignment of vectors (including those 
which do not belong to a learning sequence) to a particular class is carried out 
according to the side of the subdividing hypersurface on which the vector is 
located. 

Methods of constructing separating hypersurfaces constitute a con­
structive part of the theory of pattern recognition. These methods are 
presented in Addendum I. 

§ 11 Remark on the General Theory of 
Uniform Estimating of Probabilities 

We have thus developed a theory of uniform estimating of error probabilities 
in pattern recognition for arbitrary classes of decision rules. Formally, in the 
functional which computes the probabilities of errors we wrote a quadratic 
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loss function. In proving the related theorems, however, the form of the loss 
function was unimportant. What is important is that Q(z, ix), ix EA, is a class 
of indicator functions. 

In fact, this chapter presents a theory more general than the uniform 
estimation of error probabilities in pattern recognition. Here a general 
theory has been developed for uniform estimation of probabilities from 
their frequencies in a class of events of limited capacity. We now formulate 
the basic assertions of this theory. The proofs are identical to those of similar 
theorems given in the chapter. 

Assume that a space Z is given on which a probability measure P(z) has 
been defined and a system of events S,,, ix EA, is specified (subsets measurable 
with respect to the given measure and belonging to Z). Let Q(z, ix), ix EA 
be a family of indicator functions on the sets S,,, ix E A (i.e., the function 

{o if z ¢ s,,) 
Q(z, ix) = 1 if Z E S,, . 

Let the capacity of the family of indicator functions Q(z, ix), ix E A, be 
finite and equal to h (there exists such an h that m8«(h) = 2\ m8«(h + 1) ¥-
2h+ 1 ). 

Under these conditions the following assertions hold on two-sided and 
one-sided uniform bounds of probabilities 

P(ix) = J dP(z) = J Q(z, ix) dP(z) 
Sa 

by virtue of associated frequencies 

1 I 

v(ix) = 1 i~i Q(z;, ix) 

computed on a sample 

Z1, ... , z,. 

Assertion 1. For any I > (ll/(A - 1 ))2, A > 1 with probability 1 - 17 simul­
taneously for all events S,,, ix EA, the two-sided bound 

v(ix) - A 
( 21 ) 17 h In - + 1 - ln-

h I 9 ~ P(ix) ~ v(ix) + A 
( 2/ ) I] hln,;-+1 -Jn 9 

I 

holds. 
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Assertion 2. With probability 1 - 17 simultaneously.for all events S,, rx EA, 
the one-sided bound 

P(rx) s v(rx) + 2 h l 12 1 + 
h(In 21 + 1) - In_!_ ( 

1 v(rx)/ ) 

+ h(In ~ + 1) - In ~ 
holds. 



Appendix to Chapter 6 

Theory of Uniform Convergence of 
Frequencies to Probabilities: Sufficient 
Conditionst 

§Al Sufficient Conditions for Uniform Convergence 
of Frequencies to Probabilities 

According to Bernoulli's classical theorem the frequency of occurrence of a 
certain event A in a sequence of independent trials converges (in probability) 
to the probability of this event. Often, however, it becomes necessary to 
assess simultaneously the probabilities of a class of events S based on the 
very same sample. Moreover, it is required that the frequencies converge to 
the probabilities uniformly over all events in the class S. More precisely, the 
probability that the maximal deviation over the class of frequencies from 
probabilities exceeds a given, arbitrarily small positive constant must tend 
to zero as the number of trials increases indefinitely. 

It turns out that even in the simplest cases uniform convergence may not 
occur. Therefore a criterion is required which will test whether such conver­
gence is present. 

Let X be a set of elementary events on which a probability measure P(x) 
is defined. Let S be a collection of random events, i.e., subsets of a space 
measurable with respect to the measure P(x) (Sis included in the a-algebra 
of random events, but does not necessarily coincide with it). Denote by X(l) 
the space of random independent samples taken from X of length I. 

For each sample X 1 = x 1, ... , x1 and event AES, the frequency of occur­
rence of event A is defined as the ratio of the number n(A) of elements of the 
sample belonging to A to the common sample size /: 

1 n(A) 
V (A) = v(x1, .. ,, X1) = -/-. 

t Necessary and sufficient conditions for uniform convergence of frequencies to probabilities 
will follow from the results presented in the Appendix to Chapter 7. 

162 



§A2 The Growth Function 163 

Bernoulli's theorem asserts that for a fixed event A the deviation of the fre­
quency from the probability tends to zero (in probability) with increasing 
sample size, i.e., for any x 

P{IP(A) - vi(A)I > x} ~ 0. 

Here, however, we are concerned with the maximal (over the class S) devia­
tion of the frequency from the probability: 

n(l) = sup I vi(A) - P(A) 1-
Aes 

The quantity n(l) is a function of a point in the space X(l). We shall assume 
that this function is measurable with respect to a measure in X(l), i.e., n(l) is 
a random variable. The theorems below deal with bounds on the probabil­
ities of the event n(l). 

§A2 The Growth Function 

Let X be a set, S be a system of its subsets, and xi= x 1, ... , Xi be a sequence 
of elements x of length /. Each set AES determines a subsequence X A of this 
sequence consisting of elements belonging to A. We say that A induces a 
subsequence XA on the sequence xi. 

Denote by 

the number of different subsequences X A induced by the sets AES. Clearly, 

~s(x 1, .•. , x1) ~ t. 

The number ~s(x 1, ... , xi) is called the index of the system S relative to the 
sample x 1, ... , Xi. 

The index of a system may be defined in another way as well. We shall 
consider A1 ES to be equivalent to A 2 ES relative to the sample x 1, .•. , Xi 

if XA, = XA,· Then the index ~s(x 1 , ... , xi) is the number of equivalence 
classes into which the system Sis subdivided by this equivalence relation. 

Clearly the two definitions are equivalent. The function 

(A.l) 
Xt,•••,Xl 

where the maximum is taken over all the sequences of length I is called the 
growth function of the system S. Here the maximum is always attained, since 
the index ~s(x 1, ... , xi) takes on a finite number of values. 

The growth function of a class of events possesses the following remarkable 
property. 
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Theorem A.I. The growth function either is identically equal to 21 or is bounded 
by the function 

n-1 

I Cl 
i=O 

where n is the minimal value of l such that 

ms(l)-# 21• 

In other words 

{

either 

ms(l) 
or 

= 2', 
n-1 

< ICl 
i=O 

To prove this assertion the following lemma is required. 

Lemma A.I. If for some sequence Xi, ... , x1 and some n 

then there exists a subsequence X" of length n such that 

PROOF. Denote 

n-1 

L Cl = <l>(n, l) 
i=O 

(A.2) 

(here and below we shall assume that Cl = 0 for i > l). For this function, as 
it is easy to verify, the relations 

<l>(l, l) = 1, 
<l>(n, l) = 21 if l ~ n + l, 
<l>(n, l) = <l>(n, l - 1) + <l>(n - 1, l - 1), if n ~ 2, l ~ 1 (A.3) 

are valid. In turn these relations uniquely determine the function <l>(n, l) 
for l > 0 and n > 0. 

We shall prove the lemma by an induction on land n. For n = 1 and any 
l ~ 1 the assertion of the lemma is obvious. Indeed, in this case 

L\5(x 1, •.• , x1) > 1 

implies that an element of the sequence X; exists such that for some A* ES we 
have X; EA*, while for some other A** e S we have X; ¢ A**. Consequently, 
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For l < n the assertion of the lemma is valid because the premise is false. 
Indeed, in this case the premise is 

~ 5(x 1, ... , Xz) > 21, 

which is impossible, since 

~ 5(x 1, ... , x1) ~ 21. 

Finally assume that the lemma is valid for n ~ n0 (n 0 2 1) for all l. 
Consider now the case n = n0 + 1. We show that the lemma is valid in this 
case also for all l. 

We fix n = n0 + 1 and carry out the induction on l. As was pointed out, 
for l < 10 + 1 the lemma is valid. We shall assume that it is valid for l ~ 10 

and show that it is valid for l = 10 + l. Indeed, let the condition of the lemma, 

~s(x1, ... 'Xzo, Xzo+ 1) > <!>(no + 1, lo + I) 

be fulfilled for some sequence x 1 , ••• , x 10 , x10 + 1 • The lemma will be proved 
if We find a subsequence of length no + 1, say xno+ 1 = X1, ••. , Xno+ 1, su'ch 
that 

AS( ) _ 2no+ 1 
L.l X 1, · · · , Xno + 1 - · 

Consider the subsequence X 10 = x 1, ... , x 10 • Two cases are possible: 

(a) ~ 5(x 1, ... , X10 ) > <l>(no + 1, lo), 
(b) ~ 5(x 1, ... , X10 ) ~ <l>(no + 1, lo), 

In case (a), in view of the induction assumption, there exists a subsequence 
of length no + 1 such that ~5(Xno+ 1) = 2no+ 1' q.e.d. 

In case (b) we subdivide subsequences of the sequence X 10 induced by 
the sets in S into two types. We assign to the first type subsequences X' such 
that on the whole sequence x 10 + 1 events belonging to S induce X' as well as 
(X', x 10 + 1). Sequences X' such that either X' or (X', x10 + 1) is induced on the 
sequence x10 + 1 are assigned to the second type. Denote the number of sub­
sequences of the first type by K I and of the second by K 2 • It is easy to see that 

~8(x 1, ... , x10) = K, + K 2 , 

~ 5(x 1, ... , x 10 , x 10 + 1) = 2K 1 + K 2 ; 

and hence 
~ 5(x1, ... , x 10 , x10 + 1) = ~5(x 1, ... , x10) + K 1• (A.4) 

Denote by S' the system of all subsets AES that induce subsequences of 
the first type on the sequence X 10• Then if 

(b') K 1 = ~5 '(x 1, ... , X10 ) > <l>(no, lo), 

in view of the induction assumption there exists a subsequence xno = 
x;,, ... , X; such that no 

~S'(x;,, ... ' X; ) = 2no no 
(Xno C xlo). 
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However, in that case we have 

!).S'( ) _ 2na+ 1 
X1, · · •, X;na' Xia+ 1 -

for the sequence X; 1,. , • , X;"a, Xia+ 1 , since for each subsequence X' induced on 
the sequence xna, two subsequences induced on X', x 1a+ 1 can be found, 
namely X' and (X', Xia+ 1). Thus the required subsequence is obtained in 
case (b). 

If, however 

(b") K 1 = N'(x1, ... , Xia)~ <l>(no, lo), 

we then obtain in view of (A.4) and (b) 

ds(x 1,, .• , x1a+ 1) ~ <l>(n0 + I, lo)+ <l>(n0 , lo), 

which by virtue of the properties (A.3) of the function <l>(n, [) implies that 

ds(x 1,,.,, Xia+ 1) ~ <l>(n0 + I, lo + 1). 

This however contradicts the condition of the lemma (i.e., (b") is impossible). 
The lemma is proved. D 

We shall now prove the theorem. As was pointed out, m5([) ~ 21• Let 
ms([) not be identically equal to 21, and let n be the first value of l such that 
ms([) =I i. Then for any sample of size / larger than n, the inequality 

!).S(X1,, .. , X1) ~ <f>(n, [) 

is valid. Indeed, otherwise, in view of the lemma's assertion, one could find 
a subsample x 1, ... , Xn such that 

(A.5) 

which is impossible, since by assumption ms(n) =I 2n. 
Thus the function ms([) either is identically equal to 21 or is majorized by 

<l>(n, [). The theorem is proved. D 

Remark. The function <l>(n, [) can be bounded from the above for n ~ I 
and l > n as follows: 

/n- 1 

<l>(n, [) < 1.5 (n - 1)! (A.6) 

Since the relation (A.3) is fulfilled for <l>(n, [), to prove (A.6) it is sufficient 
to verify that for n ~ I and l > n the inequality 

/n- l tn ([ + lf 
---+-<---
(n - 1)! n! - n! 

(A.7) 

is valid and to verify (A.6) on the boundary, i.e., for n = I and l = n + 1. 
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The inequality (A. 7) is clearly equivalent to 

/"- 1(/ + n) - (l + I)" S 0, 

whose validity follows from Newton's binomial expansion. 
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It thus remains to verify A.6 on the boundary. For n = 1 the verification 
is direct. Next we shall verify the bound for small values of n and /: 

I= n + I 

<I>( n, /) 
/"- 1 

1.5 (n - I)! 

2 

1.5 

3 

4 

4.5 

4 

11 

12 

5 

26 

31.25 

6 

57 

81 

To check (A.6) for n 2: 6 we shall utilize Stirling's formula for an upper 
bound on/!: 

whence for I = n + 1 

1n-l = (l - 1)/(1-1) > ~ e-1+(121) I 

(n - 1)! /! - fi;jt 

and furthermore for / 2: 6 

[(n-1) 1 
> 0.8 ;,::;e'. 

(n-1)!- y2nl 

On the other hand, <l>(n, /) s 2' always. Therefore it is sufficient to verify that 
for l 2: 6 

I l I 
2 s 1.2 ;,::; e . 

v' 2nl 

Actually it is sufficient to verify the inequality for l = 6 (which is carried out 
directly) since as l increases the right-hand side of the inequality grows 
faster than the left-hand side (for l > 2). 

Thus we have seen that either the growth function is identically 21, or for 
some n the equality is violated for the first time (i.e., m8(n) #- 2"), and then the 
growth function is bounded by a polynomial function 

Therefore in order to estimate the behavior of a growth function it is 
sufficient to find the smallest n such that on no sequence of length l does the 
system S induce all possible subsequences. 
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§A3 The Basic Lemma 

Let a sample of size 21 be chosen: 

and the frequencies of occurrence of the event A E S on the first half sample 
x 1, .•• , xI and on the second half sample xI+ 1, ••• , x 2I be computed. Denote 
these frequencies by v'(A) and v"(A) respectively, and consider the deviations 
of these quantities: 

PA(X1, ... , X21) = lv'(A) - v"(A)I. 

We are interested in the maximal deviation of the frequencies over all 
events of the class S: 

p8(x1, ... , x21) = sup PA(xi, ... , x21). 
AeS 

Introduce the notation 

n8(x1, ... , x 21) = suplv'(A) - P(A)I. 
AeS 

Furthermore we shall assume that n8(x 1, ••• , x1) and p8(x 1, .•• , x 21) are 
measurable functions. 

The Basic Lemma. The distributions of the quantities n8(x 1, .•• , x1) and 
ps(x 1 , ..• , x 21) are related as follows: 

S {s X} P{n (x 1, ... , x 1) > x} ~ 2P p (x 1, ... , X21) > 2 , 
., 

provided that I > 2/x'-! 

PROOF. By definition 

where 

O(z) = {1 ~f z > 0, 
0 1f z ~ 0. 

Taking into account that the space X(2l) of samples of size 21 is a direct 
product of X 1 (I) and X i(l) of half samples of size /, we have the equality 

I <p(X1, ... , X21) dX2I = f [ I <p(x1, ... , X21) dx~J dXi 
JX(2I) X1(1) JX,(I) 

for any measurable function <p(x 1, ... , x 21), by Fubini's theorem [28]. 
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Therefore 

P{ps(X21) > ~} = f dP(XD f 0[ps(X21) - ~] dP(X~) 
X1(1) X2(1) 

(in the inner integral the first half sample is fixed). Denote by Q the event in 
the space X 1 ( l) 

{ns(x 1, ••• , x1) > x}, 

and bounding the domain of integration, we obtain 

P{ps(X21) > ~} 2 J dP(Xf) J 0[ps(X21) - ~J dP(X~). (A.8) 
2 Q X2(1) 2 

We now bound the inner integral on the right-hand side of the inequality 
and denote it by/. Here the sample x 1, ..• , x1 is fixed and is such that 

ns(x 1, •.. , x1) > x. 

Consequently there exists an A* ES such that 

IP(A*) - v(A*; x 1, ••• , x1)1 > x. 

Then 

I = f e[sup PA(X21) - ~] dP(X~) 2 J 0[PA•(X21) - ~] dP(X~). 
X2(1) _AcS X2(1) 

Let, for example, 

v'(A*; x 1, ••. , x1) < P(A*) - x 

(the case v'(A *) 2 P(A *) + x is dealt with completely analogously). Then 
in order that the conditions 

lv'(A*; x 1, ••• , x1) - v"(A*; x1+ 1 , ••• , x 21)1 > ~ 

may be satisfied, it is sufficient that the relation 

X 
v"(A*) > P(A*) - -

2 

be fulfilled, whence we obtain 

I 2 J 0[v"(A*) - P(A*) + ~J dP(X~) 
X2(1) 2 

L C~[P(A*)]k[l - P(A*)]1-k. 
k/l>P(A*)-x/2 
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As is known, the last sum exceeds½ provided only that l > 2/x. Returning 
to (A.8), we obtain that for l > 2/x 

P{p5(X 21) > i} ~ ~ f/P(X1) = ½P{n5(X1) > x}, 

q.e.d. D 

§A4 Derivation of Sufficient Conditions 

The following theorem is valid. 

Theorem A.2. The probability that for at least one event in the class S the 
frequency will deviate from the corresponding probability in an experiment of 
size l by an amount exceeding x is bounded by 

P{n5(x 1, ••. , x1) > x} < 6m5(2l)e-x2114• (A.9) 

Corollary. In order that the frequency of events in class S shall converge (in 
probability) to the corresponding probabilities uniformly over the class S, it is 
sufficient that there exist finite n such that for l > n 

r-1 
ms([)< 1.5 (n - l)! 

PROOF. In view of the basic lemma it is sufficient to bound the quantity 

P{ps(x2') > ~} = J 0[ps(x2') - ~J dP(X2'). 
2 X(21) 2 

Consider the mapping of the space X(2/) into itself obtained by a permutation 
7; of the elements of the sequence X 21. In view of the symmetry of the defini­
tion of the measure, the equality 

J f(X 21) dP(X 21) = J f(I;X 21) dP(X 21) 
X(21) X(21) 

holds for any integrable functionf(X). Therefore 

<f 0[ps(7;x2') - ~J 
P{ps(X2') > ~} = J ;; i 2 dP(X2'), 

2 X(21) (2/) ! 
(A.IO) 

where the sum is taken over all (21) ! permutations. 
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First we observe that 

e[p8(X 21) - ~] = 0[ s~p I v'(A) - v"(A) I - ~] 

= s~p 0[1v'(A) - v"(A)I - ~] 
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Clearly if two sets A1 and A 2 induce the same subsample on the sample 
Xi, ... , Xz, xi+ 1, ... , x 21 , then 

and hence 

for any permutation T;. In other words, if two events are equivalent with 
respect to the sample x 1, ... , x 2 z, then deviations of frequencies for these 
events are the same for all permutations T;. Therefore if from each equivalence 
class one chooses one set and forms a finite system S', then 

AeS AeS' 

The number of events in the system S' is finite and is denoted by L15 '(x 1, .•. ,x21). 

Replacing the sup operation by a summation, we obtain 

[ 21 X] [ 21 X] sup 0 PA(T;X ) - 2 = sup 0 PA(T;X ) - 2 AeS AeS' 

These relations allow us to bound the integrand in (A.10): 

l (21)! [ X] 
sup (21)' .L 0 PA(T;X21) - -2 
AeS' · 1=1 

1 (2l)! [ X] 
= (21)' _L sup 0 PA(T;X21) - -2 ~ L 

• 1=1 AES' AeS' 

The expression in the square brackets is the ratio of the number of orderings 
in the sample (of a fixed composition) such that 

I v'(A) - v"(A)I > ;, 
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to the total number of permutations. It is easy to see that this expression is 
equal to 

Ck c'-k r* _ I m 2,-m 
- k c~, ' 

{I k m - k I x} 
k: ,--[- >2' 

where m equals the number of elements in the sample x 1, ... , x 21 belonging 
to A. 

In Section A.5 we bound the expression r, with the result that 

r* < 3 exp{- x:1} 

Thus 

1 (ll)! [ X] { x2[} L (2l)' _L 0 PA(T;X21) - -2 < L 3 exp - -4 
AcS' • 1= 1 AeS' 

= 3L\s(x1, ••. , x21) exp{- ~/} 

~ 3ms(2l) exp{- x; 1} 

Substituting this bound into the integral (A.10), we obtain 

P {ps(X21) > ~} < 3ms(2/) exp{- x:1} 

whence in view of the basic lemma 

{ x2
/} P{n(X1) > x} < 6ms(2l) exp - 4 . 

The theorem is proved. 

PROOF OF THE COROLLARY. Let n exist such that for l > n 

zn-1 
ms([)< 1.5 (n -

Then clearly 

(21)"-1 { x2z} 
lim P{ns(X1) > x} < 9 lim ( _ l) 1 exp - -4 = 0, 
1-+oo 1-+oo n · 

i.e., the uniform convergence in probability is valid. 

D 

D 
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The sufficient condition obtained does not depend on the properties of 
the distribution (the only condition is the measurability of functions ns and 
ps), but depends on the inner properties of the system S. 

Remark. As it was proved in Section A.2 only if the function ms(/) is not 
identically i, there exists n such that for / > n 

in- 1 

ms(/)< 1.5 (n - l)! 

Therefore the sufficient condition is always fulfilled when 

ms(/) ef=- 21. 

§AS A Bound on the Quantity r 
We bound the expression 

Ck c'-k r = I: m 121-m, 

k C21 

where k runs over the values satisfying the inequalities 

I k m _ k I l;- -/- > x, max(O, m - /) s k s min(m, /), 

or equivalently the inequalities 

I k - 11!_ I> xi 
2 2' 

max(O, m - /) s k s min(m, /), 

and / and m s 21 are arbitrary positive integers. 
We decompose r into two summands, r = r 1 + r 2 . 

Ck ci-k r =, m 21-m 
1 L. ci , 

k 21 

k ck c'-k r =, m 21-m 
2 L. ci , 

k 21 

xi m 
where k > 2 + 2. 

xi m 
where k < 2 - 2. 

Introduce the notation 

ck ci-k 
(k) = m 21-m 

P ci 
21 

p(k + 1) (m - k)(l - k) 
q(k) = p(k) = (k + 1)(/ + k + 1 - m)' 

where 

max(O, m - l) s k s min(m, /). 

(A. I I) 

(A.12) 
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Furthermore denote 

s = min(m, l), T = max(O, m - l); 
s 

d(k) = LP(i). 
i=k 

Clearly the relation 

s s-1 s-1 

d(k + 1) = I p(i) = I p(i + 1) = I p(i)q(i) (A.13) 
i=k+ 1 i=k i=k 

is valid. Furthermore it follows directly from (A.12) that for _i < j, q(i) < qU), 
i.e., q(i) is monotonically decreasing. Therefore the inequality 

s-1 s 

d(k + 1) = I p(i)q(i) < q(k) I P<O 
i=k i=k 

follows from (A.13). Furthermore by definition of d(k) we have 

d(k + 1) < q(k) d(k). 

Applying this relation successively, we obtain for arbitrary k andj satisfying 
the condition T ~ j < k ~ s 

k-1 

d(k) < dU) 0 q(i). 
i=j 

Furthermore, since dU) ~ 1, 

k-1 

d(k) < n q(i). 
i=j 

where j is an arbitrary integer smaller than k. 
Set 

Then 

m - 1 
t = k--2-· 

_ ~-t (1-Y)-t 
q(t) - m + 1 · ( m - 1) · 

-2-+t 1--2- +t 

Moreover, as long as T < k < s, the inequality 

. (m + 1 m - 1) ltl < mm - 2-, l - - 2-

is clearly valid. 

(A.14) 
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To approximate q(k) we study the function 

a-t b-t 
F(t) = a + t. b + t' 

assuming that a and bare both positive. 
For !ti< min(a, b) 

In F(t) = ln(a - t) - ln(a + t) + ln(b - t) - ln(b + t). 
Furthermore we have 

In F(O) = 0, d [2a 2b] -d (In F(t)) = - 2 2 + b2 2 . t a - t - t 

This implies that for It I < min( a, b) 

d [1 1] dt (In F(t)) ~ - 2 ~ + b . 

Correspondingly for !ti< min(a, b) and t ~ 0 the inequality 

lnF(t)~ -2[~+1} 
is fulfilled. 

Returning to q(t), we obtain fort ~ 0 

[ 2 2 ] l+l 
In q(t) ~ - 2 m + 1 + 2/ - m + 1 t = - 8 (m + 1)(2/ - m + 1) t. 

We now bound 

assuming that (m - 1)/2 ~ j ~ k - 1: 

ln(Q q(i)) = :t;in q(i) 

<-------r 1---
- 8(/ + 1) k- l (· m - 1) 

- (m + 1)(2/ - m + 1) i=i 2 · 

Returning to (A.14), we obtain 

- 8(1 + 1) k - 1 (. m - 1) 
In d(k) < (m + 1)(2/ - m + 1) i~i z - -2- ; 
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here j is an arbitrary number smaller than k. Therefore for k > (m - 1)/2 
one can set j = (m - 1)/2 form odd and j = m/2 for m even, obtaining a 
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stronger bound. Next, summing the arithmetic progression, we obtain 

l-(m + 1~~~; _1 ~ + 1) ( k - i + 1) 
2 

for even m, 
1n d(k) < 

4(1 + 1) (k m - 1 1)(k m - 1) 
-(m+1)(21-m+l) --2-+ --2-

Finally r 1 is d(k) for the first integer k such that 

m x2l 
k-->-

2 2' 

whence 

l + 1 2 2 

ln r1 < - (m + 1)(21 - m + 1) x l . 

for odd m. 

In the same manner one can bound r 2, since the distribution (A.11) is sym­
metric with respect to the point k = m/2. Thus 

{ 
(l + l)x212 } 

r < 2 exp - (m + 1)(21 - m + 1) · (A.15) 

The right-hand side of (A.15) attains its maximum at m = l, and consequently 

{ x212} 
r<2exp - 1+ 1 <3exp{-x2l}. 

§A6 A Bound on the Probability of 
Uniform Relative Deviation 

In this section we shall prove 

Theorem A.3. For any p (1 < p ~ 2) the bound 

P{sup P(A) - v(A) > x} < 8m5(2l) exp{- "'2 12-<2tP>} 
AeS .few 4 

is valid. 

(A.16) 

PROOF. Consider two events constructed from a random and independent 
sample of size 21: The event Q1 : 

Q { P(A) - v'(A) } 
1 = sup-----> x 

AeS .few 
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and the event Q2 : 

{ 
lv'(A) - v"(A)I } 

Q2 = sup-=====- > x , 
Aes jv(A) + 1/2/ 

where v'(A) is the frequency of the event A computed from the first half­
sample of length l; v"(A) is the frequency of the event A computed from the 
second half-sample; v"(A) is the frequency of the event computed from the 
sample of length 21. 

Observe that in the case l ~ x-p/(p- l) the theorem is trivial. Accordinly we 
shall prove the theorem as follows: First we show that for l > x- p/(p- 1) the 
inequality 

P(Q 1) < 4P(Q 2 ) 

is valid, and then we bound the probability of the event Q2 • Thus we shall 
prove the lemma: 

Lemma A.2 .. For l > x-p/(p- l) the inequality 

(A.17) 

is valid. 

PROOF. Assume that event Q 1 occurred. This means that there exists A* such 
that for the first half sample the inequality 

P(A*) - v'(A*) > x~ 

is fulfilled. Since v'(A) ;?: 0, this implies that 

P(A*) > xPf(p-1). 

Assume that for the second half sample the frequency of occurrence of event 
A* exceeds the probability P(A *): 

v"(A*) > P(A*). 

Recall now that l > x-p/(p- 1J_ Under these conditions event Q2 will definitely 
occur. 

To show this we bound the quantity 

lv'(A*) - v"(A*)I v"(A*) - v'(A*) 
µ=-=====-<-;===== 

1v(A*) + 1/2/ 1v(A*) + 1/2/ 

under the conditions 

v'(A*) < P(A*) - x~ 

v"(A*) > P(A*), 

P(A *) > xPf(p- l)_ 

(A.18) 
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For this purpose we find the minimum of the function 

x-y 
T = --,==== dx + y + C 

in the domain O < a ::;; x ::; 1, 0 < y ::;; b, c > 0. We have for p > 1 

oT = ! (p - l)x + (p + l)y + pc > O 
ox p (x + y + c)<P+ 1>IP ' 

oT = _ ! (p + l)x + (p + l)y + pc < O 
oy p (X + y + c)<P+ 1)/p . 

Consequently T attains its minimum in the admissible domain for x = a 
and y = b. Therefore the quantity µ will be bounded from below if one 

replaces v'(A*) by P(A*) - xft(A*} and v"(A*) by P(A*) in (A.18). Thus 

x{;f2P(A*) 
µ > ----;:===========· 

{1/2P(A*) - xft(A*} + 1/l 

Furthermore, since P(A*) > xPl(p- 1), l > x-pf(p- 1>, we have 

x{;f2P(A*) 
µ > --,=========== = X. 

{;!2P(A *) - xP/(p-1) + xP/(p-1) 

Thus ifQ 1 occurs and the conditions P(A*)::; v"(A*) and l > x-pf(p-t) are 
fulfilled, then Q2 occurs as well. 

Observe that the second half sample is chosen independently of the first 
and, as is known, for l > 2/ P(A *) the frequency of occurrence of the event A* 
exceeds P(A*) with probability ¼. Therefore, provided Q1 is fulfilled, the 
event 

v"(A *) > P(A *) 

occurs with probability exceeding ¼ as long as l > x- Pf(p- 1>. Thus for 
[ > 'Xp/(p-1) 

The lemma is proved. 

Lemma A.3. For any p (1 < p::;; 2) the bound 

P(Q 2) < 2ms(2[) exp{- ~2 12 -(Z/p)} 

is valid. 

PROOF. Denote by RA(X21) the quantity 

RA(X2') = I v'(A) - v"(A) I_ 

dv(A) + 1/2/ 

D 
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Then the estimated probability equals 

Here the integration is carried out over the space of all possible samples of 
size 2/. 

Consider now all possible permutations 7; (i = 1, 2, ... , (2[) !) of the 
sequence x 1 , ••• , x 21 • For each such permutation 7; the equality 

J e[sup RA(X 21 ) - x] dP(X 21) = J e[sup RA(I;X21) - x] dP(X 21) 
X(21) AeS X(21) AeS 

is valid. Therefore the equality 

j. e[sup RA(X 21) - x] dP(X 21) 

X(21) AeS 

J 1 (ZI)! [ ] 
= (2/)1 I e sup RA(I;X 21) - X dP(X 21) 

X(21) ·i~I AeS 

is valid. 
Consider now the integrand. Since the sample x 1, ... , x 21 is fixed, instead 

of the system of events S one can consider a finite system of events S' which 
contains one representative for each one of the equivalence classes. Thus the 
equality 

is valid. Furthermore 

(A.19) 

The expression in the braces is the probability of the deviation of frequencies 
in two half samples for a fixed event A and a given composition of the complete 
sample. This probability equals 

Ck c'-k r = °'""' m 21-m 

T Ci, ' 
where mis the number of occurrences of events A in the complete sample, and 
k is the number of occurrences of the events in the first half sample; k runs 
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over the values 

max(0, m - l) ~ k ~ min(m, l), ,~-~, 
>X. 

1 
--

l 

Denote by x' the quantity 

nfm+l I 

.:..;~X=X. 

Using this notation the restrictions become 

max(0, m - l) ~ k ~ min(m, l), 

11- m ~ k I > x'. (A.20) 

In Section A.5 the following bound on the quantity r under the restrictions 
(A.20) was obtained: 

{ (1 + l)(x')2 12 } 

r < 2 exp - (m + 1)(21 - m + 1) · (A.21) 

Expressing (A.19) in terms ofx, we obtain 

r < 2 ex {- x2(l + 1)/2 (m + 1)2/p} 
p 2(21 - m + l)(m + 1) 21 · 

The right-hand side of the inequality attains its maximum at m = 0. Thus 

r < 2 exp{- : 2 12-<2/p)}· (A.22) 

Substituting (A.22) into the right-hand side of(A.19) and integrating, we have 

P(Q2 ) < 2m8(2l) exp{- : 2 
z2-<2iPl}· (A.23) 

The lemma is thus proved. D 

The inequalities (A.17) and (A.23) yield the assertion of the theorem. D 



Chapter 7 

A Method of Minimizing Empirical Risk 
for the Problem of Regression Estimation 

§1 Uniform Convergence of Means to 
Mathematical Expectations 

In this book the problem of pattern recognition is formulated as the simplest 
problem of estimating dependences from empirical data. The simplicity of 
the problem is due to the fact that it reduces to minimizing the functional 

/(ct.) = J (y - F(x, ct.)) 2 P(x, y) dx dy, 

with an unknown density P(x, y), from the sample 

(7.1) 

(7.2) 

when y takes on only two values O and 1 and F(x, ct.) is a class of indicator 
functions. 

The problem of regression estimation is considered to be more complex. 
It also reduces to minimizing a functional with unknown density P(x, y) 
on the basis of the sample (7.2), but in this case y may take on an arbitrary 
value and the class F(x, ct.) consists of square-integrable functions. Therefore 
the construction of the theory of minimizing the risk (7.1) in a class of not 
necessarily indicator functions F(x, ct.) by means of minimization of an 
empirical functional 

(7.3) 

can be viewed as a generalization of results of the theory obtained in the 
preceding chapter to a wider class of functions. In this chapter we shall 
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construct the theory of regression estimation using the method of minimizing 
the empirical risk (7.2) as a natural generalization of the solution for the 
pattern recognition problem. 

This is our first opportunity to implement this approach. It was not 
possible to do this utilizing parametric methods as in problems of pattern 
recognition (Chapter 3) and regression estimation (Chapters 4 and 5). 
Solutions of problems were carried out there under stipulations of intrinsic­
ally different models for densities P(x, y): in the pattern recognition problem 
the structure of the density was determined by a union of two densities; in 
the regression estimation problem it was given by a measurement model with 
additive noise. Here, however, the principle for solving the problem is the 
same: a search for a function which minimizes (7.1) is carried out by means 
of minimizing the empirical functional (7.3). 

In the preceding chapter conditions were obtained under which this 
approach can be successfully implemented for a class of indicator functions 
F(x, ix). Now we shall obtain conditions which assure a successful application 
of the method of minimizing empirical risk when the class F(x, ix) is of a 
more general nature. 

In the problem of pattern recognition, the functional (7.1) determines for 
each fixed ix the probability of a certain event (an incorrect classification 
of the vector which is to be "recognized"), and the empirical functional 
(7.3) determines the frequency of this event computed from the sample. 
Conditions for applicability of the method of minimizing empirical risk are 
associated here with the uniform convergence, over a class of events, of 
frequencies of events to their probabilities. 

In the problem of regression estimation the functional (7.1) determines 
for each fixed ix the mathematical expectation of the random variable 

~(ix) = (y - F(x, ix))2, 

and the empirical functional (7.3) determines the empirical mean of this 
random variable computed from the sample (7.2). 

Above (Chapter 6, Section 1) it was shown that a successful application 
of the method of minimizing an empirical risk might be associated with the 
validity of the uniform convergence of the means to their mathematical 
expectations: 

P{s~p II(ix) - / 0 mp(ix)I > X} < 17(/, x), 

lim 17(/, x) = 0. 
1-00 

(7.4) 

It was shown that under the condition (7.4) the value of the functional (7.1) 
at the point of empirical minimum F(x, 1Xemp) deviates with probability 1 - 17 
from the minimal value of J(ix0 ) in the class F(x, ix) by an amount not exceed­
ing 2x: 
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Thus the problem is reduced to the determination of the conditions for the 
existence of uniform convergence of the means to their mathematical 
expectations and to the estimation of the rate of convergence. 

As in the previous chapter the validity of basic theorems on uniform 
convergence does not depend on the form of the loss function. Therefore, in 
spite of a quadratic loss function used in the text a general theory is obtained. 

§2 A Particular Case 

As above, we shall start with simple case: the set of functions F(x, oc) consists 
of a finite number N of elements 

F(x, oc 1), ... , F(x, ocN)­

For this case the inequality 

P{s~p ll(oc;) - /em/oc;)I > x} < it P{IJ(oc;) - /em/oc;)I > x} 

~ N sup P{IJ(oc;) - Jem/oc;)I > x} (7.5) 

is valid. 
In Chapter 6, for an analogous situation of bounding the rate of uniform 

convergence of frequencies of events to their probabilities, a nontrivial 
bound on the second factor was used. In this case a nontrivial bound on 

sup P{IJ(oc;) - Jem/oc;)I > x} 
i 

is generally unavailable-since the random variable Jem/oc;) may possess 
"large deviations", and therefore its deviation from the mean J(oc;) may be 
arbitrary. We have already encountered such a situation in Chapter 2, 
where it was necessary to take into account the measure of "possible large 
deviations" when determining a guaranteed bound on the mathematical 
expectation based on the value of the empirical mean. In particular it was 
shown (cf. Chapter 2, Section 2) that for this purpose it is sufficient to know 
either a bound on possible losses, 

sup(y - F(x, oc))2 ~ r, 
a,x,y 

or a bound on the relative variance of losses, 

sup 
J (y - F(x, oc))4P(x, y) dx dy 
~----------~-l<r (J (y - F(x, oc))2 P(x, y) dx dy) 2 - · 

Thus to obtain a bound on the rate of uniform convergence of the means to 
their mathematical expectations the prior information on the magnitude of 
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possible large deviations should be utilized. We remark that for solving the 
problem of pattern recognition there was no need for such information. In 
view of the statement of the problem, the loss function (y - F(x, a))2 was 
bounded by 1, i.e., the prior information about the large deviations was 
contained in the statement of the problem. 

In this chapter we shall utilize both types of prior information on large 
deviations, and for each of them obtain a bound on the rate of uniform 
convergence. 

The simplest condition under which it is possible to obtain a bound on the 
rate of uniform convergence of the means to mathematical expectations is the 
condition of uniform boundedness of the losses. t 

(y - F(x, a))2 5 r 

for all a, x E X and y E Y. 
Let the inequality (7.6) hold. We show that in this case the bound 

P{s~p l/(a;) - /emp(a;)I > xr} < l8Nle-"2114 

(7.6) 

is valid. To obtain this bound we write the functionals /(a;) and J.mp(a;) 
using the Lebesgue integrals: 

n r { ft} l(a;) = Jim L - P (y - F(x, a;))2 > - , 
n--+oc, j= 1 n n 

. ~ r { 2 jr} I.mp(a;) = hm L.., - v (y - F(x, a;)) > - , 
n--+oo j= 1 n n 

(7.7) 

where v{(y - F(x, a;))2 > jr/n} denotes the frequency of the event 
{(y - F(x, a;))2 > jr/n} computed from the sample (7.2). Denote by Ax,.; 
the event 

{ 
2 jr} (y - F(x, a;)) >-;;- . 

Then in view of (7.7) 

n r 
II(a;) - I.mp(a;)I 5 Jim L - IP(Acx,,) - v(Acx,)I 

n--+oc,j=ln 

Thus 

:0::::: r sup IP(Acx,,) - v(Acx,,)I. 
j 

t Below, various sufficient conditions for uniform convergence will be presented. Necessary 
and sufficient conditions are given in the appendix to this chapter. 
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Consider now the class of events Aa,,p: 

{(y - F(x, 1X;))2 > /3}, 

where f3 is a nonnegative quantity. Clearly this class contains the events 
{Aa,,J whence 

P{s~p IP(Aa,,) - v(Aa,,)I > x} ::_;; P{s~p Pl(Aa,,p) - v(Aa,,p)\ > x} 

The problem has thus been reduced to bounding the uniform convergence of 
frequencies to their probabilities over the class Sp of events Aa,,p (with fixed 
values of IX;}. 

Utilizing the results of the preceding chapter, we bound the rate of uniform 
convergence of frequencies to probabilities over the class of events 

Sp = {x, y: (y - F(x, 1X;))2 > {3}. 

For this purpose we bound the growth function m8P(l). Since using the 
rules 

0[(y - F(x, 1X;})2 - /3] 

(IX; is fixed) one can subdivide only one point x, y in all possible ways, we 
have in view of Theorem 6.6 

Consequently, utilizing Theorem A.2 of the Appendix to Chapter 6, we 
obtain 

P{\/(1X;) - Jem/oc;)I > rx} 

s; P{s~p \P(Aa,.p) - v(Aa,,p)I > x} 

(7.8) 

The right-hand side of the inequality does not depend on oc. Therefore, along 
with (7.8), a more refined bound, 

sup P{\(oc) - Jem/oc)\ > rx} < l8le-x 2114, 

a 

is valid. Returning to the bound (7.5), we have 

P{s~p\/(1X) - /emp(1X)\ > ,x} < l8Nle-x2114 • 

We shall require that this probability be equal to 11: 

l8Nle-x 2114 = '1· 



186 7 Minimizing Empirical Risk of Regression Estimation 

Therefore the deviation x should not be less than 

x = 2 In N + In l - ln(IJ/18) 
l . 

The result obtained can be stated as 

Theorem 7.1. Let the class F(x, a) consist of N functions for which the losses 
(y - F(x, a))2 in the domain x EX, y E Y are uniformly bounded by a constant r. 
Then one can assert with probability 1 - '7 that the inequality 

In N + In l - ln(IJ/18) ( ) 
/em/a;) - 2r l <Ia; 

In N + In l - ln(IJ/18) 
< I em/a;) + 2r l 

is valid simultaneously for all N functions F(x, a;). 

Remark. The theorem is valid simultaneously for all N functions, including 
the function F(x, aemp) which yields the minimum for the value of the 
empirical risk. Hence the inequality 

In N + In l - ln(IJ/18) 
J(aemp) < Jem/aemp) + 2r z 

is valid. Thus if the loss function is uniformly bounded and the number of 
functions F(x, a;) in the class is finite, then the uniform convergence of the 
means to their mathematical expectations holds. Theorem 7.1 is a direct 
generalization of Theorem 6.1. 

§3 A Generalization to a Class with 
Infinitely Many Members 

Now let the class F(x, a) consist of infinitely many elements while admitting 
a cover by a finite i;-net in either the C metric or the L; metric. As before, let 
the restriction (7.6) be valid. We show that in this case a bound on the quality 
of the rule minimizing the empirical risk exists which is analogous to the one 
that follows from Theorem 7.1. 

Theorem 7.2. Let the set of functions F(x, a) be covered by a finite i;-net 
F(x, a1), ... , F(x, a Ne,>). Then with probability 1 - '7 the quality of the function 
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F(x, ll(emp) which minimizes the empirical risk is bounded by 

In N(£) + In I - ln(17/l8) r:. 
/(ll(emp) < I.mp{ll(;(ll(.mp)) + 2r I + 2£v r, 

where F(x, ll(;(ll(.mp)) is a function in the £-net closest to F(x, ll(emp). 

The proof is carried out along the lines of the proof of Theorem 6.4. 

(1) Select on the set of functions F(x, ll() a finite £-net consisting of N(£) 
elements 

F(x, a1), ... , F(x, ll(NM). 

According to Theorem 7.1 the inequalities 

/( ·) I ( ·) 2 In N(£) + In I - ln(17/l8) 
ll(, < emp ll(, + r / (7.9) 

are valid simultaneously for all elements of the £-net with probability 1 - 17. 
(2) We bound the amount of deviation of the functionals /(()( 1) and /(()( 2) 

for functions F(x, ()( 1) and F(x, ()( 2 ) separated from each other by at most £, 
i.e., we find the smallest c5(£) such that the inequality 

l/(()(1) - /(()(2)1 ::::; c5(£) 

is fulfilled provided only the conditions 

PL(ll(1, ()(2) = (J(F(x, ()( 1) - F(x, a2 ))2P(x) dx) 
112 

:s;; £ (7.10) 

(Pc<ll(1, ()(2) = s~p IF(X11l(1) - F(x1, ()(2)1 :S::: £) 
are satisfied. For this purpose we carry out the transformations 

l/(()(1) -· /(()(2)1 = I J<Y - F(x, ll( 1))2P(x, y) dx dy 

- J<Y - F(x, ()( 2))2 P(x, y) dx dy I 

= I JF(x, ()( 1 ) - F(x, ()( 2 )) 

x (2y - F(x, ()( 1) - F(x, ll( 2 ))P(x, y) dx dyl 

:s;; £ J(2y - F(x, ()( 1) - F(x, ll(2))2P(x, y) dx dy. 
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Here we have utilized the Cauchy-Schwarz inequality and the bound (7.10). 
Next we utilize the convexity of the function (y - F(x, oc))2 : 

J<2y - F(x, oc 1) - F(x, oc2))2 P(x, y) dx dy 

5 2 J<y - F(x, oc 1))2 P(x, y) dx dy 

+ 2 J (y - F(x, oc2))2 P(x, y) dx dy. 

We thus obtain 

I J(oc 1) - /(oc2) I 5 ej2(J(oc 1) + /(oc2)). 

However, by the condition, /(oc) ::; r. Finally we obtain 

II(oc 1) - /(oc2)1 ~ 2ej'°i. 

(7.11) 

(7.lla) 

(3) Now let F(x, ocemp) be the function which yields the minimum for the 
empirical risk. We choose a function F(x, oc;(oc.mp)) in the e-net F(x, oc 1), ••. , 

F(x, ocN,,l) closest to F(x, ocemp). For this function the inequality (7.9) is 
satisfied with probability 1 - 17. We strengthen this inequality utilizing the 
bound (7.lla). This leads to 

r.:. In N(e) + In l - ln(17/l8) 
/(oc0 mp) < / 0 mp(oc;(oc0 mp)) + 2ey r + 2r l 

The theorem is proved. 

(7.12) 

0 

Remarks. The theorem is valid for anye (assigned before sampling). Therefore 
e may be selected from the condition of the minimum for the expression 

( ) _ r.:. In N(e) + In I - ln(IJ/18) 
re -eyr+r l . 

Note also that for any set F(x, oc) and any e the minimal number of elements 
inane-net constructed in the L; metric does not exceed the minimal number 
of elements in an e-net in the C metric. Therefore the bound (7.12) is more 
precise if the e-net is constructed in the L; metric. However, in order to 
define this metric the density P(x) should be known. 

§4 The Capacity of a Set of Arbitrary Functions 

In Chapter 6 we introduced the notion of capacity for a set of indicator 
functions. The capacity was determined by a maximal number of points 
x 1, .•. , xh which can be subdivided in all possible ways into two classes by 
means of a given set of indicator functions. 
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We shall now extend the notion of capacity to sets of functions F(x, a) of 
an arbitrary nature. For this purpose we shall introduce the following param­
etric set of indicator functions: 

F(x, y; a, /3) = 0((y - F(x, a))2 + /3) 

in the parameters a and /3 (/3 is a real number). 

Definition. The capacity of the set of indicator functions F(x, y; a, /3) is called 
the capacity of the set F(x, a). 

Thus the capacity of the set F(x, a) determines the largest number h of 
pairs X;, Y; which can be subdivided in all possible ways into two classes by 
means of the rules F(x, y; a, /3). 

The capacity of a set of functions linear in its parameters. 
n 

F(x, a) = I a;<p;(x), 

equal n + 1. 
Under this definition of capacity, the growth function for the system of 

events 
Sa,p = {x, y: (y - F(x, a))2 > /3} 

is bounded by 
lh 

m5•-P(l) < 1 5 -. h! 

for l > h. Let the capacity of a set of functions F(x, a) be equal to h, and as 
above, let the loss function be bounded by r. Under these conditions the 
following theorem is valid. 

Theorem 7.3. For l > h simultaneously for the whole class of functions F(x, a), 
the inequality 

__ h In h + 1 - In 9 J ( 21 ) 1J 

Jemp(a) - 21. l < !(a) 

Jh(ln ~ + 1) - In i 
<fem/a)+ 2, [ 

is satisfied with probability 1 - IJ· 

PROOF: We express functionals /(a) and /em/a) in terms of Lebesgue integrals: 

n T { i,} 
!(a) = !~~ ;~i ~ P (y - F(x, a))2 > -;; , 

fem/a) = Jim I ~ v (y - F(x, a))2 > - . n r { ir} 
n-too i:==1 n n 
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Here P{(y - F(x, a))2 > ir/n} denotes the probability of the event 
{(y - F(x, a))2 > ir/n}, and v{(y - F(x, a))2 > ir/n} is the frequency of this 
event computed from the training sequence. 

The event 

{(y - F(x, a))2 > /3} 

will be denoted by Aa,fJ E Sap· Then 

Whence 

n r 
IJ(a) - J.mp(a)I ~ lim L - IP(Aa) - v(Aa)I. 

n-+ooi=ln 

l/(a) - / 0 mp(oc)I ~ rsup IP(Aa,p) - v(Aa,p)I. 
(J 

Furthermore it follows that 

P{s~p IJ(a) - J.mp(a)I > rx} 

~ P{sup I P(Aa, p) - v(Aa, p) I > x}. 
a,/J 

Since for I > h the growth function of the system of events Sa, 11 is bounded 
by l.5lh /h ! , utilizing Theorem A.2 of the Appendix to Chapter 6 we obtain 

P{s~p IJ(a) - J.mp(a)I > rx} 

< 6ms(2/)e-x2//4 < 9 (!1t e-x2//4_ (7.13) 

Setting the right-hand side of the inequality equal to 17 and solving the 
resulting equation for x, we have 

h(ln ~ + 1) - In~ 
x=2 h 9 

I . (7.14) 

It thus follows from (7.13) and (7.14) that for I> h the inequality 

h(ln !I + 1) - In i 
J.mp(a) - 2r I < l(a) 

h(In !I + 1) - In i 
< Jemp(oc) + 2r I 

is satisfied with probability 1 - 17 simultaneously for all functions of the 
set F(x, oc). The theorem is proved. D 
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§5 Uniform Boundedness of a Ratio of Moments 

Now let for some p > l the conditions 

P J<y - F(x, 1X})2PP(x, y) dx dy 
sup ---'---------------- :5: r 

Jcy - F(x, 1X}}2 P(x, y) dx dy . 
IX 

(7.15) 

be fulfilled, i.e., for any fixed IX = IX* let the ratio of the pth order meant of 
the random variable 

~(IX*) = (y - F(x, 1X*}}2 

to the first order mean be bounded by r. The fulfillment of the conditions 
(7.15) is the basic requirement imposed for solving problems of dependence 
estimation and ill-posed problems. 

In the next sections we shall show that if (7.15) holds for a p > 1 a theory of 
uniform relative deviation of the means from their mathematical expecta­
tions can be constructed. The case (7.15) for p ~ 2 will be the most impor­
tant. For p > 2 maximum rate of convergence is achieved in the order of 
magnitude. For p = 2 the requirement (7.15) is equivalent to the condition 
of uniform boundedness of the relative variance considered in Section 2 of 
Chapter 2; moreover the number •rel which bounds the relative variance is 
related tor, which bounds the mean of the second order, as follows: 

The condition (7.15) is quite weak. All parametric models of regression 
extimation considered in Chapters 4 and 5 satisfy this condition with r 
within the narrow limits 1.35 < r < 2.45 ( cf. Chapter 2, Section 3). 

We shall show below that if along with (7.15) one of the following three 
conditions is fulfilled: 

(1) the set F(x, IX} consists of a finite number of elements, 
(2) the set F(x, IX} may be covered by a finite e-net, 
(3) the set of functions F(x, IX} possess a finite capacity, 

then the method of minimizing empirical risk yields a solution to the problem 
of estimating dependences. Thus we shall bound the rate of uniform con­
vergence of the means to mathematical expectations under the condition (7.15) 
and the condition that the class of functions possesses a bounded capacity in 
any one of the above-stated senses. 

t The mean of the pth order of a random variable ~ is defined as .j M ~P. 
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§6 Two Theorems on Uniform Convergence 

In this section we shall prove two theorems which bound the rate of uniform 
convergence of the means to the mathematical expectations. We shall con­
sider the case when the set of functions F(x, a) consists of a finite number of 
elements and the case when the set of functions can be covered by a finite 
i:-net in either the C or the L; metric. 

The proof of both theorems rely heavily on the following fact: let a 
function F(x, ix*) be such that the condition 

PJ (y - F(x, ix*))2PP(x, y) dx dy 

------------ < r, 

J<Y - F(x, ix*))2P(x, y) dx dy -

p > I (7.16) 

is satisfied. Then if restriction (7.16) is stipulated for p > 2, the inequality 

is valid, where 

P{1(ix*) ~ixJ*e)p(ix*) > ra(p)x} < 24le-x 2114 (7.17) 

p (p - 1y-1 
a(p) = 2(p - 2y-1. (7.18) 

If restriction (7.16) is stipulated for 1 < p ~ 2, then the inequality 

p{J(ix*) - 1.mp(ix*) > rV.(x)} < 241 exp{- x2 12-(2/p)} (7.19) 
](ix*) P 4 

where 

Vp(x) = x Pf(1 - --~1r:ln_x_)p-1 
-..j p--J p(p - 1) 

holds. Note that for p > 3 the values of a(p) in (7.18) is close to 1. A large 
value for a(p) is attained only when pis close to 2. 

These bounds will be obtained as a corollary of Theorem 7.6 presented in 
Section 7. 

Theorem 7.4. Let the condition (7.15) be fulfilled, and the class of functions 
F(x, a) consist of a.finite number N of elements. Then under (7.15) with p > 2, 
the inequality 

l(a) ~ [ 1.mp(a) l 
1 2 ( In N + In l - ln(17/24) 

- rap) I 
00 

(7.20) 
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is fulfilled with probability 1 - '1 simultaneously for all functions in the class 
F(x, ix); if, however 1 < p s 2, then the inequality 

ln N + ln l - ln(11/24) ' 
(7.21) 

12-(2/p) 
00 

where 

J( lnx )p-l VP(x) = (x) 1 - :fp , 
p- 1 p(p - 1) 

[zJoo = {z for z ~ 0, 
oo for z < 0, 

is fulfilled with probability 1 - '1 simultaneously for all functions F(x, a). 

PROOF. Let p > 2 in the condition (7.15). We utilize the inequality 

P{ /(ix,) - /em/ix;) ( )} 
sup ( ) > xra p 

i I IX; 

< N sup P{J(ix;) - J)mp(ix;) > xra(p)}. (7.22) 
i l(a; 

We bound the second factor on the right-hand side of (7.22) using (7.17). We 
thus obtain 

P{s~p /(ix;) ~(:;)mp(ix;) > rxa(p)} < 24Nle-"2114, 

which can be written in the following equivalent form: with probability 
1 - I'/ the inequalities 

[ 
/em/ix;) l 

/(ix;) s 2 ln N + ln l + ln(11/24) 
1 - ra(p) 

/ 00 

are valid simultaneously for all ix;. The first assertion of the theorem is proved. 
Analogously in the case 1 < p s 2 we shall use the bound (7.19). Applying 

this bound to the right-hand side of (7.22), we obtain a bound on the rate of 
uniform convergence which is equivalent to the assertion of the theorem. 

D 

Theorem 7.5. Let the condition (7.15) be satisfied, and let the set F(x, a) be 
covered by a finite £-net. Then one can assert with probability 1 - I'/ that the 
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quality of the Junction F(x, 1Xemp) which yields the minimum for the empirical 
risk is bounded by 

/(1Xemp) ~ (f, + 

where F(x, 1X;(1Xemp)) is an element of the ,;-net closest to F(x, 1Xemp), 

! 2 ( ) In N(,;) + In l - ln(l'J/24) fi 2 = -cap I or p > ; 
T(,;) 

_ (2 In N(,;) + In l - ln(l'//24)) fi I 2 - rVP 12 _<2IP> or < p ~ . 

Remark. Theorem 7.5 is valid for any ,;, which defines a ,;-net chosen a priori, 
i.e., before the sample is taken. 

In particular i; may be chosen from the condition of the minimum for the 
expression 

e + Je2 + [1 - cT(e)l,· 

where c is a constant. It is reasonable to choose c to be close to the minimum 
of functional /(1X0 ). Thus a priori information on the value of /(1X0 ) is utilized 
for choosing an appropriate £. 

The proof of this theorem is basically analogous to the proof of Theorem 
7.2. 

(1) We choose an arbitrary ,;-net. For p > 2, in view of Theorem 7.4, the 
inequality 

/(IX;) ~ [ fem/IX;) l 
1 _ 2-ca(p) In N(e) + In/- ln(l'//24) 

00 

(7.23) 

is satisfied with probability 1 - I'/ simultaneously for all elements of the £-net. 
(2) In view of the bound (7 .11) obtained in the proof of Theorem 7.2, the 

values of the functionals /(IX) for functions F(x, 1Xemp) and F(x, 1X;(1Xemp)) 
which are separated in either the C or the L; metric by an amount smaller 
than £, differ by an amount not exceeding 

I 1(1Xemp) - /(1X;(1Xemp)) I < 2eJmax(/(1Xemp), /(IX;(Cr:emp))). (7.24) 

(3) We shall consider two cases: /(1Xemp) > /(1X;(1Xemp)) and 1(1Xemp) ~ 
/(1X;(1Xemp)). In the first case it follows from (7.23) and (7.24) that the bound 

/(1Xemp) ~ [ Jem/1X;(1Xemp)) l + 2ej/(1Xemp) 
In N(e) + In I - ln(l'J/24) 

1 - 2-ca(p) I 
00 (7.25) 
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is valid with probability 1 - Yf. In the second case we have the bound 

J(rx.emp) :-:; [ 

1 - 2ra(p) 

J emp( rx.;( (X_emp)) l + 2eJ J ( rx.;( (X_emp)) 
In N(e) + In I - ln(yt/24) 

/ 00 

(7.25a) 

with the same probability. 

(4) Solving the inequality (7.25) for J(rx.emp) we obtain 

) 

(7.26) 
2 + Jem/rx.;(rx.emp)) 

£ [ J1n N(r,) + In I - ln(yt/24)] · 
1 - 2ra(p) 1 

00 

Taking (7.23) into account we verify that the bound (7.26) is valid also in the 
case (7.25a). 

The theorem for the case 1 < p :-:; 2 is proved in the same manner. D 

Remark. As in the case in Theorem 7.2, the bound (7.26) will be smaller 
(N(r,) is smaller) provided the £-net is constructed in the L; metric, i.e., when 
the information about the density P(x) is utilized. 

§7 Theorem on Uniform Relative Deviation 

We now prove the basic theorem. 

Theorem 7.6. Let the condition (7.15) be satisfied and the set of functions 
F(x, a) possess a finite capacity h < l; then if p > 2, the inequality 

J(rx.) :-:; 

I - 2ra(p) 
( 2/ ) Y/ h In - + 1 - ln-

h 12 

where 

J(p - l)p-l 1 a(p) = -- ·-
p - 2 2 
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is fulfilled with probability l - 11 simultaneously for all functions F(x, oc); 
if however 1 < p s 2, the inequality 

J(oc) s 

h(ln ~ + 1) - In Ti~ ' 
12-(2/p) 

00 

where 

Vp(x) = x Pf(1 - --1/:ln_x_)p-1 
'1 p--,J p(p - 1) 

is fulfilled with probability l - 11 simultaneously for all functions F(x, oc). 

We prove the theorem first for the case p > 2 and then for 1 < p s 2. 
To begin with we express the functional J(oc) in terms of the Lebesgue 

integral 

J(oc) = { 00 
P{(y - F(x, oc))2 > t} dt. (7.27) 

Observe that for any fixed oc and arbitrary t the probability of the event 
{(y - F(x, oc))2 > t} is expressed in terms of the distribution function of a 
positive random variable ~(oc) = (y - F(x, oc))2 ; namely, the cumulative 
distribution function of ,(oc), 

<l>(,(oc) s t) = <l>a(t), 

is related to the probability of occurrence of event {(y - F(x, oc))2 > t} as 
follows: 

P{(y - F(x, oc))2 > t} = 1 - <l>a(t). 

Thus the functional (7.27) can be written in the form 

J(oc) = f (1 - <l>a(t)) dt. 

We introduce a new functional 

R(oc) = f jl - <l>a(t) dt. 

It is easy to see that this functional exceeds J(oc), since 

1 - <l>a{t) < J1 - <l>a{t). 

The following lemma is valid. 
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Lemma. If for each function of the set F(x, a) the functional R(a) exists and 
the set of functions F(x, a) has a finite capacity h < l, then the inequality 

P1- /(ix) - /em/ix) } 
sup---~->x 
. a R(a) 

< 8ms(21)e- x 2114 < 12 (2ll e- x 2114 (7.28) 
h! 

is valid. 

PROOF. Denote by A,,; the event {(y - F(x, ix)) 2 > i/n}. Consider the expres­
sion 

[

00 1 00 1 ] lim L - P(A,, ;) - L - v(A,,;) 
](a) - /emp(1X) _ n-oo i=l n i=I n 

R(a) R(a) 

We show that if the inequality 

P(A, ;) - v(A, ;) 
sup · · S:: x 
a,; j P(A,, ;) 

is fulfilled, then the inequality 

/(ix) - /em/ix) 
sup---~-<x 

a R(a) -

is fulfilled as well. Indeed, (7.29) and (7.30) imply that 

00 1 
( , Jim x L - J P(A,, ;) ( ) 

(7.29) 

(7.30) 

laJ-lemp(a) - •-oo i=tn xRa 
s~p R(a) s s~p R(a) = s~p R(a) = x. 

Thus the probability that the inequality 

/(a) - /em/ix) 
sup ( ) > x 

a R IX 

is valid does not exceed the corresponding probability for the validity of 

P(A, ;) - v(A, ;) 
sup · · > x. ,, ; J P(A,, ;) 

On the other hand, in view of Theorem A.3 of the Appendix to Chapter 6, 
the bound 
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holds, which implies that 

P{sup /(ex) - 1•mp(ex) > x} < 8m5(2l)e-x 2114 • (7.31) 
a R(ex) 

Noting that m5(l) < 1.51"/h !, we arrive at the bound (7.28). The lemma is 
thus proved. 

PROOF OF THE THEOREM. The statement of the lemma involves the following 
condition: for any function F(x, ex) there exists a functional R(ex). We now 
show that the functional R(ex) exists provided the random variable ~(ex) 
= (y - F(x, ex))2 possesses a moment of order greater than second (even a 
noninteger one). Moreover for p > 2 the relation 

R(ex) < jM~P(ex) · ex(p), 

where 

p (p - 1y-1 
a(p) = 2(p - 2y- I' 

is valid. Indeed, the transformation 

M~P(ex) = J<Y - F(x, ex)) 2PP(x, y) dx dy 

= Loo tP d<Pa(t) = p Loo tp- 1(1 - <Pa{t)) dt 

is valid. On the other hand, by definition 

R(ex) = Loo jl - <Pa(t) dt. 

Now let the pth moment be mp(ex): 

p Loo tp- 1(1 - <t>a(t)) dt = mp(ex). 

We shall obtain a distribution <Pa(t) such that R(ex) is maximized. 
For this purpose we construct the Lagrange function 

L(ex) = R(ex) - JM~P(ex) 

= Loo Jl - <Pa(t) dt - Ap Loo tp- l(l - <Pa(t)) dt. (7.32) 

We determine a probability distribution function <Pa(t) for which the 
maximum of L(ex) is obtained. Denote z2 = 1 - <t>a(t), b = Jp, and rewrite 
(7.32) using this notation: 

L(ex) = L00 z(l - bztP- 1) dt. (7.33) 
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The function z at which the maximum of the functional (7.33) is attained is 
defined by 

1 - 2bztP- 1 = 0, 
which implies that 

where t0 = (1/2b) 11<1 -pJ_ 

Since z(t) varies between 1 and Oas t varies between 0 and oo, the optimal 
function z(t) is 

{
1 ift < t0 , 

z(t) = (; r- l if t Z to. 

We now compute max,. R(a) (recalling that p > 2): 

J
C() JC() (t )p- 1 p l 

max R(a) = z(t) dt = t0 + __Q dt = = 2 to. 
a O O t P 

(7.34) 

On the other hand, express t0 in terms of mp: 

mp(a) =, p fo00 z2(t)tp- i dt 

= p L"rp-l dt + p s: (~rp-\p-l dt = 2tg(: = ~)- (7.35) 

Substituting the value of t0 obtained from (7.35) into (7.34), we arrive at 

sup ~ = Pf~ (p = ~)p- l = a(p), 
a mp(a) \} P 

which implies that for p > 2 

R(et.) < .jM~P(a)a(p). (7.36) 

Utilizing the lemma and the bound (7.36), we prove the first part of the 
theorem. Note that under the conditions of the theorem the inequality 

R(a) < ra(p)J(a) (7.37) 

is valid. We utilize the bound (7.37) to improve the inequality (7.28): 

{ J(a) - lem (a) } 
P sup ) P > ra(p)x 

" l(a 

{ J(a) - Jemp(a) } 12 (2ft _ 2 114 < p sup---~-> x < ~hl e" . 
a R(a) . 

(7.38) 

The first assertion of the theorem is equivalent to this inequality. 
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We now prove the second part of the theorem. Consider the difference 

00 1 
/(a) - I.mp(a) = lim L - (P(Aa,i) - v(Aa,;)). 

n-oo i=l n 

Assume that for all events Aa,i the condition 

P(Aa,;) - v(A,,;)::::; x,e/P(Aa,;) 

is fulfilled. Moreover the inequality 

P(Aa, ;) - v(Aa, ;) ::::; P(A,.;) 

(7.39) 

(7.40) 

(7.41) 

is always valid. To compute the sum (7.39) we apply the bound (7.40) to 
the summands corresponding to the events Aa,; for which P(Aa, ;) > xPl<p- 1>. 
For the summands for which the events Aa,; satisfy P(Aa, ;) ::::; xPf<p-1) we 
shall utilize the trivial bound (7.41). We thus obtain 

/(a) - I emp(a) 

:s:; X j ~1 - <l>a(t) dt + I (1 - <l>,(t)) dt. (7.42) J 1 -4>a(t) > xPf(p - I) J 1 -4>a(t):S xPf(p - I) 

We now find the maximal value (with respect to <l>a(t)) of the right-hand side 
of the inequality under the condition that the pth moment takes on some 
fixed value mp, i.e., 

For this purpose we again use the method of Lagrange multipliers, denoting 

zP = 1 - <l>a(t). 

We thus seek the maximum of the expression 

L(a) = f xz dt + f zP dt - A. l 00 tp-lzP dt. 
z> x-p+l zsx-p+l Jo 

Represent L(a) in the form 

L(a) = f (xz - JtP- 1zP)dt + f (zP - JtP- 1zP)dt, 
z>x-p+t z:5x-P+l 

where the first summand defines the function z(t) in the domain z > x and 
the second in the domain z ::::; x. The first summand attains its absolute 
maximum at 

z = p-ffJ. 
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However, taking into account that z is a monotonically decreasing function 
from 1 to x, we obtain 

z(t) = l 1 
p-:ffii 

if 
p- 1r;; 

0::;; t < './"ii' 
If - < t < -. . p-:ffi"' p-rx1 

pA - pA 

The second summand attains its maximum in the doamin z ::;; xP+ 1 for the 
function lp-~ 

z(t) = 
0 

x 

We thus finally obtain 

z(t) = 

1 

p-lr;; ! 
vil t 

p-~ 

If -<t< -. p-rx1 p-111 
pA - A' 

if 

if 

p-111 t> -- A. 

p- 1r;; 
0::;; t < \}"ii' 

If - < t < -. p-:ffi"' p-:lfx1 
pA - pA' 

If - < t < -. p -:lfx1 p -111 
PA - A' 

p- 1 /l-
o if v--X=s;t<oo. 

We now express the pth moment mp in terms of the Lagrange multiplier A. 
For this purpose we compute the pth moment 

Joo ("')p/(p- 1) ( ln x ) 
mP=p tP-lzPdt= - 1------. 

0 A p-,jp(p - 1) 

Analogously we compute the quantity 
p-Vflp]: 

J(r,.) - / 0 mp(r1.)::,; X { Z dt 

+ zP dt = X - 1 - ----- . Joo ("')l/(p-l)( lnx ) 
p-VI7P1 A p-.fp(p - 1) 

It follows from (7.43) and (7.43a) that 

J(rx) - I.m/rx) < V( ) 
sup ,,~ px, 
~ -v mp(rx) 

where J( ln x )p-t Vp(x) = x 1 - ',Jp . 
p- 1 p(p - 1) 

(7.43) 

(7.43a) 

(7.44) 
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Thus we have shown that the condition (7.40) implies the inequality (7.44). 
Therefore the probability of the event 

{sup /(a) - 1•mp(a) > Vp(x)} 
a ~ 

does not exceed the probability of the event 

{ P(Aa ;) - v(Aa ;) } 
sup · · > x . 
a,i ~P(Aa,J 

According to the assertion of Theorem A.3 in the Appendix to Chapter 6, 
the probability of this event for l >his bounded by (A.16); this implies that 

P{sup /(a) - 1.m/a) > Vp(x)} < 12 (2/l exp{- x2 12-(2/p)}· 
a ~ h! 4 

On the other hand, in view of the condition of the theorem (Equation (7.15)), 

~~,!(a). 

Taking this into account, we obtain 

P{s~p /(a) ~(~)mp(a) > ,Vp(x)} < P{s~p I(a~(a) > Vp(x)}. 

We thus finally arrive at the inequality 

P{sup !(a) - 1•mp(a) > ,V.(x)} < 12 (2/l exp{- x2 12-<2IP)} (7 45) 
a I(a) P h! 4 · 

for I > h. This inequality is equivalent to the assertion of the second part 
of the theorem. O 

Remark. For the proofs of Theorems 7.4 and 7.5 we have utilized bounds 
on relative deviations, (7.17) and (7.19). These bounds may be easily obtained 
from the inequalities (7.38) and (7.45), taking into account that the capacity 
of the class of decision rules F(x, a) formed by a fixed function F(x, a*) 
equals 1. 

§8 Remarks on a General Theory of Risk Estimation 

We have thus constructed a theory of uniform convergence of the means to 
their mathematical expectations. Formally this theory was constructed for 
quadratic loss functions. However, the results obtained are also valid for 
general loss functions. 
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Below we state the basic assertions of the theory of uniform deviations of 
empirical estimators from the means in a general setup. The proofs of these 
assertions are identical to the proofs of the analogous theorems considered 
above. 

Let Q(z, c~) be a parametric family of nonnegative functions satisfying the 
following conditions: 

(1) for any fixed value of the parameter llC* EA the functions Q(z, llC) are 
measurable in z; 

(2) the set of functions Q(z, llC) has a finite capacity h (the indicator functions 
0(Q(z, llC) + /3) have a finite capacity h). 

Then the following assertions on the rate of uniform convergence of empirical 
means 

constructed from a sample z 1, .•. , z1 to their mathematical expectations 

/(llC) = J Q(z, llC)P(z) dz 

are valid. 

Assertion 1. If for functions Q(z, llC) the functional 

RP(llC) = J jl - P{Q(z, llC) :c::; t} dt 

exists, then for l > h the inequality 

< 12 (2/l exp{- x2 12-c2/p)} 
h! 4 

P{ J(llC) -- I.mp{llC) } sup---~-> x 

a Rp{llC) (2ft { x2 } 
< 12 h! exp - b(p) I 

where 

J ( p )P(p _ 2)p-2 b(p)= 4 -- --
p-1 p-l 

is valid. 

for l < p :c::; 2, 

(7.46) 

for p > 2, 



204 7 Minimizing Empirical Risk of Regression Estimation 

Assertion 2. If for junctions Q(z, ex) the pth moment (1 < p ~ 2) 

mp(ex) = J QP(z, ex)P(z) dz 

exists, then the inequality 

P{sup /(ex) - I emp(ex) > x P (l In X )p- 1
} 

a ~ P-Jp(p - 1) 

< 12 (2ll exp{- x.2 12 - (2/ P>} 
h! 4 

is valid for l > h. 

Assertion 3. If for functions Q(z, ex) the pth moment (p > 2) 

mp(ex) = J QP(z, ex)P(z) dz 

exists, then for l > h we have the inequality 

p{ /(ex) - /emp(ex) > ( ) } < 12 (2/t - x2//4 
sup ,,~ a p x h I e , 

a ,v mp(ex) · 

where 

Jl (p - l)p-l 
a(p) = 2 p - 2 · 

Assertion 4. If the condition 

r,~ 

sup ~v~ "'p_\<A) < r 
a /(ex) -

is fulfilled for p > 2, then/or l > h the inequality 

/(ex) ~ / 0 mp(ex) j 
h(ln !1 + 1) - In ~ 

1 - 2ra(p) 1 
00 

(7.47) 

is satisfied with probability 1 - 17 simultaneously for all ex. If, however, the 
condition 
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is fulfilled for 1 < p :,;; 2, then for all / > h the inequality 

(7.48) 

is satisfied with probability 1 - Y/ simultaneously for all a, where 

J( In x )p-l 
Vp(x) = x 1 - ir: 

p-~ p(p - 1) 

In Chapters 8 and 9 we shall utilize the theory of uniform convergence 
developed herein to construct extremal algorithms for estimating depen­
dences in the case of samples of finite sizes. Here we shall note that if the 
condition (7.15) is satisfied and the capacity of the class of functions F(x, a) 
is bounded, then according to the theory described the method of minimizing 
empirical risk leads us to the determination of a function which is close to the 
best in the class (provided the sample size is sufficiently large). Indeed, in this 
case the denominator in the bounds (7.47) and (7.48) is close to 1 and the 
value of the expected risk determines the value of the empirical risk. 



Appendix to Chapter 7 

Theory of Uniform Convergence of 
Means to Their Mathematical 
Expectations: Necessary and Sufficient 
Conditions 

§Al e-entropy 

In the Appendix to Chapter 6 sufficient conditions for the uniform 
convergence of frequencies to probabilities were established. These con­
ditions are sufficient in order that the equality 

lim P{sup IMF(x, a) - .!.1 .± F(x;, a)I > s} = 0 (A.l) 
1-+oo o,eA ,= 1 

be fulfilled for a given set of indicator functions F(x, a), a E A as the sample 
size of a random indepedent sample of vectors x 1, ... , x1 increases. 

In this Appendix we shall indicate necessary and sufficient conditions 
for the uniform convergence of means to their mathematical expectations in 
the case of uniformly bounded families of functions 

0 ~ F(x, a) ~ C, a EA. (A.2) 

(These are conditions which are necessary and sufficient for the fulfillment 
of the equality (A.1) for the family (A.2).) Below we shall assume without 
loss of generality that C = Lt To state these conditions precisely we introduce 
several notions. 

Let A be a bounded set of vectors in E1• A finite set T c E1 such that for 
any y EA there exists an element t E T satisfying p(t, y) < sis called a relative 
s-net of A in E1• 

Below we shall assume that the metric is defined by 

p(t, y) = max It; - ii, t = (t1, ... , t"), y = (y1, ... , y"), 
1 Si Sn 

and the norm of a vector z is given by llzll = max1 sisn Iii. 
t Note that indicator functions satisfy the condition (A.2). 

206 
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If an £-net T of a set A is such that T c A, then we call it a proper £-net 
of the set A. 

The minimal number of elements in an £-net of the set A relative to E1 

will be denoted by N(e, A), the minimal number of elements in a proper £-net 
is denoted by N 0(e, A). It is easy to see that 

N 0(e, A) 2: N(e, A). (A.3) 

On the other hand 

N 0(2e, A) < N(e, A). (A.4) 

Indeed, let T be a minimal £-net of A relative to E1• We assign to each 
element t E T an element y EA such that p(t, y) < i; (such an element y 
always exists, since otherwise the £-net could have been reduced). The totality 
T0 of elements of this kind forms a proper 2i;-net in A (for each y EA there 
exists t ET such that p(y, t) < E, and for such a t ET there exists , E T0 

such that p(l, ,) < E and hence p(y, ,) < 2e). 
Let F(x, ex) be a class of numerical functions in the variable x EX depending 

on parameter ex EA.. Let x 1, ... , x1 be a sample. Consider in the space E1 a 
set A of vectors z with coordinates zi E F(xi, a), i = 1, ... , l, formed by all 
CX EA.. 

If the condition Os F(x, a) s 1 is fulfilled, then the set A = A(x 1, ••• , x1) 

belongs to an I-dimensional cube O s zi s 1 and is therefore bounded and 
possesses a finite £-net. The number of elements of a minimal relative £-net 
of A in E1 is N(e; A(x 1, ••• , x1)) = NA(x 1, ..• , x 1; e). The number of elements 
of a minimal proper £-net is N~(x 1, ••• , x1; e). If a probability measure Px 
is defined on X and x 1, ... , x 1 is an independent random sample and 
NA(x 1, ••• , x 1; i;) is a function measurable with respect to this measure on 
sequences x t, ... , x 1 then there exists an average £-entropy (or simply an 
£-entropy) 

HA(E, l) = M log2 NA(x 1, ... , x1; e). 

It is easy to verify that a minimal relative £-net satisfies 

NA(x 1, ••• , x 1+k; e) s NA(xi, ... , x1; e)NA(x1+ 1, ••• , x 1+k; e): (A.5) 

(Recall that 

p(z 1 , z2) = max lz~ - z~ l)-
1 :Si:,;;; n 

Indeed, in this case a direct product of relative £-nets is also a relative £-net. 
Thus 

HA(e, I + k) s HA(e, l) + HA(e, k). (A.6) 

In the end of this section it will be shown that there exists the limit 
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and the convergence 

(A.7) 

holds. 
Consider two cases: 

(1) limi-.x, H'\e, l)/l = c(e) = 0 for all e > 0. 
(2) There exists an t:0 such that c(t:0 ) > 0 (then also for all e < t:0 the quantity 

c(e) > 0). 

It follows from (A.4) and (A.7) that in the first case 

I. log2 N~(x 1, ••• , x 1; e) P 

1m I ~ 0 
1-00 

(A.8) 

for all e > 0. It follows from (A.3) and (A.7) that in the second case 

I. p{log2 N~(x 1, ••• , x 1; e) ( ) '} 1 1m 1 > c t:0 - u = 
1-00 

(A.9) 

for all e ::;; t:0 , i5 > 0. 
Below it will be shown that (A.8) implies uniform convergence of the 

means to their mathematical expectations, while under (A.9) such a con­
vergence is not valid. Thus the following theorem is valid. 

Theorem A.1. The equality 

I. HA(e, l) - 0 
1m I-, 

1-00 

Vt:> 0 

is a necessary and sufficient condition for the uniform convergence of means 
to their mathematical expectations for a bounded family of functions F(x, et), 
et E A.t 

The next sections are devoted to the proof of this theorem. 

We now prove (as in the information theory [65a]) that the limit (A.7) exists and 
the convergence (A.8) is valid. 

1.1 Proof of the Existence of the Limit 

As O ~ HA(e, I)// ~ I, for any e0 > 0 there is a lower bound 

I. HA(eo, [) 
1m / = c0. 

1-00 

t For indicator functions F(x, ct) we have HA(e, I) "" M log2 .6'(x 1, ••• , x1) for all O < e < I 
(cf. Section A.2 of the Appendix to Chapter 6). 
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Therefore for any b > 0 such an /0 can be found that 

H"(r,o, Io) b 
10 s Co+ . 

Now take arbitrary I > /0 . Let I = n/0 + m where n = [//10]. Then by virtue of (A.6) 

H"(::0 , I) H"(r.0 , n/0 + m) nH"(£0 , / 0 ) + m H"(r,0 , / 0 ) 1 
--- = ----· < ------ < --- + -. 

l n/0 + m n/0 10 n 

Strengthen the latter inequality 

H"(i;0 , /) H"(s0 , / 0 ) 1 . 1 
--- < --- + - < Co + () + - . 

I 10 n n 

Since n -> w when I -> w we have 

As b > 0 is arbitrary, the upper bound coincides with the lower one. 

1.2 Proof of the Convergence of the Sequence 

We prove that when I increases the sequence of random values 

1 log2 N"(x 1, ••• , x1; £0 ) 
r =--------

[ 

converges in probability to the limit c0 . For this it is sufficient to show that for any 
b>O 

and for any µ > 0 

P;(r1) = P{r1 < c0 - µ}-->0. 
I-ex, 

Consider a random sequence 
1 n 

glo = - "r'" , '1 L. I 

ni= 1 

of independent random values r'.. Evidently 

As O < ,l0 s 1, we have 

H"(£ l ) 
Mr10 = Mg 10 = 0 ' 0 

n lo . 

M(r10 - Mr10 ) 2 = D2 s 1, 

M(r10 - Mr10) 4 = D4 s 1. 
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Therefore 

' ' 4 D4 11 + I 4 M(gn° - Mgn°) = 3 + 3--3-D2 < z· 
n 11 11 

Write the Chebyshev's inequality for the fourth moment 

P{l 10 _H/\(eo,lo)I } _4 
9n / > X < 2 4• 

O 11 X 

Consider a random value g~, where I = 1110 + m. By virtue of (A.5) 

1 
r' = r"lu+m s g~o + -. 

11 

Now let x = b/3, /0 and I = 11/0 + m be so large that 

H/\(e0 , 10 ) b 
----c <-

lo o - 3' 

Then 

l b 
; s 3· 

{I 2 I b} 244 Pt(r1)=P{r1 -Co>b}sP g~0 -Co-3b >3 <()4112· 

As 11 ->CO when I-> oc 

To bound the value P;; (r1) consider the equality 

rH"(,o,1)/1(-H-/\_(e_o_,_I) - r') dP(r') = f 1 (r' - H/\(eo, I)) dP(r'). 
J0 I aA(,o,1)/1 I 

Mark its left part with R 1, the right one with R2 and bound R 1 and R2 for such I that 

The lower bound of R I is 

and the upper bound of R 2 is 

R2 = loH (r' - HA(eo, I)) dP(r') + r (r' - H/\(eo, /)) dP(r') 
JHA(,0,1)/1 / co+b [ 
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Combining these bounds we obtain 

Since 

we obtain 

µ I I H"(eo' I) I + I 2P;(r)s c0 +b- I +P0 (r). 

H"(r,o, I) 
I -co, 

I-cc 

2b 
Jim P;(r1) s -. 
1-00 µ 

As b and µ are arbitrary, we conclude that 

P; (r1)---> 0. 
1- 00 

§A2 The Quasicube 
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We shall define by induction an n-dimensional quasicube with an edge a. 

Definition. A set Q in the space E1 is called a one-dimensional quasicube 
with an edge a if Q is a segment [c, c + a]. 

A set Qin the space E. is called an n-dimensional quasicube with an edge 
a if there exists a coordinate subspace E. _ 1 (for simplicity it will be assumed 
below that this subspace is formed by the first n - 1 coordinates) such that a 
projection Q' of the set Q on this subspace is an (n - !)-dimensional quasi­
cube with an edge a and for each point z* E Q 1 (z* = (z;, ... , z;- 1 )) the set 
of numerical values z" such that (z;, ... , z;- 1, z") E Q forms a segment 
[c, c + a], where c in general does not depend on z*. 

The space E._ 1 is called an (n - !)-dimensional canonical space. In 
turn an (n - 2)-dimensional canonical space E. _ 2 can be constructed for 
this space and so on. 

The totality of subspaces E 1, ... , E. is called a canonical structure. 
The following lemma is valid. 

Lemma A.l. Let a convex set A belong to an /-dimensional cube whose co­
ordinates satisfy 

i = 1, ... , /. 

Let V(A) be the /-dimensional volume of the set A. 
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If for some 1 s n s /, 0 s a s 1, I > 1 the condition 

V(A) > Cfal-n (A.10) 

is fulfilled, one can then find a coordinate n-dimensional subspace such that 
the projection of the set A on this subspace contains a quasicube with an edge a. 

PROOF. We shall prove the lemma using an induction method. 

(1) For n = I the condition (A.10) is 

V(A) > C? = 1. (A.11) 

On the other hand 

V(A) :c;; 1. (A.12) 

Therefore the condition ( A. 1) is never fulfilled and the assertion of the 
lemma is trivially valid. 

(2) For n = 1 and any I we shall prove the lemma by contradiction. Let 
there exist no one-dimensional coordinate space such that the projection of 
the set A on this space contains the segment [c, c + a]. The projection of a 
bounded convex set on the one-dimensional axis is either an open interval 
or a segment or a semiclosed interval. Consequently by assumption the 
length of this interval does not exceed a. However, then the set A itself is 
contained in an (ordinary) cube with an edge a. This implies that 

V(A) :c;; a1• 

Taking into account that a ~ 1, we obtain 

V(A) < a1 < la1- 1, 

which contradicts the condition (A.10) of the lemma. 
(3) Consider now the general inductive step. Let the lemma be valid for 

all n < n0 for all /, and for n = n0 + 1 for all I such that n s Is 10 . We 
shall show that it is valid for n = n0 + 1, I = 10 + 1. 

Consider a coordinate subspace E10 of dimension 10 consisting of vectors 

z = (z1, ... , z10). 

Let A1 be a projection of A on this subspace. (Clearly A' is convex.) 
If 

V(A') > C" a'o-n lo ' (A.13) 

then by the induction assumption there exists a subspace of dimension n 
such that the projection of the set A' on this subspace contains a quasicube 
with an edge a. The lemma is thus proved in the case (A.13). 

Let 

(A.14) 
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Consider two functions 

qi 1(z1, ... , z10 ) = sup {z: (z1, ... , z10, z) EA}, 

qiz(zl, ... , z10) = inf {z: (z 1, ... , z10, z) EA}. 

These functions are convex upward and downward respectively. Therefore 
the function 

qiiz1, ... ' zlo) = (/)1(z1' ... , zlo) - <pz(z1, ... , z1o) 

is convex upward. 
Consider the set 

All= {(z1, ... , zlo): <p3(z1, ... ' zlo) > a}. 

This set is convex and is located in E10 • 

For the set A11 one of two inequalities is fulfilled: either 

V(All) > q 0-1a10 -n+1, 

or 

(A. 15) 

(A.16) 

(A.17) 

Assume that (A.16) is fulfilled. Then by the induction assumption there 
exists a coordinate space En- t of the space E1 such that the projection A 111 

of the set AH on it contains an (n - !)-dimensional quasicube Qn_ 1 with an 
edge a. Consider now the n-dimensional coordinate subspace En formed by 
En- 1 and the coordinate zn. Furthermore let A1v be the projection of the set 
A on the subspace En. For a given point (z ~, ... , z;- 1) EA m consider the set 
d = d(z!, ... , z;- 1) of values of z such that (z~, ... , z;- 1, z) E A 1v_ 

It is easy to see that the set d contains an interval with end points 

r1(z 1, .•• , zn- J) = sup' <p 1(z1, ... , z1"), 

zEA 11 

rz(z 1, ••• , zn- 1) = inf' <pz(z1, ... , z10), 

ZE A11 

where sup' and inf' are taken over the points z E A 11 which are projected 
onto a given point (z~, ... ,z;- 1). Clearly, in view of(A.15), r 1 - r 2 > a. 
We now assign to each point (z1, ... , zn- 1) E Am a segment c(z 1, •.• , zn- 1) 
of length a on the axis z10 + 1 : 

[½(r 1(z1, ... , zn-t) + rz(z1, ... , zn-l)) - a/2, 
½(r1(z1, ... ,zn-t) + rz(z 1, ... ,zn-J)) + a/2]. 

Clearly, c(z 1 , .•. , zn-J) c d(z 1, ••. , zn- 1). 

Consider now the set Q c En consisting of points (z 1, .•• , zn- 1, z10 + 1 ) 

such that 

z10 + 1 E c(z1, ... , zn- l). 

(A.18) 

(A.19) 
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This set is the required quasicube n •. Indeed, in view of (A.18) and (A.19) 
the set Q satisfies the definition of an n-dimensional quasicube with an edge a. 
At the same time we have Q E A1v by construction. 

To prove the lemma it remains to consider the case when the inequality 
(A.17) is fulfilled, i.e., 

Then 

V(A) = f <pJCz1, ... , z10) dz 1 • • • dz10 

Al 

+ f <pJCz 1 , ••• , z10) dz 1 • • • dz10 

All 

S aV(A1) + V(A11), 

and in view of (A.14) and (A.17) we obtain 

V(A) < C" a'o-n+ 1 + c•-1a10-n+ 1 = C" aUo+ 1J-n 
- lo lo lo+ 1 , 

which contradicts the lemma's condition. 

§A3 B-extension of a Set 

D 

Let A be a convex bounded set in E1• We assign to each point z EA an open 
cube Q(z) with the center at z and the edges oriented along the coordinate 
axes. 

Consider the set 

A0 = U O(z), 
ZEA 

along with the set A, which we shall call an s-extension of the set A. The set 
A, is the set of points y = (y1, ... , y1) for each of which there exists a point 
z E A such that 

s 
p(z, y) < 2· 

It is easy to show that an s-extension A, of the convex set A is convex. 
Now choose a minimal propers-net on the set A. Let the minimal number 

of elements of a propers-net of the set A be No(s, A). Denote byV(A,) the 
volume of the set A,. 
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Lemma A.2. The inequality 

N 0(1.5i:, A)i:1 s V(A,) (A.20) 

is valid. 

PROOF. Let T be a proper i:/2-net of the set A. Select a subset f of the set T 
according to the following rule: 

(1) The first point z 1 of the set f is an arbitrary point of T. 
(2) Let m distinct points z 1, ... , Zm be chosen. An arbitrary point of z E T 

such that 

min p(z, z;) ~ e 

is selected as an (m + l)th point off. 
(3) If there is no such point or if T has been exhausted, then the construction 

is completed. 

The set f· constructed in the manner described above is a l.5i:-net in A. 
Indeed, for any z EA, there exists t ET such that p(z, t) < i:/2. For such a t 
there exists z E f such that p(z, t) < i:. Consequently, p(z, z) < l.5i: and the 
number of elements in Tis at least N o(l.5i:, A). 

Furthermore, the union of open cubes with edge i: and centers at the points 
off is included in A,. At the same time cubes with centers at different points 
do not intersect. (Otherwise, there would exist z E Q(z1) and z E Q(z2), 

z1, z2 E f, and hence p(z 1, z) < i:/2 and p(z2 , z) < i:/2, whence p(z 1, z2 ) < i: 
and z1 = z2 .) Consequently 

V(A,) ~ N 0(1.5i:, A)i:1• 

The lemma is proved. D 

Lemma A.3. Let a convex set A belong to the unit cube in Ei, and A, be its 
i:-extension (0 < i: s l); and for some y > ln(l + i:) let the inequality 

N 0(1.5i:, A) > eY1 

beful.filled. Thenthereexistt(i:, y)anda(i:, y)suchthat-providedn = [t0 l] > 0 
-one can find a coordinate subspace of dimension n = [t0 l] such that a 
projection of A, on this space contains an n-dimensional quasicube with an 
edge a. 

PROOF. In view of Lemmas A.1 and A.2 and the condition (A.20), which is 
valid for this lemma, in order that there exist an n-dimensional coordinate 
subspace such that the projection of A, on this space contains an n-dimen­
sional quasicube with an edge a, it is sufficient that 

C'ibl-n < eYlel(l + e)-1, 

where b = a/(1 + i:). 
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In turn it follows from Stirling's formula that for this purpose it is sufficient 
that 

where y1 = y ln(l + e). Setting t = n/1 and taking 0 < t < ½, we obtain 

t(ln t - 1) I b In e + Y1 
- 1 +n < 1 ' - t - t 

using an equivalent transformation. 
Under the stipulated restrictions this equality will be fulfilled if the 

inequality 

-Jt(ln t - 1) + In b < (1 + 2t) In e + hi 
is satisfied. Now choose to(y, e) such that the conditions 

0 < to(e, y) s ½, 

-Jto(ln to - 1) < yi/6, 

-2t0 In e < yi/6 

(A.21) 

will be satisfied. This can always be achieved, since by assumption y1 > 0. 
Clearly for O < t s t0 these conditions are also fulfilled and in this case 
(A.21) will be fulfilled for 

In b = In e + 1; , 

or 

{ y - ln(l - e)} a = (1 + e)e exp 3 . 

The lemma is thus proved. 

§A4 An Auxiliary Lemma 

(A.22) 

D 

Now consider a class of functions <I> = F(x, oc) parametrized by means of 
oc EA defined on X. We shall assume that the class is convex in the sense 
that if 

F(x, oc 1), •.. , F(x, oc,) c <I>, (A.23) 

then 
r r 

I t;F(x, oc;) c <I>, I r; = 1, t;:?: 0. 
i= 1 i= 1 
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Now define two sequences: the sequence 

X;EX, 

and a random independent numerical sequence 

which has the property 

Y; = {~1 

Yi,···, Yi, 

with probability½, 

with probability ½. 

Using these sequences, we define the quantity 

Q(<l>) = MY sup ~ I ± F(x;, a)y; I· 
F(x,a)ECII i=l 

(The expectation is taken over the random sequences (A.24).) 
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(A.24) 

In Section A.I we denoted by A the set of /-dimensional vectors z with co­
ordinates z; 0= F(x;, a), i = 1, ... , /, for all possible a EA. Clearly A belongs 
to the unit /-dimensional cube in E1 and is convex. 

We rewrite the function Q(<l>) in the form 

1
1 1 

. I Q(<l>) = My sup l _L z'y; . 
ZEA 1=1 

The following lemma is valid. 

Lemma A.4. If for r, > 0 the inequality 

No(l.Sr,, A)> eY 1, 

is fulfilled for the set A, then the inequality 

y > ln(l + r,), 

( {Y - ln(l + r,)} ) (t 1) Q(<l>) 2 r, exp 3 - 1 2 - 21 

is valid, where t > 0 does not depend on [. 

PROOF. As was shown in the preceding section, if the conditions of the lemma 
are fulfilled, there exist t(r,, y) and a(r,, y) such that there exists a coordinate 
subspace of dimension n = [ti] with the property that a projection of the 
set A, on this subspace contains an n-dimensional quasicube with edge a. 
We have assumed here without loss of generality that this subspace forms 
the first n coordinates and the corresponding n-dimensional subspace forms 
a canonical subspace of this quasicube. 

We define the vertices of the quasicube using the following iterative rule: 

(1) The vertices of the one-dimensional cube are the end points of the 
segment c and c + a. 
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(2) To define vertices of an n-dimensional quasicube in an n-dimensional 
canonical space, we proceed as follows. Let the vertices of an (n - 1)­
dimensional quasicube be determined. Assign the segment 

[ n-1 Al n-1 a n-1 1 An-1 a] <p (zk, ... , 2k ) - 2' <p (2k, ... , zk ) + 2 

to each such vertex (2f, ... , 2;;- 1) (k is the number of the vertex), where 

<pn-1(2l, ... ' 2;;-1) = ½((()1(2l, ... ' 2,:-1) + <pi(2l, ... ' 2;;-1)), 

<p1(21, ... , 2n-l) = max {2n: (21, ... , 2n-1, 2n) E Qn}, 
z" 

<pz(21, ... , 2n-l) = min {2n: 21, ... , 2n-l, 2n) E QJ, 
zn 

and Qn is an n-dimensional quasicube. 

This segment is formed by the intersection of the line (2l, ... , 2;:- 1, zn) 
with the quasicube. The endpoints of the segment form the vertices of the 
quasicube. Thus if 

(2f, ... , 2i;- 1) E En-1 

is the kth vertex of an (n - 1)-dimensional quasicube, then 

( 1 An-1 n-1 Al An-1 a) 2k, ... , zk , <p (zk, ... , zk ) + 2 , 

( Al An-1 n-1 Al An-1 a) zk> ... , zk ' <p (zk, ... 'zk ) - 2 

are correspondingly the (2k - 1 )th and the 2kth vertices of the n-dimensional 
quasicube. 

Now we assign to an arbitrary sequence 

Yi,···, Yn 

a vertex 2* of a quasicube defined as follows: 

2!. = (c + ;) +; Y1, 

Aj _ j-1(<:,l Aj- 1) + a 
z*-<p "*, ... ,z* 2Yi, j =2, ... , n. 

In turn, to each vertex 2* of a quasicube in En we assign a point z* = 
(z!,, ... , z~) EA such that the distance between the projection (z!,, ... , z~) 
of this point in En and the vertex 2* is at most a/2, i.e., 

. . f, 

l z1 - 21 I < -* * 2' 
j = 1, 2, ... , n. 

This is possible because z* E Pr A, on En. 
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Thus we introduce two functions 

z* = ziyi, ... , Yn), 

We shall denote the difference z{ - z{ by bj (j = 1, ... , n) (lbil ~ f,/2) and 
bound the quantity 

Q(<l>) = M sup { 1.± ziyil 
zeA 1= 1 

1 I . 

~ [M i;l Z~Y; 

1 n . 1 I . 

=III Mylz~ + b;) + I i=~lMyiz~. 

Observe that the second summand in the sum is zero, since every term of the 
sum is a product of two independent random variables Yi and z~, i > n, one 
of which (y;) has zero mean. 

We shall bound the first summand. For this purpose consider the first 
term in the first summand: 

f M[Y1 (c + ~ + ~ Y1 + b1)] 

= f [~ + My1b1] 
1 

~ 21 (r1. - e). 

we observe that the vertex (z~, ... , z!- 1 ) was chosen in such a manner that 
it would not depend on Yk but only on y 1, ... , Yk- 1. Therefore 

1 [a ] 1 lk = 1 2 + Mykbk ~ 2/a - e). 

Thus we obtain 

Q(<l>) > M :.~~ { it z~yi ~ ;, (a - e) > (a - e) (~ - ~). 

Choosing the quantity a in accordance with (A.22), we arrive at 

Q(<l>) > e(exp{y - ln~l + e)}- 1)(i- ~). 
The lemma is thus proved. D 



220 App. to Ch. 7 Uniform Convergence of Means to Their Mathematical Expectations 

§A5 Necessary and Sufficient Conditions for Uniform 
Convergence: The Proof of Necessity 

Theorem A.2. For the uniform convergence of the means to their mathematical 
expectations over a uniformly bounded class of functions F(x, rx), rx EA, it is 
necessary and sufficient that for any t: > 0 the equality 

lim HA(t:, I) = 0 
1-00 l 

(A.25) 

be satisfied. 

To prove the necessity we can assume without loss of generality that the 
class F(x, rx) is convex in the sense of (A.23), since from the uniform con­
vergence of the means to their mathematical expectations for an arbitrary 
class follows the same convergence for its convex closure, and the condition 
(A.25) for a convex closure implies the same for the initial class of functions. 

PROOF OF NECESSITY. Assume the contrary. For some t:0 > 0 let the equality 

1. HA(t:0 , I) ( ) 0 1m 1 = c t:0 > 
1-00 

(A.26) 

be fulfilled, and at the same time let uniform convergence hold, i.e., for all t: 

let the relationship 

lim P{sup IMF(x, rx) - { _± F(xi, rx)I > s} = 0 
l-+oo cxeA ,=1 

(A.27) 

be satisfied. This will lead to a contradiction. 
Since the functions MF(x, rx), (1/l) Li= 1 F(x;, rx), rx EA, are uniformly 

bounded by 1, it follows from (A.27) that 

Jim M{sup IMF(x, rx) - { _I F(x;, rx)I} = 0. 
l-+oo «eA i=l 

This implies that if/ 1 -+ oo and I - l 1 -+ oo, then the equality 

Jim M{sup If _I, F(x;, rx) - 1 ~ 1 . ± F(x;, rx)I} = 0 (A.28) 
11,1-oo aeA 11=1 11=!1+1 

is fulfilled. 
Consider the expression 

I [C7 11 n I I] I(x 1 , ••• , x1) = L sup -21 -1 _L F(x;, rx) - . L F(x;, rx) . 
n=O aeA ,= 1 1=n+ 1 
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We subdivide the summation with respect ton into two "regions": 

I: In_ ~I < 1213, 

II: In - !_I > 1213 2 - . 

Then taking into account that 

we obtain 

c7 I(x 1, ••• ,x1)~L, 
nell 2 C" I l (n n ) + L --/- sup - - L F(x;, o:) 

nEI 2 ,e,\ n [ i= I 

-~ (~1 ± F(x;, o:))1· 
I 1-ni=n+i 

Note that in region I (½ - 1//113 < 11// < ½ + 1//113), 

q 
I-2, ~ 1, 
nEI 

while in region II 

I c7 __, o. 
nell 2' l-oc, 

Furthermore 

Jim MJ(x 1, •.. ,x1) s; Jim (I ~f 
l- oc, I-+ ::x n E II 
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(A.29) 

1 11 n 1 1 I C") + -2 max M sup - L F(x;, '.X) - i-=- - L F(x;, 'l.) L ,-i' . 
nil 7EA ni=l ni=n+l nel ,_ 

It follows from (A.28) that 

1
1 " t I I max M sup - _I F(x;, 'l.) - -- =-- I F(x;, 'l.) i~ 0. 

nel ,e,\ 11 1=! / 11 1=n+I I 

Thus taking (A.29) into account we have 

Jim M/(x 1, ••. , x1) = 0. (A.30) 
1-oc 

On the other hand 
1 I! 

Ml(x 1, ••• , x1) = M TT J/CT,,{x 1, ... , X1}), 
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where T,, (k = 1, ... , /!) are all the permutations of the sequence. We trans­
form the right-hand side: 

1 I! 

MI! k~i J(T,,{x 1, ••• , x1}) 

1 I! I [Ci'l I n l I] = M Ti L L sup 2' l _L F(xi(i,k), ex) - . L F(xiU,k), ex) 
·k=ln=OoeA ,=1 ,=n+l 

1 1 Cj'll' I = M ~ C" L sup~ I -~ Y;F(x;, ex) . 
n-0 I y,, ... ,y, oeA ,-1 

(Here j(i, k) is the index obtained when the permutation T, acts on i.) 
In the last expression the summation is carried out over all the sequences 

Y1, ···,Yi 

which haven positive values. 
Furthermore we obtain 

M/(x 1, ••• , x1) = M ½i{ L sup ii .t Y;F(x;, ex)I}· 
y,, ... ,y,oeA ,-1 

In (A.31) the summation is carried over all sequences 

Y1, ···,Yi· 

Choose for e0 > 0 a number such that 

I. HA(eol) () 0 1m 1 = c e > . 
1-00 

(A.31) 

Since c(e) is nondecreasing as e decreases, one can choose e in such a manner 
that 

0 < l.5e s e0 , 
c(e) - In 2 

ln(l + e) < 2 , c(l.5e) ~ c(e0 ) 

will be fulfilled. Then in view of (A.9) the probability that the inequality 

A {c( e0) In 2} N 0 (x 1, ..• , x,, l.5e) > exp 2 (A.32) 

is fulfilled approaches 1. 
According to Lemma A.4, if (A.32) is satisfied, the expression appearing 

in the braces in (A.31) exceeds 
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where y = ½c(t0) In 2 - ln(l + t), and t(t, y) does not depend on l. From 
this we conclude that 

1. ( ) • (t 1) Y/3 1m I x 1, ... , x1 > hm t -2 - 21 (e - 1) > 0. 
I-+ oo l--+ ex:, 

This inequality contradicts the assertion (A.30), and the contradiction 
obtained proves the first part of the theorem. D 

§A6 Necessary and Sufficient Conditions for 
Uniform Convergence: The Proof of Sufficiency 

The following lemma is valid. 

Lemma A.5. If for any t > 0 the relation 

P{!~~,f it F(x;, a) -f i=t/(x;, a)I > t} ~ 0 
is valid, then for any t the relation 

P{supl!z _I F(x;, a) - MF(x, a)I > t} __. 0 
,xeA 1= 1 1-+ro 

also holds. 

PROOF. Assume the contrary. For to > 0 let 

lim P{supl!, _I F(x;, a) - MF(x, a)I >to}# 0. 
l--+oo aeA i= 1 

Denote by R1 the event 

sup If I F(x;, a) - MF(x, a)I > to}· 
,xeA I= 1 

Then for l sufficiently large the inequality 

P{R1} >I'/> 0 

is fulfilled. Denote 

~II F(x;, a) - I F(xi> a)I = S(xi, ... , Xi, a) 
j i=l i=l+l 

and consider the quantity 

P21 = P{!~~ S(xi, ... , X 2 i, a) > t;} 

(A.33) 

= J- · J 0[!~~ S(x1, ... , x21,"') - t;] dP(x 1) • • • dP(x 21). 

Xl, 000 ,Xll 
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Next the inequality 

P21 ~ L, {f · · J 0[!~~ S(x1, ... , X2i, ix) - 8;}P(x1) · · · dP(x21). 
Xi, .• ,,X21 

is valid. To each point x1, ... , x1 belonging to R1 we assign the value 
ix*(x1, ... , x1) such that 

If J1 F(xi, ix*) - MF(x, ix*)I > 8
;. 

Denote by R.1 the event in X 1 = (x1+ 1, ... , x21) such that 

!11. f F(xi, ix*) - MF(x, ix*)I ~ 8;. 
1=1+1 

Since the function F(x, ix) is uniformly bounded, it follows that 

P(R1)--+ 1. 
I-+ ex, 

Furthermore 

P21 ~ L, {L,0[s(x1, ... ' X21; ix*(xi, ... ' x,)) - ~0] 

x dP(x1+ 1) • • · dP(x21)} dP(x1) · · · dP(x1). 

However if, x1, ... , x1 e R1 and x1+ 1, ... , x 21 e R.1, then the integrand equals 1. 
Choosing l so large that P(R1) >½,we obtain 

and hence lim1 .... 00 P1 =I= 0, which contradicts the lemma's assumption. D 

PROOF OF SUFFICIENCY. We shall prove that under the conditions of the 
theorem 

P{sup S(x1, ... , x 21 ; ix)> e}--o. 
ixeA 1-+oo 

In view of Lemma A.5 it follows from the condition (A.33) that the assertion 
of the theorem is valid: 

P{supl!l _i F(xio ix) - MF(x, ix)I > e}--+ 0. 
ixeA 1=1 1-+oo 

We shall now verify (A.33). 
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For this purpose observe that since the measure is by definition sym­
metric, the equality 

P{sup S(xi, ... , x 2,, cx) > e} 
aeA 

1 (21J! { } = (2/)I _L P sup S(Tj{x1, ••. , x 21}, cx) > e 
· 1= 1 aeA 

(A.34) 

is valid; here ½•j = 1, ... , (2/)!, are all the permutations of the indices, and 
Yi{xi, ... , x 21) is a sequence of arguments obtained from the sequence 
x1, .•. , x 21 when the permutation½ is applied. 

Now consider the integrand in (A.34): 

1 am ( ) K = - L 0 sup S(Ti{xi, ... , x21}, cx) - e . 
(2/) ! j= 1 aeA 

Let A be the set of points in E21 with coordinates z; = F(x;, cx), i = 1, ... , 21, 
for all cx EA. 

Let z(l), ... , z(N0 ) be the minimal proper e-net in A, and cx(l), ... , a(N0 ) 

be the values of a such that 

i = 1, ... , 21, k = 1, ... , N 0 • 

We show that if the inequality 

e 
max S(x1, .•. , X21; cx(k)) < 3 

l 5k5No 

is fulfilled, then the inequality 

is also valid. 

sup S(x 1, .•• , x 2,, a) < e 
aeA 

Indeed, for any cx there exists a(k) such that 

e 
IF(x;, a) - F(x;_, a(k)I < 3, i = 1, 2, ... , 21. 
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Therefore 

1
1 I 1 21 I 
-1 _L F(xi, a) - -1 . L F(xi, oc) 

,=1 ,=1+1 

1

1 ( I i ) = 1 J1 
F(xi, a) - J

1 
F(xi, a(k)) 

B 111 21 I s 2 3 + 1 i~l F(x;, oc(k)) - i=t+ 
1 
F(x;, a(k)) < B. 

Analogous bounds are valid for S(½{x 1, .•• , x21}, oc). Therefore 

1 (21)! [ BJ 
K = (21)! i~

1
0 m:x S(½{x 1, ... , x21}, oc(k)) - 3 

1 (21)! No B] 
s (21) ! J

1 
J

1 
0[S(½{x 1, •.• , x21 }, oc(k)) - 3 

We now bound the expression in the braces: 

Here 1'ii) is the index obtained when the permutation ½ acts on i. 
We arrange the values 

F(x;,, oc(k)) s F(xi,, oc(k) s · · · s F(xi2,, a(k)) 

in the order of their magnitudes and denote zP = F(x; , oc(k)). 
p 

Next we use the notation 

d =zP-zP-1 
p ' 

{
1 for F(xi, oc(k)) s zP, 

D;p = 0 for F(xi, oc(k)) > zP, 

. {1 for T11(i) s /, 
r{ = 0 for Ti 1 (i) > l, 
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where Tj- 1(i) is the index which is mapped into i by the permutation ½· 
Then 

1 I 21 . 21 .

1 = -, I ~p .I b;pr{ - I ~p .I b;p(l - r{) 
p r=l p r=l 

1

1 21 . I = I ~p -1 _I b;/2rf - 1) . 
p ,= 1 

Furthermore, if the inequality 

m:x ~ IJ1 b;p(2r{ - 1)1 < i (A.35) 

is fulfilled, then the inequality 

L~P~I_I b;p(2r{ - 1)1 < i L ~P :<:; i 
p ,= 1 p 

(A.36) 

is also valid. The condition (A.35) is equivalent to the following 

[ 1 I 21 . I /;J m:x 0 1 J1 
b;p(2r{ - 1) - 3 = 0. 

Th us we obtain 

R1 < _!_/)I '.f1 
max 0[!, l.f b;p(2r{- 1)1- -3i;] (2 . J = 1 p l = 1 

:<:; ~ {(2~)! :~:0D IJ1 b;p(2r{ - 1)1- i J}· (A.37) 

Let there be 2/ balls, of which Ii! 1 b;p = m are black, in an urn model 
without replacement. We select / balls (without replacement). Then the 
expression in the braces of (A.37) is the probability that the number of black 
balls chosen from the urn will differ from the number of remaining black 
balls by at least (i;/3)/. This value equals 

Ck ci-k r _ " m 21-m 

- f c~1 ' 

where k runs over all the values such that 

l~-~1>~ l l 3. 

In the Appendix to Chapter 6 the bound 

{ i;2[} r < 3exp - 9 
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was derived. Thus 

R 1 < ptl 3 exp{- i:;/} = 6/ exp{- 1:;1 
Returning to the bound, on K we obtain 

K < 6/No(x1, ... , x21 , i) exp{- e;/} 
Finally, for any c > 0 we have 

P{sup f I.± F(x;, oc) - . I F(x;, oc)I > i:} 
aeA ,=l ,=l+l 

::;; f dP(x 1 ) • • • dP(x 21 ) 

log2 N:7'(x1, ... , x21; e/ r) > cl 

+ f K(x 1 , ••• ,x21 )dP(x 1 )···dP(x21 ) 

log2 NJ'(x1, ... ,x21;e/3) s; cl 

::;; p{1og2 N~(x1,; .. , X21; e/3) > c} 

+ 6/ exp{- r,;/ + c1}. 

Setting c < e2 /10, we obtain that the second term on the right-hand side 

approaches zero as / increases. In view of the condition of the theorem and 

the relation (A.8), the first term tends to zero. The theorem is proved. D 

§A 7 Corollaries 

Theorem A.3. For uniform convergence of means to their mathematical 

expectations it is necessary and sufficient that for any r, > 0 the equality 

lim !1 M log V(A,) = log r, 
I-+ oo 

be fulfilled, where A, is the e-extension of the set A. 

PROOF. Necessity. Let e, [J > 0, [J < i: and T0 be a minimal b-net A with the 

number of elements N~(x 1 •.• , xi, b). We assign to each point in T0 a 

cube with edger, + 2b and center at this point, oriented along the coordinate 

axes. 
The union of these cubes contains Ae, and hence 
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whence we obtain 

I. I H"(F,, /) 
1m M -1- log V(A,) :,:; ~~ + log(1: + 26). 

,- .x I 

In view of the basic theorem, 

1 I -M I og V(A,) :,:; log(c: + 2o). 

Since V(A,) > 1:1 and 6 is arbitrary, we arrive at the required assertion. 
Sufficiency is obtained from the following considerations. Assume that 

the uniform convergence is not valid. Then for some i: > 0 

Jim M log NS(x 1, ••• , x1; I.Si:)=)'> 0 
I-cc 

whence in view of Lemma A.2 

. log V(A,) 
hm M ---~--- ;:::: )' + log 1:. 
1-x I 

D 

Lemma A.6. If uniform convergence is valid in the class o(fimctions F(x, x), 
it is then also valid in the class I F(x, x) I. 

PROOF. The mapping 

F(x, x) -> I F(x, x) I 

does not increase the distance 

p(a 1, c>: 2 ) = max IF(xj, a 1) - F(xi, a2 )1. 
1 ~i~! 

Therefore 

NS(x 1, ••• , x1; 1:) > NS(xi, ... , x,; i;), 

where NS and NS are the minimal numbers of the elements in a i-:-net in the 
sets A and A' respectively generated by the classes F(x, a) and I F(x, a) I. 

Consequently the condition 

1. {logNS(x 1, ... ,x,;i-:) '} 
1m P I > u = 0 

,_ co 

implies 

1m P -------- > o = 0 1. {logNS(x 1, •.• ,x1;1-:) -} 
,_ co / 

q.e.d. D 
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Consider a two-parameter class of functions 

f(x, a1, a2) = IF(x, a 1) - F(x, a2)1, 

along with the class of functions F(x, a), a EA. 

IX1, (.(2 EA, 

Lemma A.7. Uniform convergence in the class F(x, a) implies uniform con­
vergence in f(x, a1, a2). 

PROOF. Uniform convergence in F(x, a) clearly implies such a convergence 
in F(x, a 1) - F(x, a 2 ). Indeed, the condition 

s~p IMF(x, a) - i it F(xi, a)I < i:; 

and the condition 

imply that 

I MF(x, a1) - MF(x, :x2 ) 

l I 1 / I - 1 ;;1 
F(x;, a1) + 1 Ii F(x;, a2 ) 

s IMF(x, a1) -i J1 F(xi, 1X1)1 

+ IMF(x, a) - f J
1 

F(xi, a2 )1 

:,~~,M(F(x, a1) - F(x, a2)) -f ;t(F(x;, a1) - F(x;, cx 2))1 s 2c. 

Applying Corollary 2, we now obtain the required result. D 

Denote by L(x 1 , •.• , x1, i:;) the number of elements in the minimal c-net 

of the set A(x1, ••• , x1) in the metric 

Theorem A.4. For a uniform convergence of means to mathematical expecta­
tions it is necessary and sufficient that a function T(i:;) exists such that 

lim P{L(x 1, ... , x1; i:;) > T(c)} = 0. 
1-00 

PROOF. Necessity. The uniform convergence of F(x, :x) implies the uniform 
convergence of the function f(x, a 1, 1X 2), i.e., 

!,~~ If ;t I F(x;, 1X1) - F(x;, a2) I - MI F(x, a1) - F(x, a2) 1);:: 0. (A.38) 
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Consequently for a finite /0,and a given i; there exists a sequence x!, ... , xt 
such that the left-hand side of (A.38) is smaller than c. This means that the 
distance 

1 lo 

P1(a1, a2) = z":i J1 IF(xf, a 1) - F(xi, a2)1 (A.39) 

approximates with precision i; the distance in the space of functions 

(A.40) 

uniformly in a 1 and a2 • However, in the metric (A.39) there exists on the set 
A a finite i;-net S with the number of elements L(x!, ... , xt; i;). The same 
net S forms a 2i;-net in the space A with the metric (A.40). 

Next we utilize the uniform convergence of p(ai, a2) to pi(a 1 , a2) and 
obtain that the same net S, with probability approaching 1 as l--+ oo, forms 
a 3i;-net on the set A(x!, ... , x1'). Setting T(i;) = L(x!, ... , xt; i;), we obtain 
the assertion of the theorem. 

The proof of sufficiency of the conditions of the theorem for uniform 
convergence is analogous to the proof of sufficiency for Theorem A.2. D 



Chapter 8 

The Method of Structural 
Minimization of Risk 

§ 1 The Idea of the Method of 
Structural Risk Minimization 

Up until now, when studying methods for estimation of dependences 
based on empirical data, the amount of data was of secondary importance: 
the principles which determined the selection of the desired. dependence 
from a given set of possible dependences did not take into account directly 
the amount of available information. 

Starting with this chapter, we shall consider methods of estimation which 
will allow us to obtain the best possible result (in a certain sense) for a given 
fixed amount of empirical data. Here it is essential to take into account the 
amount of available information, especially if the size of the sample 

(8.1) 

is small. However, before proceeding to a discussion of methods for estimating 
dependences suited for a small sample, we shall clarify the meaning of a 
"small" sample. 

Definition. We say that for purposes of estimating a function in a given 
class F(x, cx) the sample size I is small if the ratio 1/h is small (for example 
1/h < 30); here his the capacity of the class of functions. 

The quantity l/h determines the relative size of the sample (the sample 
size per unit capacity of the class). 

Observe that the bounds on the expected risk obtained in Chapters 6 
and 7 depend on the relative size of the samples rather than on their absolute 

232 
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size. The basic result of Chapter 6 is that simultaneously for all indicator 
functions F(x, a) the inequality 

( / ln 1/) 
P(a) < v(a) + 0 1 h' - h (8.2) 

is satisfied with probability 1 - IJ, while the basic result of Chapter 7 is 
that simultaneously for the whole set of arbitrary functions F(x, a) the 
inequality 

( I -ln 1/) 
l(a) < /emp(a)02 h' -h- (8.3) 

is fulfilled with probability 1 - IJ. 
At present neither the specific form of the summand 0 1(1/h, -(ln 1/)/h) 

nor the specific form of the factor Oz(l/h, -(ln 1/)/h) is important. The main 
point is that the quantity 0 1(//h, -(ln 1/)/h) tends to zero as 1/h increases, 
while the quantity 0 2(//h, -(ln 1/)/h) tends to 1. This fact allowed us to 
establish a method of minimizing the empirical risk for large samples. For 
any 6 there exists a number Tsuch that as long as 1/h > T, the inequality 

P(a) < v(a) + 6 

is fulfilled with probability 1 - 1/ simultaneously for the whole set of indicator 
functions F(x, a), and analogously under the same conditions the inequality 

/(a)< /emp(a)(l + 6) 

is fulfilled if the class F(x, a) is a class of arbitrary functions. Therefore a 
small value of the empirical risk assures (with probability I - 1/) a small 
value of the expected risk. 

However, if the same size is small, the summand 0 1(1/h, -(In 1/)/h) may 
differ significantly from zero while the factor Oz(l/h, -(ln 1/)/h) may differ sig­
nificantly from 1. In this case a function which yields a small value of the 
empirical risk may not assure a small value for the expected risk. In order to 
be able to achieve the guaranteed minimum in the case of small samples it 
is necessary to take into account not only the value of the empirical risk 
v(aemp) (or l,,mp(a0 mp)), but also the value of the summand 0 1(//h, -(In 1/)/h) 
(or of the factor Oz(l/h, -(ln 1/)/h)). 

In this chapter we shall consider a method for minimizing risk which, 
unlike the method of minimizing empirical risk, minimizes the upper bound 
on the risk, (8.2) (or (8.3)), over both summands (or factors) 

( I -lnlJ)( (/ -lnlJ)) v(a) + nl h' -h- /emp(a)02 h' -h- ' 

-rather than over one summand v(a) (or factor / 0 m/a)). This idea is imple­
mented by the method which we shall call the method of structural risk 
minimization. 
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Let a structure be defined on the set of functions F(x, ix), i.e., first a minimal 
subset of elements S1 is selected, then a subset S2 containing S1, etc., and 
finally the subset Sq which coincides with the whole set: 

S1 C S2 C ... C Sq. (8.4) 

An ordering (8.4) on the set F(x, ix) is given a priori (before the occurrence 
of the sample). 

Let the structure be defined in such a manner that the capacity h; of the 
subset of functions S; is less than the capacity h;+ 1 of the subset S;+ 1, i.e., 

h1 < h2 < · · • < hq. 

For each subset S; the bound 

; ; ( I -ln 17) 
P(ixemp) < v(ixemp) + 0 1 h;,-,;;- (8.5) 

is valid with probability 1 - 17 provided the set of indicator functions is 
ordered; and with probability 1 - 17 the bound 

. . ( I -In 17) 
J(ix~mp) < J0 mp{IX~mp)Q2 h;,-,;;- (8.6) 

is valid provided a set of arbitrary functions is ordered; F(x, ix~mp) is an 
element which yields the minimum of the empirical risk in S;. 

In (8.5) ((8.6)) the first summand (factor) on the right-hand side decreases 
as i increases, while the second summand (factor) increases. 

The method of structural minimization of the risk amounts to finding a 
subset S* in which the function F(x, ix:mp), which minimizes the empirical 
risk, yields a minimal bound on the expected risk, and choosing this function 
to be the solution. Observe that since for each element S; the bound (8.5) 
((8.6)) is valid and there are q elements in the structure, the bounds are valid 
with probability 1 - 17 simultaneously for all q functions which minimize 
the empirical risk (each one in its own S). Therefore the solution F(x, ix:mp) 
obtained using the method of structural risk minimization yields a guaran­
teed minimal bound with probability 1 - q17 for the risk. In other words the 
inequality 

P( ix:mp) < v( ix:mp) + Q 1 ( :/ - ~: 11 ) (8.7) 

is valid (the inequality 

I( * ) * ( I In 11) 1Xemp < Jem/1Xemp)Q2 h*, - ,;-:; (8.8) 

is valid) with probability 1 - q17. 
When implementing the method of structural minimization it is important 

that the "guarantee" on the obtained bound on the risk be high (equal to 
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1 - 11). Therefore, setting 11* = IJ/q in (8.7) (and in (8.8)) in place of IJ, we 
obtain with probability 1 - I/ the inequality 

* * ( I - ln 1J + ln q) 
P(!Y.emp) < V(IY.emp) + Ql h*, h* (8.9) 

(8.10) 

For structures consisting of a small number of elements (q < 20-100), 
the increase obtained in the upper bound for F(x, a:mp) as compared with 
(8.5) (and (8.6)) will be generally insignificant (since log q rather than q 
appears in (8.9) and (8.10)). This means that under the least favorable con­
ditions the guaranteed amount of risk for a solution obtained by the method of 
structural minimization may be only slightly worse than the guaranteed 
amount of risk obtained by the method of minimizing the empirical risk, 
while, as we shall see below, in ordinary situations the gain achieved from 
using the method of structural risk minimization may be quite substantial. 

In what follows it will be convenient to view the method of structural risk 
minimization as a two-stage minimizing procedure: first a function F(x, IY.~mp) 
which minimizes the empirical risk is selected for each element S; of the 
structure (8.4), and then from the q selected functions the one which yields 
the guaranteed minimum for the value of the risk is chosen. Thus two problems 
arise in implementing the method of structural risk minimization: 

(1) How should the structure on the initial class of functions F(x, a) be 
defined? 

(2) What should the algorithm for choosing the second level be? 

The definition of a structure on a set of functions F(x, a) is an informal 
step in the implementation of the method. The structure should reflect the 
prior information concerning the problem available to an investigator. 
Functions which, in the investigator's view, approximate the desired one 
more probably should be assigned to a class S; with a lower index. Moreover, 
the more prior information is available, the smaller the classes with low 
indices should be. 

The definition of an algorithm for choosing the second level reflects the 
ability to estimate the quality of each one of the decision rules selected at the 
first level. When constructing algorithms for choosing the second level we 
shall utilize below the bound on the expected risk (6.48) given by 

h In~+ 1 - ln ~ ( 21 ) 1J 

P(a) < ,(a) + 2 h I 12 ( + 
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if the choice is made from indicator functions (for solving a pattern­
recognition problem). and the bound in Theorem 7.6. 

1i(1n ¥ + I) - In TI 
I oo 

/(a)< 

I - 2ra(p) 

/,m,(•) 1 

if the choice is made from arbitrary functions (for solving a regression­
estimation problem). Utilization of these bounds allows us to obtain the 
best guaranteed solution for a given structure.t 

Another idea for constructing algorithms for the second level is connected 
with the utilization of a procedure called moving controls. 

§2 Moving-Control Estimators 

We shall estimate the quality of a decision rule F(x, aemp) which minimizes 
the empirical risk 

I 1-1 

I em/a) = r=-f J
1 

(y; - F(x;, a))2 (8.11) 

for a given sequence 

using the following device. Exclude from the sequence the first pair x 1, y 1, 

and obtain a function which minimizes the empirical risk for the remaining 
I - I elements of the sequence. Let this function be F(x; a(.:()\, ; ... ; x1, y1)). 

Here the symbol .01 indicates that the pair x 1, y 1 is excluded from 
the sequence. We shall compute the amount of deviation for the excluded 
pair x 1, y 1 : 

(y 1 - F(x 1 ; a(Q,; ... ; x 1, y1)))2 • 

Next we shall omit the second pair from the sequence (the first pair is re­
tained) and compute the deviation 

(Yi - F(x 2 ; a(x 1, y 1 ; x;,-_Yi; ... ; x1, y1)))2 ; 

t Here and below we use the assertion of Theorem 7.6 for p > 2. When the condition 

~-:~F 
sup - - · < r 

, (y - F(x, '.X))2 -

is fulfilled for p > 2 the best rate of convergence in terms of the order of magnitude is attained. 
However. all the derivations presented in this chapter may be done using Theorem 7.6. for 
I< p :s; 2. 
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In this manner we shall compute deviations for all/ pairs. We now form the 
expression 

I I 

= -1 ;~Y'; - F(x;; ix(x 1, Yi; ... ; Q; ... ; Xi, y1)))2 (8.12) 

and use it as an estimate for the quality of the function F(x, ixemp) which 
minimizes the empirical risk (8.11): 

/(ixemp(X1, Yi;···; x,_ 1, Yt- 1)) 

Such an estimation procedure is called moving control. 
The following theorem is valid: 

Theorem 8.1. A moving-control estimator is unbiased, i.e., 

M/(ixcm/x1,Y1:--- ;x,-1,Y,-1)) = MTmc(X1,Y1; ... ;x,,y,). 

PROOF. The proof consists of verifying the following chain of transformations: 

M f- .. n J1 (y; - F(x;, ix(x1, Y1; ... ; .(,J,1;; ... ; x,, y,)))z 

x P(x 1, y 1) · · · P(x1, y1) dx 1 dy 1 · · · dx 1 dy1 

= M f- · · f ~ J 1 [J (Y; - F(x;, ix(x1, Y1; - .. ; -C1\; ... ; x,, y,)))2 

x P(x;, y;) dx; dY;j 

x P(x1, Y1) · · · P(x;- 1, Yi- 1)P(x;+ 1, Y;+ 1) · · · P(x,, Y,) 

x dx 1 dy 1 · · · dx;_ 1 dY;_ 1 dx;+ 1 dy;+ 1 - · · dx 1 dy1 

1 I ,,,.---....._ 

= M 1 ;~i /(ix(x 1, Y1 ; ••. ; X;, Y;; ... ; x 1, yi)) 

= M l(ix.m/x 1, Y1; - · · ; x,_ 1, Yt- 1)). 

The theorem is proved. D 

Remark. In proving the theorem the properties of the function F(x, ct) 
were nowhere used. Therefore the moving-control procedure defines 
unbiased estimators for the quality when estimating indicator functions as 
well as when estimating an arbitrary functional dependence. 
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Unbiasedness is, however, an insufficient characterization of an estimator. 
It is also necessary to know its variance D. If the variance of an estimator 
Tmc is known, one can estimate the average quality of a decision rule which 
minimizes the empirical risk for samples of size I. Namely, with probability 
1 - '7 the inequality 

M l(a0m/x 1, Y 1; ... ; X1- 1, Y1- 1)) 

:S; Tmc(X1, Y1; · · ·; X1, Y1) + A (8.13) 

is valid (here 1 - '7 is the confidence level with which the inequality should 
be valid). The bound (8.13) follows from Theorem 8.1 and Chebyshev's in-

equality P{IMTmc - Tmcl > ~} < '1· 
However, we cannot compute the variance of a moving-control estimator 

in a sufficiently general setup. Therefore the applicability of a moving-control 
procedure for estimating the quality of algorithms minimizing the empirical 
risk is connected with the assumption that if the sample size exceeds the 
capacity of a class of functions severalfold, then the variance of the estimator 
is small (and is of order 1/1 rather than h/1). t 

§3 Moving-Control Estimators in Problems of 
Regression Estimation 

We show that for estimating regression in the class of functions linear in their 
parameters, 

F(x, a) = L a;<plx), 
i= 1 

a moving-control estimator admits the following equivalent representation: 

(8.14) 

t In the particular case when F(x, ix) = I?;; l ix,x' + ix0 , then the vector x = (x1, ... , x"- 1 l 
is multinormally distributed, y = F(x, ix0 ) + ,. and ( is a normally distributed noise; this 
assertion will be proved in Section 4. We are assuming that the same order of magnitude for 
the variance remains in the general case as well: for a pattern-recognition problem when the 
class F(x, ix) has a finite capacity, and for a regression-estimation problem when the class 
F(x, ix) has a finite capacity and the inequality 

is fulfilled. 

,J M(y - F(x, r,.))4 

sup ------ = r < ex, 
M(y - F(x. ix))2 
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where 

J! is the ith row of the matrix <I>, and Y is an /-dimensional column vector of 
values of y 

Y = (Yi,···, Y,f. 

The expression (<I>T<I>)- 1<I>TY in the numerator of (8.14) is an estimator of 
the vector of parameters rx obtained using the method ofleast squares for the 
whole sample. The numberator in (8.14) determines the square of the devia­
tion at the point x;, and the denominator determines the multiplicative 
correction which arises when we estimate the parameter rx from a sample in 
which the ith pair x;, Yi is omitted rather than from the whole sample. 

The representation (8.14) is remarkable in that it contains only one matrix 
inversion (rather than I inversions as in the case for the general procedure 
described in the preceding section). This fact causes the moving-control 
procedure to be computationally no more complex than computing residuals 
using the least-squares procedure. 

Below, when constructing algorithms for regression estimation, we search 
for a solution which yields not only the unconditional minimum (8.11) but 
also a conditional minimum under the restriction 

n 

llrx.11 2 = L rxf ~ c. 
i= 1 

Finding such a conditional minimum is a problem which is equivalent to 
finding the minimum of the functional t 

. _1~ 2 2 Jem/rx · Y) - 1 ;:"i (Y; - F(x;, rx)) + Yllrx.11 , (8.15) 

where y is a positive constant depending on c (a Lagrange multiplier). 
Estimation of the quality of the solution rx = rxr which minimizes the 

functional (8..15) will also be carried out using the moving-control procedure. 
We find solutions rxy(x 1, y1 ; •.. ; x;-;}\; ... ; x 1, y1) which minimize the 
functional (8.15) defined on the l - l pairs (the pair X;, Yi is excluded, y is 
fixed) and form the quantity 

t Recall that according to Theorem 5.5 estimators of this type (ridge regression estimators) 
have the minimum variance among all the estimators with the same bias vector. 



240 8 The Method of Structural Minimization of Risk 

The quantity r:;,c will be an estimate of the quality of the function F(x, ixr) 
which minimizes the functional (8.15). 

An equivalent representation of (8.16) is obtained using the matrix 

1 0 

l= (8.17) 

0 1 

Namely, 

y • - 1 I (Y; - JI A; l<l>TY)2 

T mcCX1, Y1, · · ·, Xi, Y1) - [ _L (1 _ pA- lJ-)2 
1= 1 I y I 

(8.18) 

For y = 0 (8.18) coincides with (8.14). 

We shall derive a representation of a moving-control estimator (8.16) in the form 
(8.18). Denote 

(8.19) 

where II J; II is the matrix with all rows equal to zero except the ith. In the ith row of the 
matrix the vector fl is written. 

Then the minimum of (8.15) for the sequence without x;, Y; is attained for the vector 

ocy(x 1, y 1 ; ... ; Q; ... ; Xz, y1) = B(<l>T - IIJ:IIT)Y. (8.20) 

We express the matrix Bin terms of AY. To do this we rewrite (8.19) in the form 

(8.21) 

In turn we obtain 

(8.22) 

from (8.21). Multiplying the left-hand and right-hand sides of the equality (8.22) by 
IIJ:IIT, we have 

(8.23) 

Equation (8.23) yields 

Substituting this expression for BIIJ:IIT into (8.22), we arrive at 

We now compute ocy = ocy(x i, y 1 ; ... ; 0; ... ; x1, y1). In view of (8.24) we have 

IXy = B(<l>T - IIJ:IIT)Y 

= A; 1<1>TY + A; 1 11J:IIT(J - IIJ:IIA; 1 IIJ:IIT)- 1 IIJ;IIA; 1<1>TY 

- A; 1 IIJ:IITY - A; 1 IIJ:IIT(J - IIJ:IIA; 1 1IJ:IIT)- 1 IIJ:IIA; 1 IIJ;IITY. 
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We compute the square of the deviation utilizing the equality 

J! A,- 1 ll[;IITY = J! A; 1hYi· 

We thus obtain 

(y; - F(x;, c,y))2 

= (Y; -- f! A; 1<1>Ty - f! A; I IIJ;IIT(J - IIJ;IIA; I IIJ;IIT)- I llf;IIA; 1<1>Ty 

+ J;rA; 1J;y; + f;A; 1 11J;IIT(J - llf;IIA; 111J;IIT)- 1J;A; 1J;y;)2 
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=( Yi -(1+ J!A;IJ; )1·TA-l<l>TY)2=(Y;--J!A;l<1>TY)2 
i --f!A;11; i - J!A;11; , y o -J!A;1n2 . 

Finally we arrive at 

§4 Estimating the Expected Risk for 
Samples of Arbitrary Size 

In this section the quality of the linear regression 

n 

y = L rx;:i; + rxo 
i= 1 

obtained by the least-squares method is estimated. For this purpose we shall 
construct _a parametric family of statistics by which we shall estimate the 
expected risk for samples of arbitrary size using the sample 

(8.25) 

Under certain conditions we shall show that the introduced estimators 
are unbiased and shall find the bound of their variance. Let us introduce 
estimators 

p > - I+ n + 2, I> n + 3, 

where 

is an estimator of the moving control. 
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Using the estimator Jp(x 1, y 1; ... ; x 1, y1) we shall determine 
M J(rx.mp(x 1, y1 ; ... ; x1 + P' Yi+ p)), the expected risk for samples of size I + p. 
The statistics Jp(x 1, y 1 ; ••• ; x1, y1) allow us to find the important specifics 
of the problem in hand: for instance, to estimate the minimum possible risk 
for our problem (the minimum risk is estimated as'J",(x 1,y 1 ; ... ;x1,y1)) 

or to estimate the reduction in risk if r elements are added to the sample 
(8.25) (the reduction in risk is estimated as J 0(x 1,01 ; ••• ,x1,y1)­

J,(x1, Y1. · ·; X1, Y1)). 
The following theorem holds 

Theorem 8.2. Let the probability distribution on pairs x, y be such that Yi is 
related to xi as follows: 

n 

Yi = L r:x;x) + r:x.0 + ~i' 
i= 1 

where ~i is a random variable independent of x distributed according to 
N(O, CT2) and x is a random n-dimensional vector distributed according to 
N(µ, L). 

Then for any l > n + 7 and any p > - l + n + 2 the statistic 
Jp(x 1, y 1 ; ••• ; x1, y1) determines an unbiased estimator of the expected risk 
M/(rx.mp(x1, y 1 ; ••• ; x1+p, Yi+p)). The variancet of the estimator is bounded 
by the inequality 

2CT4 (1 + ~ + l + p ~ n - 2)' A < D(J (-)) 
l 1 n P 

l+z_l+l-n-3 

2CT4 (1 + -/ +_1 _p + -I +-p-~-n---2)2 B 

< l 1 n ' 
1 +--+----

1-1 l-n-3 

(8.26) 

where 

(l - n - 5)3 ' 

( 
1 n + 4 ) 3 nl2 

B = 1 + l - 1 + l - n - 7 + (l - n - 5)3 • 

Corollary 1. The variance of the moving-control estimator is bounded by the 
inequalities 

2a4 2CT4 
-[- A < D(Tmc) < -l- B. 

t We denote the variance of a random variable z by D(z). 
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Corollary 2. The root-mean-square relative error in estimating the expected 

risk M/(O(emp(x 1, y 1 ; ... ; x1+p, Yi+p)) is independent of p and is bounded by 
the inequality 

(2Al VI JD(Jp(x 1,y1 ; ••• ;x1,y1)) ------'------ < ---'------'-----------
1 + _l_ + __ n__ M/(O(emp{X1, Y1; · .. ; X1+v• Y1+p)) 

1-1 l-n-3 

< 1 n 
1 +--+----

1-1 l-n-3 

Note that unlike Theorem 8.1 where the estimator Tmc{x 1, y1 ; ... ; x 1, y1) 

is said to be unbiased for any model for estimating dependences, Theorem 
8.2 asserts that the estimators Jp(x 1,y1 ; ••• ;x1,y1), p >-I+ n + 2, are 
unbiased only for the special case of estimating the linear regression by the 
least-squares method. 

To clarify the estimation of the variance (8.26) let us consider two random 
independent samples, one of size I + p: 

R: X1, Y1; · · ·; X1+p• Y1+p• 

and another of size k: 

R*: xf, yf; ... ; xt, Yt. 
Using the least-squares method, we estimate the parameters aemp from 

the sample R, and then we estimate the quality of the estimated regression 
from the sample R *: 

1 l+k 

1:~p{O(emp(R)) = k i=~ 1 (yf - O(;mp(R)x{) 2• 

Clearly the random variable 1:~p(O(emp(R)) is an unbiased estimator of 
the quality of the algorithm for regression estimation, i.e., 

MR M R•/:~p{O(emp(R)) = MR /(O(emp(R)). 

(Here MR (MR•) indicates mathematical expectation with respect to samples 
R (R*).) Therefore the accuracy of this estimator of the quality of the algo­
rithm is determined by the variance of the random variable 1:,;,PD(O(.mp(R)). 
Below we shall compute the value of this variance (cf. Equation (8.44).) It 
turns out that the variance satisfies 

2cr4 ( n ) 2 2u4 n 
D(l:~p(O(.mp(R))) > -k 1 + / 2 + (/ 2)2, 

+p-n- +p-n-

l + p > n + 2 (8.27) 
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Comparing the bounds (8.26) and (8.27), we conclude that the moving­
control estimator has approximately the same precision as the estimator 
1:;vCaemvCR)) obtained from the sample R of size I + p and the sample R* 
of size k = I - n. 

The proof of the theorem is based on the following two lemmas. 

Lemma 8.1. Let A he a symmetric 11 x 11 matrix, and ¢ be an n-dimensional vector distri­
buted according to N(O, <J2 /). Then the equality 

M ~WAs) 2 = <I4 [2 Sp A 2 + (Sp A) 2] 

is fulfilled. 

PROOF. We write the expression M ~(C As)2 term wise assuming that A = I aij[. We obtain 

i. j, .~. l 

= a4 [2 I a;~ + I a;;aii + 3 I a;;] 
i = j i* j i 

= 0'4[2 I afi + L a,,aii]· 
i, j i,j 

Since the matrix A is symmetric (a,j = ai.) we have 

MlsTAs)2 = <I4 [2~;a;jaji + (~a;/] 
= <J4 [2 Sp A 2 + (Sp A)2], 

q.e.d. D 

Lemma 8.2. Let the random n-dimensional vector ( = (( 1, ••• , (.? and a random 11 x 11 

matrix H be statistically independent. Let the vector ( be normally distributed N(O, I) 
and the matrix H be distributed according to the Wishart distribution W,, .(H, /). 

Then the random variable 

I= (1,0, .. . W 

is distributed as the composition 

/3 
<p = -

u 

of two independent random variables /3 and u, where /3 is a x2 random variable with n - 1 
degrees of freedom (/3 - x;- 1) and u is a x2 random variable with 1 - n + 1 degrees of 

freedom (u - XT-n+ 1), 
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PROOF. We introduce an orthogonal matrix BT of dimension n x n with the first row 
given by F = (I, 0, ... , 0) and the second by the vector 

the remaining n - 2 rows are given by vectors which form an orthonormal system 
with the first two vectors. 

For this matrix the equality 

B( = (cl, {i, 0, .... W (8.28) 

is valid, where et, /J are independent random variables, the first being distributed accord­
ing to N(0, 1) normal distribution while the second is a / variable with 11 - 1 degrees 
of freedom. 

Since a quadratic form remains invariant under an orthogonal transformatiC\P, it 
follows that 

cl= (TH-\= (B0T(BHBT)- 1(B0, 

(FH- 1()2 [(BI)T(BHBT)r 1(8()]2 
b=~-~-

FH- 1T (BI)T(BHBT)- 1(BT) 

Denote BHBT = C, and decompose the inverse matrix c- 1 into blocks 

l

c11 

c;? = c21 

Taking (8.28) into account, we thus obtain 

c22c11 _ (c12)2 
r.p = a-b = f3------

c11 

c12 I 
c22 · 

(8.29) 

It is known [5, Th t:orem 4.33] that the matrix C 2 = ( C1/ )- 1 is a 2 x 2 matrix distributed 
according to the Wishart distribution W,-n+ 1. i(C 2 I). This matrix therefore admits the 
following representation in terms of independent random variables w, v, u [75a]: 

C2 = (C;-/)-1 = lv2 + w vfil, 
vJu u 

where 

v - N(0, I), U - Xf-n+ I" 

From this we obtain that the matrix C1} possesses the following representation: 

V 

w wJu 
c;-/ = 

V v2 -+- w 

wJu uw 
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Thus the elements c 11 , c 12 = c21 , c22 can be represented as a composition of indepen­
dent random variables 

11 1 
C = -, 

v2 + w 
c22 = __ _ 

w WU 

Su bstituing the values c 11 , c 12, c2 2 into (8.29), we obtain the assertion of the lemma. 
D 

PROOF OF THE THEOREM. To simplify the notation, we shall assume that the vector x 
consists of n + 1 coordinates x = (q, x 1, .•. , x"), wheie q > 0 is a fixed number and 
the vector a: consists of numbers a: = (a: 0 /q, a: 1, ... , a:")r. In this notation the linear 
regression is written in the form y = a:Tx. Note that according to Theorem 8.1 

M J(a:emp(x 1, Yi;··· ; X1+ P' Y1+ p) = MTmcCx 1, Yi;··· ; X1+ p+ 1, Y1+ p+ 1)­

The estimator J p(x 1, y 1 ; ... ; x1, y1) will be proved unbiased if we show that 

MTmh1,Y1; ... ; x,,y,) = u 2 (1 - I~ l + 1-: _ J 
In this case the equality 

MTmcCX1, Yi;··· ; X1+ p+ 1, Y1+ p+ 1) 

(
l +-1-+ ___ n __ ~ 

l+p l+p-n-2 
= l n MTmc(X1, Y1; · · · ; X1, Y1) 

1+--+---
1-1 l-n-3 

= Mlp(x 1, Yi; ... ; x 1, y1) 

holds. 
Furthermore, it is obvious that 

l+p t+p-n-2 ( 

I + _I_ + ___ n ___ · ) 2 

D(Jp(x1,Y1; ... ;x,,y,))= 1 n 

1+--+----
1-1 /-n-3 

X D(TmcCX1, Y1; ... ; X1, y,)). 

Consequently to prove Theorem 8.2 it is sufficient to show that the equality 

holds, as does the inequality 

2u4 2u4 

- 1- A < D(TmcCX1, Y1; • • • ; Xi, Y1)) < ·-1- B, 

where 

A= (1 +-'-+ n )3 n/2 
I - I I - n - 3 (/ - n - 5)3' 

( I n + 4 ) 3 n/2 

B = I + I - 1 + I - n - 7 + (/ - n - 5)3 • 
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In other words, it is sufficient to calculate the mathematical expectation and estimate 
the variance of the moving control. 

(1) We shall calculate the mathematical expectation and bound the variance of the 
random variable 

which forms an estimate of the moving control for a linear regression. Taking into 
account that Yi = ix T xi + ~i, we obtain 

where 

Now introduce a diagonal matrix fJI with nonzero elements 

bjj = (l - xT(XTx)- 'xY, 
and rewrite (8.30) in the form 

where I is the unit matrix. By definition, 

MTm, = MxM~(Tmc IX), 

D(Tmc) = MxM/T~clX) - (MxM/TmclX))2. 

We compute the quantities 

M/T;,_clX). 

Elementary calculations yield 

a2 I l 
M/TmclX) = / L -1 ~,, 

i=l - }j 

where 

Now compute the quantity 

(8.30) 

(8.31) 

For this purpose we use the result of Lemma 8.1, the facts that Sp(AB) = Sp(BA), 
Sp(A 2 ) ~ Sp(ATA) and the property 

u -- x(xTx)- 1 xT)(J - x(xTx)- 1 xT) = (J - X(XTX)XT). 
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We obtain 

(14 

:s; f {2 Sp[lf- 1(/ - X(XTX)- 1X°f)lf- 1] 

+ (Sp[(/ - X(XTX)-1 X°f)lf-1])2} 

2u4 I 1 (14 ( I 1 )2 
=-2 I 3+2 I--· I I= I (1 - ,';) I i= 1 1 - ,'; 

(8.32) 

(2) Let X 1 be a matrix obtained from X by deletion of the ith row. The following 
equality is valid: 

1 T T -1 
1 - xT(XTx)-'x, = 1 + X;(X;X;) X;, 

This equality follows from Bartlett's formula for a symmetric matrix K of dimension 
(n + 1) x (n + 1) and (n + 1)-dimensional vectors f and h: 

(JTK- lh)(hTK-lf) 
J T(K + hhT)- 1f = JTK- 1f- ----~- (8.33) 

1 + hTK- 1h ' 

ifwe set 
h = X;, f = X1, 

Using the notation ,,r = xT(Xfx,)- 1x, and taking into account that 

1 
--=l+y!" 
1 - Y1 I 

we rewrite (8.31) and (8.32) in the form 
(12 I 

MiTmclX) = [ I (1 + yr), 

Next we obtain 

MTmc = u2Mx(l + yr), (8.34) 

D(Tmc) :s; ~ 2Mx(l + yr)3 + Dx(yn] + u41 ~ l pDx(yr), (8.35) 

where 

is the correlation coefficient between the variables yr and yj. Since -1 :s; p ::;;; 1, we 
have 

D(Tm0 ) :s; 2~
4 

Mx(l + yr)3 + u4 [Mx(yr)2 - (MxM))2], 

D(Tmc) > 2~
4 

Mx(l + yr)3 - u4 [Mx(yr)2 - (MxM))2]. 

(8.36) 
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Thus, to obtain the mathematical expectation and to bound the variance, the quantities 
Mx(yf)P, p = l, 2, 3, should be computed. 

(3) We carry out the following construction. For a fixed i we construct from matrix 
X a new matrix X, formed by the vectors 

x:i = (q, xJ - x;p(i), ... , x';- 1 - x~; 1(i)?, j = 1, ... , I, 

where 

(the summation is not extended over x;). Clearly the moving-control estimator obtained 
from the sample 

(8.37) 

coincides with the analogous estimator obtained from the sample (8.25). 
Next construct from X a new matrix Z which differs from X only in the first column. 

This matrix is formed by the vectors 

zi = (q + xJ - x~p(i), xJ - x;p(i), ... , xj - x~p(i)), j = 1, 2, ... , I, 

where x0 is a normal N(0, I) random variable independent of x. 
For q sufficiently large the moving control estimator computed from the sample 

(8.38) 

differs from the estimator computed from (8.37) by an amount of the order 1/q. Therefore, 
setting q -+ w, we assume that the estimator based on (8.38) coincides with the estimator 
obtained from (8.25). 

Introduce the notation er+ 1 = xj - x~p(i), m = 0, ... , n, 

(j = ((}, ... ' (j?, h = (q, 0, ... , w. 
In this notation the vectors z can be represented as 

zi = h + (i, 

where ( is an n-dimensional random vector distributed according to N(0, I:'). Moreover 
the covariance matrix I:' may be arbitrary, but since the random variable yf is invariant 
with respect to rotation and change in scale of coordinates, we may assume when estimat­
ing yf that 

l 

IG' = 0, 
j= I 
j#= j 

where the vectors (* are distributed according to the N(0, I) distribution. 
Thus the equality 

is valid, where 

w ... (t" q O · .. 0 

U= N= 
(tl ... w q O · · · 0 
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(recall that Ai denotes a matrix obtained from A by omitting the ith row). Furthermore 
the equality 

1 T l T T -- z. z. = -- u. u. + hh 1-1 I I /-1 I I 

' is valid. We denote 

1 T 
--U-U-=K­/- I I I I 

and utilize Bartlett's formula 

\K- + hhT)-1 . = TK:-1 . - (zfK;-1h)(hTKi-1z;) 
z, I z, z, ' z, I+ hTK;-lh 

for 

(/ - l)yf = zf(K; + hhT)- 1z;, 

Utilizing the representation of the vector Z; = h + ,r' we obtain 

(I - l)yf 

q2k11 + 2hKj_ 1,t + ((t?K;- 1(t + q2k 11 K;- 1(t - (hTK;- 1m2 

1 + q2kll 

where k11 is the first entry of the matrix K;- 1. 
Since q-+ oo we have, up to the order of magnitude 1/q2, 

~ = -•-[w?K:-l,:4" - WK;-1m2] ~1 . 
Y, I - 1 I I I hTK;-lh + I - .. 

Observe that the quantity 

_1_ [<,~?K:-1,~ - WK;-1m2] 
I - 1 I I I hTK;- lh 

(8.39) 

(8.40) 

(8.41) 

satisfies the conditions of Lemma 8.2. Indeed, the matrix (I - l)K; = His distributed 
according to the Wishart distribution Jt; _ 1, • + 1 (H, /), and the vector (t does not 
depend on H and is distributed normally N(O, I). Therefore, taking into account 
Lemma 8.2, we obtain 

._P I 
y i - ~ + ~ , 

where p and u are independent x2-distributed random variables with n and I - n - 1 
degrees of freedom respectively. 

Utilizing this fact, one can easily deduce from (8.34) and (8.36) that 

MTmc = u2 ( 1 + I~ l + I_;_ 3), 

D(Tmc) < 2;4 [ ( 1 + I ~ 1 + I ~ : ~ 7) 3 + (I - :2_ 5)3]' (8.42) 

2u4 
[( t n ) 3 n/2 

] 
D(Tmc) > -/- l + I - 1 + I - n - 3 - (/ + n - 5)3 · 

The theorem is proved. D 



§4 Estimating the Expected Risk for Samples of Arbitrary Size 251 

It remains to compute the variance of 1~;/ocemp). Analogously to the proof of the 
theorem we obtain 

(8.43) 

where I' = x*T(XT X)- 1x*. Here Xis the matrix of elements x of the sample by means of 
which the parameters of the regression are computed, while x* is an element of the 
sample by means of which the quality of the estimated function is estimated. 

Then, as in the proof of the theorem, we obtain that random variableµ is distributed 
as the composition 

/3 1 
µ = u* + l + p' 

where /i and u• are independent x2 distributed random variables with n and I + p - n 

degrees of freedom respectively. 
Consequently, appropriate computations with (8.43) yield 

R'' 2114 [(I + p + 1)2 I + p + 1 n 
D(Jern/ocem/R)) = k l + p + 2 l + p [ + p - n - 2 

n(n + 2) ] 
+ (l + p - n - 2)(/ + p - n - 4) 

2114 n(l + p - 2) 
+ 2 • 

(l + p - n - 2) (/ + p - n - 4) 
(8.44) 

Remark. J p(x 1, y1 ; ... ; x 1, y1) are not unique unbiased estimators of expected risk for 
samples of size I + p. As in the proof of Theorem 8.2, the estimators 

1;(x1,y1; ... ;x1,y1)= (1 +-1-+ n ) 
l+p l+p-n-2 

l I (y; - xT(xTx)-1XTY)2 
x-1 I T(XT )-1 , 

i=l 1 - X; X X; 

1;*(x1,Y1;, .. ;x,,y,) = (1 +-1- + n )(1 + n + 1 ) 
l+p l+p-n-2 l-n-1 

X} ± (Y; - xT(xTx)- 1XTY)2, p > -l + n + 2, 
i= 1 

can be shown to be unbiased. The variances of these estimators are 

D(J;(-)) = 2;
4 

( 1 +I~ p +I+ p ~ n - 2r (1 +I~ 1 + / - : - J 
D(J**(-)) = 2114 (l + _1_ + n )

2
( 1 + n + 1 ). 

P I l+p l+p-n-2 l-n-1 

Experiments by computer show, however, that the estimators are more stable to the 
variation in the conditions of Theorem 8.2 than 1;(x1, y1; ... ; x1, y1) of 1;*(x1, Yi; 
· · · ; x 1, yi). (This is probably because the estimator TmJx 1• y 1 ; ••• ; x 1• _r1) which leads 
to J p(x i, Yi; ... ; x1, y1) remains unbiased for arbitrary models of estimation of de­
pendences (Theorem 8.1 ). ) 
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§5 Estimation of Indicator Functions in a 
Class of Linear Decision Rules 

We have determined criteria for choosing the second level for the method of 
structural risk minimization. These are either minimal guaranteed bounds 
on the risk or minimal estimators obtained using the moving-control 
procedure. It now remains to determine the structure on the set of functions 
F(x, 1X) in order to define algorithms of structural risk minimization. 

In this chapter we consider several methods for defining structures on the 
set oflinear decision rules (for pattern-recognition problems) and on a set of 
functions linear in a parameter (for regression-estimation problems), and we 
shall construct corresponding algorithms for estimation of dependences. 

First consider a pattern-recognition problem. Let a class of linear decision 
rules be given: 

F(x, 1X) = e(t 1X;<p;(x))-

We arrange features <p;(x) in the order of decreasing prior probabilities of 
the "usefulness" for classification and define the following structure of linear 
decision rules: 

S} C S½ C ... C SJ. (8.45) 

The class S} consists of the rules such that only the parameter 1X 1 may differ 
from zero. The class S½ consists of the rules which may have two parameters 
1X 1 and 1X2 different from zero, and so on. Such an ordering has the following 
meaning. The first class comprises those rules which use only the first 
feature for recognition, the second class comprises those rules which utilize 
the first two features and so on. As it was shown in Chapter 6, the index of 
capacity of each one of these classes equals i, where i is the number of features 
used. 

For such a structure the method of structural risk minimization amounts 
to choosing a decision rule F(x, 1Ximp) which minimizes the functional 

R1(1X, i) 

( 2/ ) IJ 

2 I 12 
= ~------ 1+ 

I 

i In ---:- + 1 - In- ( 
+ v(1X)l ) + v(rx.) 

( 21 ) 1 i In i + 1 - In 12 

(8.46) 

with respect to i and F(x, rx.) E Sl. With the confidence level 1 - nlJ the prob­
ability of an erroneous classification using the decision rule obtained does 
not exceed the minimum attained in (8.46), i.e., 

(n < /). 
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The method of defining a structure on a class of linear decision rules 
considered above requires prior arrangement of features. This is not always 
easy to accomplish. We shall therefore define yet another structure which 
will not require prior arrangement of features. We shall include in the class 
Sf those decision rules which use for classification no more than i features, 
i.e., we shall consider the structure 

sf c ... cs;. (8.47) 

This structure is constructed in such a manner that si c s;. Clearly the 
growth function ms~([) is bounded in terms of the loss function ms~(/): 

s2 s' /P m P(/) ::s; C!m P(/) < l.5C! 1 . 
p. 

(8.48) 

Thus the method of structural minimization of the risk on the structure 
(8.47) results in choosing a function F(x, ix:mp) which minimizes with respect 
to i and F(x, ix) ES; the functional 

For the obtained solution F(x, ix:mp) the inequality 

P{P(ix:mp) < Ri(ixtmp• S;)} > l - nl] (n < 1) 

is valid. One can use the moving-control procedure for both types of structures 
as an algorithm for choosing the second level. 

Thus for solving the problem of pattern recognition in a class of linear 
decision rules the method of structural minimization recommends that one 
choose an extremal subspace offeatures (which may depend, in its composition 
as well as in the number of features, on whether the system of features is 
arranged or not) and then construct a decision rule on this space which 
minimizes the empirical risk. 

The choice of the extremal space of features for small samples allows us 
to increase substantially the probability of correct classification of the 
observed sample (which did not participate in the sample). The possible gain 
is exhibited in Table 1, obtained in the course of the solution of a problem 
in medical differential diagnostics. Here the problem number, the sample 
size, the initial dimensionality of the binary space of features, the dimen­
sionality of the extremal space of features, and the probabilities of erroneous 
classification in the initial and extremal spaces are presented. The problem 
was solved using the algorithms to be described in Addendum 1. 
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Table I 

Initial Dimension 
dimension of 

Problem Sample of space extremal 
no. size of features space 

1 114 84 56 
2 108 92 47 
3 131 112 51 
4 240 134 65 
5 360 196 82 

§6 Estimation of Regression in a 
Class of Polynomials 

Probability of error in 

initial extremal 
space space 

0.21 0.14 
0.18 0.11 
0.22 0.10 
0.13 0.07 
0.15 0.07 

The problem of determining the number of terms in an expansion in an 
arranged system of functions is one of the central problems in regression 
theory. A special case of this problem is the estimation of polynomial regression. 

The problem is as follows: Let a statistical model which associates a 
quantity y with the variable x be given by 

y = R(x) + ,, (8.50) 

where R(x) is a polynomial of unknown degree and , is an error which does 
not depend on x, with mean zero and finite variance. Observing the pairs 

X1,Y1; ... ;x,,y,, 
it is required to estimate the polynomial R*(x) which is "close" to R(x). The 
closeness is measured in the L; metric: 

PL(R(x), R*(x)) = (f (R(x) - R*(x))2 P(x) dx) 
112

, 

where P(x) is the density according to which the values of variable x were 
chosen. 

A traditional method for solving this problem exists: one first determines 
the degree n of the desired polynomial R(x) and then estimates the regression 
in the class of functions which are expanded in a system of n orthonormal 
polynomials of degree 1, 2, ... , n. Thus the main problem is to determine the 
degree of polynomial regression. 

This determination is carried out using standard methods of mathematical statistics. 
These methods are implemented in the simplest manner for the Gauss-Markov model, 
i.e., under the condition that the values of x are fixed (cf. Section 2 of Chapter 5). Let 
these values be x 1, •.. , x1• In this case it can be assumed without loss of generality that 
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the function R(x) can be expanded in terms of a system of polynomials R,(x) ortho­
normal on x 1, ... , x1: 

1 I {' ifp=q, 
-I I Rp(x,)Rq(x;) = 0 .f ...;. 

1=! ip-,-q. 

This system of orthonormal polynomials has the remarkable property that in terms of 
it the regression R(x) can be represented as 

R(x) = I cx~Rp(x), 
p=I 

where 
I I 

ex~= M - I Rp(x.)y,. 
I i= I 

The estimators &P of the parameters computed using the least-squares method can be 
shown to be equal to 

J I 

&P = - I Rp(x;)y;, 
I i = I 

(8.51) 

Thus the problem of determining the degree of the regression consists of accepting (or 
rejecting) the hypothesis ex? = 0 (i = 1, 2, ... , n) on the basis of information about the 
values of &i, ... , &". 

Note that if the noise ~ in (8.50) is distributed normally N(O, a2 ) with mean zero 
and variance a', then the random variable &Pis also distributed normally but with mean 
ex~ and variance af = a2 //. In this case for ex~ = 0 the quantity 

(&p) 2 = Gt Rp(x;)y.r (8.52) 

is distributed a.ccording to the af x2-distribution with one degree of freedom. If the 
variance of the noise were known, one could use the distribution 

to test the hypothesis M&P = 0. In this case if the quantity (&P/a 1 ) 2 exceeds x(IJ) (the 
value of x(IJ) is determined from the condition P{xf > x(IJ)} = IJ), then the hypothesis 
M&r = ex~ = 0 is rejected at a given significance level IJ: otherwise the hypothesis is 
accepted. 

However, in practice the variance a2 of ~ is unknown. Therefore along with (8.52) 
the statistic 

1 I P 

rr2 = - I yf - I (&;)2 
I i= I i= I 

(8.53) 

is considered. If one starts with p = r + I coefficients il'.? = 0 (i = r + I, ... , I), the 
statistic (8.53) is then distributed according to the ah 2-distribution with v = I - r - 1 
degrees of freedom. 

We form the statistic ( = v&;/n2 • This statistic is distributed according to Fisher's 
F 1' -distribution: 

(8.54) 
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This distribution is tabulated in all practical texts in statistics. Thus utilizing the statistic 
va.;/n,2, one can determine for a given significance level 'I whether the hypothesis IX? = 0 
is acceptable; for this purpose it is sufficient to check whether the inequality 

is fulfilled. 
When solving practical problems it is not necessary to construct a system of poly­

nomials orthonormal on x 1, .•• , x1• It is easy to verify that the statistic 

R -R 
' = r r+ 1 (I - r - 1), 

R,+1 

where R, is the residual (the value of the minimum for the empirical risk) computed for 
polynomials of degree r, is also distributed according to the F 1, 1_,_ 1-distribution. 
Thus in the case of a normally distributed random error e, utilizing the residuals 
R1, ... , R 1_ 1 computed for polynomials of degrees 1, r, ... , I - 1 respectively, it is 
possible to determine the degree of a polynomial regression by means of Fisher's 
F-criterion (8.54). 

However, the classical scheme of estimating polynomial regression, which 
involves the determination of the true degree ofregression and an approxima­
tion to regression in a class of polynomials of this degree, can be successfully 
implemented only when large samples are used. Only for large samples can 
one assert that the best approximation can be attained for functions which 
minimize the empirical risk in the class of polynomials whose degree is 
equal to the true degree of the regression. For small samples the problem of 
the most appropriate degree of an approximation remains open.t 

Below we shall apply the method of structural minimization to solve this 
problem, but before proceeding to construct the corresponding algorithms 
we want to emphasize that actually the problem will be solved in a more 
general setup than the classical one. We shall not assume that regression is a 
polynomial-it may be a square-integrable function, but the approximating 
function will be polynomial. Under these conditions it is required to deter­
mine an appropriate approximation. 

We shall thus solve the problem using the method of structural risk 
minimization. For this purpose we shall define a structure on the set of 
polynomials. Observe that the statement of the problem already contains an 
indication of the special features in defining the structure 

(8.55) 

The set SP consists of polynomials whose degree does not exceed p. Such an 
ordering of polynomials is "natural" (but not unique). It corresponds to an 
ordering according to the number of terms in the expansion of a series 
consisting of elements 

1, x, x2, ••• ' xn, ... , (8.56) 

t For small samples the classical scheme may yield paradoxical results: the more powerful the 
criterion used for establishing the degree of regression, the worse the final result may be. 
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arranged in increasing order of degree n. However, another ordering of the 

terms of the series is possible-for example, 

(8.57) 

Ordering of polynomials in accordance with the expansion in terms of the 

first p terms of the series (8.57) will result in another structure on the set of 

polynomial dependences. 

Thus consider the structure (8.55) defined by means of an expansion in 

terms of the first members of the series arranged in accordance with (8.56). 

Moreover, let the restriction 

.,J M(y - F(x, o:))2P 
s~p M(y - F(x, o:))2 ~ r (p > 2) 

be fulfilled.t Then in view of Theorem 7.6 the inequality 

/(a)< l /em/a) j 
r(ln ~ + I) - 1n;~ 

1 - 2rn(p) / 
00 

(8.58) 

is fulfilled with probability 1 - Y/ simultaneously for all polynomials of 

degree r - I (all polynomials F(x, a) belonging to S,). The inequality (8.58) 

is fulfilled also for the polynomial F(x, a:mr) which minimizes the empirical 

risk on S,. 
As an approximation to regression we shall choose the function which 

minimizes the empirical risk on an element S * of the structure for which the 

minimum on the right-hand side of the bound (8.58) is attained. Let the 

minimum be attained for function F(x, a:mp) and be equal to R(a:mp, S*). 

Then the assertion 

is valid. 
The estimation of polynomial regression is highly efficient in practice for 

a small sample using the method of structural risk minimization. 

The result of estimating regression defined by a polynomial of the fifth 

degree on the interval [ - 2, 2] is presented in Figure 6. The estimation was 

carried out based on measurements of a function at 20 randomly chosen 

points of the interval [ - 2, 2]. The measurements were subject to an error 

distributed uniformly on the interval [ - a, a], where a is the ~aximal value 

of the regression on the interval [ - 2, 2]. In the figure both the empirical 

data (crosses) and the regression (bold line) are shown. The best approxima­

tion in the class of polynomials of the 5th degree is given by open circles on 

t As was mentioned above, the knowledge of the bound r is a weaker requirement than the 

knowledge of the type of error density, which is necessary for estimating the regression poly­

nomial using classical methods. 



258 8 The Method of Structural Minimization of Risk 

Figure 6 

Figure 7 

curve 1; the approximation obtained by the method of structural minimiza­
tion of the risk is a polynomial of the 4th degree-the black dots on curve 2. 
It can be seen that the approximation of the regression by means of curve 2 
is superior to the one given by curve 1. An example of estimating nonpoly­
nomial regression (bold line) in a class of polynomials (thin line) based on 20 
observations (crosses) is presented in Figure 7. The functions were estimated 
using Algorithm D-11.1 described in Addendum II. 
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§7 Estimation of Regression in a Class of Functions 
Linear in Their Parameters: 
Moving Control Method 

Consider the class of functions 

n 

F(x, a) = L tX;cp;(x) (8.59) 
i = 1 

linear in their parameters. There are two approaches to defining a structure 
on this class: 

(I) ordering of functions according to the number of terms in an expansion. 
(2) ordering of functions according to the norm of the vector of parameters 

a (the norm of functions in L~ for a system cp 1(x), ... , cp.(x) orthonormal 
in the measure P(x)). 

We shall construct on these structures algorithms for a structural minimiza­
tion of the risk which utilize the method of moving control as a criterion 
for choosing the second level. 

( 1) Ordering according to the number of terms in an expansion. Let an 
a priori arranged system of functions 

cp 1 (x ), ... , cp.(x) (8.60) 

be given. W.e shall define on the set of functions F(x, a) the structure 

S1 C · · · C Sn, (8.61) 

where the element S; of the structure contains only those functions which 
can be expanded in terms of the first i members of the series (8.60). In this 
case the method of structural minimization involves determination of a 
subspace cp 1(x), ... , cp,(x), 0, ... , 0 of the initial space cp 1(x), ... , cp.(x) on 
which the minimum of the quantity 

2 ( . . - 1 I (Y; - (f;Y(<I>;<I>,)- l<I>;Y)2 
T mc1,x 1, y1 , ••• , x 1, y1) - 1 JI (1 _ (f [f(<I>;<I>,)- 'f !)2 (8.62) 

is attained. The function F(x, a:mv) which minimizes the empirical risk in 
S, (the vector of parameters a:mv = (<I>;<I>,)- 1<I>;Y) is considered to be the 
best approximation to the regression. In (8.62), (JD denotes the vector 
(cp1(x;), ... , q>,(x;), 0, ... , Of, and <I>, is a matrix whose rows are 

U:Y = (cp 1(x;), ... , cp,(x;), 0, ... , 0). 

(2) Ordering according to the value of the norm of the vector of parameters. 
Consider a system of ordered sets 

(8.63) 
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such that subsets S; contain only functions F(x, ct) for which the conditions 

n 

L CY.J :s; C; 
j= I 

are fulfilled. The quantities c; form an increasing sequence: 

0 < c 1 < c2 < · · · < Cq < ::IJ. 

(8.64) 

One can match to C; with a monotonically decreasing series of positive 
quantities Yi (Lagrange multipliers) 

Y1 ? Y2 2': · · · ? }'q = 0, 

such that the problem of empirical risk minimization on the set S, becomes 
equivalent to the minimization of the functional 

(8.65) 

In this case the two-level set-up of the method of structural risk minimiza­
tion inyolves choosing at the first level q functions F(x, ctemiY,)) which 
minimize for various y, the functional (8.65) and then selecting at the second 
level from the q chosen functions one which yields the minimum for the 
"moving control" estimator. In other words under this procedure of defining 
a structure the method of structural minimization first determines y, for 
which the minimum of the expression 

(8.66) 

is attained (here AY, = <l>T<l> + y,J) and then determines an F(x, ct*) which 
minimizes for this y, the functional (8.65). This function is defined by the 
vector of parameters ct* = A;:_ 1<I>TY. 

Finally we shall consider a combined structure on the set of linear in 
parameters functions F(x, ct). First we shall order the functions according to 
the number of terms in the expansion (8.60), and then order each subset SP 
consisting of functions expanded into p terms, according to the values of the 
norm of the vector of parameters (8.64). 

Thus we consider the following system of sets 

S10 C S20 c · · · c Sqo 

u u u 
S11 C S21 C • • • C Sq! 

u u u (8.67) 

u u u 
Sin, C S2n2 C •.. C sq,nq" 
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The element S pr is a subset consisting of functions expanded into p terms of 
the series and such that the inequality 

p 

I :x.? s c, 
i = 1 

is fulfilled. The method of structural minimization determines the pair p, ;·, 

for which the bound on the quality of the algorithm minimizing the empirical 
functional 

I,.,(':t.) = Ltl (_\'; -J/11P/x;)r + ;·,J/f, 
obtained using the moving-control procedure will be the smallest. Computa­
tionally this means that it is required to find a pair p, ;·, for which the minimum 
of the expression 

.. I I (Y; - ( ff)T A~ t <l>TY)2 
Tn·P(, \' • \ \') - '\' · ,,,p P 

me· I•. t•···•·l•.I - /-';;" (1-(f!')TA~tfp)l' 
I I . I 1 ,-, p. I 

(8.68) 

is attained and to determine the function F(x, :x*) (the vector of parameters 
:x* = A;_ip <l>~Y). 

We have thus described algorithms of structural risk minimization 
which use the the moving-control procedure as a criterion for choosing the 
second level. Implementation of these algorithms of regression estimation 
in a class of functions linear in their parameters turns out to be only slightly 
more involved than the implementation of the least-squares method. In 
practice when estimating regression these algorithms yield good and stable 
results if the sample size is several (2-3) times larger than the dimensionality 
of the space. The construction of algorithms for structural risk minimization 
for sample sizes commensurable with (or smaller than) the dimensionality 
of the parameter vector :x is connected with bounds on the probability 
of a uniform relative deviation of the means from their mathematical 
expectations. 

§8 Estimation of Regression in a Class of Functions 
Linear in Their Parameters: Uniform 
Estimating Method 

As in the preceding section, we shall consider three types of structures on 
a class of functions linear in their parameters, 

F(x, :x) = L :xi<plx): 
i= l 
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(a) a structure formed according to the number of terms in the expansion; 
(b) a structure formed according to the size of the norm of the parameter 

vector a (the norm of F(x, oc) in the L~ metric for an orthogonal-with 
respect to a measure P(x)--system of functions <p 1(x), ... , <p.(x)); 

(c) a combined structure formed according to the number of terms in the 
expansion as well as the size of the norm of the function F(x, :x). 

Below we shall construct for these structures a method of structural risk 
minimization based on bounds on the probability of a uniform relative 
deviation of the means from their mathematical expectations. 

(a): For this structure, according to Theorem 7.6. for p > 2. the inequality 

[(ct.)< [ [em/ct.) l 
Jr(ln ¥ + I) - In 1~ 

I - 2rn(p) I 
X: 

(8.69) 

is fulfilled with probability I - I/ simultaneously for all functions in the 
element S, of the structure (the set S, contains functions F(x, :x) expanded 
in terms of the first r members). Since the inequality is valid with probability 
I - I/ simultaneously for all functions in S,, it is fulfilled in particular with 
probability I - I] for the function F(x, ct.emp) which minimizes the empirical 
risk on S,. We now choose an element S* of the structure and the correspond­
ing function minimizing the empirical risk such that the minimum of the 
bound (8.69) is attained. The function F(x, :x:mp) obtained defines for structure 
(a) the minimal guaranteed (with probability I - 1711, where 11 < I is the 
number of elements in the structure) value of the risk. 

(b): This structure consists of 

S1 c .. ,cs •. (8.70) 

Here S, is the set of functions 

n 

F(x, a) = I IY.;<p;(x), 
i= I 

for which the relation 

i = I 

is fulfilled. Select on the set S, a finite e-net S, = {F(x, ct. 1), ... , F(x, :xN,,1)} 
consisting of N(e) elements. According to Theorem 7.5 we have with proba­
bility 1 - I/ the following bound associated with the function F(x, :xemp) 
which minimizes the value of the empirical risk, 

( ) ( 
2 + [[emp{ct.;(IY.emp))] ) 2 

I aemp < e + e I - T(e) °" (8. 71) 
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on the sample where 

: In N(e) + In 1 - ln(ry/24) 
T(e) = 2 ra(p) 1 p > 2. 

In the bound (8.71), F(x, 1X/1Xemp)) is an element of the e-net closest to 
F(x, 1Xemp). Thus for a function minimizing the empirical risk on the element 
S, of the structure (8.70), a guaranteed bound on the value of the expected 
risk may be computed. We choose a function (i.e., an element of the structure) 
for which this bound is minimal. 

(c): Each element Sq,, of this structure is determined by the number of 
terms in the expansion 

q 

F(x, IX)= L a;<p/x), 
i= 1 

as well as by the norm of functions 

q 

L IXf s c,. 
i= 1 

We set up the method of structural risk minimization for this structure. As a 
bound on the quality of a function minimizing the empirical risk in Sq,,, the 
same bound as above (8.71) is used. We thus choose an element Sq., of the 
structure and the corresponding function for which the bound is minimal. 

In order to construct algorithms of structural risk minimization for 
structures (b) and (c), it is required to be able to compute the capacity of an 
e-net. 

§9 Selection of Sample 

In this section we shall discuss the concept of selection of a sample, which 
amounts to an exclusion of several elements from the given sample in order 
to determine, using the remaining set, a function which will yield the smallest 
guaranteed value for the expected risk. 

Note that for problems of pattern recognition the selection of training 
sequences does not make sense: solutions obtained using minimization of 
the empirical risk over the whole sample, and over a subsample of it obtained 
by excluding a minimal number of elements in order that the subsample could 
be subdivided errorlessly, are obtained for the very same decision rule. This 
is a corollary of the fact that the loss function (w - F(x, 1X))2 takes only two 
values, 0 and 1, in pattern-recognition problems. In regression problems, 
however, the loss function takes on arbitrary positive values, and therefore 
an exclusion of some elements x and y may substantially change the solution 
as well as an estimate of the quality of the solution obtained. 
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Thus let a sample 

(8.72) 

be given. Consider simultaneously 
I 

Hl = IC'{' 
m=O 

different problems of estimating the functional dependence based on 
empirical data 

The notation 0; indicates that the element (x;, y;) has been excluded 
from (8.72). The problems differ from each other only in that for each of 
them the functional dependence is estimated through its own sample ob­
tained from (8.72) by excluding at most t elements. (One can construct from 
(8. 72) Ci different subsamples consisting of I - m each. Thus there are in all 

I 

Hl = I Ci 
m=O 

different problems.) 
According to Theorem 7.6, for each one of the Hl problems the inequality 

/(a) < [ 
1 - 2ra(p) 

In m5(2(l - t;)) - ln(11/8) 

I - t; 

is fulfilled with probability 1 - IJ (here t; ~ tis the number of vectors excluded 
from the ith problem). Consequently, the inequalities 

/(a) < [ 
I - 2ra(p) 

In m5(2(l - t;)) + In Hl - ln(11/8) 
I - t; 

(8.73) 

are valid with probability 1 - IJ simultaneously for all Hl problems. We 
shall now search for the minimum of the right-hand side of (8.73) over all 
the Hl problems and not only over the elements S, of the structure and 
function F(x, a) c S,. In other words we shall minimize the functional 

--------------- --------------
1.m/a, x,,, Yri; ... ; x,1;, y,1) 

(8.74) 

00 
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over the elements F(x, IX) ES, and x, 1, y, 1 ; ••• ; x,1,, y,1,; here the sign 
I 

L(t;J indicates that the summation is not extended over t; ~ t elements. 
j~I 

Enumeration over t (usually t = 1, 2, 3, 4) yields the smallest value for 
(8.74). This value determines the guaranteed value (with probability 1 - ryt) 
of the expected risk. 

Thus, in searching for the best guaranteed solution-in addition to 
optimizing over a structure and over functions belonging to elements of the 
structure-additional optimization over a selection of a subset from 
a given sample (8.72) can be made. In practice, when the sample is small, the 
proper selection of this subset from the given set is very often quite useful. 

§10 Remarks on a General Theory of 
Risk Minimization 

In this chapter a new principle for minimizing risk in the case of small samples 
has been formulated. It turns out that if one defines a structure on an admis­
sible set of solutions, then it becomes possible to carry out additional 
optimization over the elements of the structure. It is only necessary that the 
structure be given a priori. An additional possibility of minimizing risk over 
the empitical data occurs on account of selecting a sample. 

In this chapter we have applied the method of structural minimization of 
the risk for solving problems of pattern recognition and regression estima­
tion, and the idea of selecting a sample was used in the latter case (in the 
former case it does not reduce the guaranteed bound on the risk, since the 
loss function is too simple). 

The question arises: how general are the methods of structural risk 
minimization and of sample selection? 

Clearly the method of structural risk minimization is applicable for 
solving an arbitrary risk-minimization problem for which a bound on a 
uniform deviation or a relative uniform deviation can be derived (cf. Chapter 
6, Section 11, Chapter 7, Section 8). In this case for minimization of the 
functional 

/(IX) = f Q(z, 1X)P(z) dz 

on the basis of empirical data z 1, .. , z1, a structure 

is defined on the set /\. of functions Q(z, IX). 
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On each element Ai of this structure a value of the parameter O(~mp E Ai 
which minimizes the empirical risk 

1 I 

Jem/0() = l i~l Q(z;, 0() 

is obtained, and then, using the bounds presented in Section 11 of Chapter 6 
and Section 8 of Chapter 7, a parameter O(:mp is selected from the q param­
eters obtained which yields a guaranteed minimum for the value of the 
expected risk. 

A selection of a sample may also be carried out when there exists a uniform 
bound on the expected risk. 



Chapter 9 

Solution of Ill-posed Problems. 
Interpretation of Measurements Using 
the Method of Structural Risk 
Minimization 

§1 Ill-posed Problems of Interpreting Results of 
Indirect Experiments 

Let it be required to estimate the functional dependence f (t, a0) = f (t) in 
the class offunctionsf(t, a). (Heref(t) belongs tof(t, a).) Moreover let the 
situation be such that it is impossible to measure directly the values of the 
functionf (t), but one can measure values ofanother function F(x)(a ~ x ~ b) 

related to the desired one by means of the operator equation 

Af(t) = F(x). (9.1) 

The operator A maps in a one-to-one manner elements f (t, a) of the space 
E 1 into elements F(x, a) of the space E2 . 

Let the following measurements of the function F(x) be taken: 

(9.2) 

The pair xi, )1i denotes that the measured value of the function F(x) at point 
xi is Yi· 

It is required, knowing the operator A and measurements (9.2) to estimate 
the functionf(t) = f(x, a0 ) in the classf(x, a). Here it is assumed that the 
problem of solving the operator equation (9.1) may be ill posed. 

We shall estimate the functionf(t) in the case when: 

(1) the values of function F(x) are measured with an additive error 

Yi= F(x) + ~' 

which does not depend on x; 

M ~ = 0, Me = a 2 < oo, 

267 
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(2) the points X; at which the measurements are taken are chosen randomly 
and independently according to some nonvanishing density on [a, b]. 
Below we shall assume that this density is uniform. 

It was shown in Chapter 1 that the functionf(t, a0) which is the preimage 
in £ 1 of the regression F(x, a0 ) in the space £ 2 -i.e., is the preimage of the 
point of minimum of the functional 

/(a) = J (y - F(x, a))2 P(y Ix) dy dx (9.3) 

-coincides with the solution to Equation (9.1). However, it is an impossible 
task to obtain the (exact) regression from a finite sample. One can only hope 
to obtain a function F(x, &) which is close (in a metric of the space £ 2) to 
the regression, and then to choose as a solution of Equation (9.1) the pre­
imagef(t, &) of this function in the space £ 1. Such an approach is not always 
successful: it is inconsistent in the sense that if Equation (9.1) defines an 
ill-posed problem, widely different preimages in E 1 may (though not neces­
sarily) correspond to close images in E2 • 

In our case it implies that not all methods of risk minimization in the 
space of images may be utilized for solving the problem of interpreting 
results of indirect experiments, and that there may exist methods of risk 
minimization which produce only those elements F(x, &) in the space E2 

which are images of functions that are close to the desired solution. These 
methods of risk minimization (if they exist) should be utilized for solving 
ill-posed problems of interpreting measurements. 

Below we shall show that under certain conditions algorithms of structural 
risk minimization may be utilized for solving ill-posed measurement prob­
lems. We shall prove that as the number of measurements increases a se­
quence of solutions obtained using the method of structural risk minimiza­
tion converges to the desired functionf(t). 

§2 Definitions of Convergence 

Let a measure of closeness between functions PE/f(t, a 1), f(t, a2)) = 
PE/a 1 , a 2 ) be chosen in £ 1, and let an algorithm of estimating dependence 
f(t) = f(t, a0 ) based on indirect experiments 

(9.4) 

be fixed. Then for each specific realization (9.4) the functionf(t, &1) (i.e., the 
vector of parameters &1 = a(x 1, y 1 ; •.• ; x1, y1)) may be obtained, and in this 
manner the sequence 

(9.5) 
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is generated. This sequence determines a sequence of numbers 

PEJ&1, ixo), · · ·, PE,(&1, ixo), · · ·, 
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(9.6) 

which defines the distance between the parameters &; and ix0 • Both (9.5) and 
(9.6) are random sequences generated by an algorithm A for estimating the 
dependencef(t) and by a particular outcome (9.4) of the indirect experiment. 
The investigation of algorithms for regression estimation is thus reduced to 
a study of the convergence of the sequence (9.6). 

There exist different versions of the notion of convergence of random 
sequences. In this chapter we shall utilize two of them: convergence m 
probability and convergence with probability 1 (almost surely). 

Definition 1. A sequence of random variables ~ 1, ••• , ~ 1 ••. converges io the 
variable ~0 in probability if for any £ > 0 the probability that the inequality 

l~z-~ol<e 

will be valid approaches 1 as l -. oo, i.e., 

lim P{l~1 - ~ol < e} = 1. 
z-oo 

We shall denote convergence in probability by~ -4 ~o-

Definition 2. A sequence of random variables ~1, •.• , ~ 1, .•. converges to 
the variable ~o with probability 1 if for any£ > 0 the probability that the in­
equality 

supl~;-~0 1<£ 
i";2:l 

will be valid approaches 1 as / -. oo, i.e., 

Jim P{supl~; - ~ol < £} = 1. 
l--+oo i~ l 

We shall denote convergence with probability 1 (almost surely) by 

~~~o-

These two definitions reflect different requirements on the notion of 
convergence. 

In the first case the event { I ~1 - ~o I < £} selects a set of sequences for 
which the condition I ~1 - ~o I < £ is fulfilled for a given fixed l. Moreover, 
as l increases each particular sequence may or may not satisfy this condition. 
Convergence in probability is in a sense a "weak" convergence~it does not 
guarantee at all that each specific realization of ~1, ... , ~ 1 converges in the 
regular sense. 

On the other hand, convergence with probability 1 is indeed a "strong" 
convergence. It implies that almost all realizations converge in the regular 
sense. Convergence almost surely may also be defined as follows: 



270 9 Solution of Ill-posed Problems 

Definition 2a. A sequence of random variables ¢ 1, ••• , ¢1, ... converges with 
probability 1 to ¢0 if the measure of the set of realizations of the variables 
for which the limit 

exists equals 1, i.e., 

P{lim ¢1 = ¢0 } = 1. 
1-00 

It is easy to verify that convergence with probability 1 implies convergence 
in probability. Indeed, since for any l the inequality 

P{I¢, - ¢ol < e} ~ P{~~fl¢; - ¢ol < e} 

is valid, the condition 

lim P{supl¢; - ¢0 1 < e} = 1 
1-00 i~I 

implies 

lim P{l¢1 - ¢ol < e} = 1. 
1-00 

The converse is generally not true. Additional conditions under which 
convergence in probability implies convergence with probability 1 are given 
by the following lemma. 

Lemma (Borel-Cantelli). If for a random sequence ¢1, ... , ¢1, ••• there exists 
¢0 such that for any e > 0 the inequality 

00 

IP{I¢; - ¢0 1 ~ e} < oo (9.7) 
i= 1 

is fulfilled, then the sequence ¢1, ... , ¢1, ••• converges to ¢0 with probability 1. 

PROOF. Denote by E'i the event that the inequality 

(ran integer) 

is fulfilled. Consider the event S'i which consists in the occurrence of at least 
one of the events Ef, Ef+ 1, •.. , Ef+;, .. . : 

00 

Sf= U Ef+;· 
i=0 

We bound the probability of this event: 
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Since in view of the lemma's conditions the series (9.7) is convergent, we have 

Jim P{S;-} = 0. (9.8) 
1-00 

Now consider the event S': 

Since the event S' implies any one of the events S~, in view of (9.8) we have 

P{S'} = 0. (9.9) 

Finally set S = U.'.'°= 1 S'. It is easy to verify that the meaning of this event is 
as follows: there exists an r such that for each l (l = l, 2, ... ), for at least one 
i (i = i(l)) the inequality 

is fulfilled. Since 

00 

P{S} ~ L P{S'}, 
r= 1 

we have, in view of (9.9), that P{S} = 0, q.e.d. 

§3 Theorems on Interpreting Results of 
Indirect Experiments 

D 

Let A be a linear, completely continuous operator acting from the space L 2 

into the space C, and let A* be the conjugate for A. Then the operator A* A 
is also a completely continuous operator. Let 

Ai 2 Jc~ 2 · · · 2 Jc;, 2 · · · 

be a complete system of its eigenvalues and 

'Pl (t), · · ·, 'Pm(t) · · · 

be a complete orthonormal system of its eigenfunctions. 

(9.10) 

Consider also the operator AA*. It has the same set of eigenvalues, to 
which a complete orthonormal system of eigenfunctions 

l/1 1 (x), ... , l/lm(x), ... 

corresponds. Elements of (9.10) and (9.11) satisfy the relations 

1<pp(t): Jcvl/Jp(x),} 
A l/Jp(x) - Jcv<pp(t), 

p = 1, 2, .... 

(9.11) 
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A solution of the operator equation (9.1) can be expanded in a series in the 
system of functions (9.10): 

00 

fCt) = z: rx~<pp(t). (9.12) 
p=l 

We shall consider the function 
n(I) 

Ji(t, !Y.emp) = L !Y.~mp <pp(t) (9.13) 
p=l 

to be an approximation to the solution (9.12). Here n(l) is an appropriate 
number of terms in the expansion (to be determined below) and rxemp = 
(rx!mp, ... , rx:~Pl is the vector of parameters which yields the minimum for 
the functional 

1 I ( n(I) )2 
I 0 mp(rx) = l J1 Yi - P~/-p!Y.p1/f p(x) . (9.14) 

It turns out that under certain assumptions concerning the solution (9.12) 
there exists a function n(l) such that as the sample size increases the approxi­
mations obtained approach in probability the solution of the operator 
equation (9.1). 

The following two theorems are valid. 

Theorem 9.1. Let a unique solution for the operator equation (9.1) exist. Then 
the sequence of approximationsfi(t, rxemp) as l increases converges in probability 
to f ( t) in the metric L 2 , provided only the function n( l) satisfies 

n(l) ~ oo, 

_l_Jn(l) In l---+ 0 
A 2 l I-+ 00 • 

n(I) 

(9.15) 

(9.16) 

In addition we shall require that the action of the operator A* be from L 2 

into C. 

Theorem 9.2. Let a solution of the operator equation (9.1) be such that the 
conditions 

s~p I ptm rx~<pp(t) I = T(m), 

T(m) ~ 0 

(9.17) 

are fulfilled. Then the conditions (9.15) and (9.16) are sufficient to assure con­
vergence in probability of the functions fi(t, !Y.emp) to f (t) in the C metric. 

Theorems 9.1 and 9.2 thus assert that if one approximates the solution 
of (9.1) by means of an expansion in a finite number of eigenfunctions of a 
self-adjoint operator A* A, then under an appropriate choice of the number 
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of terms in the expansion (satisfying the conditions (9.15), (9.16)),the method 
of minimizing the empirical risk (9.14) assures the convergence in probability 
-as the sample size increases-of the solutions obtained to the desired one. 

Below we shall show that under certain conditions the selection of n(l) 
may be carried out using the minimization of the right-hand side of (8.69). 
It will thus be shown that the standard procedure of the method of structural 
risk minimization considered in Chapter 8 leads to the construction of a 
sequence of functions which converges to the solution of the operator equa­
tion (9.1). 

We shall assume that the error e; associated with the measurements of the 
function on the right-hand side of the operator equation (9.1) is defined by a 
probability density function P(e) and satisfies the conditions Me = 0 and 

~ 
T = Mez < 00, p > 2. 

Furthermore, let the inequality 

The inequality (9.19) follows from (9.18) provided 

k 

Yi= F(xj, C<o) + ~i = L ApC<~I/Jp(x) + ~i· 
p=I 

In this case 

where 

It follows from (9.19) and (9.20) that 

'k = sup 

fFt).Pf3PI/Jp(x))2p 

M(~ - J/p/3pl/Jp(x)r. 

(9.18) 

(9.19) 

(9.20) 

(9.21) 

We shall bound separately the denominator and numerator on the right-hand side of 
(9.21): 

(9.22) 
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where 
i 

B = °" l2p2. i..J p P' 
p=I 

using the Minkowski inequality we obtain 

The following bound is valid (as an operator acting from L 2 into C is bounded by L): 

Substituting (9.24) into (9.23) and taking into account 

we obtain 

where R = max(r, L), 

~ ---=! 
M:2 

2 B 2R 2 
::;; 2w + 2L lf::;; J/u + B), 

. { = 1, if A.k > 1, 
A.k =A.k, iflk::;;l. 

Snbstituting (9.22) and (9.25) into (9.21), we finally arrive at 

2R 
'k::;; if . 

In this case, according to Theorem 7.6, the inequality 

(9.24) 

(9.25) 

(9.26) 

is fulfilled with probability 1 - r, simultaneously for all functions expandable 
in terms of n (n < I) eigenvectors of the system (9.11). For each sample size l 
we shall use a number n(l) of terms in the expansion such that firstly the 
restriction 

n(l) < 11 -~ (9.27) 

is fulfilled, where {J is an arbitrary small quantity, and furthermore the right­
hand side (9.26) attains its minimum. (Here an additional condition appears 



§4 Proofs of the Theorems 275 

which requires that the number of terms in the expansion increase at a rate 
not exceeding 11-b as the sample size I increases.) 

Using this modified version of defining the number of terms in the ex­
pansion, we satisfy the condition (9.16) stipulated in Theorems 9.1 and 9.2. 
In other words the following theorem is valid. 

Theorem 9.3. Let a solution of the operator equation (9.1) satisfy the condition 

(9.28) 

and let the conditions (9.19) and (9.27) be fulfilled. Then using structural 
minimization of the bound (9.26), a number of terms in the expansion is deter­
mined such that with probability 1 the conditions 

(1) n(l) i-oo oo, 

(2 _l_ Jn(l) In 1 ---> O 
) A.2 I 1-00 

n(I) 

are satisfied. 

Thus Theorems 9.1 and 9.2 point to a class of algorithms which assure 
the convergence of the sequence of the functions obtained to the solution of 
the operator equation, while Theorem 9.3 asserts that the method of structural 
risk minimization determined by means of the bound (9.26) on a structure 
formed by a system of eigenfunctions belongs to this class. 

In Section 6 examples are presented which show that the method of 
structural risk minimization for interpretation of results of indirect experi­
ments is an efficient one. Here we would like to note that success in applying 
this method to ill-posed problems of interpreting measurements is probably 
due to the fact that for each finite I it determines a solution which possesses 
an extremal property (the image of a solution in E2 yields a guaranteed 
minimum for the value of the expected risk), rather than to the fact that the 
sequence of solutions obtained converges to the desired solution of the 
operator equation (9.1). 

§4 Proofs of the Theorems 

We shall now prove the theorems stated in Section 3. 

PROOF OF THEOREM 9.1. Let the conditions of the theorem be satisfied. 
Denote by 

n(I) 

ft( t, tXemp) = L rx!mp <Pp( t) 
p=I 
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the preimage of the function 
n(I) 

Fi(x, C(emp) = L A.Pa:mpV,p(x) 
p=l 

which minimizes the value of the empirical risk 

1 I ( n(I) )2 
Iemp(a) = I Ji yj - p;l Apapl/Jp(x) . (9.29) 

Our goal is to prove that J;(t, aemp) converges in probability to f (t) in the 
metric L 2 , or equivalently that the sequence of random variables 

v(l) = I C~t:mp<fJp(t) - pt C(~<pp(t) r dt (9.30) 

converges in probability to zero as l increases. 
Note that 

n(I) oo 

v(l) = L /3; + L (a~}2 = T1(n(l)) + Tz(n(l)), 
p= I p=n(l)+ I 

where /3P = a:mp - a~. 
Since the solution belongs to L 2 , the sequence Tz(n(l)) tends to zero as 

n(l} increases. Therefore, to prove the theorem it is sufficient to show that 

T1(n(l)) ~ 0. 

We bound the quantity 
n(I) 

T1(n(l)) = L /3;. (9.31) 
p=I 

To do this we define a vector /3 = (/31, ... , /3n(l))T for which the minimum of 
the empirical risk is attained. We then rewrite (9.29) in the form 

1 I n(I) 

Jemp(/3} = / J/J - 2p;/p/3pGp 

+ I A /3 A /3 I If, p(xj)lf,q(xj) (9.32) 
p, q= I P p q qj= 1 [ ' 

where 

00 

yj = ~j + L JPa~lf,p(x). 
p=n+I 

Denote by IIKII the covariance matrix with elements Kpq given by 

1 I 

Kpq = I ;;1 v,p(x;)lf,q(x;), 
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and by G the n-dimensional vector with coordinates G1, ... , G". Then the 
vector y = (/3 1A1, ... , f3n)._n? which yields the minimum for (9.32) is given by 

y = IIKll- 1G. 
Therefore the bound 

IYl 2 = IIIKll- 1Gl 2 s IIIKll- 1 l2 IGl2 

is valid. On the other hand the inequality 

n(l) n(I) 

(9.33) 

IYl 2 = L (f3v)._v) 2 > ),,;(IJ L /3; = ),,;(I) T1(n(l)) (9.34) 
p= 1 p= 1 

holds. From the inequalities (9.33) and (9.34) we obtain 

T1(n(l)) <) IIIKll- 1 12 IG!2. 
n(l) 

(9.35) 

Thus to prove the theorem it is sufficient to bound from above the norm of 
the matrix II K II - 1 and the norm of the vector G. 

We now bound IIKII- 1. We note that the norm of the matrix IIKII does not 
exceed µmax, the largest eigenvalue of the matrix, and the norm of the matrix 
II K 11- 1 does not exceed 1/ µmin, where µmin is the smallest eigenvalue of the 
matrix II K 11-

W e now bound µmin from below. For this purpose consider a positive 
definite quadratic form 

Fn(x, y) = CtYvl/J/x)r, 
which we shall examine in the domain I;= 1 y; s 1. Since a completely 
continuous operator A acting from L 2 into C is bounded, !IA II < L, the 
inequality 

s~p I pt/vYvl/J/x) I s IIAll 11 pt Yv<p/t) II < L m 
holds, which implies that in the domain I;= 1 y; s 1 the inequality 

I n I ~ L s:,; P~/vl/1/x) < L V p~l T; S )._" 

is satisfied and hence 

L2 
sup F.(x, y) < )._2 • 

X n 

Now consider the expression 

(9.36) 
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Observe that 
n 

MFn(x, y) = Ly;, 
p=l 

1 I n 

1 I/ix;, y) = P,~/pYqKpq· 

(9.37) 

Using a rotation transformation, we arrive at a new, twice orthogonal 
system of functions t/1'1 (x ), ... , t/J~(x) such that 

n 

MFn(x, y') = L (y~) 2 , 

p=l 

1 I n 

l Ii Fn(x;, y') = P~/p(y~)2, 

(9.38) 

where µ 1, •.. , µn are the eigenvalues of the matrix IIKII-
To bound the eigenvalues we utilize the theorem on the uniform conver­

gence of the means to their mathematical expectations for a class of bounded 
functions (Theorem 7.3). Since the functions F(x, y') for lly'II :::; 1 are bounded 
by the quantity L 2 / J;,, the inequality 

{ I ') 1 ~ ( ') I L 2 } 9 (2W - x2f/4 P sup MFn(x, y - -1 -~ Fn Xj, y > x ,2 < - 1 e 
y' 1=1 11.n n. 

is valid (cf. Section 3 of Chapter 7); taking (9.38) into account, we obtain 

We shall require that the probability not exceed 9/ln /. For this purpose it is 
sufficient for x to be at least x*, where 

2L2 

x;*=­,1.2 
n 

n(ln ~ + 1) + In In I 

I 
(9.40) 

It follows from (9.39) and (9.40) that with probability 1 - (9/ln I) all the eigen­
values µ 1 , .•. , µn are located in the interval 

1-x*:::;µ;:::;l+x*; 

this implies that with probability 1 - (9/ln I) the inequality 

µ > 1 - x* 

is fulfilled. 

(9.41) 

(9.42) 
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Substituting (9.42) into (9.35), we obtain that the inequality 

IGl2 

T1(n) < ( 2L2 

,l; 1 - ,l; 

(9.43) 

is valid with probability 1 - (9/ln l). It remains to bound the quantity I G 12 : 

IGl2 = PtG; =Pt~ (J/;VJp(x;)r. 
For this purpose we compute the mathematical expectation 

where T and Rare constants which do not depend on I and n. To bound I GI we 
utilize Chebyshev's inequality for the first moment of a positive random 
variable~: 

M~ pg> e} <-, 
8 

where e = (Rn In l)/l. Since MIG 12 < Rn/I, we obtain 

{ 
2 Rn In/} 1 PIGI >--[- <Ini. 

Thus with probability I - 1/ln I, 

IGl 2 <Rnln/ 
- I . (9.44) 

Substituting (9.44) into (9.43), we obtain that for I sufficiently large the 
inequality 

n In l 
T1 (n) < c -u-2 (-1-_-c---, ~n=l=n=-l)-2 

n ,l;-.J~ 
(9.45) 

is fulfilled with probability 1 - (10/ln I), where c is a constant. 
The inequality (9.45) implies that T1 (n(l)) tends to zero in probability as 

1 Jn(l) In I 
~ l ~O. 

n(I) 

The theorem is proved. D 
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PROOF OF THEOREM 9.2. Now let the solution of the operator equation (9.1) 
obey the additional restriction 

s~p I J"ap<pp(t) 1 ~ 0. 

We shall show that in this case the conditions 

n(l)~ oo, 

_1_ Jn(l) In /--> 0 
A.2 [ 1-+oo 

n(I) 

(9.46) 

(9.47) 

are sufficient in order that the sequence of solutions f,(t, aemp) converge in 
probability to the solution of the operator equation (9.1) in the metric C. We 
use the notation 

v(l) = s~p I Pta~<pp(t) - P?1 cx!mp<pp(t) I, 
where aemp = (cx;mp• ... , cx:~P? is the vector which yields the minimal value 
for (9.29). Our purpose is to prove that 

v(/)-L+ O. 
I-+ oo 

Observe that 

I n(I) I I 00 I v(l) ::;; sup L /3p<pp(t) + sup L a~ipp(t) , 
t p= 1 I p=n(I)+ 1 

(9.48) 

where /3p = a~ - a!mp· 
In view of the condition (9.46) of the theorem, the second summand in 

(9.48) tends to zero with increase in l. It is therefore sufficient to verify that 

Tin(l)) = s~p I P%/p<pp(t) I ~ 0. (9.49) 

To prove this we shall use the bound 

n<n(l)) < c~r;st pt/3;, (9.50) 

which is valid because the operator A* is bounded. 
In the course of the proof of Theorem 9.1 it was shown that the bound 

Ti(n) = I 132 < const n ln l 

p=1 P u2 ( 1 _ const Jnlr1[) 2 

" l; -.j[ 
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holds with probability 1 - (10/ln l). Substituting this bound into (9.50), we 
obtain that with probability 1 - (10/ln l) the inequality 

const n In I 

n<n<O) < T-1-
( I_ c~~st !Pr (9.51) 

is satisfied. The bound (9.51) implies that T~(n) approaches zero in prob­
ability provided that 

_1_ Jn(l) In I__, O. 
,1,2 I 1-00 

n(!) 

Theorem 9.2 is thus proved. D 

PROOF OF THEOREM 9.3. Let the number n(l) of terms in the expansion of the 
solution of the operator equation be determined by the minimal value of the 
bound (9.26). We shall show that if a solution of the operator equationf(t) 
satisfies 

(9.52) 

then the algorithm under consideration for determining the number of terms 
in the expansion satisfies 

(9.53) 

(9.54) 

First we verify that (9.53) is valid. Assume the contrary. Let a~ -=I 0, r < n, 
and also let the inequality 

1 1 ( r )2 1 I ( n )2 
I i21 Yi - v2/va~mpi/Jp(x;) I i~I Yi - P2/va~mpi/Jp(xi) 
----''--;==:=====~ < ----'----;,,,,.,±,,====~ (9.55) 

r(ln ~ + 1) - In__!!__ n(ln 21 + 1) - ln __!!__ 
c r 12 c n 12 

1-- ~----- 1 A.2 l - A.2 l 
r n 

be fulfilled for any l > 10 . In view of Theorem 7.6 the inequality 

1 J1 (Yi - J/va~mpi/Jp{xi)r 
J(aemp, r) < ----======== 

n (in 21 + 1) - In __!!__ 
n 12 
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is valid with probability 1 - 1'/ for I sufficiently large. Represent the quantity 
/(rx.0 mp• r) in the form 

/(rx.emp, r) = M(y - ptA.PCX.~mpl/Jp(x)r 

= M(e + A(x, r) - Pt/PJPl/Jp(x)r, 

where 
00 

A(x, r) = L Apcx.~l/Jp(x), 
p=r+ i 

and bound this quantity from below: 

00 

/(rx.0 mp, r) > l(rx.o, r) = <l2 + MA2(x, r) ~ <l 2 + L (cx.~A.p) 2 . 
p=r+ i 

Thus the bound 

(l2 + (9.56) 

is valid with probability 1 - 1'/· We now transform and bound the expression 
appearing in the numerator on the right-hand side of (9.56): 

1 I ( n )2 
l 0 mp{CX.0 mp, n) = I Ji Yi - p~i A.PCX.~mpl/Jp(xJ 

1 I ( n )2 
= I Ji ei + A(x;, n) - p~i Ap/3pl/Jp(xJ 

1 I 

~ I Ji (ei + A(x;, n))2 

1 I 1 I 2 I 

= I Ji a+ I i~i A2(xi, n) + I i~i eiA(x;, n). 

Note that in view of the law of large numbers 

1 I "°' ;:2 _____. (l2 I i~1 ~i ,-oo , 



§4 Proofs of the Theorems 283 

Therefore the inequality 

00 00 

(J2 + L (A.Pa~)2 < (J2 + L (Apa~)2 (9.57) 
p=r+l p=n+l 

is satisfied with probability 1 - 1J for / sufficiently large. However, for r < n 
the inequality (9.57) is obviously invalid with probability 1. The contradiction 
obtained proves the validity of (9.53). 

We now show that (9.54) is also valid. For this purpose note that the in­
equalities 

J I 

l _L (~; + d(x;, n))2 > min fem/a, n) 
1= 1 a: 

} I ( n )2 
> :i; 1 Ii ~i - P~/PaPi/Jp(x;) - yd(x;, n) 

(9.58) 

always hold. Compute the mathematical expectation of the left-hand side of 
the inequality (9.58): 

Observe that for a fixed n the relation 

is valid. Therefore the inequality 

lim /emrCaemr, r) < (J2 + T1(r) 

( 2/) 1J 
const 

1-~-
A. 2 

r 

r ln- -ln-
r 12 

(9.59) 

is fulfilled. Since the inequality (9.59) is valid for any r and the conditions 
T1(r) -+,-oo O and n(/) -+ 1- 00 oo are fulfilled, it follows that the inequality 

l. . /emp(aemp, r) 2 1m mm --~-~-- < (J 
1-00 r</ 1 - 0 const pp1n ,-

1 - ~- --
A; l 
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holds. On the other hand we utilize the following bounds on the mean and 
the variance: 

(9.60) 

M,4 + a4 r + 1 
< z2 (r + 1) = R -[2-. (9.61) 

Here ocemp and Yemp are the values of the parameters which minimize 
Jem/oc, y, r). (We shall verify these bounds below.) 

Now use Chebyshev's inequality and obtain 

P{I Jemp(ocemp, Yemp; n(l)) - a2 (1 - n(l)l2+ 1)/ > e} < 1~ 2 (n(l) + 1). 

According to the condition of the theorem, n(l) < 11- 0• Therefore 

and consequently the convergence 

lim Jem/ocemp• Yemp, n(l)) = a2 

1-00 

is valid with probability 1 according to the Borel-Cantelli lemma (see 
Section 2). Therefore with probability 1 the inequality 

I. · I em/ OCemp, n( l)) 2 
1m mm ---'------'--=== ~ a 

1-00 n(l) 1 _ const Jn(l) In l 
J;(I) l 

as well as the equality 

lim I em/ OCemp, Yemp, n( l)) = 0"2 

1-00 

are fulfilled. This implies that with probability 1 

I. const Jn(l) In l = 0 1m 2 . 
1- oo An(!) [ 

(9.62) 

This expression constitutes the statement of Theorem 9.3. 
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In the course of the proof we have used the equality (9.60) and the in­
equality (9.61). We shall now derive them: 

1 I ( r )2 
M/em/rxernp, Yemp, r) = M [ i;l ~i - p~l AP(X~mpi/Jp(x;) - Yemp~(x, r) 

Using a rotation transformation we arrive at a coordinate system i/J'1(x), ... , 
i/l~(x ), i/1~ + 1 (x) such that 

1 I { / Ii ifiix;)ifiix;) = ~P 

for p = q, 

for p =I= q. 

In this coordinate system 

where 

1 I r+ 1 G2 
/em/rxemp, Yemp, r) = -[ ,·L= la - L __!!_, 

p=l µp 

We have thus obtained 

2 r~l ~ ~i~ji/l~(x;)ifiix) = 2(1 - r + 1 ) 
M/em/rxemp, "Yemp• r) = cr - L. M L. 12 cr [ ' 

p=l i.j=l µp 

L M - - M- ~-2-R. r+ 1 [ (G;)2 ( G;) 2] r + 1 
p= 1 µP µp I 

The theorem is proved. 

§5 Methods of Polynomial and Piecewise 
Polynomial Approximations 

D 

We have seen that using the method of structural risk minimization one can 
obtain a sequence of approximations which converges as the number of 
observations increases to the desired solution of the operator equation. 
However, the convergence is assured only under the condition that approxi­
mations are chosen to be in the form of expansions in terms of eigenfunctions 
of the operator A* A. It is not always simple to obtain eigenfunctions of the 
operator A* A. It would therefore be desirable to replace the expansion of the 
solution in terms of eigenfunctions of an operator by an expansion in terms 
of some other system of functions. 

In this section we shall consider two types of approximations-polynomial 
and piecewise polynomial. 
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The basic property of polynomial approximations, stated in Weierstrass's 
theorem, asserts that any continuous function on the interval [a, b] may be 
approximated in a uniform metric with arbitrary precision by a polynomial. 
In this book we choose, as an approximation to the function y(x), a function 
which minimizes in F(x, a) the functional 

l(a) = J (y(x) - F(x, a))2 dx. (9.63) 

The question arises: given an arbitrary continuous function y(x), does the 
sequence 

F(x, a~), ... , F(x, a~), ... (9.64) 

of polynomials of degrees r = 0, 1, 2, ... , each one of which yields the mini­
mum for (9.63) in the class of polynomials of the corresponding degree, con­
verge to y(x) in a uniform metric? 

The answer is no. The Lozinskil - Kharshiladze theorem [30] asserts that 
there exists a continuous function y(x) to which the sequence (9.64) does not 
converge uniformly. 

Thus the idea of minimizing the mean squared deviation in order to 
obtain a uniform polynomial approximation for a continuous function is 
unacceptable. This immediately implies that one cannot hope to obtain a 
uniform approximation to a regression by minimizing the expected risk if 
the approximation is carried out in the class of polynomials. 

The possibility of constructing uniform approximations to regressions 
using the method of expected-risk minimization is connected with a piece­
wise polynomial approximation, i.e., the so-called spline approximations. 

Consider piecewise polynomial approximations of a function on the 
interval [a, b]. We subdivide the interval [a, b] into N parts using the points 
a = a0 , a1, ••• , aN + 1 = b. On each interval [a;, a;+ 1] we shall approximate 
the function y(x) by means of a polynomial of fixed degree m. Thus the func­
tion is approximated by means of N + 1 pieces of polynomials ( each one on 
its own interval). Polynomials are chosen in such a manner that at points 
ai, ... , aN the approximation obtained will be continuous together with its 
first m - 1 derivatives. Such a piecewise polynomial approximation is 
called a spline of degree mconjugated on the grid (a1, ... , aN)- We shall assume 
that the points of conjugation are fixed and are defined uniformly on [a, b] 
(a; = a0 + Ai, A = (b - a)/N). 

Denote by Viv(x, a) the class of splines of degree m with N conjugations 
defined on a uniform grid, and by Viv(x, tXemp) the spline which yields the 
minimal value for the emprical functional 

lemp(a) = fit (y; - Viv(x;a))2. (9.65) 

Now let a relation be defined which associates the number of conjugations N 
with the sample size l, i.e., N = N(l). 
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Consider a sequence of splines 

(9.66) 

of degree m, possessing N(l), ... , N(l), ... conjugations and minimizing the 
empirical risk on a sample i = 1, 2, ... , l, . .. (the samples are formed randomly 
and independently according to the density P(x, y) = P(ylx)P(x)). 

The following theorem is valid. 

Theorem 9.4 (Mihal'ski'i). Let the regression be determined by a continuous 

function y(x). Then the sequence (9.66) converges with probability 1 in a uni­

form metric to the regression y(x) provided only that the density P(x) is abso­
lutely continuous with respect to the uniform density and the conditions 

are fulfilled. 

N(l)~ oo, 

N 4 (l) In l --+ O 
l 1-00 

If, moreoter, the stronger conditions 

N 2<2+ Pl(l) In I 
-------+O l 1-00 

(9.67) 

are fulfilled and the regression y(x) is continuous together with its p derivatives, 
then the sequence 

constructed from the pth derivatives of the splines (9.66), converges with 
probability 1 in a uniform metric to the function y<P>(x) which is the pth derivative 
of the regression. 

Remark. The theorem implies that the condition (9.67) guarantees estimation 
in the class of splines of the pth continuous derivative of a function F(x) based 
on the values of this function measured at l randomly chosen points (la suf­
ficiently large number), i.e., it guarantees an approximate solution of the 
integral equation 

fb (x _ t)P- 1 p-1 p<k>(a) 
~a (p _ l)! 0(x - t)f(t) dt = F(x) - k~O 7Z! 

based on observations Y; = F(x;) + ~; (i = 1, 2, ... , l). 

Below, when interpreting results of experiments, we shall seek solutions in 
the form of expansions in terms of splines. 
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§6 Methods for Solving Ill-posed 
Measurement Problems 

In this section we shall present examples of the use of the method of ordered 
risk minimization to estimate solutions of the linear operator equation 

Af(t) = F(x) (9.68) 

from empirical data x 1, y 1 ; •.. ; x,, y1 {y; = F(x;) + ¢;, x a random variable 
distributed according to the uniform distribution on [a, b ]). The estimation 
is carried out in the class of splines. 

It will be shown in Addendum 2 that any spline Viv(t, oc) of order m with 
N conjugations can be represented as a linear combination of a system of 
N + m + 1 canonical splines of degree m with N conjugations, 

1t1(t), · · ·, 1tN+ m + 1(t). (9.69) 

In other words, the equality 
N+m+l 

VN(t, oc) = L oc;n;(t) 
i= 1 

is valid, where oc = (oc 1, ... , ocN+m+ 1) are coefficients which define specific 
piecewise polynomial approximations in the class of splines of degree m 
with N conjugations. 

When constructing a spline approximation to a solution of Equation 
(9.68), the problem is firstly to determine an appropriate number N of points 
of conjugation of the spline, and secondly to identify the coefficients oc 1, •.• , 

ocN + m + 1 in the expansion. 
Consider the images of the canonical system (9.69) in E 2 , 

µ 1(x) = An1(t), ... , µN+m+ 1(x) = AnN+m+ 1(t), 

and choose for a solution of the operator equation (9.68) a spline VN(t, oc*) 
such that its image F(x, oc*) guarantees a small value of the risk: 

/(oc) = J<y- F(x,oc))2P(ylx)dydx. 

According to Theorem 7.6 the inequality 

/(oc) < 

1 I ( N+m+ 1 )2 - L Y; - L ociµj(xJ 
/ i= 1 j= 1 

(N + m + l)(ln N + ~ + 1 + 1) - In T2 
l 00 

is fulfilled with probability 1 - '1 simultaneously for all splines with N con­
jugates. As a solution of the operator equation we choose a spline function 
(i.e., the number of conjugates N and a value of oc) that yields the minimum 
for the right-hand side of this inequality. Although the convergence of 
approximations obtained using structural minimization of the risk to the 
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solution of an operator equation was proved only for expansions in terms of 
eigenfunctions, examples of successful solution of practical problems of 
interpreting results of indirect experiments in the class of splines permit us to 
recommend this expansion for solving Fredholm's integral equations of 
type I as well. 

EXAMPLE l (A Problem in Nuclear Spectroscopy). At the input of a measur­
ing device energy enters whose frequency is distributed according to f(t) 
(t is the frequency). At the output of the device an experimental spectrum 
F(x) is observed. The relation between the input and the output is given by 
equation 

f [ I - ~] + f(t) dt = F(x), 

where a and b are the endpoints of the emitted spectrum, and 

[zJ + = {z for z :2:: 0, 
0 for z < 0. 

Based on the observations, it is required to estimate f(t). 
In Figure 8 measurements of function F(x) are shown (only each second 

observation is indicated). A total of 40 measurements were carried out. The 
measurements were subject to a uniformly distributed error concentrated 
on the interval [ - c, c]. The value of c was chosen to be 2 % of the maximum of 
F(x). 

The true spectrum (bold line) and the spline approximation obtained using 
the method of structural risk minimization are presented in Figure 9. 

F(x) 

0 

t°' ~ NV 

p-J:I 
f>--,f 

p 

Figure 8 
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f(c) 

Figure 9 

EXAMPLE 2 (The Inverse Problem of Gravimetry). The integral equation 

2 lb Hf (t) d - F( ) 
2 2 t - X 

(P1 - P2)n a H + (x - t) 

describes the anomaly of the force of gravity on the surface of the earth created 
by a mass of density p 1 separated from the surrounding medium with density 
p2 by the boundary f(t); here His the depth of the bedding of the mass which 
causes the anomaly. Based on the measurements of the anomaly F(t), it is 
required to estimate the boundary f(t). 

The actual function (bold line) and the spline-approximated solution 
obtained by the method of structural risk minimization (thin line) are pre­
sented in Figure 10. The solution was obtained from 40 measurements 
conducted with uniform error whose amplitude was 12 % of the maximum 
of F(x). 

f(c) 
9 

6 

3 

4n 

- 3 

- 6 

-9 

Figure 10 
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EXAMPLE 3 (A Problem in Estimating Derivatives). The problem of estimat­
ing the nth derivative in the class of continuous functions can be reduced to a 
solution of the following integral equation: 

Jh [x _ t]"t--1 _ _ n-1 p<i>(a) 
a (n _ I)! j(t) dt - F(x) j~o j! . 

Solutions of this problem are presented in Figures 11-14 for n = I, 2, 3 in the 
case when the function F(x) was measured at 40 points. The function F(t) 
(bold line) and its measurements are presented in Figure 11 (only every second 
observation of the function is indicated). The measurements were carried out 
subject to an error distributed uniformly with amplitude equal to 5 % of 
the maximum of F(x). 

0 
Figure 11 

Figure 12 
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10 

5 

0 r--t--------tr--+---t--ll--1----41--J---
21t 

- 5 

-10 \_,, 
Figure 13 

40 

0 

-24 

Figure 14 

The first, second, and third derivatives of function F(x) (bold line) and 
the corresponding spline approximations obtained using the method of 
structural risk minimization are presented in Figures 12, 13, and 14. These 
examples were solved using algorithm D-II.3 presented in Addendum IL 

§7 The Problem of Probability Density Estimation 

In Chapter 2 the problem of estimating a probability density in the class of 
continuous functions on [a, b] was associated with the solution of an ill­
posed problem of numerical differentiation. By definition a probability 
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density f(t) is the derivative of a distribution function F(x) = P(t s x), 
i.e., is a solution of the equation 

f 0(x - t)f(t) dt = F(x). (9.70) 

Therefore the problem of estimating a density f (t) on the basis of empirical 
data t 1, ... , t 1 should be viewed as one of an approximate solution to the 
integral equation (9.70), where the right-hand side is defined only approxi­
mately: instead of the distribution function F(x), its estimator 

1 I 

Fi(x) = 1 I1
0(x - t;) 

is available. 
We shall solve this problem using the regularization method (cf. Appendix 

to Chapter 1 ). We write the functional 

Ry,(J, F1) = pi;,(AJ, F 1) + y1Q(f), (9.71) 

where A is the operator of Equation (9.70) and y1 is a constant of regulariza­
tion; y1 -+ 0 as l-+ oo. 

Consider the sequence of elements 

n'<t), ... Jl'(t), ... (9.72) 

minimizing (9.71) as l-+ oo. This sequence is random, since it is formed using 
the random functions Fi(x). 

In the Appendix to this chapter a theorem is proved which asserts that if 
the desired solution of the operator equation belongs to a compact set 
Q(f) s c, then for any v andµ there exists n(µ, v) such that the inequality 

(9.73) 

is fulfilled for all elements of (9.72) starting with some l > n(µ, v). We shall 
utilize this inequality for defining conditions which will assure convergence 
of the sequence (9.72) to the desired density. 

Consider the asymptotic bound on the rate of convergence of the 
empirical distribution function to the population distribution function (the 
Kolmogorov-Smirnov bound) 

P{s~p!Fi(x) - F(x)I > e} < 2e- 2 ' 21• (9.74) 

Now let PE,(F1, F) = supxlFi(x) - F(x)I- From (9.73) and (9.74) we obtain 

P{PE,Ui',f) > v} < 2e-µly,_ 

It follows from this inequality that in order for the sequence (9.72) to 
converge in probability in the metric of the space £ 1 to the population 
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density it is sufficient that 

Y,~O, 
ly, ~ 00, 

(9.75) 

and in order for the sequence to converge with probability 1 it is sufficient 
in view of the Borel-Cantelli lemma that at least for one µ the inequality 

(9.76) 

be fulfilled. Using in (9.71) different stabilizing functionals Q(f), one may 
obtain estimates f i' of the density which converge to the desired density in 
different metrics. 

We have thus established that if a density belongs to a compactum 
Q(f) s c, one can select y1 such that the sequence (9.72) will converge to 
the desired density. 

The requirement that the desired density belong to a compactum may be 
avoided. It is shown in the Appendix to this chapter that one can obtain a 
sequence of solutions converging to a continuous density-it is sufficient to 
choose as the stabilizing functional the functional Q(f) = II J 112, where 
II J II is the norm of a Hilbert space. But now the condition (9. 75) is fulfilled 
for any positive µ and the sequence converges to the solution in metric L 2 • 

Thus the methods of density estimation are associated with solutions of 
ill-posed problems of numerical differentiation. 

§8 Estimation of Smooth Densities 

We shall apply the regularization method to estimate smooth densities 
defined on the interval [a, b]. 

Suppose it is known that the probability density f (t) possesses m deriva­
tives (m may be equal to 0), and let the functionj<m>(t) satisfy the Lipschitz 
condition of order µ (0 < µ s 1): 

1/<m>(t) - pml(r)I < K(f)lt - rlµ, 

1/(m)(t) - pm>(r)I 
K(f) = sup -----. 

1,,e1a,b1 It - rlµ 

Consider the following functional: 

Q*(/) = ( max sup 1/<k>(t)I + sup 1J<m>t --~:m>(r)J)2· (9.77) 
O,;;k,;;m te[a,b) 1,te[a,b] t 't" 

This functional is lower semicontinuous, and the set of functions 

Ac= {]: O*(]) Sc} 
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is a compact set in C. Therefore the functional (9.77) may be used for con­
structing the regularizing functional (9. 71 ). 

We choose for y1 the sequence 

In In / 
y,=--. 

I 

This sequence satisfies the condition (9.75), and thus in view of the results of 
the preceding section the sequence of elements Ji which minimize the func­
tional 

- ( I f b - I ) 2 In In / _ Rt(!; F1) == sup 0(x - t)f(t) dt - Fi(x) + - 1- O*(f) (9.78) 
xe[a,b] a 

converges in probability as I increases to the required density in the metric C. 
In this section we shall estimate the asymptotic rate of convergence of the 

sequence of solutions Ji to the required density. As will be shown below, the 
rate of convergence depends on the degree of smoothness of the estimated 
density characterized by the quantity 

f3=m+µ 

(the larger the f3 the larger the rate). 

Theorem 9.5 (Stefanjuk). An asymptotic rate of convergence in the metric C 
of estimators of the density fi(t) to the required function f (t) is determined by 
the expression 

P{lim (~1 
1
1 1)/Jtl<P + 

0 sup I Ji(t) - f (t) I ::;; g} = 1, 
1-oo n n IE[a,b] 

where g is a constant. 

Observe that in spite of the fact that the sequence (9.78) does not satisfy thr 
conditions (9.76) obtained in the preceding section, Theorem 9.5 assure:, 
uniform convergence of fi(t) to f(t) with probability 1. The condition (7.6) 
is only a sufficient condition. The result of Theorem 9.5 is more refined. 

Finally, the following should be mentioned before proceeding to the 
proof of the theorem. 

R. Z. Has'minskii obtained in 1978 an estimate for the best rate of con­
vergence of an approximation to an arbitrary density [113]. He discovered 
there is no algorithm which would ensure convergence in C[a, b] to a /3-
smooth density at a rate whose order of magnitude is larger than 
(//In l)-p;2p+ i_ 

As soon as this result became available, an attempt was made to improve 
on Theorem 9.5 (namely to obtain the order of magnitude of the rate 
(//In l)- 131213 + 1 instead of (//In l)- 131213 + 2 as given in Theorem 9.5.) However, 
for approximations that are generated by functional Rt(!; Fi) such attempts 
have failed. 
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The best rate of convergence in terms of the order of magnitude was 
obtained for another sequence generated by minimizing a modified func­
tional. Such a functional is constructed as follows: Subdivide the segment 
[a, b] into n = [(I/In 1) 112P+ 1J equal parts 

b-a 
[x;, X;- 1], X; = a + i --, 

n 
and define the quantities: 

i = 1, ... , n, 

ll<l>(x)II; = l<l>(x;) - <l>(x;-1)1. 

Using these quantities the functional is then given by: 

Rf(f; F1) = C ~~~n II f 0(x - t)f(t) dt - Fi(x) II) 2 + In! I Q*(f). 

There is a theorem (its proof is analogous to that of Theorem 9.5) which 
asserts that a sequence of elements};(t) minimizing Rf(f; F1) converges as I 
increases, in C[a, b], to a P-smooth density f(t) at a rate whose order of 
magnitude is the best obtainable: 

{ ( 
z )P1<2p+1) } 

P ITm I7 sup l};(t) - f(t)I ~ g = 1. 
l-+oo n ast~b 

However the functional Rf(f; F1) does not satisfy the requirements of 
the general theory of solving ill-posed problems using the method of regular­
ization. It is constructed by means of the value of sup; II <l>(x) II; which does not 
specify a norm in C[a, b]. 

It should also be noted that the best possible rate of convergence may 
also be obtained for other methods, e.g., for Parzen's method (see Section 9). 
However, for the latter method, the maximal rate was achieved for special 
constructions (such as Dirichlet kernels) only rather than for constructions 
(kernels) which are easy to handle and are usually employed. 

These are the "racing" aspects of the problem. 

To prove the theorem the following lemma will be required. 

Lemma. Consider a function y(t) continuously differentiable on the interval [a, b]. Denote 
by x(t) the derivative of this function. Let the mth (m :2:: 0) derivative of x(t) satisfy the 
Lipschitz condition of order µ on [a, b]: 

sup Ix<m)(t) - x<m)(,)I ~ Kit - ,,µ. 
l,t'E[a,b] 

Then the inequality 

llxllc ~ max{C!llyllc; C!*IIYllt+µl/(l+m+µ)} 

is valid, where 

llxllc = sup lx(t)I, 
te[a, b] 

* = 21 +2m (1 + µ) 
Cm b , - a µ 

[ ( 
+1)µ]1/(l+m+µ) 

C!* = 2<m+µ)(l+µ+m)-µ'K. 7 . 
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PROOF. 

(1) Consider first the case of m = 0. Choose on [a, b] an arbitrary point t* such that 
I x(t*) I #- 0. Define an e-neighborhood of this point with 

e = (1 xi*) I) 1/µ. (9.79) 

Assume that at least one of the endpoints of this e-neighborhood-say the right one-is 
located within the interval [a, b], i.e., t* +es b. Along with the function x(t) consider 
the function 

cp(r) = lx(t*)I - K-(, - t*Y­

Since for any r E [t*, t* + 1: J 

lx(t*)I - lx(r)I s lx(t*) - x(,)I s K-(r - t*Y, 

it follows that 

lx(,)I 2 lx(t*)I - K · (, - t*Y = cp(,). (9.80) 

Noting that e is defined by (9.79), we conclude from (9.80) that on the interval [t*, t* + e] 
the function x(r) remains of the same sign. Therefore the relation 

ly(t* + e) - y(t*)I = I f''+,x(r) dr I= f''+,lx(,)I dr 2 f''+,cp(,) d, 
t• t• t• 

= lx(t*)le - Ke 1 +µ_l_ = (K)- 11µ(_µ_)1x(t*)i 0 +µ)/µ 
I+µ I+µ 

is valid. Since, however, the inequality 

I y(t* + e) - y(t*) I s 211Yllc 

is always fulfilled, it follows from the bound obtained that 

[ (
I + ) ]µ10 +µ) 

lx(t*)I s 2 7 K 11µ11Yllc . (9.81) 

Now let both endpoints of the above mentioned e-neighborhood of the point t* be 
located outside the interval [ a, b]. Consider also the function 

cp1(r) = {

lx(t*)I - lx(t*){: _ :r fora s Ts t*, 

lx(t*)I - lx(t*)I G- ::r fort*< Ts b. 

It is easy to verify that for any TE [a, b] the inequality Os cp 1(,) s lx(,)I is fulfilled. 
Therefore as above we have 

ly(b) - y(a)I = I f\(t) dt I= fbix(t)I dt 2 fbcp 1(r) d, = _µ_ (b - a)lx(t*)I. 
a a a I+µ 

Hence 

(9.82) 
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Thus if at least one of the endpoints of thee-neighborhood is located within the interval 
[a, b], the bound (9.81) is valid; otherwise (9.82) is. While the inequalities were obtained 
for any t* such that lx(t*)I # 0, the bound 

llxllc s max{qllyl/6 q*llyl/t1!1+µ)} 

holds, where 

q = _2_ (1 + µ), 
b - a µ 

. [ (µ+ 1) ]µ/(!+µ) 
q* = 2 -- K'fµ . 

For the case rn = 0 the lemma is thus proved. 

(2) Now consider the bound 

µ 

(9.83) 

11x<m-i)llc s max{ er 11x<m-i- l)llc; C;"*llx(m-i- 1)11g +µ)/(! +i+µ)}. (9.84) 

This bound was obtained above for the case i = 0. For the case i = rn it constitutes the 
assertion of the lemma (here we use the notation x!- 1l(t) = y(t)). We shall prove the 
validity of (9.84) for i = 1, 2, ... , rn by induction. 

Let the bound (9.84) be valid for i = k - 1. We show that it remains valid for i = k 
as well. Indeed, since x<m-kl(t) is differentiable on [a, b], we have 

sup /x<m-k)(t) - x<m-k)('r)/ S llx<m-k+l)llclt - ,/; 
t, re[a, b] 

hence the function x<m-kl(t) satisfies the Lipschitz condition of orderµ = 1. Therefore 
utilizing (9.83) we obtain 

llx(m-k)llc s max{ b ~ a 11x<m-k- l)llc; 211x<m-k+ l)11t12 11x<m-k- l)11t12 }· 

By the induction assumption 

llx!m-k+ !)lie S max{q_ 1 llx(m-k)llc; Ct\ llx(m-k)llt- 1 +µ)/(k+µ)} 

Combining these two inequalities, we have 

llx(m-k)llc s max{b ~ a llx(m-k-l)llc; 

2[C:-1 llx(m-k)llcJ 112 llx(m-k- 1)11t12 ; ' 

2[C:! 1 lix(m-k)llcJµ+k- l/Z(µ+k)llx(m-k- l)IIW }- (9.85) 

It follows from (9.85) that 

llx(m-k)llc s max{~b22 llx(m-k-!)11c;~b 2 C:-1llx(m-k-l)llc; 
-a -a 

(4Ct! ,)(µ+k)/(µ+k+ l)llx(m-k- llllg'+kl/(µ+k+ 1J 
Finally, taking the values of Ct and Ct* into account, we arrive at the inequality 

1/x(m-klllc S max{Ctllx(m-k-l)llc; C:*llx<m-k-1)111+µ)/(k+µ+ll}. 

For k = rn the inequality obtained is the assertion of the lemma. D 
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PROOF OF THE THEOREM. According to Smirnov's formula the deviation between the 

empirical distribution function F,(x) and the population distribution function satisfies 
with probability 1 the relation 

lim (_?:1_) 112 IIF,(x) - F(x)llc = I. 
z-co In In l 

Therefore for any £ there exists N = N(E) such that simultaneously for all l > N the 

inequality 

I 
-- IIF,(x) - F(x)llt < I 
In In l 

is fulfilled with probability l - £. 

(9.86) 

Let J;(t) be the function which minimizes the functional (9.78), and let f(t) be the 

desired density. Then 

In In l * 
- 1 - Q*(f;) s Rt(J;, F1) s R1 (f; F1) 

II f b 11 2 In In / = a 0(x - t)f(t) dt - Fz(x) c + - 1- Q*(f), 

whence we obtain 

Q*(J;) s Q*(f) + II f 0(x - t)f(t) dt - F,(x) r In In l 

Observe that starting with l = N(E), the inequality (9.86) is fulfilled with probability 

I - £; hence starting with N(E), the inequality 

Q*(J;) s Q*(f) + l (9.87) 

is satisfied with probability 1 - E. If the mth derivative of the desired density f(t) 
satisfies the Lipschitz condition of order µ and the functional Q*(f) is (9.77), then it 
follows from (9.87) that 

I f (ml(t) 1·(ml(r) I 
SU I - I < (Q*(f) + J)l/2 

P It - rl'' - ' t. T 

i.e., the mth derivative of the functionf;(t) satisfies with probability l - £ the Lipschitz 
condition of order µ with the constant K = (Q*(f) + 1) 112 . Therefore in view of the 

lemma, the inequality 

11.ft-fllc s max{c:11 f 0(x - t)ft(t)dt - F(x) lie; 

II f b IIP/(1 + Pl} 
C!* a 0(x - t)J;(t) dt - F(x) c (/3 = m + µ) (9.88) 

is valid with probability I - £. Multiplying both sides of the inequality by 

(
_i_)P/2(l+Pl 

In In I ' 
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we obtain 

( 
/ ). P/2U+Pl { *( ~)1/(l+Pl 

In In/ II!, - files max Cm ._J--y--1-

x [ J;;f; II f 0(x - t)f,(t) dt - F(x) IIJ; 
c:*[J;;f; II f 0(x - t)f,(t)dt - F(x) 11er(l+p} 

(9.89) 

Observe now that starting with N(e) the inequality 

Jin ~n 1 11 f 0(x - t)f,(t) dt - F(x) lie s 1 + J (9.90) 

is fulfilled for all/ with probability I - e. The inequality (9.90) follows from the triangle 
inequality 

II f 0(x - t)f,(t) dt - F(x) lie s II f 0(x - t)f,(t) dt - Fi(x) lie+ IIFi(x) - F(x)lle, 

the self-evident system of inequalities 

II f 0(x - t)f,(t) dt - F1(x) II: s Rt(!,, F1) s Rf(J, F1), 

and the bound (9.86). 
Taking (9.89) and (9.90) into account, we may assert that with probability I - e for 

all/ ;::: N(e) the inequality 

( / )p12o+PJ { ( ~)1/(l+Pl } 
lnln/ 11!,-fllesmax C!** ._J--y--1- ;g (9.91) 

is fulfilled, where 

C!** = C!(l + JQ*(J) + 1), 

g = C!*(l + JO.*(J) + J)PIO+P>. 

Evidently, starting with some number N*, the inequality 

(~
n In l)'IO+Pl 

C*** -- < g 
m I 

will be satisfied. Thus starting with N*(e) = max(N*, N(e)), with probability I - e the 
inequality 

( 
/ )P/2(1+Pl 

In In 1 11.fi -file < g (9.92) 

will be fulfilled. Since for any e there exists N*(e) such that for all I ;::: N*(e) simul­
taneously the inequality (9.92) is fulfilled with probability I - e, we have with prob­
ability I 

_ ( I )p12o+m 
:~~ In In I II!, - file< g. 

The theorem is proved. D 
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Below we shall also utilize the method of structural minimization of the 
risk for solving problems of density estimation. However before proceeding 
to the exposition of the corresponding results it should be noted that there 
exist nonparametric methods of estimating density (for example Parsen's 
method) which seem to avoid solving an ill-posed problem. However, a 
more detailed analysis of these methods shows that all of them involve a 
constant whose determination is a problem which is completely equivalent 
to the determination of the constant of regularization y1 when solving ill­
posed problems. 

§9 Density Estimation Using Parzen's Method 

Parzen's idea for estimating a density is as follows: The identity 

P(x) = f J(x - t)P(t) dt 

is valid. Consider a parametric sequence of functions converging to J(x): 

~1 K(:J ... ,kK(~); 
1 ('x \ 

lim -h K ,;) = J(x). 
1-00 l l 

Such a sequence does exist. For example, 

lim ~l~e-x2j2h2 = J(x). 
h-0 jbch 

For any continuous density P(x) there exists a quantity h such that replacing 
J(x) by (1/n)K(x/n) in the integrand hardly affects the result, i.e., 

P(x) = f J(x - t)P(t) dt ~ f i K(x ~ t)P(t) dt. 

We now replace the mathematical expectation by the value of the sample 
mean. For a sufficiently large sample size this will affect the result only 
slightly: 

J 1 (X - t) 1 1 1 (X - t-) P(x) ~ h K ~h- P(t) dt ~ 1 Ii h K -h-' · 

The expression on the right-hand side is thus used as the formula for density 
estimation: 

~ 1 I 1 (X - t·) 
Pz(x) = l J1 hK -h-'. (9.93) 
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The problem is thus: 

(1) What should the law be for forming the quantity h so that as the sample 
size increases the estimator tends to the true probability density? 

(2) How should the constant h be chosen if the sample size is finite? 

There is no answer to the second question. As far as the asymptotic 
properties of this method are concerned, Parzen in 1962 and Nadaraya in 
1965 obtained conditions which assure the convergence of the estimator (9.93) 
to the desired uniformly continuous density. It turns out that for convergence 
in metric C of the sequence (9.93) in probability to the desired density it is 
sufficient that 

h,~o, 
/hf~OO 

(9.94) 

(Parzen's result), while for convergence with probability 1 it is sufficient that 
for any positiveµ the series 

(9.95) 

converge (Nadaraya's result). 
Observe that the conditions (9.94) and (9.95) for choosing constants h1 are 

equivalent to the conditions (9.75) aod (9.76) for choosing regularizing 
constants when solving the ill-posed problem (9.70). This basically means 
that when circumventing an ill-posed problem it is impossible to avoid the 
difficulties connected with its solution. 

Parzen's method may be obtained directly as a solution of Equation (9.70) using the 
regularization method. 

Let the desired density f (t) be square-integrable on ( - oo, + oo ). In accordance with 
the regularization method we shall obtain a function fi(t) E L2 which minimizes the 
functional 

Rf(], F,) = r: u:: 0(x - t)](t) dt - F,(x)T dx + Y1 r: !2(t) dt. 

From the minimum condition for functional Rt(], F1) at the pointfi(t) we obtain 

r: 0(x - t{r: 0(x - t)fi(t) dt - Fi(x)] dx + y1fi(t) = 0. 

We solve this equation using the method of the Fourier transform for generalized 
functions. To do this we apply the Fourier transform to the equality, taking into account 
that 

1 I 

F,(x) = - I 0(x - tk) 
I k= I 

and the Fourier transform for the generalized function 0(x) is 

i 
- + nb(w). 
w 
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We obtain the equation 

( 1 ) [( [ ) [ I ( eiwt")] --:- - --:- TT(w) - - L - -. - + y1TT(w) = 0, 
lW lW I k=I IW 

in which 

J+co 

TT(w) = _ co f,(t)e-iwr dt 

is the Fourier transform of the functionf,(t). Next it follows that 

1 I _ L eiwtk 

TT(w)=lk=1 . 
[ + )'1W2 

303 

Applying the inverse Fourier transform to TT(w), we arrive at the estimate of the density 

1 J +co 1 I 1 
f,(t)=- TT(w)eiwrdw=- L --e- 1'-'• 11,Yi. 

2rr -co lk=12}Yi 

We have thus obtained Parzen's estimator with the kernel 

K(t) = 2~ exp{- 1} 
By using other stabilizing functionals Q(f) one can obtain other kernels K(t) as well. 

§10 Density Estimation Using the Method of 
Structural Risk Minimization 

We shall solve Equation (9.70) where in place of F(x) the empirical estimator 
Fz(x) is utilized. Observe that Fi(x) is a random function whose values at two 
distinct points xf and xj are correlated. 

The covariance coefficient Kii of the random variables Yi = Fi(xn and 
yj = Fi(xj) equals 

{
{ F;(l - F) if xf :-::;; xj, 

K--= 
IJ 1 

zFP - F;) ifxj < xr 
(9.96) 

Here we denote Fi = F(xn and Fj = F(xj). 
Consider N variables y 1, ... , YN formed by means of the function Fi(x), 

and N random numbers x!, ... , xt generated by a probability density 
uniform on [a, b]: Yi= Fz(xt), i = 1, 2, ... , N. 

Since the random variables Yi and yj are correlated, one cannot apply 
directly the method of structural minimization for estimating the probability 
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density. Therefore we apply to the random vector Y = (y 1, ••. , YNl the 
following linear transformation: 

Z= BY, 

where K is a covariance matrix with elements (9.96). It is known that by 
means of this transformation one can form a random vector z whose com­
ponents are uncorrelated and have a unit variance. Therefore one can con­
sider each component zi of the vector z as a realization of a random variable 
conditioned on xt in an independent sample of size N. 

Denote by Fa. a vector with coordinates F(x!, oc), ... , F(xt, oc). The trans­
formation B maps the vector Fa. into the vector W = BFa., whose com­
ponents are considered as values of a function W(x, oc) at points xf, ... , xt. 

We shall now solve the problem of minimizing the functional 

!(oc) = J (z - W(x, oc))2 P(z Ix) dz dx. 

To solve this problem we shall use the method of structural risk minimiza­
tion. Thus we have 

/(oc) < ,= i 
A r ! .± (zi - W(xt, oc))2 l 

l _ lra(p) In m5(2N)N- In (11/8) 
00 

The numerator on the right-hand side can be represented as 

1 N 1 
N J

1
(z; - W(xt, oc))2 = N (Y - Fa.)TBTB(Y - Fa.) 

= ! (Y - Fa.lK- 1(Y - Fa.). 

Finally we write the functional whose minimization over the classes of 
functions S1 c · · · c SN and over all the functions F(x, oc) in each one of the 
classes determines an estimate of the probability density function 

[ 
!(Y - Fa.?K- 1(Y - Fa.) l 

R(oc) = -------.======= , 
( ) In m5P(2N) - ln(11/8) 

1 - 2-ra p N 
00 

(9.97) 

where 
Fa.= (F(xf, oc), ... , F(4, oc))T, 

F(xt, oc) = f 1
00

J(t, oc) dt, 

f(t, oc) being functions belonging to SP. 
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In order to utilize (9.97) it is necessary to know the inverse of the covari­
ance matrix. This matrix may be obtained analytically.t A direct verification 
of relation KK- 1 = I yields that the following matrix is the inverse for K: 

where 

a11 a12 a1N I 
a21 a22 a2N 

K-1 = 

a~J' aNl aN2 

aii = 0 for Ii - jl 2". 2, 

-I 
a;;-1 = a;-u = ----, 

F; - F;-i 

l(F;+ 1 - F;-1) 
a;;= . 

(F;+ 1 - F;)(F; - F;_ 1 ) 

(9.98) 

However, the matrix (9.98) is expressed in terms of the unknown distribu­
tion function of the random variable F(x) whose derivative we are to obtain. 
It thus turns out that in order to estimate a probability density based on a 
sample it is necessary to possess some prior information about the density 
(i.e., to know the covariance matrix (9.98)). This is the fundamental difficulty 
of the problem of estimating a probability density in a wide class of functions. 

In place of matrix (9.98) one can utilize in (9.97) its estimator where the 
values of the matrix are determined by means of a preliminary estimated 
continuous function F 0 mp(x). Observe that the problem of estimating the 
function F(x) is simpler than the problem of density estimation (in view of 
the Glivenko-Cantelli theorem, the empirical distribution function converges 
to the population one in the uniform metric). Thus the algorithm of density 
estimation consists of two stages: the preliminary estimation of the matrix 
(9.98) and the determination of the density. 

We estimate the matrix using the polygon F 0 mp(x) of the distribution 
functiont constructed from the order statistics x'f, ... , xf generated by the 
sample t 1, ••• , t1: 

1 X 

21 x! - a 

k - ½ 1 X - X{ 
Femp(x) = --+-----

/ 21 xf+ 1 - xf 
I - ½ 1 x - xf 
-/- + 21 b - xf 

if a< x:::; x!, 

if X{ < X :::; X:+ 1, k = 1, ... , / - 1, 

if xf < X:::; b. 

t We shall assume that the required density on (a, b) does not vanish. 
t One can determine the relation between the sample size/ and the number of points Nat which 
the value of the polygon Fem/x) is determined such that in the two-stage method of estimation 
the function approaches the desired one as the sample size increases. 
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In Figures 15, 16, and 17 are presented the results of estimating various 
densities using the Parzen method (a) and the two-stage method described 
above (b ). The actual densities are the bold lines; the approximations obtained 
are the dotted lines. Figure 15 shows the estimation of a unimodal density 
based on a sample of size I = 50. Figure 16 shows the estimation of a bimodal 
density based on a sample of size I = 50. Finally, the estimation of a trimodal 
density based on a sample of size I = 100 is presented in Figure 17. 

In the case of the Parzen estimator the kernel (l /foh)e- 11 -rl 2/ 2h 2 was 
used. The value of h was chosen to be equal to h = e1- 115, where 112 is the 
sample variance (this is the usually recommended value of h) . 

... 
0 

(a) (b) 

Figure 15 

0 
(a) (b) 

Figure 16 

(a) {b) 

Figure 17 
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.... . ... 
0 0 

Figure 18 

In the case of estimation by means of the two-stage procedure the value 
of the polygon F em/x) at N = I randomly selected points was used. Variation 
of N even over wide limits affects the result only slightly. Estimation of the 
density based on 50 points for N = 30 and N = 400 is presented in Figure 18. 
The densities were estimated using the modified algorithm D-11.3 (see 
Addendum 2). 

As can be seen from these examples, Parzen's method may lead, in the 
case of finite sample sizes I, to unsatisfactory results if the desired density is 
multimodal. t Under the same conditions the two-stage method allows us to 
obtain sufficiently good estimators for unimodal as well as for multimodal 
probability densities. 

t In the case of estimating a t rimodal density using Parzen's method the same accuracy (closeness 
in metric L 2) as the one shown in Figure 17(b) can be achieved only if the sample size is increased 
more than tenfold (for I = 1200). 



Appendix to Chapter 9 

Statistical Theory of Regularization 

Consider the operator equation 

Af=F (A.l) 

defined by a continuous operator A which maps in a one-to-one manner the 
elements of a metric space E 1 into elements of the metric space E 2 . Let Q(f) 
be a lower semicontinuous functional such that: 

(1) a solution of Equation (A.1) belongs to D(O.), the domain of definition of 
the functional O.(f); 

(2) the functional O.(f) takes on real nonnegative values in D(O.); 
(3) the sets Ac= {f: O.(f) ~ c}, c > 0, are compact. 

Consider random functions F1 and elements fl' which minimize the 
functional 

(A.2) 

Let y1 -+ 0 as /-+ oo. Under these conditions the following two theorems, 
which are stochastic analogs of A. N. Tihonov's theorems, are valid (see the 
Appendix to Chapter 1, Theorems A.1 and A.2). 

Theorem A.I. For any positive numbers v andµ there exists a positive number 
n(µ, v) such that for all I > n(µ, v) the inequalities 

P{pE 1Ul1,f) > v} ~ P{pi:,(F1, F) > µy1} 

are fulfilled. 

Theorem A.2. Let E1 be a Hilbert space, A be a linear operator, and 0.(/) = 
11 / II 2 ; then for any e there exists a number n(e) such that for for all I > n(e) the 

308 
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inequalities 

are fulfilled. 

PROOF OF THEOREM A. I. By definition, for any / the chain of inequalitiest 

r10U1')::; Ry,(//', F1)::; Ry,(f, F1) 

= p~(AJJ1) + riOU) = p~(F,F1) + riOU) (A.3) 

is valid. In other words, the inequality 

O(/i') ::; Q(f) + p~(F1, F) 
Yi 

is valid. Moreover, clearly 

p~(Af i', Fi) ::; Ry,(//', Fi). 

Utilizing (A.3) and (A.4), we obtain the inequalities 

pi(Afl', F) ::;; pi(Afl', F1) + pi(Fi, F) 

(A.3a) 

(A.4) 

~-----~ 
::;; pi(F1, F) + J p~(Fi, F) + y1Q(f). (A.5) 

Furthermore for any v > 0 and c > Q(f) the equality 

P{P1Ui',J)::; v} = P{p1(ft,f)::; vlQ(f) + p~(~'.' F)::;; c} 
x P{Q(f) + p~(~'.' F)::;; c} 

+ P{P1Ui'J)::; vlO(f) + p~(~'.' F) > c} 
x P{Q(f) + d(~'.' F) > c} (A.6) 

is valid. Now let the condition 

Q(f) + p~(F1, F)::;; c 
Y1 

be fulfilled. Then it follows from (A.3a) that the inequality Q(f'l') ::; c is 
valid, i.e.,ff' belongs to a compactum. In view of the lemma on the continuity 
of the inverse operator for A on a compactum (Appendix to Chapter 1), we 
obtain that there exists a l> such that the inequality 

P1Ul',f)::,:; V 

t Here and below w~ set PE, = p, for notational simplicity. 
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is fulfilled as long as the inequality pi(Afl', F) ~ /J is. Hence we have for I 
sufficiently large that 

P{P1Ul 1,J) ~ v/Q(f) + p~(~'.' F) ~ c} 

~ P{P2(Afl1, F1) ~ /J/Q(f) + p~(~:· F) ~ c}- (A.7) 

Observe now that in view of (A.5) the inequality 

P2(Afl 1, F) ~ Jy,(c - Q(f)) + jy1(c - Q(f)) + y1Q(f) 

= Jy,(Jc - Q(f) + Jc) 
is fulfilled in the domain 

Q(f) + p~(F1, F) ~ c. 
Yt 

Since y1 -+ 0 as I -+ oo for any /J starting with some n, the inequality 

P{pi(Afl', F) ~ /J/Q(f) + p~(~'.' F) ~ c} = 1 

is fulfilled for all! > n. And since (A.7) is valid for all! > n, the equality 

P{P1Ul',f) ~ v/Q(f) + p~(~:· F) ~ c} = 1 

is fulfilled. Thus it follows from (A.6) that for any v > 0 there exists n such 
that for I > n the inequality 

P{P1Ul 1,J) ~ v} > P{Q(f) + p~(~'.' F) ~ c} 
is fulfilled, and hence also the inequality 

P{p 1(fl',f) > v} ~ P{Q(f) + p~(~'.' F) > c} (A.8) 

Taking into account that c > Q(f) and introducing the notation µ = c -
Q(f), we obtain from (A.8) the assertion of the theorem: 

PROOF OF THEOREM A.2 

(A.9) 

D 

(1) An arbitrary closed sphere in a Hilbert space (i.e., a set of vectors of the 
form {f: Ill - foll ~ d}) is weakly compact. Therefore, as far as the weak 
compactness in the space E 1 is concerned, we are under the conditions of 
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Theorem A.l. Consequently, for any positive v andµ there exists a number 
n = n(µ, v) such that for/ > n(µ, v) 

P{ l'P<fi') - <p(f)I > v} :-:; P{p~(F1, F) > y1µ}, 

where <p(·) is an arbitrary continuous linear functional, for example the 
projection of I on the element q: 

<p(f) = J q(t)I (t) dt = (q ·f). 

(2) According to the definition of a norm in a Hilbert space we have 

1117' - 111 2 = (fl' - f,ll' - f) 

= 1111'11 2 - 11111 2 + 2(!,I - ll'). (A.IO) 

Utilizing the inequality 

P{a + b > s} :-:; P{a > 1} + P{b > 1}, 
we obtain from (A.10) that 

P{llll' - !11 2 > c} :-:; P{llfr'll 2 - 11!11 2 > n + P{2(f,I - fr')> H· 
In order to bound the first summand on the right-hand side we shall utilize 
the inequality (A.3a), taking into account that O.(f) = 11111 2. We thus obtain 

1111'11 2 :-:; 1lf11 2 + p~(Fi, F)_ 
Y1 

Therefore 

P{llft112 - 11111 2 > ~} :-:; p{P~(~:· F) > H· (A.11) 

We bound the second summand by means of (A.9), settingµ = s/2 

P{(f,I - fr')> :i} :-s; P{p 2(Fi, F) > ~ r} (A.12) 

Combining the bounds (A.11) and (A.12), we arrive at the assertion of the 
theorem: 

D 



Chapter 10 

Estimation of Functional Values at 
Given Points 

§ 1 The Scheme of Minimizing the Overall Risk 

In the case of small samples 

(10.1) 

it is desirable to distinguish between two estimation problems: 

(1) estimation in the class F(x, ix) of the functional dependence y = f(x), 
(2) estimation in F(x, ix) of values of a function y = f(x) at the given points 

X1+1,···,Xl+k• (10.2) 

It may seem that the problem of estimating the values of a function 
y = f(x) at given points (10.2) is not a very profound one. There exists a 
"natural" way to solve it: based on the available empirical data (10.1), 
estimate the functional dependence y = F(x, ix*), and using this estimate 
determine the values of the function at the points ( 10.2): 

Yi = F(x;, ix*) (i = l + 1, ... , I + k), 

i.e., one can obtain a solution of the second problem by using a solution of 
the first one. However such a route for estimating values of a function is often 
not the best, since here a solution of a relatively simple problem-estimating 
k numbers (the values of the function) becomes dependent on the solution 
of a substantially more complex problem-estimating a function (which is a 
continuum containing these k numbers). 

The problem is actually how to utilize the information under the con­
ditions of incompleteness of information-for solving the required problem 
rather than a more general one. It may turn out that the amount of informa­
tion available will be sufficient to estimate the k numbers satisfactorily, 

312 
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but not be sufficient to estimate the function in the whole domain of its 
definition. 

It should be noted that in practice usually the need arises to determine the 
values of the functions at given points rather than to determine the functional 
dependence itself. As a rule (which is always valid for the problem of pattern 
recognition), the functional dependence is utilized only to determine the 
values of a function at certain desired points. 

Thus we distinguish between two kinds of estimation problems: estimation 
of a function and estimation of values of a function at given points. 

In Chapter 1 we formalized the statement of the problem of estimation of 
functional dependence by means of a scheme of minimizing the expected risk. 
In this section we shall formalize the statement of the problem of estimating 
functional values at given points using a scheme which will be called the 
scheme of minimizing the overall risk. 

It is assumed that a set 

(10.3) 

consisting of l + k vectors (a complete sample of vectors) is given. There 
exists a function y = f(x) which assigns a number y to each vector x in 
the set (10.3). Thus for l + k vectors (10.3), l + k values 

Y1, · · ·, Y1, Y1+ 1, · · ·, Y1+k (10.4) 

are defined. From the set (10.3) l vectors xi are randomly selected for which 
the corresponding realizations of Yi are indicated. The set of pairs 

(10.5) 

thus formed will be called the training sample. The set of vectors 

X1+ 1, • • •, Xl+k (10.6) 

is called the working sample. 
Based on the elements of the training and working samples and on a 

given set of functions F(x, ix) (f (x) does not necessarily belong to this set), 
it is required to obtain a function F(x, ix*) that minimizes with a preassigned 
probability 1 - 17 the overall risk of forecasting the values of the function 
Yi = f (x;) on the elements of the working sample, i.e., which yields with 
probability 1 - 17 a value of the functional 

1 l+k 

Ir,(ix) = k L (yi - F(x;, ix))2 

i=l+ 1 

(10.7) 

close to the minimal one. 

We shall call this formulation of the problem of estimating the values of a function 
at given points formulation I, and we shall consider another formulation of this problem, 
to be referred to as formulation I I. 
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Let a probability distribution P(x, y) be given on the set of pairs (X, Y). We select 
from this set, randomly and independently, 1 pairs 

which form the training sequence. Next, in the same manner, k additional pairs 

Xi+ 1, Yi+ 1; · • •; Xi+k• Yi+k 
are chosen. 

It is required to obtain an algorithm A which, based on the training sequence 
x1, y1; ... ; Xi, Yi and the working sample Xi+ 1, ... , Xi+k> will choose in F(x, ix) a 
function 

which yields a value of the functional 

J 1 i+k 
I,(A) = - I (y; - F(x;, ixA(x1, y1; ... ; Xi, Yi; Xi+ 1, ... , x1+k)))2 

k i=i+ 1 

close to the minimal one. 
The following theorem which connects these two formulations is valid. 

Theorem 10.1. If for some algorithm A it is proved that for formulation I with proba­
bility l - I/ the deviation between the risk on the training and working samples does not 
depend on the composition of the complete sample and does not exceed x, then with the 
same probability for formulation II the deviation between the analogous values of the 
risks does not exceed x. 

Consider the second formulation of the problem, and compute the probability of 
deviation from zero by an amount greater than x of the quantity C A(x i, y 1, ... ; 

Xi+k• Yi+k): 

P = f 0[C A(x1, Y1; · · · ; Xi+k, Yi+k) - x] 
XY 

x P(x 1, y1) · • • P(xi+k> Yi+k) dx 1 dy1 · · · dx1+k dyi+k, 

where 

0 { 1 for z ~ 0, 
(z) = 0 for z < 0. 

Let TP (p = 1, 2, ... (I + k) !) be the permutation operator for the sample 
x 1, y1, •.. , Xi+k> Yi+k· Then the equality 

P = f 0[CA(x1, Y1; ... ; Xi+k, Yi+k) - x] 
XY 

x P(x1, y1) · · · P(x1+k> Yi+k) dx 1 dy1 · · · dxi+k dy1+k 

J { 1 <1+kH } 

= (-l k)' I 0[CiT/x1, Yi; ... ; X1+k> Yi+k)) - x] 
XY + · p= 1 
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is valid. The expression in braces is the quantity estimated in formulation I. It does not 
exceed 1 - YJ. We thus obtain 

P ~ f (I - YJ)P(xi, y 1) • • • P(x1+k, Yt+k) dx 1 dy 1 • • • dx1+k dy1+k = I - YJ. 
XY 

The theorem is proved. D 

Below we shall consider the problem of estimating values of a function at given points 
in formulation I. However, by means of Theorem 10.1 all the results obtained can be 
shown to be valid for the case of formulation II as well. 

In this chapter the terminology used pertains to estimating values of a 
function. However, all the results obtained were valid in the more general 
case when a realization of the sample (10.4) is determined by the conditional 
probability P(ylx) (rather than by the function y = f(x)) and it is required 
on the basis of random realizations at points (10.5) to forecast, by means of a 
function belonging to F(x, C(), realizations at some other points (10.6). 

§2 The Method of Structural Minimization of the 
Overall Risk 

We solve the problem of estimating values of a function at given points using 
the method of structural risk minimization. In the following two sections we 
obtain bounds on the rate of uniform relative deviation of the mean values 
in two subsamples. Using these bounds, we construct bounds on the overall 
risk, uniform over the class F(x, C(), based on the values of the empirical 
risks. These bounds are analogous to those which were utilized in the pre­
ceding chapters when constructing a structural minimization of the expected 
risk. 

We shall demonstrate that for a set of indicator functions of capacity 
h (in the problem of pattern recognition) the bound 

Vi;(C() < v(C() + nw, k, h, - In Y/) (10.8) 

is valid with probability 1 - f/ (for this problem the notation /i;(C() = vi;(C(), 
Jem/C() = v(C() is used), while for the set of arbitrary functions of capacity h, 
with probability 1 - f/ the bound of the form 

li;(C() < Jemp(C()Q!(/, k, h, -Inf/) (10.9) 
is valid. 

Now if one defines the structure 

S1 C · · · C Sq 

on the class of functions F(x, C(), then it is possible by minimizing the right­
hand side of the inequality (10.8) (or (10.9)) to find an element S* and a 
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function F(x, a!mp) for which the guaranteed minimum for the bound of the 
overall risk is attained. Using the functions F(x, a!mp), the values Y; = 
F(x;, a!mp) are computed at the points of the working sample. Outwardly 
this scheme does not differ at all from the one considered in Chapter 8. 

However, in the scheme of structural minimization of the overall risk 
there is a special feature which determines the difference between solutions 
of problems of estimating functions and those of estimating values of a 
function at given points. This has to do with the need to order the functions 
in the class F(x, a) a priori. This requirement has different meanings in the 
cases of estimating functions and of estimating values of functions. For the 
problem of estimating functions it means that, knowing the class of functions 
F(x, a) and the domain of definition of a function, it is necessary to define a 
structure on F(x, a). For the problem of estimating functional values it 
amounts to determining a structure on F(x, a), knowing the class of functions 
F(x, a) and the complete sample 

(10.10) 

The difference is that for a complete sample (10.10) the set of functions 
F(x, a) is decomposed into sets of equivalence classes. This set can be 
investigated, and the structure on F(x, a) can be defined on equivalence 
classes, producing a more meaningful ordering principle than the one in the 
case of estimating functions. 

For example, the set of indicator functions on the complete sample (10.10) 
is decomposed into a finite number of equivalence classes. Two indicator 
functions are equivalent on a complete sample if they subdivide this sample 
into subsamples in the same manner (i.e., take the same values on (10.10)). 
In this case it makes sense to define a structure on a finite number of equiva­
lence classes rather than on the initial set of functions. 

Below, when discussing estimation of values of functions at given points, 
we shall consider three different conceptions of defining and ordering 
equivalence classes, and each one of them will be implemented to estimate 
values of indicator functions as well as to estimate values of arbitrary 
functions. First, however, we shall obtain bounds which serve as the basis for 
the method of structural minimization of the overall risk. 

§3 Bounds on the Uniform Relative Deviation of 
Frequencies in Two Subsamples 

In this section we shall prove a theorem on the uniform relative deviation of 
frequencies in two subsamples. For the problem of minimizing the overall risk 
in the class of indicator functions this theorem plays the same role as the 
theorem on uniform relative deviations of frequencies from their proba-
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bilities played in the problem of minimizing the expected risk. To state the 
theorem we shall introduce the function rl.k(x). 

Let the set 

be given, consisting of elements of two types: m elements of type a and 
l + k - m elements of type b. We select randomly l elements from this set. 
The probability that among the selected elements there will be r elements of 
type a equals 

c~c:~~-m 
P(r, l + k, l, m) = ci 

l+k 

(10.11) 

Thus with probability (10.11) the frequency of elements of type a in the 
selected group is r/l, and hence the corresponding frequency in the remaining 
group will be (m - r)/k. 

The probability that the frequency of elements a in the first group will 
deviate from the frequency of elements a in the second by the amount 
exceeding x is equal to 

p{ ~ - m; rl > x} = ~ C~~f ::-m = r 1,ix, m), 

where the summation is taken over the values of r such that 

17 - m; rl > x, max(O, m - k) ~ r ~ min(m, I). 

We define the function 

r,.k(x) = m:x r,,k( Jr: k x, m). 
This function can easily be tabulated with a computer. 

Denote now by vo(ix) the frequency of errors incurred in the classification 
of the set x 1, ... , x 1+k when using the decision rule F(x, ix). Clearly 

k l 
v0(ix) = 1 + k vr(ix) + 1 + k v(ix). (10.12) 

The following theorem on uniform relative deviation of frequencies in 
the two subsamples is valid. 

Theorem 10.2. Let the class of decision rules F(x, ix) possess the capacity 
h < I + k. Then the probability that the relative size of the deviation for at 
least one rule in F(x, ix) exceeds x is bounded by 

{ I v(ix) - Vr(ix) I } (/ + kt 
P sup J-- > x < 1.5 h' r,,k(x). (10.13) 

a vo(ix) · 

Here we use the conventio~ lv(ix) - vr(ix)I/Jvo(ix) = 0 for v(ix) = vr(ix) 
= Vo(ix) = 0. 
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PRooF. Observe that the number of equivalence classes on the complete 
samples does not exceed N = m8(l + k). Therefore the inequality 

P{ lv(tx) - vi:{tx)I } N p{lv(tx) - v1;(tx)I } 
sup ----,==-- > x < sup ---,,==-- > x 

« ~ « Jv0(tx) 

is valid. For h < l + k the first term on the right-hand side is bounded by 
1.5(1 + kt/h!, while the second term is bounded by the function r,,k(x). 
Indeed, 

and by definition 

The theorem is proved. D 

Below, a bound uniform in F(x, tx) on the frequency of errors in the working 
sample will be required. We shall derive it using Theorem 10.2. We bound 
the right-hand side of (10.13) by the quantity r,. We thus arrive at the inequality 

h(ln 1: k + 1) + In r,.ix) ~ In 1~5, 

the smallest solution of which will be denoted by x*. 
Taking (10.12) into account, we obtain from (10.13) that with probability 

1 - r, the inequality 

V1;(tx) < v(tx) + 2(::; k) + X* v(tx) + (2(::• k)) 
2 (10.14) 

is valid for all tx. We shall utilize this inequality when constructing algorithms 
for structural minimization of the risk in the class of indicator functions. 

§4 A Bound on the Uniform Relative Deviation of 
Means in Two Subsamples 

When deriving a bound on the uniform relative deviation of the means in two 
subsamples we shall assume that on the complete sample 

X1, ···,Xi, X1+ 1, • • ·, X1+k (10.15) 



§4 Uniform Relative Deviation of Means 

the condition 

sup 
a 

p 1 l+k 

l+k I1 (y; - F(x;, ex))2P 
~1: 1 l+k 

~l k L (Y; - F(x;, ex))z 
+ ;~1 
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(p > 2) (10.16) 

is fulfilled for a set of arbitrary functions F(x, ex), where Y; is a value of the 
realization of (10.4). 

The condition (10.16) conveys some prior information concerning pos­
sible large deviations on the complete sample (10.15). This condition is 
analogous to the condition considered in Section 6 of Chapter 7. 

In the same manner as in Chapter 7, we introduce the function 

R 1(ex) = f Jv((y - F(x, ex)) 2 > t)dt, 

where v{(y - F(x, ex))2 > t} is the ratio of the number of points in the 
complete sample (10.15) for which the condition (y - F(x, ex))2 > t is 
fulfilled on realizations of (10.4) to the total number of points I + k. For 
the function R 1(ex), as for the function R(ex) (cf. Chapter 7), the relation 

P I 1+k 

R 1(ex) < a(p) l + k Ii (y; - F(x;, ex))2P (10.17) 

is fulfilled, where 

Jl (p - l)p-l a(p) = - ~- . 
2 p - 2 

Denote 

1 l+k 

J(ex) = l + k I1 (y; - F(x;, ex))z 

1 k 
= l + k lemp(ex) + l + k lr.(ex). (10.18) 

The following theorem is valid. 

Theorem 10.3. Let the condition (10.16) be fulfilled and the class of functions 
possess capacity h < l + k. Then the bound 

P{ lliex) - Iemp(ex)I ( ) } < 1 5 (I+ kl r ( ) (l0.l9) sup ( ) > rn p x . h' 1,k x 
a I ex . 

is valid. 
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PROOF. To prove the theorem we shall utilize the assertion of Theorem 10.2 
according to which the bound 

P{ lv(Aa,p) - Vr(Aa,p)I } 15 ([+kl r () 
sup > x < . h, 1. k x 

a Jvo(Aa,p) · 
(10.20) 

is valid. (Here v(Aa,p) is the frequency of the event {(y - F(x, ex))2 > /3} 
computed for the training sequence, vr(Aa, p) is the frequency of the event 
{(y - F(x, ex))2 > /3} computed for the working sample via the realization of 
(10.4), and v0(Aa,p) is the frequency of {(y - F(x, ex))2 > /3} computed for 
the complete sample (10.15) via the realization of (10.4).) 

We shall show that the validity of (10.20) implies the validity of the in­
equality 

P{ llr(ex)-I.m/ex)I } 15 (t+klr () 
s~p R1(ex) > x < . h! l,k x. (10.21) 

For this purpose we write the expression 

in the form of a Lebesgue integral, where 

~ 1 I { 2 i} { 2 i}I _L, - Vr (y - F(x, ex)) > - - vemp (y - F(x, ex)) > -
R='='n n n . 

R1 (ex) 

Now let the inequality 

lvr{(y - F(x, ex))2 > ~}- Vemp{(y - F(x, ex))2 > ~}I 
~-----.==========----~<x 

v{(y - F(x, ex))2 > ~} -

be valid. In that case 

x I ! Jv{(y - F(x, ex))2 > ~} 
llr(ex) - I.mp(ex)I 1. i= 1 n n ----~- < Im -------'-----"------~ = X. 

R1(ex) - n-oo R1(ex) 

The the validity of (10.20) implies that (10.21) holds. 
To complete the proof it remains only to utilize the inequalities (10.17) 

and (10.21). Indeed 

P{ llr(ex) - /em/ex)! ( ) } < p{ llr(ex) - I0 m/ex)I > } 
s~p /(ex) >rap x _ s~p Ri(ex) x 

([+kl 
~ 1.5 h! r1.ix). 

The theorem is proved. D 
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We shall now obtain a uniform bound for the risk on the working sample. 
For this purpose we bound the right-hand side of (10.19) by a quantity r,. 
We thus arrive at the inequality 

( l+k ) 11 h In -h- + 1 + In rl.k(x) ::; In 1.5· (10.22) 

Denote by x* the smallest solution for this inequality. 
Taking the representation (10.18) into account, we obtain from (10.19) 

that the inequality 

1 + rn(p) 1: kx*] 
/.r.{r:t.) < k fem/ct.), 

1 - rn(p)--x 
l+k * co 

(10.23) 

where 

[z] = {z for z ;:::: 0, 
co oo for z < 0 

is valid with probability 1 - r,. 
This inequality will be utilized in the course of constructing algorithms 

for a structural minimization of the overall risk. Below we shall confine 
ourselves to a class of functions linear in parameters, 

n-1 

F(x, ct.)= L IY.;(f);(x) + r:t. 0 . 
i= 1 

The capacity of this class of functions equals n. 

§5 Estimation of Values of an Indicator Function in 
a Class of Linear Decision Rules 

Let a complete sample 

X1, ... ' X;, Xz+ 1, ... ' Xz+k (10.24) 

be given. On this sample the set of decision rules is decomposed into a finite 
number N of equivalence classes F1, ... , F N· Two decision rules F(x, &) 
and F(x, &) fall into the same equivalence class if they subdivide the sample 
(10.24) into two subsamples in the same manner. Altogether A8(x 1, ... , x 1+k) 
subdivisions of the sample (10.24) into two classes by means of the rules 
F(x, a) are possible, and thus there exist A8(x 1, ... , x1+k) equivalence classes. 

In view of the definition ( cf. Chapter 6, Section 7), 

A8(x 1, ••• , x1) ::; m8(l). 
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For linear decision rules in a space of dimension n the following bound is 
valid ( cf. Chapter 6, Section 8): 

s (I+ k)" 
m ([ + k) < 1.5 I • 

n. 

Thus on the complete sample (10.24) the set of linear decision rules F(x, ix) 
is decomposed into N ~ 1.5([ + k)"/n ! equivalence classes F 1 , ••• , F N · 

Observe that the equivalence classes are not of equal size. Some of them 
contain more decision rules than others. We assign to each equivalent class a 
quantity which will characterize the fraction oflinear decision rules belonging 
to this class relative to all linear decision rules. Such a quantity can be 
constructed. Indeed, assign to each function 

F(x, ix) = e(t ix; <p;(x)) 

a directional vector (Figure 19) 

llixll = 1. 

Figure 19 

Then in the space of parameters ix a unit sphere corresponds to the set of all 
hyperplanes; and to each equivalence class F; there corresponds a distinct 
region on the surface of the sphere. (The set of N equivalence classes sub­
divides the sphere into N regions.) The ratio of the area corresponding to the 
region ff' ; to the area of the sphere 2 characterizes the fraction of functions 
belonging to an equivalence class relative to all possible linear decision rules. 

We now order the equivalence classes in decreasing order of n; = fi' ;/fi' 
and introduce the following structure: 

(10.25) 

where the element SP contains only those equivalence classes which satisfy 

ff'; 
ff' > cP (C1 > C2 > " • > Cq = 0). 
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We have thus constructed a structure in which each element SP possesses an 
extremal property: for a given number of equivalence classes it contains 
the maximal share of all decision rules. However, in practice it is trouble­
some to compute the values Y;/2 and thus to form the structure (10.25). 
We shall therefore consider another characteristic of the size of an equivalence 
class which is similar to Y ;/ Y in its meaning and can be obtained in practice. 

Denote by pP the value of the distance between the convex hulls of vectors 
of the complete sample allocated to different classes by the decision rules 
belonging to F P' and assign to the equivalence class F P the number 

n(Fp) = r;;, (10.26) 

where D/2 is the radius of the minimal sphere containing the set (10.24), i.e., 

D 
2 = m~n max llx; - x* 11-

x x1, ... ,x1+k 

Now define a structure 

(10.27) 

on the equivalence classes; here Sd contains only those equivalence classes F; 
such that 

2 1 
n (F) > -- for d < n, 

' d - 1 
(10.28) 

for d = n, d 2::: 2. 

The set S 1 in (10.27) is empty. 
To construct a method of structural minimization for the overall risk 

on the structure (10.27) we shall bound the number Nd of equivalence classes 
belonging to the elements of the structure Sd. 

The following lemma is valid. 

Lemma. The number Nd of equivalence classes in Sd is bounded by 

([ + k)d 
NP< 1.5 d! , 

where 

( I 0.29) 

(10.30) 

n is the dimensionality of the space, and [a] is the integral part of number a. 

PROOF. Observe that the number Nd equals the maximal number of sub­
divisions of the sample 

Xi, ... ' Xz+k 
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into two classes such that the distance between their convex hulls exceeds 

D/~,i.e., 
D 

P > ~ = Pd· 
yd-1 

The number of such decision rules does not exceed 

m8(l + k) < 1.s (l +, kY, 
r. 

(10.31) 

where r is the maximal number of points in the sample for which an arbitrary 
subdivision into two classes satisfies (10.31). Observe that if the condition 
(10.31) is fulfilled, then the subdivision is evidently carried out by means of a 
hyperplane; therefore obviously 

r::;; n, 

where n is the dimension of the space. 
Now consider r points 

and 2' possible subdivisions of these points into two subsets 

Denote by p p(T;) the distance between the convex hulls of vectors belonging 
to distinct subsets under subdivision T;. 

The fact that (10.31) is fulfilled for any T; can be written as 

min p(T;) > Pd· 
i 

Then the number r does not exceed the maximal number of vectors such that 
the inequality 

H(r) = max min p(T;) ~ Fi Pd 
x,, ... ,Xr l d-1 

(10.32) 

is still fulfilled. It follows from symmetry considerations that the maximal r 
is attained where the vectors x 1, •.. , x, are located at the vertices of a regular 
(r - 1)-dimensional simplex inscribed in a sphere of radius D/2, and T; is 
a subdivision into two subsimplices of dimension (r/2) - 1 for even r, and two 
subsimplices of dimensions (r - 1)/2 and (r - 3)/2 for odd r. Therefore 
elementary calculations show that 

D 

Jr-=-i 
for even r, 

H(r) = 
D ~ foroddr. Jr-=tv~ 
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For r 2 10 the quantities 

and ~--1-V~ J,-=-i 
are close to each other (they differ by an amount less than 0.01). Thus we 
take 

D 
H(r) = ~­

vr-1 

(A bound from the above on H(r) would have been the expression 

D 
H(r) :'.'S:-----;==== Jr - 1.01 

(r > 10)-) 

It follows from the inequalities (10.32) and (10.33) that for integer r 

r < [~:] + 1. 

(10.33) 

Finally, taking into account that the subdivision is done by means of a 
hyperplane, i.e., r :S; n, we obtain 

d :S; min([~:] + 1, n )-

Consequently in view of Theorem 6.6 we have 

(I+ kt 
Nd< 1.5 d! . 

The lemma is thus proved. 

(10.34) 

D 

It follows from Theorem 10.2 and the lemma that with probability 1 - r, 
simultaneously for all decision rules in Sd the inequality 

vi;{ct) < v(ct) + 2(t:; k) + x3 v(ct) + (2(t:* k)r = R(ct, d) (10.35) 

is fulfilled, where x* is the smallest solution of the inequality 

d(ln 1: k + 1) + In r 1,ix) :S: In 1\. 

The method of structural minimization of the overall risk consists of 
indexing the working sample by means of the rule F(x, ct:mp) which minimizes 
the functional (10.35) with respect to d and ct. Let the minimum be equal to 
R(ct:mp, d*). For such an indexing procedure the assertion 

P{vr(ct:mp) < R(ct:mp• d*)} > 1 - nr, 

is valid. 
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In Addendum 1 we shall present a description of algorithms which mini­
mize the overall risk in the class of linear decision rules. Here we shall 
consider an example which illustrates the difference between solving the 
problem of classifying vectors in a working sample using the method of 
minimizing the overall risk and using a decision rule which minimizes the 
empirical risk for a training sequence. 

In Figure 20, vectors of the first class of the training sequence are denoted 
by crosses, and vectors of the second class by small circles. Dots represent 
vectors of the trial sample . 

.--©--....._ rr- . 
I 

I 

Figure 20 

A solution of this problem within the framework of minimizing the 
expected risk consists in constructing a subdividing hyperplane which will 
assure the minimal probability of error. Let a solution be chosen among 
hyperplanes which errorlessly subdivides the vectors of the training sequence. 
In this case the minimal guaranteed probability of error is assured by the 
optimal subdividing hyperplane (the one that is the farthest from the elements 
of the training sequence). The vectors which are located on different sides of 
the hyperplane r O are assigned to different classes. This determines the 
solution of the problem using the method of minimizing the average risk. A 
solution of the problem using the method of minimizing the overall risk is 
determined by a hyperplane r 1 which maximizes the distance between the 
convex hulls of the subdivided sets. Vectors located on one side of the hyper­
plane belong to the first class, and those on the other side of the hyperplane 
belong to the second class. 

Those points of the working sample which are classified by the hyperplanes 
r O and r 1 in a different manner are shaded in Figure 20. 
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We have seen that the solution of the problem of estimating values of an 
indicator function at given points using the method of structural minimiza­
tion of the overall risk leads to results which are different from those obtained 
from the classification of vectors of the working sample 

X;+ 1, · · ·, X1+k (10.36) 

by means of a decision rule F(x, 1Xemp) which minimizes the empirical risk 
on the elements of the training sequence 

(10.37) 

This result was obtained because the complete sample 

X1, ... ' X1, X1+ 1, ... ' X1+k (10.38) 

consisted of a small number of elements whose location in the space could be 
studied; it is related to a specific method of ordering the class of decision 
rules F(x, ix). 

The method of ordering actually determined the difference in classifica­
tion. Thus the geometry of vectors in the complete sample (10.38) pre­
determined the possibility of a more exact solution of the problem of estimat­
ing the values of a function at given points. 

The method of ordering actually determined the difference in 
classification. Thus the geometry of vectors in the complete sample (10.38) 
predetermined the possibility of a more exact solution of the problem of 
estimating the values of a function at given points. 

If this is indeed the case, then the question arises: is it possible, by excluding 
a few elements from the complete sample (10.38) (i.e., by changing the geom­
etry of location of the vectors of the complete sample in space), to affect 
the definition of the structure on the class of decision rules in order to increase 
the guaranteed number of correct classifications of the elements in the work­
ing sample? It turns out that it is indeed possible. t 

We shall now implement the idea of selecting a complete sample. Consider, 
along with the set X of vectors in the complete sample, 

t 

Hl+k = L cr+k 
p~O 

distinct subsets Xi, ... , X HI+. obtained from (10.38) by excluding at most t 
vectors. Now let a training sequence (10.37) and a working sample (10.36) 
be defined on the initial set of vectors (10.38). The training and working 

t We note that in the case of estimating an indicator function the selection of the training sample 
does not lead to a decrease in the estimate of the minimal guaranteed risk. 
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samples induce on each one of the sets X 1, ••• , Xai+k its own training and 
working subsamples. 

Consider Hl+k problems of estimating values of functions at given 
points. Each one of these problems is determined by a training sequence 

------- -------X 1, Wi, ... , X;, W;, •.. , Xj, Wj, ... , Xi, Wt 

and a working sample 

X1+ 1, .•. , Xi+,, ... , xt+k 

(x denotes that the element xis excluded from the sequence.) 
For each problem, in accordance with its complete sample 

X1, •.. , X;, ... , Xj, ... , X1+n ... , Xt+k, 

we shall determine equivalence classes of linear decision rules. We define a 
structure on the equivalence classes, utilizing the principle of ordering 
according to relative distances considered in the preceding section. 

It follows from Theorem 10.2 and the lemma that with probability 1 - '1 
in each problem (separately) the inequality 

d d (k - kex)x; 
V:i;(aemp) < v(aemp) + 2(! + k _ tex) 

is valid for the rule F(x, a~mp) minimizing the empirical risk in Sa, where 
x* is the smallest solution of the equation 

( l + k - tex ) ) I '1 d ln d + 1 + In r 1_ 1 •• ,k-k.,(x ::; n 1.5· (10.40) 

In (10.39) and (10.40) the following notation is used: lex is the number of 
elements excluded from the training sequence, kex is the number of excluded 
elements from the working sample and lex + kex = tex. 

Simultaneously for the dth elements of structures of all Hl+k problems 
the inequality 

(k - k(i)) 
v<i)(ad ) < v<i)(ad ) + ex (x(i))2 

l: emp emp 2(/ + k _ t;) * 

+ (i) (i)( d ) + ex * (10 41) [ 
(k - k<i>)x<i> ]2 

X* V O(emp 2(/ + k - t;) . 

is fulfilled with probability 1 - '7, where x ~> are the smallest solutions of 
the inequalities 

( l + k - t; ) 1 <i> '7 2) d ln d + 1 + In Ht+k + In r1_ 1~'l,k-k~,i(x ) ::; In LS' (10.4 
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and i varies from 1 to Hl+k- In (10.41) and (10.42) the following notation is 
used: l~;i, k~i are the numbers of elements in the training and working samples 
omitted from (10.37) and (10.36) when forming the ith problem,/~! + k~;! = t;; 
v~>(a:mp), v(il(atmp) are the frequencies of erroneous classification of the 
working and training samples in the ith problem. 

Multiply each of the inequalities (10.41) by k - k~;i. This will yield for 
each problem a bound on the number of errors m; in k - k~i elements of its 
working sample: 

(i)( d ) ( - ex) ( (i))2 [ 
k k(i) 

m; < V ilemp + 2(1 + k - t;) X* 

+ x<iJ v<il(ad ) + [ (k - k~D x<il]2] (k - k<i>). (10.43) 
* emp 2(1 + k - t;) * ex 

If the number of excluded vectors from the working sequences for all the 
problems were the same and equal to kex, then the best guaranteed solution 
of the problem of classifying k - kex vectors in the working sample would 
be determined by the inequality (the problem) for which the value which 
bounds the number of errors in the k - kex elements of the working sample 
is the smallest. However, the number of vectors excluded from the working 
sample is not the same for different problems. Therefore we shall consider 
as the best solution the one which maximizes the number of correct classifica­
tions of the elements of the working sample, i.e., is determined by the problem 
for which the minimum of the quantityt 

· _ (i) d (k - kex) (i) 2 [ 
(i) 

R(d, 1) - V (aemp) + 2(/ + k _ t;) (x*) 

+ x<i) v<il(ad ) + (k - ex)X* (k - k(il) + k(i) (10.44) ( 
k(i) (i))2] 

* emp 2(1 + k _ t;) ex ex 

(which determines the number of errors plus the number of excluded vectors 
from the working sample) is attained. 

Now by enumeration over d and t we shall determine vectors which should 
be excluded in order to guarantee the largest number of correctly classified 
vectors in the working sample. The problem of minimizing the functional 
(10.44) with respect to d and t is quite difficult computationally. Its exact 
solution requires a large number of enumerations. Hosever, by using certain 
heuristic methods one can achieve a satisfactory solution in a reasonable 
amount of time. Details on algorithms for structural minimization of the 
overall risk are given in Addendum 1. 

Observe that in the course of selection of a complete sample the elements 
of both the training sample and those of the working sample are picked. 

t Here we can introduce different utilities (costs) for errors and refusal to classify elements in 
the working sample. 
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A selection of elements of the working sample allows us to increase the total 
number of correctly classified vectors at the expense of declining to classify 
certain elements. 

Up until now we have assumed that the space on which the structure is 
constructed is fixed. However, the procedure of ordering with respect to 
relative distances may be carried out in any subspace Em of the initial space 
En. Moreover, the minimal value of the corresponding bound need not be 
obtained on the initial space En. This fact yields the possibility of achieving 
a more refined minimum for the bound on the risk by means of additional 
minimization over subspaces. 

§7 Estimation of Values of an Arbitrary Function in 
the Class of Functions Linear in Their Parameters 

We shall now extend the methods of estimating values of indicator functions 
considered in the preceding sections to the estimation of values of an arbitrary 
function in a class of functions linear in their parameters. For this purpose 
we shall determine equivalence classes of linear (in parameters) functions 
on a complete sample, define a structure on these classes, and implement the 
method of structural risk minimization. 

Let a complete sample 

X1, ···,Xi, X1+ 1, · · ·, Xt+k (10.45) 

and a set oflinear (in parameters) functions F(x, oc) be given. We shall assign 
to each function F(x, oc*) in this set a one-parameter family (parameter /3) of 
decision rules 

Fa.(/3) = 0(F(x, oc*) + /3). (10.46) 

As the parameter /3 varies from - oo to oo, the family (10.46) forms a sequence 
of dichotomies (subdivisions into two classes) of the set of vectors (10.45), 
starting with the dichotomy for which the first class is empty and the second 
class consists of the whole set of vectors (10.45), 

[0; {x1, ... , x1+k}] 

(for f3 = - oo ), and concluding with the dichotomy for which the first class 
contains the whole set (10.45) and the second class is empty, 

[{x 1, •.. , x,+k}; 0] 

(for /3 = + oo ). 
Thus for each function F(x, oc) a sequence of dichotomies 

[0, {x1 , •.. , x1+k}]; [{x;,, ... , x;,}; {xii, ... , xiJ]; ... ; 

[{x 1, ... , x,+k}, 0] (10.47) 
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can be constructed. In accordance with this sequence of dichotomies we 
shall subdivide the set of functions F(x, ix) into a finite number of equivalence 
classes. Two functions F(x, &) and F(x, &) fall into the same equivalence 
class F; if they form the same sequence of dichotomies (10.47). 

Now assign to each equivalence class a number n(F;) which is equal to 
the fraction of all functions belonging to it, and then arrange the equivalence 
classes in the order of decreasing values of n(F;): 

(10.48) 

Utilizing this ordering ( 10.48) one can construct a structure on the equivalence 
classes 

S1 C S2 C · · · C Sn. 

The element S, contains those equivalence classes for which n(F,) > c,. 
One can define the fraction of functions belonging to an equivalence 

class in the case of sets of linear functions in the same manner as the fraction 
of linear decision rules was determined. Now assign to each linear function 
a vector of direction cosines. Then the surface of the unit sphere in the space 
of dimension n will correspond to the set of all functions, and a particular 
region on this sphere will correspond to each equivalence class (cf. Figure 19). 
The ratio of the area of a singled-out region to the area of the surface of the 
sphere will determine the fraction of functions belonging to an equivalence 
class among the whole set of functions. 

In practice, however, it is difficult to compute the characteristic n(F;) 
directly. Therefore, in the same manner as in Section 5, we shall consider 
another characteristic of the size of an equivalence class. For each function 
F(x, ix)= L7= 1 ix;<p;(x) we define a directional vector & = ix/llixll- Each 
equivalence class Fm is characterized by the number 

Pm=:~~ s~pl(x; - xj)T 11:11 I (i # j), 

where the minimum is taken over all the vectors of the complete sample and 
the supremum over all directional vectors of a given equivalence class. 

We now form the following structure: 

The functions for which 

it,2(F) = - >--[p] 2 1 
D d - 1 

ford< n, 

n2(F) = [~ r 2 0 ford 2 n 

-where D is the minimal diameter of the sphere contammg the set 
(x 1, ... , x1+k)-are assigned to the dth element of the structure Sd. Utilizing 
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the lemma, one can show, as in Section 5, that the capacity of functions 
belonging to the Sdth element of the structure equals d, where 

The method of structural minimization for this structure involves finding 
an element S* and a function F(x, octmp) in it such that the minimum on the 
right-hand side of the inequality 

(10.49) 

is obtained. Here x* is the smallest solution of the inequality 

d(ln l: k + l) + In r1,k(x) ::; In ts· 
The first factor on the right-hand side of (10.49) depends only on the order in 
which the vectors of the complete sample are projected on the vector of 
directions of the selected linear function, while the second factor depends on 
the value of the empirical risk. 

Let the minimum of the right-hand side of (10.49) equal R(octmp, d*). 
Then the assertion 

is valid. 

§8 Selection of a Sample for Estimation of 
Values of an Arbitrary Function 

In Chapter 8 we have shown that when a nonindicator function is 
estimated, the selection of a training sequence may lead to a function with a 
smaller guaranteed value of the expected risk. In the method of minimizing 
the overall risk the selection of a complete sample may result in a yet more 
significant effect. For a function linear in its parameters this additional 
effect arises because the exclusion of some vectors from the complete sample 
Xi, ... , x1+k changes the geometry of location of vectors. This allows us to 
carry out a more meaningful ordering of the class of functions F(x, oc). 

Thus let a complete sample 

X1, · · ·, X1+k (10.50) 
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be given. Consider H\ + k different subsets X 1, ••• , X 111 + •, each of which is 
obtained by omitting from (10.50) at most t elements. Below we shall assume 
that for all subsets the condition (10.16) is fulfilled. 

Now let a training sequence 

(10.51) 

and a working sequence 

(10.52) 

be defined on the initial set ( I 0.50). The samples ( 10.51) and ( 10.52) induce 
on each of the subsets its own training and working samples, respectively. 

Consider Hl+k problems of estimating values of a function at given points. 
For each problem r (r = 1, 2, ... , Hl+k) we shall define-using the method· 
described above-its own structure on the class of linear functions: 

s; c ... cs~. 

We then obtain that with probability 1 - rt, for each of the problems 
(separately), the bound l / -/' 

1 + ra(p) I k n X~ 
w + -~ w 

Ir. ( aemp) < k _ k' I em/ aemp) 

1 - ra(p) l k ex x; 
+ - t, 00 

is valid, where F(x, aemp) c S~ is a function which minimizes the empirical 
risk on the training sequence for this problem (index (r) indicates that the 
overall and empirical risks are computed over the elements belonging to the 
subset X(')) and x~ is the smallest solution of the inequality 

( I + k - t, ) I ( ') I rt d In d + 1 + n r1-1~ •. k-k;, x ::; n 1.5· 

Here we use the following notation: / - /~x is the length of the training 
sequence in problem r; k - k~x is the length of the working sample in the 
problem /~x + k;x = t,. With probability 1 - rt, simultaneously for Sd 
elements of all H\+k problems, the inequalities 

l / -f;x 1 1 + ra(p) 1 k x~ 
/<rl(a) < + - t, ]<r) (a) 

r. k - k' emp 
1 - ra(p) I k ex X~ 

+ - t, 00 

are fulfilled, where (unlike the preceding case) x~ are the smallest solutions 
of the inequalities 

(I I + k - t, ) ' I I rt d n d + 1 -;- n r 1_ 1, k-k' (x) + In H1+k ::;; In-. 
ex• ex 1.5 
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We now choose a problem for which the bound on the value of the overall 
risk is minimal. 

Finally, enumerating over d and t (in practice t < 5-10), we obtain the 
best solution. 

§9 Estimation of Values of an Indicator Function 
in the Class of Piecewise Linear Decision Rules 

Consider now the second approach to defining equivalence classes. Let a 
finite set of vectors X constituting a complete sample be subdivided into d 
subsets 

X1,···,Xd, LJXi=X, (i -:f j). 

Assign to this subdivision a set of piecewise linear decision rules where on 
each subset Xi a linear decision rule is defined. Thus consider a parametric 
family of decision rules 

{
L(x, et 1) for x EX 1 , 

0(L(x, et 1), .•• , L(x, etd)) = : 
L(x, etd) for XE Xd, 

where L(x, et,) is a linear decision rule (L(x, et,) = 0([.7= 1 et1<plx))). 

(10.53) 

The capacity of such a piecewise linear class of decision rules equals 

h = nd. 

Observe that the definition of a class of decision rules (10.53) is determined 
by a method of subdividing the complete sample X into d subsets. In order 
to determine the required subdivision we shall study the geometry of this 
set from the point of view of its taxonomic structur~ ( cf. Appendix to this 
chapter). For this purpose we construct a tree (Figure 21). On the lowest 

X 

Figure 21 
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(sth) level of the tree each element of the set X forms a subset x;. Elements of 
the s - 1th level are formed by combining the elements of the sth level. Each 
element of the sth level is included in only one element of the s - 1th level. 

The highest (first) level consists of one subset X, which combines the whole 
set of elements of the population. The tree is constructed in such a way that 
at each level p the relation 

U Xf = X, Xf n X1 = 0 (i =I j), 
i= 1 

d = 1, 2, ... , s (ns < l + k) 

(10.54) 

is valid. We assign to each level of the tree a family of piecewise linear decision 
rules Sd constructed in accordance with (10.54). 

Using this method of constructing classes of piecewise linear decision 
rules, the taxonomic structure of the complete sample (10.54) will determine 
a specific structure on the class of piecewise linear decision rules: 

S1 C ···Cs •. 

On this structure the method of structural minimization of the overall risk 
can be implemented, i.e., an element Sd of the structure can be found for which 
the method of minimizing the empirical risk will guarantee the smallest 
bound on the overall risk: 

* kx; * [ kx* ] 2 

Vi:(1Xemp) < v(1Xemp) + 2(1 + k) + X* v(1Xemp) + 2(1 + k) = R*, 

where x* is the smallest solution of the inequality 

np(ln 1 + k + 1) + In r 1 ix) s In_!!__ 
p . 1.5 

The elements of the working sample are then classified using the obtained 
decision rule F(x, IX:mp). For such a classification the inequality 

P{ vi:{IX:mp) < R*} S 1 - s17 

is valid. 
Methods of constructing taxonomic structures are considered in the 

Appendix to this chapter. 

§10 Estimation of Values of an Arbitrary Function 
in a Class of Piecewise Linear Functions 

A structure analogous to one considered in the preceding section can also be 
defined on a set of piecewise linear functions. For this purpose we shall 
consider the same taxonomic structure of the set x 1, ... , x1+k and determine 
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an element of the structure (i.e., a subdivision of the set x 1, .•. , x 1 +k into 
taxons) for which the solution of the problem of minimizing the empirical 
risk in the class of linear decision rules separately for each taxon will assure 
the minimal guaranteed value of the overall risk. 

For implementation of the method of structural minimization of the 
overall risk in the problem of estimating dependences the very same idea is 
used: for each element of the given taxonic structure Sd we obtain the minimal 
guaranteed bound on the value of the overall risk: 

r I ] 
1 + ra(p) y--r~-* 

f1;(0Cemp) < : Jemp{OCemp), 

1 - ra(p) 1 + k x* 

where F(x, ocemp) is the function which minimizes the empirical risk in Sd, 
and x * is the smallest solution of the inequality 

nd(In 1 ;d k + 1) + In r1.ix) ~ In 1~5 

(here n is the dimension of the space, nd < I + k ). We then select an element 
of the structure S* and select on it the function F(x, oc:mp) for which the 
minimal guaranteed bound on the value of the overall risk for a given 
structure is obtained. The values of the function F(x, a:mp) at the points of 
the working sample will be the estimated values of the function. 

§11 Local Algorithms for Estimating Values of 
Indicator Functions 

Finally let us consider the third approach for constructing an algorithm for 
estimating functional values. We define for each vector x* of the complete 
sample a system of neighborhoods: 

(x*)1, (x*, X;,h, ... , (x*, X;,, x;),, ... , (x1, ... , x1+k)q. 

Thus I + k systems of neighborhoods are defined, a system for each vector 
of the complete sample: 

(1) 

(2) 
(x1)1 E (X1, X;,)z E · · · E (x1, ... , X1+k)q; 

(X2)1 E (x2, X;2, X;3)z E ·' 'E (x1,,,,, X1+k)q; 

(I+ k) (x1+k)1 e (x1H, X;1+k)2 e · · · e (x1, ... , x 1+k)q. 

(10.55) 

Now let a subdivision of the set X into training and working samples be 
carried out. 
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Consider an arbitrary neighborhood x; of the point x; containing elements 
of both the training and working samples. In view of Theorem 10.2 one can 
assert with probability 1 - rJ that simultaneously for all linear decision 
rules the inequality 

k (x(r))2 
v<r)(rx) < v<rl(rx) + r * + x<r) 

K 2(1, + k,) * 
[ 

k x<r) ]2 
v'(rx) + 2(1: / k,) 

is fulfilled, where vnrx) is the value of the overall risk of classification of 
elements belonging to the neighborhood x;- by means of a decision rule 
F(x, rx), v<'l(rx) is the value of the empirical risk computed for the rule F(x, rx) 
based on the elements of the training sequence belonging to the neighborhood 
x;-, x'* is the smallest solution of the inequality 

( l, + k, ) rJ 
n In -n- + 1 + In r1r,kr(x) ::;; In Ll' 

and n is the dimension of the space X. In this inequality /, and k, are the 
numbers of elements belonging to the neighborhood x;- in the training and 
working samples. Let F(x, rxemp) be a decision rule which minimizes the value 
of the empirical risk on the training sequence belonging to x:-. 

For the elements belonging to Xj'l the bound 

k ( (r))2 
(r)( ) (r)( ) r x* (r) 

V1; 1Xemp < V 1Xemp + 2(1, + k,) + X* 

is valid with probability 1 - rJ. We shall now obtain a neighborhood of the 
point X; for which the minimum (with respect to r) of the value R;(r) is 
attained. Let the minimum be attained in a neighborhood Xf, and let 
w;,, ... , w;. be the classification of vectors obtained in the working sample 
belonging to this neighborhood. Clearly with probability 1 - riq this clas­
sification contains less than R;(-r)kr = R; errors. 

Analogously, solutions can be obtained for neighborhoods of all vectors 
belonging to the population. The results are presented in Table 1. In the 

Neighborhood 
of point 

X1 

Xs 

Xi+k 

Table 1 

Classification of vectors 

Xi+ 1 Xi+ j Xi+k 

w' 1 wi+k 

Wf+ j 

wi+k 
i+k 

Bound on 
value of 

overall risk 

R, 
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first column of the table vectors are given which define the system of neigh­
borhoods, followed by the best classification of vectors for the given system 
and finally the guaranteed bound on the number of classification errors. 
Observe that the same vectors of the working sample belong to the neighbor­
hoods of different vectors and that the classifications of some vectors from 
the working sample presented in different rows of the second column may 
not be the same. 

Denote by wf, ... , wf+k the correct classification of vectors from the 
working sample x1+ 1, .•. , x1+k. Then the content of the table may be written 
in the form 

(1) 

L lwf+; - W1+d < R1, 
i 

(l+k) 

L lwf+; - w,+d < R1+k· 
i 

(10.56) 

Here I<r> indicates that the summation is carried out only over those classi­
fications of vectors of the working sample which belong to the selected 
neighborhood of the point x,. 

Each one of the inequalities (10.56) is fulfilled with probability 1 - q17. 
Consequently the system is consistent (all the inequalities are fulfilled 
simultaneously) with probability exceeding 1 - q(l + k)17. 

Consider the set n of vectors w = (w1+ 1, •.. , w1+k) of solutions of the 
system of inequalities (8.56). Actually the final vector of the classification may 
be chosen arbitrarily from this set. However, it is more expedient in such 
cases to choose a solution which possesses some additional extremal pro­
perties. 

Among all the vectors in n we shall find the minimax one, wm, i.e., the 
one whose distance from the farthest vector belonging to the admissible set 
n is the smallest: 

Wm= arg min maxlw - WI. 
wen wen 

The vector wm will be chosen as the final solution of the problem of classifying 
vectors in the working sample. 

In this algorithm, by defining a system of neighborhoods of vectors in the 
complete sample we were able to determine for each vector X; an optimal 
neighborhood for constructing a linear decision rule. The rule thus obtained 
was used only for classification of vectors belonging to an optimal neighbor­
hood. Such algorithms are sometimes referred to as local ones. 

In practice different ideas for defining neighborhoods are utilized. In 
particular a neighborhood X[ of the vector xi can be defined by means of 
metric closeness. (The set X~ contains vectors belonging to the complete 
sample such that llx; - xii ~ c, where c is a constant. The collection of 
constants c 1 < · · · < c, determines the system of neighborhoods.) 
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§12 Local Algorithms for Estimating Values of an 
Arbitrary Function 

Using the scheme described in the preceding section one can immediately 
construct local algorithms for estimating values of a function of an arbitrary 
nature. Form a system of neighborhoods for vectors belonging to a complete 
sample: 

(/ + k) (X1+k)l E (X1+b X;1+k)z E · · · E (X1, ... , X1+k)q-

Let a subdivision of the set of vectors from the complete samples into elements 
belonging to training and working samples be carried out. Consider a 
system of neighborhoods for the point X;: 

Xl C Xf C ... C X?, 

For each set X 1 one can determine-using algorithms for estimating a 
linear function-the values of the function as well as a guaranteed bound on 
the value of the overall risk: 

I ~ l 1 + ra(p) -1 -k-x* 
J(r)( ) r + r J(r) ( ) 

I: O(emp < k emp O(emp , 
1 - ra(p)--' - x* 

l, + k, 00 

(10.57) 

where x* is the smallest solution of the inequality 

n(ln l, + k, + 1) + In r, k (x) :-s; In _!J___ 
n " r 1.5 

(10.58) 

Here/, and k, are the number's of elements in the training sequence and the 
working sample belonging to X 1. 

Choose a neighborhood of point x; and a function F(x, oc!) for which the 
bound (10.57) is minimal. Let k1 be the number of elements of the working 
sample belonging to this neighborhood. The inequality 

~* L (yi - F(xj, a:mp))2 < x, 
r k~ 

(10.59) 

is valid with probability 1 - q17 for the values Yi belonging to this neighbor­
hood obtained using the function F(x, octmp)- In (10.59) the summation is 
carried out over the vectors x from the working sample which belongs to 
the optimal neighborhood; y are the actual (unknown to us) values of the 
functional dependence at the points of the working sample, and F(x;; octmp) 
are the computed values. Thus for each point X; (there are l + k such points 
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in toto, which is the number of vectors in the complete sample) the in­
equality (10.59) is valid with probability 1 - IJ. Therefore with probability 
1 - (l + k)q11 all the l + k inequalities 

kl* L (Yi - F(xj, o::mp(1)))2 < X1, 

1 kf 

are fulfilled simultaneously. 

(10.60) 

Consider an admissible set {Y} of solutions (Yi+ 1, ... , Yi+k) of the 
system (10.60). This set is nonvoid with probability 1 - q(l + k)r,. Choose as 
the response a solution Y* such that its distance from the farthest point in 
{Y} is the smallest (a minimax solution), i.e., a k-dimensional vector Y* for 
which the equality 

is valid. 

Y* = arg min max p( Y, Y) 
Ye{Y} i'e{Y} 

§13 The Problem of Finding the Best Point of a 
Given Sett 

When the number of empirical data 

(10.61) 

is small the statements of new problems are inspired by the idea that the intermediate 
problem may be more involved than the desired one. 

It has been noted that the unknown density need not be estimated in order to estimate 
the function. There is no point in estimating a function if all we want to know is its values 
at given points 

(10.62) 

In this section we proceed from the assumption that we should not generally 
estimate the values of functions at the points ( 10.62) if our goal is to find the best point 
in the set (10.62) i.e., the point of which one can assert with the highest probability 
that the function unknown to us which specifies the value of y takes on its highest (or 
lowest) value there. As in earlier similar situations, a case is possible where the available 
data (10.61) and (10.62) are insufficient for satisfactory solution of the intermediate 
problem (estimating the values of the function in all the points of the set (10.62)), but 
are sufficient to solve the desired problem (to find the best point of the set (10.62)). 

t Section 13 was translated by the author. 
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Below we shall specify for a certain situation a technique whereby the best point 
of the set is found; but first we should like to note that statement of this problem is a 
response to the limited amount of available empirical data in the solution of important 
real-life problems. 

EXAMPLE. Only a few dozen antitumor drugs have been clinically tested in the world 
by now. Meanwhile hundreds of new antitumor drugs are synthesized annually. These 
are tested in different models of human tumors (including animal tumors). Effectiveness 
in models does not, however, insure its clinical effectiveness. The problem is to be able to 
identify the clinically most active drugs among the newly synthesized drugs using the 
results of model tests with these drugs, the information of clinical activity of drugs that 
have been already tested in clinics, and the information of the activity of the same drugs 
in various models [80a]. 

Thus, let a learning sample (l0.61) and a working sample (10.62) be given. Let a 
class of functions F(x, C() be so specified that it contains a function F(x, C( 0 ) that orders 
the vectors x of the learning and working samples in decreasing order of values of 
F(x, C( 0 ) in the same way as an unknown function f(x) which determines the values of y. 
(For indicator functions this condition degenerates into the requirement that f(x) 

belong to the class of F(x, C().) Among vectors of the working sample it is required to 
find a vector x* of which one can assert with the highest probability that the function 
f(x) takes on the largest value on it. 

As before, we shall isolate the case where F(x, C() is an indicator function, or y = w. 

In this case it is required that among vectors of the working sample a vector x* should 
be indicated for which the probability of classification w* = 1 is maximal. 

Note that for this particular case the problem of choosing the best point of a set 
becomes degenerate. Under the conditions where y = w can be either zero or one, 
finding the best point is generally equivalent to indicating its value. In the general case 
where y takes on an arbitrary ( > 2) number of values it is required to indicate the best 
point ( rather than its values). 

13.1 Choice of the Most Probable Representative of a Given Class 

Let us first consider a case where y = w and F(x, C() is the class of indicator functions. 
We shall denote 

X = X 1+ 1 ; ... ;x1+b (10.63) 

(The sequence X; is obtained from X by omitting the element X;-) The sequence X; 
can be divided into two classes in 2k- 1 possible ways. Let 

r = 1, 2, ... , 2k- 1 

denote the rth way. Assume that for each r = 1, 2, ... , 2k- 1 the probability P(Q~) 
that Q~ will coincide with the classification of the sequence X; performed with the aid 
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of the function f(x) has been defined. Then for each fixed vector X; of the working 
sample, 

2k-l 

P{w; = llR,X} = I P{w; = llR,X,U!}P(il!). (10.64) 
r== 1 

Moreover, since the class F(x, a) contains the functionf(x), then faultless division of the 
complete set of vectors is possible with the use of one of the N equivalence classes, 
F 1, ••. , F N. Let us assume a priori that the faultless division of vectors can be equi­
probably performed by any equivalence class. 

The probabilities P(il!) and P{w; = 1 IR, X, U!} on the right-hand side of the 
equality (10.64) can be then immediately calculated. Namely, the probability that the 
classification U! of the vectors X; coincides with that specified by the functionf(x) is 
equal to 

n(X- Qi) 
P(Q;) = " , 

' N , (10.65) 

where n(X;, U!) is the number of equivalence classes which classify the sequence X; in 
compliance with U!. The conditional probability that the vector X; belongs to the class 
w; = 1 is equal to 

P{w; = 1 IR, X, n;} = i = 

0 if there is no equivalence class which permits the 
division 

½ if there is an equivalence class which permits the 
division 

and a class which permits the division 

if there is an equivalence class which permits the 
division 

and there is no equivalence class which permits the 
division 

(10.66) 

Substituting the expressions (10.65) and (10.66) into (10.64), we have that the 
probability that the vector X; belongs to the class W; = 1 is equal to 

(10.67) 

What remains to do is to choose from k vectors of the sample the vector for which this 
probability is maximal. 
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Note that the wider the class of functions F(x, 0(), the smaller generally is 

In the limiting case where the class of functions F(x, 0() is so broad that it permits the 
maximal possible number N = 21+k of equivalence classes, the equality 

P{w; = 1 IR, X} = ½ 

holds no matter what the number i is. 
Another natural assumption is that the a priori probability of faultless division of 

the complete sample by the rules from Fj is given by the binomial law with a parameter 
p (pis the probability that an element with w = 1 will occur). The a priori probability 
of faultless division is 

Ci+kPm'(l - p)'+k-m, 
N 

I c~~kPm;o - p)'+k-m, 
j= I 

where mi is the number of elements which are classified by the rules Fi with w = 1. 
Here, in place of (10.67) we have 

where 

Aj 
X,· = 

n(X1 , !l~) 

L Ci+kPm'(l - p)'+k-m, 

P(w; = l!R, X) = 'I.' Ai j= I L. X, _N ________ _ 

0 

p 

m~(I - p) 
p+-----

1 + k + 1 - m; 

r= 1 L Ci.fkpmi(I - p)'+k-m; 
j= I 

if there is no equivalence class which permits the 
division 

Ru X;!i,; 

if there is an equivalence class which permits the 
division 

Ru X;n'..u X;, 1 

and class which permits the divisions 

R u X;Q~ u X;, O; 

if there is an equivalence class which permits the 
division 

and there is no equivalence class which permits the 
division 

and m; is the number of pairs in the set Ru X;Qi, u X;, 1 with w = 1. 
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13.2 Choice of the Best Point of a Given Set 

Consider a general case where in the learning sequence 

y can take on arbitrary values. Note that elements of the sequence 

X = X1+1, ••• , X1+k 

can be ordered in all possible ways by using permutation operators T,.(r = 1, 2, ... , k !). 
Let T0 XO denote a sequence which consists of vectors x of the learning sequence and 

is ordered in decreasing corresponding values of y (for simplicity let us assume that the 
ordering is strict). 

Let us write 
f 

z >-X 
if f(z) > f(x) for all x EX, i.e., if z precedes all elements of the set with ordering in 
terms of values off (x). 

Assume now that on the working sample a vector x; has been fixed. There are (k - 1) ! 
different ways to order the set X;. Assume that for each of these the probability P{T,.X;} 
has been determined that the ordering T,. Xi will coincide with the ordering of the vectors 
x of the set X; in decreasing value of the function f(x). Then for each fixed vector X; 

of the working sample, 
f (k-1)! f 

P{x; >- X;I T0 X 0 , X} = L P{x; >- X;I T0 X 0 , T,.X;}P{T,.X;}. (10.68) 
r= 1 

From the viewpoint of ordering the vectors x of the complete sample, the class of 
functions F(x, oc) decomposes into a finite number of equivalence classes F 1, .•. , F N 

(each containing functions which order the vectors x of the complete set in the same way). 
In compliance with the conditions of the problem, among all equivalence classes 

there is one which orders complete sample vectors as does the function f(x) which 
specified the values of y. Let us assume a priori that any of the N equivalence classes can 
be this class with the same probability. Then, as in the particular case, the probabilities 
P{T,.X;} and P{x; -f.. Xd T0 X 0 , T,.X;} can be computed. The probability that the order­
ing T,.X; will coincide with the ordering in decreasing values of the function f(x) is 

{ } n(T,.X;) 
p T,.X; = -N-- (10.69) 

where n(T,.X;) is the number of equivalence classes which permit ordering T,.X;. The 
conditional probability that X; is the best point is 

0 

P{x; --J.. X;I T0 Xo, T,.X;} = X~ = 
p + 1 

(10.70) 

1 
where x~ is equal to zero if there is no equivalence class which permits simultaneous 
ordering to T0 XO and X; T,. X; (x; T,.X i is a sequence whose leftmost element is X; and the 
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remaining ones coincide with T,.Xi); and xt is equal to 1/(p + 1) (p = 0, 1, ... , k - 1) 
if there is an equivalence class which permits simultaneous ordering of T0 X O and 
xi T,.Xi and there are pother equivalence classes which permit simultaneous ordering of 
T0 X 0 and xi T,.Xi 

Substituting (10.69) and (10.70) into (10.68), we have 

(k- 1i1 Ai n(T. X) 
P{ · -1_ X-1 T. X X} = '-' X, ' i x, r , o o, L, N . 

r= 1 

(10.71) 

Consequently, the probability that among vectors of the working sample the vector 
xi will have the maximal value of f(x) is determined by the expression (10.71). The 
vector for which the probability is the largest should be chosen. 

As before, the broader the class of the functions F(x, ix), the smaller in general is 
f 

max P{xi >- Xii T0 X 0 , X}. 
i 

In the limiting case where the class of F(x, ix) is so broad that the maximal possible 
number N = (l +k) ! of equivalence classes is permitted, the equality 

/ 1 
P{x; >- Xii T0 X 0 , X} = k 

holds irrespective of the number of i. 

§ 14 Remarks on Estimating Values of a Function 

Remark 1. We have seen that the construction of methods for estimating 
values of a function at given points is related to various methods of allocating 
l + k vectors in an n-dimensional space. In this chapter we have studied the 
geometry of l + k vectors in a complete sample from three different points 
of view. We have investigated: 

(1) the structure of linear subdivisions of vectors in a complete sample, 
(2) a taxonomic structure of vectors in a complete sample, 
(3) the structure of neighborhoods of elements in a complete sample. 

A description of the structure of a complete sample from each one of these 
points of view generates its own method of estimating values of a function 
at given points. 

The methods of studying the geometry of a complete sample presented 
above do not exhaust all the possible procedures for examining the mutual 
arrangement of l + k vectors in an n-dimensional space. Other methods are 
available, and each one may serve as a basis for devising a method of estimat­
ing functional values. 

Remark 2. In this chapter, when estimating values of functions at given 
points, we have assumed that the risk is determined by a quadratic loss 
function 

(y - F(x, a))2. 
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However, all the results obtained herein can be extended to the case of a 
more general loss function 

<l>(y - F(x, oc)). 

Remark 3. The smaller the size of the training sample, the greater the effect 
due to direct estimation of values of a function at given points as compared 
with the traditional methods: estimating a function by means of a training 
sequence and computing its values. This effect is illustrated in Table 2, based 
on data which were available for the solution of problems of medical dif­
ferential diagnostics using the method of pattern recognition. The first 
column of the table gives the identification number of the experiment; the 
second, the size of the training sequence; the third, the size of the working 
sample; the fourth, the number of classification errors on the working 

Table 2 

No. lp m m 

1 12 21 6 3 
2 24 21 5 2 
3 23 10 3 1 
4 27 14 6 3 
5 29 28 9 3 
6 49 35 13 9 
7 42 35 10 6 
8 52 35 12 8 
9 65 46 14 8 

10 33 57 18 5 

sample using a linear decision rule which minimizes the empirical risk (the 
method of a generalized portrait; cf. Addenum 1); the fifth, the number of 
classification errors incurred in classifying the elements of the working 
sample using the method of minimizing the overall risk. In these problems 
the initial dimension of the space of binary features was 60. The problems 
were solved using algorithms presented in Addendum I. 



Appendix to Chapter 10 

Taxonomy Problems 

§Al A Problem of Classification of Objects 

Let it be required to subdivide the set of objects 

into subsets 

such that the following two conditions are fulfilled: 

(1) the subsets are disjoint, i.e., 

(i # j); 

(A.l) 

(A.2) 

(A.3) 

(2) any element belonging to (A. 1) falls into one of the subsets (A.2), i.e., 

m 

LJ X;=X, (A.4) 
i= 1 

and each one of the subsets should consist of"the most similar elements." 

In other words, it is required under the conditions (A.3) and (A.4) to minimize 
a functional which is defined on the set of all subdivisions of the set X and 
which reflects the notion of the quality of a subdivision of the set X. 

The subsets X 1, ... , Xm which serve as an optimal solution of such a 
problem are called taxons, and the problem of subdividing a set X into sub­
sets is referred to as a problem of taxonomy. 

Thus the problem is to write down a functional which reflects our con­
ception of the quality of subdivision of a set and to obtain a subdivision 
which yields a minimal value for this functional. 

347 
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The problem of constructing the functional is an informal one-each 
investigator may determine his or her own concept of an optimal solution. 
Nevertheless there exists a "natural" definition of the quality of a solution 
for a particular problem of taxonomy, namely the problem of subdividing 
the initial set X into m taxons X 1, X 2 , ••. , Xm (where the number mis given 
in advance). In this case a number d(X;) is determined which characterizes 
for each subset X; the degree of closeness (or similarity) of its objects. By 
means of these quantities d(X;) a functional 

m 

d = L d(X;) (A.5) 
i= 1 

is formed. 
In the theory of taxonomy the following characterizations of closeness 

between objects in a set X; are adopted: 

(1) the mean squared deviation from the center of gravity of the sets: 

1 I; 

d1(X;) = -1 L (xii - x;)T(xii - x;), 
ij=l 

where l; is the number of elements in the set X;, X; = (1/l;) L}'= 1 xii is 
the center of gravity of the set X;, and xii are the elements in the set X;; 

(2) the mean squared deviations between the elements of the set 

(3) the value of the determinant of the dispersion (variance-covariance) 
matrix for the vectors of the set 

ldJCX;)I = If J1 (xii - x;)(xii - x;)T I· 

From these quantities the following functionals are formed: 

m 

d1 = L d1(X;), 
i= 1 

m 

d2 = L di(X;), 
i= 1 

d3 = IJ1 dJCX;)I. 

Here I I?!. 1 dJCX;) I is the determinant of the matrix L~ 1 diX;). 

(A.6) 

Other functionals are available which reflect different conceptions of 
quality for solutions of the particular taxonomy problem (when the number 
of taxons is given in advance). These functionals are presented in papers 
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[1, 2, 19]. As far as the general taxonomy problem is concerned (where the 
number of taxons is not known in advance), there are at present no widely 
acceptable definitions of the quality of taxonomy. 

§A2 Algorithms of Taxonomy 

The problem of minimizing the functional (A.5) on the set of possible 
subdivision of l objects into m groups is a problem of discrete program_ming: 
altogether there are 

m 

N(l, m) = L (-lYC~(m - iY 
i=O 

different subdivisions of I objects into m groups in such a manner that no 
group will be empty. It is necessary to choose among the N(l, m) subdivisions 
the one which minimizes the functional (A.5). 

An exact solution of this problem requires a large number of calculations 
(of the order of magnitude of the value N(l, m)). Therefore for solving 
taxonomy problems heuristic methods are used; in particular, the following 
procedure: Two sequences X1 = .x\, ... , x1, Q = q1, ... , q1 are constructed 
on the set of vectors X(x 1, ... , x1) by means of the following inductive rule: 

(1) First an arbitrary element belonging to X is selected say x 1, and we set 
x1 = x 1, q 1 = 0. The vector x 1 is then excluded from the set X, thus 
forming the set M 1 (M 1 = XI x 1). 

(2) Then t vectors are chosen before the (t + l)th step from the initial set, 
and the sequences 

Q, = q,, ... ,q, 

are constructed, while the remaining vectors are combined into the set 
M 1• Then at the (t + l)st step the vector in M 1 which is closest to the 
sequence X1 is adjoined to that sequence, i.e., a vector x = x1+ 1 for which 
the minimum 

q,+ 1 = min p(x;, X1) 

XiEMt 

is attained. This vector is added to the constructed sequence, forming the 
sequence X,+ 1, and the corresponding quantity q,+ 1 is added to Q,, 
thus forming a new sequence Q,+i· On the other hand the vector X1+ 1 

is excluded from the set M 1 forming the set M,+ 1 • This process is continued 
until all the vectors belonging to X are ordered. 

(3) Utilizing the sequence Q1 = qi, ... , q1, one can subdivide the sequence 
X1 = x1, ••• , x1 into m taxons. For this purpose we choose a number 
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q* such that only m - 1 values of the sequence Q1 = qi, ... , q1 exceed 
q*. Let q;,, q;,, ... , qim-, be the corresponding values of the sequence 
Q,+t· 

Then the vectors belonging to the sequence X1 with indices from 1 to 
i1 form the first taxon; vectors with indices from i1 to i2 form the second 
one, and so on. In all there will be m taxons. 

To construct a specific algorithm it is necessary to define the distance 
between a point x and a set X. Usually the following metric p(x, X) is used: 
the distance from x to the closest vector belonging to X. 

As far as the distance between two vectors x 0 and xb belonging to X is 
concerned, in addition to the usual Euclidean metric in taxonomy, certain 
special metrics are used. In particular, Tanimoto's metric is encountered, 
which defines the proximity between two sets X and Y as follows: 

PiX, Y) = nx + ny - 2nxy_ 
nx + ny - nxy 

here nx is the number of elements in X, ny is the number of elements in Y, 
and nxy is the number of elements which appear simultaneously in both sets. 

Using the Tanimoto metric, the proximity between the set of objects 
X 0(x0 ) belonging to X which fall into a c5-neighborhood of the point x 0 

and a set of objects X 0(xb) which fall into a c5-neighborhood of point xb is 
determined. Thus 

p(xa, xb) = PT(X\x0 ); X 0(xb)). 

(here c5 is a given parameter). 
Such a metric is more suitable for studying "the geometry of vectors as a 

whole." 



Postscript 

In this book the problem of estimating dependences from empirical data 
has been studied from the standpoint of approximating functions. Two 
new ideas were implemented: 

( 1) a definition of a structure on the class of functions in which the estimation 
is carried out and minimization of the risk over the elements of the 
structure (the method of structural risk minimization), 

(2) partitioning into equivalence classes and a definition of the structure 
on these classes (the estimation of values of a function at given points). 

It was shown that the development of these ideas results in devising more 
precise methods of estimation than the traditional ones. 

However, all the specific structures studied in this book have arisen 
from commonsense considerations rather than as a result of explorations 
and analysis. Moreover the definition of a structure adopted in this book 
satisfies the axiomatization of algebraic structures. Therefore one may 
expect that using analytic methods it will be possible to find structures 
which are more meaningful and suggestive than those which are utilized in 
this book. There are no investigations at present in this direction. 
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Addendum I 

Algorithms for Pattern Recognition 

§1 Remarks about Algorithms 
In the main part of the book the theory of estimating dependences from 
empirical data was presented. Classical methods of estimating dependences 
(Chapters 3, 4, and 5) were considered. These methods are efficient under the 
conditions that the required dependence belongs to a given class, and they 
guarantee the determination of a satisfactory solution when the training 
sample is sufficiently large. 

In practice we cannot be sure that the required dependence belongs to a 
class of functions in which the estimation is carried out, nor can we be con­
fident that the sample size at hand is sufficient to arrive at a good approxima­
tion. Therefore methods of minimizing risk were developed which do not 
require the knowledge of the model of the desired dependence and are 
geared towards utilization of samples of limited size (Chapter 6-10). 

The addenda to this book are devoted to problems of constructing 
estimation algorithms. 

In this addendum we shall consider algorithms for pattern recognition 
problems. The algorithms are based on the utilization of bounds on the 
uniform relative deviation of frequencies from their probabilities which are 
valid for any probability measure P(x, w) (including the least favorable one). 

Usually when it comes to the construction of algorithms based on a 
certain theory it turns out that the theory developed is only a rough ap­
proximation to reality. As a rule this roughness is compensated by the fact 
that in the course of constructing algorithms, theories are not followed 
verbatim. Authors of algorithms express their own understanding of reality 
which cannot be formalized. This is also true here. 
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In practice there is no reason to assume that the least favorable distribu­
tion P(x, cv) will be realized. Therefore estimates derived from a general 
theory in actual situations may be excessive. How then does one take into 
account that we are dealing with the actual distributions and not with the 
least favorable ones? The answer to this question determines the degree of 
informality in our approach to the constructed theory. 

An informal approach to the theory when constructing algorithms for 
pattern recognition is reflected by the fact that along with the bound 

( 21 ) 1J h ln- + 1 - ln-
h 12 

P(a) < v.mp(a) + 2 l 

l v.mp(a)l ) 

+ h(ln !l + 1) - In 1~ 
(D-1. l) 

when estimating indicator functions we shall assume that the bound 

( l ) h ln h + 1 - In IJ 

P(o) < ,,.,(o) + 21 (' + 

(which differs from (D-1.1) in its constants) is valid. Moreover when esti­
mating the values of indicator functions we shall assume that along with 
the bound 

[ kx ] 2 

v.mp(a) + 2(1 / k) , (D-1.3) 

where x* is the smallest solution of the inequality 

( l+k ) IJ 
h In -h- + 1 + In r1,lx) ~ In 1.5' 

the bound 

is also valid, where x* is the smallest solution of the inequality 

h(In l : k + 1) + In r 1,lx) ~ In IJ. 

This bound involves different constants than the bound (D-1.3). 

(D-1.4) 

(D-1.5) 
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§2 Construction of Subdividing Hyperplanes 

Algorithms for constructing hyperplanes which subdivide two finite sets of 
vectors - the set of vectors 

(D-1.6) 

and the set 

(D-1.7) 

-serve as the basis for constructing algorithms for pattern recognition in 
the class of linear decision rules. The problem reduces to finding a vector 1/1 
for which the inequalities 

x;I/J ~ l for X; E X a} 
xJl/1 ~ k for xi EX\ 

k < l, (D-1.8) 

are fulfilled. Clearly if there exists a vector ljJ for which the inequality (D-1.8) 
is fulfilled, we then have a set of vectors ljJ satisfying (D-1.8). In this set we 
shall seek a vector which is the smallest in absolute value. This vector is 
called a generalized portrait [12]. 

Minimization of the quadratic form 

(D-1.9) 

subject to the conditions (D-1.8) is a quadratic programming problem. 
Necessary and sufficient conditions for the minimum of (D-1.9) under the 
restrictions (D-1.8) are given by the Kuhn-Tucker theorem. 

Theorem D-1.1 (Kuhn-Tucker). Let a differentiable convex function F(x) 
and linear functions _{;(x) (i = 1, 2, ... , /) be given. Let x 0 yield the minimum 
jar F(x) under the restrictions 

f;(x) ?_ 0. (D-1.10) 

Then there exist A; ?_ 0 satisfying the conditions 

(D-1.11) 

such that the equality 

l 

V F(x0 ) = L A;Vf;(x0) (D-1.12) 
i= 1 

is fulfilled (V is the gradient sign). 
Conversely, if for some point x 0 the conditions (D-1.10) are fulfilled and one 

can find A;?_ 0 satisfying the conditions (D-1.11) and (D-1.12), then at the 
point x 0 the conditional minimum for F(x) under the restrictions (D-1.10) is 
attained. 
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Proof of the Kuhn-Tucker theorem are presented in all textbooks on 
convex programming (for example [65]). 

We shall apply the Kuhn-Tucker theorem to our case of minimizing 
(D-19) under the restrictions (D-18). 

Theorem D-1.2. The minimal in absolute-value vector ijJ satisfying (D-1.8) (a 
generalized portrait) can be represented in the form 

where 

a b 

1/J = L rx;x; - L f3jxj, 
i=l j=l 

IY.; ~ 0, 

rx;[x;ijl - 1] = 0, 
{3Jk - xJI/J] = 0, 

i = 1, 2, ... , a, 
j = 1, 2, ... , b. 

(D-1.13) 

(D-I.14) 

Among all the vectors ijJ satisfying (D-18) the vector ijJ represented by (D-1.13), 
(D-1.14) is minimal in absolute value. 

The proof follows directly from the Kuhn-Tucker theorem. 
The vectors x;, xi for which the conditions 

xN = 1, X; E Xa, 

xJI/J = k, xi E Xb, 
(D-I.15) 

are fulfilled will be called the extreme vectors. In view of Theorem D-1.2 a 
generalized portrait is decomposable with nonzero weights only in terms of a 
system of extreme vectors. 

Consider now the dual problem whose solution is equivalent to construct­
ing a generalized portrait. Introduce the space of parameters E~p, and con­
sider the function 

a b 

W(rx, /3) = L IY.; - k L {3i - ½1/J Tijl, (D-J.16) 
i= 1 i= 1 

where the vector 1/J is given by 
a b 

1/J = L rx;x; - L f3jxj. 
i = 1 j= 1 

We shall show that the point rx0 , {30 which is a point of maximum for the 
function W(rx, {3) in the positive quadrant IY.; ~ 0, {3i ~ 0 determines a general­
ized portrait. 

Indeed, necessary and sufficient conditions for the maximum of the 
function W(rx, /3) at the point rx0 , Po are the conditions 

8W(rx0 , /30 ) {=0 for rxf > 0, 
0 0 i = 1, 2, ... , a, 

IY.; $;0 for IY.; = 0, 

oW(rxo, Po) {=0 for /3J > 0, 
::ip 130 j = 1, 2, ... ' b. 
u i $;0 for i = 0, 
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We shall write down these conditions using the notation 

a b 

t/Jo = Lex? x; - L /JJ xj, 
i=l j=l 

We thus obtain 

{
-0 

1 - x!t/lo ~o 

xJt/1-k{:~ 

for a?> 0, 

for ex? = 0, 

for f3J > 0, 

for /JY = o, 

i = l, 2, ... , a, 

j = 1, ... , b. 

These conditions can be rewritten as inequalities 

and equalities 

x!t/10 ~ 1, 
xJt/Jo :s; k, 

ex?(! - x!t/10 ) = 0, 

f3J(xJtj; 0 - k) = 0, 

i = I, 2, ... , a, 

j = l, 2, ... , b, 

i = 1, 2, ... , a, 

j = 1, 2, ... , b. 
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(D-I.17) 

(D-I.18) 

In view of the assertion of Theorem D-1.2, these conditions determine a 
generalized portrait. Thus the problem of constructing a hyperplane sub­
dividing two sets of vectors is reduced to the determination of a maximum 
for the function W(ex, /3) in the positive quadrant. 

Below we shall consider methods for minimizing the quadratic form 
W(ex, /3) in the positive quadrant. First, however, we shall verify the following 
important fact. 

Theorem D-1.3. If the subdividing hyperplane exists (i.e., there exists a vector 
t/1 0 for which the inequalities (D-1.18) are fulfilled), then the maximum of the 
function W(ex, /3) in the positive quadrant equals one-half the square of the 
absolute value of the generalized portrait: 

W( f3 ) = llt/1011 2 

exo' o 2 . (D-1.19) 

PROOF. According to Theorem D-1.2 
a b 

t/Jo = L ex?x; - L f3Jxj, 
i= I i=l 

Therefore 
a b 

llt/10112 = tf;Jt/lo = Iex?x!t/1- If3JxJt/Jo 
i=l j=l 

and taking (D-1.15) into account, we obtain 
a b 

llt/1011 2 = I ex?- k I /Jj· 
i=l j=l 
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Thus, 

W(oco, Po)= I oc? - k I PJ - ½I/IJl/lo = lll/loll 2
• 

i=l j=l 2 

The theorem is proved. D 

The following corollary to Theorem D-1.3 is of importance for con­
structing algorithms for pattern recognition. 

Corollary. If among the extreme vectors of a generalized portrait 1/10 there are 
vectors of both classes, then the bound 

1 - k 
p(I/Jo) ~ j2W(oc, P) 

(D-1.20) 

is valid, where p( 1/10 ) is the distance between the projections of the sets x 1 ,' ••• , Xa 

and .x1, ... , xb in the direction of a generalized portrait. 
Moreover, equality in the bound (D-1.20) is achieved at the point oc = oc0 , 

P = Po-

PROOF; In view of Theorem D-1.3, 

J2W(<Xo, Po)= 111/!oll-
Furthermore, by virtue of the condition of the corollary there exist vectors 
in the set such that 

T I/Jo 1 
X; Ill/loll = Ill/loll' 

-T i/Jo k 
xi Ill/loll = Ill/loll' 

(D-1.21) 

Therefore the distance between projections of the vectors for which (D-1.21) 
is fulfilled equals 

1-k 1-k 
p(I/Jo) = ~ = ~2W(<Xo, Po) 

Taking into account that W(<X, P) ~ W(<X0 , Po), we obtain the inequality 
~~ D 

This corollary is utilized for constructing a criterion for inseparability 
of vectors. Indeed, we shall assume that two finite sets of vectors cannot be 
subdivided by a hyperplane if the distance between the projections on_the 
direction of the generalized portrait is less than p0 • This means that separa­
bility does not occur if one can find IX* > 0, P* > 0 such that 

( * P*) ( 1 - k )2 
WIX ' > 2 2 = Wo, 

Po 
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Thus when constructing a generalized portrait the problem is to find the 
maximum of a negative definite quadratic form W(oc, /3) in the positive 
quadrant oc :;:: 0, f3 :2'. 0 or to show that the maximum of the function W(oc, /3) 
exceeds W0 • The latter would indicate that it is impossible to construct a 
generalized portrait. 

§3 Algorithms for Maximizing Quadratic Forms 

One of the most efficient algorithms for the maximization of a negative 
definite quadratic form is the method of conjugate gradients. Using this 
method one can achieve the maximum in n steps, where n is the dimension of 
the form. In this section we shall consider algorithms for maximizing a 
negative definite quadratic form in the positive quadrant. These algorithms 
are based on a modification of the method of conjugate gradients. The theory 
of this method is described in various texts where a search for maximum 
values of functions is discussed (see, for example, [12, 80]). 

Consider first the method of conjugate gradients applied to maximizing 
the quadratic form 

F(y) = bTy - yTAy, 

where A is a positive definite matrix and b and y are vectors. According to 
the method, the search for the maximum starts from an arbitrary point 
y0 = y(0). The first step is taken in the direction of the gradient of F(y) at the 
point y(0). Denote the gradient of the function at y(0) by g(l), and the direc­
tion of the movement from y(0) by z(l). Thus 

z(l) = g(l). 

Steps are taken in the direction z(l) until the maximum is attained. It is easy 
to verify that the maximum in the direction z(l) is given by 

Z T(l)g(l) 
y(l) = y(0) + zT(l)Az(l) z(l). 

Starting with the second step the direction of the movement is determined 
by the vector 

llg(t + 1)11 2 

z(t + 1) = g(t + 1) + llg(t)ll 2 z(t), (D-1.22) 

where g(t + 1) and g(t) are gradients of the function F(y) at the points 
y(t + 1) and y(t), and z(t) is the direction of the movement at the point 
y(t - 1). The movement in the direction z(t) is carried on until the conditional 
maximum is achieved. This maximum is attained at the point 

y(t) = y(t - 1) + h(t)z(t), (D.1.23) 
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where the quantity 

h(z) = z T(t)g(t) 
zT(t)Az(t) 

determines the step of the movement. 
The formulas (D-1.22) and (D-1.23) thus define the algorithm for searching 

for a maximum of a quadratic function F(y). 
To compute the maximum of a function in the positive quadrant we 

shall use the modified method of conjugate gradients. The modification of 
the method is designed to limit the region of search to the positive quadrant. 
We define the function 

oF(y) . oF(y) 
;'l 1f Yi -:I- 0 or -;'l- > 0, 

0 

uyi uyi 

if Yi = 0 and o~(y) s; 0. 
uyi 

(D-1.24) 

The vector g(y) = (g 1(y), ... , gn(y))T is the conditional gradient of the 
function F(y) on the set y ~ 0. 

We carry out our ascent towards the maximum utilizing formulas (D-1.22), 
(D-1.23) where g(y) is replaced by g(y). The movement starts from an arbitrary 
point of the positive quadrant and continues until the moment at which the 
departure from the restriction at point y 0 takes place. Then the ascent starts 
again using the method of conjugate gradients, but this time from point y0 . 

The search for the maximum is terminated when the inequality 

(i = 1, 2, ... , n) 

is fulfilled. In order that the trajectory shall not depart from the positive 
quadrant, the size of the step h(t) is chosen to be the minimum of two quan­
tities h(t) and h*(t), where 

Yi(t) 
h*(t) = min --­

i lzi(t + 1)1. 

When computing h*(t) the minimum is defined only for the coordinates 
Yi such that z; < 0. If all zi ~ 0, then the step equals h(t). 

An important special feature of this search method for the maximum of the 
function F(y) in the positive quadrant is that it admits a sequential search 
procedure. Let the coordinates of the space En be 

Y1, · · ·, Yk, Yk+ 1, · · ·, Yn· 

One can first determine the conditional maximum of the function F(y) under 
the restrictions 

Y 1 ~ 0, · · · , Yk ~ 0, Yk+ I = 0, • · ·, Yn = 0, 
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and then, using the obtained maximum point as the initial one, obtain the 
maximum of F(y) in the region 

Y1 ~ 0, · · ., Yn ~ 0. 

In our case, when searching for the maximum of the function 

a b 

W(cc, /3) = L cc; - k L f3i - ½t/!Tt/1, 
i=l j=l 

a b 

t/1 = L CC;X; - L /3/ij, 
i= 1 j= 1 

in the positive quadrant, the conditional gradient is the vector with coor­
dinates 

l
oW(cc, /3) 

OCC; 
Ii;= 

0 

if cc- > 0 or oW(cc, /3) > 0 
l - OCC; ' 

. oW(cc, /3) 
1fo; = 0 and O ::;; 0, 

CC; 

i = 1, 2, ... , a, 

. oW(cc, /3) 
If /3j ~ 0 Or o/3i > 0, 

'f/3. = 0 d oW(cc, /3) < 0 
1 1 an of3j _ , 

j = 1, 2, ... , b. 

Denote by ix and p the components of the vector z(t) which determines 
the direction of the movement at the tth step. In view of (D-1.22) the relations 

a(t + 1) = rx(t + 1) + J(t + l)a(t), 

P(t + 1) = P<t + 1) + J(t + 1)P(t) 
are fulfilled, where (cf. D-I.22) 

a b 

I al<t + 1) + I iJJ<t + 1) 
b(t) = i=l a j:1 

I iif<t> + I PJ<t> 
i= 1 j= 1 

(D-1.25) 

(D-I.26) 

When computing a step by means of (D-1.23) it is necessary to compute 
the quantity z T Az. In our case 
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where we use the notation 
a b 

ifi = L ~ixi - L Pjxj. 
i= 1 j= 1 

Thus utilizing the congugate-gradient methods one can either determine 
a hyperplane which separates two sets of vectors, x1, ... , x0 and x1, ... , xb 
(i.e., determine the maximum of the function W(oc, /3) in the positive quad­
rant), or show that a separating hyperplane does not exist (i.e., establish 
that at the current step W(oc, /3) > (1 - k)2/2p 2 , where pis a given parameter). 

§4 Methods for Constructing an Optimal 
Separating Hyperplane 

When devising algorithms for dependence estimation, one of the important 
steps is to construct an optimal separating hyperplane, that is, a hyperplane 
which subdivides the two sets of vectors x 1, ••• , x0 and x1, .•• , xb, and is 
such that its distance to these vectors is maximal. Formally this means that 
an optimal separating hyperplane is defined by the following pair: a unit 
vector <p and a number c which satisfy 

where 

xf<p ~ c, 

T 
Xj <p < C, 

C1((f)) + ci(<p) 

i = 1, 2, ... , a, 

j = 1, 2, ... , b, 

C=-----
2 

c1(q,) = min xf<p, ci(q,) = max xJq,, 
j 

and is such that the maximum of the expression 

is attained. 
To construct an optimal separating hyperplane, consider all the dif­

ferences 

The vector q,0 P1 satisfies 

· T · T 1/1 
mm Yii(f)opt = max mm yii-ll'''II, 
i,j 111/111 = 1 i,j 'I' 

and hence is collinear with the minimal in the absolute value vector ijJ for 
which the inequalities 

i = 1, 2, ... , a, j = 1, 2, ... , b 



§4 Methods for Constructing an Optimal Separating Hyperplane 363 

are fulfilled. In other words, the vector <p is collinear with the generalized 
portrait t/J for the class {yii} when the second class is empty. 

One can determine the generalized portrait by maximizing the quadratic 
form 

W(C() = L C(ij - ½t/1 Tt/1, 
i,j 

t/1 = ~)ijyij, 
i,j 

in the positive quadrant C(ii 2:: 0. 
The number of vectors Yii is usually quite large. Therefore the direct con­

struction of a generalized portrait t/J is troublesome. We shall utilize the 
following iterative procedure: 

(1) An arbitrary pair y 1 = x 1 - i\ is selected. A class Y1 is formed consisting 
of a single vector x 1 - x\. A generalized portrait for this class is con­
structed (with an empty second class). 

(2) Let the class Y1 of vectors X; - X; and its generalized portrait t/1, be 
constructed at the tth step. In the training sequence there exists a vector 
X;, + , such that 

T ,/, · T,/, 
Xi,+i'l't = minX; 'l't 

XiEXa 

and a vector xi,+ 1 such that 

The vector 

is then formed. 
(3) If it turns out that 

-T ,/, -T,/, 
xi,+,'l't = ma_xxj'l'r· 

XiEXb 

Y(+1t/J, < 1 - i-; 

(i-; is the parameter of the algorithm), then the vector Yr+ 1 is added to the 
class r;. A generalized portrait tjJ1 + 1 of the class r; + 1 thus formed is then 
determined, and the process is continued further. If, however the in­
equality 

Y(+1t/11 2:: 1 - G 

is fulfilled, then the process is completed and the hyperplane 

min x; t/1 + max x; t/1 
xTt/Jr = --------

2 

is selected as the optimal separating plane. 
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Simultaneously with the process of constructing the hyperplane the 
condition 

2 
W(cx) > 2 

p 

is checked. If this condition is fulfilled even once, the construction of the 
hyperplane is terminated. In this case it is assumed that separation of the 
vectors of the training sequence is impossible. 

In implementing this procedure it is expedient at each iteration when 
forming the class Y; to omit vectors Yi which were included in the decom­
position of the generalized portrait t/1 with zero weight. A decrease in the 
number of vectors contained in Y; allows us to shorten the time needed for 
constructing a generalized portrait t/1. 

The algorithms for constructing the separating hyperplane considered 
above will be utilized for developing a battery of programs for pattern 
recognition. First, however, we shall discuss the question of representing 
information in recognition problems. 

§5 An Algorithm for External Subdivision of 
Values of a Feature into Gradations 

Two methods for representing information are used in the problem of 
pattern recognition: continuous and discrete. In the continuous method of 
representing information the coordinates of the vector x may take on 
arbitrary values. In the discrete method each coordinate of the vectors takes 
on a fixed number of values. The discrete method is suitable for coding 
qualitative features. For example, in problems of medical differential 
diagnostics, the features "paleness of the epidermis is not expressed", 
"moderately expressed", "strongly expressed" may be coded as 100,010, 
001. 

However, in problems of pattern recognition it is customary to code in a 
discrete manner not only features which reflect qualitative indicators of 
an object, but also features which take on numerical values. Here the follow­
ing method of representing information is utilized. The whole range of 
values of the parameter is subdivided into a number of gradations. The jth 
position of the code is coded 1 if the value of the parameter belongs to the 
jth gradation; otherwise the jth position is coded zero. 

EXAMPLE. Let the value of the parameter xi belong to the interval [ -5, 8], 
and this interval be subdivided into 5 gradations: 
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The code 10000 denotes the values xi < 0, the code 01000 denotes the values 
0 s xi < 2, the code 00100 the values 2 s xi < 4, the code 00010 the values 
4 s xi < 5, and the code 00001 the values xi ~ 5. 

This method of representing information is remarkable not only in that 
it allows us to write the information compactly (for the example presented 
above, instead of one memory cell in the computer, we need only five posi­
tions of a cell). Discretization of the coordinates of a vector is a nonlinear 
operation by means of which a vector x is transformed into a binary vector 
x' with a larger number of coordinates. 

The utilization of a large number of gradations in coding a parameter. is 
equivalent to the utilization of a more varied class of separating surfaces in 
the space En than that of linear surfaces. However, as was shown in Chapter 8, 
an excessively large capacity of the class of decision rules when the size of 
the training sequence is limited is inadmissible, and thus a problem of 
extremal subdivision into gradations of continuous features arises. 

In this section we shall present an algorithm for extremal subdivision 
into gradations of values of a feature. The basic principle for implementing 
this algorithm is as follows: it is necessary to subdivide the values of the 
parameter into a finite number of gradations in such a manner that a measure 
of uncertainty (the entropy) in classification by means of this feature will be 
minimal ( or close to minimal). 

Thus let a feature (coordinate) x takes values in the interval c s x s C, 
and let the vector possessing this feature belong to one of K classes. Let there 
exist conditional probabilities 

P(l Ix), ... , P(K Ix) 

of belonging to each one of the classes. For each fixed value of the feature x 
a measure of the uncertainty (the entropy) of belonging to one of the K 
classes, 

K 

H(x) = - I P(ilx) In P(ilx) 
i= I 

is defined. The mean value of the entropy with respect to the measure P(x) 
is computed as follows: 

H = f H(x)P(x) dx. 

Now let the parameter x be subdivided into r gradations, i.e., it takes one of 
the r values c(l), ... , c(r). Then the mean entropy can be written in the form 

t K 

H(r) = - L L P(ilx) In P(ilx)P(x). (D-1.27) 
j=I i=I 
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We utilize Bayes's formula 

P( .I ·) = P(xili)P(i) 
z x1 P(xj) ' (D-1.28) 

Substituting (D-1.28) into (D-1.27), we have 

H(r) = - ± I; P(xili)P(i) In P(xili)P(i)_ 
i=li=I P(xj) 

(D.1.29) 

In order to estimate the entropy (D-1.29) it is necessary to estimate the 
probabilities P(x i Ii), P(i), P(x i) from the training sequence. We shall utilize 
Bayes's estimators (see Section 6 of Chapter 3): 

H(r) = _ f -£ mii) + 1 . l(i) + 1 In [mii) + 1 . l(i) + 1 . _!___±___!__] 

i= 1 i= 1 l(i) + r 1 + K l(i) + r f mj(i) + 1 / + K ' 

i= I 

where /(i) is the number of elements in the ith class of the training sample, 
mj(i) is the number of vectors in the ith class for which x = xi, and I is the 
sample size. Implementation of the formulated principle consists in choosing 
a subdivision of the interval c :=; x :=; C into gradations such that the mini­
mum of H(r) will be achieved. 

§6 An Algorithm for Constructing Separating 
Hyperplanes 

In this section we shall consider two algorithms for constructing the separa­
ting hyperplane: the Special Algorithm and the General Algorithm. 

The Special Algorithm is aimed at constructing a hyperplane which sub­
divides two finite sets of vectors or determining that an errorless linear sub­
division of vectors is impossible. 

This algorithm has two modifications. The first one determines a general­
ized portrait for a given parameter k, and the second determines the optimal 
separating hyperplane. The algorithm constructs the hyperplane by solving 
the dual problem of maximizing the quadratic form in the positive quadrant 
as it was described in Sections 3 and 4. 

Modification 1 : As stated above, this modification constructs the general­
ized portrait for a given k. Often, however the length of the training sequence 
is so large that in order to process the entire available training material one 
must solve a dual problem of exceedingly large dimensionality. Therefore the 
processing of the training sequence is carried out iteratively. The training 
sequence is subdivided into m groups with p elements in each group (the 
last group may be incomplete). Next a generalized portait for the vectors 
of the training sequence belonging to the first group is constructed. (The 
situation is favorable when the first group contains vectors belonging to the 
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first as well as to the second class.) This portrait is constructed by maximiza­
tion of the corresponding quadratic form W(tx, /3) in the positive quadrant 
using the method of conjugate gradients (cf. Section 3). As a result of the 
maximization, either the generalized portrait is obtained or it is established 
that subdivision of the group of vectors which was set apart is impossible 
(W(tx, /3) > (1 - k)2/2p2 ). 

Let a generalized portrait ijJ 1 be obtained from the first group. A working 
group of vectors is then formed, consisting of vectors appearing in the de­
composition of a generalized portrait ijJ 1 with nonzero weights and the 
vectors of the first two groups for which the inequalities 

x!i/1 1 < 1 - b, 

xJi/1 1 > k + c5 
(D.1.30) 

are fulfilled, where c5 is the parameter of the algorithm (0 < c5 < (1 - k)/2). 
If in the first two groups no such vectors are available, then the working 

group of vectors is formed with the participation of the third group. If in the 
third group there are no vectors which satisfy the inequality (D-1.30), then 
the fourth group is considered and so on. If it turns out that in all m groups 
there are no vectors which satisfy (D-1.30), then ijJ 1 is a generalized portrait 
for the whole training sequence. 

Based on the constructed working group, the second iteration of the 
generalized portrait is carried out, and so on. The process is continued until 
either it happens that at some stage not a single vector is added to the formed 
group (which means that the generalized portrait has been constructed), or 
it has been established that an errorless separation of the vectors of the 
training sequence using the hyperplane is impossible. 

Modification 2: This modification of the algorithm is designed for con­
structing an optimal separating hyperplane. This also is done iteratively. 

For the first iteration a working group of vectors is formed, consisting 
of /1 vectors x 1, ... ,x1, of the training sequence belonging to the first class 
and /1 vectors x1, ... , x1, of the training sequence belonging to the second 
class. Using these vectors, l vectors Yi = X; - X;, i = l, ... , I, are formed, for 
which a generalized portrait (of one class with an empty second class) is 
sought. This generalized portrait is determined by means of maximization 
of the quadratic form W(tx) in the positive quadrant (cf. Section 4). 

Let the generalized portrait ijJ 1 be determined as a result of the first 
iteration. To obtain the second iteration we form a working group of dif­
ferences Y2 • To do this we omit from the working group of differences Y1 

those pairs which appeared in the expansion of ijJ 1 with zero weights, and 
find among the vectors of the training sequence vectors X; and xi for which 
the extremal values 

are attained. 
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Suppose it turns out that the inequalities 

x!it,1 ~ min xTl/t1 - c51, 
X (D-1.31) 

X 

are fulfilled, where on the right-hand sides the minimum and the maximum 
are computed only over the vectors of the training sequence which appear 
in the working group, and c5 1 and c5 2 are parameters of the algorithm (usually 
c5 1 = 0.1 (min;xrl/t), c52 = 0.1 (maxi xJl/t)). Then the pair consisting of the 
vector 1/t and the number 

(m;in xTl/t + m~x xJl/t) 
J = C 

2 
defines the optimal separating hyperplane. If, on the other hand, at least 
one of the inequalities (D-1.31) is not fulfilled, then the pair x*, x* is added 
to the working group of vectors and a new iteration of the optimal separating 
hyperplane is constructed. The process continues until either both inequalities 
are violated at one time or it turns out that the separation is impossible 
(W(ix) > 2/p2, where pis a given number). 

Thus using the Special Algorithm one is able either to construct a separa­
ting hyperplane or to establish that an errorless separation of the vectors 
of the training sequence is impossible. 

In accordance with the bound (D-1.2), if it is possible, in a space of dimen­
sion n, to construct a hyperplane which errorlessly separates l vectors of the 
training sequence, then one can assert with probability 1 - '7 that the prob­
ability of erroneous classification by means of the constructed hyerplane 
will be less than 

n(ln ~ + 1) - In '7 
p < l 

The General Algorithm is designed for constructing a hyperplane which 
separates two sets of vectors with a minimal number of errors. 

The problem of constructing a separating hyperplane which minimizes 
the number of incorrectly classified vectors can be solved in principle by 
solving the problem of constructing a separating hyperplane; however, the 
precise solution of the latter problem requires a large number of enumera­
tions. We shall therefore apply a heuristic method which permits us to 
reduce this number. 

The General Algorithm utilizes the following heuristic device: from the 
set of vectors of the training sequence a single element is excluded which 
"hinders separation to the largest extent"; next-provided the subdivision 
is impossible-from the remaining set yet another element is excluded and 
so on. A special characteristic of this algorithm consists in the definition of 
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the element which "hinders separation to the largest extent". In constructing a 
generalized portrait, we choose for this element the vector xi (or x) that at 
the stopping time yields the largest contribution to the value of 

a b 

W(a, /3) = Lall - ½x!l/1) + L /3/-k + ½ifl/1). 
i= 1 j= 1 

In other words, the vector xi (x) for which the maximum of the quantity 

all - ½xJi/1) (/3/-k + ½xJI/J)) 
is attained is selected as the "most hindering vector". (In Modification 2 
k = 1.) 

The General Algorithm excludes from the training sequence the most 
hindering vector, separates the remaining set of vectors, and, if separation is 
still impossible, again excludes a vector, separates the remaining set, and so 
on. 

Finally, after m vectors have been excluded, The General Algorithm 
separates the remaining set of vectors, constructing the separating hyperplane 
x Tl/I = c. In accordance with the bound D-1.2, with probability 1 - Y/ the 
error of classification using the constructed hyperplane is bounded by 

n (1n ~ + 1) - In 11 (1 + 
p < 2/ 

4m ) m l + / + I" 
n(ln ~ + I) - In Y/ 

The General Algorithm for constructing the separating hyperplane is 
basic for all the pattern recognition algorithms described in this book: 

(1) Algorithm for constructing the hyperplane in the optimal feature space 
(Chapter 8, Section 5). 

(2) -Algorithm for the estimation of function values at the given points in the 
class of linear separating hyperplanes (Chapter 10, Section 5). 

(3) Algorithm for the estimation of function values in the class of piecewise 
linear separating hyperplanes (Chapter 10, Section 9). 

( 4) Algorithm for the estimation of function values in the class of locally 
linear separating hyperplanes (Chapter 10, Section 11). 

Special realizations of each of these algorithms are determined by the schemes 
chosen for solving the corresponding problems of discrete optimization. 



Addendum II 

Algorithms for Estimating Nonindicator 
Functions 

§1 Remarks Concerning Algorithms 

In this Addendum algorithms for estimating nonindicator functions are 
considered. As above, two problems of estimation will be distinguished: 
estimation of functional dependence and estimation of values of a function 
at given points. 

The two bounds obtained in Chapters 8 and 10 serve as the basis of the 
algorithms considered herein. The first bound, 

I(a) < [ I.mp(a) ] ' 

h(In 21 + 1) - In!!_ 
1 - 2 ra(p) h 12 

l 00 

(D-11.1) 

connects the value of the expected risk J(a) with the value of the empirical 
risk J.mp(a); the second bound, 

[ l l 1 + ra(p) [k X * 
Ir,(a) < : I.mp(a), 

1 - ra(p) l + k x* oo 

(D-11.2) 

where x* is the smallest solution of the inequality 

( l+k ) ri h In-h- + 1 + In r 1,ix) :s; In LS' (D-11.3) 

connects the value Ir. (a) of the overall risk at points of the working sample 
with the value of the empirical risk J.m/a). 

370 
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Unlike the analogous estimates utilized in the estimation of indicator 
dependences, the bounds (D-11.1) and (D-11.2) contain a free parameter r. 
According to the theory this parameter determines a statistical characteristic 
of the problem (an allowable value of a possible large deviation), and its 
value should be known a priori. 

Below we shall utilize bounds suitable for "real world" situations where 
specific values for constants are given. We shall use the bound 

J.mp(rx.) ] 

h(ln f + 1) - ln I'/ 

l 00 

J(rx.) < 

1 -

(D-11.4) 

for estimating the functional dependence, and the bound 

(D-11.5) 

where x* is the smallest solution of the inequality 

( l + k ) h ln -h- + 1 + In rl.k(x)::;; ln I'/ (D-11.6) 

for estimating values of a function at given points. 

§2 An Algorithm for Regression Estimation in a 
Class of Polynomials 

Consider algorithms for the estimation of one-dimensional (univariate) 
functional dependence based on emprical data 

in a class of linear (in parameters) functions 
n 

F(x, rx.) = L rx.;<p;(x). 
i= 1 

We shall assume that the functions 

<P1(X), .•. , <pn(x) 

are ordered a priori, i.e., the structure 

S1 C S2 C • • · C Sn 

(D-117) 

(D-11.8) 
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is defined, where the element SP is the set of functions 
p 

F(x, a) = L a;<p;(x). 
i= 1 

In this case the problem is reduced to the determination of an element SP of 
the structure (D-11.8) and of a function F(x, aemp) which minimizes the 
empirical risk in Sp, so that the minimum of the functional 

R(p) = [ 

1 -

(p < [) 

is attained. The minimum of the empirical risk 

l I ( P )2 
Jemp(a) = -1 _L Yi - _L ai<p/x;) 

1=1 1=1 

(D-11.9) 

in SP is computed by means of standard methods of linear algebra: the vector 
of parameters tlemp = (aimp, ... , tl~mp)T is equal to 

tlemp = (<l>J<l>p)- 1<1>JY, (D-11.10) 

where Y is the vector of values Yi, ... , y1 and <l>P is the matrix 

<I> = p 

({)1 (x 1) <pp(x1) 
(D-11.11) 

The problem of inverting matrices of the type (<l>T<l>) has been studied ex­
tensively (see e.g., [63], [59]). Any algorithm for inversion recommended in 
those references may be used. 

Thus the only problem which arises in implementing the scheme under 
consideration is to decide which one of the specific systems of functions 
(D-11.7) should be utilized. 

We estimate the function in the class of polynomials, i.e., we assume that 
<pp(x) is a polynomial of degree p - 1: 

p 

<pp(x) = L /3.x•- 1. 

s= 1 

In principle it is irrelevant how the polynomials <pp(x) are defined (as long 
as the coefficients at the highest degrees do not vanish). Therefore it is often 
assumed that <pp(x) = xP- 1. 

Thus Algorithm D-11.1 for estimating one-dimensional functional de­
pendences in a class of polynomials has been determined. 

It was shown in Chapter 9 that a close approximation of the desired func­
tion in a class of polynomials can be guaranteed only in the integral sense, 
while in a class of piecewise polynomial dependences one can achieve not 
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only integral approximation but uniform approximation on the whole 
interval of definition of the function. It turns out (this will be shown in the 
next section) that the problem of constructing approximations for functions 
in a class of piecewise polynomial dependences is slightly more involved in 
its computational aspect than that of approximating in a class of poly­
nomials. 

§3 Canonical Splines 

Let the interval [a, b] on which the estimation of dependences is carried out 
be subdivided into N + 1 parts 

[a0, a 1), [a 1, a2), ... , [aN, b]. 

Consider the following class of functions: on each of the N + 1 subinter­
vals, each function coincides with a polynomial of degree m (different poly­
nomials on different subintervals) and is continuous on the whole interval 
together with its first m - 1 derivatives. Such a class of functions is called a 
class of splines of degree m conjugated at N points a 1, •.• , GN. 

Below we shall assume that m = 3 and the points G1, ••• , GN which define 
the subintervals are obtained from the subdivision of the interval [G, b] into 
N + 1 equal parts. The class of such splines will be denoted by Vt(x, ll(). 

The problem is to find a functionf t(x, ll(emp) belonging to Vt(x, ll() which 
minimizes the empirical risk 

(D-II.12) 

It is convenient to construct splines by introducing a system of canonical 
splines. For cubic splines with N conjugations on the grid (G, Gr, ... , GN, 
GN+ 1 = b), N + 4 canonical splines are introduced: 

(D-11.13) 

The canonical splines (D-II.13) are uniquely defined by the conditions 

µ1(GJ = 0, µ'1(0( 0) = 1, µ'1(GN+ 1) = 0 

µz(GJ = 0, µ'i(G0) = 0, µ~(aN+ 1 ) = I 

(i = 1, 2, ... , N + 1), 

(i = 1, 2, ... , N + 1). 

µ,(Gk)= <\,,-3, µ~(ll(o) = µ~(GN+ 1) = 0 

(r = 3, ... , N + 4; k = 0, 1, ... , N + 1), 

Go= G, 

Here <'iii is the Kronecker symbol: 

<) .. = {1 
IJ 0 

GN+l = b. 

for i = j, 
for i =I j. 
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Since any spline Vt(x, ix) is completely determined by the N + 2 values 
at the nodes a; (i = 0, 1, ... , N + 1) and the values of the first derivative at 
the endpoints of the interval, the equality 

N+l 

VMx, ix)= L Vt(ai, ix)µi+ix) 
j=O 

+ [Vt(x, ix)~ µ 1(x) + [Vt(x, ix)];, µ2(x) 

is valid. We shall utilize this representation below when estimating regression 
in the class of splines Vt(x, ix). Moreover, we shall obtain specific expressions 
for the system of canonical splines µ 1(x), µi(x), µix), ... , µN+ 4 (x), and using 
this system we shall represent the class of splines of degree 3 with N conjuga­
tions in the parametric form 

N+4 

V;(x, ix) = L ix;µ;(x). 
i= 1 

We shall thus reduce the problem of determining a spline minimizing the 
empirical risk (D-11.11) to the determination of parameters ix minimizing 
the functional 

i.e., we shall reduce the solution of the problem to the same linear system 
(D-11.10) which determined estimation of regression in the class of poly­
nomials. We thus construct a system of cubic canonical splines on a uniform 
grid with the step Ll: a;+ 1 - a; = Ll. 

Let m;+ 1, m; be the values of the second derivative of the spline Vt(x, ix) at 
the nodes a;+ 1 and a;. Since the second derivative of a third-degree poly­
nomial is a linear function, the equality 

3 ,, x - a; a;+ 1 - x 
[V N(x, ix)] = m;+ 1 -Ll- + m; Ll , 

where 

is valid for all x E [a;, a;+ 1]. 
Integrating this function twice and taking into account the continuity 

of a spline at the endpoints of the interval [a;, a;+ 1], we obtain the following 
representation for a cubic spline on the interval [a;, a;+ 1]: 

3 1 3 )3 VN(x, ix)= 6Ll [m;(a;+ 1 - x) + m;+ 1(x - a; 

+ (6Vt(a;, ix) - Ll2m;)(a;+ 1 - x) 

+ (6Vt(a;+ 1, ix) - Ll2m;+ 1) (x - a;)]. 

The function obtained is continuous on the whole interval [a, b], but its 
first derivative may have discontinuities at the nodes of conjugations. To 
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avoid these discontinuities we shall choose the values of m from the condition 
of continuity of the derivative of the spline on the whole interval [a, b]. 
Equating one-sided derivatives of the spline at points a;+ 1, we obtain the 
equations 

[ V3( )]' _ ~ ~ vi(a;+ 1, 0() - vi(a;, 0() 
N X, 0( a;+ I - 0 - 3 m; + 3 m; + I + ~ 

~ ~ vi(a;+2, 0() - vi(a;+1, 0() 
= - 3 m; + 1 - 3 m; + 2 + ~ 

= [vicx, O()]~i+1+0· 

Thus we have obtained N linear equations for the determination of N + 2 
values m;. The boundary conditions 

[Vi(x, a)]~ = V~, [Vi(x, a)]b = Vb 

supply an additional two equations; hence we arrive at 

2 - 6 (vi(a1, 0() - vicao, 0() ') 
m1 + m2 - ~ ~ - Va , 

2 _ ~ (v' _ vi(aN+ 1, 0() - vi(aN, 0()) 
mN+ 1 + mN+2 - ~ b ~ • 

In the matrix notation the system becomes 

where 

<(; = 

<(; .,H* = ~. 

2 1 0 

½ 2 ½ 0 

0 ½ 2 1 
2 0 

0 1 
2 2 0 

0 ½ 2 ½ 

0 1 2 

i = 2, ... , N, 
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To construct canonical splines µ 1(x), ... , µN+ix) it is convenient to 
represent the vector £1) = (d1, •.. , dN+z) as the product of the vector of 
defining values 

V; = ([Vt (ao, ex)]', Vt (ao, ex), ... , Vt (aN + 1, ex), [Vt (aN+ 1, ex)]'? 

and the matrix f!J given by 

6 6 6 
A - AZ A2 

0 
3 6 

A2 - A2 

f!J= 

0 

3 
0 A2 

0 

... 

0 
6 

AZ 

0 

The vectors Vf, which have N + 3 coordinates equal to zero and one co­
ordinate equal to 1, serve as the defining values for canonical splines. The 
location of the 1 in the vector is determined by the ordinal number of the 
canonical spline. Under a suitable ordering of canonical splines the matrix of 
defining values becomes the unit matrix. Below we present such an ordering: 

µ1 µ3 µN+4 µ2 

1 0 0 0 

0 1 0 0 

....................... 

0 0 1 0 

0 0 0 1 

The matrix .A of values of second derivatives of N + 4 canonical splines, 

.A = r. -~~: ~ .... · .· _· ... -~~:~~-4- ·], 
lmN+2.1 " .. mN+2.N+4 

is determined as the solution of the matrix equation 
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Knowing the matrix A, it is easy to compute the values of canonical splines. 
These are computed using the formulas: for x E [a;, a;+ 1] 

X - a; a;+ I - X 
- m; + I, I -6- d - m;, I 6 d, 

(a;+ 1 - x) 3 (x - a;)3 

µi(x) = m;,N+ 4 6d + m;+ 1,N+4 6d 

X - a; a;+ I - X 
- m;+1,N+4 - 6- d - m;,N+4 6 i'l, 

(a;+ 1 - x)3 (x - a;) 3 

µj(x) = m;,j-2 6d + m;+ t,j-2 6i'l 

( - d 2) a;+1 - X + c\,j-3 - m;j-2 6 d 

( 
,'l2 ) X - a-

+ <\+1.j-3 - m;+J.j-2 6 T· 
The matrix A may be computed explicitly: 

A = r.& - I fJH. 

(For this purpose it is sufficient to obtain the matrix r.&- 1 ; see below.) 
Denote by D" the determinant of order n: 

2 1 0 0 

½ 2 ½ 0 

D" = det · · ............... . 

0 ½ 2 ½ 

0 0 ½ 2 

Expanding this determinant with respect to the cofactors of the elements of 
the last column, we arrive at a recursive formula for computing the deter­
minant Dn: 

Dn = 2Dn-1 - ½Dn-2, D 1 = 2, D0 = 1. 



378 Add. II Algorithms for Estimating Nonindicator Functions 

We shall now evaluate the elements ciJ 1 of the matrix <£- 1 utilizing the 
cofactors of matrix<£ expressed by means of the determinant D" . We obtain 

I: 

II: 

III: 

IV: 

( ) 1 + . 
-1 -1 J DN+2-j 

C1,j = 2j- 2 D 
N + 2 

-1 (-ll+ 1 Dj-1 
CN+2,j = 2N+l-i -D 

N+2 

(1 < i s;; j s;; N + 2), 

(1 s;; j s;; i < N + 2), 

(D-II.14) 

(1 < j s;; N + 2), 

(1 s;; j < N + 2). 

The scheme for application of formulas I-IV can vividly be represented 
graphically (Figure 22). 

j 

N + 2 

N +2 

Figure 22 

Thus in order to obtain a system of cubic canonical splines with N 
conjugates one is required : 

(1) to compute the values ~ .; 
(2) using (D-11.14), to obtain the matrix <£- 1 (of dimension (N + 2) x 

(N + 2)); 
(3) to compute the matrix .It (of dimension (N + 2) x (N + 4)), by multi­

plying <£- 1 by f!A (the matrix f!A is of dimension (N + 2) x (N + 4)); 
(4) using the formulas (D-II.14), to obtain the canonical splines. 

In order to retain uniform notation we shall use the same symbols to 
denote systems of canonical splines as those used to denote systems of 
polynomials, i.e., we set 
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Using this notation the problem of determining a cubic spline minimizing 
the empirical risk (D-11.12) will be written in the form (D-11.9). Its solution­
the determination of the vector rx. of coefficients of expansion of the required 
functions in terms of a system of canonical splines-is given by (D-11.10). 
Thus after the canonical system of splines has been constructed, the evalua­
tion of the spline which minimizes the empirical risk is carried out using 
exactly the same procedure which was used to determine the coefficients of 
a linear (in parameters rx.) regression. 

§4 Algorithms for Estimating Functions in a 
Class of Splines 

We now present Algorithm D-11.2 for structural minimization of the risk in a 
class of splines. For this purpose we shall define the following structure on 
the set of piecewise polynomial dependencies. The class S 1 will contain all 
the constants; the class S 2 , of all the polynomials of the first degree; the class 
S 3 , polynomials of the second degree; and the class S4 , polynomials of the 
third degree (we shall call them cubic splines with zero conjugates). 

Starting with the fifth class, piecewise polynomial functions are con­
sidered. The fifth class S 5 contains splines with one conjugate, S6 those with 
two, and so on. 

The capacity of the set of functions formed by splines with r conjugates is 
equal to h = r + 4. 

Thus the problem is to choose an element of the structure Sr+ 4 for which 
the minimum-with respect to rx. and r-of the functional 

R(rx., r) = 

1 -

is attained. 

(r + 4)(ln - 1- + 1) - In IJ 
r+4 

00 

(D-11.15) 

A special feature of the problem of estimating regression in the class of 
piecewise polynomial dependences is that each time we advance to a class 
of splines with a larger number of conjugates, a new canonical system (its 
own) is used. (Recall that in a similar situation of estimating regression in a 
class of polynomials we simply add a new function to the system.) Strictly 
speaking, this causes the element Sp+ 1 of the structure not to contain SP. 
However, this fact is not of basic importance in this case. 

When estimating nonindicator functional dependence, it is expedient to 
carry out a selection of the training sequence, i.e., to exclude a number t = 0, 
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1, 2, ... of vectors such that the functional 

R.(ct., r) = 

1 -

1 (I)( r+4 )2 
1 _ t ~ Y; - P~1 ap<pp(x;) 

h(ln ~ + 1) - In IJ + In q 
l - t 

(D-11.16) 

00 

will attain its "deepest" minimum. The function for which (D-11.16) achieves 
its minimum is chosen for the solution of the problem of minimizing the 

(I) 

expected risk (L denotes that only l - t terms are summed). 
i 

Determination of the exact minimum for the functional (D-11.16) requires 
a large number of enumerations. Therefore it seems reasonable to use here 
the method of successive decrease of a functional. First we determine a 
vector whose exclusion from the training sequence will minimize the func­
tional for t = 1. If this quantity turns out to be smaller than the minimal 
value of the functional (D-11.16) fort = 0 (for the whole training sample), then 
the corresponding vector is deleted and an attempt is made to analogously 
exclude yet another vector, i.e., to minimize (D-11.16) fort = 2, and so on. If 
no exclusion of a single vector results in a decrease of the functional, then the 
exclusion process is terminated. 

§5 Algorithms for Solving Ill-posed Problems of 
Interpreting Measurements 

In this section we shall consider algorithms for solving ill-posed problems of 
interpreting results of indirect experiments in the case when the operator 
equation 

Af(t) = F(x) 

is a Fredholm integral equation of the type I: 

f K(t, x)f(t) dt = F(x). 

Let measurements on a function F(x) at l points x; be given: 

(D-11.17) 

(D-11.18) 

According to the theory, the functionf(t) which yields the minimum of the 
functional 

I= f (y - f K(t, x)f(t) dtr P(ylx) dy dx 

is a solution of Equation (D-11.18). 

(D-11.19) 
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We shall minimize the expected risk (D-11.19) using the method of struc­
tural minimization in the class of cubic splines. To do this we shall determine 
a function V;(t, exemp) which minimizes the following functional in the class 
of cubic splines with r conjugations: 

R(ex, r) = 
f J

1 
(Yi - f K(t, xi)V;(t, ex) dt r 
(r + 4)(ln - 1- + 1) - In 1J 

r+4 
1 - 1 

(D-11.20) 

00 

We construct Algorithm D-11.3 for minimization of the functional (D-11.20) 
as a modification of Algorithm D-11.2. For this purpose we introduce the 
notation 

f K(t, x;) µp(t) dt = <pp(x). (D-11.21) 

Since, in view of Section 3, 

r+4 

V;(t, ex) = L expµp(t), 
p=l 

using the notation (D-11.21), the minimization of the functional (D-11.20) is 
reduced to that of the functional (D-11.15). The minimum of the functional 
with respect to ex and r may be obtained using the scheme of Algorithm 
D-11.2. Let the minimum be attained at r* and exemp· Then the function 

r*+4 

J<t) = I: ex~mpµp(t) 
p=l 

is declared to be a solution of the integral equation. When interpreting results 
of indirect experiments it is desirable to carry out a selection of observations. 
This selection also is carried out following Algorithm D-11.2, i.e., it is reduced 
to minimizing the functional (D-11.16) and then choosing as the solution the 
preimage of the function which yields the minimum for this functional. 

§6 Algorithms for Estimating Multidimensional 
Regression in a Class of Linear Functions 

We now present Algorithm D-11.4 for estimating multidimensional linear 
regression. It is required to estimate regression in the class of functions 

n 

F(x, /3) = L {3;<p;(x) = {3T<p(x) 
i= 1 

(D-11.22) 
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Let 

(D-11.23) 

be a system of eigenvectors of the matrix (<I> T<I>) (the matrix (D-11.11)) ordered 
according to the decreasing value of the eigenvalues. We represent (D-11.22) in 
the form 

n n 

F(x, ct) = I ctp(J<p(x) = L ctpxp(x), (D-11.24) 
p=l p=l 

where 

Define the structure 

(D-11.25) 

on the class of functions F(x, ct), where SP contains only those functions 
which can be expanded in terms of the first p members of the series.t Then 
the best element of the structure will be the one for which the minimum of the 
functional 

R(ct, p) = 

1 -

fit (Yi - JtsXs(x;)r 
p(ln { + 1) - In r, 

I 00 

is attained. The implementation of this algorithm is the same as that of 
Algorithm D-11.2. 

When constructing linear regression it often turns out to be desirable to 
carry out a selection of the training sequence. It is necessary to exclude t 
elements (t = 0, 1, 2, ... , s) such that the functional 

R(ct, p) = r 
l1 -

/~mp(ct) j 
p(ln 1--=; + 1) + In Cl - In r, 

I - t oo 

(D-11.26) 

will be minimized with respect to ct and p. Here /~mp(ct) is an empirical-risk 
functional constructed on the training sample from which the corresponding 
elements are excluded. As in analogous situations above, minimization of 
the functional (D-11.26) should be carried out using a heuristic procedure of 
successive minimization. 

t Observe that such a definition of the structure is an a priori one only for the formulation of the 
problem of estimating values of functions where the matrix <I> is formed using all the / + k 
vectors of the complete sample. Nevertheless we shall use the structure (D-Il.25) here. 
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Above, when constructing the linear regression, the structure (D-11.25) 
was defined in accordance with the order in which the terms of the series 
(D-11.23) appear. Often, however, the order in (D-11.23) is determined not in 
accordance with the magnitude of the eigenvalues but in the course of con­
structing the regression. We now consider such a stepwise algorithm of 
regression construction. First one factor (the function x1(x)) is selected by 
means of which the best approximation to empirical data is attained. To 
determine such a factor the problem of constructing a regression for one 
factor is solved n times (where n is the number of factors), and that factor is 
selected for which the value of the empirical risk is minimal. This factor is 
then fixed, and after that a second factor is selected using enumeration of 
the remaining n - 1 factors, such that the linear function constructed for 
these two factors yields the smallest value for the empirical risk. The second 
factor obtained is then fixed, and a third factor is selected, and so on. 

As a final solution-using this procedure of ordering with respect to 
factors-we choose the function which yields the minimum over a and p 
for the functional 

R(r:1., p) = 

1 -
p(ln { + 1) + In p( n -Y) - In ~ 

l 00 

This algorithm is basic for all the algorithms for the estimation of func­
tional values at given points described in Chapter 10. 



Bibliographical Remarks 

Chapter 1 

The problem of minimizing the expected risk on the basis of empirical data 
is one of the basic problems of applied mathematical analysis. It has been 
studied by many authors: L. LeCam [95, 96], P. Huber [87, 90], Ya. Z. 
Tsypkin [67, 68], V. N. Vapnik [7-15], A. Ya. Chervonenkis [11-15], and 
others. 

In this book a special class of problems of minimizing the expected risk 
is considered-the class of problems of estimating dependences, which con­
tains the problems of pattern recognition, regression estimation, and inter­
preting results of indirect experiments. 

The theory of pattern recognition was initiated in the late fifties. In the 
sixties and seventies monographs written by the following authors (among 
others) were devoted to this subject: M.A. Aizerman et al. [2], Ya. Z. Tsypkin 
[66, 67], V. N. Vapnik and A. Ya. Chervonenkis [12], N. G. Zagoruiko [19], 
V. A. Kovalevskii [25], K. S. Fu [64], N. J. Nilsson [43], V. N. Fomin [62], 
and K. Fukunaga [64a]. 

The problem of estimating regression can be traced to Gauss's time. A 
voluminous literature is devoted to this subject, in particular the classical 
texts ofC. R. Rao [49] Yu. V. Linnik [34], and M. G. Kendall and A. Stuart 
[24]. 

Finally, the problem of interpreting results of indirect experiments 
reduces to solving operator equations which form ill-posed problems. The 
theory of ill-posed problems received wide attention during the period of the 
1950s up to the 1970s (see bibliography in [56]). Among these contributions 
we mention the monograph by A. N. Tikhonov and V. Ya. Arsenin [56]. 
The Appendix to Chapter 1 is based on this work. 
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In this book a special class of stochastic ill-posed problems is singled out 
-those dealing with interpreting results of indicrect experiments. 

Chapter 2 

Applications of methods of stochastic approximation for solving problems of 
minimizing the expected risk based on large sample data can be found in the 
works of Ya. Z. Tsypkin [66, 67] and M. A. Aizerman et al. [2]. In these 
references, along with conditions for the convergence of procedures of the 
stochastic-approximation type, specific applications to the problem of pattern 
recognition and regression estimation are considered. Mathematical prob­
lems of the theory of stochastic approximation are discussed in the mono­
graph by M. B. Nevel'son and P. Z. Has'minskii [42]. 

When minimizing a functional of the expected risk using a limited set of 
empirical data, two approaches are distinguished: the classical approach 
based on methods of parametric statistics and the approach based on mini­
mization of the empirical risk. 

Methods of parametric statistics were developed in the twenties through 
the forties and are associated with the names of the famous statisticians 
R. A. Fisher, K. Pearson, and H. Cramer, among others. At the present time, 
methods of parametric statistics are a working tool for solving numerous 
problems. They are discussed in all texts on statistics. See, for example, 
S. S. Wilks [58] and M. G. Kendall and A. Stuart [24]. 

The problem of applicability of methods of minimizing the empirical 
risk to determining the minimum of the expected risk arose more recently. 
In 1953 L. LeCam [95] showed that for certain classes of loss functions the 
method of minimizing empirical risk as the sample size increases determines 
a function minimizing the expected risk. In this paper [95] LeCam, for the 
first time, connected the problem of risk minimization with the conditions 
for uniform convergence of the means to the mathematical expectations and 
obtained conditions for uniform convergence in the case of certain types of 
loss functions. In 1968 P. Huber [87] showed that the method of minimizing 
the empirical risk is applicable to a wider class of loss functions. However, 
both LeCam's and Huber's papers investigate asymptotic possibilities of 
the method. 

In 1971 V. N. Vapnik and A. Ya. Chervonenkis [11] obtained necessary 
and sufficient conditions for uniform convergence of frequencies of events 
to their probabilities and derived bounds on the rate of this convergence. 
Based on these bounds, it was possible to establish the applicability of the 
method of minimizing the empirical risk to problems of pattern recognition 
based on samples of limited size. Later in 1974 this result was extended to 
problems of estimating dependences of a more general nature (Vapnik and 
Chervonenkis [13]). 
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Chapter 3 

Numerous papers are devoted to the problem of estimating densities specified 
up to a finite number of parameters [ 49, 34, 24]. However, up until recently 
all the problems in this direction were actually concerned with estimating 
unknown parameters of the density rather than estimating the density 
function. Only in 1965 did D. G. Keehn [93] obtain a Bayesian estimator of 
the density of a normal distribution (presented in Section 7), which as it 
turned out does not belong to the class of normal distributions. 

In 1969 P. Ya. Lumel'skii and P. N. Sapozhnikov obtained the best un­
biased estimator for a density of a univariate distribution [36]. (This result 
is presented in Section 10.) Earlier A. N. Kolmogorov and V. M. Tihomirov 
[27] had obtained the best unbiased estimator for a univariate density. 

As far as the problem of estimating parameters is concerned, the basic 
results were obtained by R. A. Fisher [82]. These results constitute the foun­
dations of methods of parametric analysis. 

The problem of discriminant analysis is essentially based on constructing 
a linear discriminant function. It was initially formulated by R. A. Fisher 
[82], who suggested minimizing the functional presented in Section 2. In 
1966 the problem of constructing a linear discriminant function for normal 
distributions was solved by T. W. Anderson and R. R. Bahadur [71]. 

Other investigations in this area are associated with an attempt to write 
down a functional whose minimization leads to constru~ting a linear dis­
criminant function applicable to more general distributions than normal 
ones. Initially Fisher's functional was used for this purpose, and later other 
functionals were considered. A detailed survey of the literature on dis­
criminant analysis is presented in [60]. 

The case of independently distributed discrete features was also con­
sidered in discriminant analysis. 

In 1952 A. M. Uttley constructed a discriminant automaton whose 
algorithm in essence differs only slightly from the modern discriminant 
automata constructed in accordance with the assumption of independence 
of discrete features [105]. 

Chapter 4 

The idea of a robust method of estimation of a location parameter in a 
given class of densities is due to P. Huber. In 1967 he obtained a robust 
method of estimating a location parameter in the class of densities defined by a 
mixture [88]. (Huber's result is presented in Section 8.) 

Later, other authors derived robust procedures for estimating location 
parameters for various classes of functions. In particular robust estimators 
were obtained in a class of densities concentrated basically on an interval, 
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in a class of densities close to normal ones, and so on. A detailed survey of 
available procedures for robust estimation is given in B. T. Polyak and 
Ya. Z. Tsypkin's paper [ 45]. 

Applications of procedures for robust estimation of location parameters 
to estimating regression parameters are also due to Polyak and Tsypkin 
[ 46]. Using various prototype examples, these authors have demonstrated 
the advantage of robust estimation of regression parameters in the case of 
samples of a limited size. 

Chapter 5 

Parameters estimation is the traditional method for solving problems of 
regression estimation. The central theme of the theory of estimating regres­
sion parameters based on samples of a limited size is the investigation of the 
least-squares method, establishing its optimal properties (the theorem on 
normal regression, the Gauss-Markov theorem). 

These theorems establish the optimality of the least squares method in a 
class of certain methods. It was however often assumed that the least-squares 
method not only is the best method for estimating parameters in a given 
limited class, but is a "good" method in general (in a rather wide class of 
methods). 

In 1956 C. Stein [103] unexpectedly produced an example which shows 
that the best estimator of the mean of a multivariate normal distribution 
with a known covariance matrix CJ 2 I (where CJ 2 is a known number and J is a 
unit matrix) differs from the vector of realizations (i.e., is not the one obtained 
using the least-squares method). 

In 1961 James and Stein [91] discovered a method of estimating the mean 
of a multivariate normal distribution with unknown CJ2 of the covariance 
matrix CJ 2 I which is uniformly better than the one obtained by means of 
realizations. Finally in 1970 A. Baranchik [73] found a whole class of such 
estimators. This class of estimators is presented in this book for obtaining 
estimators of parameters of a normal regression which are uniformly better 
than the least-squares estimators. The method for constructing estimators of 
regression parameters utilizing James-Stein-Baranchik estimators, pre­
sented in Section 3, was obtained using P. K. Bhattacharya's theorem [75]. 

Stein's example demonstrated that the supposition that unbiased methods 
of estimation always contain "good" estimators is unfounded. (Even for the 
simplest situation estimation methods uniformly better than the classical 
ones are available.) 

The theory of constructing the best linear method of estimation is due to 
V. A. Koshcheev [31]. The theory allows us-utilizing some prior informa­
tion-to obtain linear estimators which are superior to those following from 
the least-squares method. 
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However, the question whether there exists a method of estimating regres­
sion parameters which is better than the least-squares method in the case 
where no additional prior information is utilized is still open. This problem 
is connected with constructing a method of estimating the mean which is 
uniformly better than the empirical mean for random vectors which are 
realizations of a not necessarily normal distribution. In other words, the 
problem is reduced to the determination of estimators of the Stein type which 
are invariant relative to probability density functions. Such estimators are 
possible (see, e.g., the paper by J. 0. Berger [74]). 

Chapter 6 

The problem of uniform convergence of frequencies of occurrence of events 
to their probabilities was first studied in the papers of V. I. Glivenko [85] 
and F. P. Cantelli [92]. They showed in 1933 that a uniform convergence of 
an empirical cumulative distribution function to the true one (i.e. a uniform 
convergence of frequencies to probabilities for a special class of 'events) is 
valid. In the same year, A. N. Kolmogorov [94] obtained an asymptotic 
bound on the rate of convergence, which was later refined by N. V. Smirnov 
[53]. 

Justification for the applicability of the method of minimizing the empiri­
cal risk to problems of pattern recognition is connected with the determina­
tion of the conditions for uniform convergence of frequencies to probabilities 
in arbitrary classes of events. In 1971 V. N. Vapnik and A. Ya. Chervonenkis 
[11] obtained necessary and sufficient conditions for uniform convergence 
of frequencies of occurrences of events to their probabilities for an arbitrary 
system of events and obtained bounds on the rate of this convergence. Some 
of these results (the sufficient conditions) are contained in the Appendix to 
Chapter 6. Necessary and sufficient conditions are covered in the Appendix to 
Chapter 7. 

Chapter 7 

The content of Chapter 7 is a direct generalization of the results obtained 
for bounds on the rate of uniform relative deviation of frequencies from their 
probabilities to the case of bounds on the rate of uniform relative deviation 
of the means from their mathematical expectations. These were obtained by 
V. N. Vapnik and A. Ya. Chervonenkis in 1974 [13] for the case when the 
ratio of the means of order p 2:-: 2 of positive random variables to their 
means is uniformly bounded. The case when the ratio of the means of order 
1 < p ::;; 2 to their means is uniformly bounded is examined here for the 
first time. 
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In 1981 V. N. Vapnik and A. Ya. Chervonenkis obtained necessary and 
sufficient conditions for uniform convergence of means to their mathematical 
expectations for uniformly bounded functions [15]. This theory is incor­
porated in the present edition of this book (Appendix to Chapter 7). 

Chapter 8 

The method of structural minimization of risk was formulated for solving 
pattern recognition problems in the monograph by V. N. Vapnik and A. Ya. 
Chervonenkis [12]. However, in essence, when constructing algorithms for 
minimizing risks the method is utilized each time when the method of mini­
mizing empirical risk yields unreasonable results (for example, when estima­
ting polynomial regressions). 

A two-stage selection procedure ( of an element of the structure and of the 
best function belonging to a given element) is contained in all heuristic 
algorithms whose purpose is to obtain a solution which is better than the 
one that follows from the standard methodology of minimizing the empirical 
risk ( cf. for example, the papers by I. Sh. Pinsker [ 44] and A. G. I vahnenko 
et al. [22]). 

In this book two ideas are used for the selection criterion of an element 
of a structure: an estimate for the moving-control procedure and a uniform 
bound on the value of the expected risk based on the values of the empirical 
risk. Estimation of the expected risk follows from the theory of uniform 
convergence. For the moving-control procedure, it was A. L. Luntz and V. L. 
Brailovskii [37] who established the unbiasedness of the estimator in 1969. 
In Chapter 8 an equivalent representation of the moving-control estimator 
for regressions is presented. The representation allows us to substantially 
reduce the amount of calculation. 

The theory of J p(x 1, y 1 ; ••• ; x1, yi) estimators is presented here for the 
first time. Also the sample selection is considered here for the first time. 

Chapter 9 

The idea of applying the method of structural minimization of the risk to 
ill-posed problems of measurements was implemented for the first time in the 
paper by V. N. Vapnik and A. I. Mihal'skii [8]. However, various (heuristic) 
devices were used earlier which allowed the choice of an appropriate form 
for approximation (cf. for example, the papers by L. A. Varnste'in [6] and 
L. P. Grabar' [18]). 
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In 1975 V. N. Vapnik and A. Ya. Chervonenkis established the existence 
of convergence-as the number of empirical data increases-of a sequence 
of solutions obtained using the method of structural minimization of the risk 
to the desired solution under the condition that the solution is sought in 
the form of an expansion in terms of a special system of functions; if, however, 
the solution is sought in the form of an expansion in terms of polynomials, 
then such convergence may not occur. 

In 1974 A. I. Mihal'skii showed that for certain classes of operator equa­
tions there exists convergence-as the sample size increases-of solutions 
determined using the the method of structural risk minimization to the 
desired function provided the solution is sought in a class of splines. He also 
developed a methodology for constructing splines with a given number of 
conjugates minimizing the empirical risk [38]. 

The idea of estimating the probability density by viewing it as a solution 
to an ill-posed problem of numerical differentiation was implenrented in 
V. N. Vapnik and A. R. Stefanyuk's paper [10]. In this book a generalization 
to the stochastic case of A. N. Tihonov's theorem is presented in the Appendix 
to Chapter 9. A bound on the rate of convergence of approximations to a 
smooth density derived by means of the regularization method was obtained 
by A. R. Stefanyuk [53a]. 

Chapter 10 

The problem of estimating values of a function at given points was considered 
for the first time in V. N. Vapnik and A. Ya. Chervonenkis's monograph [12] 
for the case of indicator functions. In V. N. Vapnik and A. M. Sterin's paper 
[9] various structures on equivalence classes of indicator functions were 
studied. 

Methods for estimating of an arbitrary function at given points are con­
sidered here for the first time. Also new is the investigation presented in this 
chapter of selecting a complete sample and finding the best point in a given 
set. 

Addenda I and II 

A library of programs for the method of generalized portraits has been 
developed by T. G. Glazkova and A. A. Zuravel'. Algorithms for estimating 
values of indicator functions at given points have been studied and implemen­
ted by A. M. Sterin. 

Algorithms for regression estimation have been compiled by T. G. 
Glaskova, V. A. Koshcheev, and A. I. Mihal'skiL 

Algorithms for interpreting ill-posed problems of measurements have 
been devised by A. I. Mihal'ski'i. 
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PREFACE 

Twenty-five years have passed since the publication of the Russian version of the book 
Estimation of Dependencies Based on Empirical Data (EDBED for short). Twenty­
five years is a long period of time. During these years many things have happened. 
Looking back, one can see how rapidly life and technology have changed, and how 
slow and difficult it is to change the theoretical foundation of the technology and its 
philosophy. 

I pursued two goals writing this Afterword: to update the technical results presented 
in EDBED (the easy goal) and to describe a general picture of how the new ideas 
developed over these years (a much more difficult goal). 

The picture which I would like to present is a very personal (and therefore very 
biased) account of the development of one particular branch of science, Empirical In­
ference Science. 

Such accounts usually are not included in the content of technical publications. I 
have followed this rule in all of my previous books. But this time I would like to violate 
it for the following reasons. First of all, for me EDBED is the important milestone in 
the development of empirical inference theory and I would like to explain why. Sec­
ond, during these years, there were a lot of discussions between supporters of the new 
paradigm (now it is called the VC theory1) and the old one (classical statistics). Being 
involved in these discussions from the very beginning I feel that it is my obligation to 
describe the main events. 

The story related to the book, which I would like to tell, is the story of how it 
is difficult to overcome existing prejudices (both scientific and social), and how one 
should be careful when evaluating and interpreting new technical concepts. 

This story can be split into three parts that reflect three main ideas in the develop­
ment of empirical inference science: from the pure technical (mathematical) elements 
of the theory to a new paradigm in the philosophy of generalization. 

1 VC theory is an abbreviation for Vapnik-Chervonenkis theory. This name for the corresponding theory 
appeared in the 1990s after EDBED was published. 
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406 Preface 

The first part of the story, which describes the main technical concepts behind the 
new mathematical and philosophical paradigm, can be titled 

Realism and Instrumentalism: Classical Statistics and VC Theory 

In this part I try to explain why between 1960 and 1980 a new approach to empirical 
inference science was developed in contrast to the existing classical statistics approach 
developed between 1930 and 1960. 

The second part of the story is devoted to the rational justification of the new ideas 
of inference developed between 1980 and 2000. It can be titled 

Falsifiability and Parsimony: VC Dimension and the Number of Entities 

It describes why the concept of VC falsifiability is more relevant for predictive gener­
alization problems than the classical concept of parsimony that is used both in classical 
philosophy and statistics. 

The third part of the story, which started in the 2000s can be titled 

Noninductive Methods of Inference: Direct Inference Instead of Generalization 

It deals with the ongoing attempts to construct new predictive methods (direct infer­
ence) based on the new philosophy that is relevant to a complex world, in contrast to 
the existing methods that were developed based on the classical philosophy introduced 
for a simple world. 

I wrote this Afterword with my students' students in mind, those who just began 
their careers in science. To be successful they should learn something very important 
that is not easy to find in academic publications. 

In particular they should see the big picture: what is going on in the development 
of this science and in closely related branches of science in general (not only about 
some technical details). They also should know about the existence of very intense 
paradigm wars. They should understand that the remark of Cicero, "Among all fea­
tures describing genius the most important is inner professional honesty", is not about 
ethics but about an intellectual imperative. They should know that Albert Einstein's 
observation about everyday scientific life that "Great spirits have always encountered 
violent opposition from mediocre minds," is still true. Knowledge of these things can 
help them to make the right decisions and avoid the wrong ones. Therefore I wrote a 
fourth part to this Afterword that can be titled 

The Big Picture. 

This, however, is an extremely difficult subject. That is why it is wise to avoid it in 
technical books, and risky to discuss it commenting on some more or less recent events 
in the development of the science. 

Writing this Afterword was a difficult project for me and I was able to complete it 
in the way that it is written due to the strong support and help of my colleagues Mike 
Miller, David Waltz, Bernhard Scholkopf, Leon Bottou, and Ilya Muchnik. 

I would like to express my deep gratitude to them. 

Princeton, New Jersey, 
November 2005 

Vladimir Vapnik 



CONTENTS 

1 REALISM AND INSTRUMENTALISM: CLASSICAL STATISTICS AND VC THE-

ORY (1960-1980) 411 
1.1 The Beginning . . . . . . . . . . . . . 411 

I. 1.1 The Perceptron . . . . . . . . . 412 
1.1.2 Uniform Law of Large Numbers 412 

1.2 Realism and Instrumentalism in Statistics and the Philosophy of Science 414 
1.2.1 The Curse of Dimensionality and Classical Statistics . . . 414 
1.2.2 The Black Box Model . . . . . . . . . . . . . . . . . . . 4 I 6 
1.2.3 Realism and Instrumentalism in the Philosophy of Science 417 

1.3 Regularization and Structural Risk Minimization 418 
1.3.1 Regularization of Ill-Posed Problems 418 
1.3.2 Structural Risk Minimization . 421 

1.4 The Beginning of the Split Between Classical Statistics and Statistical 
Leaming Theory 422 

1.5 The Story Behind This Book 423 

2 FALSIFIABILITY AND PARSIMONY: VC DIMENSION AND THE NUMBER OF 

ENTITIES ( 1980-2000) 425 
2.1 Simplification of VC Theory 425 
2.2 Capacity Control . . . . 427 

2.2.1 Bell Labs . . . . . . 427 
2.2.2 Neural Networks . . 429 
2.2.3 Neural Networks: The Challenge 429 

2.3 Support Vector Machines (SVMs) . . . . 430 
2.3.1 Step One: The Optimal Separating Hyperplane 430 
2.3.2 The VC Dimension of the Set of p-Margin Separating Hyper-

planes . . . . . . . . . . . . . . . . . . . . . 431 
2.3.3 Step Two: Capacity Control in Hilbert Space 432 

407 



408 

2.3.4 Step Three: Support Vector Machines ..... 
2.3.5 SVMs and Nonparametric Statistical Methods . 

2.4 An Extension of SVMs: SVM+ . . . . . . 
2.4.1 Basic Extension of SVMs . . . . . . 
2.4.2 Another Extension of SVM: SVM,+ 
2.4.3 Learning Hidden Information .... 

2.5 Generalization for Regression Estimation Problem 
2.5.1 SVM Regression .. 
2.5.2 SVM+ Regression 
2.5.3 SVM,+ Regression. 

2.6 The Third Generation . . . . 

2. 7 Relation to the Philosophy of Science 
2.7.1 Occam's Razor Principle . 
2. 7 .2 Principles of Falsifiability . . 
2.7.3 Popper's Mistakes ..... . 
2.7.4 Principle ofVC Falsifiability. 
2.7.5 Principle of Parsimony and VC Falsifiability 

2.8 Inductive Inference Based on Contradictions . . . . . 
2.8.1 SVMs in the Universum Environment . . . . 
2.8.2 The First Experiments and General Speculations 

CONTENTS 

433 
436 
438 
438 
441 
441 
443 
443 
445 
445 
446 
448 
448 
449 
450 
451 
452 
453 
454 
457 

3 NONINDUCTIVE METHODS OF INFERENCE: DIRECT INFERENCE INSTEAD 

OF GENERALIZATION (2000-· · ·) 459 
3.1 Inductive and Transductive Inference . . . . . . . . . . . . . . . 459 

3.1.1 Transductive Inference and the Symmetrization Lemma 460 
3.1.2 Structural Risk Minimization for Transductive Inference 461 
3.1.3 Large Margin Transductive Inference . . . . . 
3.1.4 Examples of Transductive Inference . . . . . . . . . 
3.1.5 Transductive Inference Through Contradictions . . . 

3.2 Beyond Transduction: The Transductive Selection Problem . 
3.2.1 Formulation of Transductive Selection Problem . 

3.3 Directed Ad Hoc Inference (DAHi) 
3.3.1 The Idea Behind DAHi ............. . 

462 
464 
465 
468 
468 
469 
469 

3.3.2 Local and Semi-Local Rules . . . . . . . . . . . 469 
3.3.3 Estimation of Conditional Probability Along the Line . 471 
3.3.4 Estimation of Cumulative Distribution Functions 472 
3.3.5 Synergy Between Inductive and Ad Hoc Rules 473 
3.3.6 DAHi and the Problem of Explainability 474 

3.4 Philosophy of Science for a Complex World . . . 474 
3.4.1 Existence of Different Models of Science 474 
3.4.2 Imperative for a Complex World . . . . . 476 
3.4.3 Restrictions on the Freedom of Choice in Inference Models 477 
3.4.4 Metaphors for Simple and Complex Worlds . . . . . . . . . 478 



CONTENTS 

4 THE BIG PICTURE 

4.1 Retrospective of Recent History . . . . . . . . . . . . . . . 
4.1.1 The Great 1930s: Introduction of the Main Models . 

409 

479 
479 
479 

4.1.2 The Great 1960s: Introduction of the New Concepts 482 
4.1.3 The Great 1990s: Introduction of the New Technology 483 
4.1.4 The Great 2000s: Connection to the Philosophy of Science 484 
4.1.5 Philosophical Retrospective 484 

4.2 Large Scale Retrospective . 484 
4.2.1 Natural Science . 485 
4.2.2 
4.2.3 

Metaphysics 
Mathematics . . 

485 
486 

4.3 Shoulders of Giants . . . 487 
4.3.1 Three Elements of Scientific Theory 487 
4.3.2 Between Trivial and Inaccessible . . 488 
4.3.3 Three Types of Answers . . . . . . 489 
4.3.4 The Two-Thousand-Year-Old War Between Natural Science 

and Metaphysics . . . . . . . 490 
4.4 To My Students' Students. . . . . . . . . . . . 491 

4.4.1 Three Components of Success . . . . . 491 
4.4.2 The Misleading Legend About Mozart . 492 
4.4.3 Horowitz's Recording of Mozart's Piano Concerto 493 
4.4.4 Three Stories . . . . . . . . . . . . . . . . . . . . 493 
4.4.5 Destructive Socialist Values . . . . . . . . . . . . 494 
4.4.6 Theoretical Science Is Not Only a Profession - It Is a Way of 

Life 497 
BIBLIOGRAPHY . 

INDEX ..... . 

499 
502 



Chapter 1 

REALISM AND INSTRUMENTALISM: 

CLASSICAL STATISTICS AND VC THEORY 

( 1960-1980) 

1.1 THE BEGINNING 

In the history of science two categories of intellectual giants played an important role: 

(I) The giants that created the new models of nature such as Lavoisier, Dirac, and 
Pasteur; 

(2) The giants that created a new vision, a new passion, and a new philosophy for 
dealing with nature such as Copernicus, Darwin, Tsiolkovsky, and Wiener. 

In other words, there are giants who created new technical paradigms, and giants 
who created new conceptual (philosophical) paradigms. Among these, there are unique 
figures who did both, such as Isaac Newton and Albert Einstein. 

Creating a new technical paradigm is always difficult. However, it is much more 
difficult to change a philosophical paradigm. To do this sometimes requires several 
generations of scientists.' Even now one can see the continuation of the old paradigm 
wars in articles discussing (in a negative way) the intellectual heritage of the great 
visionaries Charles Darwin, Albert Einstein, Norbert Wiener, and Isaac Newton. 

My story is about attempts to shift one of the oldest philosophical paradigms re­
lated to the understanding of human intelligence. Let me start with the vision Wiener 
described in his book Cybernetics. The main message of this book was that there are no 

1 Fortunately scientific generations change reasonably fast. about every ten years. 
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big conceptual differences between solving intellectual problems by the brain or by a 
computer, and that it is possible to use computers to solve many intellectual problems. 

Today every middle school student will agree with that (five scientific generations 
have passed since Wiener's time!). However, 50 years ago even such giants as Kol­
mogorov hesitated to accept this point of view. 

1. 1. 1 THE PERCEPTRON 

One of the first scientific realizations of Wiener's idea was a model of how the brain 
learns introduced by Rosenblatt. He created a computer program called the "Percep­
tron" and successfully checked it on the digit recognition problem. Very soon Novikoff 
proved that the Perceptron algorithm (inspired by pure neurophysiology) constructs a 
hyperplane in some high-dimensional feature space that separates the different cate­
gories of training vectors. 

It should be mentioned that models of how the brain generalizes and different pat­
tern recognition algorithms both existed at the time of the Perceptron. These algo­
rithms demonstrated success in solving simple generalization problems (for example 
Selfridge's Pandemonium, or Steinbuch's Learning Matrix). 

However, after Rosenblatt's Perceptron and Novikoff's theorem, it became clear 
that complex biological models can execute very simple mathematical ideas. Therefore 
it may be possible to understand the principles of the organization of the brain using 
abstract mathematical arguments applied to some general mathematical constructions 
(this was different from analysis of specific technical models suggested by physiolo­
gists). 

1.1.2 UNIFORM LAW OF LARGE NUMBERS 

The Novikoff theorem showed that a model of the brain described in standard physio­
logical terms ("neurons," "reward and punishment," "stimulus") executes a very simple 
mathematical idea - it constructs a hyperplane that separates two different categories 
of data in some mathematical space. More generally, it minimizes in a given set of 
functions an empirical risk functional. 

If it is true that by minimizing the empirical risk one can generalize, then one 
can construct more efficient minimization algorithms than the one that was used by 
the Perceptron. Therefore in the beginning of the 1960s many such algorithms were 
suggested. In particular Alexey Chervonenkis and I introduced the optimal separating 
hyperplane that was more efficient for solving practical problems than the Perceptron 
algorithm (especially for problems with a small sample size). In the 1990s this idea 
became a driving force for SVMs (we will discuss SVMs in Chapter 2, Section 2.3). 
However, just separation of the training data does not guarantee success on the test data. 
One can easily show that good separating of the training data is a necessary condition 
for the generalization. But what are the sufficient conditions? 

This led to the main question of learning theory: 
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When does separation of the training data lead to generalization? 

This question was not new. The problem, "How do humans generalize?" (What is 
the model of induction? Why is the rule that is correct for previous observations also 
correct for future observations?) was discussed in classical philosophy for many cen­
turies. Now the same question - but posed for the simplest mathematical model of 
generalization, the pattern recognition problem - became the subject of interest. 

In the beginning of the 1960s many researchers including Chervonenkis and I be­
came involved in such discussions. We connected this question with the existence of 
uniform convergence of frequencies to their probabilities over a given set of events. To 
find the conditions that guarantee the generalization for the pattern recognition prob­
lem, it is sufficient to find the conditions for such convergence. 

Very quickly we constructed a theory for uniform convergence over sets with a 
finite number of events (1964) and in four years we obtained the general answer, the 
necessary and sufficient conditions for uniform convergence for any (not necessarily 
finite) set of events. This path is described in EDBED. 

What was not known at the time EDBED was written is that the uniform conver­
gence describes not only sufficient conditions for generalization but also the necessary 
conditions: 

Any algorithm that uses training data to choose a decision rule from the given 
admissible set of rules must satisfy it. 

It took us another 20 years to prove this fact. In 1989 we proved the main theorem 
of VC theory that states:2 

If the necessary and sufficient conditions for uniform convergence are not valid, 
that is, if the VC entropy over the number of observations does not converge to 
zero, 

H~(£) - c ..J- 0 
£ r ' 

then there exists a subspace X* of the space Rn whose probability measure is 
equal to c, 

P(X*) = c, 

such that almost any sample of vectors xi, ... , x'Z, of arbitrary size k from the 
subspace X* can be separated in all 2k possible ways by the functions from the 
admissible set of indicator functions f(x, a), a E A. (See also EDBED, Chapter 
6 Section 7 for the definition of VC entropy). 

This means that if uniform convergence does not take place then any algorithm that 
does not use additional prior information and picks up one function from the set of 
admissible functions cannot generalize. 3 

2Below for the sake of simplicity we formulate the theorem for the pattern recognition case (sets of 
indicator functions), but the theorem has been proven for any set of real-valued functions [121;140]. Also to 
simplify formulation of the theorem we used the concept of "two-sided uniform convergence" discussed in 
EDBED instead of "one-sided" introduced in [121). 

3This, however, leaves an opportunity to use averaging algorithms that possess a priori information about 
the set of admissible functions. In other words VC theory does not intersect with Bayesian theory. 
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If, however, the conditions for uniform convergence are valid then (as shown in 
Chapter 6 of EDBED) for any fixed number of observations one can obtain a bound 
that defines the guaranteed risk of error for the chosen function. 

Using classical statistics terminology the uniform convergence of the frequencies 
to their probability over a given set of events can be called the uniform law of large 
numbers over the corresponding set of events. (The convergence of frequencies to their 
corresponding probability for a fixed event (the Bernoulli law) is called the law oflarge 
numbers.) 

Analysis of Bernoulli's law of large numbers has been the subject of intensive re­
search since the 1930s. Also in the 1930s it was shown that for one particular set 
of events the uniform law of large numbers always holds. This fact is the Glivenco­
Cantelli theorem. The corresponding bound on the rate of convergence forms Kol­
mogorov's bound. Classical statistics took advantage of these results (the Glivenco­
Cantelli theorem and Kolmogorov's bound are regarded as the foundation of theoretical 
statistics). 

However, to analyze the problem of generalization for pattern recognition, one 
should have an answer to the more general question: 

What is the demarcation line that describes whether the uniform law of large 
numbers holds? 

The obtaining of the existence conditions for the uniform law of large numbers and 
the corresponding bound on the rate of convergence was the turning point in the studies 
of empirical inference. 

This was not recognized immediately, however. It took at least two decades to 
understand this fact in full detail. We will talk about this in what follows. 

1.2 REALISM AND INSTRUMENTALISM IN STATISTICS 

AND THE PHILOSOPHY OF SCIENCE 

1.2.1 THE CURSE OF DIMENSIONALITY AND CLASSICAL STATISTICS 

The results of successfully training a Perceptron (which constructed decision rules for 
the ten-class digit classification problem in 400-dimensional space, using 512 training 
examples) immediately attracted the attention of the theorists. 

In classical statistics a problem analogous to the pattern recognition problem was 
considered by Ronald Fisher in the 1930s, the so-called problem of discriminant analy­
sis. Fisher considered the following problem. One knows the generating model of data 
for each class, the density function defined up to a fixed number of parameters (usually 
Gaussian functions). The problem was: given the generative models (the model how 
the data are generated known up to values of its parameters) estimate the discriminative 
rule. The proposed solution was: 

First, using the data, estimate the parameters of the statistical laws and 
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Second, construct the optimal decision rule using the estimated parameters. 

To estimate the densities, Fisher suggested the maximum likelihood method. 

This scheme later was generalized for the case when the unknown density belonged 
to a nonparametric family. To estimate these generative models the methods of non­
parametric statistics were used (see example in Chapter 2 Section 2.3.5). However, 
the main principle of finding the desired rule remained the same: first estimate the 
generative models of data and then use these models to find the discriminative rule. 

This idea of constructing a decision rule after finding the generative models was 
later named the generative model of induction. This model is based on understanding 
of how the data are generated. In a wide philosophical sense an understanding of how 
data are generated reflects an understanding of the corresponding law of nature. 

By the time the Perceptron was introduced, classical discriminant analysis based 
on Gaussian distribution functions had been studied in great detail. One of the impor­
tant results obtained for a particular model (two Gaussian distributions with the same 
covariance matrix) is the introduction of a concept called the Mahalanobis distance. A 
bound on the classification accuracy of the constructed linear discriminant rule depends 
on a value of the Mahalanobis distance. 

However, to construct this model using classical methods requires the estimation of 
about 0.5n2 parameters where n is the dimensionality of the space. Roughly speaking, 
to estimate one parameter of the model requires C examples. Therefore to solve the 
ten-digit recognition problem using the classical technique one needs::::, 10(400) 2C 
examples. The Perceptron used only 512. 

This shocked theorists. It looked as if the classical statistical approach failed to 
overcome the curse of dimensionality in a situation where a heuristic method that min­
imized the empirical loss easily overcame this curse. 

Later the methods based on the idea of minimizing different type of empirical losses 
were called the predictive (discriminative) models of induction, in contrast to the clas­
sical generative models. In a wide philosophical sense predictive models do not nec­
essarily connect prediction of an event with understanding of the law that governs the 
event; they are just looking for a function that explains the data best.4 

The VC theory was constructed to justify the empirical risk minimization induction 
principle: according to VC theory the generalization bounds for the methods that min­
imize the empirical loss do not depend directly on the dimension of the space. Instead 
they depend on the so-called capacity factors of the admissible set of functions - the 
VC entropy, the Growth function, or the VC dimension - that can be much smaller 
than the dimensionality. (In EDBED they are called Entropy and Capacity; the names 
VC entropy and VC dimension as well as VC theory appeared later due to R. Dudley.) 

4It is interesting to note that Fisher suggested along with the classical generative models (which he was 
able to justify), the heuristic solution (that belongs to a discriminative model) now called Fisher's linear dis­
criminant function. This function minimizes some empirical loss functional, whose construction is similar 
to the Mahalanobis distance. For a long time this heuristic of Fisher was not considered an important result 
(it was ignored in most classical statistics textbooks). Only recently (after computers appeared and statisti­
cal learning theory became a subject not only of theoretical but also of practical justification) did Fisher's 
suggestion become a subject of interest. 
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0 

0 0 

Figure 1. 1: Two very different rules can make a similar classification. 

Why do the generative and discriminative approaches lead to different results? 
There are two answers to this very important question which can be described from 
two different points of view: technical and philosophical ( conceptual). 

1.2.2 THE BLACK Box MODEL 

One can describe the pattern recognition problem as follows. There exists a black box 
BB that when given an input vector Xi returns an output Yi which can take only two 
valuesyi E {-1,+1}. The problem is: given the pairs (Yi,xi),i = 1, ... ,£(the 
training data) find a function that approximates the rule that the black box uses. 

Two different concepts of what is meant by a good approximation are possible: 

(1) A good approximation of the BB rule is a function that is close (in a metric of 
functional space) to the function that the BB uses. (In the classical setting often 
we assume that the BB uses the Bayesian rule.) 

(2) A good approximation of the BB rule is a function that provides approximately 
the same error rate as the one that the BB uses (provides the rule that predicts 
the outcomes of the BB well). 

In other words, in the first case one uses a concept of closeness in the sense of being 
close to the true function used by the BB (closeness in a metric space of functions), 
while in the second case one uses a concept of closeness in the sense of being close 
to the accuracy of prediction (closeness in functionals). These definitions are very 
different. 

In Figure 1.1 there are two different categories of data separated by two different 
rules. Suppose that the straight line is the function used by the black box. Then from 
the point of view of function estimation, the polynomial curve shown in Figure 1.1 is 
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very different from the line and therefore cannot be a good estimate of the true BB rule. 
From the other point of view, the polynomial rule separates the data well (and as we 
will show later can belong to a set with small VC dimension) and therefore can be a 
good instrument for prediction. 

The lesson the Perceptron teaches us is that sometimes it is useful to give up the 
ambitious goal of estimating the rule the BB uses (the generative model of induction). 
Why? 

Before discussing this question let me make the following remark. The problem 
of pattern recognition can be regarded as a generalization problem: using a set of data 
(observations) find a function5 (theory). The same goals (but in more complicated 
situations) arise in the classical model of science: using observation of nature find 
the law. One can consider the pattern recognition problem as the simplest model of 
generalization where observations are just a set of i.i.d. vectors and the admissible 
laws are just a set of indicator functions. Therefore it is very useful to apply the ideas 
described in the general philosophy of induction to its simplest model and vice versa, 
to understand the ideas that appear in our particular model in the general terms of the 
classical philosophy. Later we will see that these interpretations are nontrivial. 

I .2.3 REALISM AND INSTRUMENTALISM IN THE PHILOSOPHY OF SCIENCE 

The philosophy of science has two different points of view on the goals and the results 
of scientific activities. 

(1) There is a group of philosophers who believe that the results of scientific dis­
covery are the real laws that exist in nature. These philosophers are called the 
realists. 

(2) There is another group of philosophers who believe the laws that are discovered 
by scientists are just an instrument to make a good prediction. The discovered 
laws can be very different from the ones that exist in Nature. These philosophers 
are called the instrumentalists. 

The two types of approximations defined by classical discriminant analysis (using 
the generative model of data) and by statistical learning theory (using the function 
that explains the data best) reflect the positions of realists and instrumentalists in our 
simple model of the philosophy of generalization, the pattern recognition model. Later 
we will see that the position of philosophical instrumentalism played a crucial role in 
the success that pattern recognition technology has achieved. 

However, to explain why this is so we must first discuss the theory of ill-posed 
problems, which in many respects describes the relationship between realism and in­
strumentalism in very clearly defined situations. 

5The pattern recognition problem can be considered as the simplest generalization problem, since one 
has to find the function in a set of admissible indicator functions (that can take only two values, say I and -1. 
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1.3 REGULARIZATION AND STRUCTURAL RISK 

MINIMIZATION 

1.3.1 REGULARIZATION OF ILL-POSED PROBLEMS 

In the beginning of the 1900s, Hadamard discovered a new mathematical phenomenon. 
He discovered that there are continuous operators A that map, in a one-to-one manner, 
elements of a space f to elements of a space F, but the inverse operator A-1 from 
the space F to the space f can be discontinuous. This means that there are operator 
equations 

Af=F (1.1) 

whose solution in the set of functions f E <I> exists, and is unique, but is unstable. (See 
Chapter 1 of EDED). That is, a small deviation F + D.F of the (known) right-hand 

side of the equation can lead to a big deviation in the solution. Hadamard thought that 
this was just a mathematical phenomenon that could never appear in real-life problems. 

However, it was soon discovered that many important practical problems are described 
by such equations. 

In particular, the problem of solving some types of linear operator equations (for 

example, Fredholm's integral equation of the second order) are ill-posed (see Chapter 1, 

Section 5 of EDBED). It was shown that many geophysical problems require solving 
(ill-posed) integral equations whose right-hand side is obtained from measurements 
(and therefore is not very accurate). 

For us it is important that ill-posed problems can occur when one tries to estimate 

unknown reasons from observed consequences. 
In 1943 an important step in understanding the structure of ill-posed problems was 

made. Tikhonov proved the so-called inverse operator lemma: 

Let A be a continuous one-to-one operator from E 1 to E2. Then the inverse 

operator A-1 defined on the images F of a compact set f E <I>* is stable. 

This means that if one possesses very strong prior knowledge about the solution (it 
belongs to a known compact set of functions), then it is possible to solve the equation. 
It took another 20 years before this lemma was transformed into specific approaches 
for solving ill-posed problems. 

In 1962 Ivanov [21] suggested the following idea of solving operator equation ( 1.1 ). 

Consider the functional O.(J) 2: 0 that possesses the following two properties 

(1) For any c 2: 0 the set of functions satisfying the constraint 

0.(j) ~ C 

is convex and compact. 

(2) The solution Jo of Equation (1.1) belongs to some compact set 

O.(Jo) ~ co 

(where the constant eo > 0 may be unknown). 

(1.2) 

(1.3) 
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Under these conditions Ivanov proved that there exists a strategy for choosing c = 
c(c) depending on the accuracy of the right-hand side ll6FIIE2 < E such that the 
sequence of minima of the functional 

R = IIAJ- FIIE2 (l.4) 

subject to the constraints 
O(f):::; c(c) (1.5) 

converges to the solution of the ill-posed problem (1. 1) as E approaches zero. 

In 1963 Tikhonov [55] proved the equivalent theorem that states: under conditions 
(1.2) and (1.3) defined on the functional O(J), there exists a function% = 1(1:) such 
that the sequence of minima of the functionals 

( 1.6) 

converges to the solution of the operator equation (l. 1) as E approaches zero.6 

Both these results can be regarded as "comforting ones" since for any E (even very 
small) one can guarantee nothing (the theorems guarantee only convergence of the 
sequence of solutions). 

Therefore, one should try to avoid solving ill-posed problems by replacing them (if 
possible) with well-posed problems. 

Keeping in mind the structure of ill-posed problems our problem of finding the BB 
solution can be split into two stages: 

(l) Among a given set of admissible functions find a subset of functions that pro­
vides an expected loss that is close to the minimal one. 

(2) Among functions that provide a small expected loss find one that is close to the 
BB function. 

The first stage does not lead to an ill-posed problem, but the second stage might (if the 
corresponding operator is unstable). 

The realist view requires solving both stages of the problem, while the instrumen­
talist view requires solving only the first stage and choosing for prediction any function 
that belongs to the set of functions obtained. 

Technically, ill-posed problems appear in classical discriminant analysis as soon as 
one connects the construction of a discriminant function with the density estimation 
problem. 

By definition, the density (if it exists) is a solution of the following equation 

1x p(x')dx' = F(x), ( 1.7) 

6There is one more equivalent idea of how to solve ill-posed problems proposed in 1962 by Phillips [ 166]: 
minimize the functional r!(f) satisfying the conditions defined above subject to the constraints 

IIAJ - Fll 2 :S: E. 
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where F ( x) is a cumulative distribution function. 
Therefore to estimate the density from the data 

means to solve Fredholm's equation (1.7) when the cumulative distribution function 
F(x) is unknown but the data are given. One can construct an approximation to the 
unknown cumulative distribution function and use it as the right hand side of the equa­
tion. For example, one can construct the empirical distribution function 

where 

1 R 

Fe(x) = R L 0(x - xi), 
i=l 

0(u) = { ~ ifu 2:: 0 
ifu < 0 

(1.8) 

It is known from Kolmogorov's bound for the Glivenco-Cantelli theorem that the 
empirical distribution function converges exponentially fast (not only asymptotically 
but for any set of fixed observations) to the desired cumulative distribution function. 
Using the empirical distribution function constructed from the data, one can try to solve 
this equation. 

Note that this setting of the density estimation problem cannot be avoided since it 
reflects the definition of the density. Therefore in both parametric or nonparametric 
statistics, one has to solve this equation. The only difference is how the set of functions 
in which one is looking for the solution is defined: in a "narrow set of parametric 
functions" or in a "wide set of non-parametric functions".7 

However, this point of view was not clearly developed in the framework of classi­
cal statistics, since both theories (parametric and nonparametric) of density estimation 
were constructed before the theory of solving ill-posed problems was introduced. 

The general setting of the density estimation problem was described for the first 
time in EDBED. Later in Chapter 2, Section 2.3 when we discuss the SVM method, 
we will consider a pattern recognition problem, and show the difference between the 
solutions obtained by nonparametric statistics (based on the philosophy of realism) and 
by an SVM solution (based on the philosophy of instrumentalism). 

REGULARIZATION TECHNIQUES 

The regularization theory as introduced by Tikhonov suggests minimizing the equation 

(1.9) 

Under very specific requirements on the set of functions defined both by the functional 
fl(!) and the value c > 0 

fl(!) ~ C (1.10) 

7The maximum likelihood method suggested by Fisher is valid just for a very narrow admissible set of 
functions. It is already invalid, for example, for the set of densities defined by the sum of two Gaussians with 
unknown parameters (see example [139], Section 1.7.4.) 
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(for any c > 0 the set should be convex and compact), and under the condition that the 
desired solution belongs to the set with some fixed c0 , it is possible to define a strategy 
of choosing the values of the parameter '°Y that asymptotically lead to the solution. 

1.3.2 STRUCTURAL RISK MINIMIZATION 

The Structural Risk Minimization (SRM) principle generalizes the Ivanov scheme in 
two ways: 

( 1) It considers a structure on any sets of functions (not necessarily defined by in­
equality ( 1.5)). 

(2) It does not require compactness or convexity on the set of functions that define 
the element of the structure. It also does not require the desired solution belong­
ing to one of the elements of the structure. 

The only requirement is that every element of the nested sets possesses a finite 
VC dimension (or other capacity factor). 

Under these general conditions the risks provided by functions that minimize the 
VC bound converge to the smallest possible risk (even if the desired function belongs 
to the closure of the elements). Also, for any fixed number of observations it defines 
the smallest guaranteed risk. 

In the early 1970s Chervonenkis and I introduced SRM for sets of indicator func­
tions (used in solving pattern recognition problems) [13]. In EDBED the SRM princi­
ple was generalized for sets of real-valued functions (used in solving regression esti­
mation problems). 

Therefore the difference between regularization and structural risk minimization 
can be described as follows. 

Regularization was introduced for solving ill-posed problems. It requires strong 
knowledge about the problem to be solved (the solution has to belong to the 
compact (1.10) defined by some constant c) and (generally speaking) does not 
have guaranteed bounds for a finite number of observations. 

Structural risk minimization was introduced for solving predictive problems. It is 
more general (does not require strong restrictions of admissible set of functions) 
and has a guaranteed bound for a finite number of observations. 

Therefore if the regularization method is the main instrument for solving ill-posed 
problems using the philosophical realism approach, then the structural risk minimiza­
tion method is the main instrument for solving problems using the philosophical in­
strumentalism approach. 

REMARK. In the late 1990s the concept of regularization started to be used in the 
general framework of minimizing the functionals (1.9) to solve predictive generaliza­
tion problems. The idea was that under any definition of the functional f!(f) there 
exists a parameter '°Y which leads to convergence to the desired result. This is, however, 
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incorrect: first, it depends on the concept of convergence; second, there are functionals 
(for which the set of functions (1.5) can violate finiteness of capacity conditions) that 
do not lead to convergence in any sense. 

1.4 THE BEGINNING OF THE SPLIT BETWEEN 

CLASSICAL STATISTICS AND STATISTICAL 

LEARNING THEORY 

The philosophy described above was more or less clear by the end of the 1960s. 8 By 
that time there was no doubt that in analyzing the pattern recognition problem we came 
up with a new direction in the theory of generalization. The only question that remained 
was how to describe this new direction. Is this a new branch of science or is it a further 
development in classical statistics? This question was the subject of discussions in the 
seminars at the Institute of Control Sciences of the Academy of Sciences of USSR 
(Moscow). 

The formal decision, however, was made when it came time to publish these results 
in the Reports of Academy of Sciences of USSR [143]. The problem was in which 
section of Reports it should be published - in "Control Sciences (Cybernetics)" or in 
"Statistics". It was published as a contribution in the "Control Sciences" section. 

This is how one of the leading statisticians of the time, Boris Gnedenco, explained 
why it should not be published in the "Statistics" section: 

It is true that this theory came from the same roots and uses the same formal 
tools as statistics. However, to belong to the statistical branch of science this 
is not enough. Much more important is to share the same belief in the models 
and to share the same philosophy. Whatever you are suggesting is not in the 
spirit of what I am doing or what A. Kolmogorov is doing. It is not what our 
students are doing nor will it be what the students of our students do. Therefore, 
you must have your own students, develop your own philosophy, and create your 
own community. 

More than 35 years have passed since this conversation. The more time passed, the 
more impressed I became with Gnedenco's judgment. The next three decades (1970s, 
1980s, and 1990s) were crucial for developments in statistics. After the shocking dis­
covery that the classical approach suffers from the curse of dimensionality, statisticians 
tried to find methods that could replace classical methods in solving real-life prob­
lems. During this time statistics was split into two very different parts: theoretical 
statistics that continued to develop the classical paradigm of generative models, and 
applied statistics that suggested a compromise between theoretical justification of the 
algorithms and heuristic approaches to solving real-life problems. They tried to justify 
such a position by inventing special names for such activities (exploratory data anal­
ysis), where in fact the superiority of common sense over theoretical justification was 
declared. However, they never tried to construct or justify new algorithms using VC 

8It was the content of my first book Pattern Recognition Problem published in 1971 (in Russian). 
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theory. Only after SVM technology became a dominant force in data mining meth­
ods did they start to use its technical ideas (but not its philosophy) to modify classical 
algorithms.9 

Statistical learning theory found its home in computer science. In particular, one 
of the most advanced institutions where SLT was developing in the l 970s and l 980s 
was the Institute of Control Sciences of the Academy of Sciences of USSR. Three 
different groups, each with different points of view on the generalization problem, 
became involved in such research: the Aizerman-Braverman-Rozonoer's group, the 
Tsypkin group, and the Vapnik-Chervonenkis group. 

Of these groups ours was the youngest: I just got my PhD ( candidate of science) 
thesis, and Chervonenkis got his several years later. Even so, our research direction 
was considered one of the most promising. In order to create a VC community I was 
granted permission from the Academy of Sciences to have my own PhD students. 10 

From this beginning we developed a statistical learning community. I had several 
very strong students including Tamara Glaskov, Anatoli Mikhalsky, Anatoli Stehanuyk, 
Alexander Sterin, Fellix Aidu, Sergey Kulikov, Natalia Markovich, Ada Sorin, and Alla 
Juravel who developed both machine learning theory and effective machine learning 
algorithms applied to geology and medicine. 

By the end of the 1960s my department head, Alexander Lerner, made an extremely 
important advance in the application of machine learning: he convinced the high-level 
bureaucrats to create a laboratory for the application of machine learning techniques in 
medicine. 

In 1970 such a laboratory was created in the State Oncology Centre. The director 
of the laboratory was my former PhD student, Tamara Glaskov. 

It is hard to overestimate how much this laboratory accomplished during this time. 
Only recently have the most advanced oncology hospitals in the West created groups 
to analyze clinical data. This was routine in USSR decades earlier. 

In beginning of the 1970s I prepared my doctoral thesis. 

1.5 THE STORY BEHIND THIS BOOK 

Government control under the Soviet Communist regime was total. One of its main 
modus operandi was to control who was promoted into more or less prominent posi­
tions. From the government bureaucrat's perspective a scientific degree (and especially 
a doctoral degree) holder possessed influence, and therefore they wanted to control 
who obtained this degree. 

The execution of such control was one of the obligations of the institution called 

9Statisticians did not recognise conceptual aspects of VC theory. Their criticism of this theory before 
SVM was that the VC bounds were too loose to be useful. Therefore the theory is not practical and to create 
new methods it is better to use common sense than the results of this theory. 

101n the Russian system there were two academic degrees: candidate of science (which is equivalent to 
the PhD degree in the United States) and doctor of science (which is equivalent to the Habilitation a Diriger 
des Recherches ( HDR) in France). Normally only doctors of science could have PhD students. I was granted 
this privilege and had to defend my doctoral thesis soon. 
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the Supreme Certifying Commission11 (SCC) closely related to the KGB. The rule 
was that any decision on any thesis defense made by any Scientific Councils anywhere 
in the country must be approved by this commission. If the SCC disapproved several 
decisions by a particular Scientific Council it could be dismissed. Therefore the normal 
policy of academic institutions was not to enter into conflict with the SCC. 

From the KGB's point of view I was a wrong person to obtain the doctoral level: I 
was not a member of the Communist Party, I was Jewish, my PhD adviser, Alexander 
Lerner, had applied for immigration to Israel and became a "refusenik," some of my 
friends were dissidents, and so on. 

In this situation everybody understood that the Institute would be in conflict with 
the SCC's mandate. Nevertheless the feeling was that the support of the scientific 
community would be so strong that the SCC would not start the battle. 

The SCC, however, reacted with a trick that to my knowledge was never used be­
fore: it requested that the Scientific Council change one of the reviewers to their trusted 
man who did his job: wrote a negative review. 

I had a long conversation with the Chairman of the Scientific Council, Yakov Tsyp­
kin, after he discussed the situation with the members of the Council. He told me that 
everyone on the Scientific Council understood what was going on and if I decided to 
defend my thesis the Scientific Council would unanimously support me. However, I 
had no chance of being approved by the SCC since they would have a formal reason to 
reject my thesis. Also they would have a formal reason to express distrust of the Sci­
entific Council of the Institute. In this situation the best solution was to withdraw my 
thesis and publish it as a book. However, since the names of the authors of books were 
also under the KGB's control (the authors should also be "good guys") I would only 
be able to publish the book if my name did not attract too much attention. This would 
allow the editor, Vladimir Levantovsky (who was familiar with this story), to success­
fully carry out all necessary procedures to obtain permission (from the institution that 
controls the press) to publish the book. 

So, I withdrew my thesis, rewrote it as a book, and due to the strong support of 
many scientists (especially Tsypkin), the editor Levantovsky was able to publish it (in 
Russian) in 1979. 

In 1982 the well known American statistician, S. Kotz, translated it into English 
under the title Estimation of Dependencies Based on Empirical Data which was pub­
lished by Springer. The first part of this volume is its reprint. 

The main message that I tried to deliver in the book was that classical statistics 
could not overcome the curse of dimensionality but the new approach could. I devoted 
three chapters of the book to different classical approaches and demonstrated that none 
of them could overcome the curse of dimensionality. Only after that did I describe the 
new theory. 

11 The Russian abbreviation is VAK. 



Chapter 2 

FALSIFIABILITY AND PARSIMONY: VC 
DIMENSION AND THE NUMBER OF ENTITIES 

( 1980-2000) 

2.1 SIMPLIFICATION OF VC THEORY 

For about ten years this book did not attract much attention either in Russia or in the 
West. It attracted attention later. 

In the meantime, in 1984 (five years after the publication of the original version 
of this book and two years after its English translation) an important event happened. 
Leslie Valiant published a paper where he described his vision of how learning theory 
should be built [122]. 

Valiant proposed the model that later was called the Probably Approximately Cor­
rect (PAC) learning model. In this model, the goal of learning is to find a rule that 
reasonably well approximates the best possible rule. One has to construct algorithms 
which guarantee that such a rule will be found with some probability (not necessarily 
one). In fact, the PAC model is one of the major statistical models of convergence, 
called consistency. It has been widely used in statistics since at least Fisher's time. 

Nevertheless Valiant's article was a big success. In the mid-1980s the general ma­
chine learning community was not very well connected to statistics. Valiant introduced 
to this community the concept of consistency and demonstrated its usefulness. The 
theory of consistency of learning processes as well as generalization bounds was the 
subject ofour 1968 and 1971 articles [143, 11], and was described in detail in our 1974 
book [12, 173] devoted to pattern recognition, and in a more general setting in EDBED. 
However, at that time these results were not well known in the West. 1 

1 In 1989 I met Valiant in Santa Cruz, and he told me that he did not know of our results when he wrote 
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In the 20th century, and especially in the second half of it, mass culture began to 
play an important role. For us it is important to discuss the "scientific component" of 
mass culture. 

With the increasing role of science in everyday life, the general public began to 
discuss scientific discoveries in different areas: physical science, computer science 
(cybernetics), cognitive science (pattern recognition), biology (genomics), and philos­
ophy. The discussions were held using very simplified scientific models that could 
be understood by the masses. Also scientists tried to appeal to the general public by 
promoting their philosophy using simplified models (for example, as has been done by 
Wiener). There is nothing wrong with this. 

However, when science becomes a mass profession, the elements of the scientific 
mass culture in some cases start to substitute for the real scientific culture: It is much 
easier to learn the slogans of the scientific mass culture than it is to learn many different 
concepts from the original scientific sources. Science and "scientific mass culture," 
however, are built on very different principles. In Mathematical Discoveries, Polya 
describes the principle of creating scientific mass culture observed by the remarkable 
mathematician Zermello. Here is the principle: 

Gloss over the essentials and attract attention to the obvious. 
Something that could remind this principle happened when (after appearance Valiant's 
article) the adaptation of ideas described in ED BED started. In the PAC adaptation the 
VC theory was significantly simplified by removing its essential parts. 

In EDBED the main idea was the necessary and sufficient aspects of the theory 
based on three capacity concepts: the VC entropy, the Growth function, and the VC 
dimension. It stresses that the most accurate bounds can be obtained based on the VC 
entropy concept. This, however, requires information about the probability measure. 
One can construct less accurate bounds that are valid for all probability measures. To 
do this one has to calculate the Growth function which can have a different form for 
different sets of admissible functions. The Growth function can be upper bounded by 
the standard function that depends on only one integer parameter (the VC dimension). 
This also decreases accuracy, but makes the bounds simpler. 

These three levels of the theory provide different possibilities for further develop­
ments in learning technology. For example, one can try to create theory for the case 
when the probability measure belongs to some specific sets of measures (say smooth 
ones), or one can try to find a better upper bound for the Growth function using a stan­
dard function that depends on say two (or more) parameters. This can lead to more 
accurate estimates and therefore to more advanced algorithms. The important compo­
nent of the theory described in ED BED was the structural risk minimization principle. 
It was considered to be the main driving force behind predictive learning technology. 

PAC theory started just from the definition of the VC dimension based on the com­
binatorial lemma used to estimate the bound for the Growth function (see EDBED, 
Chapter 6, Section A2). The main effort was placed on obtaining VC type bounds for 

his article, and that he even visited a conference at Moscow University to explain this to me. Unfortunately 
we never met in Moscow. After his article was published Valiant tried to find the computer science aspects 
of machine learning research suggesting analyzing the computational complexity of learning problems. In 
1990 he wrote [123): "If the computational requirements is removed from the definition then we are left with 
the notion of non-parametric inference in sense of statistics as discussed in particular by Vapnik [EDBED]." 
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different classes of functions (say for neural networks), and on the generalizations of 
the theory for the set of nonindicator functions. In most cases these generalizations 
were based on extensions of the VC dimension concept for real-valued functions made 
in the style described in EDBED. The exception was the fat-shattering concept [141] 
related to VC entropy for real-valued functions described in Chapter 7. 

In the early 1990s, some PAC researchers started to attack the VC theory. First, the 
VC theory was declared a "worst-case theory" since it is based on the uniform conver­
gence concept. In contrast to this "worst-case-theory" the development of "real-case 
theory" was announced. However, this is impossible (see Section 1.2 of this After­
word) since the (one-sided) uniform convergence forms the necessary and sufficient 
conditions for consistency of learning (that is also true for PAC learning). Then in the 
mid-l 990s an attempt was made to rename the Vapnik-Chervonenkis lemma (EDBED, 
Chapter 6, Sections 8 and A2) as the Sauer lemma. For the first time we published the 
formulation of this lemma in 1968 in the Reports of the Academy of Sciences of USSR 
[ 143]. In 1971, we published the corresponding proofs in the article devoted to the 
uniform law of large numbers [11]. In 1972, two mathematicians N. Sauer [130] and 
S. Shelah [131] independently proved this combinatorial lemma. 

Researchers, who in the 1980s learned from EDBED (or from our articles) both the 
lemma and its role in statistical learning theory, renamed it in the 1990s. 2 Why? 

My speculation is that renaming it was important for the dilution of VC theory and 
creating the following legend: 

In 1984 the PAC model was introduced. Early in statistics a concept called the 
VC dimension was developed. This concept plays an important role in the Sauer 
lemma, which is a key instrument in PAC theory. 

Now, due to new developments in the VC theory and the interest in the advanced 
topics of statistical learning theory, this legend has died, and as a result interest in PAC 
theory has significantly decreased. This is, however, a shame because the computa­
tional complexity aspects of learning stressed by Valiant remain relevant. 

2.2 CAPACITY CONTROL 

2.2. l BELL LABS 

In 1990 Larry Jackel, the head of the Adaptive Systems Research Department at AT&T 
Bell Labs, invited me to spend half a year with his group. It was a time of wide dis­
cussions on the VC dimension concept and its relationship to generalization problems. 
The obvious interpretation of the VC dimension was the number of free parameters that 
led to the curse of dimensionality. John Denker, a member of this department, showed, 

2N. Sauer did not have in mind statistics proving this lemma. This is the content of the abstract of 
his article: "P. Erdos ( oral communication) transmitted to me in Nice the following question: . . . (the 
j{)rmulation of the lemma) . .... In this paper we will answer this question in the affirmative by determining 
the exact upper bounds." 
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however, that the VC dimension is not necessarily the number of free parameters. He 
came up with the example 

y = 0{sinax}, x E R1, a E (O,oo) 

a set of indicator functions that has only one free parameter yet possesses an infinite 
VC dimension (see Section 2.7.5, footnote 7). In EDBED another situation was de­
scribed: when the VC dimension was smaller than the number of free parameters. 
These intriguing facts could lead to new developments in learning theory. 

Our department had twelve researchers. Six of them, L. Jackel, J. Denker, S. Solla, 
C. Burges, G. Nohl, and H.P. Graf were physicists, and six, Y. LeCun, L. Bottou, P. 
Simard, I. Guyon, B. Boser, and Y. Bengio were computer scientists. The main direc­
tion of research was to advance the understanding of pattern recognition phenomena. 
To do this they relied on the principles of research common in physics. 

The main principle of research in physics can be thought of as the complete oppo­
site of the Zermello principle for creating scientific mass culture. It can be formulated 
as follows: 

Find the essential in the nonobvious. 
The entire story of creating modem technology can be seen as an illustration of this 

principle. At the time when electricity, electromagnetic waves, annihilation, and other 
physical fundamentals were discovered they seemed to be insignificant elements of 
nature. It took a lot of joint efforts of theorists, experimental physicists and engineers 
to prove that these negligible artifacts are very important parts of nature and make it 
work. 

The examples given by Denker and another one described in EDBED (see Chapter 
10, Section 5) could be an indication that such a situation in machine learning is quite 
possible. 

The goal of our department was to understand and advance new general principles 
of learning that are effective for solving real-life problems. As a model problem for on­
going experiments, the department focused on developing automatic systems that could 
read handwritten digits. This task was chosen for a number of reasons. First, it was 
known to be a difficult problem, with traditional machine vision approaches making 
only slow progress. Second, lots of data were available for training and testing. And 
third, accurate solutions to the problem would have significant commercial importance. 

Initial success in our research department led to the creation of a development group 
supervised by Charlie Stenard. This group, which worked closely with us, had as a 
goal the construction of a machine for banks that could read handwritten checks from 
all over the world. Such a machine could not make too many errors (the number of 
errors should be comparable to the number made by humans). However, the machine 
could refuse to read some percentage of checks. 

I spent ten years with this department. During this time check reading machines 
became an important instrument in the banking industry. About 10% of checks in US 
banks are read by technology developed at Bell Labs. 

During these years the performance of digit recognition was significantly improved. 
However, it never happened that significant improvements in quality of classification 
were the results of smart engineering heuristics. All jumps in performance were results 
of advances in understanding fundamentals of the pattern recognition problem. 



2.2. Capacity Control 429 

2.2.2 NEURAL NETWORKS 

When I joined the department, the main instrument for pattern recognition was neural 
networks constructed by Yann LeCun, one of the originators of neural networks. For 
the digit recognition problem he designed a series of convolutional networks called 
LeNet. In the early 1990s this was a revolutionary idea. The traditional scheme of ap­
plying pattern recognition techniques was the following: a researcher constructs sev­
eral very carefully crafted features and uses them as inputs for a statistical paramet­
ric model. To construct the desired rule they estimated the parameters of this model. 
Therefore good rules in many respects reflected how smart the researcher was in con­
structing features. 

LeNet uses as input a high-dimensional vector whose coordinates are the raw image 
pixels. This vector is processed using a multilayer convolutional network with many 
free parameters. Using the back propagation technique, LeNet tunes the parameters to 
minimize the training loss. 3 

For the digit recognition problem, the rules obtained by LeNet were significantly 
better than any rules obtained by the classical style algorithms. This taught a great 
lesson: one does not need to go into the details of the decision rule; it is enough to 
create an "appropriate architecture" and an "appropriate minimization method" to solve 
the problem. 

2.2.3 NEURAL NETWORKS: THE CHALLENGE 

The success of neural nets in solving pattern recognition problems was a challenge for 
theorists. Here is why. When one is trying to understand how the brain is working two 
different questions arise: 

(1) What happens? What are the principles of generalization that the brain executes? 

(2) How does it happen? How does the brain execute these principles? 

Neural networks attempt to answer the second question using an artificial brain model 
motivated by neurophysiologists. 

According to the VC theory, however, this is not very important. VC theory de­
clares that two and only two factors are responsible for generalization. They are the 
value of empirical loss, and the capacity of the admissible set of functions (the VC 
entropy, Growth function, or the VC dimension). The SRM principle states that any 
method that controls these two factors well (minimizing the right-hand side of the VC 
bounds) is strongly universally consistent. 

It was clear that artificial neural networks executed the structural risk minimization 
principle. However, they seemed to do this rather inefficiently. Indeed, the loss function 
that artificial neural networks minimize has many local minima. One can guarantee 
convergence to one of these minima but cannot guarantee good generalization. Neural 
networks practitioners define some initial conditions that they believe will lead to a 

3 As computer power increased, LeCun constructed more powerful generations of LeNet. 
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"good" minimum. Also, the back-propagation method based on the gradient procedure 
of minimization in high-dimensional spaces requires a very subtle treatment of step 
values. The choice of these values does not have a good recommendation. 

In order to control capacity the designer chooses an appropriate number of elements 
(neurons) for the networks. Therefore for different training data sizes one has to design 
different neural networks. All these factors make neural networks more of an art than 
a science. 

Several ideas that tried to overcome the described shortcomings of neural networks 
were checked during 1991 and 1992 including measuring the VC dimension (capacity) 
of the learning machine [144, 142] and constructing local learning rules [145]. Now 
these ideas are developing in a new situation. However, in 1992 they were overshad­
owed by a new learning concept called Support Vector Machines ( SVMs). 

2.3 SUPPORT VECTOR MACHINES (SVMs) 

The development of SVMs has a 30-year history, from 1965 until 1995. It was com­
pleted in three major steps. 

2.3.1 STEP ONE: THE OPTIMAL SEPARATING HYPERPLANE 

In 1964, Chervonenkis and I came up with an algorithm for constructing an optimal 
separating hyperplane called the generalized portrait method. Three chapters of our 
1974 book Theory of pattern recognition, contain the detailed theory of this algorithm 
[12, 173]. In EDBED (Addendum I), a simplified version of this algorithm is given. 
Here are more details. The problem was: given the training data 

(Y1,xi), ... , (ye,xe), (2.1) 

construct the hyperplane 
( wo, x) + bo = 0 (2.2) 

that separates these data and has the largest margin. In our 1974 book and in EDBED 
we assumed that the data were separable. The generalization of this algorithm for 
constructing an optimal hyperplane in the nonseparable case was introduced in 1995 
[132]. We will discuss it in a later section. 

Thus, the goal was to maximize the functional 

Po= {i\i=l} [(i:1 ,xi) +b]- {j:t/~c-l} [(i: 1 ,xj) +b] 

under the constraints 

Yi((w,xi)+b)2:l, i=l, ... ,C. (2.3) 

It is easy to see that this problem is equivalent to finding the minimum of the quadratic 
form 

R1 (w,b) = (w,w) 



2.3. Support Vector Machines (SVMs) 431 

subject to the linear constraints (2.3). Let this minimum be achieved when w = w0 . 

Then 
2 

Po=~===· 
j(wo, wo) 

To minimize the functional ( w, w) subject to constraints (2.3) the standard La­
grange optimization technique was used. The Lagrangian 

1 £ 

L(a) = 2(w, w) - L ai([Yi((w, xi)+ b) - l]) (2.4) 

i=l 

(where ai ;::, 0 are the Lagrange multipliers) was constructed and its minimax (mini­
mum over w and band maximum over the multipliers ai ;::, 0) was found. The solution 
of this quadratic optimization problem has the form 

£ 

wo = L Yia~xi. (2.5) 
i=l 

To find these coefficients one has to maximize the functional: 

£ 1 £ 

W(a) = ~n - - ~ a·a·1'j·y·(x· x·) ~ , 2 ~ , J,, 1 " 1 (2.6) 
i=l i,j=l 

subject to the constraints 

£ 

L Yiai = 0, ai ;::, 0, i = 1, ... , e. 
i=l 

Substituting (2.5) back into (2.2) we obtain the separating hyperplane expressed in 
terms of the Lagrange multipliers 

f 

L Yia~(x, :r;) + bo = 0. (2.7) 
i=l 

2.3.2 THE VC DIMENSION OF THE SET OF p-MARGIN SEPARATING HYPER­

PLANES 

The following fact plays an important role in SVM theory. Let the vectors .T E Rn be­
long to the sphere of radius R = 1. Then the VC dimension h of the set of hyperplanes 
with margin p0 = ( w0 , w0 )- 1 has the bound 

h :Sin {(wo, wo), n} + 1. 

That is, the VC dimension is defined by the smallest of the two values: the dimension­
ality n of the vectors x and the value ( w0 , w0 ). In Hilbert (infinite dimensional) space, 
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the VC dimension of the set of separating hyperplanes with the margin p0 depends just 
on the value ( wo, wa). 

In EDBED I gave a geometrical proof of the bound (See Chapter 10, Section 5). 
In 1997, Gurvits found an algebraic proof [124]. Therefore, the optimal separating 
hyperplane executes the SRM principle: it minimizes (to zero) the empirical loss, using 
the separating hyperplane that belongs to the set with the smallest VC dimension. 

One can therefore introduce the following learning machine that executes the SRM 
principle: 

Map input vectors x E X into (a rich) Hilbert space z E Z, and construct the 
maximal margin hyperplane in this space. 

According to the VC theory the generalization bounds depend on the VC dimension. 
Therefore by controlling the margin of the separating hyperplane one controls the gen­
eralization ability. 

2.3.3 STEP Two: CAPACITY CONTROL IN HILBERT SPACE 

The formal implementation of this idea requires one to specify the operator 

z=Fx 

which should be used for mapping. Then similar to (2.7) one constructs the separating 
hyperplane in image space 

f 

LYia?(z, zi) + bo = 0, 
i=l 

where the coefficients 0:i 2: 0 are the ones that maximize the quadratic form 

e l t 
W(a) = L O:i - 2 L O:iO:jYiYj(Zi, Zj) 

i=l i,j=l 

subject to the constraints 

f 

LYiO:i = 0, O:i 2: 0, i = 1, ... ,£. 
i=l 

(2.8) 

(2.9) 

In 1992 Boser, Guyon and I found an effective way to construct the optimal sepa­
rating hyperplane in Hilbert space without explicitly mapping the input vectors x into 
vectors z of the Hilbert space [ 125]. 

This was done using Mercer's theorem. 

Let vectors x E X be mapped into vectors z E Z of some Hilbert space. 

1. Then there exists in X space a symmetric positive definite function K (Xi, x j) 
that defines the corresponding inner product in Z space: 
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2. Also, for any symmetric positive definite function K(x;, :1;1) in X space there 
exists a mapping from X to Z such that this function defines an inner product in 
Z space. 

Therefore, according to Mercer's theorem, the separating hyperplane in image 
space has the form 

f 

L Y;af K(x, x;) + b0 = 0, 
i=l 

where the coefficients a? are defined as the solution of the quadratic optimization prob­
lem: maximize the functional 

£ 1 £ 

W(a) =La; - 2 L a;a1y;y1K(xi, Xj) (2.10) 
i=l i,j=l 

subject to the constraints 

f 

L YiO:i = 0, O:i 2: 0, 'i = 1, ... , P. (2.11) 
i=l 

Choosing specific kernel functions K(:ri, :r1) one makes specific mappings from input 
vectors :1: into image vectors z. 

The idea of using Mercer's theorem to map into Hilbert space was used in the mid-
1960s by Aizerman, Braverman, and Rozonoer [2]. Thirty years later we used this idea 
in a wider context. 

2.3.4 STEP THREE: SUPPORT VECTOR MACHINES 

In 1995 Cortes and I generalized the maximal margin idea for constructing (in image 
space) the hyperplane 

(wo, z) + bo = 0 

when the training data are nonseparable [132]. This technology became known as 
Support Vector Machines (SVMs). To construct such a hyperplane we follow the rec­
ommendations of the SRM principle. 

Problem 1. Choose among the set hyperplanes with the predefined margin 

l= 4 <H=! 
(wo,wo) - h 

the one that separates the images of the training data with the smallest number of errors. 
That is, we minimize the functional 

£ 

R=L0(~i) (2.12) 
i=l 
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subject to the constraints 

Yi((w,zi)+b)21-~i, ~i20, i=l, ... ,C 

and the constraint 
(w,w) ~ h, 

where 0( u) is the step function: 

0(u) = { l, 
0, 

ifu 2 0 
ifu < 0. 

(2.13) 

(2.14) 

For computational reasons, however, we approximate Problem 1 with the following 
one. 

Problem 2. Minimize the functional 

£ 

R= L~i (2.15) 
i=l 

(instead of the functional (2.12)) subject to the constraints (2.13) and (2.14). 
Using the Lagrange multiplier technique, one can show that the corresponding hy­

perplane has an expansion 

£ 

LY;af (z;, z) + bo = 0. 
i=l 

To find the multipliers one has to maximize the functional 

£ £ 

W(a) = La; - h L YiYJCY;a1(zi, z1) 
i,j=l 

subject to the constraint 

and the constraints 

i=l 

£ 

LYiCYi = 0 
i=l 

0 ~ CYi ~ 1, i = 1, ... , C. 

(2.16) 

(2.17) 

(2.18) 

Problem 3. Problem 2 is equivalent to the following (reparametrized) one: Mini­
mize the functional 

(2.19) 

subject to constraints (2.13). This setting implies the following dual space solution: 
Maximize the functional 

£ 1 £ 

W(a) =~a - - ~ y·y·a·a·(z· z·) ~ i 2 ~ i 1 i 1 i, 1 (2.20) 
i=l i,j=l 
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subject to the constraint 
R 

LYiai = 0 (2.21) 
i=l 

and the constraints 
0 <S; a; <S; C, i = 1, ... , R. 

One can show that for any h there exists a C such that the solutions of Problem 2 
and Problem 3 coincide. From a computational point of view Problem 3 is simpler than 
Problem 2. However, in Problem 2 the parameter h estimates the VC dimension. Since 
the VC bound depends on the ratio hf R one can choose the VC dimension to be some 
fraction of the training data, while in the reparametrized Problem 3 the corresponding 
parameter C cannot be specified; it can be any value depending on the VC dimension 
and the particular data. 

Taking into account Mercer's theorem, 

we can rewrite the nonlinear separating rule in input space X as 

£ 

I::a?yiK(x;,x) + bo = 0, 
i=l 

where the coefficients are the solution of the following problems: 

Problem la. Minimize the functional 

R 

R = L0(~;) 

subject to the constraints 

R 

i=l 

Yi L(yjajK(xj, Xi)+ b) 2 1 - ~i, ~i 2 0, i = 1, ... , R 
j=l 

and the constraint 
R 

L YiYjaiajK(xi, Xj) <S; h. 
i,j=l 

Problem 2a. Maximize the functional 

R 

W(a) = Lai - h 
i=l 

R 

L YiYjaiajK(xi, .1:j) 
i,j=l 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 
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subject to the constraint 

and the constraints 

£ 

LYiO'.i = 0 
i=l 

0 :S O'.i :S 1, i = 1, ... , £. 

Problem 3a. Maximize the functional 

subject to the constraint 

and the constraints 

£ 

LYiO'.i = 0 
i=l 

0 :S ai :S C, i = 1, ... , £. 

(2.27) 

(2.28) 

(2.29) 

The solution of Problem 3a became the standard SVM method. In this solution only 
some of the coefficients a? are different from zero. The vectors Xi for which a? -=/- 0 
in (2.22) are called the support vectors. Therefore, the separating rule (2.22) is the 
expansion on the support vectors. 

To construct a support vector machine one can use any (conditionally) positive 
definite function K (Xi, x j) creating different types of SVMs. One can even use kernels 
in the situation when input vectors belong to nonvectorial spaces. For example, the 
inputs may be sequences of symbols of different size ( as in problems of bioinformatics 
or text classification). Therefore SVMs form a universal generalization engine that can 
be used for different problems of interest. 

Two examples of Mercer kernels are the polynomial kernel of degree d 

(2.30) 

and the exponential kernel 

{ (lxi -xjl)d} K(xi,Xj) = exp - CY , CY> 0, 0 :S d :S 2. (2.31) 

2.3.5 SVMS AND NONPARAMETRIC STATISTICAL METHODS 

SVMs execute the idea of the structural risk minimization principle, where the choice 
of the appropriate element of the structure is defined by the constant C (and a kernel 
parameters). Therefore, theoretically, for any appropriate kernel (say for (2.31) by 
controlling parameters (which depends on the training data) one guarantees asymptotic 
convergence of the SVM solutions to the best possible solution [ 167]. 
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In 1980 Devroye and Wagner proved that classical nonparametric methods of den­
sity estimation are also universally consistent [134]. That is, by controlling the pa­
rameter a e = a ( £) > 0 depending on the size {! of the training data, the following 
approximation of the density function 

(2.32) 

converges (in the uniform metric) to the desired density with increasing£. 
However, by choosing an appropriate parameter C of SVM, one controls the VC 

bound for any finite number of observations. One can also control these bounds by 
choosing the parameters of the kernels. 

This section illustrates the practical advantage of this fact. 

Let us use the nonparametric density estimation method to approximate the optimal 
(generative) decision rule for binary classification 

P1(.1:) - P2(x) = 0, (2.33) 

where p1 ( x) is the density function of the vectors belonging to the first class and p2 ( x) 
is the density function of the vectors belonging to the second class. Here for notational 
simplicity we assume that the two classes are equally likely and that the number of 
training samples from the first and second class is the same. Using (2.32) the approxi­
mation (2.33) can be rewritten as follows. 

{ ( lx-xjl) 2
} exp - --- =0. 

a 
y1 =-l} 

The SVM solution using the same kernel has the form 

{ ( lx-:rJl) 2
} O'.j exp - --~ = 0. 

a 
{j: y 1 =-l} 

Since our kernel is a positive definite function there exists a space Z where it defines 
an inner product (by the second part of Mercer's theorem). In Z space both solutions 
define separating hyperplanes 

L (z.;, z) 
{i: y,=l} 

L (zj,z)=O 
{J: Y1=-l} 

(the classical non-parametric solution) [152] and 

L a.;(z;, z) 
{i:y,=1} {j: Yi=-1} 

(the SVM solution). Figure 2.1 shows these solutions in Z space. The separating hy­
perplane obtained by nonparametric statistics is defined by the hyperplane orthogonal 
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Figure 2.1: Classifications given by the classical nonparametric method and the SVM 
are very different. 

to the line connecting the center of mass of two different classes. The SVM produces 
the optimal separating hyperplane. 

In spite of the fact that both solutions converge asymptotically to the best one4 they 
are very different for a fixed number of training data since the SVM solution is optimal 
(for any number of observations it guarantees the smallest predictive loss), while the 
non-parametric technique is not. 

This makes SVM a state-of-the-art technology in solving real-life problems. 

2.4 AN EXTENSION OF SVMs: SVM+ 

In this section we consider a new algorithm called SVM+, which is an extension of 
SVM. SVM+ takes into account a known structure of the given data. 

2.4.1 BASIC EXTENSION OF SVMS 

Suppose that our data are the union oft 2 1 groups: 

Let us denote indices from the group r by 

Tr = {ini,· .. ,inr }, r = 1, . .. ,t. 

4Note that nonparametric density estimate (2.32) requires dependence of a from £. Therefore, it uses 
different Z spaces for different£. 
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Let inside one group the slacks be defined by some correcting function that belongs to 
a given set of functions 

C,i = f:,.,.(:i;;) = ¢.,.(xi, w.,. ), w.,. E W.,., i ET.,., r = 1, ... , t. (2.34) 

The goal is to define the decision function for a situation when sets of admissible cor­
recting functions are restricted (when sets of admissible correcting functions are not re­
stricted we are back to conventional SVM). By introducing groups of data and different 
sets of correcting functions for different groups one introduces additional information 
about the problem to be solved. 

To define the correcting function f:, ( x) = ¢.,. ( x, w.,.) for group T.,. we map the input 
vectors xi, i E T.,. simultaneously into two different Hilbert spaces: into the space 
zi E Z which defines the decision function (as we did for the conventional SVM) and 
into correcting function space zI E Z.,. which defines the set of correcting functions 
for a given group r. (Note that vectors of different groups are mapped into the same 
decision space Z but different correcting spaces Z.,..) 

Let the inner products in the corresponding spaces be defined by the kernels 

and 
(z[, zS) = K.,.(xi, x1 ), i,j ET.,., r = 1, ... , t. (2.35) 

Let the set of admissible correcting functions f:,.,. ( x) = ¢.,. ( x, w.,.), w.,. E W.,., be linear 
in each Z.,. space 

f:,(xi) = ¢.,.(x, w.,.) = [(w.,., z[) + d.,.] 2 0, i ET.,., r = 1, ... , t. 

As before our goal is to find the separating hyperplane in decision space Z, 

( wu, z) + bu = 0 

whose parameters w0 and b0 minimize the functional 

1 t 

R(w, w1, ... , Wt)= 2(w, w) +CL L ((w.,., z[) + d.,.), 
r=l iET,. 

subject to the constraints 

yi[ ( Zi, w) + b] 2 1 - ( ( z[, w.,.) + d.,.), i E T.,., r = 1, ... , t 

and the constraints 

(w.,., z[) + d.,. 2 0, i E Tr, r = 1, ... , t. 

Note that for set (2.36) the solution of this optimization problem does exist. 
The corresponding Lagrangian is 

1 t 

L(w, W1, ... 'Wt; (t, µ) = 2(w, w) + cI: L ((w.,., z[) + d.,.) 
r=l iET,. 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 
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R R 

-L o:i[yi((w, Zi) + b) - 1 + dr + (wr, z[)] - L µi((wr, z[) + dr)-
i=l i=l 

Using the same dual optimization technique as above one can show that the optimal 
separating hyperplane in Z space has the form 

R 

L a?yi(zi, z) + bo = 0, 
i=l 

where the coefficients o:? ~ 0 minimize the same quadratic form as before 

R l R 

W(o:) = Lai - 2 L YiYjO:io:jK(xi,Xj) 
i=l i,j=l 

subject to the conventional constraint 

and the new constraints 

R 

LYiO'.i = 0 
i=l 

L (o:i + µi) = ITrlC, r = 1, ... , t 
iETr 

(ITrl is the number of elements in Tr), 

L (o:i + µi)Kr(Xi, x1 ) =CL Kr(Xi, Xj), j E Tr, r = 1, ... , t. 

and constraints 
O'.i ~ 0, µi ~ 0, i = 1, ... , £. 

When either 
(1) There is no structure in the data: any vector belongs to its own group, 
or 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2) There is no correlation between slacks inside all groups: Kr (Xi, x j) is an 
identity matrix for all r 

if i = j 
if i =/ j 

(2.45) 

then Equation (2.44) defines the box constraints as in conventional SVMs (in case (2) 
Equations (2.43) are satisfied automatically). Therefore the SVM+ model contains the 
classical SVM model as a particular case. 

The advantage of the SVM+ is the ability to consider the global structure of the 
problem that the conventional SVM ignores (see Section 2.4.3 for details). 

This, however, requires solving a more general quadratic optimization problem to 
minimize in the space of 2£ nonnegative variables the same objective function subject 
to ( C + t + 1) linear constraints (instead of one minimizing this objective function in 
the space of £ variable subjects of one linear constraint and £ box constraints in the 
conventional SVM). 
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2.4.2 ANOTHER EXTENSION OF SVM: SVM,+ 

Consider another extension of SVM, the so-called SVM,+, which directly controls the 
capacity of sets of correcting functions. 

Let us instead of objective function (2.37) consider the function 

t t 

R(w, W1, ... , Wt) = ~(w, w) + ~ I)wr, Wr) +CL L ((wr, zr) + dr), (2.46) 
r=l r=l iET,. 

where 1 > 0 is some value. When I approaches zero (2.46) and (2.37) coincide. 
The SVM,+ solution minimizes functional (2.46) subject to the constraints (2.38) 

and (2.39). To solve this problem we construct the Lagrangian. Comparing it to (2.40), 
this Lagrangian has one extra term 1 /2 L ( Wr, Wr). Repeating almost the same algebra 
as in the previous section we obtain that for the modified Lagrangian the dual space 
solution that defines the coefficients a~ must maximize the functional 

f l £ 

W(a, µ) = L O'.i - 2 L YiYJO:iajK(xi, x1)+ 
i=l i,.i=l 

subject to the constraints (2.42) and the constraints 

L(o:i + µi) = ITrlC, r = l, ... ,t, 
iET,. 

ai 2 0, µi 2 0, i = 1, ... , e. 
Note that when either: 

(I) There is no structure ( every training vector belongs to its own group), 
or 
(2) There is no correlation inside groups ( (2.45) holds for all r) and 1 --+ 0 

then the SVM,+ solution coincides with the conventional SVM solution. 
This solution requires maximizing the quadratic objective function in the space of 

2£ nonnegative variables subject to t + 1 equality constraints. 

One can simplify the computation when using models of correcting functions (2.36) 
with dr = 0, r = l, ... , t. In this case one has to maximize the functional W(n. /L) over 
non-negative variables n; µ;, i = l, ... , e subject to one equality constraint (2.42). 

2.4.3 LEARNING HIDDEN INFORMATION 

SVM+ is an instrument for a new inference technology which can be called Learning 
Hidden Information (LHI). It allows one to extract additional information in situations 
where conventional technologies cannot be used. 
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WHAT INFORMATION CAN BE HIDDEN? 

Consider the pattern recognition problem. Let one be given the training set 

(x1,yi), ... , (xe,Ye). 

Suppose that one can add to this set additional information from two sources: 
(1) information that exists in hidden classifications of the training set and 
(2) information that exists in hidden variables of the training set. 

The next two examples describe such situations. 

EXAMPLE 1 (Information given in hidden classifications). 
Suppose that one's goal is to find a rule that separates cancer patients from non cancer 
patients. One collects training data and assigns class Yi = I, or Yi = -1, to patient 
xi depending on the result of analysis of tissue taken during surgery. Analyzing the 
tissue, a doctor composes a report which not only concludes that the patient has a 
cancer ( + 1) or benign diagnosis (-1) but also that the patient belongs to a particular 
group (has a specific type of cancer or has a specific type of cell and so on). That 
is, the doctor's classification of the training data Yi is more detailed than the desired 
classification Yi· When constructing a classification rule y = f ( x), one can take into 
account information about Yi. This information can be used, for example, to create 
appropriate groups. 

EXAMPLE 2 (Information given in hidden variables). 
St~ppose that one's goal is to construct a rule y = f(x). However, for the training data 
along with the nonhidden variables Xi, one can determine the hidden variables x;. The 
problem is using the data 

which contain both nonhidden and hidden variables and their classifications Yi, to con­
struct a rule y = f ( x) (rather than a rule y = f ( x, x*)) that makes a prediction based 
on nonhidden variables. By using variables x for a decision space and variables x, x* 
for a correcting space one can solve this problem. 

EXAMPLE 3 (Special rule for selected features). 
A particular case of the problem described in Example 2 is constructing a decision 
rule for selected features, using information about the whole set of features. In this 
problem, the selected features are considered as non hidden variables while the rest of 
the features are hidden variables. 

THE GENERAL PROBLEM 
How should one construct ( a more accurate than conventional) rule y = f ( x) using the 
data 

instead of the data 
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To do this one can use the SVM+ method. Constructing the desired decision rule 
in the solution space, SVM+ uses two new ideas: 

( 1) It uses structure on training data and 
(2) It uses several different spaces: (a) the solution space of nonhidden variables 

and (b) the correcting spaces of joint hidden and nonhidden variables. 
SVM+ allows one to effectively use additional hidden information. The success of 
SVM+ depends on the quality of recovered hidden information. 

The LHI technology using SVM+ requires the following three steps: 

1. Use the data (:ri, x;, Yi, y:) for constructing a structure on the training set. 

2. Use the kernel K(xi, Xj) for constructing a rule in the decision space, and 

3. Use the kernels Kr(xi, x:?y.'(; Xj, x;, Yj) in the correcting spaces. 

Note that in the SVM+ method the idea of creating a structure on the training set 
differs from the classical idea of clustering of the training set. 

2.5 GENERALIZATION FOR REGRESSION ESTIMATION 

PROBLEM 

In this section we use the c:-insensitive loss function introduced in [140], 

if lul 2': c 
if lul < c. 

This function allows one to transfer some properties of the SVM for pattern recognition 
(the accuracy and the sparsity) to the regression problem. 

2.5.1 SVM REGRESSION 

Consider the regression problem: given iid data 

where x EX is a vector and y E (-oo, oo) is a real value, estimate the function in a 
given set of real-valued functions. 

As before using kernel techniques we map input vectors x into the space of image 
vectors z E Z and approximate the regression by a linear function 

y=(w,z)+b, (2.47) 

where w and b have to be defined. Our goal is to minimize the following loss, 

l C 

R = 2(w,w) + cI: IYi - (w,z) -blE- (2.48) 
i=l 
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To minimize the functional (2.48) we solve the following equivalent problem [140]: 
Minimize the functional 

1 £ 

R= 2(w,w)+cI)~i+~n 
i=l 

subject to the constraints 

Yi-(w,zi)-b~c:+C, ~;2:0, i=l, ... ,t', 

(w, Zi) + b -yi ~ E + ~i, ~i 2: 0, i = 1, ... J 
To solve this problem one constructs the Lagrangian 

1 £ £ 

L = 2(w, w) + cI)~i + ~n - L ai[yi - (w, Zi) - b + c: + ~i] 
i=l i=l 

£ C 

- I: a; [( w, Zi) + b - Yi+ E + ~;J - 2)/Ji~i + ,a; ~n 
i=l i=l 

whose minimum over w, b, and ( ~I leads to the equations 

£ 

w = L(a7 - ai)zi, 

i=l 

£ 

L(ai - a:)= 0, 
i=l 

and 
a; + ,a; = C, ai + ,Bi = C, 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

where a, a*, ,8, ,B* 2: 0 are the Lagrange multipliers. Putting (2.53) into (2.47) we 
obtain that in X space the desired function has the kernel form 

£ 

y = L(a7 - ai)K(xi,x) + b. (2.56) 
i=l 

To find the Lagrange multipliers one has to put the obtained equation back into the 
Lagrangian and maximize the obtained expression. 

Putting (2.53), (2.54), and (2.55) back into (2.52) we obtain 

£ £ £ 

W = - LE(a;+ai)+ LYi(a7-ai)-~ L(a7-ai)(a;-aj)K(xi,xj)- (2.57) 
i=l i=l i,j 

To find ai, a: for the approximation (2.56) one has to maximize this functional subject 
to the constraints 

£ £ 

La; =Lai, 
i=l i=l 

0 ~ ai ~ C, 0 ~ a; ~ C, i = 1, ... , t'. 
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2.5.2 SVM+ REGRESSION 

Now let us solve the same regression problem of minimizing the functional (2.49) 
subject to the constraints (2.50) and (2.51) in the situation when the slacks ~i and ~i 
are defined by functions from the set described in Section 2.4: 

~i = cp,,(x;,w,) = (w,,,z.;) -d,,;::: 0, 'i ET,,, r = 1, ... ,t (2.58) 

(2.59) 

To find the regression we construct the Lagrangian similar to (2.52) where instead 
of slacks ~i and ~i we use their expressions (2.58) and (2.59). 

Minimizing this Lagrangian over w, b (as before) and over w,,, d,,, w;, d;, r = 
1, ... , t (instead of slacks ~i, and ~;) we obtain Equations (2.53) and (2.54) and the 
equations 

L (a;+ f:J;)z.[ =CL z.[, L (ex;+ (3:)z.[ =CL zI', r = 1, ... , t, (2.60) 
iET'., iET,. iET'., 

L (a;+ (3;) = CjT,,j, L (ex;+ /3;) = CjT,,j, r = l, ... , t (2.61) 
iE7~ 

Putting these equations back into the Lagrangian we obtain 

e e 1 c 
W = - LE(a;+a;)+ LY;(al-cx;)- 2 L(a;-a;)(a;-nj)K(x;,:r1 ). (2.62) 

i=l i=l i,j 

From (2.60) and (2.61) we obtain 

(2.63) 

(2.64) 

n; ;::: 0, #, ;::: 0, 'i = 1, ... , £. 

Therefore to estimate the SVM+ regression function (2.56) one has to maximize 
the functional (2.62) subject to the constraints (2.54), (2.61), (2.63), (2.64). 

2.5.3 SVM,+ REGRESSION 

Consider SVM,+ extension of regression estimation problem: Minimize the functional 

(2.65) 
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(instead of functional (2.49)) subject to constraints (2.50) and (2.51), where slacks ~i 

and ~; are defined by the correcting functions (2.58) and (2.59). The new objective 
function approaches (2.49) when 'Y approaches zero. 

The same algebra of the Lagrange multiplier technique that was used above now 
implies that to find the coefficients ai, a; for approximation (2.56) one has to maxi­
mize the functional 

£ £ £ 

W = - I>(a; + ai) + LYi(a; - ai) - ~ L (a; - ai)(a; - aj)K(xi, Xj)+ 
i=l i=l i,j=l 

t t 

CL L (a;+ (3;)Kr(Xi, Xj) - 2
1 L L (a;+ (3;)(a; + f3;)K,.(xi, Xj) 

"( r=l i,jETr "( r=l i,jETr 

subject to the constraints 
£ £ 

I:a: = L°'i, 
i=l i=l 

L (ai + f3i) = ITrlC, r = 1, ... , t, 
iETr 

L (a;+ /3;) = IT,.IC, r = 1, ... , t, 
iETr 

ai 2: 0, a; 2: 0, /3i 2: 0, f31 2: 0, i = 1, ... , £. 

When either (1) there is no structure (t = £) or (2) there are no correlations 
(Kr(xi, Xj) has the form (2.45)) and 'Y ~ 0 the solutions defined by SVM+ or SVM,,+ 
regression coincide with the conventional SVM solution for regression. 

2.6 THE THIRD GENERATION 

In the mid-1990s the third generation of statistical learning theory (SLT) researchers 
appeared. They were well-educated, strongly motivated, and hard working PhD stu­
dents from Europe. Many European universities allow their PhD students to work on 
their theses anywhere in the world, and several such students joined our department in 
order to work on their thesis. First came Bernhard Scholkopf, Volker Blanz, and Alex 
Smola from Germany, then Jason Weston from England, followed by Olivier Chapelle, 
Olivier Bousquet, and Andre Eliseeff from France, Pascal Vincent from Canada, and 
Corina Cortes (PhD student from Rochester university). At that time support vector 
technology had just started to develop. Later many talented young people followed this 
direction but these were the first from the third generation of researchers. 
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I would like to add to this group two young AT&T researchers of that time: Yoav 
Freund and Robert Schapire, who did not directly follow the line of statistical learning 
theory and developed boosting technology that is close to the one discussed here [ 135, 
136]. 

The third generation transformed both the area of machine learning research and the 
style of research. During a short period of time (less than ten years) they created a new 
direction in statistical learning theory: SVM and kernel methods. The format of this 
Afterword does not allow me to go into details of their work ( there are hundreds of first­
class articles devoted to this subject and it is very difficult to choose from them). I will 
just quote some of their textbooks [152-158], collective monographs and workshop 
materials [159-164]. Also I would like to mention the tutorial by Burges [165] which 
demonstrated the unity of theoretical and algorithmical parts of VC theory in a simple 
and convincing way. 

The important achievement of the third generation was creating a large international 
SVM (kernel) community. They did it by accomplishing three things: 

( l) Constructing and supporting a special Website called Kernel Machine ( www.kernel­
machines.org). 

(2) Organizing eight machine learning workshops and five Summer Schools, where 
advanced topics relevant to empirical inference research were taught. These top­
ics included: 
- Statistical learning theory, 
- Theory of empirical processes, 
- Functional analysis, 
- Theory of approximation, 
- Optimization theory, and 
- Machine learning algorithms. 
In fact they created the curriculum for a new discipline: Empirical Inference 
Science. 

(3) Developing high-quality professional software for empirical inference problems 
that can be downloaded and used by anyone in the world.5 

This generation took advantage of computer technology to change forever the style 
and atmosphere of data mining research: from the very hierarchical group structure 
of the I 970-l 980s lead by old statistical gurus (with their know-how and dominating 
opinion) to an open new society (with widely available information, free technical 
tools, and open professional discussions). 

Many of the third generation researchers of SLT became university professors. This 
Afterword is dedicated to their students. 

5The three most popular software are: 
(I) SVM-Light developed by Thorsten Joachims (Germany) http://svmlight.joachims.org/, 
(2) Lib-SVM developed by Chin-Chang Chang and Chih-Jen Lin (Taiwan) 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/, and 
(3) SVM-Torch developed by Ronan Collobert (Switzerland) http://www.torch.ch/ 



448 2. Falsifiability and Parsimony 

2.7 RELATION TO THE PHILOSOPHY OF SCIENCE 

By the end of the 1990s it became clear that there were strong ties between machine 
learning research and research conducted in the classical philosophy of induction. The 
problem of generalization (induction) always was one of the central problems in philos­
ophy. Pattern recognition can be considered as the simplest problem of generalization 
(its drosophila fly: any idea of generalization has its reflection in this model). It forms 
a very good object for analysis and verification of a general inductive principle. Such 
analysis includes not only speculations but also experiments on computers. 

Two main principles of induction were introduced in classical philosophy: the prin­
ciple of simplicity (parsimony) formulated by the 14th century English monk Occam 
(Ocham), and the principle of falsifiability, formulated by the Austrian philosopher 
of the 20th century Karl Popper. Both of them have a direct reflection in statistical 
learning theory. 

2. 7 .1 OCCAM'S RAZOR PRINCIPLE 

The Occam's Razor (or parsimony) principle was formulated as follows: 

Entities are not to be multiplied beyond necessity. 

Such a formulation leaves two open questions: 

( 1) What are the entities? 

(2) What does beyond necessity mean? 

According to The Concise Oxford Dictionary of Current English [172] the word entity 
means 

A thing's existence, as opposite to its qualities or relations; thing that has real 
existence. 

So the number of entities is commonly understood to be the number of different param­
eters related to different physical (that which can be measured) features. The predictive 
rule is a function defined by these features. 

The expression not to be multiplied beyond necessity has the following meaning: 
not more than one needs to explain the observed facts. 

In accordance with such an interpretations the Occam's Razor principle can be 
reformulated as follows: 

Find the function from the set with the smallest number of free parameters that 
explains the observed facts. 6 

6Toere exist wide interpretation of Occam's Razor principle as a request to minimize some functional 
(without specifying which). Such interpretation is too general to be useful since it depends on the definition 
of the functional. The original Occam formulation (assuming that entities are free parameters) is unambigu­
ous and in many cases is a useful instrument of inference. 
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2. 7 .2 PRINCIPLES OF FALSIFIABILITY 

To introduce the principles of falsifiability we need some definitions. 

Suppose we are given a set of indicator functions f ( x, a), a E A. We say that the 
set of vectors 

X1,- .. ,Xf, Xi EX (2.66) 

cannot falsify the set of indicator functions f ( x, a), a E A if all 2£ possible separation 
of vectors (2.66) into two categories can be accomplished using functions from this set. 

This means that on the data (2.66) one can obtain any classification (using functions 
from the admissible set). In other words, from these vectors one can obtain any possible 
law (given appropriate Yi, i = 1, ... £): the vectors themselves do not forbid (do not 
falsify) any possible law. 

We say that the set of vectors (2.66) falsifies the set f ( x, a), a E A if there exists 
such separation of the set (2.66) into two categories that cannot be obtained using an 
indicator function from the set f ( x, a), a E A. 

Using the concept of falsifiability of a given set of functions by the given set of 
vectors, two different combinatorial definitions of the dimension of a given set of indi­
cator functions were suggested: the VC dimension and the Popper dimension. These 
definitions lead to different concepts of falsifiability. 

THE DEFINITION OF THE VC DIMENSION AND VC FALSIFIABILITY 

The VC dimension is defined as follows (in EDBED it is called capacity. See Chapter 
6, Sections 8 and A2:) 

A set of functions f ( x, a), a E A has VC dimension h if: 

( 1) there exist h vectors that cannot falsify this set and 

(2) any h + 1 vectors falsify it. 

The set of functions f ( x, a), ex E A is VC falsifiable if its VC dimension is finite 
and VC nonfalsifiable if its VC dimension is infinite. 

The VC dimension of the set of hyperplanes in Rn is n + 1 (the number of free 
parameters of a hyperplane in R") since there exist n + 1 vectors that cannot falsify 
this set but any n + 2 vectors falsify it. 

THE DEFINITION OF THE POPPER DIMENSION AND POPPER FALSIFIABILITY 

The Popper dimension is defined as follows [137, Section 38] 

A set of functions f ( x, a), a E A has the Popper dimension h if: 

(1) any h vectors cannot falsify it and 

(2) there exist h + 1 vectors that can falsify this set. 
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Figure 2.2: The VC dimension of the set of oriented lines in the plane is three since 
there exist three vectors that cannot falsify this set and any four vectors falsify it. 

Popper called value h the degree of falsifiability or the dimension. 
The set of functions f ( x, a), a E A is Popper falsifiable if its Popper dimension is 

finite and Popper nonfalsijiable if its Popper dimension is infinite. 
Popper's dimension of the set of hyperplanes in Rn is at most two (independent 

of the dimensionality of the space n) since only two vectors that belong to the one­
dimensional linear manifold can not falsify the set of hyperplanes in Rn and three 
vectors from this manifold falsify this set. 

2.7.3 POPPER'S MISTAKES 

In contrast to the VC dimension, the Popper concept of dimensionality does not lead 
to useful theoretical results for the pattern recognition model of generalization. The 
requirements of nonfalsifiability for any h vectors include, for example, the nonfalsi­
fiability of vectors belonging to the line (one-dimensional manifold). Therefore, Pop­
per's dimension will be defined by combinatorial properties restricted at most by the 
one-dimensional situation. 

Discussing the concept of simplicity, Popper made several incorrect mathematical 
claims. This is the most crucial: 

In an algebraic representation, the dimension of a set of curves depends upon the 
number of parameters whose value we can freely choose. We can therefore say 
that the number of freely determinable parameters of a set of curves by which a 
theory is represented is characteristic of the degree of falsifiability. [ 137, Section 
43] 

This is wrong for the Popper dimension. The claim is correct only in a restricted 
situation for the VC dimension, namely when the set of functions in Rn , n > 2 linearly 
depends on the parameters. 
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In other (more interesting) situations as in Denker's example with a set of 0( { sin ax}) 
functions (Section 2.2.1 and Section 2.7.5 below) and in the example of a separating 
hyperplane with the margin given in EDBED (Chapter 10, Section 5) that led to SVM 
technology, the considered set of functions depends nonlinearly upon the free parame­
ters. 

Popper did not distinguish the type of dependency on the parameters. Therefore 
he claimed that the set {0(sinax)} (with only one free parameter a) is a simple set 
of functions [137, Section 44]. However, the VC dimension of this set is infinite7 and 
therefore generalization using this set of functions is impossible. 

It is surprising that the mathematical correctness of Popper's claims has never been 
discussed in the literature. 8 

2. 7.4 PRINCIPLE OF VC FALSIFIABILITY 

In terms of the philosophy of science, the structural risk minimization principle for the 
structure organized by the nested set with increasing VC dimension can be reformu­
lated as follows: 

Explain the facts using the function from the set that is easiest to falsify. 

The mathematical consistency of SRM therefore can have the following philosoph-
ical interpretation: 

Since one was able to find the function that separates the training data well, in the 
set of functions that is easy to falsify, these data are very special and the function 
which one chooses reflects the intrinsic properties of these data. 9 . 

It is possible, however, to organize the structure of nested elements on which ca­
pacity is defined by a more advanced measure than VC dimension (say, the Growth 

7 Since for any R the set of values x 1 = 2- 1 , ... , xe = 2-£ cannot falsify { 0( sin ax)}. The desired 
classifications Y1,.. ,'.I/£, y, E {1, -1} of this set provide the function y = 0(sina*1:) where the 
coefficient a* is 

8Karl Popper's books were forbidden in the Soviet Union because of his criticism of communism. There­
fore, I had no chance to learn about his philosophy until Gorbachev's time. In l 987 I attended a lecture 
on Popper's philosophy of science and learned about the falsifiability concept. After this lecture I became 
convinced that Popper described the VC dimension. (It was hard to imagine such a mistake.) Therefore in 
my 1995 and 1998 books I wrongly referred to Popper falsifiability as VC falsifiability. Only in the Spring 
of 2005 in the process of writing a philosophical article (see Corfield, Scholkopf, and Vapnik: "Popper, fal­
sification and the VC dimension." Technical Report# 145, Max Planck Institute for Biological Cybernetics, 
Tiibingen, 2005) did we check Popper's statements and realize my mistake. 

9The Minimum Message Length (MML)-Minimum Description Length (MDL) principle [ 127, 128] that 
takes Kolmogorov's algorithmic complexity [ 129] into account can have the same interpretation. It is re­
markable that even though the concepts of VC dimension and algorithmic complexity are very different, 
the MML-MDL principle leads to the same generalization bound for the pattern recognition problem that is 
given in EDBED. (See [ l 39], Chapter 4, Section 4.6.) 
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function, or even better the VC entropy). This can lead to more advanced inference 
techniques (see Section 2.8 of this chapter). 

Therefore the falsifiability principle is closely related to the VC dimension concept 
and can be improved by more refined capacity concepts. 

2. 7 .5 PRINCIPLE OF PARSIMONY AND VC FALSIFIABILITY 

The principle of simplicity was introduced as a principle of parsimony or a principle of 
economy of thought. 

The definition of simplicity, however, is crucial since it can be very different. Here 
is an example. Which set of functions is simpler: 

( 1) One that has the parametric form 

f (x, a), a E A, or 

(2) One that has the parametric form 

f(x, a), a EA 

and satisfies the constraint 
O(f) :SC, 

where O(f) 2': 0 is some functional? 

From a computational point of view, finding the desired function in situation 1 can 
be much simpler than in situation 2 (especially if the O(f) :SC is a nonconvex set). 

From an information theory point of view, however, to find the solution in situation 
2 is simpler, since one is looking for the solution in a more restricted set of functions. 

Therefore the inductive principle based on the (intuitive) idea of simplicity can 
lead to a contradiction. That is why Popper used the "degree of falsifiability" concept 
(Popper dimension) to characterize the simplicity: 

The epistemological question which arise in connection with the concept of sim­
plicity can all be answered if we equate this concept with degree of falsifiability. 
([137], Section 43) 

In the Occam's Razor principle, the number of "entities" defines the simplicity. Popper 
incorrectly claimed the equality of Popper dimension to be the number of free param­
eters (entities), and considered the falsifiability principle to be a justification of the 
parsimony (Occam's Razor) principle. 

The principle of VC falsifiability does not coincide with the Occam's Razor prin­
ciple of induction, and this principle (but not Occam's Razor) guarantee the generaliza­
tion. VC dimension describes diversity of the set of functions. It does not refer either to 
the number of free parameters nor to our intuition of simplicity. Recall once again that 
Popper (and many other philosophers) had the intuition that { 0(sin ax)} is the simple 
set of functions, 10 while the VC dimension of this set is infinite. 

10In the beginning of Section 44 [137] Popper wrote: "According to common opinion the sine-function is 
a simple one .... " 
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The principle of VC falsifiability forms the necessary and sufficient conditions of 
consistency for the pattern recognition problem while there are pattern recognition al­
gorithms that contradict the parsimony principle. 11 

2.8 INDUCTIVE INFERENCE BASED ON 

CONTRADICTIONS 

In my 1998 book, I discussed an idea of inference through contradictions [ 140, p. 707]. 
In this Afterword, I introduce this idea as an algorithm for SVM. Sections 2.8.1 and 
3.1.5 give the details of the algorithm. This section presents a simplified description 
of the general concept ( see remark in Section 3 .1.3 for details) of inductive inference 
through contradictions. 

Suppose we are given a set of admissible indicator functions f (:r, a), a E A and the 
training data. The vectors x from the training data split our admissible set of functions 
into a finite number of equivalence classes F1 , ... , FN. The equivalence class contains 
functions that have the same values on the training vectors x (separate them in the same 
way). 

Suppose we would like to make a structure on the set of equivalence classes to 
perform SRM principle. That is, we would like to collect some equivalence classes 
in the first element of the structure, then add to them some other equivalence classes, 
constructing the second element, and so on. To do this we need to characterize every 
equivalence class by some value that describes our preference for it. Using such a 
measure, one can create the desired structure on the equivalence classes. When we 
constructed SVMs, we characterized the equivalence class by the size of the largest 
margin defined by the hyperplane belonging to this class. 

Now let us consider a different characteristic. Suppose along with the training data 
we possess a set of vectors called the Universum or the Virtual Universum 

xi, ... ,xi;, x* EX. (2.67) 

The Universum plays the role of prior information in Bayesian inference. It describes 
our knowledge of the problem we are solving. However, there are important differences 
between the prior information in Bayesian inference and the prior information given 
by the Universum. In Bayesian inference, prior information is information about the 
relationship of the functions in the set of admissible functions to the desired one. With 
the Universum, prior information is information related to possible training and test 
vectors. For example, in the digit recognition problem it can be some vectors whose 

11 The example of a machine learning algorithm that contradicts the parsimony principle is boosting. This 
algorithm constructs so-called weak features (entities) which it linearly combines in a decision rule. Often 
this algorithm constructs some set of weak features and the corresponding decision rule that separates the 
training data with no mistakes but continues to add new weak features (new entities) to construct a better 
rule. With an increasing number of (unnecessary, i.e., those that have no effect on separating the training 
data) weak features, the algorithm improves its performance on the test data. One can show that with an 
increasing number of entities this algorithm increases the margin (as the SVM). The idea of this algorithm is 
to increase the number of entities (number of free parameters) in order to decrease the VC dimension [136). 
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images resemble a particular digit (say some artificial characters). It defines the style 
of the digit recognition task, and geometrically belongs to the same part of input space 
to which the training data belong. 

We use the Universum to characterize the equivalence class. We say that a vector 
x* is contradictive for the equivalence class Fs if there exists a function Ji ( x*) E F8 

such that 
fi(x*) > 0 

and there also exists a function fz ( x*) E Fs such that 

fz(x*) < 0. 

We will characterize our preference for an equivalence class by the number of contra­
dictions that occur on the Universum: the more contradictions, the more preferable the 
equivalence class. 12 We construct structure on equivalence classes using these num­
bers. 

When using the Universum to solve a classification problem based on SRM princi­
ple, we choose the function (say one that has the maximal margin) from the equivalence 
class that makes no ( or a small number of) training mistakes and has the maximal num­
ber of contradictions on the Universum. In other words, for inductive inference, when 
constructing the structure for SRM, we replace the maximal margin score with the 
maximal contradiction on Universum (MCU) score and select maximal margin func­
tion from the choosen equivalence class. 

The main problem with MCU inference is, how does one create the appropriate 
Universum? Note that since one uses Universum only for evaluation of sizes of equiv­
alence classes, its elements do not need to have the same distribution as the training 
vectors. 

2.8.1 SVMS IN THE UNIVERSUM ENVIRONMENT 

The inference through contradictions can be implemented using SVM techniques as 
follows. Let us map both the training data and the Universum into Hilbert space 

QUADRATIC OPTIMIZATION FRAMEWORK 

(2.68) 

(2.69) 

In the quadratic optimization framework for an SVM, to conduct inference through 
contradictions means finding the hyperplane 

(WO, Z) + bo = 0 (2.70) 

12 A more interesting characteristic of an equivalence class would be the value of the VC entropy of the set 
of functions belonging to this equivalence class calculated on the Universum. This, however, leads to difficult 
computational problems. The number of contradictions can be seen as a characteristic of the entropy. 
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that minimizes the functional 

l c u 

R = 2(w, w) + C1 L 0(~i) + C2 L 0(G), C1, C2 > 0 
i=l j=l 

subject to the constraints 

y;((w,zi) + b) 2 1- ~i, ~i 2 0, i = 1, ... ,£ 

(related to the training data) and the constraints 

l(w,z;) +bl Sa+~;, ~; 2 0, j = 1, ... ,u 

(related to the Universum) where a 2 0. 
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(2.71) 

(2.72) 

(2.73) 

As before, for computational reasons we approximate the target function (2.71) by 
the function 13 

l R u 

R = 2(w,w) + C1 L~i + C2 L~;, C1,C2 > 0. (2.74) 
i=l s=l 

Using the Lagrange multipliers technique we determine that our hyperplane in fea­
ture space has the form 

f u 

L a?y;(z;, z) + L(µ~ - v~)(z;, z) + b = 0, (2.75) 
i=l s=l 

where the coefficients a? 2 0, µ~ 2 0, and v_~ 2 0 are the solution of the following 
optimization problem: Maximize the functional 

f u l R 

W(n,µ,v) = L°'i -a L(µs + Vs) - 2 L a;OjYiYj(Z;,Zj) 
i=l s=l i,j=l 

subject to the constraint 

f u 

LYi°'i + L(µs - Vs)= 0 
i=l s=l 

and the constraints 
0 Sa; S C1 

0 S µs,Vs S C2. 

(2.76) 

(2.77) 

(2.78) 

(2.79) 

13One also can use a least squares technique by choosing £,f and ( 1:,; )2 instead of C,i and £,1* in objective 
function (2.74). 



456 2. Falsifiability and Parsimony 

Taking into account Mercer's theorem, one can rewrite our separating function in 
input space as 

e u 

I:afyiK(xi,x) + L(µ~ - v~)K(x;,x) + bo = 0, (2.80) 
i=l s=l 

where the coefficients a? ?: 0, µ~ ?: 0, and v2 ?: 0 are the solution of the following 
optimization problem: Maximize the functional 

e u 1 e 
W(a, µ, v) = L Di - a L(µs + Vs) - 2 L °'i°'jYiYjK(xi, Xj) 

i=l s=l i,j=l 

(2.81) 

e u 1 u 

- LL°'iYi(µs -vs)K(xi,x;) - 2 L (µs -vs)(µt -Vt)K(x;,xn 
i=l s=l s,t=l 

subject to the constraints (2.77), (2.78), (2.79). 

LINEAR OPTIMIZATION FRAMEWORK 

To conduct inference based only on contradictions arguments (taking some function 
from the choosen equivalence class, not necessarily one with the largest margin) one 
has to find the coefficients a 0 , µ 0 , v 0 in (2.80) using the following linear programming 
technique: Minimize the functional 

e u e u 

W(a,µ,v) = r L°'i + r L(µs +Vs)+ C1 L~i + C2 I:~;,/?: 0 (2.82) 
i=l s=l i=l t=l 

subject to the constraints 

and the constraints 

e u 

L ajyjK(x;, Xj) + L(µs - v8 )K(x;, x;) + b :Sa+ G, t = 1, ... , k, (2.84) 
j=l s=l 

e u 

L DjYjK(x;, Xj) + L(µs - vs)K(x;, x;) + b?: -a - ~;, t = 1, ... , u, (2.85) 
j=l s=l 

where a ?: 0. In the functional (2.82) the parameter 1 ?: 0 controls the sparsity of the 
solution. 
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2.8.2 THE FIRST EXPERIMENTS AND GENERAL SPECULATIONS 

In the summer of 2005, Ronan Collobert and Jason Weston conducted the first experi­
ments on training SVM with Universum using the algorithm described in Section 2.8.1. 
They discriminated digit 8 from digit 5 from the MNIST database, using a conventional 
SVM and an SVM trained in three different Universum environments. 

The following table shows for different sizes of training sets the performance of 
a conventional SVM and the SVMs trained using Universums U1 , U2, U3 (each con­

taining 5000 examples). In all cases the parameter a = .01, the parameters C 1 , C2, 
and the parameter of the Gaussian kernel were tuned using the tenfold cross-validation 
technique. 

The Universums were constructed as follows: 

U1 : Selects random digits from the other classes (0,1,2,3,4,6,7 ,9). 

U2 : Creates an artificial image by first selecting a random 5 and a random 8, 
(from pool of 3,000 non-test examples) and then for each pixel of the artificial 
image choosing with probability 1/2 the corresponding pixel from the image 5 
or from the image 8. 

U3 : Creates an artificial image by first selecting a random 5 and a random 8, 
(from pool of 3,000 non-test examples) and then constructing the mean of these 
two digits. 

No. of train. examples 250 500 1000 2000 3000 
Test Err. SVM (%) 2.83 1.92 1.37 0.99 0.83 
Test Err. SVM+U1 (%) 2.43 1.58 1.11 0.75 0.63 
Test Err. SVM+U2 (%) 1.51 1.12 0.89 0.68 0.60 
Test Err. SVM+U3 (%) 1.33 0.89 0.72 0.60 0.58 

The table shows that: 
(a) The Universum can significantly improve the performance of SVMs. 
(b) The role of knowledge provided by the Universum becomes more impor­
tant with decreasing training size. However, even when the training 
size is large, the Universum still has a significant effect on performance. 

We expect that advancing the understanding of the idea how to create a good Uni­
versum for the problem of interest will further boost the performance. This fact opens 
a new dimension in machine learning technology: How does one create a Virtual Uni­
versum for the problem of interest? 

In trying to find an interpretation of the role of the Universum in machine learning, 
it is natural to compare it to the role of culture in the learning of humans, where knowl­
edge about real life is concentrated not only in examples of reality but also in artificial 
images that reflect this reality. To classify well, one uses inspiration from both sources. 



Chapter 3 

NONINDUCTIVE METHODS OF INFERENCE: 

DIRECT INFERENCE INSTEAD OF 

GENERALIZATION (2000-· · ·) 

3 .1 INDUCTIVE AND TRANSDUCTIVE INFERENCE 

Chapter 10 of EDBED distinguishes between two different problems of estimation: 
estimation of the function and estimation of the values of the function at given points 
of interest. 

(1) Estimation of the function. Given training data 

(3.1) 

find in the set of admissible functions J(x, a), a E A the one which guarantees 
that its expected loss is close to the smallest loss. 

(2) Estimation of the value of the function at the points of interest. Given a set of 
training data (3.1) and a sequence of k test vectors 

X£+1,· · · ,Xf+k, (3.2) 

find among an admissible set of binary vectors 

the one that classifies the test vectors with the smallest number of errors. Here 
we consider 

X1, · .. , X£+k (3.3) 

459 
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to be random i.i.d. vectors drawn according to the same (unknown) distribution 
P(x). The classifications y of the vectors x are defined by some (unknown) 
conditional probability function P(ylx). 

This setting is quite general. In the book we considered a particular setting where 
the set of admissible vectors is defined by the admissible set of indicator func­
tions f ( x, a), a E A. In other words, every admissible vector of classification 
Y* is defined as follows 

In the mid-1990s (after understanding the relationship between the pattern recog­
nition problem and the philosophy of inference), I changed the technical terminology 
[139]. That is, I called the problem of function estimation that requires one to find a 
function given particular data inductive inference. I called the problem of estimating 
the values of the function at particular points of interest given the observations trans­
ductive inference. 

These two different ideas of inference reflect two different philosophies, which we 
will discuss next. 

3.1.1 TRANSDUCTIVE INFERENCE AND THE SYMMETRIZATION LEMMA 

The mechanism that provides an advantage to the transductive mode of inference over 
the inductive mode was clear from the very beginning of statistical learning theory. It 
can be seen in the proof of the very basic theorems on uniform convergence. This proof 
is based on the following inequality which is the content of the so-called symmetriza­
tion lemma (see Basic lemma in EDBED Chapter 6, Section A3): 

where 

(3.5) 

and 
2£ 

(2) - 1 ~ Remp(a) - C ~ IYi - f(xi, a)I 
i=£+1 

(3.6) 

are the empirical risks constructed using two different samples. 
The bound for uniform convergence was obtained as an upper bound of the right­

hand side of (3.4). 
Therefore the symmetrization lemma implies that to obtain a bound for inductive 

inference we first obtain a bound for transductive inference (for the right-hand side of 
(3.4)) and then obtain an upper bound for it. 
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It should be noted that since the bound on uniform convergence was introduced 
in 1968, many efforts were made to improve it. However, all attempts maintain some 
form of the symmetrization lemma. That is, in the proofs of the bounds for uniform 
convergence the first (and most difficult) step was to obtain the bound for transductive 
inference. The trivial upper bound of this bound gives the desired result for inductive 
inference. 

This means that transductive inference is a fundamental step in machine learning. 

3.1.2 STRUCTURAL RISK MINIMIZATION FOR TRANSDUCTIVE INFERENCE 

The proof of the symmetrization lemma is based on the following observation: The 
following two models are equivalent (see Chapter 10, Section 1 of EDBED): 

(a) one chooses two i.i.d. sets 1 

(b) one chooses an i.i.d. set of size 2€ and then randomly splits it into two subsets of 
size€. 

Using model (b) one can rewrite the right-hand side of (3.4) as follows 

P { s~p IRi;lp(a) - Ri~P(a) I > ~} = 

E{x 1 ,. ,xu}P { s~p IRi~,p(a) - Ri~p(a)I > ~ l{x1, ... , x2e}}. (3.7) 

To obtain the bound we first bound the conditional probability 

P { s~p IRi;}1p(a) - Ri~P(a)I > ~ l{x1, ... , x2e}} ::::; 

~A(x1, ... , xu) exp { -c2€} (3.8) 

where ~A(x1 , ... , x2c) is the number of equivalence classes on the set (3.3). The prob­
ability is obtained with respect to the random split data into two parts (training and 
testing). Then we take the expectation over working sets of size 2€. As a result, we 
obtain 

E{x 1 , ,x2 £}P { s~p IRi;},p(a) - Ri~p(a)[ > ~ l{x1, ... , x2c}} :=::; 

~i(2€) exp { -c2€}. (3.9) 

Note that for the transductive model of inference we do not even need to take the 
expectation over sets of size 2€. We can just use the bounds (3.8). 

1 For simplicity of the formulas we choose two sets of equal size. 
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Let us consider both models of inference, transductive and inductive from one uni­
fied point of view: In both cases we are given a set of functions defined on some space 
R. We randomly choose the training examples from this space. In the inductive case 
we choose by sampling from the space, and in the transductive case we choose by 
splitting the working set into the training and testing parts. We define the values of the 
function of interest over the domain of definition of the function: In the inductive case 
in the whole space, and in the transductive case on the working set. 

The difference is that in transductive inference the space of interest is discrete ( de­
fined on £ + k elements of the working set (3.3)), while in inductive inference it is 
Rn. 

One can conduct a nontrivial analysis of the discrete space but not the continuous 
space Rn. This is the key advantage of transductive inference. 

3.1.3 LARGE MARGIN TRANSDUCTIVE INFERENCE 

Let Fi, ... , FN be the set of equivalence classes defined by the working set (3.3). Our 
goal is to construct an appropriate structure on this set of equivalence classes. 

In Chapter 2, Section 2.6 we constructed a similar structure on the set of equiv­
alence classes for inductive inference. However, we violated one of the important 
requirements of the theory: The structure must be constructed before the training data 
appear. In fact we constructed it after (in the inductive mode of inference the set of 
equivalence classes was defined by the training data), creating a data-dependent struc­
ture. There are technical means to justify such an approach. However, the bound for a 
data-dependent structure will be worse [138]. 

In transductive inference we construct the set of equivalence classes using a joint 
working set of vectors that contain both the training and test sets. Since in constructing 
the equivalence class we do not use information about how our space will be split into 
training and test sets we do not violate the statistical requirements. 

Let us define the size of an equivalence class Fi by the value of the corresponding 
margin: We find, among the functions belonging to the equivalence class, the one 
that has the largest margin2 and use the value of the margin µ(Fi) as the size of the 
equivalence class Fi, 

Using this concept of the size of an equivalence class, SVM transductive inference 
suggests: 

Classify the test vectors (3.2) by the equivalence class (defined on the working set 
(3.3 )) that classifies the training data well and has the largest value of the ( soft) margin. 

Formally, this requires us to classify the test data using the rule 

Yi= sgn((wo, zi) + bo), i = £ + 1, ... ,£ + k, 

2We consider the hard margin setting just for the sake of simplicity. One can easily generalize this setting 
to the soft margin situation as described in Section 2.3.4. 
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Figure 3.1: Large margin defines a large equivalence class. 

where the parameters w0 , b0 are the ones that minimize the functional 

1 e e+k 
R(w) = 2(w, w) + Ci L 0(ti) + C2 L 0(tj ), Ci, C2 2: 0 

i =l j=t+l 

subject to the constraints 

yi[(zi ,w) + b] 2: l - t;, t i 2': O, i=l, ... ,£ 

( defined by the images of the training data (3. l)) and the constraints 

y; ( ( zj, w) + b) ::::: 1 - t j , tj ::::: o, J = e + 1, .. . , e + k 

(defined by the set (3.2) and its desired classification Y* = (yJ+i , . .. , yJ+k) . 

(3.10) 

(3.11) 

(3 .12) 

One more constraint. To avoid unbalanced solution Chapelle and Zien [174), 
following ideas of Joachims [154], suggested the following constraint: 

1 e+k 1 e 
k L ((w, Z j) + b) ~ e LYi· 

j = f +l i = l 

(3 .1 3) 

This constraint requires that the proportion of test vectors in the first and second cate­
gories be similar to the proportion observed in the training vectors. 
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For computational reasons we will replace the objective function (3.10) with the 
function 

l C C+k 

R(w) = 2(w,w) +c1I:~i,+C2 L G, C1,C2 2'. 0 (3.14) 
i=l s=C+l 

Therefore (taking into account kemelization based on Mercer's theorem) we can 
obtain the following solution of this problem (in the dual space). 

The classification rules for the test data in the dual space have the form 

C C+k 

yT=sgn(LafK(xi,X7 )+ L f3sy;K(xs,x)+bo), T=f+l, ... ,f+k, 
i=l 

where the coefficients a?, /3~, bo and desired classifications of test data are the solution 
of the following problem: Maximize (over a, (3, y*) the functional 

C Hk l C 

W(a,(3,y*) = L°'i + L f3s - 2 L °'i°'JYiYJK(xi,Xj) 
i=l s=C+l i,j=l 

C c+k l Hk 

-L L °'iYif3sy;K(xi, Xs) - 2 L f3sY:f3tYt K(xs, Xt) 
i=l s=C+l s,t=C+l 

subject to the constraint 
C Hk 

LYiO:i + L Y:f3s = 0, 
i=l s=C+l 

the constraints 
0 :S ai :S C 1 , i = 1, . . . , £ 

0 :S f3s :S C2, s = £ + 1, ... , £ + k, 

and the constraint (3 .13 ): 

Note that this problem does not have a unique solution. This makes transductive 
inference difficult. However, whenever one can maximize the functional well, one 
obtains an improvement over inductive SVMs. 

3 .1.4 EXAMPLES OF TRANSDUCTIVE INFERENCE 

Here are examples of real-life problems solved using transductive inference. 
1. PREDICTION OF MOLECULAR BIOACTIVITY FOR DRUG DISCOVERY [146]. 

The KDD CUP-2001 competition on data analysis methods required the construction 
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of a rule for predicting molecular bioactivity using data provided by the DuPont Phar­
maceutical company. The data belonged to a binary space of dimension 139,351, which 
contained a training set of 1909 vectors, and a test set of 634 vectors. 

The results are given here for the winner of the competition (among the 119 com­
petitors who used traditional approaches), SVM inductive inference and SVM trans­
ductive inference. 

Winner's accuracy 
SVM inductive mode accuracy 
SVM transductive mode accuracy 

68.1 % 
74.5 % 
82.3 % 

It is remarkable that the jump in performance obtained due to a new philosophy of 
inference (transductive instead of inductive) was larger than the jump resulting from 
the reinforcement of the technology in the construction of inductive predictive rules. 

2. TEXT CATEGORIZATION [138]. In a text categorization problem, using trans­
ductive inference instead of inductive inference reduced the error rate from 30% to 
15%. 

REMARK. The discovery of transductive inference and its advantages over induc­
tive inference is not just a technical achievement, but a breakthrough in the philosophy 
of generalization. 

Until now, the traditional method of inference was the inductive-deductive method, 
where one first defines a general rule using the available information, and then deduces 
the answer using this rule. That is, one goes from particular to general and then from 
general to particular. 

In transductive mode one provides direct inference from particular to particular, 
avoiding the ill-posed part of the inference problem (inference from particular to gen­
eral). 

3 .1.5 TRANSDUCTIVE INFERENCE THROUGH CONTRADICTIONS 

Replacing the maximal margin generalization principle with the maximal contradiction 
on the Universum (MCU) princple leads to the following algorithm: Using the working 
set (3.3) create a set of equivalence classes of functions, then using the Universum 
(2.67) calculate the size of the equivalence classes by the number of contradictions. 

The recommendation of SRM for such a structure would be: 

To classify test vectors (3.2), choose the equivalence class (defined on the work­
ing set ( 3.3)) that classifies the training data ( 3.1) well and has the largest num­
ber of contradictions on the Universum. 

The idea of maximizing the number of contradictions on the Universum can have 
the following interpretation: 

When classifying the test vectors, be very specific; try to avoid extra generaliza­
tions on the Universum (2.67). 
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Figure 3.2: Large number of contradictions on Universum (boxes inside the margin) 
defines a large equivalence class. 

From a technical point of view, the number of contradictions takes into account the in­
homogeneity of image space, especially when the input vectors are nonlinearly mapped 
into feature space. 

Technically, to implement transductive inference through contradictions one has to 
solve the following problem. 

Given the images of the training data (3.1 ), the images of the test data (3.2), and 
the images of the Universum (2.67), construct the linear decision rule 

I(x) = B[(wo , z) + bol, 

where the vector w0 and threshold b0 are the solution of the following optimization 
problem: Minimize the functional 

l e f+ k u 

R(w) = 2(w, w) + C1 I)((i ) + C2 L 0((1 ) + C3 L 0((;), C1 , C2, C3 ~ 0 
i= l j =f+l s=l 

subject to the constraints 

yi[( zi , w) + b] ~ 1 - (i , (i ~ 0, i = 1, ... , £ 

( defined by the images of the training data (3 .1) ), the constraints 

y;((z1,w)+b)~l-(1, (1 ~0,j=£+1, ... ,£+k 

(3.15) 

(3.16) 

(3.17) 
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(defined by the set (3.2) and the desired vector (Ye+i, ... , Ye+k) ), and the constraints 

l(z_;,w)+bl:Sa+~;, ~;2>0, s=l, ... ,u, a2>0 (3.18) 

(defined by the images of the Universum (2.67)). 

As before (for computational reasons), we replace 0(0 in the objective function 
with ~. Therefore we minimize the functional 

1 e e+k u 

R(w)=2(w,w)+c1z:=~i+C2 L ~j+c3z:=~;, C1,C2,C32>0 (3.19) 
i=l j=£+1 s=l 

subject to the constraints (3.16), (3.17), and (3.18). 

DUAL FORM SOLUTION 

The solutions to all of the above problems in the dual space of Lagrange multipliers 
can be unified as follows. Find the function 

£ f+k u 

J(x) = L afyiK(x, xi)+ L f3fy; K(x, xt) + L (µ~ - v~,)K(x, :x::n) + bo 
i=l t=f+l m=l 

(3.20) 
whose test classifications YJ and coefficients a 0 , {3°, ;1,0 , v0 , b0 maximise the functional 

e e+k u 

W(a, /3, r, µ, v, y*) = L Doi+ L f3t - a L(µn + Vn) (3.21) 
i=l n=l 

l £ l Hk 

2 L aiOojYiYjK(;i;i,Xj) - 2 L f3tY;f3sY_;K(xt,·Ts) 
i.j=l s.t=f+l 

I u e e+k 

2 L (µm - Vm)(µn - Vn)K(x:n, .T~) - L L a;y;f3tY; K(:1:;, Xt) 
m,n=l i=l t=R+l 

e u u e+k 
-L L °'iYi(µm - Vm)K(x;, x;,) - L L (µm - Vm)/Jty; K(x;11 , J;t) 

i=l m=l m=l t=£+1 

subject to the constraints 

and the constraint 

0 :S ai :S C1, 

0 :S f3t, :S C2, 

£ f+k u 

L °'iYi + L f3tY; + L (µm - Vm) = 0. 
i=l t=f+l m=l 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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In particular, when C2 = C3 = 0 we obtain the solution for the conventional SVM, 
when C2 = 0 we obtain the solution for inductive SVMs with the Universum, and 
when C3 = 0 we obtain the solution for transductive SVMs. 

Note that just taking into account the Universum (C2 = 0) does not change the 
convexity of the optimization task. The problem becomes nonconvex (and therefore 
can have a nonunique solution) only for transductive mode. 

It is good to use hint (3.13) when solving transductive problems. 

3.2 BEYOND TRANSDUCTION: THE TRANSDUCTIVE 

SELECTION PROBLEM 

The transductive selection problem was not discussed in the original Russian edition of 
EDBED. It was written at the last moment for the English translation. In EDBED the 
corresponding section (Chapter 10, Section 13) has a very technical title "The Prob­
lem of Finding the Best Point of a Given Set." Here we call this type of inference 
transductive selection. 

3.2. l FORMULATION OF TRANSDUCTIVE SELECTION PROBLEM 

The transductive selection problem is the following: Given the training examples (pairs 
(xi,Yi),x E Rn, y E {-1,+1}, i = 1, ... ,£)andgivenaworkingset(x; E 
R*, j = 1, ... , m), find in the working set the k elements that belong to the first class 
(y = + 1) with the highest probability. 

Here are some examples of the selection problem: 

- Drug discovery. In this problem, we are given examples of effective drugs 
(Xi, + 1) and examples of ineffective drugs ( x s, -1). The goal is to find among 
the given candidates (xi, ... , x;,,) the k candidates with the highest probability 
of being effective drugs. 

- National security. In this problem, we are given examples (descriptions) ofter­
rorists (xi, +1) and examples of non-terrorists (xs, -1). The goal is to find 
among the given candidates (xi, ... , x;,,) the k most likely terrorists. 

Note that in contrast to general transductive inference, this setting does not require 
the classification of all candidates3• The key to solving the selective inference problem 
is to create an appropriate factorization of a given set of functions that contains fewer 
equivalence classes than the factorization for transductive inference. The transduc­
tive selective models are the main instrument for solving decision-making problems in 
high-dimensional spaces. However, this instrument has not yet been developed. 

3In such problems, the most difficult cases are "border candidates." In transductive selection problems, 
we exclude this most difficult part of the task (classification of border candidates). Here again we obtain the 
same advantage that we obtained by replacing the model identification scheme by the prediction scheme and 
replacing the predictive scheme by the transductive scheme: we replaced a not very well-posed problem by 
a better-posed problem. 
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3.3 DIRECTED AD Hoc INFERENCE (DAHi) 

3.3.1 THE IDEA BEHIND DAHI 

This section discusses directed ad hoc inference, inference that occupies an intermedi­
ate position between inductive-deductive inference and transductive inference. 

The main idea of DAHI is a reconsideration of the roles of the training and test­
ing stages during the inference process. The classical inductive-deductive model of 
inference contains two different stages: 

( 1) The training (inductive) stage, where one constructs a rule for classification using 
the training data, and 

(2) The testing (deductive) stage where one classifies the test data using the con­
structed rule. 

The transductive model of inference solves the classification problem in one step: 

- Given a set of training data and a set of test data, it finds the labels for the test 
data directly. 

DAHi works differently. During the training stage, DAHi looks for a principal 
direction (concept) used to construct different rules for future inferences. This is dif­
ferent from the inductive stage of inference where the goal is to find one fixed rule. 
During the test stage DAHI uses this principal direction to construct a specific rule for 
each given test vector (the ad hoc rule). Therefore, DAHi contains elements of both 
inductive and transductive inference: 

(1) It constructs one general direction of inference (as in inductive inference). 

(2) It constructs an individual (ad hoc) rule for each given test example (as in trans­
ductive inference). 

The idea of DAHi is: To construct a linear ( in feature space) decision rule that has 
fixed homogeneous terms and individual (for different test vectors) thresholds. 

The problem is how to find thresholds that make inferences more accurate than 
ones based on one fixed threshold (as in SVM). 

From a technical point of view DAHi is a combination of ideas from statistical 
learning theory (in particular, support vector machines), and from nonparametric statis­
tics (methods for conditional probability estimation). 

3.3.2 LOCAL AND SEMI-LOCAL RULES 

To discuss the details of DAHi let us consider the idea of local algorithms suggested 
by nonparametric statistics and in particular the k-nearest neighbors method. 
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k-NEAREST NEIGHBORS METHOD 

According to the k-nearest neighbours method for any point of interest x0 one chooses 
from the training data the k-nearest (in a given metric) vectors x;, i = 1, ... , k and 
classifies the point of interest x 0 depending on which class dominates among these k 
chosen vectors. 

The k-nearest neighbors method can be described as a local estimating method. 
Consider the set of constant-valued functions. For a set of indicator functions it con­
tains only two functions: one takes the value -1; another takes the value 1. Consider 
the following local algorithm: define the spherical vicinity of the point of interest x 0 

based on the given metric and a value for the radius ( defined by the distance from a 
point of interest x 0 to its k nearest neighbors). Then choose from the admissible set of 
functions the function that minimizes the empirical loss on the training vectors belong­
ing to the vicinity of the point of interest x 0 . Finally use this function to classify the 
point of interest. 

This description of the k-nearest neighbors method as a local algorithm immedi­
ately allows one to generalize it in two respects: 

(1) One can use a richer set of admissible functions (for example, the set of large 
margin linear decision rules, see Section 2.3) 

(2) One can use different rules to specify the value of the radius that defines the 
locality (not just the distance to the kth nearest neighbor). 

In 1992 the idea of local algorithms for pattern recognition was used where (local) 
linear rules (instead of local constant rules) and VC bounds (instead of the distance 
to the kth nearest neighbor) were utilized [145]. The local linear rules demonstrated 
a significant improvement in performance (3.2% error rate instead of 4.1 % for digit 
recognition on the US Postal Service database). 

For the regression estimation problem a similar idea was used in the Nadaraya­
Watson estimator [147, 148] with a slightly different concept of locality. Nadaraya and 
Watson suggested considering "soft locality": they introduced a weight function (e.g., 
a monotonically decreasing nonnegative function from the distance between a point of 
interest xo and elements x; of training data f ( I lxo - x; 11), i = 1, ... , £), and used 
this function for estimating the value of interest 

e 

Yo= L T;(xo)Y;, 
i=l 

where coefficients T; ( x0 ) were defined as follows, 

T;(xo) = / (llxo - x;II) 
I:i=l f(llxo - x;II) 

(3.26) 

(3.27) 

This concept is a generalization of the hard locality concept. We will use this construc­
tion later. 
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However in all of these methods the concept of locality is the same: it is a sphere 
(a "soft sphere" in the Nadaraya-Watson method) defined by a given metric with the 
center at the point of interest. 

SEMI-LOCAL RULE 

In DAHi we use a new concept of vicinity. We map input vectors :r into a feature 
space z where we specify the vicinity. We consider a cylinder (or more generally a 
"soft cylinder"; see Section 3.3.4 below) whose axis passes through the image zo of 
the point of interest x0 . The defined vicinity is unbounded in one direction ( defined by 
the axis of the cylinder) and bounded in all other directions. We call such a vicinity a 
semi-local vicinity. 

The difference between the local and semi-local concepts of vicinity is the follow­
ing. In a sphere with a fixed center there are no preferable directions in a feature space, 
while a cylinder has one preferable direction (along the axis of the cylinder). DAHi 
uses this direction to define vicinities for all points of interest. 

During the training stage DAHi looks for the direction of the cylinder that defines 
the axis (in feature space) for all possible vicinities (cylinders). To find this direction 
one can use the methods of statistical learning theory (e.g., SVMs). 

During the test stage DAHi uses only data from the (semi-local) vicinity of the 
point of interest z0 and constructs a one-dimensional conditional probability function 
defined on the axis of the cylinder passing in the specified direction w0 through the 
point of interest z0 . DAHi then uses this conditional probability P(y0 = 1/z0 ) to 
classify z0 , where zo is the image of the point of interest x0 in feature space. 

Note that DAHi generalizes the SVM idea. In SVM one chooses both the direction 
w0 and the threshold b0 for the decision rule. In DAHi one chooses only the direction 
w0 , and for any test vector constructs an individual decision rule (threshold). 

3.3.3 ESTIMATION OF CONDITIONAL PROBABILITY ALONG THE LINE 

To solve the classification part of the problem we estimate the conditional probability 
P(y(t) = 1/t) that the point ton the axis of a cylinder (passing through the point of 
interest t0 ) belongs to the first class. To do this we have to solve the integral equation 

1t P(y = 1/t')dF(t') = F(y = 1, t), (3.28) 

where both the cumulative distribution function of the point on the line F( t) and the 
probability function F(y = 1, t) of that point on the line with t' ::; t belong to the first 
class are unknown, but data (inside cylinder) are given. 

Note that when the density function p( t) exists for F( t), the conditional probability 

P(y = 1/t) = p(y = l, t) 
p(t) 

defines the solution of Equation (3.28). 
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To solve this problem given data one must first estimate the cumulative distribution 
functions along the line and then use these estimates Fest ( t), Fest ( 1, t) in Equation 
(3.28) instead of the actual functions F(~) and F(y = 1, ~)-

1t P(y = llt')dFmp(t') = Femp(Y = 1, t). (3.29) 

This Equation forms an ill-posed problem where not only the right-hand side of 
the equation is an approximation of the real right-hand side but also the operator is an 
approximation of the real operator (since we use Femp(t) instead of F(t)). 

In [140] it is shown that if the approximations Femp(t), and Femp(Y = 1, t) are 
consistent then there exists a law 'Ye = "!(£) such that the Tikhonov regularization 
method 

R(P) = I 11t P(y = llt')dFemp(t') - Femp(Y = 1, t) 11
2 + "(ef2(P) (3.30) 

provides the solutions that converge to the solution of Equation (3.28) as £ --, oo. 

3.3.4 ESTIMATION OF CUMULATIVE DISTRIBUTION FUNCTIONS 

A consistent method of estimating cumulative distribution functions along a line was 
first suggested by Stute in 1986 [149]. He considered a cylinder of radius r whose 
axis coincides with the line, projected on this line the vectors z of the training data that 
were inside the cylinder (suppose that there are r(£) such vectors), and constructed a 
one-dimensional empirical distribution function using these projections: 

(3.31) 

Stute showed that under some general law of choosing the radius of the cylinder (which 
depends on the number of observations £) with an increasing number of observations, 
this empirical cumulative distribution function converges with probability one to the 
desired function. To estimate conditional probability one can use in (3.30) the approx­
imation (3.31) and the approximation 

1 r(f) 

Fr(R)(l, t) = 2r(£) 2)1 + Yi)0(t - ti)-
i=l 

(3.32) 

Also one can estimate a cumulative distribution function along the line in the 
N adaraya-Watson style using the distances between images of training vectors and the 
line passing through the point of interest z0 in direction wo , 

(3.33) 
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where t0 = (z0 , w0 ) is the projection of the vector z0 on the direction w0 . Using d;(z0 ) 

instead of [[x0 - x;[[ in (3.27) one obtains the Nadaraya-Watson type approximations 
of the elements of Equation (3.29): 

e 
Femp(t) = L T;(zo)0(t - ti), 

i=l 

1 e 
Femp(Y = 1, t) = 2 L (1 + y;)Ti(zo)0(t - ti)-

i=l 

(3.34) 

(3.35) 

Both the Stute estimate and modified Nadaraya-Watson estimate are step functions. 
The difference is that in Stute' s estimate there are r ( £) steps where all values of the 
step are equal to 1/r(£) while in the Nadarya-Watson estimate there are£ steps but the 
step values Ti ( z0 ) are different, and depend on the distance between the vector Zi and 
the line passing through the point z0 in the direction w0 . 

3.3.5 SYNERGY BETWEEN INDUCTIVE AND AD Hoc RULES 

In DAHi we combine two consistent methods: the SVM method for estimating the 
direction in feature space, and the method for estimating the conditional probability 
along the line passing through the point of interest. 

However, when the number of training data is not large (and this is always the case 
in a high-dimensional problem) one needs to provide both methods with additional in­
formation: In order to choose a good SVM solution one has to map the input vectors 
into a "good" Hilbert space (to choose a "good" kernel). In order to obtain a good solu­
tion for solving the ill-posed problem of estimating a conditional probability function 
along the line one has to use a priori information about the admissible set of functions 
that contain the desired conditional probability function. 

By combining the above two methods, one tries to construct a robust classification 
method that reduces the dependency on a priori information. 

This is because: 

(1) When one chooses a direction that is "reasonably close" to the one that defines 
a "good" separating hyperplane, the corresponding conditional probability func­
tion belongs to the set of monotonic functions (the larger the SVM score is, the 
larger is the probability of the positive class). Finding a direction that main­
tains the monotonicity property for the conditional probabilities requires fewer 
training examples than finding a direction that provides a good classification. 

(2) The problem of finding a conditional probability function from the set of mono­
tonic nondecreasing functions is much better posed than the more general prob­
lem of finding a solution from the set of continuous nonnegative functions. 4 

Therefore, in the set of monotonic functions one can solve this problem well, 
using a restricted (small) number of observations. 

4 A set of monotonically increasing ( or monotonically decreasing) functions has VC dimension one while 
a set of continuous nonnegative functions has an infinite VC dimension. 
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(3) Using the leave-one-out technique one can use the same training data for con­
structing the main direction and later for constructing conditional probability 
functions. 

The minimization of functional (3.30) in a set of monotonic functions is not too difficult 
a computational problem. The idea behind DAHi is to use this possible synergy. 

Figure 3.3 shows two examples of the binary classification problem: separating 
digit 3 from digit 5. Two examples of conditional probabilities P(3Jt) estimated along 
the line are presented in Figure 3.3. For each example the figure shows the image of 
interest, the functions Femp(t) and Femp(3, t), and the solution of Equation (3.29). 
The position of the point of interest on the line corresponds to an ordinate value of 0. 
Part (a) of the figure shows the probability that the image is a 3 is 0.34, but in part (b) 
the probability that the image is a 3 is 0. 

3.3.6 DAHi AND THE PROBLEM OF EXPLAINABILITY 

The idea of DAHi is appealing from a philosophical point of view since it addresses 
the question of explainability of complex rules [169]. DAHi divides the model of 
explainability for complex rules into two parts: the "main direction" and the "ad hoc" 
parts where only the "main direction" part of the rule has to be explained ( described by 
the formal model). 

One speculation on the DAHi model of explainability can be given by the example 
of how medical doctors distinguish between cancer and benign cases. They use prin­
cipal rules to evaluate the cancer and if the corresponding score exceeds a threshold 
value, they decide the case is cancer. 

The threshold, however, is very individual: it depends on the family history of the 
patient, and many other factors. The success of a doctor depends on his experience 
in determining the individual threshold. The threshold can make all the difference in 
diagnostics. Nevertheless the explainability is mostly related to the "main direction" 
part of the rule. 

3.4 PHILOSOPHY OF SCIENCE FOR A COMPLEX 

WORLD 

3.4.1 EXISTENCE OF DIFFERENT MODELS OF SCIENCE 

The limitations of the classical model of science when dealing with the real-life com­
plex world have been discussed for quite some time. For example, according to Ein­
stein, the classical model of science is relevant for a simple world. For a complex world 
it is inapplicable. 
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Figure 3.3: Solutions of the integral equation for different data. 
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- Einstein on the simple world: 

When the solution is simple, God5 is answering. 

- Einstein on the complex world: 

When the number of factors coming into play in a phenomenological complex is 
too large, scientific methods in most cases fail. 6 

One can see the idea of limitation of scientific models and existence of non-scientific 
ones in the following Richard Feynman's remark (Lectures on physics): 

If something is said not to be a science, it does not mean that there is something 
wrong with it ... it just means that it is not a science. 

In other words there was an understanding that: 

Classical science is an instrument for a simple world. When a world is complex, 
in most cases classical science fails. For a complex world there are methods that 
do not belong to classical science. 

Nevertheless, the success of the physical sciences strongly influenced the method­
ology used to analyze the phenomena of a complex world ( one based on many factors). 
In particular, such a methodology was adopted in the biological, behavioural, and so­
cial sciences where researchers tried to construct low-dimensional models to explain 
complex phenomena. 

The development of machine learning technology challenged the research in the 
methodology of science. 

3.4.2 IMPERATIVE FOR A COMPLEX WORLD 

Statistical learning theory stresses that the main difficulties of solving generalization 
problems arise because, in most cases, they are ill-posed. 

To be successful in such situations, it suggests to give up attempts of solving ill­
posed problems of interest replacing them by less demanding but better posed prob­
lems. In many cases this leads to renunciation of explainability of obtained solutions 
(which is one of the main goals declared by the classical science). Therefore, a science 
for a complex world has different goals (may be it should be called differently). 

For solving specific ill-posed problems the regularization technique was suggested 
[20, 21, 54, 55]. However, to advance high-dimensional problems of inference just 
applying classical regularization ideas is not enough. The SRM principle of inference 
is another way to control the capacity of admissible sets of functions. Recently a new 
general idea of capacity control was suggested in the form of the following imperative 
[139]: 

5Here and below Einstein uses the word God as a metaphor for nature. 
6Great theoretical physicist Lev Landau did not trust physical theories that combine more than a few 

factors. This is how he explained why: "With four free parameters one can draw an elephant, with five one 
can draw an elephant rotating its tail." 
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IMPERATIVE 

When solving a problem of interest, do not solve a more general problem as an 
intermediate step. Try to get the answer that you really need but not a more 
general one. 

According to this imperative: 
- Do not estimate a density if you need to estimate a function. 
(Do not use the classical statistics paradigm for prediction in a high­
dimensional world: Do not use generative models for prediction.) 
- Do not estimate a function if you only need to estimate its values at given 
points. (Try to perform direct inference rather than induction.) 
- Do not estimate predictive values if your goal is to act well. 
(A good strategy of action does not necessary rely on good predictive ability.) 

3.4.3 RESTRICTIONS ON THE FREEDOM OF CHOICE IN INFERENCE MODELS 

In this Afterword we have discussed three levels of restrictions on the freedom of 
choice in the inference problem: 

( 1) Regularization, which controls the smoothness properties of the admissible set 
of functions (it forbids choosing an approximation to the desired function from 
not a "not smooth enough set of functions"). 

(2) Structural risk minimization, which controls the diversity of the set of admissible 
functions (it forbids choosing an approximation to the desired function from too 
diverse a set of functions, that is, from the set of functions which can be falsified 
only using a large number of examples). 

(3) Imperatives, which control the goals of possible inferences in order to consider 
a better-posed problem. In our case it means creating the concept of equivalence 
classes of functions and making an inference using a large equivalence class (it 
forbids an inference obtained using a "small" equivalence class). 

It should be noted that an understanding of the role of a general theory as an in­
strument to restrict directions of inference has existed in philosophy for a long time. 
However, the specific formulations of the restrictions as described above were devel­
oped only recently. The idea of using regularization to solve ill-posed problems was 
introduced in the mid-1960s [21, 55]. Structural risk minimization was introduced in 
the early 1970s [EDBED], and the imperative was introduced in the mid-1990s [139]. 

In order to develop the philosophy of science for a complex world it is important 
to consider different forms of restriction on the freedom of choice in inference prob­
lems and then analyze their roles in obtaining accurate predictive rules for the pattern 
recognition problem. 

One of the main goals of research in the methodology of analysis of a complex 
world is to introduce new imperatives and for each of them establish interpretations in 
the corresponding branches of science. 
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3.4.4 METAPHORS FOR SIMPLE AND COMPLEX WORLDS 

I would like to finish this part of the Afterword with metaphors that stress the difference 
in the philosophy for simple and complex worlds. As such metaphors let me again use 
quotes from Albert Einstein. 

Two METAPHORS FOR A SIMPLE WORLD 

l. I want to know God's thoughts. (A. Einstein) 
2. When the solution is simple, God is answering. (A. Einstein) 

INTERPRETATION 

Nature is a realization of the simplest conceivable mathematical ideas. I am convinced 
that we can discover, by means of purely mathematical constructions, concepts and 
laws, connect them to each other, which furnish the key to understanding of natural 
phenomena. (A. Einstein.) 

THREE METAPHORS FOR A COMPLEX WORLD 

FIRST METAPHOR 

Subtle is the Lord, but malicious He is not. (A. Einstein) 

INTERPRETATION7 

Subtle is the Lord - one can not understand His thoughts. 

But malicious He is not - one can act well without understanding them. 

SECOND METAPHOR 

The devil imitates God. 8 (Medieval concept of the devil.) 

INTERPRETATION 

Actions based on your understanding of God's thoughts can bring you to catastrophe. 

THIRD METAPHOR 

If God does exist then many things must be forbidden. (F. Dostoevsky) 

INTERPRETATION 

If a subtle and nonmalicious God exists, then many ways of generalization must be 
forbidden. The subject of the complex world philosophy of inference is to define cor­
responding imperatives (to define what should be forbidden). These imperatives are 
the basis for generalization in real-life high-dimensional problems. 

The imperative described in Section 3.4.2 is an example of the general principle 
that forbids certain ways of generalization. 

7 Surely what Einstein meant is that the laws of nature may be elusive and difficult to discover, but not 
because the Lord is trying to trick us or defeat our attempts to discover them. Discovering the laws of nature 
may be difficult, but it is not impossible. Einstein considered comprehensibility of the physical world as a 
"mystery of the world". My interpretation of his metaphor for a complex world given below is different. 

8This includes the claim that for humans the problem of distinguishing imitating ideas of the devil from 
thoughts of God is ill-posed. 
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THE BIG PICTURE 

4.1 RETROSPECTIVE OF RECENT HISTORY 

The recent history of empirical inference science can be described by Kuhn's model 
of the development of science which distinguishes between periods with fast develop­
ment of ideas (development of the new paradigms) and periods with slow developments 
(incremental research) [168]. 

In empirical inference science one can clearly see three fast periods: in the 1930s, 
1960s, and 1990s. 

4.1. l THE GREAT 1930s: INTRODUCTION OF THE MAIN MODELS 

The modem development of empirical inference science started in the early 1930s. 
Three important theoretical results indicated this beginning: 

(I) The foundation of the theory of probability and statistics based on Andrei Kol­
mogorov's axiomatization and the beginning of the development of the classical 
theory of statistics. 1 

(2) The development of a basis of applied statistics by Sir Ronald Fisher.2 

(3) The development of the falsifiability principle of induction by Sir Karl Popper3• 

1 Andrei Kolmogorov was a leading figure in mathematics in the 20th century. He was the recipient of 
many of the highest prizes and international awards. 

2Ronald Fisher was a creator of applied statistics. He was knighted by Queen Elizabeth II in l 952 for his 
works in statistics and genetics. 

3Karl Popper was a creator of the modern philosophy of science. He was knighted by Queen Elizabeth II 
in 1965 for his works in philosophy. 

479 
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AXIOMATIZATION OF STATISTICS AND PROBABILITY THEORY AND THE PROBLEM 

OF EMPIRICAL INFERENCE 

At the beginning of the 20th century there was a great interest in the philosophy of prob­
abilistic analysis. It was the time of wide discussions about the nature of randomness. 
These discussions, however, contained a lot of wide speculations. Such speculations 
were not very useful for development of the formal mathematical theory of random 
events. In order to separate formal mathematical development of the theory from its 
interpretation, mathematicians discussed the opportunity to axiomatize the theory of 
random events. In particular, the problem of the axiomatization of probability theory 
was mentioned by David Hilbert at the Second Mathematical Congress in Paris in 1900 
as one of the important problems of the 20th century. 

It took more than 30 years until in 1933 Kolmogorov introduced simple axioms for 
probability theory and statistics. 

Kolmogorov began with a set O which is called the sample space or set of elemen­
tary events A ( outcomes of all possible experiments). On the set of possible elementary 
events a system F = { F} of subsets F c 0, which are called events, is defined. He 
considered that the set F0 = 0 c F determines a situation corresponding to an event 
that always occurs. It is also assumed that the set of events contains the empty set 
0 = F0 c F, the event that never occurs. Let F be an algebra of sets. (When Fis also 
closed under countably infinite intersections and unions, it is called a O'-algebra.) The 
pair ( 0, F) defines the qualitative aspects of random experiments. 

To define the quantitative aspects he introduced the concept called a probability 
measure P(F) defined on the elements F of the set F. The function has the following 
properties, 

P(0) = 0, P(O) = 1, 0::; P(F) ::; 1, 
(X) 

P (U~ 1 Fi) = L P(F;), if F;, Fj E F and F; n Fj = 0 Vi, j. 
i=l 

He then introduced the idea of conditional probability of events 

P(F n E) 
P(FIE) = P(E) , P(E) > 0 

and defined mutual independence of events F 1 , ... , Fn as the situation when 

By introducing this axiomatization, Kolmogorov made the theory of probabilities a 
pure mathematical (deductive) discipline with the following basic problem. 

THE BASIC PROBLEM OF PROBABILITY THEORY 

Given the triplet (0, F, P) and an event B, calculate the probability measure 
P(B). 

The axiomatization led to the definition of statistics as the inverse problem. 
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THE BASIC PROBLEM OF STATISTICS 

Given the pair (rl, :F) and a finite number of i.i.d. data 

Ai, ... ,Ae 

estimate the probability measure P(F) defined on all subsets FE :F. 

This inverse problem reflects the inductive idea of inference. The general theoret­
ical analysis of inductive inference started with the particular instance of this problem 
described in the Glivenco-Cantelli theorem (1933) and later was extended to a general 
theory for uniform convergence (VC theory) in 1968 and 1971. 

FISHER'S APPLIED STATISTICS 

At about the same time that theoretical statistics was introduced, Fisher suggested the 
basics of applied statistics. The key element of his simplification of statistical theory 
was his suggestion of the existence of a density function p(~) that defines the random­
ness (noise) for a problem of interest. 

Using the density function Fisher introduced the model of observed data 

(Yi, xi), ... , (ye, xe) (4.1) 

as measurements of an unknown function of interest J(x, a 0 ) that belongs to some 
parametric family f(x, a), a E A contaminated by uncorrelated noise defined by the 
known density p(~) 

Yi = f (xi, ao) + ~i, E~iXi = 0. (4.2) 

He developed the maximum likelihood method for estimating the density function 
given the data (4.1) and the parametric family 

Pn(O = p(y - f(x, a)) 

that contains the density function of interest. Fisher suggested choosing the density 
function with parameter a that maximizes the functional 

C 

R(a) = L lnp(yi - f(xi, a)). 
i=i 

It took 20 years before LeCam, using uniform convergence arguments, proved in 1953 
the consistency of the maximum likelihood method for specific sets of parametric fam­
ilies. 

Since this time many efforts were made to generalize Fisher's scheme for a wide 
set of densities (to remove Fisher's requirement to explicitly define the model of noise). 
In particular, Huber suggested the model of robust estimation that is based on a wide 
class of density functions. Later, nonparametric techniques also generalized Fisher's 
model for wide sets of admissible functions. 

However, the key element of applied statistics remained the philosophical realism 
based on the generative model ( 4.2) of the observed data ( 4.1 ). 
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POPPER'S CONCEPT OF FALSIFIABILITY 

In the early 1930s Popper suggested his idea of falsifiability. It was considered both 
as the demarcation line between metaphysics and natural science as well as a justifi­
cation of Occam's Razor principle. Popper developed the falsifiability idea over his 
entire lifetime: his first publication appeared in German in 1934 his last addition was 
in an English edition in 1972. This idea is considered as one of the most important 
achievements in the philosophy of science of the 20th century. 

Fisher's philosophy of applied statistics and Popper's justification of the depen­
dence of generalization ability on the number of entities formed the classical paradigm 
of philosophical realism for induction. 

The continuation of the Kolmogorov-Glivenco-Cantelli line of theoretical statistics 
led to the development of the VC theory that reflected the philosophical instrumental­
ism paradigm. 

4.1.2 THE GREAT 1960s: INTRODUCTION OF THE NEW CONCEPTS 

In the 1960s several revolutionary ideas for empirical inference science were intro­
duced. In particular 

1. Tikhonov, Ivanov, and Phillips developed the main elements of the theory of 
ill-posed problems. 

2. Kolmogorov and Tikhomirov introduced the capacity concepts (s-entropy, cov­
ering numbers, width) for sets of functions. 

3. Solomonoff, Kolmogorov, and Chaitin developed the concept of algorithmic 
complexity and used it to justify inductive inference. 

4. Vapnik and Chervonenkis developed the basics of empirical inference science. 

5. The empirical inference problem became a problem of natural science. 

ILL-POSED PROBLEMS 

I consider the philosophy of ill-posed problems as the turning point in the understand­
ing of inference. It can have the following interpretation: 

(1) The general problem of inference - obtaining the unknown reasons from the 
known consequences - is ill-posed. 

(2) To solve it one has to use very rich prior information about the desired solution. 
However, even if one has this information it is impossible to guarantee that the 
number of observations that one has is enough to obtain a reasonable approxi­
mation to the solution. 

Therefore one should try to avoid solving an ill-posed problem if possible. The 
development of the VC theory is just an illustration of this thesis. 
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THE BASIS FOR AN ALTERNATIVE 

The 1960s marked the beginning of the mathematical development of the instrumen­
talist point of view. In the late 1950s and early 1960s Kolmogorov and Tikhomirov 
introduced the idea of the capacity of a set of functions and demonstrated its useful­
ness in function approximation theory. 

The VC entropy, Growth function, and VC dimension concepts of capacity (which 
are different from the one suggested by Kolmogorov and Tikhomirov) became the main 
concepts that define the generalization ability in the instrumentalist framework. 

In the I 960s Solomonoff, Kolmogorov, and Chaitin introduced the concept of al­
gorithmic complexity. Solomonoff introduced this concept in order to understand the 
inductive principle, while Kolmogorov tried to address issues about nature of random­
ness,4 which was a subject of discussion at the beginning of the 20th century. 

The book [139] shows that for the pattern recognition problem the idea of Kol­
mogorov complexity leads to essentially the same bound for the pattern recognition 
problem that the VC theory gives. The VC theory, however, defines the necessary 
and sufficient conditions for consistency. It is unclear if algorithmic complexity also 
provides the necessary and sufficient conditions. 

By the end of 1960s we constructed the theory for the uniform law of large numbers 
and connected it to the pattern recognition problem. By doing this, we had developed 
the mathematical foundation of predictive learning. 

An extremely important fact is that by the end of the 1960s the methodology of 
solving the inference problem adopted the methodology of the natural sciences. Any 
results on the generalization problem must be confirmed by computer experiments on 
a variety of problems. 

This forever changed the approach to both empirical inference science and to the 
philosophy of inference. 

4.1.3 THE GREAT l 990S: INTRODUCTION OF THE NEW TECHNOLOGY 

In the 1990s the following events took place. 

( 1) Vapnik and Chervonenkis proved that the existence of the uniform law of large 
numbers is the necessary and sufficient condition for consistency of the em­
pirical risk minimization principle. This means that if one chooses the function 
from an admissible set of functions one can not avoid VC type arguments. 

(2) Estimation of high-dimensional functions became a practical problem. 

(3) Large-margin methods based on the VC theory of generalization (SVM, boost­
ing, neural networks) proved advantageous over classical statistical methods. 

These results have led to the development of new learning technologies. 

4In 1933 when Kolmogorov introduced his axiomatization of probability theory, he effectively stopped 
these discussions. Thirty years later he came back to this question connecting randomness with algorithmic 
complexity: Random events are ones that have high algorithmic complexity. 
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4.1.4 THE GREAT 2000S: CONNECTION TO THE PHILOSOPHY OF SCIENCE 

In the early 2000s the following important developments took place. These all con­
tributed to a philosophy of science for a complex world. 

(1) The development of the theory of empirical inference based on VC falsifiability 
as opposed to Occam's Razor principle. 

(2) The development of noninductive methods of inference. 

This can lead to a reconsideration of the psychological and behavioral sciences 
based on noninductive inference. Also it will lead to reconsideration of the goals and 
methods of pedagogical science: Teaching not just inductive inference but also direct 
inference that can use the (cultural) Universum. 

4.1.5 PHILOSOPHICAL RETROSPECTIVE 

This is how the philosophy of inference has developed. 

- At the end of 1930s 
the basics of two different paradigms of empirical inference ( generative and pre­
dictive) were introduced. 

- At the end of the 1960s it became clear that 
the classical statistical paradigm is too restrictive: 
It cannot be applied to high-dimensional problems. 

- At the end of the 1990s it became clear that 
the Occam's Razar principle of induction is too restrictive: 
Experiments with SVMs, boosting, and neural nets provided counter-examples. 

- In the beginning of the 2000s it became clear that 
the classical model of science is too restrictive: 
It does not include noninductive (transductive and ad hoc) types of inference 
which, in high-dimensional situations, can be more accurate than inductive in­
ference. 

- In the beginning of the 2000s it also became clear that 
in creating a philosophy of science for a complex world the machine learning 
problem will play the same role that physics played in creating the philosophy of 
science for a simple world. 

4.2 LARGE SCALE RETROSPECTIVE 

Since ancient times, philosophy has distinguished among three branches: natural sci­
ence, metaphysics, and mathematics. Over many centuries, there have been ongoing 
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discussions about the demarcation among these branches, and this has changed many 
times. Even the existence of these three categories is still under discussion. 

Some scholars consider only two categories, including mathematics in the category 
of natural science or in the category of metaphysics. However, it is convenient for our 
discussion to consider three categories. 

4.2.1 NATURAL SCIENCE 

The goal of natural science is to understand and describe the real world. It can be 
characterized by two features: 

The subject of analysis is defined by the real World. 

The methodology is to construct a theory (model) based on the results of both 
passive (observation-based), and active (query-based) experiments in the real 
world. 

Examples of natural sciences include astronomy, biology, physics, and chemistry 
where scholars can observe facts of the physical world (conduct passive experiments), 
ask particular questions about the real world (perform active experiments), and (based 
on analyzing results of these experiments) create models of the world. In these ac­
tivities, experiments play a crucial role. From experiments scientists obtain facts that 
reflect the relationships existing in the world; also, experiments are used to verify the 
correctness of the theory (models) that are suggested as a result of analysis5 . 

Because of this, sometimes natural science is called empirical science. This stresses 
that the subject of natural science is the real world and its method is the analysis of 
results of (passive and active) experiments. 

4.2.2 METAPHYSICS 

In contrast to empirical (natural) science, metaphysics does not require analysis of ex­
perimental facts, or the verification of results of inference. It tries to develop a general 
way of reasoning with which truth can be found for any imaginary models. Meta­
physics stresses the power of pure reasoning. 

Examples of metaphysical problems are the following: 

What is the essence of the devil? Here the devil is not necessarily a personalized 
concept. It can be a metaphor. The metaphors on a complex world used in 
Section 3.4.4: "The devil imitates God" is one of the concepts of the devil given 
in the Middle Ages. This was formulated following very wide discussions. 

Another example: What is freedom of will? 

5The relationship between the number of active and passive experiments differs in different sciences. 
For example, in astronomy there are more passive observations and fewer active experiments. However, in 
chemistry there are more active experiments and fewer passive experiments. 
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According to Kant the question 

What are the principles of induction? 

defines the demarcation line between empirical science (that can be applied only for 
a particular world) and metaphysics (that can be applied to any possible world). It is 
commonly accepted that Popper gave the answer to Kant's question by introducing the 
falsifiability idea. That is, empirical science must be falsifiable. 

4.2.3 MATHEMATICS 

Mathematics contains elements of both natural science and metaphysics. 
There is the following (not quite) jocular definition of pure mathematics (Eugene Wigner): 

Mathematics is the science of skillful operation with concepts and rules invented 
just for this purpose. 

From this view, pure mathematics (rather than applied) is a part of metaphysics 
since mathematics invents concepts and rules for analysis, constructs objects of anal­
ysis, and analyzes these objects. It does not rely on experiments either to construct 
theories or to verify their correctness. 

The ideal scheme of pure mathematics is the system that has been used since Euclid 
introduced his geometry: Define a system of definitions and axioms, and from these 
deduce a theory.6 Some scholars, however, consider mathematics as a part of the nat­
ural sciences because (according to these scholars) systems of definitions and axioms 
(concepts and rules) used in mathematics are inspired by the real world. 

Another view makes a bridge among mathematics, natural science, and metaphysics 
by declaring that: 

Everything which is a law in the real world has a description in mathematical 
terms and everything which is true in mathematics has a manifestation in the real 
world. 

Many scholars consider mathematics as a language that one uses to describe the laws 
of nature. 

We, however, will not discuss the demarcation lines between mathematics and 
metaphysics, or mathematics and natural science and will instead consider all three 
as different branches of knowledge. 

The duality of the position of mathematics with respect to natural science and meta­
physics has important consequences in the history of the development of natural sci­
ence. 

6The real picture is much more complicated. According to Israel Gelfand one can distinguish among 
three periods of mathematical development in the 20th century: 

( 1) Axiomatization ( constructing axioms for different branches of mathematics) 

(2) Structurization (finding similar structures in different branches of mathematics) 

(3) Renaissance (discovering new facts in different branches of mathematics). 
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4.3 SHOULDERS OF GIANTS 

4.3.1 THREE ELEMENTS OF SCIENTIFIC THEORY 

According to Kant, any scientific theory contains three elements: 

(1) The setting of the problem, 

(2) The resolution of the problem, and 

(3) Proofs. 
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At first glance this remark seems obvious. However, it has a deep meaning. The 
crux of this remark is the idea that these three elements of the theory in some sense are 
independent and equally important. 

( 1) The precise setting of the problem provides a general point of view of the prob­
lem and its relation to other problems. 

(2) The resolution of the problem comes not from deep theoretical analysis of the 
setting of the problem but rather precedes this analysis. 

(3) Proofs are constructed not to search for the resolution of the problem, but to 
justify the solution that has already been suggested. 

The first two elements of the theory reflect the understanding of the essence of the 
problem, its philosophy. The proofs make a general (philosophical) model a scientific 
theory. Mathematics mostly deals with one of these three elements, namely proofs, and 
much less with setting and resolution. 

One interpretation of the Einstein remark: 

Do not worry about your problems with mathematics, I assure you mine are far 
greater. 

could be the following: 

The solution of a problem in natural science contains three elements. Proofs are 
just one of them. There are two other elements: the setting of the problem, and 
its resolution, which make basis for a theory. 

For the empirical inference problem, these three elements are clearly defined: 

SETTING. 

The setting of the Inference problems is based on the risk minimization model: 
Minimize the risk functional 

R(a) = J Q(y, f(x, a))dP(y, x), a EA 
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in the situation when the probability measure is unknown, but i.i.d. data 
(Y1,, x1 ), ... , (Ye, xe) are given. 

It is very difficult to say who suggested this setting for the first time.7 I learned 
about this setting from seminars at the Moscow Institute of Control Science in 
the mid-1960s. 

RESOLUTION. 

Two different resolutions of solving this problem were suggested: 

(1) Aizerman, Braverman, Rozonoer, and Tsypkin from Russia and Amari from 
Japan suggested using methods based on gradient-type procedures 

(2) Vapnik and Chervonenkis suggested methods that use the empirical risk min­
imization principle under the condition of uniform convergence. 

PROOFS. 

Proofs that justify these resolutions are based on: 

(1) The theory of stochastic approximation for gradient based procedures, and 

(2) The theory of uniform convergence for the empirical risk minimization prin­
ciple (1968, 1971). In 1989, Vapnik and Chervonenkis proved that (one-sided) 
uniform convergence defines the necessary condition for consistency not only 
for the empirical risk minimization method, but for any method that selects one 
function from a given set of admissible functions. 

4.3.2 BETWEEN TRIVIAL AND INACCESSIBLE 

According to Kolmogorov, in the space of problems suggested by the real world there 
is a huge subspace where one can find trivial solutions. There is also a huge subspace 
where solutions are inaccessible. Between these two subspaces there is a tiny subspace 
where one can find non-trivial solutions. Mathematics operates inside this subspace. 

It is therefore a big achievement when one can suggest a problem setting and a reso­
lution to this setting and also invent concepts and rules that make proofs both nontrivial 
and accessible (this is interesting for mathematicians). 

In order to transform a problem from an inaccessible one to one that has a math­
ematical solution very often one must simplify the setting of the problem, perform 
mathematical analysis, and then apply the result of this analysis to the nonsimplified 
real-life problem. 8 

71 believe that it was formulated by Tsypkin. 
8In our discussions, the main simplification that made the analysis of induction possible was i.i.d. data in 

the training and test sets. 
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Einstein's remark: 

As far as the laws of Mathematics refer to reality, they are not certain, and as far 
as they are certain, they do not refer to reality. 

describes this situation. 
Nevertheless mathematics forms a universal language for describing the laws of 

nature that (as we believe) does not contain inner contradictions. There is an under­
standing that 

The more science uses mathematics, the more truth it contains. 

The language, however, is not always equivalent to thought. 

4.3.3 THREE TYPES OF ANSWERS 

Analyzing the real world, mathematics gives three types of answers: 

(1) Direct answers, 

(2) Comforting answers, and 

(3) Tautologies. 

(1) A direct answer means a direct answer to the posed question. These answers are 
not necessarily accurate but they are answers to your questions. For example, 
the answer to the question "How many examples are sufficient to find the €­

approximation to the best possible solution?" is the VC bound. It can be possiby 
improved, but this is a direct answer to the question. 

Few questions have direct answers. 

(2) A comforting answer does not answer the question of interest since the direct an­
swer is impossible or inaccessible. Instead, it answers another accessible ques­
tion that is somehow related to the question of interest. 

For example, one might wonder whether there are enough data to solve a specific 
ill-posed problem of interest. There is no answer to this question (since it is im­
possible). Instead mathematics suggests considering a resolution (regularization 
techniques) for which under some circumstances, in an imaginary (asymptotic) 
situation, an answer is attainable. 

Many more questions have comforting answers. 

(3) Lastly, mathematics is an instrument that can easily produce many trivial tautolo­
gies.9 As soon as one has a good setting, a decent resolution to this setting, and 
examples of proofs, one can easily repeat the same construction under slightly 
different conditions. 

It will produce 

9Many good theorems can be considered as nontrivial tautologies. 
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formulas,formulas, . .. ,formulas 

that can be regarded in the same way as Hamlet regarded 

words, words, . ... , words. 

Just words, nothing more. 

4. The Big Picture 

There are many trivial tautologies among the results of mathematical analyses of 
natural phenomena. 

4.3.4 THE Two-THOUSAND-YEAR-OLD WAR BETWEEN NATURAL SCIENCE AND 

METAPHYSICS 

Therefore there is a complicated relationship between metaphysics and natural science 
which has its reflection in discussions of the role of pure mathematics in natural sci­
ence. 

On the one hand the more mathematics a science uses, the more truth it contains 
(because we believe that its language does not contain contradictions). 

On the other hand, there is a two-thousand-year-old war between metaphysics and 
natural science. 

To discuss the nature of this war, let me start with some well-known quotes that 
describe it (there are hundreds of similar quotes but these are from intellectual giants): 

I am not a mathematician. I am a natural scientist. 

Theoretical physics is too difficult for physicists. 

A mathematician may say anything he pleases, 
but a physicist must be at least partially sane. 

I have hardly ever known a mathematician who 
was able to reason. 

(Kolmogorov, 1973) 

(Poincare, 1910) 

(Gibbs, 1889) 

(Plato, 370 BC) 

Why did Kolmogorov not like to call himself a mathematician?10 Why didn't 
Plato take mathematicians as seriously as the natural philosophers (people involved in 
discussion about fundamental principles of nature)? 

10Kolmogorov did not play with formulas. The concepts and rules that he introduced in different branches 
of mathematics (probability theory, information theory, theory of approximation, functional analysis, logic, 
differential equations) helped to advance philosophy in natural science. These are some examples of his 
ideas related to the subject of this book: 

He obtained the bound whose generalization is the bound on the uniform law of large numbers. 

He introduced the concept of c:-entropy which provided the opportunity to consider capacity concepts 
of learning theory and in particular the VC entropy. 

His idea of algorithmic complexity was used in the minimum message (minimum description) length 
principle leading to learning methods with the same generalization bound as the VC bound [139]. 

Kolmogorov did not work on pattern recognition problems but he developed the concepts and rules that were 
very similar to the one behind the main philosophy of learning theory. 
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This could be the answer. Natural science is not only about proofs but more about 
the setting and resolution of problems. Mathematics is just a language that is useful 
for the setting, the resolutions, and especially for the proofs. To use this language well 
requires a high level of professionalism. This is probably what Poincare had in mind 
when he made the above-quoted remark. 11 

However, to find a good setting and a good resolution requires another sort of pro­
fessionalism. I believe the tendency to underestimate the role of this sort of profession­
alism and overestimate the role of technical (mathematical) professionalism in analysis 
of nature was the reason for Plato's remark. 

The research in empirical inference science requires searching for new models of 
inference (different from inductive inference, such as inference in Universum environ­
ment, transductive, selective, ad hoc inferences, and so on). They are currently not 
under the scope of interest of mathematicians since they do not yet have clear settings 
and clear resolutions (this is the main subject of research). Mathematicians will be­
come interested in this subject later when new settings, new resolutions, and new ideas 
for proofs are found. 

The goal of the empirical inference discipline is to find these elements of the theory. 

4.4 To MY STUDENTS' STUDENTS 

4.4.1 THREE COMPONENTS OF SUCCESS 

To be successful in creativity, and in particular in scientific creativity, one has to possess 
the following three gifts: 

(1) Talent and strong motivation, 

(2) Ability to work hard, and 

(3) Aspiration for perfection and uncompromising honesty to one's inner truth. 

Most discussions about the components of success concentrate on the first two gifts. 
One can easily recognize them observing the work of an individual (how bright the 
individual is in solving problems, how fast he understands new concepts, how many 
hours he works, and so on). These two components form the necessary conditions for 
success. 

The third (maybe the most important) component that provides the spirit of creativ­
ity, the inner quality control for creation, a concept of high standards, and the willing­
ness to pay any price for this high standard is more delicate. It can not be seen as easily 
as the first two. Nevertheless, it is the demarcation line between individuals whose 
lifetime achievements are above the expectations of their colleagues and individuals 
whose lifetime achievements are below the expectations of their colleagues. 

In the next section I will try to describe this gift and to show that when creating 
something new one encounters two problems: 

11 By the way, the main part of theoretical physics was done by theoretical physicists who sometimes used 
"dirty mathematics." Later, mathematicians cleaned up the mathematics. 
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(1) to develop one's ideas in the way one desires, and 

(2) to develop them perfectly. 

The second of these two problems requires the most effort. 

4.4.2 THE MISLEADING LEGEND ABOUT MOZART 

4. The Big Picture 

There is a highest standard of genius: Mozart, the greatest wunderkind, the greatest 
musician, and the greatest composer of all time. The legend gives the impression that 
everything Mozart touched achieved perfection automatically, without much effort. In 
many languages there is an expression "Mozart's lightness." 

Legend admits, however, that when he was very young he worked extremely hard 
(he did not have a normal childhood; he was under very strong pressure from his father, 
who forced him to practice a lot). 

Then legend tells us about Mozart, a merry young man, visiting a variety of Vienna 
cafes, who had admirers in everyday life, yet created the greatest music. He wrote it 
down with no draft. 

That is true, Mozart did not write any drafts. He possessed a phenomenal profes­
sional memory, created his compositions in his mind, and could work simultaneously 
on several different compositions. Because of this, it would seem that his creativity 
also came easily. This was not the case. Legend tells us stories that he was almost 
always late in finishing the masterpieces which he committed to create. 

The work which no one saw that he did in his mind was so exhausting that Mozart 
sometimes was not able to speak; he barked like a dog and behaved inappropriately 
sometimes like an idiot. He badly needed relaxation from his inner work, therefore 
he visited Vienna cafes (the simpler, the better) where he looked for a break from his 
exhausting concentration. He almost killed himself by such work that no one could see. 
By the end of his life (he was only 35 years old when he died) he was a very sick person 
who had used up his life: he had no time to properly build his family life (he married, 
almost by chance, the daughter of his landlord) and he had no time for friendship. He 
gave up everything for his genius. 

One can say that this is just speculation; no one can tell you what was going on 
inside Mozart. That is true. But fortunately there is a recording made for Deutsche 
Gramophon called the "Magic of Horowitz." In this album there are 2 CDs and one 
bonus DVD. The DVD documents the recording of Mozart's 23rd piano concerto, 
played by the pianist of the century, Vladimir Horowitz. He is accompanied by one 
of the world's best orchestras, the orchestra of Teatro alla Scallo, under the direction of 
maestro Carlo Maria Giulini. 

I believe that Horowitz's interpretation of Mozart's work and his uncompromised 
demand for excellence reflects Mozart's spirit for perfection. 
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4.4.3 HOROWITZ'S RECORDING OF MOZART'S PIANO CONCERTO 

The record was made in 1987 in Horowitz's final years (he was 84). You see an old 
man who can hardly walk, and who probably has different health problems but who 
does not forget for a second about the necessity to play perfectly. In spite of all of his 
past achievements, he is not sure he will succeed. He asks his assistant (who turns the 
pages of his score), "Are my fingers good?" When one of the visitors (who came from 
England to Italy just to see this recording) tells him that she likes his tie he immediately 
reacts, "Do you like my tie more than my playing?" and repeats this several times 
throughout the session. 

Probably the best part of this DVD is when, after recording the glamorous second 
movement, Horowitz, Giulini (who was selected by Horowitz for this record), and 
their producer evaluate the recording. You see the pianist's striving for perfection, the 
conductor's uncertainty, and how long it takes them to relax and agree that the record 
is good. 

At the start of the third movement, Horowitz and the orchestra did not play together 
perfectly. The producer immediately stopped recording and suggested repeating it. You 
see how the great Horowitz without any doubt accepts his part of the fault and then how 
deeply he concentrated and how wonderfully he performed on the last movement in the 
next recording attempt. 

Then he chats with musicians that came from all over the World just to see this 
session. The very last words of Horowitz on the DVD were his recollection of excellent 
reviews on the previous performance. However, he immediately added, "But this makes 
no difference." 

That is, it does not matter how good you were yesterday; it makes no difference for 
today's results. Today a new challenge starts. That is the way of all great intellectual 
leaders. 

4.4.4 THREE STORIES 

Since ancient times people saw a very specific relationship between a genius and his 
professional work. Cicero formulated this as follows: 

Among all features describing genius the most important is inner professional 
honesty. 

There are a lot of examples where the moral quality of a genius in everyday life does 
not meet high standards, but they never lose these high standards in their professional 
lives. 

A person who plays games with professional honesty loses his demand for inner 
truth and compromises with himself. This leads to a decrease in his ability to look for 
the truth. Let me give examples of actions of my heros Kolmogorov, and Einstein. 

Kolmogorov. There is a legend that Kolmogorov read everything. Nobody knows 
when and how he accomplished it, but somehow he did. In the beginning of the 1960s 
an unknown young researcher Ray Solomonoff, working for a small private company 
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in Boston released a report titled, " A Preliminary Report on a General Theory of 
Inductive Inference" [171]. This report contained ideas on inference and algorithmic 
complexity. Probably very few researchers read this report but Kolmogorov did. In 
1965 Kolmogorov published his seminal paper where he introduced the concept of 
Kolmogorov complexity to answer the question "What is the nature of randomness?" 

In this article he wrote that he was familiar with Solomonoff's work and that 
Solomonoff was the first to suggest the idea of algorithmic complexity. 

In 2002 Solomon off became the first person awarded the Kolmogorov medal estab­
lished by the Royal Holloway University of London. 

Einstein. In 1924 Einstein received a letter from the Indian researcher Bose 
which contained the handwritten manuscript "Planck's Law and the Hypothesis of 
Light Quanta," written in English. Einstein translated this letter into German and sub­
mitted it to the Zeitschrift far Physik with a strong recommendation. This was the main 
work of Bose. Later Einstein significantly extended the ideas of Bose and published 
several papers on this subject. 

One can say that this just reflects human decency. Not only that. They also did 
these things to keep themselves honest in order not to betray their own individuality. 
The smallest compromise here leads to a compromised demand of yourself, which 
leads to a decline in creativity. They also did it because they had responsibility before 
their talents. 

Galois. The last story is about Evariste Galois which I have been trying to under­
stand ever since I read about it. This story is about the responsibility of the great talent 
with respect to results of his work. 

Galois was a very talented mathematician and squabbling young man who during 
almost all of his short life produced nothing but trouble. As a result, this kid entered 
into a duel and was killed when he was just 20. The night before this duel he wrote 
down the mathematical theory that is now called "Galois Theory." 

Why? He was not a stupid kid. He understood the consequences of not sleeping 
the night before a duel. Why didn't he think like this: "I must sleep to perform well 
tomorrow. This, is the most important thing. If I do not die I will write down the theory 
later, if I do die who cares?" 

Why did this kid, who looked like just a troublemaker, accepted such a big respon­
sibility? It was something bigger than himself. As with all great people he had a burden 
of responsibility that came along with his talent and Galois paid the full price of his 
life for this. He belonged not only to himself. 

He was very different from most people. 

4.4.5 DESTRUCTIVE SOCIALIST VALUES 

People are not born equal in their potential (they are not identical). Among those who 
are born there are future beautiful women, and future gentlemen, future musicians, and 
future scientists, there are very warm family people (this is also a great talent), and there 
are misanthropes. Among these who are born are future Mozarts and Einsteins. They 
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are all very different, and they bring a variety of human talents into society. People are 
not equal in their abilities. 

This inequality of individuals inspired strong negative feelings among people who 
identify themselves as socialists. Socialist discussions on equality of individuals have 
continued for thousands of years. The main subject of these discussions has not been 
how to distribute wealth justly (this is a common misconception) but how to make 
people equal (essentially identical). One can find reflections of these discussions in 
philosophy, literature, social movements, and state systems. The practical implications 
of socialist ideas always were attempts to make people identical by force, not allowing 
them to be too different from an accepted standard. 

A deep analysis of this phenomena was done by Igor Shafarevich in his book The 
socialist phenomenon [151]. 12 The main results of his analysis is that the impulse 
to seek utopia (identity of individuals) is deeply rooted in the human psyche. This 
impulse, however, is very dangerous, because it leads to suppression of individuals in 
favor of unificated community and this in tum leads to societal decline. 

Over thousands of years (ranging from ancient Mesopotamia and medieval Inca 
Empire to recent Russia and Cambodia) the socialist ideas has always brought humans 
to catastrophic consequences, but it has nonetheless always resurfaced, despite all past 
experience. For reasons that are unclear it can be attractive even to high-level intellec­
tuals (Plato supported it in his Republic). 

But despite the miserable failure of all classical socialist systems, its ideas remain 
attractive for many at the level of socialist values. This is how The Concise Oxford 
Dictionary of Current English [172] defines the essence of these values: 

Socialism is a principle that individual freedom should be completely subordi­
nated to interest of community, with any deductions that may be correctly or 
incorrectly drawn from it. 13 

Renaming the Vapnik-Chervonenkis lemma as the Sauer lemma and the attempt 
to create the PAC legend described in Section 2.1 were beneficial to no one personally. 
These were the actions that execute the main slogan of a socialist community: 

Expropriate extras and split them equally. 

Socialist values have a very negative effect in science since they lead to a strong 
resistance to original ideas in favor of ones shared by a community. 14 

12 I believe that one cannot consider his/her education complete without reading this book. It shows that the 
socialist phenomenon based on the idea of fundamental identity of individuals (udenticalness of individuals) 
existed from very ancient times and constitutes one of the basic forces of history. It is the instinct of self­
destruction of a society that has a strong attraction for some of its parts (similar, for example, to a strong 
attraction for some individuals to jump down being on an edge of a very high place). 

131 have had experience of the strong pressure of this principle both in Soviet Russia and in the United 
States. However below I refer only to my limited experience in the United States. 

14 As an illustration of this statement let me quote from three reviews on three different proposals that sug­
gested to develop the ideas described in this Afterword and rejected by the US National Science Foundation 
(NSF) based on socialist arguments (I emphasize them in bold font). 

REVIEW 1. Release date 07/21/2004. (On Science of Learning Center.) 
The described intellectual merit is substantial and impressive. This proposal purports to break fundamentally 
new ground in our approach to scientific reasoning and developing powerful new algorithms. The claimed 
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This creates (using Popper's words [150, VIII]) "the fundamental subjectivist po­
sition which can conceive knowledge only as a special kind of mental state, or as a 
disposition, or as a special kind of belief 15 

My understanding of the reason why: 

Great spirits have always encountered violent opposition from mediocre minds 
(A. Einstein) 

is because the great spirits are unique, and this contradicts the socialist belief of medioc­
racy, the fundamental identity of individuals. 

impact would be significant both in practice and in our fundamental view of science. 
This is an extremely well written, argued, and engineered proposal for a center with a strong theme. It is 

a pleasure to read, and highly convincing. There is a level of excitement and importance that is communi­
cated. This list of practical implications, in itself, is well worth the effort, but the theoretical ones are rather 
intriguing. These are highly qualified scientists asking for funding to accelerate development toward a new 
kind of reasoning. One does not routinely read a proposal like this. 

Unfortunately the case for "centemess" is weak inasmuch as the work is rather narrowly structured, and 
poorly argued for in some of the critical characteristics. The intellectual atmosphere might be enriched 
for the students if there were a great diversity of viewpoints, and it would enhance the case for forming 
a center. 

FROM REVIEW 2. Release date 06/23/2005. (On Empirical Inference in Social and Behavioural Science.) 
Dr. Vapnik proposes to develop a philosophy of science for the complex world using ideas from statistical 
learning theory, support vector machines, and transductive reasoning. The proposal was actually fascinating 
to read, and I thought the background information on SLT was especially clear. However, the scope of the 
proposal is enormous if the aim is to construct such a comprehensive philosophy and relate it to the social 
science. One thing that strikes me is that this philosophy of science and ideas related to generalizability 
would all be centred around Dr. Vapnik's personal theoretical contributions to SLT. 

FROM REVIEW 3. Release date 09/17/2005. (On Directed Ad-Hoc Inference.) 
Although the idea of developing a new type of inference is very interesting, the proposed methodology 
heavily relies on the work previously done by the PI on support vector machines, and non-parametric 
estimation of conditional probabilities. 

The projects were rejected not because there were doubts about their scientific significance but because 
they are based on ideas that do not represent a widespread community. 

15 As an example of what is to conceive knowledge as a belief let me quote from another NSF review (on 
another proposal) that contains no arguments but agressive attack from a position of blind corporate belief 
(the quote from the review I made in bold font and my comments in parentheses). 

FROM REVIEW 4. Release date 01/31/06. (On Relation to the Philosophy of Science.) 
The discussion of philosophy of science is breathtakingly naive including an over-simplistic account of 
simplicity and complexity (this is about advanced complexity concepts, the VC dimension and VC entropy; 
is there something better? V.V.), a completely implausible characterization of key methodological differ­
ence between physics and social science (this is about Einstein's remark that the methodology of classical 
science cannot be used when one must consider too many factors and an attempt to create methodology for 
such situations V.V.), and promise to give that dead-horse Popperian concept of corroboration another 
whipping. (Sir Karl Popper was the first who tried to justify induction using the idea of capacity of set 
(falsifiability). He made mistakes. However, another capacity concept (the VC falsfiability) does define the 
necessary and sufficient conditions for predictive induction. V.V.). Moreover, there is virtually no reference 
to pertinent philosophical discussion such as ... (two irrelevant traditional works V.V.). 

It is sad to see the same collective socialist logic in all above reviews: ideas of individuals should be 
completely subordinated to interest of community, with any deductions that may be correctly or incorrectly 

drawn from it. 
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This is why there exist rude attack against great spirits demonstrating disrespect to 
them and in particular against Einstein as the brightest figure in scientific originality 
("Many of his ideas were suggested by his wife." "He was not original since similar 
ideas were suggested by Poincare, Lorenz, and Minkowski." "He was a terrible family 
man," and so on). The same sort of criticism exists even against Sir Isaac Newton ("He 
spent most of his life working on stupid things and was a terrible man"). The main 
message is: 

" Look at them, they are almost no different from us." 

Maybe it is true that sometimes they behave like us (or maybe even worse than us). 
But they are very different in their vision of the truth, their devotion to this truth, and 
their honesty in pursuing the truth. 

4.4.6 THEORETICAL SCIENCE Is NOT ONLY A PROFESSION - IT Is A WAY OF 

LIFE 

Being a natural science theorist is not only a profession, but it is also a difficult way of 
life: 

You come into this world with your individual seed of truth. 

You work hard to make your truth clear. 

You push yourself to be unconditionally honest with respect to your truth. 

You have a life-long fight protecting your truth from old paradigms. 

You resist strong pressure to betray your truth and become part of a socialist 
community. 

If you have a talent, the character to bear such a life, and a little luck, then you have 
a chance to succeed: To come into this world bringing your own seed of truth, to work 
hard to make your truth clear, and to add it to the Grand Truth. 

There is a warm feeling of deep satisfaction for those who have made it. And even 
if one cannot call this genuine happiness, it can be a very good substitute. 
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