

OPEN SOURCE SYSTEMS

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for
societies working in information processing, IFIP's aim is two-fold: to support
information processing within its member countries and to encourage technology transfer
to developing nations. As its mission statement clearly states,

IFIP's mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development,
exploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates
through a number of technical committees, which organize events and publications.
IFIP's events range from an international congress to local seminars, but the most
important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may
be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working
group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is less rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of selected
and edited papers.

Any national society whose primary activity is in information may apply to become a full
member of IFIP, although full membership is restricted to one society per country. Full
members are entitled to vote at the annual General Assembly, National societies
preferring a less committed involvement may apply for associate or corresponding
membership. Associate members enjoy the same benefits as full members, but without
voting rights. Corresponding members are not represented in IFIP bodies. Affiliated
membership is open to non-national societies, and individual and honorary membership
schemes are also offered.

OPEN SOURCE SYSTEMS

IFIP Working Group 2.13 Foundation on Open Source
Software, June 8-10, 2006, Como, Italy

Edited by

Ernesto Damiani
University of Milan, Italy

Brian Fitzgerald
CS/5, University of Limerick, Ireland

Walt Scacchi
University of California, United States

Marco Scotto
Free University of Bolzano-Bozen, Italy

Giancarlo Sued
Free University of Bolzano-Bozen, Italy

Springer

Library of Congress Control Number: 2006925100

Open Source Systems
Edited by E. Damiani, B. Fitzgerald, W. Scacchi, M. Scotto, and G. Succi

p. cm. (IFIP International Federation for Information Processing, a Springer Series in
Computer Science)

ISSN: 1571-5736 / 1861-2288 (Internet)
ISBN: 10: 0-387-34225-7
ISBN: 13: 9780-387-34225-7
elSBN: 10:0-387-34226-5

Printed on acid-free paper

Copyright © 2006 by International Federation for Information Processing.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1
springer.com

Preface

Early research studies on open source software (OSS) development often be
trayed a mild surprise that loosely coordinated networks of volunteers could
manage the design and implementation of highly complex software products,
successfully tackling many non-trivial project management problems.
In the past few years, a wider research community has become increasingly
aware of the tremendous contribution that open source development is making
to the software industry, business and society in general. Software engineering
researchers are exploring OSS specifically with respect to development tools
and methodologies, while organizational scientists and economists are keen on
understanding how open sources brought large communities of people, who are
seldom acquainted, to help each other effectively.
Being ourselves involved in a number of open source projects, we could directly
witness how the creation of new knowledge within OSS developments may have
very different motivations and consequences from work done under traditional
intellectual property rights regimes like patents, copyrights and trade secrets.
Much research work is needed to move from collecting anecdotal evidence to a
rigorous scientific study of the OSS phenomenon; as researchers, however, we
cannot refrain from remarking that the OSS reward system, based on peer re
view and discussion, is much closer to the system used for rewarding scientific
research than to some corporate practices.
We believe this book to be an important step in the direction of a fuller un
derstanding of the OSS phenomenon. It collects the proceedings of the Second
International Conference on Open Software (OSS2006) held in Como, Italy,
from June 8th to June 10th, 2006. OSS 2006 was the foundation conference
of the IFIP TC2 WG 2.13 on Open Source Software, and attracted many re
searchers from all over the world interested in how OSS is produced, in its huge
innovation potential in many different application fields and in OSS innovative
business models. The 20 full papers of this volume were selected via a rigorous
refereeing process among more than 100 submissions; 12 additional submissions,
in view of their interest, were selected for publication in a more concise form.
We hope that these contributions, while attaining full scientific rigor, can still
give the reader an idea of the lively interdisciplinary debate of OSS 2006.

VI Preface

Acknowledgments

We gratefully acknowledge the contribution of the other OSS 2006 conference
officials: Kevin Crowston, Scott Hisham, Paolo Pumilia and Barbara Scozzi.
Also we would like to thank the OSS 2006 international program committee
and the board of reviewers for their valuable help in selecting the papers.

Como, Italy Ernesto Damiani ^
June 2006 Brian Fitzgerald ^

Walt Scacchi ^
Marco Scotto ^

Giancarlo Sued ^

^ DTI, University of Milan - via Bramante 65, Crema (CR), Italy
damianiOdti.unimi.it

^ CSIS, University of Limerick, Limerick, Ireland
Bricin. FitzgeraldQul. ie

^ Institute for Software Research, Donald Bren School of Information and Computer
Sciences, University of California, Irvine, US
wscacchiQics.uci.edu

'̂ Center for Applied Software Engineering, Free University of Bolzano-Bozen, Italy
Marco.ScottoOunibz.it

^ Center for Applied Software Engineering, Free University of Bolzano-Bozen, Italy
giancarlo.succiQunibz.it

Organization

Conference Officials

General Chair: Brian Fitzgerald CSIS, University of Limerick,
Ireland

Program Chair: Walt Scacchi University of California, Irvine,
US

Giancarlo Succi Free University of Bolzano-Bozen,
Italy

Program Co-Chair: Marco Scotto Free University of Bolzano-Bozen,
Italy

Organising and
Workshop Chair: Ernesto Damiani University of Milan,

Italy

Tutorial Chair: Scott Hissam Carnegie Mellon University,
US

Publicity Chair: Barbara Scozzi Polytechnic of Bari,
Italy

Panel Chair: Kevin Crowston Syracuse University,
US

Social and
Industrial Liaison: Paolo PumiUa 'Open Culture' Committee

Web Master: Alberto Colombo University of Milan,
Italy

Fulvio Frati University of Milan,
Italy

VIII Organization

Program Committee

Pierpaolo Andriani
Hala Annabi
Tiziana Arcarese
Graham Attwell
Megan Conklin
Paul A. David
Francesco Di Cerbo
Nicolas Ducheneaut
Mahmoud Elish
Joseph Feller
Rishab Aiyer Ghosh
II Horn Hann
Jim Herbsleb
Firoz KaderaU
Stefan Koch
Derrick G. Kourie
Sandeep Krishnamurthy
Jean Pierre Laisne
Karim Lakhani
Martin Michlmayr
David Parnas
Giuseppina Passiante
Witold Pedrycz
Andrea Prencipe
David Rine

Maria Alessandra Rossi
Barbara Russo
Glen Sagers
Alexander Schatten
Marco Scotto
Barbara Scozzi
Alberto Sillitti
Katherine Stewart
Alexandra Todt
Sergiy Vilkomir
Jesus Villasante

Durham University, UK
University of Washington, US
European Commission
University of Bremen, Germany
Elon University,US
University of Stanford, US
University of Genoa, Italy
PARC, US
King Fahd University, Saudi Arabia
University College Cork, Ireland
MERIT, Netherlands
University of Southern California, US
Carnegie Mellon University, US
Fern University, Hagen, Germany
University of Economics and BA, Austria
University of Pretoria, South Africa
University of Washington, US
Object Web, France
MIT, US
University of Cambridge, UK
University of Limerick, Ireland
University of Lecce, Italy
University of Alberta, Canada
Universita' "G. D'Annunzio", Pescara, Italy
George Mason University
University of Siena, Italy
Free University of Bolzano-Bozen, Italy
Florida State University
TU Wien, Austria
University of Genoa, Italy
Polytechnic of Bari, Italy
Free University of Bolzano-Bozen, Italy
University of Maryland, US
University of Cologne, Germany
University of Limerick, Ireland
European Commission

Board of Reviewers

Organization IX

Marco Anisetti
Valerio Bellandi
Paolo Ceravolo
Alberto Colombo
Irina Diana Coman
Sara For est i
Marcello Leida
Manuel Mazzara
Raimund Moser
Eros Pedrini
Etiel Petrinja
Tadas Remencius
Luiz Bonino Da Silva Santos
Marco Viviani

University of Milan, Italy
University of Milan, Italy
University of Milan, Italy
University of Milan, Italy
Free University of Bolzano-Bozen, Italy
University of Milan, Italy
University of Milan, Italy
Free University of Bolzano-Bozen, Italy
Free University of Bolzano-Bozen, Italy
University of Milan, Italy
Free University of Bolzano-Bozen, Italy
Free University of Bolzano-Bozen, Italy
Free University of Bolzano-Bozen, Italy
University of Milan, Italy

List of Contributors

Paul J. Adams
University of Lincoln, UK
padamsOlincoln.ac.uk

Andrea Bonaccorsi
DESA-University of Pisa, Italy
bonaccorsiSsssup. i t

Hala Annabi
The Information School, University of
Washington, US
hpannabiOu.Washington.edu

Marc Bourgois
Eurocontrol Experimental Center,
France
marc.bourgoisOeurocontrol .int

Claudio Agostino Ardagna
University of Milan, Italy
ardagnaOdti .unimi. it

Daniel Brink
University of Cape Town, South
Africa
BRNDANOllOmail.uct.ac.za

Andres Baravalle
University of Sheffield, UK
andresQdcs .shef.ac.uk

Sarah Chambers
University of Sheffield, UK
sarahOdcs .shef.ac.uk

Amit Basu
Cox School of Business, SMU, US
abasuOsmu.edu

Megan Conklin
Elon University, US
mconklinOelon.edu

George Becker
Nerim.net
gbeckerOnerim.net

Grahame S. Cooper
University of Salford, UK
g .s .cooperQsalford.ac.uk

Evangelia Berdou
London School of Economics and
Political Science, UK
e .berdouOlse .ac.uk

Kevin Crowston
School of Information Studies,
Syracuse University, US
crowstonQsyr.edu

XIV List of Contributors

Jean-Michel Dalle
Universite Pierre et Marie Curie
(Paris 6), France
j ean-michel.dalleOupmc.fr

Ernesto Damiani
University of Milan, Italy
damian iOdt i .un imi . i t

Francesco Di Cerbo
DIST - University of Genova, Italy
Francesco.DiCerboQunige. i t

Pierluigi Di Nunzio
Polytechnic of Torino, Italy
p i e r l u i g i . d i n u n z i o O p o l i t o . i t

Vincenzo D'Andrea
University of Trento, Italy
d a n d r e a O d i t . u n i t n . i t

Paul A. David
Stanford University &
Oxford Internet Institute, US
padQstanford.edu

Tharam S. Dillon
University of Technology, Sidney,
Australia
tharam®it.uts.edu.au

Gabriella Dodero
University of Genova, Italy
d o d e r o O d i s i . u n i g e . i t

Adriaan de Groot
Quality Team, KDE e V.
grootOkde.org

Giuditta De Prato
University of Bologna, Italy
depra toOspbo.unibo . i t

Ignatios Deligiannis
Aristotle University of Thessaloniki,
Greece
igndelOit.teithe.gr

Matthijs den Besten
Universite Pierre et Marie Curie
(Paris 6), France
ma t th i j s.denbestenOlamsade.
dauphine . f r

Ludovic Denoyelle
ARIST Bourgogne, Prance
1.denoyelleQbourgogne.cci.fr

Anne Sophie Farizy
ARIST Bourgogne, France
s . fa r izyQbourgogne .cc i . fr

Daniele Favara
DIST - University of Genova, Italy
Daniele.FavaraOgmail.com

Attilio Fiandrotti
Polytechnic of Torino, Italy
fiandro@initd.org

Ulrich Frank
University Duisburg-Essen, Germany
u l r i c h . f rank(9uni-due. de

Fulvio Frati
University of Milan, Italy
f ra t iOdt i .unimi . i t

List of Contributors XV

Fabrice Galia Robert Heckman
Universite Pantheon-Assas (Paris II), School of Information Studies,
Prance Syracuse University, US
g a l i a 0 u - p a r i s 2 . f r rheckmanOsyr.edu

G.R. Gangadharan
University of Trento, Italy
g r O d i t . u n i t n . i t

Federico lannacci
London School of Economics, UK
F . l annacc iOl se . ac .uk

Mehmet Genger
Istanbul Bilgi University, Turkey
mgence rOcs .b i lg i . edu . t r

Giorgos Gousios
Athens University of Economics and
Business, Greece
gousiosgOaueb.gr

T h i e r r y Grison
L2EI - Universite de Bourgogne,
France
th ie r ry .g r i sonOu-bourgogne . f r

Jungpil Hahn
Purdue University, US
jphahnOmgmt.purdue.edu

Sebastian Kiiugler
Quality Team, KDE e V.
sebasOkde.org

Tommi Karkkainen
University of Jyvaskyla, Finland
t k a O m i t . j y u . f i

Stefan Koch
Vienna University of Economics and
Business Administration, Austria
Stefan.kochOwu-wien.ac.at

Timo Koponen
University of Kuopio, Finland
t imo.koponenOuku.f i

Jussi Koskinen
University of Jyvaskyla, Finland
kosk inenOcs . jyu . f i

Il-Horn Hann
University of Southern California, US
hannOmarshall .use.edu

Jean-Luc Hardy
Eurocontrol Experimental Center,
France
j1,hardyOeurocontrol.int

Eric Leclercq
L2EI - Universite de Bourgogne,
France
e r i c . l ec l e rcqOu-bourgogne . f r

Edvin Lindqvist
University of Skovde, Sweden
e d v i n . l i n d q v i s t O h i s . s e

XVI List of Contributors

Brian Lings
University of Skovde, Sweden
brian . l ingsQhis . se

Biilent Ozel
Istanbul Bilgi University, Turkey
bulentoQbilgi .edu.tr

Bjorn Lundell
University of Skovde, Sweden
b j orn . lundel lQhis .se

Erika PifFero
University of Genova, Italy
erika.pifferoOgmail.com

Kazuaki Maeda
Chubu University, Japan
kaz@acm.org

Lucia Piscitello
DIG-Polytechnic of Milan, Italy
l u c i a . p i s c i t e l l o O p o l i m i . i t

Angelo RafFaele Meo
Polytechnic of Torino, Italy
meoOpolito.it

Salvatore Reale
Siemens S.p.A., Italy
salvatore.realeSsiemens.com

Monica Merito
DESA-University of Pisa, Italy
meritoQsssup . it

Francesco Rentocchini
University of Bologna, Italy
francesc .rentocchini^studio .
unibo . i t

Jae Yoon Moon
Hong Kong University of Science and
Technology, Hong Kong
jmoonOust.hk

Jeffrey Roberts
Carnegie Mellon University, US
j robertsOandrew.emu.edu

Gabriella Moroiu
Carleton University, Canada
gmoroiouOscs .carleton.ca

Llewelyn Roos
University of Cape Town, South
Africa
RSXLLEOOlOmail.uct.ac.za

Beyza Oba
Istanbul Bilgi University, Turkey
boba^bi lgi .edu.tr

Thomas 0s ter l i e
Norwegian University of Science
and Technology, Norway
thomas .osterl ieOidi .ntnu.no

Bruno Rossi
Free University of Bolzano-Bozen,
Italy
bruno.rossiOunibz.it

Cristina Rossi
DIG - Polytechnic of Milan, Italy
c r i s t i n a l . r o s s i O p o l i m i . i t

List of Contributors XVII

Francesco Rullani
Sant'Anna School of Advanced
Studies, Italy
rul laniOsssup . i t

Barbara Russo
Free University of Bolzano-Bozen,
Italy
ba rba ra . ru s soQun ibz . i t

M a r i n e t t e Savonnet
L2EI - Universite de Bourgogne,
France
Marinette.savonnetOu-bourgogne.fr

Andrew Schofield
University of Salford, UK
a.j.schofieldOpgt.salford.ac.uk

Marco Scotto
Free University of Bolzano-Bozen,
Italy
Marco.ScottoOunibz.it

Sandra Slaughter
Carnegie Mellon University, US
sandrasOandrew.emu.edu

Sulayman K. Sowe
Aristotle University of Thessaloniki,
Greece
sksoweQcsd.auth.gr

loannis Stamelos
Aristotle University of Thessaloniki,
Greece
stamelosQcsd.auth.gr

Knut Staring
University of Oslo, Norway
k n u t s t O i f i . u i o . n o

Stefan Strecker
University Duisburg-Essen, Germany
Stefan .streckerOuni-due .de

Giancarlo Succi
Free University of Bolzano-Bozen,
Italy
giancarlo.succiQunibz.it

Barbara Scozzi
Polytechnic of Bari, Italy
b scozz iOpo l iba . i t

Alberto Sillitti
Free University of Bolzano-Bozen,
Italy
Alberto.SillittiQunibz.it

Marie-Noelle Ter rasse
L2EI - Universite de Bourgogne,
France
marie-noelle.terrasse®
u-bourgogne.fr

Ola Titlestad
University of Oslo, Norway
o la t i@i f i .u io .no

Gregory L. Simmons
University of Ballarat, Australia
g . simmonsQballarat. edu. au

Vehbi Sinan Tunaho^lu
Istanbul Bilgi University, Turkey
v s t O c s . b i l g i . e d u . t r

XVIII List of Contributors

Timo Tuunanen
University of Jyvaskyla, Finland
timtuun@jyu.fi

Ann Westenholz
Copenhagen Business School,
Denmark
aw.ioaOcbs.dk

Jean-Paul Van Belle
University of Cape Town, South
Africa
jvbelle@commerce.uct.ac.za

Chen Zhang
Purdue University, US
Zhang153@mgmt.purdue.edu

Dieter Van NufFel
University of Antwerp, Belgium
dieter .vannuffelOua .ac .be

Ping Zhao
Carleton University, Canada
pzhaoOconnect .carleton .ca

Kris Ven
University of Antwerp, Belgium
kris .venOua .ac .be

Gregorio Robles
Universidad Rey Juan Carlos, Spain
grexQgsyc .escet .ur j c . e s

Jan Verelst
University of Antwerp, Belgium
j an .verelstOua .ac .be

Jesus M. Gonzalez-Barahona
Universidad Rey Juan Carlos, Spain
j gbOgsyc .escet .urj c .es

Tullio Vernazza
DIST - University of Genova, Italy
Tullio .VernazzaOunige . it

Katia Lupi
DISI - University of Genova, Italy
katia.lupiQgmail .com

Michael Weiss
Carleton University, Canada
weiss@scs .carleton.ca

Keisuke Inoue
Syracuse University, US
kinoue@syr.edu

James Weller
University of Cape Town, South
Africa
WLLJAM005@mail.uct.ac.za

James Howison
Syracuse University, US
jhowisonQsyr.edu

Contents

Part I Foundations and Rationale
of Open Source software

On the Weickian Model in the Context of Open Source Software
Development: Some Preliminary Insights 3

Federico lannacci

Conceptual Modelling as a New Entry in the Bazaar: The Open Model
Approach 9

Stefan Koch, Stefan Strecker, and Ulrich Frank

Evolution of Open Source Communities 21
Michael Weiss, Gabriella Moroiu, and Ping Zhao

Part II Tools and Infrastructures for OSS development

Retrieving Open Source Software Licenses 35
Timo Tuunanen, Jussi Koskinen, and Tommi Karkkainen

Beyond Low-Hanging Fruit: Seeking the Next Generation in FLOSS
Data Mining 47

Megan S. Conklin

Call for Quality: Open Source Software Quality Observation 57
Adriaan de Groot, Sebastian Kilgler, Paul J. Adams, and Giorgos
Gousios

Part III Knowledge Management in OSS

Towards an Ontology for Open Source Software Development 65
Gregory L. Simmons and Tharam S. Dillon

From Individual Contribution to Group Learning: the Early Years of
Apache Web Server 77

Hala Annabi, Kevin Crowston, and Robert Heckman

XX Contents

The role of mental models in FLOSS development work practices 91
Kevin Crowston and Barbara Scozzi

A Robust Open Source Exchange for Open Source Software Development 99
Amit Basu

Part IV Introduction of OSS in Companies and PAs

The Organizational Adoption of Open Source Server Software by Belgian
Organizations I l l

Kris Ven and Jan Verelst

The Introduction of OpenOffice.org in the Brussels Public Administration 123
Kris Ven, Dieter Van Nuffel, and Jan Verelst

Networks of Open Source Health Care Action 135
Knut Staring and Ola Titlestad

Licensing Services: An "Open" Perspective 143
Vincenzo D'Andrea and G.R.Gangadharan

Perceptions and Uptake of Open Source in Swedish Organisations 155
Bjorn Lundell, Brian Lings, and Edvin Lindqvist

A study on the introduction of Open Source Software in the Public
Administration 165

Bruno Rossi, Barbara Russo, and Giancarlo Sued

Exploring the potential of OSS in Air Traffic Management 173
Jean-Luc Hardy and Marc Bourgois

Part V Empirical Analysis of OSS

Institutional Entrepreneurs and the Bricolage of Intellectual Property
Discourses 183

Ann Westenholz

Life cycle of Defects in Open Source Software Projects 195
Timo Koponen

Insiders and outsiders: paid contributors and the dynamics of cooperation
in community led F/OS projects 201

Evangelia Berdou

Contents XXI

Adopting Open Source for Mission-Critical Applications: A Case Study
on Single Sign-On 209

Claudio Agostino Ardagna, Ernesto Damiani, Fulvio Frati, and
Salvatore Reale

Participation in Free and Open Source Communities: An Empirical
Study of Community Members' Perceptions 221

Andrew Schofield and Grahame S. Cooper

Collaborative Maintenance in Large Open-Source Projects 233
Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia

Part VI Case Studies and Experiments

Comparing macro development for personal productivity tools: an
experience in validating accessibility of Talking Books 247

Gabriella Dodero, Katia Lupi, and Erika Piffero

A tool to support the introduction of GNU/Linux desktop system in a
professional environment 253

Francesco Di Cerbo, Daniele Favara, Marco Scotto, Alberto Sillitti,
Giancarlo Sued, and Tullio Vernazza

A Framework for Teaching Software Testing using F/OSS Methodology . . 261
Sulayman K. Sowe, loannis Stamelos and Ignatios Deligiannis

Organization of Internet Standards 267
Mehmet Genger, Beyza Oba, Biilent Ozel, and V, Sinan Tunahoglu

Contributor Turnover in Libre Software Projects 273
Gregorio Robles and Jesus M. Gonzalez-Barahona

Critical Success Factors for Migrating to OSS-on-the-Desktop: Common
Themes across Three South African Case Studies 287

Daniel Brink, Llewelyn Roos, James Weller, and Jean-Paul Van
Belle

Part VII Impact of OSS on Social Networks

Communication Networks in an Open Source Software Project 297
Jeffrey Roberts, II-Horn Hann, and Sandra Slaughter

Impact of Social Ties on Open Source Project Team Formation 307
Jungpil Hahn, Jae Yoon Moon, and Chen Zhang

XXII Contents

Social dynamics of free and open source team communications 319
James Howison, Keisuke Inoue, and Kevin Crowston

Part VIII Posters

How is it possible to profit from innovation in the absence of any
appropriability? 333

Andrea Bonaccorsi, Lucia Piscitello, Monica Merito, and Cristina
Rossi

Producing and Interpreting Debug Texts 335
Thomas 0sterlie

A graphical installation system for the GNU/Linux Debian distribution . . 337
Fiandrotti Attilio, Pierluigi Di Nunzio, Federico Di Gregorio, and
Angelo Raffaele Meo

The micro-dynamics of open source software development activity 339
Paul A. David and Francesco Rullani

Development Platforms as a Niche for Software Companies in Open
Source Software 341

Marinette Savonnet, Eric Leclercq, Marie-Noelle Terrasse, Thierry
Grison, George Becker, Anne Sophie Farizy, and Ludovic Denoyelle

Reusable Parser Generation from Open Source Compilers 343
Kazuaki Maeda

Open Source Software Development (OSSD) Based On Software
Engineering 345

Dengya Zhu, Vidyasagar Potdar, and Elizabeth Chang

Open Source in Web-based Periodicals 347
Andres Baravalle and Sarah Chambers

Software Patents and Open Source Software in the European Union:
Evidences of a Trade-Off ? 349

Francesco Rentocchini and Giuditta De Prato

Part I

Foundations and Rationale
of Open Source software

On the Weickian Model in the Context of

Open Source Software Development:

Some Preliminary Insights

Federico lannacci
Department of Information Systems, London School of Economics,

Houghton Street, London WC2A 2AE United Kingdom (UK),
F.Iannacci@lse.ac.uk

WWW home page: http://personal.lse.ac.uk/iannacci/

Abstract. Despite being regarded as a path-breaking model of organising,
Weick's Enactment-Selection-Retention (ESR) model has been labelled too
abstract a model find any practical applications. This paper attempts to show
that exploration-oriented open source projects represent valuable case studies
where Weick's ESR model can be applied. By taking the Linux case study as a
case in point, it is argued that a qualitative analysis of micro interactions (i.e.
double interacts) might reveal broad organising patterns. Preliminary
implications in terms of coordination and knowledge making processes are
discussed in the final secfion.

1 Introduction

Despite being regarded as a path-breaking model of organising (Tsoukas 1998),
Weick's Enactment-Selection-Retentioii (ESR) model has been labelled too abstract a
model to find any practical applications (Aldrich 1999, Harrison 1994). Commenting
on Weick's ESR model, Aldrich (1999: 56), maintains, for instance, that "some
theorists argue that organizational actors essentially create the context to which they
react, thus creating a closed explanatory loop. Not every theorist goes that far, but the
concept of enactment -that actions precede interpretation and interpretations create a
context for action- places heavy demands on anyone conducting research on why
people and organizations behave as they do". By the same token, Harrison (1994:
252- 253) remarks that "valuable as this perspective may be, it is important to
recognize that interdependence is never manifested or experienced in quite such
abstract terms. Weick's model is an important conceptual tool for understanding how
coherent patterns of organization emerge from ongoing sequences of interlocked
behaviours, but it retains an unreal, skeletal quality because most of the cultural,
situational, and historical contexts associated with these processes have been stripped
away... Thus Weick's model is essentially a framework without specific content".

The purpose of this paper is to show that a minimalist approach to organising as
advocated by Weick's ESR model can go a long way in terms of explaining the
interaction patterns emerging within exploration-oriented open source projects in
general and the Linux kernel development in particular. My argument unfolds in the

Please use the following format when citing this chapter:
lannacci, F., 2006, in IFIP International Federation for Information Processing, Volume
203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M.,
Succi, G., (Boston: Springer), pp. 3-8

Federico laimacci

following fashion: section two introduces Weick's ESR model in the context of open
source software development, section three elaborates on the research methodology,
section four identifies a few patterns characterising the Linux kernel organising
process and, finally, section five highlights some preliminary insights stemming from
my analysis of the Linux case study.

2 On Weick's ESR model in the context of open source software
development

Weick's ESR model offers a compelling rationale for understanding why
interdependence is a processual accomplishment within any social settings (Harrison
1994). Due to the lack of self-sufficiency, individuals engage in interlocked
communicative behaviours to meet their goals. Each individual needs the instrumental
communicative act of another individual to perform his consummatory act. However,
the enactment of these interlocked behaviours produces equivocality because people
utter words that can plausibly be interpreted in two or more ways: the crux of
organising then consists of reducing equiyocality (i.e. misunderstanding) by means of
sensible communication cycles so as to achieve a situation where shared
understanding is attained \

According to the ESR model, organising is a "consensually validated grammar for
reducing equivocality" (Weick 1979: 3) because people literally need to share the
same representation (i.e. cause map) of the words they have uttered to act collectively
regardless of their individual goals (Weick 1979).

At this level of abstraction, Weick's model seems to have no bearing on
technology unless one takes technology to stand for "intensive technology"
(Thompson 1967) which feeds, back on the social endeavour of organisational actors
by constantly disrupting their activities through equivocal displays (Cf. Weick 1979:
22). Hence, for sake of clarification, I take enactment to stand both for social
construction of technology and bracketing. By social construction of technology I
mean a process whereby developers engage in sQcial interactions to generate software
artefacts which were not out there initially; by bracketing, otherwise, I intend to refer
to a process whereby the equivocal displays stemming from the emergent
technological construct are punctuated and made sense of In addition, I take selection
to stand for numerous decision premises (March and Simon 1958) that serve as
assembly rules, that is shared criteria whereby only a subset of social interactions is
chosen out of the pool of all communication cycles. Finally, I take retention to stand

Equivocality stands for a situation where given an output message (e.g. a word being uttered
or written), there are multiple perceived inputs (i.e. meanings that might have generated that
output message) or vice versa (i.e. given an input there are many associated outputs). See
Weick (1979: 179-187) on this point. For sake of simplification, in this paper I take
equivocality and ambiguity to be synonyms. I also take knowledge and information to be
synonyms.

On the Weickian Model in the Context of Open Source Software Development

for the stock of knowledge or information retained from the past that can be brought
to bear on present decisions. The ESR model so described is outlined below:

Technology -f
' W

E

ni i

w

-

s

•

^
_..... p

4-

R

•i

Fig. 1. The ESR Model in Open Source Software Development. Adapted from Weick
(1979)

Note that while selection credits the past on the basis of stored memory rules, that is
rules stored from past knowledge, enactment discredits the past because it relies on
playful behaviours that relax the rules by treating memory as an enemy (March 1988),
thus fostering exploration of the space of possibilities. This, in turn, implies that the
social construction of technology and, therefore, social interactions are only partially
shaped by the stock of past knowledge (i.e. the system's memory) to the extent that
developers resort to shared procedures to select subsets of interaction cycles.
According to Weick (1979), a system that is simultaneously crediting and discrediting
its past is a self-stabilising system because it is able to balance the antithetical
pressures deriving from flexibility (i.e. exploration) and stability (i.e. exploitation).

3 On the research methodology

The case study is a research strategy which focuses on understanding the dynamics
present within single settings (Eisenhardt 1989). This paper examines the Linux case
study to pinpoint broad interaction patterns that apply to the category of exploration-
oriented open source projects of which Linux is representative (Nakakoji et al
2002)^

Linux is a Unix-like operating system started by Linus Torvalds in 1991 as a
private research project. Between 1991 and 1994 the project size burgeoned to the
point that in 1994 Linux was officially released as version 1.0. It is now available free

^ Nakakoji et al. (2002) contend that exploration-oriented projects, including the Linux kernel,
aim at pushing the frontline of software development collectively through the sharing of
innovations. Contributions made by the community at large exist as feedback and are
incorporated only if they are consistent with the ideas of the project leader.

Federico lannacci

to anyone who wants it and is constantly being revised and improved in parallel by an
increasing number of volunteers.

Like many other open source projects, Linux exhibits feature freezes from time to
time whereby its leader announces that only bug fixes (i.e. corrective changes) will be
accepted in order to enhance the debugging process and obtain a stable release
version. The Linux kernel development process, therefore, may be decomposed into a
sequence of feature freeze cycles each signalling the impending release of a stable
version.

Given my concern with Weick's idea of organising, I set out to use a longitudinal
case study (Pettigrew 1990) as my research design. Several feature freezes were
analysed spanning the period 1995-2005. Since February 2002 represents a point of
rupture in the lifespan of the Linux kernel development process due to the official
adoption of BitKeeper (BK), a proprietary version control tool, by Torvalds, I
analysed with particular focus the events surrounding the October 2002 feature freeze,
the first freeze exhibiting the parallel adoption of two versioning tools, namely BK
and CVS (i.e. the Concurrent Versions System)^. In analysing such events, I
decomposed each thread into sets of two contingent responses between two or more
developers, thus taking Weick's (1979) double interact as my unit of analysis.

4 An overview of the Linux Icernel organising process

I have claimed above that the ESR model may be viewed as a way of conceptualising
the organising process where the collective brackets the equivocal displays stemming
from the emergent software construct (i.e. enactment), filters such raw data (i.e.
selection) and, finally stores them in various storage devices as knowledge or
information (i.e. retention). Put differently, the Linux collective (Shaikh and Comford
2005) may be conceptualised as an organisational mind of sorts where loosely-
coupled developers engage into a set of interactions by following specific decision
premises that are collectively shared as assembly rules (i.e. procedures, instructions or
guides used to organise the process). Thus, every instance of organising consists of
sets of interaction cycles or double interacts and assembly rules whereby such cycles
are assembled together and sequenced to create knowledge (lannacci 2003). But what
are the assembly rules that the Linux kernel developers follow?

The longitudinal analysis of the interaction cycles occurring on the Linux Kernel
Mailing List (i.e. LKML) and other mailing lists suggests that two rules are followed
by developers, namely"*:

a) Rule of enhancement: select those interaction cycles that enhance the quality of
the data inputs. The Linux kernel developers enact their programming skills by

^ Note that, in early April 2005, Torvalds has replaced BK with Git, a GPL-tool that like BK
does not rely on a single, centralised repository and maintains a similar workflow for
incorporating new patches. See: http://www.linux.org/news/2005/04/21/0012.html

"* This list of rules is by no means exhaustive since other rules might well apply (Cf Weick
1979: 114).

On the Weickian Model in the Context of Open Source Software Development 7

following standardised patch submission procedures, as well as standardised bug
reporting formats^ Standardisation enhances the quality of the data flows and makes
them more amenable to sense-making processes occurring across space and time.
Consider, for instance, the following patch submitted during the October 2002 feature
freeze:

>0n5 Oct 2002, Maksim (Max) Krasnyanskiy wrote:
> > Patch #2:
> Why is it so hard to just read the "submitting patches" thing.
I did. Long time ago though :)
> Don't bother to email me if you can't be bothered to read how to
>submit patches. People do it all the time, and I'm not interested in
>fetching compressed patches from web-sites etc.
Sorry about that. I knew you were gonna pull this stuff from BK
any way .̂

Since compressed patches are more equivocal than patches submitted the regular
way, Torvalds is explicitly asking developers to follow the pre-defined procedures.

b) Rule of personnel: select those interaction cycles that are manned by the most
experienced and, therefore, most trustworthy people. To solve the issue of scalability
(i.e. "Linus does not scale"), a loosely-coupled social structure has emerged over time
whereby Torvalds interacts with a select number of developers, the so called "Trusted
Lieutenants", who, in turn, interact with a few trustworthy people, thus creating a
complex attentive system tied together by trust (Weick and Roberts 1993). Without
trust developers should expend time and effort to verify the reliability of the patches
received. Trust operates as an equivocality-reducing mechanism that ensures reliable
performance.

5 Concluding remarks

Despite the obvious limitation concerning the generalisability of findings
stemming from a single case study, Weick's ESR model can contribute some original
ideas to the study of the open source software development process. Not only does
Weick's ESR model shed some light on the delicate issue of coordination by showing
that coordination (i.e. organising) accounts for stability in a turbulent context where
developers can follow their localised interests in a loosely-coupled fashion; it also
helps conceptualise the knowledge-making process considering that the raw data
stemming from the emergent source code are transformed into information or
knowledge on the basis of collecfively-shared assembly rules. Further research should

^ Note that the argument developed above refers to manual rather than automated procedures.
^ Source: http://www.ussg.iu.edU/hypermail/linux/kemel/0210.0/2396.html. Note that this is a

double interact because we have two contingent responses, namely Torvalds' response to
Krasnyanskiy's initial message marked with a single arrow (>) and Krasnyanskiy response
to Torvalds, the original message being marked with a double arrow (»).

Federico lannacci

be devoted to the study of equivocality considering that electronic contexts compound
the sense-making problem due to the lack of social context cues.

References

Aldrich, H. E. (1999) Organizations Evolving, Sage Publications, London, Thousand
Oaks.

Eisenhardt, K. M. (1989) "Building Theories from Case Study Research", Academy of
Management Review, 14 (4), pp. 532-550.

Harrison, T. M. (1994) "Communication and Interdependence in Democratic
Organizations", Communication Yearbook 17, pp. 247-274.

lannacci, F. (2003) "The Linux Managing Model", First Monday 8/12; Address:
http://wwwfirstmonday. org/issues/issue8_12/iannacci/index. html, Accessed
on 03/12/03.

March, J. G. (1988) "The Technology of Foolishness" in Decisions and
Organizations, (March, J. G. ed.) Basic Blackwell Ltd, Oxford.

March, J. G. and H. A. Simon (1958) Organizations, John Wiley & Sons, Inc., New
York.

Nakakoji, K., Y. Yamamoto, K. Kishida and Y. Ye (2002) "Evolution Patterns of
Open-Source Software Systems and Communities", in International
Workshop Principles of Software Evolution, pp. 76-85,

Pettigrew, A. M. (1990) "Longitudinal Field Research on Change: Theory and
Practice", Organization Science, 1 (3), pp. 267-292.

Shaikh, M. and T. Comford (2005) "Learning/Organizing in Linux:: A Study of the
'Spaces in Between", in The 27th International Conference on Software
Engineering (ICSE 2005). Open Source Application Spaces: 5th Workshop
on Open Source Software Engineering, St. Louis, Missouri, USA, pp. 57-61,

Thompson, J. D. (1967) Organizations in Action, Mc Graw-Hill Book Company,
New York.

Tsoukas, H. (1998) "Introduction: Chaos, Complexity and Organization Theory",
Organization, 5 (3), pp. 291-313.

Weick, K. E. (1979) The Social Psychology of Organizing, Addison-Wesley
Publishing Company, Menlo Park, California.

Weick, K. E. and K. Roberts (1993) "Collective Mind in Organizations: Heedftil
Interrelating on Flight Decks", Administrative Science Quarterly, 38 (3), pp.
357-381.

Acknowledgements:
I wish to thank Maha Shaikh and the two anonymous reviewers for their helpful
comments. Obviously, I am to blame for any conceptual mistakes.

Conceptual Modelling as a New Entry in the
Bazaar: The Open Model Approach

Stefan Koch\ Stefan Strecker^, and Ulrich Prank^

^ Institute for Information Business, Vienna University of Economics and BA
Stefan.kochQwu-wien.ac.at

^ Information Systems and Enterprise Modelling, University Duisburg-Essen
{stef an. strecker I u l r ich. f rank}(9uni-due. de

Abstract . The present contribution proposes to transfer the main
principles of open source software development to a new context: con
ceptual modelling; an activity closely related to software development.
The goal of the proposed "open model" approach is to collaboratively
develop reference models for everyone to copy, use and refine in a public
process. We briefly introduce conceptual modelling and reference mod
els, discuss the cornerstones of an open modelling process, and propose a
procedure for initiating, growing and sustaining an open model project.
The paper concludes with a discussion of potential benefits and pitfalls.

1 Introduction

Open source software development [5] is Currently the prime example for collab
orative development processes by geographically dispersed participants. Similar
joint eflForts have emerged in collaborative writing and publishing (i.e. open con
tent [23]), and in other areas [32] such as open hardware, and open education
[16]. Recent research on open source projects has identified fundamental princi
ples common to many collaborative development processes [30], e.g. the named
credit and anti-for king norm [35], which seem to carry over to collaborative
processes with outcomes other than source code. However, further research is
still required to determine possible boundaries for this, and the necessary pre
conditions that have to be met in an area to make this transfer successful.

The present contribution proposes to apply the main principles behind open
source software development to conceptual modelling, an activity closely related
to software development [9]. The goal of the proposed "open model" approach
is to develop reference models for everyone to copy, distribute, use, and refine
with the collaboration of a large number of participants in a public process. Its
consequential objective is to encourage the development of software based on
these models as well as the models' use for research and teaching purposes.

Transferring the principles of open source software development to concep
tual modelHng is of interest for both practical and scientific reasons. The use of
tried and tested reference models promises several advantages over "reinventing
the wheel"-approaches, e.g. (i) reduced time and eflPort in software design, (ii)

Please use the following format when citing this chapter:
Koch, S., Strecker, S., and Frank, U., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 9-20

10 Stefan Koch, Stefan Strecker, and Ulrich Prank

use of the knowledge of domain experts, and (iii) faciHtation of integration and
reuse (cf. Sec. 2). Prom a research point of view, an open model approach pro
vides an opportunity to research whether and how the principles of open source
software development processes carry over to other contexts in general [32] and
to modelling in particular. Starting from the observation that the absence of
modelling activities in open source software development has been recognized as
problematic, e.g. [38, 24, 42], an open model approach also serves as a testbed
for investigating the effects of conceptual modelling and open models on open
source software development.

An ideological argument refers to the freedom of models: If it is accepted that
information needs to be freely accessible [33, 23], this should also pertain to the
models behind any software, even more so than the software's documentation,
given that the models are of much higher importance. Por example, problems
with a large code base becoming effectively closed due to high complexity might
be overcome at least to some degree when the underlying models are accessible.
Even if SAP would release the source code of R/3 , or Microsoft the code of
Windows or Office, these large software systems would be difficult to understand
without the underlying models. Releasing the appropriate models would be
of even greater importance than the release of source code. Given a free and
open model, alternative implementations of the same functionality will be easier
to produce. Other examples are the Netscape/Mozilla or OpenOffice projects,
which experienced difficulties in setting up a community.

In this paper, we briefly i;ntroduce conceptual modelling and reference mod
els (Sec. 2), discuss the cornerstones of an open modelling process (Sec. 3.1),
and propose a procedure for initiating, growing and sustaining an open model
approach (Sec. 3.2). We will also discuss both benefits and pitfalls (Sec. 4), and
conclude with a summary and future work (Sec. 5).

2 Prospects of conceptual modelling

2.1 Bridging the gap

On a conceptual level, models represent abstractions of real-world phenomena
relevant to a certain modelling task (conceptual models) [9]. Conceptual models
are aimed at providing representations of software systems that are accessible
not only to modellers and software developers, but also to domain experts and
prospective end users. Por this reason, they focus on general concepts commonly
used within a certain domain abstracting from technical aspects.

By allowing for various abstractions, e.g. data abstraction, object abstrac
tion, and process abstraction, they contribute to the reduction of complexity
and risk. On the other hand, they take into account certain characteristics of
implementation-level languages. Thus, conceptual models help to overcome the
notorious cultural chasm between developers and end users [20]. At the same
time, they support the communication among software developers, thus con
tributing to more efficient coordination in software development projects.

The Open Model Approach 11

Furthermore, conceptual models are the instrument of choice to prepare for
integrating applications by defining common concepts for a set of applications.
Also, abstracting from technical details renders conceptual models better suited
for reuse than source code.

2,2 Reference models as silver bullets

The design of high quality conceptual models suited to guide the development
of large systems is a challenging task that requires outstanding expertise as well
as a thorough and costly analysis. This motivates the development of reference
models. A reference model is a conceptual model that comes with the claim to
suit not just one system, but a whole range of systems, e.g. a generic process
model for contract processing in the insurance industry. The claim pertains to
two aspects. On the one hand, reference models are intended to provide appro
priate generalisations of existing domains. On the other hand, reference models
are aimed at delivering blueprints for good system design. Thus, reference mod
els are descriptive and prescriptive at the same time. Reference models are a
reification of a very attractive vision: They promise higher quality of informa
tion systems at less cost. However, adapting reference models for actual system
implementation often requires significant adaptations for a specific application.

The development of reference models currently takes place mainly in academia
and in large software companies. Reference models distributed as part of com
mercial packages, e.g. Enterprise Resource Planning (ERP) software such as
SAP R/3 , have been adopted in practice. Their development process is typi
cally a closed-shop effort on part of a software or consulting company, e.g. SAP,
with the respective copyright and patent issues attached.

Academic research has produced several modelling languages and associated
reference models in recent years, e.g. [31, 10]. Conceptual models in general
and reference models in particular have been a focus in information systems
(IS) research [41]. Research on reference models and modelling languages is
commonly subsumed in the field of enterprise modelling [4, 2].

With regard to the tremendous benefits to be expected from high quality
reference models, it seems surprising that there is only a small number of refer
ence models available [6]—despite the remarkable amount of work on reference
models in academia. However, these models usually suffer from two deficiencies.
Firstly, they remain in a prototypical state—due to limited resources available
in single research projects. Secondly, they fail to be deployed in practice. While
the second shortcoming can in part be contributed to the first one, it is also
caused by the lack of eff*ective mechanisms to disseminate research results.

A recent survey on internet-based reference modelling [39] has shown that
only very little information on reference models is available on-line and that
most models are either published in part or entirely in print publications if at all.
The study implies that discussion about and construction of reference models
hardly ever is an open process and concludes that the internet offers potential
for further distributed, collaborative efforts to develop reference models.

12 Stefan Koch, Stefan Strecker, and Ulrich Frank

Reference models seem to be an ideal subject for an open, community-driven
development process. The modelling process necessitates a higher level of ab
straction than programming. Its overall complexity allows for the involvement
of a diversity of participants ranging from developers to users to domain ex
perts and reviewers, among others. Following Raymond [30], a larger number
and a greater diversity of eyeballs on a modelling task is required to conceive
high quality conceptual models. Note, however, the differences between con
ceptual models and source code. It is likely that the number of eyeballs on
models will be less than those on code if only due to the fact that evaluating a
reference model to suggest improvements requires different skills and interests.
The transparency of a conceptual model fosters the coordination of the vari
ous contributions. An open model project would not only allow for bundling
academic resources. Rather, it could serve as a common medium for organizing
the exchange between academia and practice, thus fostering its acceptance and
deployment. With respect to the division of labour, a reference model could be
used as a common reference in various disciplines. On a higher level of abstrac
tion, for instance, business experts could analyse and eventually redesign busi
ness processes, while software experts could focus on the design of supporting
information systems. Hence, reference models could support cross-disciplinary
cooperation and contribute to the coherent integration of state-of-the-art knowl
edge from multiple disciplines.

3 Conceptual modelling as an open process

3.1 Cornerstones of the open model process

In the following, we assume that it is possible to initiate, grow and sustain
collaborative processes with outcomes other than source code based on the
fundamental principles behind open source software development. Distributed
modelling processes are a particular instance of such collaborative processes, in
particular, reference modelling processes in which stakeholders in the process
collaborate to develop reference models. Therefore the following cornerstones
of open source development need to be adopted to the open model approach:

Appropriate licence. An appropriate model licence is required to ensure that
everyone is allowed to copy, distribute, use and modify the model (open model)
[33, 29]. The hcence should explicitly allow for the model's use in proprietary
software development to promote its adoption and deployment in practice, while
aiming for widest possible range of participants [34].

Roles and stakeholders. The open modelling process should be designed to facil
itate contributions from practitioners (e.g. domain experts, business analysts)
and academics (e.g. researchers, students) alike. The role of practitioners is
twofold: While they can and should participate in the modelling task itself,
they serve as the most important form of quality assurance and review. Most

The Open Model Approach 13

often, they will be in the best position to judge the relevance and correctness of
business processes modelled against business requirements and practice. Based
on common elements in open source team structures, we identify the following
roles in an open modelling process:

- Maintainer: The maintainer is responsible for either the whole model or a
distinct sub-model. Whether several maintainers are introduced, or become
necessary, depends both on the size of the domain, and the success of the ini
tiative. Depending on the organisational model chosen, this can be either an
owner/maintainer, benevolent dictator, or trusted lieutenant [30], deciding on
whether a submission is accepted, when a new official version is released etc.,
or, if a democratic structure is adopted, mostly an administrative position.
These positions will be filled by people who have demonstrated long-term and
high quality commitment, so that their authority is accepted by the others.

- Modeller: The position of a modeller is analogous to the commiter in open
source software development, in that he has the right to perform changes to
the model. The right to do this directly is normally linked to several prior
submission that have successfully passed quality control.

- Contributor: Any person can fill the role of contributor, and propose changes
to the model. These need to be passed over to a modeller or maintainer, in
order to pass quality control and be accepted. If this is done several times, a
contributor might advance to modeller position.

- Reviewers: As in software development, quality assurance is an important
task in an open model project. Open source projects employ several mech
anisms to this end [45], with extensive peer review as the most prominent
example. In an open model project, an official position of reviewer might
be established. Naturally, everyone filling up another role might become re
viewer, e.g. any modeller could automatically be assigned this additional role.
The most important task is to review any proposed changes to the model,
and to decide according to relevance and quality. Practitioners are very much
suited for this role in order to provide feedback from their experience.

- End users: Anybody can become an end user of an open model. Of special in
terest are those who become active participants, by either reporting problems
or suggesting ideas, or by submitting changes to the model directly.

As empirical research on open source software development teams has
shown, in most projects a small inner group forms [25, 19], surrounded by a
larger number of contributors, and an even greater number of participants not
directly involved in programming, but other tasks like bug reporting. A simi
lar structure might appear in an open model project. It should also be noted
that both structure and processes in open source software projects have been
found to change over time in accordance with the needs and the evolution of
the product, which in turn is of course shaped by the community [43]. In an
open model initiative, both team organisation and processes should, therefore,
be flexible enough to be adapted to changing needs should they arise.

14 Stefan Koch, Stefan Strecker, and Ulrich Frank

Motivation and incentives. A key success factor pertains to establishing con
vincing incentives for participation in order to attract participants and to reach
a critical mass of contributors. The question of motivation has been extensively
researched in the area of open source software development [21, 12, 14, 15]
showing that several different possible motivational factors both intrinsic and
extrinsic are relevant. For an open community to work effectively, it is necessary
to establish convincing incentives for all participants.

A key incentive to suppQrt open source projects originates from the joy of
programming and the rewarding experience of creating an artefact that works
and is recognized by peers. Conceptual models will usually not be executable,
but peer-recognition as reputation mechanism still applies. In fact, most motiva
tional factors are likely to carry over to open models, with the exception of those
directly related to coding. On the other hand, people might also gain intrinsic
motivation from modelling, though a common perception is that programmers
do not like this activity. It remains to be seen whether and how developers
perceive the value of open models and the participation in open modelling pro
cesses. Nevertheless, the development of models can be very appealing: It is a
challenging task, hence, offering reputation for those who submit sustainable
contributions. Also, as a blueprint for multiple systems, an open model is re
warding its designers with the practical relevance of their work. However, it
is not sufficient to rely on these incentives only. There is need for additional
incentives for all groups involved in the development of a reference model.

A researcher's contributions to a reference model could be acknowledged as a
substantial academic achievement—similar to a publication. In order to evaluate
such a contribution adequately,, some sort of a review process would then be
required, for example an adapted version of the democratic votes as used in the
Apache project [7]. Incentives for practitioners seem hard to establish at first.
However, the demand for system architectures and other forms of blueprints
from practitioners points to their recognition of the value of reference models.
It would also be possible for participants to pursue related business models, for
example by providing related services like consulting or implementations.

There are also several explanations for the viability and stability of open
source software development, including a reputation-based gift culture [30, 44],
a craftsman-model with programmijig as an immanent good [30, 36] or eco
nomic models [22] like the cooking-pot market [11], as an inverse tragedy of the
commons [30] or as user innovation networks [40]. Again, all of these might be
used to argue the stability of an open model initiative.

Parallelisation of work. Maybe the most important characteristic of open source
software development is the strong parallelisation of work, especially software
testing, using a large number of participants ("Given a large enough beta-tester
and co-developer base, almost every problem will be characterized quickly and
the fix obvious to someone.'' [30]). In order to reduce duplicate work, to ensure
motivation and to keep the participants' interest, fast release cycles (^'Release
eary, release often" [30]) are necessary. For an open model initiative, this point

The Open Model Approach 15

is also of relevance. As modelling involves creativity and a higher level of ab
straction than programming, innovative contributions are even more required.
The main question is whether the parallelisation of work is possible. To en
sure this, the following preconditions need to be met: (i) appropriate tools for
this cooperation, i.e. a model versioning system as described below, (ii) a mod
elling language supporting appropriate modularity as described below, and (iii)
a modelling task extensive enough to bring several people to bear, which is why
especially reference modelling is put to the center of this proposal.

Modularity. Achieving a modular design is seen as an important precondition
to be able to paralleHse large amounts of work on an artefact [26, 28, 8, 1].
Otherwise, costs for coordination and communication would grow exponentially
and would negate benefits from higher headcount. Also in open modelling, this
precondition is likely to exist. Therefore an appropriate modelling language is
necessary that allows for modularity, especially on several levels of abstraction.

Collaboration tools. As most participants in open source software development
teams are distributed around the globe without personal contact, communi
cation and collaboration are achieved by appropriate tools, especially mailing
lists, source code versioning systems, bug reporting and management and oth
ers. This also constitutes a precondition for the parallelisation of work. For an
open model approach, comparable tools are needed. While for most communi
cation needs the same tools like mailing lists can be employed, a substitute for
source code versioning systems like CVS [8] or SVN might be needed. Although
many models can be reduced to a text-based representation, for example using
appropriate XML-schemas, models are by nature more visually oriented. There
fore a versioning system which explicitly supports visual inspection of models
and especially changes to models would be important. We are not currently
aware of a free product that fulfills- these criteria, but such a tool should be
implemented, probably in the context of a first such project.

3.2 Procedure for implementing an open model project

Prom having identified the cornerstones of an open model process as described
above, several necessary decisions and steps can be derived for the implemen
tation of such an initiative.

1. Choosing an appropriate licence: An appropriate licence should allow for
several effects to take place. On the one hand, it should be as free and
open as possible to ensure the highest possible number of participants [34],
while avoiding ideological debates. On the other hand, using the model as a
base for commercial implementations should not be impossible. Therefore,
the licence would certainly need to conform to the Open Source Definition
[29], while GPL-compatibility, i.e. being copyleft [33], might be problematic.
Whether an existing licence from the field of documentation, e.g. creative
commons, fulfills these prerequisites and could be adopted, or whether a
new licence needs to be defined is still to be determined.

16 Stefan Koch, Stefan Strecker, and Ulrich Frank

2. Choosing a suitable reference model domain: The domain of the reference
model to be developed should also be chosen so as to attract a large number
of participants, for whom the domain's problems are "scratching an itch"
[30]. Also the scope should be large enough to allow for a sufficient number
of people to work on the model.

3. Choosing appropriate abstractions: Models of business processes have shown
to be a suitable abstraction for understanding a domain. They can be as
sociated with further abstractions such as information models, e.g. object
models or resource models. Therefore, it seems reasonable to focus on busi
ness process models as a common reference for all participants and as an
instrument to integrate additional abstractions.

4. Choosing corresponding modelling languages and tools: Developing business
process models, object models and other abstractions requires the selection
of appropriate modelling languages. These decisions have to take into ac
count the availability of corresponding tools, which are almost mandatory
in order to cope with model complexity, to allow for automated syntax and
integrity checks as well as for automated transformation into other repre
sentations such as implementation-level languages. The modelling languages
themselves should support modularity and extensibility, e.g. to define busi
ness processes on several levels, which have been shown to be critical success
factors in open source development [28]. Also, far spread knowledge in the
chosen languages would increase the number of possible participants. In ad
dition, storage and management of explanations, discussions and reasonings
for the documented models and any change to them must be provided.

5. Design the appropriate processes: The necessary processes especially regard
ing decision making, i.e. new releases, conflict resolution [37] and the release
management [17] should be designed. This also includes accounting for the
participants' motivations by setting up appropriate incentive schemes.

6. Preparing the necessary infrastructure: As detailled above, the necessary
infrastructure for coordination and communication needs to be set up. This
includes standard tools like maiUng lists or bug tracking, but especially
versioning might need further enhancements to existing systems. A survey of
reference models and reference modelHng on the internet [39] has shown that
the internet is hardly ever used to provide reference models. This reluctance
is a problem, and will have to be overcome.

7. Delivering a plausible promise in form of a first prototype: To start the com
munity building process, an initial set of open models needs to be released
to the interested public. This prototype should give a plausible promise that
an interesting initiative is starting, and that joining it would be wortwhile.

8. Continuously evaluating processes, products and community: During the
lifetime of the initiative, all aspects will need to be monitored. This in
cludes the processes and the community, where appropriate methods for
analysing open source software projects e.g. regarding concentration mea
sures or evolution could be adopted [13].

The Open Model Approach 17

4 Discussion

From an academic point of view, reference models are appealing, because their
claim for general validity makes them resemble scientific theories. Taken the
complexity of some domains, reference models could serve as a medium to co
ordinate research in large teams. Thus, they could serve as object and objecti-
vation of research in IS.

The evaluation of conceptual models is a challenging task - both with re
spect to quality assurance and from an epistemological perspective [9]. Due
to their claim for excellence, this is even more the case for reference models.
The concept of truth is only of Umited use for evaluating them, since they are
usually aimed at intended systems or future worlds. Hence, a discoursive eval
uation is the only remaining option. This requires not only the participation
of researchers, domain experts, prospective users, but also an open culture of
critique and construction. An open model community could provide for that
and hence contribute to a multi-perspective evaluation of reference models that
is difficult to achieve as long as reference models are subject of single research
projects only. Therefore, any model should be accompanied with reasonings
about the model, changes to the mpdel and discussions about these.

Reference models could also serve as a subject for teaching, e.g. in IS or
Computer Science. Students could study and enhance reference models in order
to get a differentiated,, but still abstract imagination of application domains, of
which a reference model provides the relevant concepts. Therefore, it could serve
as a foundation for the development of application level standards ("business
language") or enterprise level ontologies [3, 18]. A reference model represents the
body of knowledge of the participating disciplines. It also includes best practices
and therefore can be regarded as a blueprint for knowledge management as well.

Finally, open source software development itself might benefit from the es
tablishment of open models. The absence of modelling activities has been a
center of critique on open source software development, e.g. [38, 24, 42], and
has been held responsible, among others, for insufficient documentation, lost
possibilities for reuse or missing information for effort estimations. Therefore,
open source software projects are prime candidates for experiencing positive
effects of open model projects, and vice versa, as any open model project would
benefit from one or more open implementations being pursued.

The main challenge for an open model initiative is to reach a critical mass of
participants to start a sustainable open process. This will hinge mostly, besides
the necessary infrastructure being in place to reduce transaction costs, on the
motivation of potential participants. In this paper, we have discussed possible
incentives for several groups, but if these fail in practice, the project might not
get off the ground. While not the only factor, the question whether people can
be found in large enough quantities for which modelling poses an interesting,
challenging and therefore in itself rewarding activity remains to be seen.

18 Stefan Koch, Stefan Strecker, and Ulrich Frank

5 Summary and future work

In this paper, we have proposed to adopt the principles of open source software
development for the collaboration of geographically dispersed project partici
pants and their joint efforts to another context: conceptual modelling. The goal
of the proposed "open model" approach is to develop reference models for ev
eryone to copy, use, refine and later implement with the collaboration of a large
number of participants in a public process.

To this end, the cornerstones of open source development need to be
adopted, and in some cases adapted. This led to a list of decisions and steps
to be considered for implementing such an initiative. The important next step
would be to verify the viability of the open model process in the light of a
real-world example, i.e. preparing the set-up of such a project. Following [27],
it seems prudent to create a technological infrastructure which facilitates ex
change of ideas and models among interested parties, i.e. to make discussions
and models available to the open source community and the public at large.
Especially for the first project, initial funding for preparing the infrastructure,
especially an open "model versioning system", and also for developing a proto
type is required. Also, it is necessary to educate relevant groups of prospective
participants. We intend to pursue the proposed approach and found an open
model initiative. After all, we are convinced that such an initiative would yield
substantial benefits, both in itself, and as an academic field study.

References

1. Terry Bollinger, Russel Nelson, Karsten M. Self, and Stephen J. Turnbull.
Open-source methods: Peering through the clutter. IEEE Software, 16(4):8-11,
July/August 1999.

2. Nikunj P. Dalai, Manjunath Kamath, William J. Kolarik, and Eswar Sivaraman.
Toward an integrated framework for modeling enterprise processes. Communica
tions of the ACM, 47(3):83-87, 2004.

3. Jos de Bruijn, Dieter Fensel, Uwe Keller, and Rubn Lara. Using the web service
modeling ontology to enable semantic e-business. Communications of the A CM,
48(12):43-47, 2005.

4. Dursun Delen, Nikunj P. Dalai, and Perakath C. Benjamin. Integrated modeling:
the key to holistic understanding of the enterprise. Communications of the ACM,
48(4):107-112, 2005.

5. Joseph Feller and Brian Fitzgerald. Understanding Open Source Software Devel
opment. Addison-Wesley, London, 2002.

6. Peter Fettke and Peter Loos. Systematische Erhebung von Referenzmodellen -
Ergebnisse einer Voruntersuchung. Working Papers of the Research Group Infor
mation Systems & Management 19, University of Mainz, Mainz, Germany, 2004.

7. Roy T. Fielding. Shared leadership in the Apache project. Communications of
the ACM, 42(4):42-43, April 1999.

8. Karl Fogel. Open Source Development with CVS. CoriolisOpen Press, 1999.

The Open Model Approach 19

9. Ulrich Frank. Conceptual Modelling as the Core of the Information Systems
Discipline — Perspectives and Epistemological Challenges. In Proceedings of the
Fifth America's Conference on Information Systems (AMCIS 99), pages 695-697,
Milwaukee, 1999. Association for Information Systems (AIS).

10. Ulrich Frank. Multi-Perspective Enterprise Models as a Conceptual Foundation
for Knowledge Management. In Proceedings of the Thirty-Third Annual Hawaii
International Conference on System Sciences. IEEE CS Press, 2000.

11. Rishab Aiyer Ghosh. Cooking pot markets: an economic model for the trade in
free goods and services on the Internet. First Monday, 3(3), March 1998.

12. Rishab Aiyer Ghosh. Understanding free software developers: Findings from the
floss study. In Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R.
Lakhani, editors. Perspectives on Free and Open Source Software, pages 23-46.
MIT Press, 2005.

13. Michael Hahsler and Stefan Koch. Discussion of a large-scale open source data
collection methodology. In Proceedings of the Hawaii International Conference on
System Sciences (HICSS-38), Big Island, Hawaii, 2005.

14. Alexander Hars and Shaosong Ou. Working for Free? Motivations for Partici
pating in Open-Source Projects. International Journal of Electronic Commerce,
6(3):25-39, 2002.

15. Guido Hertel, Sven Niedner, and Stefanie Hermann. Motivation of software de
velopers in open source projects: An internet-based survey of contributors to the
Linux kernel. Research Policy, 32(7): 1159-1177, 2003.

16. Kei Ishii and Bernd Lutterbeck. Unexploited resources of online education for
democracy - why the future should belong to OpenCourseWare. First Monday,
6(11), November 2001.

17. Niels Jorgensen. Putt ing it all in the trunk: Incremental software engineering in
the FreeBSD project. Information Systems Journal, l l(4):321-336, 2001.

18. Ejub Kajan and Leonid Stoimenov. Toward an ontology-driven architectural
framework for b2b.' Communications of the ACM, 48(12):60-66, 2005.

19. Stefan Koch. ProfiUng an open source project ecology and its programmers.
Electronic Markets, 14(2):77-88, 2d04.

20. Sari Kujala. User involvement: a review of the benefits and challenges. Behaviour
& Information Technology, 22(1): 1-16, January-February 2003.

21. Karim R. Lakhani and Robert G. Wolf. Why hackers do what they do: Under
standing motivation and effort in free/open source software projects. In Joseph
Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani, editors. Per
spectives on Free and Open Source Software, pages 3-22. MIT Press, 2005.

22. Josh Lerner and Jean Tirole. Economic perspectives on open source. In Joseph
Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani, editors. Per
spectives on Free and Open Source Software, pages 47-78. MIT Press, 2005.

23. Lawrence Lessig. The Future of Ideas: The Fate of the Commons in a Connected
World. Random House, New York, 2001.

24. Steve McConnell. Open-source methodology: Ready for prime time? IEEE Soft
ware, 16(4):6-8, July/August 1999.

25. Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of
Open Source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology, l l(3):309-346, 2002.

26. Alessandro Narduzzo and Alessandro Rossi. The role of modularity in free/open
source software development. In Stefan Koch, editor, Free/Open Source Software
Development, pages 84-102. Idea Group Publishing, 2004.

20 Stefan Koch, Stefan Strecker, and Ulrich Frank

27. David M. Nichols and Michael B. Twidale. The Usability of Open Source software.
First Monday, 8(1), January 2003.

28. Tim O'Reilly. Lessons from open-source software development. Communications
of the ACM, 42(4):32-73, April 1999.

29. Bruce Perens. The open source definition. In Chris DiBona, Sam Ockman, and
Mark Stone, editors, Open Sources: Voices from the Open Source Revolution.
O'Reilly and Associates, 1999.

30. Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. O'Reilly and Associates, 1999.

31. August-Wilhelm Scheer. Business Process Engineering: Reference Models for In
dustrial Enterprises. Springer-Verlag, Berlin, Germany, 2nd edition, 1994.

32. Clay Shirky. Open source outside the domain of software. In Joseph Feller, Brian
Fitzgerald, Scott A. Hissam, and Karim R. Lakhani, editors, Perspectives on Free
and Open Source Software, pages 483-488. MIT Press, 2005.

33. Richard M. Stallman. Free Software, Free Society: Selected Essays of Richard M.
Stallman. GNU Press, Boston, Massachusetts, 2002.

34. Katherine J. Stewart, Tony Ammeter, and Likoebe Maruping. A preliminary
analysis of the influences of licensing and organizational sponsorship on success
in open source projects. In Proceedings of the Hawaii International Conference
on System Sciences (HICSS-38), Big Island, Hawaii, 2005.

35. Katherine J. Stewart and Sanjay Gosain. The Impact of Ideology on Effective
ness in Open Source Software Development Teams. Working paper. Depart
ment of Decision and Information Technologies, University of Maryland, 2005.
Forthcoming in MIS Quarterly, h t t p : / /www.smi th .umd .edu / f acu l ty /k s t ewar t /
Researchinf o/K JSResesLTch. htm.

36. Linus Torvalds. FM interview with Linus Torvalds: What motivates free software
developers? First Monday, 3(3), March 1998.

37. Ruben van Wendel de Joode. Managing conflicts in open source communities.
Electronic Markets, 14(2): 104-113, 2004.

38. Paul Vixie. Software engineering. In Chris DiBona, Sam Ockman, and Mark
Stone, editors. Open Sources: Voices from the Open Source Revolution. O'Reilly
and Associates, 1999.

39. Jan vom Brocke. Internetbasierte Referenzmodellierung - State-of-the-Art und
Entwicklungsperspektiven. Wirtschaftsinformatik, 46(5):390-404, 2004.

40. Eric von Hippel. Open source software projects as user innovation networks. In
Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani, editors.
Perspectives on Free and Open Source Software, pages 267-278. MIT Press, 2005.

41. Ron Weber. Ontological Foundations of Information Systems. Coopers & Ly-
brand, Melbourne, 1997.

42. Greg Wilson. Is the open-source community setting a bad example? IEEE Soft
ware, 16(l):23-25, January/February 1999.

43. Yunwen Ye, Kumiyo Nakakoji, Yasuhiro Yamamoto, and Kouichi Kishida. The
co-evolution of systems and communities in free and open source software devel
opment. In Stefan Koch, editor, Free/Open Source Software Development, pages
59-82. Idea Group Publishing, 2004.

44. David Zeitlyn. Gift economies in the development of open source software: an
thropological reflections. Research Policy, 32(7):1287-1291, 2003.

45. Luyin Zhao and Sebastian Elbaum. Quality assurance under the open source
development model. The Journal of Systems and Software, 66:65-75, 2003.

Evolution of Open Source Communities

Michael Weiss, Gabriella Moroiu, and Ping Zhao

Carleton University, School of Computer Science, 1125 Colonel By Dr, Ottawa,
Ontario KIS 5B6, Canada weissQscs.carleton.ca

Abstract . The goal of this paper is to document the evolution of a
portfolio of related open source communities over time. As a ca,se study,
we explore the subprojects of the Apache project, one of the largest and
most visible open source projects. We extract the community structure
from the mailing list data, and study how the subcommunities evolve,
and are interrelated over time. Our analysis leads us to propose the
following hypotheses about the growth of open source communities:
(1) communities add new developers by a process of preferential at
tachment; (2) links between existing communities are also subject to
preferential attachment; (3) developers will migrate between communi
ties together with other collaborators; and (4) information flow follows
project dependencies. In particular, we are concerned with the underly
ing factors that motivate the migration between communities, such as
information flow, co-worker ties, and project dependencies.

1 Introduction

There is much anecdotal evidence that open source communities grow accord
ing to a preferential attachment mechanism [13]. However, there is not much
empirical analysis to demonstrate this phenomenon. Most work on open source
communities centers on either static aspects of a community (such as its topol
ogy at a given time) [9, 14, 15], or describes the evolution of the community in
a qualitative manner [16, 8, 4]. The interaction between communities over time
(eg the migration of developers) has also not received sufficient attention.

Our goal in this paper is to document the evolution of a portfolio of related
open source communities over time. As a case study, we explore the subprojects
of the Apache project, both for reasons that this is a highly visible group of
open source communities, but also because a wealth of data is being collected
on the Apache project site that allows deep insight into the dynamic project
structure. In particular, we rely on mining the project mailing lists. Another
reason that made this choice conducive was the availability of the Agora [10]
tool for extracting information from the Apache project mailing lists.

The paper is structured as follows. Section 2 describes the methodology
followed to extract the community structure and various indicators (such as
developer rank) from the mailing list data. In Section 3, we show how the
various subcommunities of the Apache project evolve, and are interrelated over

Please use the following format when citing this chapter:
Weiss, M., Moroiu, G., and Zhao, P., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 21-32

22 Michael Weiss, Gabriella Moroiu, and Ping Zhao

time. We state our findings in the form of four hypotheses, and provide evidence
in their support. Finally, Section 4 presents our concluding remarks.

2 Community Structure

Our goal is to track the evolution of open source communities with time. Com
munities form around open source projects. They are groups of developers who
share a common interest in the project, and who regularly interact with one an
other to share knowledge, and collaborate in the solution of common problems
[16]. Communities are at the core of what is described in [3] as Collaborative
Innovation Networks (COINs), highly functional teams characterized by the
principles of meritocracy, consistency, and internal transparency. As shown in
[16], an open source community co-evolves with its associated project. A project
without a community that sustains it is unlikely to survive long-term.

Members of an open source community play different roles, ranging from
project leaders (maintainers) and core members (contributors) to active and
passive users [13, 14, 16]. Project leaders are often the initiators of the project.
They oversee the direction of the project, and make the major development
decisions. Core members are members who have made significant contributions
to a project over time. Active users comprise occasional developers and users
who report bugs, but do not fix them. Passive users are all remaining users
who just use the system. Core members can further be subdivided into creators
(leaders) communicators (managers), and collaborators [3].

Large open source projects such as GNU, Linux, or Apache comprise many
subprojects, not of all of which are strongly connected to one another. They
are not associated with a single, homogenous community, but rather an ecol
ogy [5] of (sub-)communities is formed around these subprojects. However, they
share a common governance/ (the Apache Foundation, in the case of the Apache
project), and often produce artefacts shared among all projects (such as the
Jakarta Commons in the Apache project). The idea of an ecology should convey
mutual dependencies between many of the projects and cross-project collabo
ration, but also competition for resources among projects.

Figure 1 shows the current portfolio of projects in the Apache project and
their relationships. It depicts the communication patterns between projects,
as determined from the project mailing lists. This diagram was generated by
an extension of the Agora [10] tool, which reuses its data extraction and core
visuahzation routines, but adds project and module dependency views (based
on JDepend [6]), and significant capabilities for pruning by strength of the
communication links and filtering by date, as well as statistical analysis.

The structure of a community can be inferred from the interactions between
developers on the mailing list of the associate project. We analyze the commu
nication patterns between developers, and order developers by the strength of
their communication links. For each developer we tally the number of inbound

Evolution of Open Source Communities 23

:ubatof

t^^gh-jg'.

• ' td
d

^ " 0'< #" #-..
Fig. 1. Portfolio of projects in the Apache project and their relationships

and outbound messages.-^ The project leader is considered the developer with
the highest number of inbound messages, as this indicates how frequently this
developer is consulted by others. It is, therefore, also a measure of the de
veloper's reputation. The same metric is used in [3] to identify creators, the
members who provide the overall vision and guidance for a project.

For the purposes of our analysis, we Hmit our attention to the group of core
developers. According to a previous study of the Apache project [11], most of
the contributions are made by the top 15 developers in a project. These are
considered the core developers. As noted in [3], a typical core group starts out
with 3 to 7 members, and grows to 10 to 15 members, once the community is
established. Using the pruning feature of our extended Agora tool, we retrieved
the core developers for every subproject of the Apache project. The structure
of a community obtained can be visualized as a network of developers.

Fig. 2 shows the community structure of the Httpd subproject based on
the messages exchanged over the 01/1999 to 12/1999 time frame.^ It can be
observed that the core group is a nearly fully connected network in which every
member communicates directly with every other member. Our database consists
of 24 projects and 253 unique core developers. Fig. 3 plots the cumulative
number of projects P and developers Â for the period of 1997-2004.

1

2

The algorithm for extracting topological data from the message set in the Agora
tool is is based on the concept of "reply": when a person sends a message in reply
to another message, a link is created in the graph. To eliminate noise messages that
are not replied to are excluded from the extracted data [10].
The color intensity of the links indicates the strength of a communication link.

24 Michael Weiss, Gabriella Moroiu, and Ping Zhao

1998

Fig. 2. Communication Hnks between the developers of the Httpd subproject

—4--N

1996 1998 2000 2002 2004 2006

Fig. 3. Cumulative number of projects and developers in the Apache project

3 Tracing Community Evolution

To trace the evolution of a community we took snapshots of its membership at
regular intervals. Here, we chose a one year period, but we plan to study the
evolution of the Apache communities over smaller time periods in the future.
For each period we retrieve the list of core developers ordered by their number
of inbound messages, as noted above. The extracted information is captured in
a spreadsheet similar to Figure 4 with the nicknames of the core developers for
each community and time period. Notably, the top row indicates the project
leaders, as inferred from the data. A Perl script translates the spreadsheet data
for further processing into a set of Prolog facts. This provide a knowledge base
that we can analyze in a flexible manner using the Prolog reasoning engine.

3.1 Growth by Preferential Attachment

Based on this data, we established several hypotheses about the growth of open
source communities. Our initial hypothesis that open source communities grow
by a process of preferential attachment [9], or selection through professional
attention [13] was adopted from the literature. It can be stated as follows:

Evolution of Open Source Communities 25

1997 1998 1999 2000 2001
donaldp
bloritsch
paul hamman
mail
peter
leo.sutic
mcconnell
mirceatoma
colus
Charles
jeff
giacomo
ulim
leif
proyal

2002
bloritsch
peter
paul hamman
leo.sutic
nicolaken
leosimons
mcconnell
proyal
leif
craferm
jeff
noel
stefano
paulo.gaspar
cziegeler

2003
bloritsch
mcconnell
leosimons
niclas
aokl23
noel
leo.sutic
alag
Steve
farra
nicolaken
cziegeler
holiveira
leosimons
paul hamman

2004
mcconnell
niclas
bloritsch
leo.sutic
dev
lira
cziegeler
aokl23
farra
leosimons
noel
develop
Isimons
jhawkes
exterminatorx

Fig, 4. Sample of the extracted data (core members of the Avalon subproject)

Hypothesis 1 The more developers a community has already, the more new
developers it will attract (also known as "rich gets richer^' phenomenon).

In support of this hypothesis, we first determine the degree distribution
P{k). As shown in Fig. 5, the distribution follows a power law. This indicates
that the communication network of the Apache community is scale-free. Such
networks contain relatively few highly connected nodes, while the majority of
nodes are only connected to few other nodes. This leads to a typical core-
periphery structure, as observed for many open source communities.

1000

10

i

10 100 1000

if 2001 X 2002 * 2003 ^ 2004

Fig. 5. Developer degree distribution shown with logarithmic binning

26 Michael Weiss, Gabriella Moroiu, and Ping Zhao

10000 -

1000

C 100

10

M^

fS

y = 4.064x '̂* '̂*^

R̂ = 0.9153

Fig. 6. Cumulative preferential attachment K(k) of new developers

One common mechanism to explain the growth of a scale-free network is
preferential attachment [1], as captured by the hypothesis. Preferential attach
ment implies that, as the network evolves, nodes will link to nodes that already
have a large number of links. To verify that the network of the Apache commu
nity follows a preferential attachment rule, we determine the probability that a
new developer is connected to an existing developer with degree k.

As described in [1], this probability can'be estimated by plotting the change
in the number of links Ak for an existing developer over the course of one year
as a function of A:, the number of links at the beginning of each year. Fig. 6
shows the cumulative preferential attachment K(k) of new developers joining
the Apache community. If attachment were uniform, K{}i) would be expected
to be linear. As shown, we find that K(]<i) is non-linear.

Having established that the growth of the Apache community follows a
preferential attachment regime at the developer level, we repeat the analysis
at the project level. Instead of estimating the probability of a new developer
connecting to an existing developer, we determine the probability of a new
developer selecting a given community. In order to show that this probability
is proportional to the degree If-^'^ of the project community, we determine the
change in the number of links for an existing project over the course of one year
as a function of the number of links lif^"^ at the beginning of each year.

Fig. 7 shows the cumulative preferential attachment K(k^°^) of new devel
opers joining an existing project community. We note that community degree
and community size are strongly correlated for higher degrees and larger sizes
[12]. Therefore, since the attachment process is preferential with regard to com
munity degree, it is also preferential with regard to community size.

Evolution of Open Source Communities 27

1000

100

Fig. 7, Cumulative preferential attachment K{k^°^) of new developers

3.2 Interaction and Migration between Projects

As much as the influx of external developers is a key characteristic of open
source communities that distinguishes them from other types of networks, it
is not the only factor that affects community evolution. As has been noted by
[1, 12], the internal interaction between projects also affects the structure and
dynamics of a community. Interaction comprises the flow of information, work
products, and developers. We will look at each of these aspects below.

Information Flow Information is shared between projects through common
developers who act as bridges between the projects. In [4], these developers are
considered the "glue that maintains the whole project together, and the chains
that contribute to spread information from one part of the project to another".

Hypothesis 2 The more developers a community shares with other communi
ties, the more developers from other communities will interact with it.

Fig. 8 shows that the distribution of projects per developer follows a power
law. That means that while most developers participate in only few projects,
some are active in many projects at the same time. These well-connected de
velopers act as network hubs and facilitate inter-project information flow.

Fig. 9 shows that the number of shared developers grows according to a
preferential attachment rule. We obtain this result by plotting the cumulative
change A{kl°'^k2°'^) for each pair of projects as a function of ki°^k2°^. This
estimates the probability that a project with degree kf^'^ will establish a link
with another project with degree k2°^' As shown, the growth is non-linear.

Migration To determine the migration behavior we look at pairs of projects,
and test, for each pair P and Q, whether a developer participates in project P is
one year and in project Q dunng the next one, but she is not already a member

28 Michael Weiss, Gabriella Moroiu, and Ping Zhao

1000

100
fx.

I = 223.SSx^'''''

R^ = 0.9827

1 10
p

Fig. 8. Distribution of the number of projects per developer

100000 -

10000

^ 1000

E
8

1000

conti , com

Fig. 9. Cumulative internal preferential attachment K(kik2) between projects

of project Q in the current year/^ Fig. 10 shows the developer migration from
2003 to 2004. Each row contains the number of developers migrating from a
given project to any of the other projects during the following year. Note that
"pool" is not a project, but indicates the influx of new core developers.

Many of these developers migrate to new projects, of which they form the
core to which new developers attach themselves. As projects are spun off from
existing projects, developers tend to migrate with community members they
closely associate with. We should expect the effect to be most pronounced, if
the leader of one project moves on to a new project: this would create an even
stronger pull for other core developers to join the new project. Thus, we surmise
that developer reputation also plays a critical role in migration decisions.

^ This is an example of a rule that we can easily model and evaluate in Prolog.
However, space does not allow us to describe the details of this modeling step.

Evolution of Open Source Communities 29

2003
2004

pool

httpd

apache

Jakarta

ant

apr

logging

ws

struts

tcl

avalon

incubator

xml

forrest

maven

gump

db

james

cocoon

portals

geronimo

xmlbeans

amassassin

lenya

apaciiecon

excalibur

0)

I

^

%m

m
m

i^

ti
(0

7

€
W^

M

m 5f

M
m
m Yi

f l

c

6

Q.

c

9

M

^
9

t

i3
S

8

•n

6

'M

c o
5

6

o
nj

3
c
7

' ^^ /S

^

*

^

•

E

10

m
•

1 1
10

C

1
E
9

S

S
11

a
E
3

4

•
i

1
1

1
r'«

s

i3
•o
12

m
m

m

E

4

^

c o

7

1 o
Q.

8

^

r*

E
c

I
8

•t

c
E
1

n

;8
E
Q. •

«

5
c
0)

7

^

»

,^1

x:

TO

3
X)

1
9

i

5 •
i
*
'1

Fig. 10. Migration between projects from 2003-2004

Hypothesis 3 Developers will migrate between communities with their collab
orators, that is, other developers with which they have strong ties.

Fig. 11 plots the distribution P(s) of group size s. It can be seen to observe a
power law. This supports the hypothesis. While many developers will migrate in
small groups, some well-connected developers will move in large groups, which
provide the support for a new project. Our data supports that most new projects
include at least one large group migrated from another project.

As an example, consider the migration into the Excalibur project shown in
Fig. 12. The Excalibur project receives its main contribution from the Avalon
project. A drill-down into the underlying data reveals that the current leader
of the Avalon project (bloritsch), as well as the future leader of the Excal
ibur project (leosimons) are among those developers. The leader of the Avalon
project brings with him four co-workers from that project.

Project Dependencies Sharing of work products takes the form of shared
modules. It can be observed in different ways, eg from the developer attributions
in a code repository as in [4], or from an analysis of the import statements in the
source code. Our extensions to Agora includes a module dependency view, which

30 Michael Weiss, Gabriella Moroiu, and Ping Zhao

Fig. 11. Distribution of migration group size (transition from 2003-2004)

xml excalibur

bloritsch/xml,
mcconnell/apache,
bloritsch/avalon,
mcconnell/avalon,
niclas/avalon,
aok123/avalon,
farra/avalon,
aokl 23/incubator,
mcconnell/incubator,
mcconnell/maven,
peter/logging,
bloritsch/logging, l
bloritsch/gump, \

/

\
I
I
I
/

gump

Fig. 12. Migration to the ExcaUbur project between 2003 and 2004

presents information extracted from the project source code using JDepend [6]
as a graph. Links in the graph indicate module dependencies.

Hypothesis 4 Information flow follows project dependencies.

While we have not yet extracted dependency information on all subprojects
in the Apache project, we have analyzed project dependencies for specific cases,
as triggered by observations made during our analysis of information flow or
developer migration. As an example of the kind of analysis, we can perform with
Agora, Fig. 13 shows the dependencies between the Agora, Forrest, and XML
projects (top), and corresponding information flow (bottom). It can be seen
that there is one core developer bridging the Avalon and Forrest communities,
and that the Forrest and XML projects share three core developers.

Evolution of Open Source Communities 31

2002
f<?rrest - ̂

- • imports '̂̂ ^̂ ^

(a) Project dependencies

forrest

avalon • "̂ s

/̂ N ^ 2002

\ N ^ « * I V - A " ' ~ ~ " ^ ^ ..^<. w, . -^^^-.-^--^ ^-.^^ttCstm

* \ L I'--. "^^•:-"*^ Vx^..^' / .'TA'/ , xml

•̂' '̂ "^^^: 'A \ / ^ '
•'^""f— ^. " ^ - - ^ ^ / .'^ /

(b) Information flow between projects

Fig. 13, Project dependencies between the Agora, Forrest, and XML projects in 2002

4 Conclusion

In this paper, we stated a set of hypotheses about the evolution of open source
communities. As a first step of the empirical validation of these hypotheses, we
presented our initial results exploring the communities formed around the vari
ous subprojects of the Apache project. To this end we extended a tool (Agora)
developed by a member of the Apache project with project and module depen
dency views, and pruning and date filtering capabilities, as well as statistics.

We then extracted information about the core developers of each community
over an eight year time period (1997-2004). This data allowed us to explore the
hypotheses in some detail through various cases, where we documented the
migration behavior of developers between selected project communities. We
also built an exploratory tool in Prolog for rapidly modeling and testing new
hypotheses about the extracted data. We were able to identify different factors
that underlie the preferential attachment mechanism of community evolution,
including information flow, co-worker ties, and project dependencies.

32 Michael Weiss, Gabriella Moroiu, and Ping Zhao

References

1. Barabasi A, Jeong H, et al (2002) Evolution of the Social Network of Scientific
Collaborations, Physica A 311, 590-614

2. Feller J, Fitzgerald B, Hissam S, Lakhani K (2002) Perspectives on Free and
Open Source Software, MIT Press

3. Gloor P (2006) Swarm Creatitity, Oxford University Press
4. Gonzalez-Barahona J, Lopez L, Robles G (2004) Community Structure of Mod

ules in the Apache Project, Workshop on Open Source Software Engineering
5. Healy K, Schussman A (2003) The Ecology of Open Source Development, Un

published, w w w . k i e r a n h e a l y . o r g / f i l e s / d r a f t s / o s s - a c t i v i t y . p d f
6. JDepend (2006) Project, www.clarkwaxe.com/software/JDepend.html, last ac

cessed in Jan 2006
7. Koch S (2005) Free/Open Source Software Development, Idea Publishing
8. Koch S (2005) Evolution of Open Source Software Systems - A Large-Scale In

vestigation, International Conf on Open Source Systems, 148-153
9. Madey G, Freeh V, Tynan R (2005) Modeling the F/OSS Community: A Quan

titative Investigation, in [7], 203-220
10. Mazzocchi S (2006), Apache Agora 1.2, p e o p l e . a p a c h e . o r g / ~ s t e f a n o / a g o r a / ,

last accessed in Jan 2006
11. Mockus A, Fielding R, Hersleb J (2005) Two Case Studies of Open Source Soft

ware Development: Apache and Mozilla, in [2], 163-209
12. Pollner P, Palla G, Viczek T (2006) Preferential Attachment of Communities:

The Same Principle, But at a Higher Level, Europhysics Letters, 73 (3), 478-484
13. van Wendel R, de Bruijn J, van Eeten M (2003) Protecting the Virtual Commons,

Information Technology & Law Series, T.M.C. Asser Press, 44-50
14. Xu J, Madey G (2004) Exploration of the Open Source Software Community,

NAACOSOS Conf, no page numbers
15. Xu J, Gao Y, et al (2005) A Topological Analysis of the Open Source Software

Development Community, Hawaii International Conf on System Sciences, 1-10
16. Ye Y, Nakakoji K, et al, The Co-Evolution of Systems and Communities in Free

and Open Source Software Development, in [7], 59-82

Part II

Tools and Infrastructures for OSS development

Retrieving Open Source Software Licenses

Timo Tuunanen\ Jussi Koskinen ,̂ and Tommi Karkkainen^
1,3 Department of Mathematical Information Technology, University of

Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland,
timtuun@jyu.fi, tka@mit.jyu.fi

2 Department of Computer Science and Information Systems, University of
Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland, koskinen@cs.jyu.fi

Abstract. Open Source Software maintenance and reuse require identifying and
comprehending the applied software licenses. This paper first characterizes
software maintenance, and open source software (OSS) reuse which are
particularly relevant in this context. The information needs of maintainers and
reusers can be supported by reverse engineering tools at different information
retrieval levels. The paper presents an automated license retrieval approach
called ASLA. User needs, system architecture, tool features, and tool evaluation
are presented. The implemented tool features support identifying source file
dependencies and licenses in source files, and adding new license templates for
identifying licenses. The tool is evaluated against another tool for license
information extraction. ASLA requires the source code as available input but is
otherwise not limited to OSS. It supports the same programming languages as
GCC. License identification coverage is good and the tool is extendable.

1 Introduction

The relative amount of the costs of software maintenance and evolution activities has
traditionally been 50-75% of the software life-cycle, in case of successful systems
with long lifetime [12]. Moreover, according to some studies [21] the relative amount
is increasing, so the importance of this subarea can hardly be over-emphasized.
According to Lehman's first law [11] software must be continually adapted or it will
become progressively less satisfactory in "real-world" environments. Many software
systems have been very large investments, and they contain invaluable business logic
and knowledge. Therefore, there is a need to reuse their components.

Component-based software reuse is one way to reduce the problems of software
system maintenance. Adaptation of the components, however, can be relatively
demanding. For example, the applied software licenses need to be taken into account
when designing support for reuse. Reverse engineering is the main automated general
approach for retrieving relevant information for supporting maintenance, reuse and
comprehension of large-scale programs. Most of the reverse engineering tools provide
abstracted views of system components and their interrelations. This supports the tool
user to make right choices and decisions concerning potentially reusable components.

The paper is organized as follows. Section 2 shortly describes the general central
problems of software maintenance and nature of reverse engineering approaches.
Section 3 describes specific characteristics and problems of OSS maintenance and
reuse. Section 4 describes an automated reverse engineering approach and its

Please use the following format when citing this chapter:
Tuunanen, T., Koskinen, J., and Karkkainen, T., 2006, in IFIP International Federation
for Information Processing, Volume 203, Open Source Systems, eds. Damiani, E.,
Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 35-46

36 Timo Tuunanen, Jussi Koskinen, and Tommi Karkkainen

implementation, called ASIA (Automated Software License Analyzer), for retrieving
relevant license information from source code modules. Short description of the
approach has been accepted to the software maintenance community's conference:
CSMR 2006 [22]. This paper considerably extends that earlier paper, especially by
addressing the issue of license retrieval from OSS perspective, and by providing a
more detailed description of ASLA. The tool users are mainly component engineers,
software reusers, and software maintainers. The approach and its implementation are
not restricted to OSS. However, OSS is a natural setting for developing and testing
the approach. OSS is a good source of reusable components, and provides many
licenses and their versions. Tool user needs, system architecture, tool features, and
tool evaluation are presented. Finally, Section 5 draws the conclusions.

2 Reverse Engineering

Maintaining and reusing large-scale software systems is demanding especially if
documentation is inadequate or misleading. While solving maintenance problems,
maintainers have information needs [10]. One of the main problems is the
identification and comprehension of relevant pieces of programs, and their
dependencies. Reverse engineering tools extract that information from the source
code and store it into a program database. The extraction is usually achieved by
calling a parser component, implemented according to the well-established
conventions of compiler construction [1].

Five-level classification of the information retrieval features of reverse
engineering tools is provided in [10]. That classification will be later applied in the
evaluation part of this paper (Section 4.4). The levels of the model are:

LI. Formation of basic internal data structures (such as abstract syntax trees).
L2. Formation of higher abstraction level access structures (such as call graphs).
L3. Visualization of access structures.
L4. Information request and retrieval mechanisms.
L5. Navigation mechanisms.
Typical features of the main reverse engineering tools are compared in [10]. There

are also some other relevant related studies based on structural program analysis and
text and documentation analysis, as listed in [9, Appendix 1, Categories 1-3].

3 Characteristics of Open Source Software

Definitions for OSS-related terminology are provided in [19]. OSS community
provides a rich base of potentially reusable software. Unlike the more traditional
closed source software (CSS), OSS can be freely accessible, used, modified, and
redistributed. OSS development has been studied based on a sample of 406 projects
[5]. Most used languages were C, C++, Perl, and Java. Despite the large number of

Retrieving Open Source Software Licenses 37

OSS projects, development effort has focused on a few large projects, such as Lima,
Mozilla, and Apache [14].

One important aspect in OSS development is the need for greater maintainability.
Based on the analysis of almost 6 million LOCs it was concluded [20] that OSS
development will produce legacy systems in much the same way as CSS
development. It is stated that 20% of the components will produce about 80% of the
maintainability problems. Therefore, the problem-prone modules need to be
identified. An empirical study of key success factors in software reuse in general
based on 24 projects has been conducted [15]. Reusing OSS neither differs much
from reusing other kind of software. Therefore, results received from supporting
OSS-development should be quite generalizable to CSS also.

One important problem for partial reuse is that there are over 50 different versions
of OSS licenses as listed by Open Source Initiative [19]. GPL is the most common
license [5]. License information concerning the dependency of different modules
provides the key metainformation for partial reuse. Component-based white-box reuse
of OSS is natural, e.g., since license information is typically bound to modules. It is
clear that good tool support reduces the reuse and comprehension problems. Reuse
can be supported by identifying reusable component candidates, simplifying the
license identification, and providing abstracted views of the relevant components and
their interrelations.

4 The License Retrieval Approach

There is a clear need for software reuse oriented license analysis. It can be made more
effective by automated license identification of source code files by using text
searching techniques and by providing information about file dependencies. In this
section we present ^5*1- ,̂ which is our license retrieval approach for this purpose.

4.1 User Needs

OSS reuse can be classified into two different approaches: Using the whole software
package as-is and modifying it and using part of the software packages as part of
another program. Both cases introduce three main user needs as presented below.

4.1.1 Identifying Dependencies

There is a huge amount of code for different platforms and not all source code is used
in certain platform in large OSS packages such as Lima kernel [13]. Therefore, user
needs to know what source files are used in a particular environment. When build
process outputs are identified the information can be used for component
identification. This can give some clues about reusable components inside a larger
software package and becomes useful when considering partial reuse. Licenses

38 Timo Tuunanen, Jussi Koskinen, and Tommi Karkkainen

behave differently depending on what part of software is dependent on other parts of
the software. Therefore, the user must also know what libraries are linked to the
program and recognize the dependencies between all objects in order to make reliable
license analysis.

4.1.2 Identifying Licenses in Each Source File

OSS is distributed under one or more licenses. Unfortunately all OSS licenses are not
compatible with each other and they pose different restrictions so that each source
code file must be checked separately. It is vital, at least from the commercial
perspective, to check that licenses of a software package are in order to avoid any
legal consequences.

4.1.3 Adding New License Templates

In most cases programmers who write OSS use the predefined templates [18] to
indicate the use of certain license. Unfortunately this is not the case in all software
packages. In many cases license of the source code is indicated in a way that is not
known in advance. Therefore, there is an obvious need to add new search criteria for
licenses as part of the license analysis.

4.2 System Architecture

Fig. 1 shows the system architecture in UML-notation. ASIA employes three open
source programs: GCC [7] [8], and modified versions of Id (linker) and ar (archive
builder) that are based on GNU binutils [4] (version 2.15.97). Any version of GCC
compiler which supports environment variable $DEPENDENCY_OUTPUT can be used.

ASLA is implemented in Linux operafing system using Java programming
language (version 1.5.0_01). GCC supports compilation of many programming
languages, which are supported by ASLA also. Only requirement is that dependency
information files (DIFs) produced by GCC are available. Ar and Id are modified in a
way that these programs write similar iDIFs about dependencies of the libraries as
GCC does for the source code files and compiled objects. DIFs form the program
database. It contains the information about compiled and linked objects and their
dependencies. DIFs serve as a basis for data integration between these four programs.
ASLA reads the DIFs, analyzes licenses of files listed in them, creates a dependency
map based on them and visualizes the information.

Fig. 2 presents the contents of ASLA user interface after analysing gaim [6]
(version 1.2.1), which is an open source instant message client. It is used as the main
example case in this paper. The left panel of the figure shows hierarchically the
analyzed file structure. The modules can be selected from it and opened to the right
panel for viewing their contents.

Retrieving Open Source Software Licenses 39

f °^^ 1
\ < < w n t e s »

GNU ar (modified) 1

~"--^i:^<vvrites»

i:::;::i

Z ' ^ «reads»

V A..n
Source file

Al..n

«desci|bes dependencies o

\^0..n

'^^Af^ \ «reads»

Dependency information
tie (DIF)

1
A S U

License Analyzer 1

Dependency
Analyzer

Graphical User Interface 1

^X'

Fig. 1. ASLA's system architecture

hU AMt*^ $t««HJ»» Mmm

||»''<>5"» * mif^mt^m

g K '̂f # y

0' ^' * '

P >" ^''f'i'«

n;,!* ^- .

T ^ ««.»<-> ><»*<; '

*»<»»»»>»'/«>) i f * / >v«». vji^ 5 > < i;>u f< v<<*» «^<>rJi <' >

i fa^Vf t * : i v . < J)

i « *s«*< ^ r , ? "yit i-^fs

' ' V>^V ' »»-v^>» >* \X!S#V' >*" -»?!?< ' J fci« i ' ' « "

' '.^fiiif ,0 V »•?; ,v>«<- f \ A ' f v " ' i*<swjf ^ ^ ^ ' v it '?<

' t.>s^ if ii »>*> ' " f f f ^ ; f " ! * f » f ^ , ^ if)? '<.*««'>> < V ' > *
' , t <</»> 4< 'V Iff >l <" ' V r""'" ?>••> ->'(^ >-«

" i».vK'? «<if, AfV/< r /.f-' ' « • •̂ H " * j5 '.t^*^ xf^' *?/y*< >*><• J !

. y ?c.«?'» v?v,cr v"' v#i> rcc *'*,
' > fr '-» *̂ A S ! .--> (Oft >-,> "•> ^'

^ <<!,v, r>',r'Wfs>-'

Fig. 2. ASLA after dependency and license analysis of gaim

4.3 Features

The implemented features of ASLA as described below are based on the user needs
introduced earlier.

40 Timo Tuunanen, Jussi Koskinen, and Tommi Karkkainen

4.3.1 Identifying Dependencies

ASLA produces dependency map of source code, build process outputs and linked
libraries by using the DIFs. Dependency map is a data structure where all objects
described in DIFs are stored. Each file has references to the objects that the file is
dependent on and to the objects that are dependent on it.

Each object file that is compiled is, at least, dependent on the initial source code
file(s) and all source code files that are included or referenced from them. This
information is given in GCC dependency output as follows:

.libs/ire.o: irc.c ../../../src/internal.h

../../../config.h ...
This output tells that compiled object i r e . o (in directory . l ibs) is dependent on

(i.e. includes) source files: i r c . c , in te rna l .h and config.hetc.
To identify what compiler outputs (and source code files) are included in the

software, there must be information about what compiler outputs are linked to each
executable or library. This information can not be reverse engineered from binary
files (linker outputs) so it is collected during the build process using Id and ar. The
following dependency output is obtained from Id:

.libs/libirc.so: /usr/lib/crti.o .libs/ire.o
This output tells that shared object l i b i r c . so (in directory . l ibs) is dependent

on (i.e. includes) object files: c r t i . o and i r e . o.
For each DIF the following operations are performed by ASLA:

• Reading the file name of the target object (for example l i b i r c . so).
• Adding the target object to the dependency map if it does not exist.
• Reading all child objects' file names.

For each child object:
• Adding the child object to the dependency map if it does not exist.
• Setting the target (l ib i rc . so) object as a parent object; each object can have

multiple parents.
• Adding the child object as parent's child.

This algorithm produces the dependency map described above. Each compiled
object gets it's license as collecfion of it's children's licenses. If license changes are
made to objects from hereon they are visible to all parent and child objects instantly.

4.3.2 Identifying Licenses in Each Source File

ASLA automatically identifies licenses of single source code files. This is achieved by
using license templates that are compiled into regular expressions (in BNF) as
described below.

Most simple open source licenses^ such as BSD or MIT are usually written in the
beginning of the source code file. Ariother way to indicate the license of the source
code is to reference the license from the source code. This technique is used for
example in GPL and LGPL licenses [18].

In the source code file one can either find a simple notification such as: For
l icense information: see f i l e COPYING, or a defined template text that

Retrieving Open Source Software Licenses 41

indicates the license of the source file, COPYING is the typical name of the license file
in OSS.

Ffle informatton
File »*n'»^/space/tirT:tyun/gaim-
rile typK|^oiJrce^7i''""
Llcense:iiJNKr40WN
License status:iL!riKnown
ChUiJ licensed" ~

/» 7hh f)k' m psrf of ihv Projva fiinvna. Zephyr Nofifkaflon SyjU^m
" }t comains source for as'i^chrorous focation funaiorfs

* Created by. Marc Horowitz

$'Jource: /cvsroot/iiaim/gaim/sri/protocois/zephvr/2As\/ficlocate c v J
$Aj.ini(>r: ihipxse S

* CopyriQfit iO 1990.1991 toy^'i^ hi^assjichusens inshimv of Technofony.
fart(ij^^^n§mfi^'Ttmiijinm^mnsfn^^^m. mi>f^»«/$

A iHeader f^f*

*iinclude ''fnterni

mfndfff }ki7
static const crtsj
^ffnd'f

co/7sr char
registt-r H/^
^^Notke.Kir}\
Z..AbitnProL

iiv retviK
2Notif:sj rtpj

if (ZGetFDO
if(\

, License Template Text
or cop'̂ /ing and clistritoution InfonTiation,

'rnit-t.npyrighi \t

{J4/^4 09 UO J'j chiptSt E><p $ - /

\9 00. 35 chipx86 Exp S",

, License Name -<

' ',«(? Use existing license name pvtrr _ 1 T J

O New license f i^^^S^E-^V^^'^ l ; !^: '^

License Analysis

; <i> Analyze package with tUls template

O k Cancel

(wid) m\-'n>'<>:^i{(i!'Kyir *)i'^ri\Min- 0, .wi-tM
not'Cf z..Kinc} =r Kind;
riotne ;.' port -^ Zt-phyr.pon,
notice z.c}3ss - LOCATh.LUi&'S,
fii>t/c9 ^.class.insr ^ user;
notice 2.opCQds •= LOCATE.LOC-irn:
nothe 2..se}idei ••« 0.
notice.2.recipient •>»• "\
iioti[.e.z..{isfauh..fvrmst ••" "",

Fig. 3. ASLA after adding a new license template for gaim

Identifying licenses of source files that contain pre-defined template or full license
text is fairly simple relying on finding the predefined text from source code file. This
approach, however, requires that all unnecessary source code characters (such as
comment characters) are removed and different white space characters are allowed
between words.

Many programmers modify the predefined texts slightly and there are also many
different versions of licenses published. For example LGPL was previously called
GNU Library general public license and nowadays it is called GNU Lesser general
public license. Therefore, there are many slightly different texts within source code
indicafing the same license. Hence, their recognition requires more sophisticated text
searching techniques. Especially, regular expressions can be used for allowing white
space characters, alternative words and undefined characters.

For example, ASLA's license search template for LGPL (version 2 and 2.1) is the
following:

42 Timo Tuunanen, Jussi Koskinen, and Tommi Karkkainen

GNU (Library)|(Lesser) General Public License as
published by the Free Software Foundation; either version 2.*,

This is compiled into a regular expression:
...\s*GNU\s*(Library)|(Lesser)\s*General\s*Public\s*License\s

as\s\s*published\s*by\s*the\s*Free\s*Software\s*Foundation;\s
*either\s*version\s*2 .*, \s etc.

This is interpreted as follows: "0..n white spaces", "GNU", "0..n white spaces",
"Library or Lesser", ... , "version", "0..n white spaces", "2", "0..n any
character",","...

Unfortunately license of every single source code file can not be reliably
identified and, therefore, user must have a possibility to identify licenses also
manually. Such feature is supported by ASLA, First way to do manual identification is
to apply license of the separated license file for all source files in subdirectories of the
directory where the file is found. This technique is useful in a situation where license
file is meant to cover all files in subdirectories but source files themselves do not
include any reference to the used license.

Another way to do manual license identification is to manually check all
unidentified source files. This is aided by ASLA that lists all source code files that
were unidentified separately. To reduce the number of unidentified licenses and need
for manual license identification with other software packages the tool user is able to
add new license templates.

4.3.3 Adding New License Templates

ASLA offers two different ways to introduce new license identification templates.
First way is to create new text file into the directory where existing license template
files are saved. File format for new template contains the license name on the first line
of the file and template text in regular expression form on the following lines.
Another way is especially usable. User is able to select a text in a source file and use
that text as a license identification template (Fig. 3). In this case ASLA forms the
regular expression automatically.

4.4 Evaluation

In this section ASLA is evaluated against LIDESC [17], which is another license
information extractor. ASLA and LIDESC have many similarities but the focus areas
and applied techniques have their differences. ASLA is targeted especially for
component engineers, and other reuse and maintenance personnel. The approach is
extendable and designed to be used for analyzing existing software packages. An
especially rich base of possibly reusable software is OSS packages. ASLA itself has
also been implemented based on reusable OSS components.

As an example of used source code we consider gaim which includes total of 506
source files. 437 (86%) of them were used in the selected test environment {Linux).
ASLA does not require any makefile modications to produce DIFs. Existing software

Retrieving Open Source Software Licenses 43

packages can be analyzed as they are. In LIDESC all source files must be compiled
using defined compiler flags. The user must manually modify all makefiles or define
the parameters in autoconf[li] scripts. From user perspective this is probably not the
preferred approach, especially, when analyzing large potentially reusable software
packages.

4.4.1 Identifying Dependencies

DIFs contain information of dependencies, which is the basis for forming basic level
data structures. This corresponds to level LI of tool features as presented in section 2.
Both ASLA and LIDESC naturally form internal data structures.

Information contained in the DIFS in ASLA is collected and combined in order to
create higher abstraction level access structures (level L2). This is done by the ASLA
dependency analyzer when creating the dependency map based on the DIFs. Features
of this level are not convincingly reported for LIDESC.

The dependency map is visualized by ASLA in tree form (level L3). LIDESC does
not support this level. The information visualized in ASLA is useful both in full and
partial reuse of software packages. For partial reuse, compiled objects that have no
parent objects are potential reusable components. For example, in Fig. 4 all files with
extension . so (shared library objects) are such compiled objects.

t Il3 protocols

? C3gg
^ t C3.litos

^ HI libgg.so
t C3irc

? [3. l ibs
^ 0 libircso

t i l3 Jabber
f (13.libs

«̂ @ libjabber.so
t C3 msn

t [13 .libs
«- [oj libmsn.so

t C^riapster
' t C^.iibs

^ 0 libnapster.so
^ l~1 nriwll

Fig. 4. ASLA's tree for showing the potentially reusable components (gaim)

In case of full reuse, the ASLA tree format introduces the dependencies of the
different parts of the software and indicates how licenses of the compiler outputs are
collected from the source files. Neither ASLA nor LIDESC provide real navigation
capabilities (level L5), which could be useful in case of complex dependencies,
although ASLA's file tree can be browsed and direct access to the files is provided.

44 Timo Tuunanen, Jussi Koskinen, and Tommi Karkkainen

4.4.2 Identifying Licenses in Each Source File

Information requests (level L4) are supported in ASLA based on regular expressions.
Therefore, the approach adapts well into "real world" of varying OSS packages.
LIDESC is implemented in a similar way but is based in this regard on exact match of
license identification string in the source file. Due to alternative word matching, and
ability to handle undefined characters and different commenting styles, ASLA
provides more flexibility. It handles the identification of modified and different
versions of licenses without need to introduce new identification templates for each
different license version.

The license identification coverage of ASLA against LIDESC can be further
compared with our gaim example case. On our initial analysis we were able to
identify license of 315 source files out of 437 (72%) using 7 different license search
templates. The reason of the moderate identification ratio was that one gaim
component did not contain any references to used licenses in source code. To reach
the same result using the exact matching technique of LIDESC would have required at
least 20 unambiguos license identification strings.

Manual license identification, which is not supported by LIDESC, complements
the license analysis in our example case of gaim. By applying the license found in the
file COPYING, which was explained earlier and which can be found on top directory
of the component, to the files of the component, we were able to identify licenses of
350 files out of 437 (80%).

Moreover, ASLA's initial analysis of Mozilla [16] identified licenses of 5654 files
out of 5871 (96%) using 10 different license templates and licenses of 283 files out of
301 (94%) of Apache http server [2] using 5 different templates. These results
illustrate both good coverage and scalability of ASLA.

4.4.3 Adding New License Templates

Final step in our gaim example was for the user to introduce a new license template
during the license retrieval (as presented earlier). In our case it was the following:
For copying and d i s t r ibu t ion information, see the f i l e "mit-
copyright. h". When this template was introduced and used in the analysis the final
number of identified source files was 401 out of 437 (92%). By comparison LIDESC
does not support addition of new license templates during the license retrieval.
Another way of new license template addition is to add new file entry to license
template directory. This offers more versatile but more complex way since the
template must be in BNF. LIDESC applies a similar approach. However, in that case
the license must be in a specifically formatted text file and it must be added using
specific seven step process as described in LIDESC documentation.

Retrieving Open Source Software Licenses 45

5 Conclusions

This paper has presented a license retrieval approach and its implementation called
ASLA. It is targeted at retrieving software license information from source code
modules. At general level it has been motivated by the characteristics, problems and
needs of OSS development, maintenance and component reuse. License retrieval and
comprehension is especially important for effective component reuse. It can be
concluded that ASLA addresses an important problem. ASLA has been tested and
compared to LIDESC, which is another known license information extractor. ASLA
provides promising results regarding the coverage of identified licenses, and
supported information retrieval levels as compared to LIDESC. ASLA uses regular
expressions and dependency information files (DIFs). The approach was found
sufficiently effective, and can be applied to several programming languages.
Incorporation of new licenses is uncomplicated by using the license templates. The
applicability of the approach is neither restricted to OSS. Further research avenues
include studies regarding information abstraction and visualization, e.g. architectural
views, handling of the even more complex cases of license determination in case of
multiple applied licenses, and system efficiency optimizations.

References

L Aho, A.v., Sethi, R., Ullman, J.: Compilers - Principles, Techniques, and Tools. Addison-
Wesley (1986)

2. APACHE HTTP Server Project, http://httpd.apache.org/ (accessed 25.9.2005)
3. Autoconf http://www.gnu.org/ soflware/autoconf/ (accessed 13.9.2005)
4. GNU Binutils. http://www.gnu.org/ software/binutils/ (accessed 13.9.2005)
5. Capiluppi, A., Lago, P., Morisio, M.: Characteristics of Open Source Software Projects.

Proc. 7th European Conference on Software Maintenance and Reengineering (CSMR
2003) 317-330. IEEE Computer Soc.

6. Gaim: A Multi-Protocol Instant Messaging (IM) Client, http://gaim.sourceforge.net/
(accessed 19.9.2005)

7. GCC: GNU Compiler Collection, http://gcc.gnu.org (accessed 13.9.2005)
8. GCC 4.0.1 Manual. http://gcc.gnu.Org/onlinedocs/gcc-4.0.l/gcc/. Free Software

Foundation (2005) (accessed 13.9.2005)
9. Koskinen, J.: Automated Transient Hypertext Support for Software Maintenance.

Jyvaskyla Studies in Computing 4 (2000). Univ. of Jyvaskyla, Jyvaskyla, Finland
10. Koskinen, J., Salminen, A., Paakki, J.: Hypertext Support for Information Needs of

Software Maintainers. Journal of Software Maintenance and Evolution: Res. and Pract. 16,
3(2004)187-215

11. Lehman, M., Perry, D., Ramil, J.: Implications of Evolution Metrics on Software
Maintenance. Proceedings of the International Conference on Software Maintenance -
1998 (ICSM 1998) 208-217. IEEE Computer Soc.

12. Lientz, B., Swanson, E.: Problems in Application Software Maintenance. Communications
of the ACM 24, 11 (1981) 763-769

13. The Linux Kemel Archives, http://www.kemel.org (accessed 13.9.2005)

46 Timo Tuunanen, Jussi Koskinen, and Tommi Karkkainen

14. Mockus, A., Fielding, R., Herbsleb, J.: Two Case Studies of Open Source Software
Development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology 11,3 (2002) 309-346

15. Morisio, M.: Success and Failure in Sofl:ware Reuse. IEEE Transactions on Software
Engineering 28, 4 (2002) 340-357

16. Mozilla. http://www.mozilla.org/ (accessed 19.9.2005)
17. Nordquist, P., Petersen, A., Todorova, A.: License Tracing in Free, Open, and Proprietary

Software. Journal of Computing Sciences in Colleges 19, 2 (2003) 101-112
18. Opensource Org.: The Approved Licenses, http://www.opensource.org/ licenses/ (accessed

16.9.2005)
19. Perens, B.: The Open Source Definition, http://www.opensource.org/ docs/definition.php.

Open Source Initiative (2005) (accessed 13.9.2005)
20. Samoladas, I., Stamelos, I., Angelis, L., Oikonomou, A.: Open Source Software

Development Should Strive for Even Greater Code Maintainability. Communications of
the ACM 47, 10(2004)83-87

21. Seacord, R., Plakosh, D., Lewis, G.: Modernizing Legacy Systems: Software
Technologies, Engineering Processes, and Business Practices (2003). Addison-Wesley

22. Tuunanen, T., Koskinen, J., Karkkainen, T.: ASLA: Reverse Engineering Approach for
Software License Information Retrieval. Accepted to CSMR 2006.

Beyond Low-Hanging Fruit: Seeking the
Next Generation in FLOSS Data Mining

Megan S. Conklin
Elon University, Department of Computing Sciences, Elon, NC 27244

mconklin@elon. edu,
WWW home page: http://www.cs.elon.edu

Abstract. This paper will discuss the motivations and methods for collecting
quantitative data about free, libre and open source (FLOSS) software projects.
The paper also describes the current state of the art in collecting this data, and
some of the problems with this process. Finally, the paper outlines the
challenges data miners should look forward to when trying to improve the
usefulness of their quantitative data streams.

1 Introduction

It is surprisingly difficult to obtain and compare timely, quantitative data in order to
answer even simple questions about the free/libre/open source software (FLOSS)
world: How many open source projects are there? How many developers? How many
users? How much does each developer contribute? Which projects are dead, which
are flourishing? Which projects are popular? How are development teams structured,
and which team structures are the most successful?

FLOSS project teams are self-organized, widely-distributed geographically, and
use many different programming languages and software development
methodologies. Teams are organized in an ad hoc, decentralized fashion. Projects can
be very hard to track, and changes can be difficult to follow. Because developers
primarily use the Internet for communication, and because they are organized around
the idea that anyone can join a team,.it is usually easy to get data about FLOSS
project teams, but difficult to rely upon or standardize this data.

This is in direct contrast to the way proprietary projects are most often structured.
Empirical software engineering researchers have, in the past, typically used metrics
from a single company or a single proprietary project. This data was collected
systematically and distributed in a tightly controlled manner, consistent with the
proprietary nature of the softAvare being developed.

Whereas data analysis about proprietary software practices was primarily a
problem of scarcity (getting access and permissions to use the data), collecting and
analyzing FLOSS data becomes a problem of abundance and reliability (storage,
sharing, aggregation, and filtering of the data). To this end, this paper discusses the
motivations and methods for collecting FLOSS data, contrasting these with traditional
softAvare engineering methods. We then outline some challenges data miners should
look forward to when trying to improve the usefulness of their quantitative data
streams.

Please use the following format when citing this chapter:
Conklin, M.S., 2006, in IFIP Intemational Federation for Information Processing,
Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto,
M., Succi, G., (Boston: Springer), pp. 47-56

48 Megan S. Conklin

2 Motivations

2.1 Importance of Metrics in Software Engineering

The collection and aggregation of real-world and historical data points are critical to
the task of measurement in software engineering. Interesting measures of the software
process can vary depending on the goals of the research [1], but they could include
things like the number of errors in a particular module, the number of developers
working in a particular language or development environment, or the length of time
spent fixing a particular code defect [2]. Software engineering metrics can be used to
avoid costly disasters [3], efficiently allocate human and financial capital [4], and to
understand and improve'business processes.

There are hundreds of these examples in the software engineering literature about
how important metrics are for studying proprietary projects, but where are the metrics
and measurements for studying FLOSS development practices? We know that FLOSS
projects are fundamentally different from proprietary projects in several important
ways: they are primarily user-driven as opposed to driven by a hierarchically-
organized, for-profit corporation [5]. These user-programmers work in loosely
defined teams, rarely meet face-to-face, and coordinate their efforts via electronic
media such as mailing lists and message boards [1]. These are all fundamentally
different arrangements than the way proprietary software is traditionally developed.

2.2 Importance of Metrics in FLOSS

Recognizing this unique separation between proprietary and FLOSS software
engineering traditions, and building on a strong foundation of measurement in
software engineering literature, there are then several compelling reasons to collect,
aggregate, and share data about the practice of FLOSS software development. First,
studying FLOSS development practices can be useftil in its own right, in order to
educate the larger research and practitioner communities about an important new
direction in the creation and maintenance of software [6]. FLOSS researchers have
noticed that many of the practices of FLOSS teams are not well-understood [7, 8] or,
when they are, they seem to directly oppose traditional wisdom about how to build
software [9]. At the very least, this situation indicates something interesting is afoot,
and in the best case will foreshadow an important methodological shift for software
development.

Additionally, the lessons learned through studying FLOSS development teams are
applicable to many other fields. Much research has been conducted on the economic
[10, 11] and policy aspects of FLOSS development, especially as the reason for
various licensing choices [12] or about their implications for intellectual property
[13-16]. Additional research has been conducted on the motivations of FLOSS
developers [11, 17, 18], which is an interesting question to consider since these
developers are working without pay. There are also implications for other types of
distributed teams and computer-mediated group work [19, 20], such as gaining a

Beyond Low-Hanging Fruit: Seeking the Next Generation in FLOSS Data Mining 49

better understanding of the role of face-to-face meetings in highly distributed work
teams, or analyzing the leadership hierarchies that work best for distributed teams.

3 Difficulties

FLOSS data appears to be highly available, and appears easier to access for research
than proprietary data. While this means that it is possibly more appealing to use than
proprietary data, FLOSS data has its own very long list of collection difficulties.

3.1 Questions of Accessibility

Researchers who wish to test a quick hypothesis about the use of a particular software
module, or who wish to study adoption rates of various programming languages know
that, in theory, they should have access to this information via FLOSS project data,
since the code is free and open to everyone, therefore, it is no longer necessary to
find a corporation willing to provide researchers access to their development
databases and source code control systems. Much of the FLOSS project data is stored
inside large, public source code repositories such as [21-24]. However, the
difficulties in gathering FLOSS data from these repositories in an automated fashion
are numerous and on-going [25, 26]. Gaining control over this "free" and "open" data
is actually a hugely inefficient process for a researcher. If each isolated research team
is taking on this tedious responsibility of gathering the same data, this will quickly
result in redundancy in the collection effort, which prolongs and denigrates the data
analysis effort.

3.2 Questions of Accuracy and Reproducibility

Another significant problem with isolated researchers attempting to collect and
analyze FLOSS data is one of validation and reproducibility of results [27]. There are
numerous examples in the FLOSS literature that reflect on this general problem with
collecting, validating, and reproducing data and results. Some studies have addressed
their difficulties with collecting data by limiting their studies to a single public
repository, and then to draw on samples that are easy to collect, but which were
created for entirely different purposes [28, 29]. In addition, the demands of traditional
publication may mean that the data collecfion methodologies are not fully described.
This makes them impossible to reproduce, which slows down the compounding
effects [30] started by good research [31]. The tradition of scientists working together
to solve a hard problem [32] is an important tradition to continue, but how is this to
happen if each isolated research team must start from square one?

3.3 Questions of Quantity

In software engineering data analysis, this massive project cross-referencing and
metadata creation is a problem probably unique to FLOSS. Rarely would empirical

50 Megan S. Conklin

software engineers studying proprietary systems need to study hundreds of disparate
project teams stored in dozens of unique data models (repositories) with thousands of
data attributes. The amount of raw data available for collection in FLOSS software is
greater than that of proprietary software by orders of magnitude, both in terms of
project team counts and in developer counts. For each developer and each project
there are thousands of additional attributes that can also be mined for interesting
insights.

However, much of the FLOSS research to date closely emulates the research
methods used to study proprietary software: the research follows a single project and
extrapolates some lesson or advancement which can then be applied to other projects.
Examples include [33-36, 18]. Some other projects have used surveys or other
instruments to collect information about a small number of FLOSS projects. For
example, [37] was based on a survey of 684 developers on 287 FLOSS projects. [7]
was based on ethnographic research principles, and involved a dozen software
projects in four different research areas. [38] studies four open source projects all
related to the same coordinating company. [10] studied four different open source
projects, some of which also appear in other studies [35, 36]. [39] surveys 81
developers working on an unspecified number of open source projects. The 2000
Orbiten data [40] includes 12706 (identifiable) developers and 3149 projects. Within
the corpus of previously published FLOSS literature, the Orbiten project data can be
considered large. However, we know that these numbers represent less than 3% of the
total activity in FLOSS development [27].

3.4 Questions of Reliability

Another problem with relying on published-but-proprietary data sources for research
is that type of data can disappear. For example, the Orbiten project mentioned above
is no longer in active development. Though the original article [40] links to a web site
intended to provide both the software and the data, this site is no longer operational.
A researcher wishing to duplicate or validate the methods of Orbiten would be at a
loss to do so. Thus, there is really no way to build upon or extend the metrics
published in the original article (i.e. further this valuable FLOSS research). Using
FLOSS development methodologies such as project handoff [11,16] would have
reduced this tendency for information to exist only in one place.

4 Future Challenges

As an answer to these goals described above and expressed by the FLOSS research
community, the FLOSSmole project [41] was designed to be accessible, accurate,
reproducible, compatible, comprehensive, and reliable [27, 42]. In its current state,
FLOSSmole serves the greater FLOSS research community by providing a collection
of software tools (database schemas, code libraries, scripts, source code) that mines
code repositories and provides the resulting data and summary analyses as open

Beyond Low-Hanging Fruit: Seeking the Next Generation in FLOSS Data Mining 51

source products. The project is hosted on Sourceforge [24], a pubHc, open-source
code repository. The code, data, and schemas are all open-sourced and free for other
researchers to use and modify. FLOSSmole has been successful in its role as a basic
data gathering and reporting tool for research.

However, FLOSSmole and other quantitative FLOSS data gathering projects could
be better; in this section we propose improvements to the data-gathering community
research infrastructure. Though we have FLOSSmole in mind while writing, these
ideas are based on general ideas, and could therefore be applied to many other
projects designed to collect and aggregate quantitative FLOSS data.

4.1 Exploit Low-Hanging Fruit

The primary activity of our community data repository is to collect and store data. In
FLOSSmole, we currently pull data from two open source code repositories (also
called "forges"), and have historical data from a third repository. These forges
represent the low-hanging fruit of FLOSS data: even though there is relative difficulty
[26] involved in getting data from the forges, they are still the easiest places to get
large amounts of data quickly. So, one of the most important things we can provide
the community is to pull data from a broader range of forges. There are dozens of
independent open source forges that host important projects, but we do not currently
collect this significant quantity of data. This also represents a step in the right
direction for promoting collaboration and sharing between communities and between
development efforts and research groups.

Moreover, as FLOSS researchers in the true spirit of collaboration, we should
expect our data to become the low-hanging fruit for other projects. The SWIK project
[43], an independent effort by programmers at Sourcelabs, is a wiki-based database of
open source projects. Each open source project has an entry in the Swik system, and
Swik users can annotate and tag each project page with keywords or descriptors. This
entire project was created in one month, using data made public by FLOSSmole.
Swik is a great example of why it is important to make data easily accessible.
Developers and researchers should be able to find, interpret and use quantitative data
quickly and painlessly. However, despite how easy it is to download FLOSSmole
data, it is not as easy to query the database or interpret results. FLOSSmole data is
available to the research community in two formats: massive text ("raw") database
dumps, and summary reports. There is also a nice query tool. But the most important
thing the research community has asked us for is for more reporting tools (better
visualizations, more graphs/charts, an online, interactive graphing tool), and for fuller
descriptions of the data we are making available (more metadata). Both of these items
would go a long way to improving the usability of the data in our community data
repository.

4.2 Seek High-Hanging Fruit

In the same way that FLOSS development is a collaborative process, FLOSS research
is also collaborative at its nature. Thus, any FLOSS data repository will need to

52 Megan S. Conklin

integrate both donated data sets and historical research data. We occasionally have
access to data from now-defunct projects, and from previously published FLOSS
research studies - both of these sources of data are valuable for historical analyses,
and may be able to be integrated into the existing (and active!) community database.
Even if this donated or historical data were complete, clean, and well-labeled,
integrating it could still be problematic: different repositories store different data
elements, different forges can have projects with the same names, different
developers can have the same name across multiple forges, the same developer can go
by multiple names in multiple forges. In addition, forges have different terminology
for things like developer roles, project topics, and even programming languages.

What is the best way to extract knowledge from published research? What is the
best way to express the quantitative knowledge in a domain and integrate multiple
sources of this knowledge? How will we create sufficient metadata about each data
source so that the results can be used together? Can any of this be done in an
automated fashion? What query tools should be used so that the user can fully explore
both data sets? These are big questions with no easy answers; these are the rare and
exceptional fruits, located higher up in the tree.

Assuming we are able to successfully meld multiple data sources and create this
richer, more interesting multi-repository structure, we must also consider privacy
issues. There is some vigorous debate in the research community about breaching
developer privacy in a large system of aggregated data like ours [44]. For example, if
we aggregate several code repositories and are now able to show in a colorful graph
that Suzy Developer is ten times more productive than Bob Coder, does this violate
Bob's privacy? If we can show that Suzy's code changes are five times more likely to
cause errors than Bob's, does that violate Suzy's privacy? The next generation of
community repositories like FLOSSmole should have the ability to hash the unique
keys indicating a developer's identity. This effort will have to be researched,
implemented, and documented for our community.

5 Conclusions

This paper first reviews why quantitative data is useful in software engineering,
including some ways in which the FLOSS and proprietary software data gathering
processes are different. Next we point out some common problems with the FLOSS
data gathering process. Finally, we pass on the benefit of our experience creating
FLOSSmole by posing questions about what the next steps should be for creating a
truly valuable and transformative community data repository.

Reflecting on our initial successes creating data repositories for quantitative
FLOSS data, it is clear that simply gathering public repository data (the "low-hanging
fruits" of FLOSS data collection) is interesting and useful, but not sufficient. This
type of data does not capitalize on some of the most interesting aspects of FLOSS
movement: its focus on collaboration, its respect for individual privacy issues. In

Beyond Low-Hanging Fruit: Seeking the Next Generation in FLOSS Data Mining 53

order to provide truly meaningful and useful data, we must reach beyond these low-
hanging fruits.

6 References

L R.E. Park, W.B. Goethert, and W.A. Florae. (1996) Goal Driven Software
Measurement-A Guidebook. CMU/SEI-96-BH-002. Carnegie Mellon U. 1996.

2. E. Yourdon, E. Decline and Fall of the American Programmer (Prentice-Hall:
Englewood Cliffs, New Jersey, 1993).

3. J.-M. Jezequel and B. Meyer, Design by contract: The lessons of Ariane, Computer
30(1),129-130(1997).

4. F. Brooks, The Mythical Man-Month, rev ed. (Addison-Wesley: Reading,
Massachusetts, USA, 1995).

5. E. von Hippel, Innovation by user communities: Learning from open-source
software. Sloan Management Review (Summer). 82-86 (2001).

6. J. Feller, Thoughts on Studying Open Source Software Communities. In Realigning
Research and Practice in Information Systems Development: The Social and
Organizational Perspective, edited by N.L. Russo, et al. (Kluwer Academic
Publishers, Dordrecht, 2001).

7. W. Scacchi, Understanding the requirements for developing Open Source Software
systems, lEEProc. on Software, 149 (1). 24-39 (2002).

8. E. von Hippel, Exploring the Open Source Software Phenomenon: Issues for
Organization Science. Organization Science 14 (2), 209-223 (2003).

9. J.D. Herbsleb and R.E. Grinter, Splitting the organization and integrating the code:
Conway's law revisited. In Proc. of the Intl Conf on Soft. Eng. (1999).

10. J. Lemer, and J. Tirole, (2002). Some simple economics of open source. Journal
of Industrial Economics L, 197-234 (2002).

11. E. Raymond, The Cathedral and the Bazaar. (O'Reilly, Sebastopol, CA, 1999).

12. L. Rosen, Open Source Licensing: Software Freedom and Intellectual Property
Law (Prentice Hall, Upper Saddle River, New Jersey, 2004).

54 Megan S. Conklin

13. C. DiBona, S. Ockman, and M. Stone, Open Sources: Voices from the Open
Source Revolution (O'Reilly, Sebastopol, CA, 1999).

14. B. Kogut, and A. Meitu, Open-source software development and distributed
innovation, Oxford Review of Economic Policy 17, 2. 248-264 (2001).

15. J. Lemer, and J. Tirole, The open source movement: Key research questions,
European Economic Review 45, 819-826 (2001).

16. S. Weber, The Success of Open Source (Harvard U. Press, Cambridge, 2004).

17. L. Torvalds, FM interview with Linus Torvalds: What motivates free software
developers? First Monday 3(3) (March, 1998).

18. Y. Ye and K. Kishida, Toward an understanding of the motivation of open source
software developers. In Proc. of the 25th Intl. Conf on Soft. Eng. (2003).

19. K. Crowston, H. Annabi, J. Howison, and C. Masango, Effective work practices
for Soft. Eng.: Free/1 ibre/open source software development, WISER Workshop on
Interdisciplinary Soft. Eng. Research (2004).

20. K. Crowston, H. Annabi, J. Howison, and C. Masango, Effective work practices
for FLOSS development: A model and propositions, Proc. of the Hawai'I Intl. Conf.
on System Science (2005).

21. Bugzilla. Apache Foundation, (March 1, 2006); http://issues.apache.org/bugzilla/

22. Freshmeat (March 1, 2006); http://ww^.freshmeat.net

23. Savannah (March 1, 2006); http://savannah.nongnu.org/

24. Sourceforge (March 1, 2006); http://www.sf net

25. D.M. German, Mining CVS repositories: The Softchange experience. In Proc. of
the Workshop on Mining Software Repositories (2004).

26. J. Howison and K. Crowston, K. (2004). The perils and pitfalls of mining
Sourceforge. In Proc. of the Workshop on Mining Software Repositories (2004).

27. M. Conklin, J. Howison, and K. Crowston, K. Collaboration Using OSSmole: A
Repository of FLOSS Data and Analyses, Proc. of the Workshop on Mining Software
Repositories (2005).

28. S. Krishnamurthy, Cave or community? An empirical examination of 100 mature
open source projects, First Monday 7(6), (June, 2004).

Beyond Low-Hanging Fruit: Seeking the Next Generation in FLOSS Data Mining 55

29. L Samoladas, and L Stamelos, Assessing free/open source software quality. TR
Aristotle University of Thessaloniki, Thessaloniki, Greece. 2003 (unpublished).

30. K.S. Louis, L.M. Jones and E.G. Campbell, Sharing in science. American
Scientist 90 (4), 304-307 (2002).

3L D.R. Krathwohl, Methods of Education and Social Science Research: An
Integrated Approach (Longman: New York, 1998).

32. R.K. Merton, Social Theory and Social Structure, (Free Press: New York, 1968).

33. M.S. Elliott and W. Scacchi, Communicating and Mitigating Conflict in Open
Source Software Development Projects. Projects and Profits 10(4), 25-41 (2004).

34. D.M. German, Decentralized open source global software development, the
GNOME experience. J. of Soft. Process: Imp. and Practice, 8 (4), 201-215 (2004).

35. S. Koch and G. Schneider, Results from software engineering research into open
source development projects using public data, Diskussionspapiere zum Tat
igkeitsfeldlnformationsverarbeitung und Informationswirtschaft, 22, (2000).

36. A. Mockus, R.T. Fielding, and J. Herbsleb, A case study of open source software
development: The Apache server. In Proc. of the 22nd Intl. Conf on Soft. Eng., 263-
272 (2000)

37. K. Lakhani and R.G. Wolf, Why hackers do what they do: Understanding
motivation effort in free/open source software projects. WP 4425-03. Sloan School of
Management, MIT, 2003 (unpublished).

38. K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye, Evolution
patterns of open-source software systems and communities. In Proc. of the Intl.
Workshop on Software Evolution (2002).

39. A. Hars and S. Ou, Working for free? - Motivations of participating in open
source projects. In Proc. of the 34th Hawaii Intl. Conf. on System Sciences, (2001).

40. R.A. Ghosh and P.P. Prakash, The Orbiten free software survey. First Monday
5(7), (July, 2000).

41. FLOSSmole Project (March 1, 2006); http://ossmole.sf.net

42. J. Howison, M. Conklin, and K. Crowston, OSSmole: A Collaborative Repository
for FLOSS Research Data and Analyses. In,Proc. of the First Intl. Conf on Open
Source Systems (2005).

56 Megan S. Conklin

43. Swik (March 1, 2006); http://swik.sourcelabs.com

44. G. Robles, Developer identification methods for integrated data from various
sources. In Proc. of the Intl. Workshop on Mining Software Repositories (2005).

Call for Quality: Open Source Software Quality
Observation

Adriaan de Groot^, Sebastian Kiigler-^, Paul J. Adams^, and Giorgos Gousios^

^ Quality Team, KDE e,V. {groot,sebas}(9kde.org
^ University of Lincoln padamsOlincoln.ac.uk

^ Athens University of Economics and Business gousiosg0aueb.gr

Abstract . This paper describes how a Software Quality Observatory
works to evaluate and quantify the quality of an Open Source project.
Such a quality measurement can be used by organizations intending to
deploy an Open Source solution to pick one of the available projects for
use. We offer a case description of how the Software Quality Observatory
will be applied to the KDE project to document and evaluate its quality
practices for outsiders.

Keywords

Open Source software, software quality evaluation, static code analysis

1 Introduction

The software development process is well known as a contributor to software
product quality, leading to application of software process improvement as a
key technique for the overall improvement of the software product. This can be
said for any form of software development. Within the Open Source paradigm,
the leverage of software quality data can be as useful for the end users as it is
for the developers.

From the perspective of a potential user of a piece of Open Source software
(OSS), it can be very difficult to choose one of a myriad solutions to a given
problem. There are often dozens of Open Source solutions which "compete"
for users and development resources. They may differ in quality, features, re
quirements, etc. By making the quality aspects of a given project explicit, it
becomes easier for the user to choose a solution based on the quality of the
software. Here the Software Quality Observatory (SQO) can play a useful role
in quantifying the quality of processes employed by a given OSS project.

With ever increasing numbers of projects and developers on SourceForge
(www. sourcef orge .ne t) , it is clear that the OSS paradigm is of interest to those
wishing to contribute to the creation of software. By using scientifically obtained
software quality data, such as that which the Software Quality Observatory will
produce, it may be possible to encourage similar growth within the OSS user
community.

Please use the following format when citing this chapter:
de Groot, A., Kiigler, S., Adams, P.J., and Gousios, G., 2006, in IFIP International
Federation for Information Processing, Volume 203, Open Source Systems, eds. Damiani,
E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 57-62

58 Adriaan de Groot, Sebastian Kiigler, Paul J. Adams, and Giorgos Gousios

2 The Benefits of Software Quality Observation

As participation has grown in Open Source development over the past decade,
so too has the user base of the software grown. Increasingly OSS is being
viewed as a viable alternative to proprietary (closed source) software, not
just by technically-aware developers, but also by non-developers. European re
search projects, such as COSPA (www.cospa-project .org/) and CALIBRE
(www. c a l i b r e . i e) , have raised awareness of OSS development through specific
targeting of public administration bodies and industrial organisations, espe
cially small and medium enterprises (SMEs).

As the OSS paradigm makes progress within these organisations any poten
tial software procurer is tasked with some important questions which, currently,
cannot be answered with any real assurance:

- Many OSS projects are very similar. How do we choose between them? Which
is the most appropriate system for the company's IT infrastructure?

- How can we distinguish the "good" and "bad" projects?
- How can we reason about the quality of a software product in order to trust

its future development?

Unfortunately these organisations often have nothing more than word-of-
mouth on which to base their judgments of OSS products. With 109,707^
projects currently hosted on SourceForge it is understandable that products
of excellent quality may be overlooked. It is possible to supplement the word-
of-mouth tradition with some rudimentary data that is available from hosting
sites: download numbers, project activity etc. Unfortunately this data is easily
skewed and can present a product in an inaccurate manner.

Quality can be a very subjective measure of many aspects of a system in
combination: suitability for purpose, reliability, aesthetic etc. Software quality
is formally defined by the ISO/IEC 9126 standard as comprised of six charac
teristics, but no measurement techniques are defined. It has been suggested that
the external quality characteristics of a software system are directly related to
its internal quality characteristics. It is therefore possible to evaluate the qual
ity of software through its source code and a of project by considering other
data sources intimately related to the project's code such as bug-fix databases
or maihng lists.

In the long run it is crucial to OSS developers and their projects to know
quantitatively what the quality of their product is. The volunteer nature of OSS
makes "managing" such a project to include quality control a matter of mo
tivating volunteers to behave in ways consistent with improving quality[2]. By
fully understanding their software quality, OSS developers are able to promote
and improve their products and process. It is also crucial in helping end-users
making informed decisions about software procurement.

^ Data from the FLOSSMole Project, 02/12/05.

Call for Quality: Open Source Software Quality Observation 59

3 Why SQO of Open Source Software differs from that on
Closed Software

There are two aspects that play a role for quality assessment of software, the
quality of the product itself and the quality of the product team. The main
differences between quality assessment (QA) of Open Source software and QA of
closed source software naturally relate to the availability of the source code and
the transparency of the development process. Third party quality assessment
is facilitated by the availability of the source code and the openness of the
development process.

Quality assessment of OSS software is usually much more transparent than
that of closed source software, at least to quality observers on the "outside"
[2]. Most OSS projects use an Open Source tool-chain to create their software.
Those tools, compilers for example, have considerable influence on the quality
of the products and therefore need to be taken into account when assessing
the quality of a piece of software. Furthermore, discussion about quality is
sues often happens in public, on mailing lists and message boards, which adds
transparency. Third-party quality assessment of closed source software involves
guessing in most cases.

The number of open bugs might give another impression of the quality of a
product. This number is to be taken with a grain of salt since the number of
bugs might indicate that there is a lot of testing, or that there are a lot of people
reporting bugs. The type of bugs, response times and their frequency is impor
tant. Merely counting the number of bugs reveals more about the community
behind the product than about the product itself.

The number of code check-ins gives a good idea of the activity level of
the development of the product. Products that receive a lot of attention from
developers are likely to be fixed faster than products that have been abandoned.
A product can be very actively developed, but that might also indicate that it
is unstable and many changes are being made which increase the amount of
effort needed to assess and maintain a certain level of quality.

Assessing the product team is another aspect where quality assessment of
OSS products differs from QA on closed source software. The term Product
Team refers to all participants in the project, engineers, documentation team,
translators, and of course QA people [3]. In closed software products, the num
ber and skill level of developers is usually kept secret by the company, the num
ber of participants in an OSS project can at least be estimated by educated
guessing, based on commit logs and the source code itself.

The size of the team is an important issue to examine the longevity of the
product, and thus the chance to have the product supported in the future. The
Open Source Maturity Model (OSMM) [2] uses team size explicitly as a numeric
indicator of quality.

60 Adriaan de Groot, Sebastian Kugler, Paul J. Adams, and Giorgos Gousios

4 The Software Quality Observatory

The automated analysis of source code as a quality measurement is not a new
concept. In recent years, the growth of OSS development has provided a wealth
of code in which new techniques can be developed. Previous work in this area
is often based in metric analysis: statement count, program depth, number of
executable paths or McCabe's cyclomatic complexity [5] for example. In their
work using on metric-based analysis Stamelos et al. [7] observed good quality
code within Open Source. Other techniques, such as neural networks [4] are not
only capable of evaluating code, but also in predicting future code quality.

The Software Quality Observatory aims to provide a platform with a plug
gable architecture as outlined in figure 1 for software development organisations
that will satisfy four objectives:

- Promote the use of OSS through scientific evidence of its perceived quality.
- Enhance software engineers' ability to quantify software quality.
- Introduce information extraction, data mining and unsupervised learning to

the software engineering discipline and exploit the possible synergies between
the two domains using novel techniques and algorithms.

- Provide the basis for an integrated software quality management product.

IS
Bug

Database

Code Reposrto^y &
Vefsioning System

SQO-OSS

Fig. 1. A schematic representation of the proposed system

SQO-OSS is based around three distinct processing subsystems that share
a common data store. The data acquisition subsystem processes unstructured

Call for Quality: Open Source Software Quality Observation 61

project data and feeds the resultant structured data to the analysis stages. The
user interaction subsystem presents analysis results to the user and accepts
input to affect the analysis parameters. The components of the data acquisition
subsystem are responsible for extracting useful data for analysis from the raw
data that is available from the range of sources within software development
projects. Metric analysis of source code is well-known and an important aspect
of this system. Repository analysis will perform examine the commit behaviour
of developers in response to user requests and security issues. The information
extraction component will extract structured information from mailing lists and
other textual source in order to feed higher-level analyses.

The data mining component will use structured information from project
sources to predict the behaviour of the project with respect to quahty charac
teristics and classify projects according to their general quality measurements.
The statistical analysis component will apply statistical estimation models in
order to predict events in the development life-cycle that can have an impact
on the product's quality.

5 The SQO and KDE

The KDE project (www. kde. org) is one of the largest desktop-oriented projects
in the world. Its scope encompasses the entire desktop (i.e. end-user use of a
computer, including web-surfing, email, office applications, and games). It is a
confederation of smaller projects all of which use a single platform (the KDE
libraries) for consistency. The project has some 1200 regular contributors and
many hundreds more translators. The source code has grown to over 6 milHon
lines of C+4- in 10 years of "old-school" hacking.

KDE's quality control system has traditionally been one of "compile early,
compile often." By having hundreds of contributors poring over the code-base
on a wide range of operating systems and architectures, bugs were usually found
quickly. Certainly most glaring deficiencies are quickly found, but more subtle
bugs may not be.

In terms of formalized quality control, there is a commit policy which states
when something may be committed to the KDE repository [1], but this does
not rise much above the level of "if it compiles, commit it." Only recently has
a concerted push been made for the adoption of unit tests within the KDE
libraries. Adoption of the notion of writing unit tests has been enthusiastic, but
there are questions of coverage and completeness. Automated regression testing
is slowly being implemented, but here the lack of a standardized platform for
running the tests hampers the adoption of those automated tests.

Documentation (user and API) quality has become an issue, and quality
measurements are now done regularly. User interface guidelines have been for
mulated, but not enforced. Once again, there is an effort underway to measure
(deviations from) the interface guidelines. This produces discouraging numbers,
and has not yet been successfully automated in a large scale manner.

62 Adriaan de Groot, Sebastian Kiigler, Paul J. Adams, and Giorgos Gousios

The KDE project expects the Software QuaUty Observatory to extend and
enhance the quahty measurements which it has begun to implement, in order
to guide the actions of the KDE developers. Whether the availability of quality
metrics for the code base has an effect on the "average" volunteer developer
remains to be seen — experiences with the existing tools suggests that fixing
bugs found by automatic techniques does not score high on the "fun" chart for
developers. For the core KDE developers (of which there are perhaps 100) the
existence of the quality metrics produced by the SQO may guide their efforts
in bug fixing and yield more productive code freezes prior to release.

6 Conclusions

Software quality observation has long been performed as a crucial element in
software process improvement. However, established methods of quality obser
vation have mostly focused on source code and overlooked other available data
sources e.g. mailing lists or bug fix data[6].

Many OSS projects, such as KDE, have established processes for the main
tenance of software quality. However, these can only be of limited use when
then actual quality of the product is still unknown. By scientifically evaluating
the quality of a software product and not the process^ software engineers can
leverage this knowledge in many ways. By providing this quality evaluation the
SQO-OSS system will allow engineers to make informed choices when address
ing their development process and allow them to better maintain quality in
the future. The developers and their supporting organisations can also use this
evaluation to promote their product. This is especially crucial within the OSS
world, where there is a wealth of choice.

Ultimately, the SQO-OSS system will aid OSS developers to write better
software and enable potential users to make better informed choices.

References

1. KDE Developer's Corner. KDE commit policy. On http:/ /developer.kde.org/.
2. Bernard Golden. Succeeding with Open Source. Addison-Wesley, 2005.
3. Lewis R. Ireland. Quality Management for Products and Programs. Project Man

agement Institute, 1991.
4. R. Kumar, S. Rai, and J. L. Trahan. Neural-network techniques for software-

quality evaluation. In Proceedings of the Annual Reliability and Maintainability
Symposium, 1998.

5. T. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
2(4):308-320, 1976.

6. Diomidis Spinellis. Code Quality: The Open Source Perspective. Addison-Wesley,
Boston, MA, 2006.

7. loannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L. Bleris.
Code quality analysis in open source software development. Information Systems
Journal, 12(l):43-60, January 2002.

Part III

Knowledge Management in OSS

Towards an Ontology for Open Source Software
Development

Gregory L. Simmons^ and Tharam S. Dillon^
1 School of InformationTechnology and Mathematical Sciences,
Univeristy of Ballarat, Australia, WWW home page: http://uob-

community.ballarat.edu.au/~gsimmons
2 Faculty of Information Technology, University of Technology Sydney,

Australia, WWW home page: http://staffit.uts.edu.au/~tharani/

Abstract. Software development is a knowledge intensive process and the
information generated in open source software development projects is
typically housed in a central Internet repository. Open source repositories
typically contains vast amounts of information, much of it unstructured,
meaning that even if a question has previously been discussed and dealt with it
is not a trivial task to locate it. This can lead to rework and confusion amongst
developers and possibly deter new developers from getting involved in the
project in the first place. This paper will present the case for an open source
software development ontology. Such an ontology would enable better
categorization of information and the development of sophisticated knowledge
portals in order to better organize community knowledge and increase
efficiency in the open source development process.

1. Introduction

Open source software (OSS) development provides an alternative model of
development to commercial systems developed by or for a single corporate entity. In
this model of development, a variety of developers carry out development and
distribute the source code associated with the product. This allows for incremental
improvement by others or development of complementary products that can
seamlessly interoperate with the open source products.

Open source projects can be broadly characterized by their distributed
development, loose management practices and their uncertain requirements [1, 2],
these are considered briefly below:

• Distributed development teams: Open source developers are potentially
drawn from a global pool of talent using the Internet; developers do not
typically meet face to face. Rather the development community for any
one project is centered on a public World-Wide-Web site and
communication conducted using mailing lists and discussion forums.

Please use the following format when citing this chapter:
Simmons, G.L., and Dillon, T.S., 2006, in IFIP International Federation for Information
Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi,
W., Scotto, M., Succi, G., (Boston: Springer), pp. 65-75

66 Gregory L. Simmons and Tharam S. Dillon

• Loose management: There are no time constraints in an open source
project and no mechanism to insist that functionality is implemented.
Management is less concerned with utilizing resources efficiently and
more concerned with which contributions should be committed to the
product and which should be discarded.

• Uncertain requirements: Open source projects are constantly evolving
with developers choosing to contribute what they think the product needs
rather than the solution to any problem they are assigned, requirements
are therefore elicited rather than assigned.

The community around an open source software project usually interacts through
asynchronous textual modes of conimunication, such as email and threaded
discussions, which are logged in publicly browsable World-Wide-Web repositories.
The merits of proposed changes, requirements for the product, any problems are all
debated in the open and archived along with the source code for the product.

Open source repositories serve to advertise the product, document its use, provide
help to end users of the product, capture feature requests and bugs from users and
developers, support developer collaboration and provide the entry point for new
developers to accustom themselves with the project. Repositories are also the means
by which users and developers upload and download the product in source and binary
form. It is therefore not surprising that these repositories typically contain vast
amounts of information.

The information contained within an open source repository serves as a record of
the community knowledge accumulated throughout the development process and as
such represents an artefact of vital importance. It is therefore unfortunate that the
current open source software repositories in widespread use provide little support in
terms of their ability to structure information so that it is meaningful to different types
of user. Much of the information contained within open source repositories is
unstructured, meaning that even if a question has previously been discussed and dealt
with it is not a trivial task to locate it, leading to rework, conftision amongst
developers and possibly deterring new developers from getting involved. Ankolekar,
Herbsleb and Sycara [3] sum up this problem succinctly "there is a need to get the
right information to the right person for the current task, and to present it in an
understandable, usable way".

One approach to better understand and organize the structure of information from
a particular domain is to use ontologies. Ontologies explicitly define a structure of
concepts from a particular domain and their relationships to one another. Next
generation (semantic) World-Wide-Web applications rely on meaningftilly annotated
content and often use ontologies to define their annotation vocabulary; with access to
the underlying ontology we understand how to process the annotated content, and we
have a basis for organizing the information into a meaningfully navigable hierarchy of
terms.

The remainder of this paper is organized as follows. Section 2 presents a short
description of ontologies and why they can be useful in open source software
development. Section 3 introduces an ontology to describe open source softAvare
development. Section 4 discusses how such an ontology could be applied by

Towards an Ontology for Open Source Software Development 67

proposing a software architecture for semantic portal development. Finally section 5
presents a brief discussion and conclusion.

2. Ontologies

Gruber [4] defines an ontology as "explicit formal specifications of the terms in
the domain and relations among them". An ontology includes definitions of basic
concepts in a domain and relations among them, these definitions are expressed in a
machine-interpretable way allowing for the development of artificially intelligent
applications. More importantly ontologies denote a shared conceptualization, for the
ontology to be useful its specificafion must be one that is accepted in its use by
domain experts.

Ontologies broadly contain Instances, Classes and Properties. Classes represent
important concepts of the domain (these classes may be arranged in a taxonomy
indicating superclass-subclass relationships between classes), properties represent a
type of association between the domain concepts (which may or may not have
restrictions) and instances represent an observed instance of a concept.

For example: An ontology about animals may state that a subclass of the concept
Domestic-Animal called Domestic-Dog requires the properties color, breed, age and
name. Furthermore you can place restrictions on concepts governing what definitions
are legal or not, for example Domestic-Dog could have a restriction stating that all
instances are quadrupeds therefore preventing any two-legged Domestic-Dog
subclasses being defined. There may then be many instances of a Domestic-Dog, each
describing a different four-legged animal such as the bull terrier known as Max and
the retriever known as Rover, who both belong to the class Domestic-Dog.

Noy and McGuinness [5] provide five reasons for the development of an
ontology:

1. To share common understanding of the structure of information among
people or software agents

2. To enable reuse of domain knowledge
3. To make domain assumptions explicit
4. To separate domain knowledge from the operational knowledge
5. To analyze domain knowledge

Ontologies have been developed to describe everything from pizza^ to wine [5] to
cataloguing artefacts from a museum as displayed by the Museum of Finland
website"̂ .

^ http://www.co-ode.org/ontologies/pizza/2005/10/18/
"* http : //museosuomi .cs .helsinki . f i/

68 Gregory L. Simmons and Tharam S. Dillon

2.2 Open source development - A case for ontologies?

Despite its popularity a number of challenges exist with the potential to reduce the
perceived benefits of open source development. One key issue for open source
development is its scalability with its high dependence on source code as project
documentation and its lack of formal documentation.

"Complexity and size effectively close source code for system programming
projects like OSes compilers after, say, lOOK lines of code without good higher
level documentation or participation in the project from its early stages. This
"binarization" of source code in large system programming projects may mean that
there is little strategic importance to keep the source code of system programs
closed after it reaches a certain level of maturity."[6]

Another issue facing open source development is the scarcity of developers, a
number of authors [7-9] has noted a Pareto distribution in the size of the number of
developers participating in open source projects with the majority of projects having
only one developer and a much smaller percentage with larger, ongoing involvement.

There is also a high degree of conceptual dissonance exhibited between open
source projects, development models, licensing, source-code structure, terminology
all differ markedly from project to project. The badge open source might suggest a
collection of homogeneous projects but the reality is quite different and projects can
differ quite markedly from the apparent bazaar style development in the Linux project
as documented by Raymond [10] to the Extreme Programming influenced
development evident in the Zope project [1].

It would seem obvious that a common understanding of how to the structure of
information in open source repositories is something desirable. A common
vocabulary could help reduce conceptual dissonance and provide budding
contributors with easier access to information about a project than is possible at
present. If a potential developer could easily access information about the source-code
structure, the tools employed, the development model and the software license easily
then perhaps the "binarization" of source code becomes less of a problem and
developers would find it easier to join a development effort mid-stream.

In order to better organize the information generated in an open source project we
need a conceptual framework that promotes agreement on how information should be
organized, without losing any of the flexibility of allowing people to express and view
parts in their own familiar expression language. Understanding the meaning of
shared information on the web can substantially be enhanced if the information is
mapped onto a domain ontology.

An open source software development ontology would encompass diverse,
complex, domain knowledge, technology and skills. It will ensure a common ground
for distributed collaboration and interactions. It is envisaged that such an ontology
could be used as a basisi for better organizing the community knowledge contained
within open source repositories by providing the backbone for next-generation
semantic open source development portals/repositories [11,12]

Towards an Ontology for Qpen Source Software Development 69

3. An open source development ontology

This section presents the top level of a preliminary Open Source Development
Ontology (OSDO). The OSDO would provide definitions of relevant classes and
properties providing a unified vocabulary and structure for open source development.
Each open source project would take the ontology and create instances refiecting the
individual circumstances for that project. For example one project might contain the
instance CVS for the class Version-Control whilst another project might have the
Version-Control instance Subversion.

As with all ontologies the OSDO is a work in progress and the authors welcome
any feedback. Due to space limitations it is not possible to present the entire ontology,
rather the base concepts are presented along with some restrictions to demonstrate
how the ontology could be reasoned with. A full version of the ontology is available
from the author's website^

3.1 Ontology design

When designing a new ontology one needs design principles to guide
development and provide a basis for evaluation, Gruber [13] identifies five design
principles which should guide the development of ontologies:

1. Clarity - does the ontology effectively communicate its intended
meaning?

2. Coherence - is the ontology logically consistent? 'Tf a sentence that can
be inferred from the axioms contradicts a definition or example given
informally, then the ontology is incoherent."

3. Extendibility - ontologies should be designed in a way that allows for the
definition of new terms for special uses without needing to redefine
existing terms.

4. Minimum Encoding Bias - ontologies should be designed at the
"knowledge level" rather than committing the ontology to a particular
implementafion language and its specific limitations.

5. Minimal Ontological Commitment - ontologies should make as few
claims as possible about the domain being modeled without sacrificing
the usability of the ontology.

3.2 Overview of the ontology

The first activity to be performed in any engineering activity is to decide upon the
system's purpose and its intended uses, ontology engineering is no different in that we
begin with specifying a number of competency questions, and scenarios of use [14].

'http://uob-community.ballarat.edu.au/~gsimmons

70 Gregory L. Simmons and Tharam S. Dillon

By establishing a series of competency questions we can determine the ontology's
scope, and its applicability, competency questions also provide a means to evaluate an
ontology.

An open source ontology designed with the intention to better organize
community knowledge would need to be able to answer questions like; who performs
the different tasks? how are the tasks performed? what tools are used? and so on. The
following key competency questions can be identified:

1. What output is produced?
2. What activities are performed?
3. Who is responsible for performing the different activities?
4. What procedures need to be followed?
5. What tools are used?

These questions are by no means exhaustive but as they are used to initially scope
the ontology and may be revised if later found to be missing. Once the scope of the
ontology and its competency questions are identified relevant concepts and relations
should be identified. This task can initially be performed using a top-down approach,
where the most general concepts are identified and then broken down into
specializations, or a bottom-up approach, which begins by defining specific concepts
and groups them into related classes.

Using the competency questions as input, a top-down approach is used to discover
the base classes (concepts). Table 1 presents the resultant six base classes for the
OSDO along with their respective descriptions.

Table 1: OSDO Base Classes

Class
1 Participant

Role

Activity

Procedure

Artefact
Tool

Description
Any person who uses or contributes to the project. Some participants may
remain anonymous such as those that download and use the product but do
not contribute in any other way.
Represents in what capacity a participant was acting when they performed
an activity in the project. There are some roles that may be assumed by any
participant whilst only certain participants may assume other roles.
Any action that results in a contribution to the project or where the projects
resources have been used in some way.
Any established and well defined behaviour for the accomplishment on
some activity.
Any storable input to or output from an activity.
Any software resource used by a procedure in order to accomplish some
activity.

Once defined these classes can be represented in a formal ontology language
(such as RDF, DAML+OIL or OWL). We have chosen to implement our ontology
using OWL-DL [15] as it is a dedicated ontology language with large-scale semantic

Towards an Ontology for Open Source Software Development 71

web community support. The ontology was constructed in OWL using the Protege^
application.

The full ontology specification in OWL is omitted from this paper for sake of
brevity but an example is provided as a means of illustration providing the OWL
definition for the "Participant" class (Table 2).,

Table 2 - OWL Definition

<owl: Class tdt t al30Ut>^**iFarticipant;**>

<dt«ri: e^iva.leiitCia3S>

<owl: Obji€ctfMptt:i:f t4it lP^*%Bsm^^B*'/>

<owit somtfmMtfFicon tMt XMSonm^^'^Mt^l^''/>

<uwl
</owl:Class>

The base classes are further defined through a series of property restrictions.
Restrictions are used to restrict the individuals that may belong to a class and enable
us to reason with the ontology [16]. For example the class Participant is restricted
with the existential restriction:

3 assumes Role

This states that any individual of the Participant class assumes at least one Role.
Restrictions can be used to express complicated logic. The following restrictions
define an Acfivity (al) to be preactivity of Activity (a2) iff (al) produces an Artefact
(s) which (a2) requires.

' http://protege.stanford.edu/

72 Gregory L. Simmons and Tharam S. Dillon

(\/a, s) (produces (a, s) -> activity (a, ^) A artefact(s))

(Va, s) (requires(a, s) -^activity(a,*) Aartefact(s))

(Val, a2) (preactivity(al, a2) <->(3s) requires (a2,s) A produces (a I, s))

Once appropriate restrictions are defined for each of the base classes, defining
sub-classes for each of Role, Activity, Procedure, Artefact and Tool can further
extend the ontology. For example Role can be further broken down into either a
Consumer_ov a Contributor, Consumers typically use the product but do not actively
contribute to its development (other than promoting the product through its very use)
and may often be anonymous; contributors however contribute directly to the product
through source code development, project support, documentation, administration and
so on. The Contributor role can therefore be broken down into a number of further
specialized classes.

4. Putting it to work-An ontology driven architecture

Whilst ontologies are useful things in themselves, their real power can only be
realized when applied to a broader application framework. In the case of the OSDO
our motivation was to better organize open source project repositories. It is proposed
that the OSDO could provide the basis for the development of a semantically aware
project repository (or portal).

A number of semantic portals have been described in the literature including
SEAL [11] and OntoViews [12]. In this section we propose an architecture (depicted
in Figure 6) for a semantic portal based on the SEAL project.

The architecture consists of the following components:
• Semantic database - provides storage of semantic content and

inferencing capabilities.
• Semantic query - querying facilities that exploit the inferencing

capabilities of the semantic database and provides facilities such as
semantic ranking.

• RDF generation - a facility to enable remote applications to interact at
the RDF level.

• Template services -form generation for user input based on the reference
ontology.

• Navigation - provides semantic linking and a dynamically generated
portal structure.

• Annotation / Parsing - all new content is parsed against the reference
ontology and semantically annotated before being stored in the database.

Each of the components of the architecture with the exception of the
Annotator/Parser is present and well described in the SEAL project. To adopt a
semantic portal for use in an open source project the addition of some form of

Towards an Ontology for Open Source Software Development 73

automatic/semi-automatic annotation is a necessity because of the high likelihood of
developers rejecting the requirement to manually annotate their contributions.

WEB SERVER

ANNOTATOR
/PARSER

L
TEMPLATE

RDF
GENERATOR

SEMANTIC DATABASE (ONTOLOGY + KNOWLEDGE BASE)

Figure 1: Ontology Driven Architecture

Take for example a bug report. Typically bugs are entered using a web form that
requires the user to enter a bug description in free form text (perhaps a binary dump
or screen shot) and some metadata (which may or may not be optional). The free form
text can be parsed to identify terms known to the ontology and annotated accordingly
whilst the metadata could be checked for consistency using the inferencing
capabilities of the semantic database and if consistent annotated before being stored in
the database for future reference. The problem of identifying duplicate bug reports
and resolving incorrectly classified reports has been identified previously in the
literature [17], semantically annotated bug reports could suggest possible duplicates
via semantic query and ranking mechanisms thus aiding in this (largely manual) time
consuming task. Semantic annotation could also allow bug reports could also be
automatically emailed (or stored in a pigeon hole) to the responsible module
maintainer or allow developers to identify a relevant discussion from a mailing-list
archive, there are numerous possibilities for such a system.

5. Conclusion

Software development is well established and well understood in practice.
However, distributed open source software development spread over multiple sites
using open softM âre for collaboration is a new challenge. The challenge is to develop

74 Gregory L. Simmons and Tharam S. Dillon

a conceptual meta-model that will provide the architecture for the collaboration of
distributed software teams and better supports the software development.

The problem of knowledge management in open source software development has
been identified in the literature by a number of authors [3, 17, 18], however we note
there has been no previous attempt at using an ontology based approach to address
knowledge management in open source software development.

This paper presents the case for an ontology for open source software
development, the proposed ontology is intended to be a starting point for discussion
and adaptation rather than precise definition. All ontology engineering is iterative and
collaborative and the authors welcome any comment on what is presented herein.

There are many possibilities for ftirther research. The authors intend to further
refine the ontology and to validate it using data from live open source projects. The
architecture proposed needs to be implemented and validated using real data. Indeed
the use of semantic portals in applications such as the one proposed and the
continuing evolution of web portal technology provide numerous potential research
opportunities.

Importantly the proposed ontology will provide practitioners with a basis for
developing semantic web services in order to better organize community knowledge
in open source development projects. Such web services have the potential to increase
the efficiency of open source development and to make open source projects more
accessible to those developers who would like to contribute to a project but are
discouraged by the high barriers to entry.

References

1. Simmons, G. and T.S. Dillon. Open Source Development and Agile Methods, in The
7th lASTED International Conference on Software Engineering and Applications.
2003. Marina del Rey, CA, USA: ACTA Press.

2. Simmons, G. and T.S. Dillon. A Critical Comparison of Agile Methods and Open
Source Development through a Case Study, in International Conference on Software
and Systems Engineering and their Applications. 2003. Paris, France.

3. Ankolekar, A., J. Herbsleb, and K. Sycara. Addressing Challenges to Open Source
Collaboration With the Semantic Web. in Taking Stock of the Bazaar: The 3rd
Workshop on Open Source Software Engineering, the 25th International Conference
on Software Engineering (ICSE). 2003. Portland OR, USA.

4. Gruber, T.R., A Translation Approach to Portable Ontology Specification.
Knowledge Acquisition, 1993. 52(6): p. 1111-1133.

5. Noy, N.F. and D. McGuinness, Ontology Development 101: A Guide to Creating
Your First Ontology, S.K.S. Laboratory, Editor. 2001, Stanford Knowledge Systems
Laboratory.

6. Bezroukov, N., A Second Look at the Cathedral and the Bazaar. First Monday, 1999.
4(12).

Towards an Ontology for Open Source Software Development 75

7. Hars, A. and S. Ou. Working for free? - Motivations of participating in Open Source
Projects, in The 34th Hawaii International Conference on System Sciences. 2001.

8. Hunt, F. and P. Johson. On the Pareto Distribution of SourceForge Projects, in Open
Source Software Development Workshop. 2002. Newcastle, UK.

9. Madey, G., V. Freeh, and R. Tynan. The Open Source Software Development
Phenomenon: An Analysis Based on Social Network Theory, in American Conference
on Information Systems. 2002. Dallas, TX.

10. Raymond, E.S., The Cathedral & the Bazaar. 2 ed. 2001, Sebastapol, CA: O'Reilly.
11. Maedche, A., et al., Semantic portal - the SEAL approach. 2001, Institute AIFB,

University of Karlsruhe, Germany.
12. Makela, E., et al. OntoViews - A Tool for Creating Semantic Web Portals, in The

Semantic Web - ISWC 2004. 2004. Hiroshima, Japan: Springer.
13. Gruber, T.R., Towards principals for the design of ontologies used for knowledge

sharing. Intemation Journal of Human-Computer Studies, 1995. 43: p. 907-928.
14. Gruninger, M. and M.S. Fox. Methodology for the Design and Evaluation of

Ontologies, in IJCAI-95 Workshop on Basic Ontological Issues in Knowledge
Sharing. 1995. Montreal.

15. McGuinness, D.L. and F.v. Harmelen, OWL Web Ontology Language Overview.
2004, W3C.

16. Falbo, R.A., C.S. Menezes, and A.R. Rocha. Using Ontologies to Improve
Knowledge Integration in Software Engineering Environments, in World
Multiconference on Systemic, Cybernetics and Informatics / 4th International
Conference on Information Systems Analysis and Synthesis. 1998. Orlando, USA.

17. Gasser, L., et al. Understanding Continuous Design in F/OSS Projects, in
International Conference on Software and Systems Engineering and their
Applications. 2003. Paris, France.

18. Scacchi, W., Understanding Requirements for Developing Open Source Software
Systems. lEE Proceedings - Software, 2002. 149(1): p. 24-39.

From Individual Contribution to Group
Learning:

the Early Years of Apache Web Server

Hal a Annabi^ Kevin Crowston ,̂ Robert Heckman^
1 University of Washington, The Information School

Box 352840, Seattle, WA 98195-2840
(206) 616-8553, hpannabi@u.washington.edu
2 Syracuse University, School of Information Studies

Syracuse NY 13244, (315) 443- 1676
crowston@syr.edu, rheckman@syr.edu

Abstract. Open Source Software (OSS) groups experience many benefits and
challenges with respect to the core group's effectiveness. In order to capitalize
on the benefits and minimize the challenges, OSS groups must leam not only
on the individual level, but also on the group level. OSS groups leam by
integrating individual contributions into the group's product and processes.
This paper reports on the characteristics of the learning process in OSS groups.
The study utilized an embedded single case study design that observed and
analyzed group learning processes in the Apache Web server OSS project. The
study used learning opportunity episodes (LOE) as the embedded unit of
analysis and developed and utilized three content analytic schemes to describe
the characteristics of the learning process and the factors affecting this process.

1 Introduction

Open Source Software (OSS) groups, by their very nature (distributed, often
voluntary, and having a potentially large number of submitted bug reports and fixes
from outside of the core-development team) experience many benefits and challenges
with respect to the core group's effectiveness. Since OSS teams are distributed, they
have access to a larger pool of experts, have better load balancing, and are able to
train developers (Grinter, Herbsleb, & Perry, 1999). However, the geographical
distance between the members challenges the groups in the following ways:
miscommunication, problems in product and process management, coordination
difficulties, low self-efficacy, low self-sufficiency, and knowledge management
problems (Belanger & Collins, 1998; Carmel & Agarwal, 2001; Herbsleb & Montra,
2001; Jarvenpaa & Leidner, 1999; Kraut, Steinfield, Chan, Butler, & Hoag, 1999).
These challenges are especially critical in the case of software development where
communication and coordination are paramount. Large scale software development
requires knowledge from multiple domains, thinly spread among different developers
(Curtis et al. 1988). Thus this is an environment requiring a high degree of knowledge
integration and coordination of efforts on the part of multiple developers (Brooks

Please use the following format when citing this chapter:
Annabi, H., Crowston, K., and Heckman, R., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 77-90

78 Hala Annabi, Kevin Crowston, Robert Heckman

1975). This is of particular importance for OSS teams as contributions come not only
from the core developers but from all the co-developers and active users as well.

Accordingly, to minimize the negative effects mentioned above, OSS core groups
must learn effective communication and coordination practices suitable to their new
environment. In their study of distributed cross-functional teams, Robey et al. (2000)
suggest that to be successful, distributed groups must learn. This learning has to
occur on both the individual and group levels (Senge 1990; Lin and Lin 2001).
However, research and practitioner communities know little about the processes of
learning suitable for distributed teams (Orlikowski, 2002; Robey et al. 2000). Thus it
is important to first understand the learning processes of distributed groups.
According to Maier, et al. (2001), "Knowledge about the process, or the know how,
of learning facilitates corrections that simulate or accelerate learning" (pg. 16).

The study had two objectives. The first was to address the gap in the literature and
develop a theoretical approach to study learning process distributed groups. The
second was to describe the learning processes in OSS groups and identify factors that
enhance or impede this process. This paper will report on the second objective.

2 Learning in OSS Groups

To study learning in OSS groups, we draw on Ruber's definition of learning: "An
entity learns if... the range of its potential behaviors is changed"' (Huber, 1991). The
term behavioral potential recognizes the fact that not all outcomes of learning will be
observable immediately in behavior. Rather, they will only be observable if and when
appropriate circumstances arise. For example, airline pilots train to handle
emergencies, but are rarely called upon to exhibit these behaviors.

To conceptualize a group's behavioral potential, we draw on Grant's (1996)
knowledge-based view of the firm. In this view, a group is a structure for integrafing
the knowledge of its members. A group creates coordination mechanisms, such as
rules and routines to economize on communication, knowledge transfer and learning
(Grant 1996). In this view, rules and routines structure how members coordinate their
tasks efficiently and effectively. Therefore, changes in the behavioral potential of a
group will be observable in changes in these rules and routines (Hayes and AUinson,
1998).

Argyris and Schon (1978) and Brown and Duguid (1991) suggest that for a group
to create or change rules and procedures it is key that its members have shared
understanding or shared mental models. Shared mental models, as defined by
Cannon-Bowers et al. (1993), "are knowledge structures held by members of a team
that enable them to form accurate explanations and expectations for the task, and in
turn, to coordinate their actions and adapt their behavior to demands of the task and
other team members" (pg 228). The importance of shared mental models comes from
the fact that for rules and routines to be effective coordination mechanisms, they have

From Individual Contribution to Group Learning: 79

to be interpreted consistently on the group level. Without shared mental models
individuals may interpret tasks differently based on their backgrounds (Dougherty,
1992). Shared mental models are manifested in common language, communication
patterns, and consistency in interpreting and executing the rules.

In summary, we define group learning as the process by which group members
share knowledge and information and integrate it into the group's implicit and
explicit rules, leading to changes in the behavioral potential of the group. Group
learning is operationalized as changes in explicit and implicit rules. We focused on
changes in rules and procedures as specific indicators of explicit rules, and on
changes in shared mental models as specific indicators of implicit rules. The
following are the specific research questions of the study:

RQl: What are the characteristics of group learning process in OSS groups?
More specifically:
RQl a: How do OSS groups change rules and procedures?
RQlb: How do OSS groups change shared mental models?

RQ2: What are the factors that impede or enhance group learning?

3 Research Framework

In order to guide data collecfion and analysis, we integrated the definition of
group learning, and concepts from multiple area of study including organizational
learning (OL), group research, shared mental models (SMM), and asynchronous
learning networks (ALN) to develop an inifial theorefical framework. The initial
framework was modified and refined as more data was analyzed. We represent the
learning process of a group in terms of the input-process-output framework illustrated
in figure 1. The model includes group structure, organizational level, and group
design inputs. These inputs affect the nature of learning opportunity episodes (LOE)
(triggers, process and outcomes) in the group which include the group learning
process. The learning process results in group and individual learning. The framework
indicates that outcomes of learning recursively affect group structure inputs.

Input Variables:
Input variables in this model include organizational context and group design

variables as suggested by both Hackman (1986) and Gladstein (1984). Group
structures include rules, shared mental models, and role structure. Group structure
input variables are affected by outcomes of the learning process. Organizational
context represented by corporate participation, which was controlled for in this case
study (one case with no corporate participation). Additionally, the framework
included group design variables, represented by group composition and task to
illustrate effects of members' skills and knowledge and how it may infiuence the
group process. This is also influenced by nature of task.

80 Hala Annabi, Kevin Crowston, Robert Heckman

Figure 1 Reflned Theoretical Framework for Learning Process in OSS
Groups

Learning Opportunity Episodes (LOE):
The theoretical framework conceptualized group learning using an episodic view

to bound the phenomenon as suggested by Miles and Huberman (1994). A learning
opportunity episode (LOE) is a group event that occurs over time as a result of a
learning trigger. It may or may not lead to changes in the behavioral potential of
the group. The framework suggests that input variables affect group LOEs that
include learning triggers and learning process, and that episodes may or may not lead
to learning.

Learning Triggers:
Walton and Hackman (1986), propose that all groups must satisfy a number of

important group functions (social; interpretive, task, agency, and regulative). If any of
the group functions are not met, or can be met more effectively or efficiently, the
group has an opportunity to learn. We refer to this opportunity as a learning trigger.
As described in the results section below, an important finding of this study was a
better understanding of the nature and impact of different types of learning trigger. At
this point we will briefly note that learning triggers differed in terms of the type
(internal or external) and focus (product or process). Internal triggers occur within
the core group (e.g. errors, inconsistent interpretations). External triggers come from
the external environment or the core (e.g. new technology, user requests).

Group Learning Process:

From Individual Contribution to Group Learning: 81

Learning is the process by which the group's potential behavior changes. We
conceptualized the learning process in terms of task management and group
maintenance functions. Figure 1 indicates that task management includes three
aspects of group behaviors discussion of strategy, critical analysis, and developing
shared mental models. Group maintenance behaviors included interaction, cohesion,
and conflict resolution behaviors.

Facilitators and Barriers
Research question 3 identifies factors that impede or enhance group learning

process. We included factors identified in out empirical analysis in the framework as
the facilitators and barriers to LOE. These factors include resources, leadership,
individual contribution, group interaction, and core developers' interests. Space does
not permit a detailed presentation of these factors in this version of the paper.

Process Output
The focus of this study was on changes in rules as an explicit indicator of

learning, and changes in shared mental models as an implicit indicator of learning.
Observation of these outcomes was used to assess whether or not a particular episode
resulted in group learning. Another outcome of group learning identified in the
conceptual framework is individual learning. Due to the retrospective nature of this
study, individual learning was beyond the scope of this study.

4 Methodology

This study employed a qualitative case study design to better understand the
phenomenon of learning in a work setting as suggested by Miner and Mezias (1996).
As Yin defines it, a case study is "an empirical inquiry that investigates a
contemporary phenomenon within its real-life context; when the boundaries between
phenomenon and context are not clearly evident; and in which multiple sources of
evidence are used" (Yin, 1984, pg. 23). More specifically, we employed a single
embedded case study design, based on theoretical sample strategy for case selection.
The case for this study is the Apache httpd Project. The embedded unit of analysis
LOE defined earlier.

Theoretical selection criteria in this study were group size and group
effectiveness. We selected a group having more than seven core developers, a lower-
limit sample as suggested by Hare (1976). The literature suggested that learning leads
to effectiveness (Maier et al., 2001). This increases our chances for observing
learning, the research selected an effective group previously identified as successful
in the OSS literature: Apache Web Server.

A continuation of the httpd server developed by Rob McCool and the National
Center for Supercomputing Applications (NCSA) "the Apache HTTP Server Project
is an effort to develop and maintain an open-source HTTP server for modem
operating systems" (Apache.org). After McCool left NCSA in 1994 eight of the
developers started collaborating via private e-mail in 1994 and in early 1995

82 Hala Annabi, Kevin Crowston, Robert Heckman

established a Web presence and mailing list to continue their development effort. The
Apache Web server has been the most widely used Web server on the Internet since
1996, holding 64% market share in 2003 according to Netcraft Web Server Survey
(http://news.netcraft.com). We observed the Apache httpd project between its
inception (February 1995) and the first stable release, Apache 1.0 (December 1995);
tracking the group movement from alpha to beta to stable.

We chose to bound the learning process using LOE as suggested by Miles and
Huberman (1994). Behavioral potential is manifested in changes in explicit rules
(from which we focused on changes in rules and procedures) and implicit rules (from
which we focused on shared mental models). We considered a LOE to have no
change if one month passed without a direct response to that trigger (the average
between LOE times four). Explicit learning outcome was measures by identifying a
change in rules or procedures in the group. Implicit learning outcome was measured
by identifying group shared mental models evident in change in the code, change in
agreement or course of behavior.

Figure 2 illustrates the nature of the LOE. An LOE can be selected by identifying
learning triggers, indicators of learning process, or identifying explicit changes to
rules. Once any of these elements was identified as being part of the LOE the related
interaction messages and documentation were collected. The interaction data was
analyzed using Atlas-ti, and the documentation was reviewed.

>

Trilgff

C^^'

^ - > - ^

^

QMnitiii

Figure 2 Learning Opportunity Episodes

4.1 Data Collection and Analysis

The study collected data surrounding each LOE from multiple related sources
including interaction data, documentation, and primary and secondary source
interviews. Interaction and documentation data was publicly available on Apache.org.
The study also included one e-mail interview with a core developer and secondary
interviews with and articles written by core developers.

From Individual Contribution to Group Learning: 83

We used three content analytic schemes to analyze group interaction data from
mailing list. One scheme analyzed group learning process, the second the learning
triggers, and the third LOE. Interviews and documentation served to corroborate
findings from interaction data. The content analysis process followed Miles and
Huberman's (1994) interactive model. We started the data analysis using initial
content analytic schemes, but modified these schemes as new indicators emerged.
Intercoder reliability tests were conducted and modifications made to the content
analytic schemes until the various coders reached acceptable intercoder agreement
(Baker-Brown et al., 1990) (LOE scheme (containing learning triggers scheme):
89.6% agreement; learning process: 91% agreement.)

5 Results and Discussion

The Apache group had no formal role structure, procedures, or guidelines to guide
group membership, rules for task management, coding style and structure, system
requirements or work plans at the start of the project in February of 1995. Individuals
interested in the project joined a mailing list (new-httpd@hyperreal.com) where
members contributed ideas, code, bug report and bug fixes based on needs and
interests. During the period of observafion, 6,649 messages were posted to the
mailing list, and the group produced 38 versions of Apache as a result of 236 of
patches, bug fixes, bug reports, and documentation.- Figure 3 displays activity level
(number of postings in the mailing list), project's stage of development and major
releases overtime.

l£--^" ^^"-"^--^g-

Figure 3 Group Activity in Mailing Lists over Time

84 Hala Annabi, Kevin Crowston, Robert Heckman

Messages posted to the mailing list came from eight core developers and 46 active
(co-developers) and occasional (active users) contributors ̂ Code submissions were
made by the eight core developers and 24 co-developers and active users. During this
period of observation we identified 178 LOE

Due to space limitations, in remainder of this section we will present selected
findings that illustrate the nature of learning opportunity episodes, and the events that
trigger them.

1, Group learning requires interaction
Figure 4 suggests that the distribution of LOE is correlated with the distribution of

level of activity over time (number of LOE was scaled up in figure 4). This further
suggests that level of group activity is important for group learning. Periods marked
by limited group activity (interaction between the group members) are also associated
with periods of fewer learning opportunities. A significant example of this occurred
in the period between May and July. During this period, the level of group activity
(measured by the number of postings to the mailing list) suggested that there was little
group activity taking place. However, documentation and the content of the messages
revealed that individuals were independently developing code. These individuals

1 ^ 1

y / *̂ / ^y/y/;
j&^^y»<i^</!v/«- f̂c^ /̂̂ WST*

Figure 4 Distribution of Learning Opportunity Episodes vs. Level of
Activity Over Time

* Note: the number of co-developers and active users is estimated based on our analysis of
messages in leaming-opportunity episodes and not the total number of messages during this
period

From Individual Contribution to Group Learning: 85

might have learned and gained insight about the code, but the group did not learn as a
result of individual knowledge. In fact, the group witnessed the least number of
learning opportunity episodes during the period. Not until the group started to
interact again to integrate the individual contributions did the group learn. To
integrate the individual contributions, the group developed new shared mental models
and coordinating mechanisms, as evident in the increase of learning in July.

2. A majority of learning opportunities had a product focus
In our analysis we discovered that learning opportunities had a focus on either

developing the group product (e.g. writing code and documentation), developing
processes for producing the product (e.g. contribution guidelines, voting procedures),
or developing both product and process. Table 1 indicates that 72% of the episodes
focused on developing the product. In comparison, 56% of episodes are focused on
the process. This suggeists that the group activities are less focused on developing
processes and more focused on developing the product.

Table 1 Focus and Type of Learning Opportunity Episodes

(Froduct vs* Process)

Proem'' ' ''^ ['-:

Produet

Product BBd Proei^s

Total: Type of Ii«amiiit

TypenfLearaiiig
(Scared Mental Models or Rules);

'SMM '

11
64

10

85

Enle

21

4

0

25

Botli

18
11

39

68

5

Total: foeus of |
episode 1

50

79

49

178

J. Some opportunities produced no learning
As presented in table 2, of the 178 episodes collected, 150 led to change in

behavioral potential and 28 led to no change. Most group activities provided
opportunities for developing shared mental models of product and process. It is no
surprise that 91% of episodes leading to learning resulted in developing shared mental
models as indicated in table 2. Only 9% of learning outcomes strictly developed rules
and guidelines. Developing rules and guidelines is present in 38% of episodes
leading to learning. However, it is important to note that even the episodes that only
lead to changes in rules displayed SMM behaviors as will be discussed later in this
paper.

86 Hala Annabi, Kevin Crowston, Robert Heckman

Table 2 Learning Outcomes

1 Outcoine

No learning
Change in shared mental
model

Change in rule
Change in both rule and
shared mental model

Namber

28

93

14

43

178

Total Niipber
of Episodes.

16%

51%

8%

25%

Percentage of
Ipisod^ that
Xed to 1

0%

62%

9%

29%

4, Product-focused episodes produce different learning than process-focused
episodes

Product- focused episodes appeared to have different learning outcomes than do
episodes focused on process or both process and product. Process-focused episodes,
for example, have a higher probability in leading to no learning (32%) than product-
focused episodes (11%) or both process and product-focused episodes (6%). This
suggests that the group is more likely to ignore learning triggers that are process-
focused and respond to triggers that are product-focused. Also, process-focused
episodes are more likely to lead to both shared mental models and rules (33%) than
product-focused episodes (13%).

Table 3 Learning Opportunity Episodes Focus and Learning Outcomes

Focus of
Episode
(Process or
Product)

Process

Product

Product and
Process
Total Learning
Outcome

Learning Outcome

No
Learning

16

9

3

28

Shared
Mental
Models

10

63

20

93

Rule

10

2

2

14

Both Rules
and Shared
Mental
Models

14

5

24

43

Total of
focus of
episode

50

79

49

178

From Individual Contribution to Group Learning: 87

5. The majority of learning triggers were internal
We identified a total of 13 different types of internal and external triggers (table

4). In the 178 LOE 75% of the learning triggers were internal and 25% were external.
External learning triggers were more likely (23%) to lead to no learning than internal
learning triggers (13%). Internal triggers are more likely (88%) to generate complex
learning episodes. This suggests that this group was less attentive to learning stimuli
generated by users on the periphery.

External

Internal

Table 4 Frequency of Learning Triggers

User need or request*
New technology*
External expectation/ requests

*
Offer to contribution or new

member (Grant, 1996)
Error*

Misrepresentations or gaps in
understanding*

Conflict (Gladstein)
Lack of resources (Hackman)
Error (Argyris & Schon, 1978)
Share information of code and

product status*
Efficacy of the process
(Anderson et. al.)
Innovation in the process*
Innovation in the product*

44
13
3

11

6
11

illlliilllil
29
0
0
25

35

17
16
12

'y f'-•$!'<'\'i> •''.'•

25%
7%
2%

6%

3%
6%

^•••iiiiii!
16%
0%
0%
14%

20%

10%
9%
7%

6, The group devised its own learning mechanism
An important learning trigger was the mechanism developed by the group to share

information on code and product status. This mechanism was developed to ensure
every member had the same understanding. A member, (often a release coordinator)
would provide the group with a summary of the code and the patches with the
intention of generating a discussion to clarify understanding. Other members
contributed information to correct errors or omissions provided in the summary. This
was an important mechanism for learning, as it addressed shared mental models about
the code and about who is doing what, as well as providing grounds for deciding on
to-do lists and timelines. This trigger generated 20% of all learning episodes (the
largest percentage for any one learning trigger) and 35% of complex episodes

88 Hal a Annabi, Kevin Crowston, Robert Heckman

(episodes focusing on both product and process, and both shared mental models and
rules).

6 Conclusion

This study had both theoretical and pragmatic implications. The theoretical
implications of this research raised new insights into the study of learning in
distributed work groups, and addressed several issues concerning the definition,
content, outcome and process of learning in these groups. Extending what prior
research suggests (Simon, 1991; Grant 1996)), the study discovered that individual
learning is not sufficient to change group behavior. It must be integrated into group
process and product for learning to occur. This integration is accomplished through
an information intensive process that relies heavily on building shared mental models.

We also discovered that learning episodes were more likely to be triggered when
the group was focused on its primary mission: (that of writing code) than when it was
focused on working processes. This may not be surprising, given that in voluntary
organizations such as open-source projects, many important group functions (e.g.
role, status) are dependent on the action of writing code. A result that is perhaps more
surprising, given claims about the egalitarian and democratic nature of open-source
communities, is the fact that learning triggers originating in the periphery of the
community where less active users reside were less likely to be attended to by the
core. These findings suggest that deeper invesfigation of the social dynamics of open-
source projects may reveal surprising results. Project leaders and management of
distributed groups in general, may use findings from this study to improve the
management and design of their groups.

References

Argyris, C. and Schon, D. (1978) Organizational Learning, London: Addison-
Wesley.

Baker-Brown, G., Ballard, E., Bluck, S., De Veries, B., Suedfeld, P., & Tetlock, P.
(1990). Coding Manual for Conceptual/Integrative Complexity: University
of British Columbia University of California, Berkeley

Belanger, F., & Collins, R. (1998). Distributed Work Arrangements: A Research
Framework. The Information Society, I4{1), 137-152.

Brooks, F. P., Jr. (1975). The Mythical Man-month: Essays on Software Engineering.
Reading, MA: Addison-Wesley

Brown, J. S., & Duguid, P. (1991). Organizational Learning and Communities-of-
Practice: Toward a Unified View of Working, Learning, and Innovation.
Organization Science, 2(1), 40-57.

From Individual Contribution to Group Learning: 89

Cannon-Bowers, J. A., & Salas, E. (1993). Shared Mental Models in Expert Decision
Making. In Individual and Group Decision Making, Castellan, N.J. (Ed.).
Lawrence Erlbaum Associates: Hillsdale, NJ, 221-246.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design
process for large systems. CACM, 31{\ 1), 1268-1287.

Dougherty, D. (1992). Interpretive Barriers to Successful Product Innovation in Large
Firms. Organization Science, 5(2), 179-202.

Grant, R. M. (1996). Toward a knowledge-based theory of the firm. Strategic
Management Journal, 77(Winter), 109-122.

Gladstein, D. (1984), Groups in Context: A model of task group effectiveness.
Administrative Science Quarterly, 29(4), 499-517

Grinter, R. E., Herbsleb, J. D., & Perry, D. E. (1999). The Geography of
Coordination: Dealing with Distance in R&D Work. In Proceedings of the
GROUP '99 Conference (pp. 306-315). Phoenix, Arizona, US.

Hackman, J. R. (1986). The design of work teams. In J. W. Lorsch (Ed.), The
Handbook of Organizational Behavior (pp. 315-342). Englewood Cliffs, NJ:
Prentice-Hall.

Hayes, J. and Allison, C. (1998) Cognitive Style and the Theory and Practice of
Individual and Collective Learning in Organizations, Human Relation, 51(7).

Herbsleb, J. D. «& Moitra, D. (2001). Global Software Development. IEEE Software
(March/April), 16-20.

Huber, G.P. (1991). Organizational Learning: The contribution processes and the
Literatures. Organization Science. 2(1): 88-115.

Jarvenpaa, S. L., & Leidner, D. E. (1999). Communication and trust in global virtual
teams. Organization Science, 10(6), 791-815

Kraut, R. E., Steinfield, C , Chan, A. P., Butler, B., & Hoag, A. (1999). Coordination
and virtualization: The role of electronic networks and personal
relationships. Organization Science, 10(6), 722-740.

Lin, F. & Lin S. (2001) A Conceptual Model for Virtual Organizational Learning,
Journal of Organizational Computing and Electronic Commerce, Vol. 11(3),
Pg. 155-178.

Maier, G.W., Prange, C. and Rosenstiel, L. 2001, Psychological Perspective of
Organizational Learning, in M. Dierkes, A. Berthoin Antal, J. Child, and I.
Nonaka (eds.), Handbook of Organizational Learning and Knowledge, New
York, Oxford Press, 14-34.

Miles, M. B., & Huberman, A. (1994). Qualitative Data Analysis: An Expanded
Sourcebook. Thousand Oaks, CA: Sage

Miner, A.S. and Mezias, S.J. (1996), Ugly Duckling No More: Pasts and Futures of
Organizational learning. Organization Science, 7(1): 88-99.

Orlikowski, W. J. (2002). Knowing in Practice: Enacting a Collective Capability in
Distributed Organizing. Organization Science, 13(3), 249-273

Robey, D., Khoo, H. M,, & Powers, C. (2000). Situated-learning in cross-functional
virtual teams. IEEE Transactions on Professional Communication
(Feb/Mar), 51-66.

Senge, P. (1990). The Fifth Discipline: The art and practice of the learning
organization. London: Random House.

90 Hala Annabi, Kevin Crowston, Robert Heckman

Simon, H. A. (1991). Bounded Rationality and Organizational Learning.
Organization Science, 2, 125-134

Walton, R. E., & Hackman, J. R. (1986). Groups Under Contrasting Management
Stratedies. In P. S. G. a. Associates (Ed.), Designing Effective Work Groups
(pp. 168-201). San Francisco, CA: Jossey-Bass.

Yin, R. (1984). Case Study Research, Beverly Hills, CA: Sage Publications Inc.

The role of mental models in FLOSS
development work practices^

Kevin Crowston^ and Barbara Scozzi ^
1 Syracuse University, Syracuse (USA), crowston@syr.edu

2 Politecnique of Bari, Italy, bscozzi@poliba.it

Abstract. Shared understandings are important for software development as
they guide to effective individual contributions to, and coordination of, the
software development process. In this paper, we present the theoretical back
ground and research design for a proposed study on shared mental models
within Free/Libre Open Source Software (FLOSS) development teams. In par
ticular, we plan to perform case studies on several projects and to use cognitive
maps analysis to represent and compare the mental models of the involved
members so as to gauge the degree of common knowledge and the development
of a collective mind as well as to better understand the reasons that underlie
team members actions and the way common mental models, if any, arise.

1. Introduction

This paper examines the role of shared mental models in work practices, i.e., the
way people coordinate, communicate, learn and make decisions, and the way such
models emerge within Free/Libre Open Source Software (FLOSS) development
teams. The difficulties of distributed software development are emphasized in the lit
erature on software development and distributed teams ([!]; [2]). The lack of a com
mon organizational setting or functional background can make socialization, commu
nication and coordination processes difficult, so reducing team performance and in
creasing the need for explicit coordination and learning among members ([3]; [4]).
Languages and cultural differences can lead to misunderstanding, reducing the effec
tiveness of communications ([5]; [6, p.l]). Furthermore, because teams rely on com
puter-mediated communication, it can be difficult for members to develop the infor
mal relationships and communications necessary to address interpersonal issues [7] .
However, the case of FLOSS development presents an intriguing counter-example.
Effective FLOSS development teams somehow profit from the advantages and evade
the challenges of distributed softAvare development [8].

To understand the origin of work practices, we focus specifically on the role of
mental models (e.g., conceptions of the project, other team members, users, competi
tors or programming standards) that guide team members' behaviours and shape their
actions. In this paper, we present the theoretical background and research design for a
proposed study on shared mental models. The goals of the study are 1) finding evi
dence for the existence of shared mental models that shape team work practices and

This research was partially supported by NSF Grants 03-41475, 04-14468 and 05-27457. Any opin

ions, findings, and conclusions or recommendations expressed in this material are those of the authors and

do not necessarily reflect the views of the National Science Foundation.

Please use the following format when citing this chapter:

Crowston, K., and Scozzi, B., 2006, in IFIP Intemational Federation for Information
Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi,
W., Scotto, M., Succi, G., (Boston: Springer), pp. 91-97

92 Kevin Crowston and Barbara Scozzi

2) trying to assess how such models arise. The study is part of a larger research pro
ject aimed to identify the dynamics through which self-organizing distributed teams
develop and work.

2. Theory: Mental models and software development

Shared mental models, as defined by Cannon-Bowers and Salas [9, p. 228] "are
knowledge structures held by members of a team that enable them to form accurate
explanations and expectations for the task, and in turn, to coordinate their actions and
adapt their behavior to demands of the task and other team members". Research sug
gests that shared mental models help improve performance in face-to-face [10] and
distributed teams [11]. Shared mental models can enable teams to coordinate their ac
tivities without the need for explicit communications ([12]; [13]). Without shared
mental models, individuals from different teams or backgrounds may interpret tasks
differently based on their individual backgrounds, so making collaboration and com
munication difficult [14]. The tendency for individuals to interpret tasks according to
their own perspectives and predefined routines is exacerbated when working in a dis
tributed environment, with its more varied individual settings.

Studies have identified the importance of shared understanding for software de
velopment ([15]; [16]). Curtis et al. [7, p.52], note that "a fundamental problem in
building large systems is the development of a common understanding of the re
quirements and design across the project team." They go on to say that, "the tran
scripts of team meetings reveal the large amounts of time designers spend trying to
develop a shared model of the design". The problem of developing shared mental
models is likely to particularly affect FLOSS development, since FLOSS team mem
bers are distributed, have diverse backgrounds, and join FLOSS teams in different
phases of the software development process ([17]; [18]). In short, shared mental mod
els are important as guides to effective individual contributions to, and coordination
of, the software development process.

Based on [19], we identify socialization, conversation and recapitulation as the
means through which shared mental models are built. First,' new members joining a
team learn how they fit into the process being performed through socializafion, e.g.,
by following a "joining script" [20]. Members need to be encouraged and educated to
interact with one another so as to develop a strong sense of "how we do things around
here". Barley and Tolbert [20 p. 100] similarly note that socialization frequently "in
volves an individual internalizing rules and interpretations of behaviour appropriate
for particular settings". Second, conversation is critical in developing shared mental
models. It is difficult to build shared mental models if people do not talk to one an
other and use common language. Meetings, social events, hallway conversations and
electronic mail or conferencing are all ways in which team members can get in touch
with what others are doing and thinking (interestingly though, many of these modes
are not available to FLOSS teams). Finally, [19] stress the importance of recapitula
tion. To keep shared mental models strong and viable, important events must be "re-

The role of mental models in FLOSS development work practices 93

played", reanalyzed, and shared with newcomers. The history that defines who we are
and how we do things around here must be continually reinforced, reinterpreted, and
updated.

Most of the existing studies on shared mental models remain conceptual, though a
few empirical studies in this area have investigated the relationship between team or
organizational factors and the presence of shared mental models. However, while in
creasing attention has been lately devoted to the topics of knowledge creation, knowl
edge sharing and learning within the FLOSS development teams, (e.g. [22], [13];
[23]) to our knowledge no other studies have yet looked in detail at shared mental
models for FLOSS development. For example, [23] focus on how knowledge is cre
ated and shared based on a case study, the KDE project. However, the study does not
specifically examine which process aspects/practices are/are not shared and how ex
tensive the sharing process is. [13] try to assess the importance of shared mental mod
els for project coordination, but do not directly investigate the presence of shared
mental models. Our project will therefore address this gap in the literature.

3. Research methodology

In this section, we describe the research methodology we will be adopting for the
study. To achieve our goal, we plan to perform case studies on several FLOSS pro
jects. In order to ensure that we are studying team large enough to have interesting
work dynamics, we have selected projects with more than seven core developers. Dif
ferent FLOSS projects are being examined and the attendant team members con
tacted. All the team members of the projects willing to take part to the study will be
interviewed.

Interviews will be based on a semi-structured protocol designed to identify how
team members interpret their role and the other members' roles, how they act and the
reasons for their behaviours, eventual tacit norms and practices and the way such
practices have arisen. To address the first set of concerns, the interview protocol will
be organized in the following sections.
• Developer demographics. Descriptive data about developers, such as areas of ex

pertise, formal role, years with the project, other projects in which they partici
pate as well as perception of their role and other members' role in the project.

• Project rules and norms. Any explicitly stated norms or rule as perceived by de
velopers.

• Project environment and constraints. The environment in which the team oper
ates, constraints that they have to deal with, customers and competitors.

• Development strategy. The overall approach to project development.
• Development process. Process by which the software is developed (activities, de

pendencies, coordination mechanisms), tools and technology used for software
development, as well as to submit and handle bugs, patches and feature requests,
decision-making processes.

• Team organization. Team structure and specific'team roles.

94 Kevin Crowston and Barbara Scozzi

• Socialization conversation and recapitulation. Actions related to socialization,
conversation and recapitulation as perceived by developers.

As to the latter aspects, in the interviews we will identify specific actions that can
help building shared mental models. Therefore, the interview protocol will assess how
and if socialization, conversation and recapitulation occur within the teams.

4. Analysis: Cognitive mapping techniques

Interview transcriptions will be analyzed using cognitive mapping techniques
[24]. Cognitive maps are graphic tools used to represent concepts and ideas a person
associates to a given issue (i.e., the topic of the map). Cognitive maps can be used
with an explicative, a predictive, and/or a reflective purpose [25]. In this project, cog
nitive maps will be adopted for an explicative purpose, i.e., finding evidence of the
existence of shared mental models, the way models shape team work practices and
arise within FLOSS development teams.

Different methodologies have been proposed in the literature to develop cognitive
maps. For data collection, the main approach consists of the administration of semi-
structured interviews ([26], [27]). Some scholars have also developed more structured
schemes [28] or models to make people self-interview, e.g. the self-Q technique by
Bougon [29]. To develop maps, documents can also be used rather than interviews.

Based on the interview text, maps will be created by using a technique called
Documentary Coding Method [30], which involves identifying the main concepts
cited by the respondents and the relationships among them. A cognitive map is char
acterized by two ontologies, namely concepts and causal links among them [24].
Concepts represent ideas, opinions arid key issues associated to the topic of the map.
Concepts are linked by causal relationships, which can be mainly distinguished in
cause/effect (which do not imply intentionality) or means/end relationships. Concepts
are graphically represented by nodes and relationships by arrows. Concepts that rep
resent the cause or the means to achieve a given goal are situated at the arrow's tail,
concepts that represent the effect or the end at the arrow's head.

Different methodologies to analyze and compare maps also exist. In most studies
quali-quantitative metrics, e.g. number of heads, tails, domain and centrality, are used
[31]. Ad hoc metrics have also been defined to compare maps. The most well-known
have been developed by [32]. In our study, maps will be analyzed by
measuring/examining at least the following quali-quantitative metrics:
• Map complexity. It is given by the number of concepts on the map and the

link/concept ratio.
• Heads and Tails Map heads are concepts represented by nodes that only have ar

rows going inside. They represent developers' final end/goal and/or the effects of
their perception. Tails are concepts represented by nodes that only have arrows
going outside. They explain/describe the causes of some perceptions and/or
means to be adopted to achieve goals.

The role of mental models in FLOSS development work practices 95

• Domain and Centrality. Domain and centrality provide information about the
importance of concepts. In particular, a concept domain is given by the number
of direct links. On the contrary, by the centrality analysis both direct or indirect
links are used to assess the importance of concepts, so providing information on
those concepts that are often unconsciously considered as the most relevant.

• Sets. Sets are groups of concepts that deal with a specific issue or topic. By
counting the number of concepts mentioned in the maps for each set it is possible
to assess the importance/complexity associated to the object of the set. We also
will investigate the characteristics of concepts within sets (i.e. the number of
heads, goals, and domain and centrality).

Through cognitive maps analysis we will be able to represent and compare the
mental models of the developers about the project and project team so as to gauge the
degree of common knowledge and the development of a collective mind as well as to
better understand the reasons that underlie team members actions and the dynamics
based on which common mental models, if any, arise ([24]; [33]; [34]). We can also
examine the distribution of these models, e.g., which parts of the model are shared by
most team members and which are common only among the core developers.

The main benefit that derives from the adoption of the maps is the ease of the
analysis of different perspectives. The graphical representation facilitates identifica
tion of the key issues and the differences among different positions. Moreover, the
adopted metrics facilitate the understanding of concepts or relationships not perfectly
clear or conscious to individuals. These relationships can be more easily stressed than
is the case when other qualitative tools (such as case studies or simple interviews) are
used.

Of course, cognitive maps also present some drawbacks. In particular, the stage of
the knowledge elicitation (interviews and codification of collected data) is the most
critical. This observation is based on the difficulties we encountered in other projects
during map development [e.g. 35]. Suchiconsideration is also broadly discussed in the
literature. As most of the qualitative research methodologies, the knowledge schemes
of the interviewer (i.e., the researcher) can strongly influence the findings. By knowl
edge scheme we mean the culture, interests and experiences of the interviewer. The
researcher's knowledge scheme can influence the way questions are asked (so influ
encing the answers) and, above all, the way data are analyzed. As already mentioned,
there exist some techniques that try to reduce the subjectivity, but they introduce other
sources of error [32]. For example, by providing an ex-ante defined list of possible
constructs and concepts (though in some cases they can be extended by respondents)
the answer possibility of the respondents is limited and can be biased. Based on our
previous experience, we have decided to adopt semi-structured interviews so trying to
minimize the effects of biases. Despite the drawbacks, we argue that cognitive maps
can be effectively used to identify the mental models of the FLOSS team members
and to assess if they are shared and how they affect work practices.

5. Expected results

96 Kevin Crowston and Barbara Scozzi

The proposed study will have conceptual, methodological as well as practical con
tributions. The study fills a gap in the literature with an in-depth investigation of the
mental models of FLOSS teams. Furthermore, we will use cognitive maps, which
have never been used to investigate mental models within FLOSS development
teams. The project will advance knowledge and understanding of FLOSS develop
ment and distributed work more generally by understanding the role and the extent of
shared mental models within the teams. Understanding the dynamics of action in the
teams is important to improve the effectiveness of FLOSS teams, software develop
ment teams, and distributed teams in general. ,As distributed teams are increasingly
adopted by firms for a wide range of knowledge work, the study results can indeed be
useful for managers willing to adopt distributed teams in their own organization.

References
[I] Belanger, F. (1998). Telecommuters and Work Groups: A Communication Network Analy

sis. In Proceedings of the International Conference on Information Systems (ICIS) (pp.
365-369). Helsinki, Finland.

[2] Carmel, E., & Agarwal, R. (2001). Tactical approaches for alleviating distance in global
software development. IEEE Software(March/April), 22-29.

[3] Finholt, T., Sproull, L., & Kiesler, S. (1990). Communication and Performance in Ad Hoc
Task Groups. In J. Galegher, R. F. Kraut & C. Egido (Eds.), Intellectual Teamwork. Hills
dale, NJ: Lawrence Erlbaum and Associates.

[4] Robey, D., Khoo, H. M., & Powers, C. (2000). Situated-leaming in cross-fiinctional virtual
teams. IEEE Transactions on Professional Communication(Feb/Mar), 51-66.

[5] . D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, "An Empirical Study of Global
Software Development: Distance and Speed," in Proceedings of the International Confer
ence on Software Engineering (ICSE 2001). Toronto, Canada, 2001, pp. 81-90.

[6] Massey, A. P., Hung, Y.-T. C, Montoya-Weiss, M., & Ramesh, V. (2001). When Culture
and Style Aren't About Clothes: Perceptions of Task-Technology "Fit" in Global Virtual
Teams. In Proceedings of GROUP '01. Boulder, CO, USA.

[7] Curtis, B., Walz, D., & Elam, J. J. (1990). Studying the process of software design teams. In
Proceedings of the 5th Intematidnal Software Process Workshop On Experience With
Software Process Models (pp. 52-53). Kennebunkport, Maine, United States.

[8] Alho, K., & Sulonen, R. (1998). Supporting virtual software projects on the Web. 7th Inter
national Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises
(Wetice 98).

[9] Cannon-Bowers, J. A., & Salas, E. (1993). Shared mental models in expert decision mak
ing. In N. J. Castellan (Ed.), Individual and Group Decision Making (pp. 221-246). Hills
dale, NJ: Lawrence Erlbaum Associates.

[10] Rentsch, J. R., & Klimonski, R. J. (2001). Why do 'great minds' think alike?: Antecedents
of team member schema agreement. Journal of Organizational Behavior, 22(2), 107-120.

[II] Sutanto, J., Kankanhalli, A., & Tan, B. C. Y. (2004). Task coordination in global virtual
teams. Paper presented at the Twenty-Fifth Intemational Conference on Information Sys
tems, Washington, DC.

[12] Crowston, K., & Kammerer, E. (1998). Coordination and collective mind in software re
quirements development. IBM Systems Journal, 37(2), 227-245.

[13] Espinosa, J. A., Kraut, R. E., Lerch, J. F., Slaughter, S. A., Herbsleb, J. D., & Mockus, A.
(2001). Shared mental models and coordination in large-scale, distributed software devel
opment. Paper presented at the Twenty-Second Intemational Conference on Information
Systems, New Orleans, LA.

The role ofmental models in FLOSS development work practices 97

[14] Dougherty, D. (1992). Interpretive barriers to successful product innovation in large firms.
Organization Science, 3(2), 179-202.

[15] Levesque, L. L., Wilson, J. M., & Wholey, D. R. (2001). Cognitive divergence and shared
mental models in software development project teams. Journal of Organization Behavior,
22, 135-144.

[16] Sagers, G. W., Wasko, M. M., & Dickey, M. H. (2004). Coordinating Efforts in Virtual
Communities: Examining Network Governance in Open Source. Paper presented at the
Tenth Americas Conference on Information Systems, New York, NY.

[17] Edwards, K. (2001, June 11-12). Epistemic communities, situated learning and Open
Source Software development. Paper presented at the Epistemic Cultures and the Practice
of Interdisciplinarity Workshop, NTNU, Trondheim.

[18] Gasser, L., & Ripoche, G. (2003). Distributed Collective Practices and F/OSS Problem
Management: Perspective and Methods. Conference on Cooperation, Innovation & Tech
nologic (CITE2003), University de Technologic de Troyes, France.

[19] Brown, J. S., & Duguid, P. (1991). Organizational learning and communities-of-practice:
Toward a unified view of working, learning, and innovation. Organization Science, 2(1),
40-57.

[20] von Krogh, G., Spaeth, S., & Lakhani, K. R. (2003). Community, Joining, and Specializa
tion in Open Source Software Innovafion: A Case Study. Research Policy, 32(7), 1217-
1241.

[21] Barley, S. R., & Tolbert, P. S. (1997). Institutionalization and structuration: Studying the
links between action and institution. Organization Studies, 18(1), 93-117.

[22] Lanzara, G. F., & Momer, M. (2003). The Knowledge Ecology of Open-Source Software
Projects. Paper presented at the 19th EGOS Colloquium, Copenhagen.

[23] Hemetsberger, A., & Reinhardt, C. (2004). Sharing and Creafing Knowledge in Open-
Source Communities: The case of KDE. Paper presented at the The Fifth European Con
ference on Organizational Knowledge, Learning, and Capabilities, Innsbruck, AU.

[24] Pidd, M. (1996). Tools for thinking modeling management science. Chichester: John
Wiley and Sons.

[25] Codara, L. (1998). Le mappe cognitive, uno strumento di analisi per la ricerca sociale e per
I'intervento organizzativo. Rome: Carocci Editore.

[26] Eden, C. (1988). Cognitive mapping. European Journal of Operational Research, 36, 1-13.
[27] Laukkanen, M. (1998). Conducting causal mapping research: Opportunities and chal

lenges. In C. Eden & J.-C. Spender (Eds.), Managerial and organizational cognition: The
ory, methods and research (pp. 168-191). Thousand Oaks, CA: Sage.

[28] Cossette, P. (1994). Cartes cognitives et organizations. Paris: Eska.
[29] Bougon, M. G. (1983). Uncovering cognitive maps: the Self-Q technique. In G. Morgan

(Ed.), Beyond method: Strategies for social research. Beverly Hills, CA: Sage.
[30] Wrightson M.T., (1976). The documentary coding method, in Axelrod R. (ed.), Structure

of Decision. The cognitive maps of political elites, Princeton (NJ), Princeton University
Press.

[31] Cossette P., Audet M., 1992, Mapping of an idiosyncratic schema. Journal of Management
Studies, vol.29, n.3, pp. 325-347.

[32] Markoczy L., Goldberg J., 1995, A method of eliciting and comparing causal maps, Jour
nal of management, vol.21 n.2, pp. 305-333.

[33] Carley, K. M. (1997). Extracting team mental models through textual analysis. Journal of
Organizational Behaviour, 18, 533-558.

[34] Carley, K. M., & Palmquist, M. (1992). Extracting, representing and analyzing mental
models. Social Forces, 70(3), 601-636.

[35] Albino V., Kuhtz S., Scozzi B. (2004). Cognitive maps on sustainable development in in
dustrial districts: a pilot study, in Johansson B., Karlsson C, Stough, R.R. (eds.). Indus
trial Clusters and Inter-Firm Networks, Elgar Publ, 149-170, ISBN: 1-84542-010-1.

A Robust Open Source Exchange for Open
Source Software Development

Amit Basu

Cox School of Business, SMU
Dallas, TX 75275-0333, USA

abasuf^smu.edu

Abstract. This paper addresses the development of mechanisms for the creation
of OSSD exchanges that could be used by developers across any geographical
range, as long as all the developers can interact via some open network
infrastructure such as the Internet. The structure of these exchanges can range
from public repositories such as Sourceforge.net to intra-organizational forums
for software development within an enterprise. We examine in particular the
structure of an exchange model based on protocols for a robust online
marketplace.

1 Introduction

Open source software development (OSSD) thrives upon the ability to collaborate
with other developers, and to reuse existing code developed by others. Thus,
mechanisms for knowledge sharing and search are key resources for such
development processes. Effective search requires mechanisms to learn about the
availability of code segments that can be useful components in system development,
and to obtain those segments when relevant. Effective knowledge sharing requires
mechanisms that are sensitive to identities, roles and needs of each participant in the
collaborative processes in OSSD.

This paper addresses the development of mechanisms for the creation of OSSD
exchanges that could be used by developers across any geographical range, as long as
all the developers can interact via some open network infrastructure such as the
Internet. The structure of these exchanges can range from public repositories such as
Sourceforge.net to intra-organizational forums for software development within an
enterprise.

The different types of exchange or repository vary in terms of their support for
key processes, and the paper surveys some of the key differences. It then examines
one specific type of exchange in particular. The key feature of this exchange, which
we call a robust open source exchange (ROSE), is that it enables individuals in
specific roles (and groups) to interact in a way that provides them full control over
disclosure of information, including identity information. At the same time, it
provides robust mechanisms for accountability, so that anyone attempting fraud
and/or deception can be reliably disclosed.

While the ability to withhold identity and information may seem counter to the
open exchange philosophy underlying OSSD, it has some significant merits when

Please use the following format when citing this chapter:
Basu, A., 2006, in IFIP International Federation for Information Processing, Volume 203,
Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi,
G., (Boston: Springer), pp. 99-108

100 AmitBasu

implemented appropriately. The key consideration is that each participating individual
controls their information and its disclosure, rather than the exchange itself, its owner,
or any third party. Also, such an exchange provides a vital qualification procedure
that can promote greater confidence in knowledge sharing and accountability.

2 Key ideas underlying OSSD

Perhaps the best characterization of open source software is in terms of the Open
Source Definition [Perens, 1999], which lays out the following features that a
program must have to qualify as an open source program:

Free distribution
Availability of source code
Creation and distribution of derived works
Integrity of each author's source code
No discrimination against persons or groups
No discrimination against fields of endeavor
Distribution of license to all parties who obtain the program

On the other hand, in the enterprise context, while the merits of OSSD are
desirable [Persson et al, 2005] the following considerations are important
determinants of application development strategy:

• The ability to maintain control over intellectual property as well as
applications that are strategic.

• The ability to ensure that developers are trustworthy and have no
malicious intent.

• The ability to acquire necessary software development resources without
disclosing identities and purposes to the general public (or to
competitors).

• The ability to hold developers accountable for their work.
• The ability to set up development projects with schedule, quality and

functionality stipulations that can be monitored and controlled.

These two sets of features are completely consistent with an approach that factors
in reliability and security as requisites of the software development environment. In
the setting of enterprise applications, and particularly with specialized applications
having limited applicability across a broad population, an interesting approach to
consider is an exchange, which allows providers and users of open-source software to
find each other. Note that users may themselves be developers, and also note that the
exchange may involve payment or not. Furthermore, the exchange may also be used
to assemble the relevant distributed development team, in which specific individuals

A Robust Open Source Exchange for Open Source Software Development 101

or groups are assigned roles such as coder, maintainer, GUI Designer, documenter,
etc.

Related Work

The idea of using market mechanisms as a basis for either the development or
execution of computer programs is not new. In the realm of program control and
execution, one of the most interesting approaches is based on the notion of agoric
systems (from the Greek work "agora", which refers to a meeting place or market)
[Miller and Drexler, 1988]. Computer-based systems and programs can be organized
as agoric systems both in the small and in the large. The basis for the former is that
software objects encapsulated with rational decision-making methods, can achieve
meaningful execution of computer-based systems, when allowed to interact within the
structure of a decentralized control mechanism that functions according to the rules of
a well-structured marketplace. These rules respond to varying priorities of the
autonomous objects, orderly contention for scarce resources such as processors,
memory, storage and channels. This conceptualization is not directly related to
software development. However, agoric systems can also be modeled in the large,
namely at the level of the collection of resources that together construct a program or
system. In other words, a collection of developers cooperating with each other in a
democratic fashion can also be organized to interact according to the rules of a
marketplace. In traditional software development, some of the insights derived from
such approaches can be applied to the organization of third-party software
development, or "contract programming" and outsourcing. Examples of economic
models of such contexts include [Whang, 1992], [Whang, 1995], [Gopal, 2003].

There have also been a number of papers on market-based models for OSSD, on
the notion that OSSD inherently relies upon a highly distributed and decentralized
organizational model. One of the most interesting perspectives on this issue is
presented in [Raymond, 2001], in which the hierarchical control structure of
proprietary software development is contrasted with the more "bazaar"-like market-
oriented model of OSSD.

Types of Exchanges for OSSD

Perhaps the earliest form of online exchange for OSSD was the online bulletin
board and list-servers. These are largely un-moderated sites that allow relatively free
access and participation, with relatively few controls and/or rules. While these are
useful and inclusive, they don't scale well, and can easily be corrupted with irrelevant
and/or unqualified contributions and even disruptive content. Also, the primary focus
of these sites is on email-type interaction, and theus they do not have cataloged
repositories for code, tolls, etc.

102 AmitBasu

A popular approach to collaborative software development is the use of
community-based software exchanges such as GNUenterprise.org [Scacchi, 2005]. In
these community sites, there is little or no central control, although there are roles and
protocols for interaction and participation. These have largely evolved from online
bulletin boards and list-servers, and are largely directed at individual developers.

Another, related type of exchange is a community-oriented exchange that is
developed by an OSS vendor. Strictly speaking, many of the exchanges that position
themselves as community sites fall into this category. These include SourceForge.net,
Eclipse and NetBeans.org [Jensen and Scacchi, 2005b]. The problem with such
exchanges is that while the sponsorship of a major stakeholder (the vendor sponsor)
promotes participation by individuals, the existence of competitive threats
discourages institutional participation, by the sponsor's competitors for instance.

In all these approaches, the primary focus is on the individual developer/coder,
rather than institutional participation. Therein lies a major challenge for moving
OSSD from the fringes of mainstream software development to a forum and approach
for enterprise-level and strategic software tools and applications. It is this challenge
that we attempt to address with the proposal in this paper, namely the idea of a Robust
Open Source Exchange.

3 A Robust Open Source Exchange (ROSE) Model

In this section, we describe a model for a robust open source exchange (ROSE)
based on a set of protocols developed for robust online marketplaces, in [Kalvenes
and Basu, 2005]. The protocols were designed to support the following features:

1. Participants in the marketplace have to qualify, through an authentication process
conducted by a trustee. The qualification ptocess can also include multiple levels
(akin to credit ratings), so that traders can participate in a particular transaction
(say at a given value ($) level) only if they are qualified to do so.

2. Buyers and sellers can transact through the marketplace without disclosing their
identities or the details of their trades to anyone else, including the operator of the
marketplace.

3. Since the marketplace operator has no competitive advantage over other traders,
both the operator as well as its competitors can participate in transactions without
fear of disclosure of transactions or strategies.

4. Although transactions can be anonymous to everyone other than its participants,
any trader who commits fraud can be held accountable and identified by the
marketplace operator and trustee.

5. Trader performance in the marketplace can be rewarded, so that trader
qualifications can be modified over time.

A Robust Open Source Exchange for Open Source Software Development 103

The OSSD context is different from the transactional marketplace context
described above. However, there are important similarities as well. Each of the above
features can be reexamined in the OSSD context as follows:

1. Participants in a ROSE have to establish their credentials and be authenticated.
This authentication process can also be used to qualify the participant for specific
role. For instance, a relatively inexperienced programmer may be qualified to be a
coder/contributor, but not a project lead or a tester/SQA (software quality
analyst). Note that this in no way violates the spirit of the open software
development "bazaar" [Raymond, 2001]. It merely ensures that users of code can
trust that the providers are competent.

2. Users can post projects/requirements without disclosing who they are, and
providers can bid for the contracts anonymously. At the same time, the
qualification system ensures that only qualified bidders can post bids. The bids
can be not only for code contribution, but also for other roles (e.g., project lead,
tester, maintainer, etc). This is an important consideration if OSSD is to
effectively penetrate the corporate software development market. While
companies may be open to sharing code and related resources with the software
development community, they are unlikely to want to share information about
their software development needs and efforts with competitors. By keeping its
identity secret during the negotiation phase of engaging external developers, a
company can avoid prematurely revealing strategic intents to their competitors.
On the other hand, this feature may also be very important for developers. For
instance, many OSS developers are professionals who are employed by firms that
are not supporters of OSSD, or are committed to proprietary platforms and
systems. Such individuals may not be able to participate and contribute to OSSD
if their companies knew of this. Protecfing their idenfifies while at the same time
supporting authentication of their technical capabilities and credentials may be a
necessary condition for their participation.

3. The privacy mechanisms and prevention of information asymmetry enables
anyone to set up a ROSE, including an entity/firm that is itself a software
developer. This is also important, since it has traditionally been difficult for
enterprises to achieve the dual goals of having both broad participation in an
exchange (which is easier when potential participants know that the exchange
will give them access to large and important entities) and prevention of
competitive exploitation (the threat of which is greater when a potential
participant's competitor is the owner/operator of the exchange).

4. Users can be assured that any provider who bids on a job and wins a contract
cannot refute on the commitment even if their identity is not disclosed to the
ROSE authority at transaction time. The authority can identify the errant
participant through a robust protocol. At the same time, the same protocol cannot
be used improperly by the authority itself, without disclosure to the community.
Once again, this is an important capability. If companies and individuals are to
trust the exchange as a reliable means of connecting with qualified partners, there
has to be adequate accountability. At the very least, anyone who violates the

104 AmitBasu

codes of conduct must be identifiable, and held accountable. A common
assumption in OSSD is that the openness of the community facilitates poor
quality to be detected and problems to be resolved very efficiently due to the viral
nature of the development process. While this may be acceptable for certain types
of applications and projects, it is inadequate for enterprise-level projects.
Therefore a positive feature of the ROSE approach is that it provides support for
accountability and substantial recourse for dispute resolution.

5. As providers gain experience and credentials, they can be qualified at higher
levels based on their track record at the ROSE. This is particularly important in a
setting where individual participants want to offer their services through the
exchange. The qualification level at which an individual enters the exchange may
be different from their capabilities and credentials after gaining experience on one
or more projects. The ability to re-qualify developers at higher levels thus is
highly desirable. At the same time, if the identities of developers cannot always
be revealed, the rewarding process has to work within those constraints. A
positive feature of the ROSE approach is that this is supported as well.

We next describe how the following key processes can be implemented in a
ROSE model:

• Registration and qualification of new participants
• Posfing of a project RFP (request for proposal) by a prospective

consumer
• Posting of bids by prospective providers in response to a project RFP
• Completion of a contract on a project
• Protectionof intellectual property

In terms of the degree and iscope of anonymity in the ROSE, any or all of the
following modalifies are possible:

1. Provider (P) and user (U) both disclose their identities throughout the process to
everyone.

2. P discloses identity to everyone along with his offer, and U remains private.
3. Both P and U remain anonymous to the rest of the system throughout
4. Both P and U remain anonymous to both the system and to each other

throughout.

While any and all of the above modalities may be desirable to support in a ROSE,
in this paper we focus on the last case, where the highest level of privacy is desired.
Each of the other cases can be supported by methods that are relaxations of the
method proposed here.

A Robust Open Source Exchange for Open Source Software Development 105

Protocols for Anonymous Contracting

To start with, a new participant has to register at the ROSE, and be qualified at a
certain level. This is done by the applicant obtaining a reliable digital certificate from
a credible authority (e.g., a certificate authority firm such as Verisign or AT&T), and
proof of qualifications in the form of a resume, transcripts, and endorsements from
employers and/or customers. These are provided electronically to a trustee entity. The
trustee is a firm or entity that works with the exchange operator, but may be totally
independent. The trustee examines the application and supporting materials, and then
provides the applicant with a software module (or client-side applet) called a
certificate management system (CMS). This module resides and runs on the
participant's computer, and enables them to participate in the exchange. Note that
while we assume that the CMS is resident on a specific client machine, in principle it
could be a mobile module that the participant could keep with them and attach to any
machine that they use to access the exchange.

The CMS then generates a number of digital certificates for the participant for use
in online transactions on the exchange. These certificates identify the participant, and
include their credentials. The CMS blinds these certificates [Schneier, 1996], and then
transmits them to the trustee, who then selects an arbitrary but substantial number of
the certificates for examination. The trustee requests the blinding key for these
certificates from the participant's CMS, and then un-blinds and examines the
certificates (opening the certificates with the public key from the participant's original
digital certificate). If satisfied that the certificates are all authentic and valid, the
trustee then signs the remaining, blinded certificates, and returns them to the
participant. The participant's CMS then un-blinds the signed certificates, which can
then be used as validated certificates for transacting on the exchange. Note that this
process ensures that only authenticated entities can participate in the exchange, but
neither the trustee, nor the exchange operator can track the participant's behavior on
the exchange, since the trustee does not know which specific certificates are being
used in each transaction (or who they belong to), and the exchange operator cannot
open the transaction certificates^ since it does not have the relevant public key.

During the transaction process, each participant (whether a developer bidding on a
project or a company offering a project) provides a valid transaction certificate with
each message sent to the exchange. These interactions between the different parties
can be in the "public domain", in the sense that, they are all posted on the exchange
and are visible to all participants accessing the exchange and participating in that
transaction's negotiation. When at some point there is a convergence between the
relevant parties to a commitment to a contract, the parties can exchange signed
messages that allow them to continue further communications in a fully attributed
manner (i.e., they can identify themselves to each other).

A key feature of this process is that each of the parties has full control of how
much information they divulge about themselves, and to whom, as well as when. This
is an important consideration in an exchange where control of privacy may be a key
constraint.

106 AmitBasu

In the event of any conflict or misconduct, the other party can ask the exchange
operator to identify and confront (and/or prosecute) the responsible party. Clearly,
this is difficult to do in a setting where neither the trustee nor the operator knows the
identities of the parties in any individual transaction. However, we have developed a
robust method for this, in [Kalvenes and Basu, 2005]. It is robust, but expensive,
since it involves a possibly large number of participants. In the commercial
marketplace context, this can be addressed effectively by requiring each participant to
put up a substantial escrow deposit held by the marketplace operator. However, this
may be impractical in the OSSD setting. In this case, an alternative "penalty" may be
blacklisting by the community and expulsion from the exchange.

Another consideration is the revision of developer qualifications based on
performance. Again, using techniques developed in [Kalvenes and Basu, 2005], each
developer can be given tokens by the exchange and/or the customer for each
successful project, and can redeem these tokens with the trustee to revise their
credentials.

Additional Considerations for OSSD

The above approach provides an innovative way to build and operate an online
exchange for OSSD. However, there are some additional considerations in a ROSE
setting that are worth examining. For instance, a big component of the value
proposition of any software exchange is the repository of OSS code that is developed
by participants, and which can be revised and further developed by other participants.
As it turns out, support for this is completely consistent with the ROSE model. Note
that the privacy concerns that motivate the ROSE model are driven by the strategic
implications of tying applications to the companies that commission them, and the
possible conflicts of interest that might constrain developers. The code itself can be
easily maintained in an open repository, and issues of copyright can be supported by
tagging the code with the certificate of the developer.

Another consideration in the OSSD environment is that projects involve multiple
roles, and thus the relevant interactions are not always bilateral, between developer
and customer, but possibly multilateral. Furthermore, this multilateral communication
may have to be maintained throughout the development process. An interesting
question is the extent to which such communication and collaboration would be
possible without the different developers, testers, GUI designers, porters, etc. [Yeates,
2005] knowing each other.

Conclusion

In this paper, we propose a model for an online exchange that could be used to
support OSSD within a large and distributed community of both developers and user
entities. It attempts to address some key concerns about OSSD as it moves from the

A Robust Open Source Exchange for Open Source Software Development 107

fringes to the mainstream of software development at the enterprise level. It is
intriguing to consider the use of such a model for an open source exchange. While
many of the features of the ROSE model suggest a "closed" environment without the
community benefits of more typical OSSD environments, it is actually possible for
both a ROSE and a public repository (such as sourceforge.net) to coexist within the
same context. In other words, the ROSE can be used to facilitate search,
authentication, valuation and contracting, all of which are key to having a robust and
reliable enterprise development environment. At the same time, once the development
team is assembled through the ROSE, the development process itself can be
facilitated by a public repository.

References

1. Anandasivam Gopal, Konduru Sivaramakrishnan, M. S. Krishnan, Tridas
Mukhopadhyay, "Contracts in Offshore Software Development: An Empirical
Analysis", Management Science, vol: 49, no. 12, 2003, 1671-1683.

2. Justin R. Erenkrantz and Richard N. Taylor, "Supporting Distributed and
Decentralized Projects: Drawing Lessons from the Open Source Community",
Proc. 1st Workshop on Open Source in an Industrial Context, Anaheim,
California, October, 2003.

3. Chris Jensen and Walt Scacchi, ''Collaboration, Leadership, Control, and
Conflict Negotiation in the NetBeans.org Software Development Community",
Proc. 38^^' Hawaii Intern, Conf. Systems Science, Waikola Village, HI, 2005.

4. Chris Jensen and Walt Scacchi, "Experiences in Discovering, Modeling, and
Reenacting Open Source Software Development Processes", Proc. Software
Process Workshop, Beijing, China, May 2005.

5. Joakim Kalvenes and Amit Basu, "Design of Robust Business-to-Business
Electronic Marketplaces with Guaranteed Privacy", working paper, Cox School
ofBusiness, SMU,2005.

6. Martin Michlmayr, Francis Hunt and David Probert, "Quality Practices and
Problems in Free Software Projects", Proceedings of the First International
Conference on Open Source Systems, Genova, 2005.

7. Mark S. Miller and K. Eric Drexler, "Markets and Computation: Agoric Open
Systems", in Bernardo Huberman (Ed), The Ecology of Computation, Elsevier
Science, 1988.

8. Bruce Perens, Open Sources: Voices from the Open Source Revolution,
O'Reilly Media, Inc., 1999.

9. Anna Persson, Brian Lings, Bjom Lundell, Anders Attsson and Ulf Arlig,
"Communication, coordination and control in distributed development: an OSS
study", Proceedings of the First International Conference on Open Source
Systems, Genova, 2005.

10. Eric S. Raymond, The Cathedral & the Bazaar : Musings on Linux and Open
Source by an Accidental Revolutionary, O'Reilly Media, Inc. (2001).

108 AmitBasu

11. Robert J. Sandusky, "Software Problem Management as Information
Management in a F/OSS Development Community", Proceedings of the First
International Conference on Open Source Systems, Genova, 2005.

12. Walt Scacchi, "Open EC/B: Electronic Commerce and Free/Open Source
Software Development", Proc. 5^^ Workshop on Open Source Software
Engineering, St. Louis, MO, May 2005.

13. B. Schneier, Applied Cryptography, John Wiley, NY, 1996.
14. Whang, S., "Contracting for Software Development", Management Science, vol.

38, no. 3, 1992, 307-325.
15. Whang, S., "Market Provision of Custom Software: Learning Effects and Low

Balling", Management Science, vol. 41, no. 8, 1343-1357.
16. Stuart Yeates, "Roles in Open Source Software Development", OSS Watch,

University of Oxford, 2005.

Part IV

Introduction of OSS in Companies and PAs

The Organizational Adoption of Open Source
Server Software by Belgian Organizations

Kris Ven and Jan Verelst

University of Antwerp, Department of Management Information Systems,
Faculty of Applied Economics

Prinstraat 13, B-2000 Antwerp, Belgium
{kris.ven, jsin. verelst}Qua.ac.be

Abstract . This study reports on five case studies in Belgian organiza
tions that currently use open source server software. Respondents were
asked about their motivation to use open source server software. Our
results indicate that the lower cost, high reliability and availability of ex
ternal support are the prime reasons why organizations use open source
software. The often claimed advantage of open source software of having
access to the source code was found relevant only for those organiza
tions who perform development based on open source software. Some
factors that were found relevant in previous studies (such as the support
of standards) were however deemed less important by the organizations
in our sample.

Key words: open source, organizational adoption, innovation, Linux

1 Introduction

The Linux operating system has evolved considerably since its introduction in
1991. Especially in the last 2-3 years, Linux - and open source software in gen
eral - has become a viable solution for commercial organizations. Several factors
may account for this. First, open source businesses such as RedHat and SuSe
(recently acquired by Novell) have gained momentum and are able to provide
the necessary resources to support the enterprise versions of their Linux dis
tributions. Second, large software vendors such as IBM and HP have officially
declared their commitment to the Linux operating system. These evolutions
have enabled other software vendors such as Oracle and SAP to certify their
products for the Linux operating system. Third, open source software has re
ceived a lot of attention in the media in the past few years. Moreover, many
advantages of open source software are claimed by academic as well as profes
sional literature and by open source advocates. Despite this increased attention
and the availability of support for open source software, many organizations are
still uncertain whether adopting open source software would be beneficial.

Despite the fact that much research has been devoted to open source soft
ware, most studies have focused on the software engineering or social aspects
of open source software development. Relatively little effort has been devoted

Please use the following format when citing this chapter:
Ven, K., and Verelst, J., 2006, in IFIP International Federation for Information
Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi,
W., Scotto, M., Succi, G., (Boston: Springer), pp. 111-122

112 Kris Ven and Jan Verelst

to studying the adoption decision of organizations concerning the use of open
source software. Although some research has been performed on this topic, addi
tional research is still necessary to increase our understanding of the adoption
decision. We will therefore build upon the available literature on this topic,
and investigate the reasons why Belgian organizations adopt open source server
software.

The rest of the paper is structured as follows. We will start in Sect. 2 by
describing the research design of our current study. In Sect. 3, we will discuss
our findings and contrast them with previous studies. Finally, in Sect. 4, we
will summarize our most important findings and describe their theoretical and
practical implications.

2 Research Design

2.1 Scope

The field of open source software is very diverse and complex. It is therefore
difficult to reach conclusions that are valid for all open source projects. Con
sequently, in order to reach an acceptable level of internal validity, we must
narrow the scope of our study to a specific type of open source software and
hence make a certain sacrifice with respect to the external validity.

We decided to focus exclusively on the adoption of open source server soft
ware. We use the term open source server software to refer to both open source
operating systems (such as Linux and FreeBSD), as other open source software
for server use (for example the Apache web server or the Bind name server).

This choice is motivated by the fact that Linux is generally considered a
stable, mature product that is already in use by a significant number of organi
zations. Furthermore, many important open source Internet server applications
such as Bind, Apache and Sendmail are also considered to be mature and have
a dominant market share. Consequently, we expect that the reasons to adopt
Linux are similar to the reasons to adopt other open source server software.
This hypothesis is supported by the FLOSS study that showed that organiza
tions perceived the benefits of open source operating systems, databases and
website applications as rather equivalent [1]. A similar research approach has
been undertaken by other researchers [2].

2.2 Methodology

We used the exploratory case study approach to study the organizational adop
tion decision on open source server software. The case study approach is well-
suited to study a contemporary phenomenon in its natural setting, especially
when the boundaries of the phenomenon are not clearly defined at the start of
the study [3, 4]. We conducted a series of in-depth face-to-face interviews with
respondents from five Belgian organizations to identify the factors that influence

The Organizational Adoption of Open Source Server Software 113

the decision to use open source server software. Organizations were sampled on
the basis of two criteria: the size of the organization measured by the number
of employees and the sector in which the organization operated (based on the
NACEi-BEL classification scheme). Respondents within each organization were
selected using the key informant method. Since the use of a single respondent
has been shown to give inconsistent results [5], we tried to speak to both a
senior manager (e.g. the IT manager), and a technical person (e.g. the system
administrator) whenever possible.

The interviews took place between July and September 2005. An overview of
the ca^es in our study is shown in Table 1. The interviews were semi-structured,
and the format was revised after each interview to incorporate new findings [4].
Each interview lasted 45-60 minutes, was recorded and was transcribed verba
tim. In order to increase the validity of the findings, respondents were sent a
summary of the interview and were requested to suggest any improvements if
necessary. Follow-up questions were asked by telephone or via e-mail. The tran
scripts were coded by using techniques from grounded theory [6], and were then
further analyzed using procedures to generate theory from qualitative data, as
described in the literature [4, 7, 8]. Various data displays were used to visualize
and further analyze the qualitative data [7, 9].

Table 1. Overview of the organizations in our study

Name Sector

OrganizationA Audio, video and
telecommunica
tions

Organizations Machinery and
equipment

OrganizationC Telecommunica
tions

OrganizationD Publishing and
printing

OrganizationE Food and bever
ages

Employees Informants Extent

11

749

1346

31

204

2

2

1

1

2

of adoption

moderate

extensive

limited

extensive

moderate

3 Results

Although these case studies are part of an ongoing study, we can already report
some interesting results concerning the adoption of open source software. Previ
ous studies have shown that even a limited number of cases can provide a better
insight into the adoption decision of organizations [10, 11]. In this section, we
will present the most important adoption factors that were encountered during

114 Kris Ven and Jan Verelst

the cross-case analysis, and contrast our findings to previous studies in this
field.

3.1 Cost

While the Free and Open Source movement tries to downplay the {free beer)
cost advantage, lower cost is one of the most important reasons why organiza
tions consider using open source software. We can distinguish between two cost
aspects: software and hardware.

The lower or non-existent license costs associated with open source software
was cited by all organizations as an important driver towards the use of open
source software. None of the organizations made a formal Total Cost of Owner
ship (TCO) calculation to estimate the long-term costs of open source software.
A respondent in OrganizationA was aware that there were many hidden costs
in using open source software and was therefore not sure whether the resulting
TCO would be positive. This is consistent with other case studies [11].

Many respondents pointed out that the lower cost of open source software is
not a sufficient condition for adoption. In most cases, the lower cost combined
with the high reliability of open source server software (see Sect. 3.2) was cited
as an important way to reduce the costs of the IT infrastructure. Hence, we
found support for the commoditization of IT that is predicted by some authors
[12]. Consistent with this idea, organizations try to lower costs for systems with
a low strategic value, such as operating systems and server software [13, 14].

The use of the Linux operating system is also a way for some organizations
to lower their hardware costs. All organizations that used Unix mentioned the
fact that using Linux could result in a significant reduction in hardware costs.
This can be explained by the fact that Linux can operate on Intel hardware,
while Unix hardware from Sun or HP is much more expensive. Moreover, the
reliability of Intel hardware is considered to be comparable to that of Unix hard
ware. Organizations that currently use the Windows operating system however,
cannot realize any hardware savings since Windows runs on the same hardware
as Linux.

Both hardware and software cost were found to be important factors in
the decision making process in previous studies [1, 2, 11, 15, 16, 17]. Although
some studies hypothesize that lower license costs are a lesser issue for large
organizations who have sufficient financial resources, we found no support for
this claim. This might suggest that cost savings are an important reason for
small as well large organizations in a time in which IT budgets are increasingly
under pressure.

3.2 Reliability

Four out of five organizations in our sample indicated that the high reliability
of open source server software such as Linux and Apache is one of the main
advantages of open source software. A perception present in two organizations

The Organizational Adoption of Open Source Server Software 115

was that ^^[Open source software] just works, and can run years without any
problems.''. The high reUabiUty is however not inherent to open source soft
ware. OrganizationB clearly indicated that they consider only those open source
projects that have already proven their reliability.

The reliability of Linux was also found to be a major factor contributing to
the adoption of Linux in previous studies [1, 2, 15, 16]. In comparison with [2],
we notice considerable less variability in the perceptions towards the reliability
of open source server software. Two factors can account for this. First, our case
studies were conducted 1-3 years after those of [2]. In the meanwhile, Linux
has matured further, received a lot of attention in the media and received the
backing of large vendors such as IBM. Therefore, organizations may perceive
Linux to be more mature and reliable compared to two years ago. Some re
spondents in our sample indeed indicated that they consider Linux to be more
mature compared to some years ago, and that the support of companies such
as IBM further increases the trust in open source software. Second, given our
limited sample it is likely that we did not capture the whole range of opinions
regarding the reliability of open source software.

3.3 Trialability

Trialability is one of the factors in the classic Diffusion of Innovations (DOI)
theory and refers to the ability to try out a new innovation on a limited basis
before making a decision on whether to adopt the innovation or not. Trailability
of an innovation is hypothesized to be positively related to the adoption of that
innovation [18]. With respect to open source software, it can be argued that
open source software is easier to try out than commercial software, because a
full version of the software can be freely downloaded from the Internet.

All organizations in our sample emphasize the importance of being able to
try software before using it in a production environment. Although the triala
bility of open source software is not questioned, a wide range of opinions exists
on whether open source software is easier to try out than commercial software.
Organization A, OrganizationD and OrganizationB consider open source soft
ware easier to try out, because it can Simply be downloaded from the Internet,
without cost and without any administration. OrganizationB and Organiza-
tionC however do not distinguish between the trialability of commercial and
open source software, because it is possible to obtain demo or trial versions of
commercial software. They admit however that using these trial versions may
be a bit more cumbersome since most vendors require prior registration. These
two latter companies consider the trialability of open source software a less im
portant advantage. This is in contrast to previous studies on the adoption of
open source software, where the trialability of open source software was found
to be an important advantage [15, 16].

116 Kris Ven and Jan Verelst

3.4 Access to Source Code

Having access to the source code of open source software and therefore being
able to modify or customize the software is one of the main advantages claimed
by open source advocates. However, given the technical nature of applications
such as Linux and Apache, it is doubtful whether many users will actually
examine and/or modify the source code. The term Berkeley Conundrum has
been introduced to question the value of the availability of the source code when
users do not download, examine and/or modify the source code [19].

Of the five organizations in our sample, three of them (OrganizationC, Or-
ganizationD and OrganizationE) have never made use of the source code to
improve or customize the open source software they use. These organizations
primarily used stable software such as Linux and Sendmail, and respondents
indicated that there was no need to make any modifications to these pack
ages. Consequently, the availability of the source code was not a factor during
the adoption decision in these organizations and was not considered to be an
advantage (or disadvantage).

OrganizationA and OrganizationE did make use of the source code of some
open source packages. These organizations developed organization-specific cus-
tomizations or incorporated open source components in the IT infrastructure.
In these cases, having the source code of the open source components was an
advantage during integration and debugging. Consequently, it is not the possi
bility to make modifications that is valued but rather the insight into the inner
workings of a component that can be gained by examining the source code that
is greatly appreciated.

These findings are consistent with previous studies which also reported that
most users found little need for modifying the source code of stable open source
server software, or tried to limit their modifications to customizations [2, 11, 17].

3.5 Switching Costs

All organizations except OrganizationD mentioned that the experience of cur
rent employees is important when migrating to other platforms. A possible
migration from Unix to Linux is perceived to be much easier than the switch
from Windows to Linux. This can be explained by the fact that Linux is ba
sically a Unix clone and many tools (e.g. sed and grep) are shared between
both platforms. Except for OrganizationE, all organizations in our sample did
have some prior experience with the Unix platform. This means that the cur
rent installed base will have a great impact on the ability of an organization
to switch to Linux. This is consistent with previous studies on the adoption of
Linux [15, 16, 20, 21]. This leads us to conclude that the current experience
of employees will have a great impact on the migration costs, since training of
personnel is an expensive activity.

The Organizational Adoption of Open Source Server Software 117

3.6 Boundary Spanners

Boundary spanners are individuals within an organization who connect their or
ganization with external information and can bring the organization in contact
with new innovations [22, 23]. In the case of open source software, it is possible
that the introduction of open source software is mainly a bottom-up initiative
in which employees are using open source software at home, and introduce it in
their work place when an opportunity arrives.

We have found some support for this hypothesis in our sample. In Orga-
nizationA, OrganizationD and OrganizationE, the introduction of open source
software was primarily a bottom-up initiative where a number of employees
possessed some knowledge on open source software and introduced it in the
organization when appropriate. This was most pronounced in Organization A.
A respondent there indicated that at the time of the organization's foundation,
there were many employees (including the organization's founders) that had a
"^rm conviction'^ in open source software. As a consequence, most software that
was used was open source software. During the next few years, several people
holding that ''firm conviction" left the company. As a result, the choice for open
source software became more pragmatic. The role of boundary spanners during
the introduction of open source software has also been described in previous
research [16].

3.7 External Support

The availability of external support for open source software was cited by almost
all organizations as being important. Traditional literature as well suggests that
the availability of external knowledge and skills may influence organizations
to start using innovations [23]. For open source software, the nature of these
external skills can however take different forms.

First, certain Linux vendors such as RedHat and SuSe offer enterprise ver
sions of their Linux distributions, including support services such as automatic
updates and access to a helpdesk. In our sample, only OrganizationE deliber
ately uses a Linux enterprise version including a support contract from SuSe.
Having support for an operating system was considered to be very important
for this organization, although the support contract was seldom used. Organi
zation A also uses a SuSe Linux Enterprise edition, but this was requested by
the external company that hosts part of the IT infrastructure. OrganizationE
initially installed a boxed version of RedHat Application Server, which came
with a one-year support contract. This support was however not extended after
this period, since there was little need for it.

Apart from Linux vendors, open source consultancy firms also offer support
with respect to the installation and maintenance of open source systems. In our
sample, only OrganizationD made use of an external service provider to install
the hardware and software infrastructure and to provide technical support when
requested. The main reason for outsourcing these tasks is that only one person

118 Kris Ven and Jan Verelst

in this organization is responsible for the IT infrastructure. OrganizationE also
relies on an external consultant for resolving technical issues with the open
source systems they use.

Hence, having support for Linux is considered by several organizations to be
important, especially at the start of the adoption. These results are consistent
with the observation that the support for Linux from major companies is an
enabler for the adoption of Linux [11, 15, 16, 17, 24]. Moreover, OrganizationC
perceives the support for open source software currently as insufficient, which is
an important reason for not using Linux. A perceived lack of external support
was also found to be an important barrier in other studies [11, 20, 21].

3.8 Vendor Lock-in

It has been argued that one reason why organizations choose Linux and open
source software is to be more independent from software vendors and therefore
to reduce vendor lock-in [1, 24]. OrganizationA and OrganizationE in our sam
ple indeed mentioned the desire to be independent of a single vendor, and that
open source is a way to reahze this.

OrganizationC and OrganizationE however minimized the importance of
vendor lock-in during software selection. OrganizationC tries to avoid vendor
lock-in but opted for the Unix platform where vendor lock-in is considered to
be less of an issue, compared to the Windows platform. OrganizationE (the
Belgian office of a large multinational firm) does not consider vendor lock-in an
issue, since the organization is large enough to negotiate with software vendors.

Although there is mixed support for this factor, we expect that organizations
which are trying to reduce vendor lock-in will rather resort to the Unix world,
in which Linux is one of the alternatives. Open source software is therefore not
the only option to reduce vendor lock-in.

3.9 Open Standards

It has been argued that the adoption of open source software is tightly in
terconnected with the choice for open standards [11, 13, 24, 25, 26, 27]. The
importance of compliance to standards was also found to be a significant factor
in a study on the adoption of open systems [28]. We have however found Httle
support for this hypothesis.

OrganizationA expressed no preference for open standards on server level.
The other organizations expressed to be in favor of open standards because
they ensure data accessability, facilitate integration and result in more endur
ing platforms. OrganizationE however mentioned that Unix also supports open
standards. OrganizationC did not consider the support of open standards an
advantage of open source software, although they considered the support of
open standards very important during the selection process.

Given the information obtained from this sample, we can deduct that or
ganizations tend to separate the use of open standards from the use of open

The Organizational Adoption of Open Source Server Software 119

source software. In general, open source software does support open standards,
but organizations do not seem to consider this a reason for choosing open source
software.

4 Discussion

4.1 The Adoption of Open Source Software

By analyzing the data obtained from these case studies, we were able to identify
several factors that are important during the adoption decision with respect to
the use of open source server software.

The lower license costs, combined with a high reliability of mature open
source packages such as Linux were found to be the two most important rea
sons for adopting open source server software. Organizations will therefore not
jeopardize their operations by adopting less reUable open source software, just
in order to realize cost savings. The fact that organizations tend to primarily
appreciate the "free beer" rather that the "free speech" aspect of open source
software has been identified as one of the challenges for the open source commu
nity [29]. On the other hand, open source software may be an important driver
towards the commoditization of IT, replacing commercial platform software by
inexpensive alternatives.

Organizations with a Unix installed base may realize additional savings in
hardware costs and may experience lower switching costs. These switching costs
will be an important barrier for organizations who have a Windows installed
base, requiring retraining of personnel. The availability of external support for
open source software was also cited as being an important condition for adopting
Linux. The often claimed advantage of having access to the source code of open
source software was found to be a much less important factor in the adoption
decision.

These previous findings are quite consistent with previous literature in this
field. On the other hand, some of the factors that were found to be relevant
in other studies, such as the support of open standards, the avoidance of ven
dor lock-in and the trialability of open source software were perceived as less
important advantages of open source software. We are currently conducting
additional case studies to verify our findings. This initial set of case studies
however already provided us with rich information on the adoption decision of
organizations.

4.2 Implications

Our study contributes to both theory as practice. Since the open source software
landscape has changed considerably in the last 2-3 years, it is useful to reassess
the reasons why organizations choose open source software. We contributed
to the existing body of knowledge on the adoption of open source software

120 Kris Ven and Jan Verelst

by contrasting the findings of our study, conducted in Belgian organizations,
to previous studies. Similarities and differences between these results help to
further triangulate the data on the adoption of open source software. This leads
to a better understanding of the open source adoption decision by organizations.
We also contributed to the general adoption theory by examining the adoption
of a specific technology, namely open source server software.

The practical relevance, of this study is two-fold. First, organizations will
be given more insight in why and when adopting open source software may
be beneficial, since it has been argued that organizations should know the real
benefits and pitfalls of open source software [30]. Hence, a better understand
ing of these adoption factors may lead to better planning and more informed
decision making. Second, the open source community may benefit as well from
the results of this study. Insight into the real reasons why organizations use
open source software may help the community to emphasize other advantages
of open source software that help increase its adoption. This is important since
it has recently been noted that open source communities tend to have limited
insight into the opinion of its customers [29].

References

1. Wichmann T (2002) Use of open source software in firms and public institutions
- Evidence from Germany, Sweden and UK. FLOSS Final Report - part 1, Inter
national Institute of Infonomics, Berlecon Research

2. West J, Dedrick J (2005) The effect of computerization movements upon orga
nizational adoption of open source. In: Social Informatics Workshop: Extending
the Contributions of Professor Rob Kling to the Analysis of Computerization
Movements. Irvine, California

3. Yin RK (2003) Case study research: design and methods. Sage Publications, New
bury Park, California, 3rd edition

4. Benbasat I, Goldstein DK, Mead M (1987) The case research strategy in studies
of information systems. MIS Quarterly ll(3):368-386

5. Phillips LW (1981) Assessing measurement error in key informant reports: A
methodological note on organizational analysis in marketing. Journal of Marketing
Research 18(4):395-415

6. Strauss A, Corbin J (1990) Basics of qualitative research: grounded theory pro
cedures and techniques. Sage Publications, Newbury Park, California

7. Eisenhardt KM (1989) Building theories from case study research. Academy of
Management Review 14(4):532-550

8. Dube L, Pare G (2003) Rigor in information systems positivist case research:
Current practices, trends, and recommendations. MIS Quarterly 27(4):597-635

9. Miles MB, Huberman AM (1994) Qualitative data analysis: An expanded source
book. Sage Publications, Thousand Oaks, California, 2nd edition

10. Hoick J, Pedersen MK, Larsen MH (2005) Open source software acquisition: Be
yond the business case. In: Proceedings of the Thirteenth European Conference
on Information Systems. Regensburg, Germany

The Organizational Adoption of Open Source Server Software 121

11. Larsen MH, Mogens JH, Pedersen K (2004) The challenges of open source soft
ware in IT adoption: Enterprise architecture versus total cost of ownership. In:
Proceedings of IRIS'27 - the 27th Information Systems Research Seminar in Scan
dinavia

12. Carr NG (2003) IT doesn't matter. Harvard Business Review 81(5):41-49
13. Kwan SK, West J (2005) A conceptual model for enterprise adoption of open

source software. In: Bolin S (ed) The standards edge: Open season. Sheridan
Books, Ann Arbor, Michigan, pp. 274-301

14. O'Reilly T (2005) The open source paradigm shift. In: Feller J, Fitzgerald B,
Hissam S, Lakhani K (eds) Perspectives on free and open source software. MIT
Press, Cambridge, MA, pp. 461-481

15. Dedrick J, West J (2004) An exploratory study into open source platform adop
tion. In: Proceedings of the 37th Hawaii International Conference on System Sci
ences. IEEE Computer Society, Washington, DC

16. Dedrick J, West J (2003) Why firms adopt open source platforms: a grounded
theory of innovation and standards adoption. In: King JL, Lyytinen K (eds) Pro
ceedings of the Workshop on Standard Making: A Critical Research Frontier for
Information Systems. Seattle, Washington, pp. 236-257

17. Fitzgerald B, Kenny T (2003) Open source software in the trenches: Lessons from
a large scale implementation. In: Proceedings of 24th International Conference on
Information Systems (ICIS). ACM Press, New York, NY, pp. 316-326

18. Rogers EM (1983) Diffusion of innovations. The Free Press, New York, 3rd edition
19. Feller J, Fitzgerald B (2002) Understanding open source software development.

Addison-Wesley, London, UK
20. Ghosh R, Glott R (2005) Results and policy paper from survey of government

authorities. Free/Libre and Open Source Software: Policy Support (FLOSSPOLS)
Deliverable D3, MERIT, University of Maastricht

21. Goode S (2005) Something for nothing: Management rejection of open source
software in Australia's top firms. Information & Management 42(5):669-681

22. Tushman ML, Scanlan TJ (1981) Characteristics and external orientations of
boundary spanning individuals. Academy of Management Journal 24(l):83-98

23. Depietro R, Wiarda E, Fleischer M (1990) The context for change: Organization,
technology and environment. In: Tornatzky LG, Fleischer M (eds) The processes
of technological innovation. Lexington Books, Lexington, Massachussets, pp. 151-
175

24. Varian HR, Shapiro C (2003) Linux adoption in the public sector: An economic
analysis. Working paper, University of California, Berkeley

25. West J (2003a) How open is open enough? Melding proprietary and open source
platform strategies. Research Policy 32(7):1259-1285

26. Simon KD (2005) The value of open standards and open-source software in gov
ernment environments. IBM Systems Journal 44(2):227-238

27. West J (2003b) The role of standards in the creation and use of information sys
tems. In: King JL, Lyytinen K (eds) Proceedings of the Workshop on Standard
Making: A Critical Research Frontier for Information Systems. Seattle, Washing
ton, pp. 314-326

28. Chau PYK, Tam KY (1997) Factors affecting the adoption of open systems: An
exploratory study. MIS Quarterly 21(1): 1-24

29. Fitzgerald B (2005) Has open source software a future? In: Feller J, Fitzgerald B,
Hissam S, Lakhani K (eds) Perspectives on free and open source software. MIT
Press, Cambridge, MA, pp. 93-106

122 Kris Ven and Jan Verelst

30. Weinstock CB, Hissam SA (2005) Making lightning strike twice. In: Feller J,
Fitzgerald B, Hissam S, Lakhani K (eds) Perspectives on free and open source
software. MIT Press, Cambridge, MA, pp. 143-159

The Introduction of OpenOfRce.org in the
Brussels Public Administration

Kris Ven, Dieter Van Nuffel, and Jan Verelst

University of Antwerp, Department of Management Information Systems,
Faculty of Applied Economics

Prinstraat 13, B-2000 Antwerp, Belgium
{kris . ven, d ie ter . veoinuf f e l , j eoi. verelst}0ua. ac. be

Abstract . Open source software is increasingly used by public admin
istrations as an alternative to commercial software. In this paper we
present a case study of the transition of the ministerial cabinets of the
Brussels-Capital Region towards OpenOfRce.org. In this case, the deci
sion to use open source software was taken by the Government of the
Brussels-Capital Region. The goal of the paper is to outline the imple
mentation trajectory followed and to compare our findings to previous
studies in this field as well as other Information Systems literature. Ad
ditionally, we discuss how OpenOfl^ce.org was received by end users as
well as the IT department that was responsible for the migration. Our
findings indicate that although a migration towards OpenOfiice.org is
feasible, a number of difficulties still remain. For example, end user per
ceptions of OpenOffice.org are not always favorable and migration costs
(document conversion and training) can be significant.

Key words: open source, adoption, public administration, OpenOf-
fice.org

1 Introduction

Open standards and open source software are increasingly used by public admin
istrations (PA) in Europe. A recent survey in 13 European countries has shown
that 49% of PAs intentionally use open source software, while another 29%
make unaware use of open source software. Moreover, half of the respondents
would find an increase in open source software usage useful [1]. This increased
use of open source software has received the attention of a number of Euro
pean research projects, such as the Open Source Observatory^ of the IDABC
(Interoperable Delivery of European eGovernment Services to public Adminis
trations, Businesses and Citizens) and more recently the CO SPA (Consortium
for Open Source in the Public Administration) project^.

Although open source software is mainly used on servers, it can be argued
that the use of open source software on the desktop could result in considerable

^ http:/ /europa.eu.int/ idabc/en/chapter/452
^ http://www.cospa-project.org

Please use the following format when citing this chapter:
Ven, K., Van Nuffel, D., and Verelst, J., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 123-134

124 Kris Ven, Dieter Van NufFel, and Jan Verelst

higher savings in hcense costs; since the number of desktop Ucenses is much
larger than that of server Hcenses. On the other hand, migrating towards open
source software on the desktop is far more disruptive for end users and will
result in higher migration costs than a migration on server level (e.g. when
migrating from MS Internet Information Services to Apache). These factors
could explain why the use of open source desktop software is quite limited.
Nevertheless, about 20% of PAs included in the FLOSSPOLS study indicated
that they make use of OpenOffice.org [1].

Hence, we feel that additional research is required to assess if and how
migrations towards open source software could take place. In this paper, we
will report on the transition to open source software by the Brussels-Capital
Region. The transition primarily concerned the use of OpenOffice.org by the
ministerial cabinets of the Government of the Brussels-Capital Region. The
rest of the paper is structured as follows. We will start in Sect. 2 by describing
the background of the transition. In Sect. 3, the methodology of our present
research is discussed. Section 4 describes the implementation trajectory that
was followed during the transition. In Sect. 5, experiences from end users and
the IT department responsible for the implementation are presented. Finally,
conclusions are drawn for future migrations.

2 Background

According to the revision of the Belgian Constitution in 1970, Belgium was
officially divided into three regions: the Flemish Region, the Walloon Region
and the Brussels-Capital Region. The Brussels-Capital Region consists of the 19
communes of Brussels and is administered by two authorities: the Parliament
and the Government of the Brussels-Capital Region. The latter consists of eight
Ministries, each having its own cabinet. The Brussels-Capital Region has two
official languages: Dutch and French. This requires for example that official
documents are composed in these two languages. In 1987, a law was passed that
created the Brussels Regional Informatics Center (BRIC). The responsibilities
of BRIC include the promotion and assistance of Information Technology (IT)
in the local public administrations of the Brussels-Capital Region.

The move towards open standards and open source software by the Brussels-
Capital Region was initiated by two decisions. First, a resolution was voted in
which the use of open standards and open source software was encouraged in
the Brussels-Capital Region in order to facilitate the communication with the
citizens of the region. As a result, BRIC was required to consider at least one
open source alternative in each project. Second, based on this resolution, the use
of open standards and open source software was included in the coalition agree
ment of the Brussels-Capital Region in 2004. It was decided by the Government
of the Brussels-Capital Region that open source office software would be used
for the ministerial cabinets of the Brussels-Capital Region. OpenOffice.org was
however not mentioned by name.

The Introduction of OpenOffice.org in the Brussels PA 125

Within BRIG, OpenOffice.org was introduced in April 2004. In a second
phase, from mid-January until mid-February 2005, the ministerial cabinets were
migrated to OpenOffice.org. The transition concerned a total of 400 worksta
tions running Windows XP on which OpenOffice.org 1.1 was installed. Apart
from the desktops, 4 out of 8 servers of the cabinets were migrated from MS
Windows to Linux.

3 Methodology

In order to describe the introduction of OpenOffice.org in the Brussels Public
Administration, we opted for a descriptive case study approach. This approach
enabled us to describe the phenomenon in its real-life context [2, 3]. The case
study used an embedded design, since the use of OpenOffice.org was investigated
at BRIC as well as the ministerial cabinets of the Brussels-Capital Region.

Since BRIC was responsible for the IT services both within BRIC and within
the ministerial cabinets, we selected two respondents within BRIC using the key
informant method, namely the director of the IT department and the project
leader who was assigned to the OpenOffice.org project. This allowed us to gather
more information, since it has been shown that the use of a single respondent
leads to unreliable results [3, 4]. Both respondents where closely involved in
the migration towards OpenOffice.org. They were responsible for tasks such as
planning and coordinating the migration, developing documentation, designing
the training sessions and conducting user evaluations.

A first interview took place to gather important background information on
the case study. Based on this information, a case study protocol was crafted, in
cluding a detailed set of questions, the data collection procedures and the outline
of the case study report. The primary mode of data collection was a face-to-face
interview which was recorded for future reference. This interview was conducted
by a two person team: one researcher was responsible for posing the interview
questions, while the other was responsible for taking notes and supplement the
interview with additional questions. This also allowed for viewing the case from
two perspectives and compare the impressions of both researchers afterwards
[2, 5]. Additional sources of evidence were internal documents of BRIC, legisla
tive texts and secondary information such as press releases. Follow-up questions
were asked via e-mail. A draft copy of the case study report was reviewed by the
respondents in our interview to increase the validity of our findings. The find
ings of this case study were further compared to findings of previous studies on
the adoption of OpenOffice.org and other Information Systems (IS) literature
to further ground our conclusions.

4 Implementation

In this section, we will discuss the different phases in which the implementa
tion of OpenOffice.org took place. We will discuss successively the analysis, the

126 Kris Ven, Dieter Van NufFel, and Jan Verelst

training offered to end users, the actual migration and the conversion of doc
ument templates. We will finish by discussing the current developments of the
project.

4.1 Analys is

The IDA Open Source Migration Guidelines [6] prescribe making a detailed
business case for a possible migration towards open source software. The busi
ness case should include making a Total Cost of Ownership (TOO) analysis of
the various alternatives (proprietary vs. open source solutions) over a certain
time period. Migration costs should be included in this analysis.

Although no formal TCO analysis was performed in this case, the main
driver of the adoption of OpenOffice.org was cost reduction. The reduction in
license costs amounts to a total of 185,000 euro in the first year and 15,000 euro
in the following years (a number of remaining workstations will be migrated in
the following years, resulting in additional savings). Some authors have warned
against a focus on cost savings alone during the adoption of open source software

[7).
On the other hand, in compliance with the IDA recommendations, a pilot

project was initiated at BRIG in March 2004 to study the feasibility of a transi
tion from MS Office to OpenOffice.org. The result of the pilot project confirmed
the feasibility of migrating the ministerial cabinets to OpenOffice.org.

4.2 Training

The importance of training when starting to use a new software package has
been described in previous case studies on OpenOffice.org, as well as in tradi
tional IS literature [8, 9, 10, 11]. Training increases the proficiency of end users
with the software which in turn increases user acceptance.

The training of end users included a training course in the offices of BRIG
and a GD-ROM with additional information. The training course consisted of
a voluntary one-day session in which the basic functionality of both Open-
Office.org Writer and Gale was explained. For the first sessions, key users of
each cabinet (the cabinet clerk and an IT responsible) were invited in order to
be able to offer first-line support* for users in their cabinet. Two out of eight
ministerial cabinets considered the training to be too basic. Since participa
tion in the training was voluntary, these two cabinets decided not to encourage
staff members of their cabinet to attend the training sessions. It could be ob
served in a survey among end users (see Sect. 4.5) that users who reported
not having attended the training session also reported more problems in using
OpenOffice.org.

As some authors note [7, 12], users should be able to start practice with
OpenOffice.org immediately after training, in order to maximize the effective
ness of the training session. Given the narrow time frame of one month that
was allocated to the migration (see Sect. 4.3 for the exact time frame), this was

The Introduction of OpenOffice.org in the Brussels PA 127

impossible to achieve. However, all staff workers received their training within
one week before or after their workstation was migrated to OpenOffice.org.

At the end of the training session, a CD-ROM containing a manual, a FAQ
list and the installation files of OpenOffice.org was handed out to the partic
ipants. The manual and FAQ were mainly adopted from the OpenOffice.org
communities on the Internet. It should be noted however that significant differ
ences between the OpenOffice.org localization communities can be established.
While the French community is very active and provides much documentation,
the Dutch counterpart does not achieve the same quality. A possible explana
tion could be that the number of native French speakers is much higher than
the number of native Dutch speakers. However, this caused no significant prob
lems since the majority of staff members at the ministerial cabinets was native
French speaking, and the majority of Dutch speaking stafT members experienced
little problems in studying the French material.

4.3 Migration

As previously noted, the migration was mandatory for staff members of the
ministerial cabinets following the coalition agreement of 2004. Computer equip
ment of the ministerial cabinets is updated every five years, coinciding with
the terms of the Government of the Brussels-Capital Region. For reasons of
efficiency and to minimize discomfort for end users, it was decided to migrate
to OpenOffice.org 1.1 at the same time the user's workstation was replaced.
Hence, the phasing out of MS Office and the installation of OpenOffice.org
were performed simultaneously. This means that MS Office was no longer avail
able when OpenOffice.org was installed on the user's workstation, except in
a limited number of cases in which the user required advanced functionality
of MS Excel or MS Access (e.g. in the finance department). Concurrently, the
default data format for internal communication changed from MS Office to
OpenOffice.org format. When corresponding with external parties, the export
filters of OpenOffice.org were used to save the document in MS Office format.
Thanks to these import/export filters, it was decided not to convert existing
MS Office documents to the OpenOffice.org format.

Some authors have cautioned against this "big bang" approach since this
would increase user resistance towards adopting the software [6, 7, 12]. In this
case, it was judged that it was more convenient to immediately switch to Open-
Office.org, without temporarily installing MS Office. It was further expected
that users with an initial negative attitude towards OpenOffice.org would con
tinue using MS Office until it was deleted from their workstation. Addition
ally, changing the default document format to OpenOffice.org format further
increased the social norm for staff members to use OpenOffice.org. On the
other hand, it will be interesting to analyze the feedback of staff members (see
Sect. 4.5) with respect to the migration to check whether this strategy did have
an impact on the acceptance of OpenOffice.org.

128 Kris Ven, Dieter Van Nuffel, and Jan Verelst

4.4 Document Templates

A problem that occurred during the migration to OpenOffice.org concerned the
use of document templates. The Brussels PA has issued a very rigorous style
guide to which all documents within the PA must adhere. BRIG tried to migrate
the existing MS Office templates into an equivalent OpenOffice.org template.
However several differences between MS Office and OpenOffice.org exist which
led to incompatibilities, like for instance incorrect margins. Currently, BRIG is
finalizing the OpenOffice.org templates that comply with the style guide of the
Brussels PA.

A related difficulty consisted of editing legislative texts because of the very
specific format that has to be used. Since Brussels is bilingual, the text must
be published in two columns (one for each language) and each paragraph must
start on the same level as the corresponding paragraph in the other language
(see Fig. 1). Since French paragraphs are in general somewhat lengthier than
the Dutch, some adjustments in vertical spacing between paragraphs must be
made. In MS Word, a table with two columns and one row was used to realize
this layout. However, OpenOffice.org does not support table cells to be spread
over more than one page. Therefore, end users had to change the layout and
store each paragraph in a diff'erent cell. When a cell (i.e. paragraph) does not
fit on the bottom of the page, the cell is moved to the following page.

MS Word

|;:i:im:;z

r~

:::̂ zz;

Ijuzr

szzi^l

««. 1
»»»»«
^^ziz|
mmtmm, |

zzn"!

OpenOffice.org
Writer

IZZZI
r™~"

L»,

^ ^
Liimmuiii'"

Fig. 1. Formatting of legislative texts in MS Office vs. OpenOffice.org

4.5 Current Developments

With the aim of enhancing end user support in future projects, BRIG recently
carried out a survey within the ministerial cabinets in order to gather feedback
on the migration. In the survey, staff members are asked about their use of

The Introduction of OpenOfRce.org in the Brussels PA 129

OpenOffice.org, the training that was received and the experiences with Open-
Office.org so far. Although analysis of the results is still being performed, we
can already report on preliminary experiences of end users in Sect. 5.

Following the availability of OpenOffice.org 2.0, BRIC internally migrated
to this new version in the beginning of December 2005. The OpenDocument
format is currently used as the default data format for communication within
BRIC, while the OpenOffice.org 1.1 format is still used when communicating
with the ministerial cabinets. This upgrade was also performed to prepare a
possible migration of the ministerial cabinets towards this new version. Partly
based on these experiences, the ministerial cabinets have decided at the end of
December 2005 to upgrade to OpenOffice.org 2.0.

5 Experiences

In this section, we will report on the experiences of end users of the ministerial
cabinets and BRIC. We will focus on a number of issues that were encountered
during the migration, and which lessons were drawn from these experiences.

5.1 User Experiences

As reported in previous studies, the initial attitude of end users towards using
OpenOffice.org is an important factor in the success of the transition [7, 12, 13].
While technical problems can generally be solved, user resistance is much harder
to overcome. In this case, it can indeed be observed that users who were not con
vinced before or at the time of training are still opposed to using OpenOffice.org.
This confirms the importance of training and information dissemination towards
users before the migration takes place.

Traditional literature on individual adoption also emphasized the impor
tance of perceived ease of use and perceived usefulness of a technology in order
to increase end user acceptance [14, 15, 16]. With respect to usability, the per
ception of staff members at the ministerial cabinets is mixed. In general, users
find the usability of OpenOffice.org 1.1 to be lacking compared to MS Office.
The most often heard critique is that the look and feel of OpenOffice.org feels
outdated. A second difficulty for end users is that some tasks in OpenOffice.org
should be performed slightly differently than in MS Office. It was observed that
many users tried to work in the same manner they were used to in MS Office,
which sometimes caused problems, for example when working with formatting
styles. In those cases, BRIC used a procedural training approach [17] in which
the preferred procedure was shown during a short personal demonstration. This
was sufficient in most cases to alter the end users' old habits.

Another critique of some end users is that OpenOffice.org still lacks function
ality that is present in MS Office. These users do not consider OpenOffice.org a
fully fledged alternative for MS Office. More analysis of the survey results needs
to be performed to establish whether the features reported missing by users are

130 Kris Ven, Dieter Van Nuffel, and Jan Verelst

important in their daily tasks, since a previous study on the adoption of Open-
Office.org by PAs in Italy [7, 12] has shown that the features of OpenOffice.org
are more than adequate for daily use. This mixed perception by end users is
consistent with the observations from a previous experiment in a PA [8]. It is
further hoped that the upgrade from OpenOffice.org version 1.1 to version 2.0
will improve its perception.

It has also been suggested in literature that users may resist working with
open source desktop software, because they fear becoming deskilled by moving
away from the industry standard [6, 18, 19]. According to our respondents
at BRIG, this fear was not articulated by end users. In addition, while some
authors note that the switch from proprietary systems to open source software
may result in a decreased productivity shortly after the introduction [8, 19], no
noticeable differences were observed. It must however be noted that no formal
measurement of the productivity was performed.

5.2 Eva lua t ion

The transition to OpenOffice.org has resulted in a number of benefits, but
also involved a number of problems. A first advantage is that OpenOffice.org
uses open standards to save documents [2Q]. As mentioned in Sect. 2, the sup
port of open standards was an important factor in the decision towards using
OpenOffice.org. On the other hand, despite the fact that the OpenOffice.org
format is an open standard, it is yet only supported by OpenOffice.org. Hence,
when communicating with external parties, documents must be converted to
the MS Office format. Although the conversion performed by OpenOffice.org
works adequately in most cases, some problems may arise when MS Office doc
uments are poorly formatted, or when documents are converted multiple times
back and forth between MS Office and OpenOffice.org format. These issues are
also reported in previous studies [13]. Within the ministerial cabinets, most
documents requiring input from multiple parties mainly involve revisions in the
document text. Therefore, it was agreed upon that documents would be ex
changed without formatting between parties, and only when the document was
finalized, formatting was applied either in MS Office or OpenOffice.org. The
use of the Portable Document Format (PDF) was also promoted for documents
requiring no further modifications.

A second advantage of OpenOffice.org was its use of data sources to allow
users to communicate with external databases. Especially the fact that a doc
ument can access more than one data source is very valuable. On the other
hand, the implementation of these data sources in OpenOffice.org caused some
difficulties at first. The reference to the data source is not included in the doc
ument as it is done by MS Office, but is stored in the user profile at the user's
workstation. Therefore, when the document is exchanged between users, the
data source is lost. This required custom scripting to ensure that each user has
access to the data sources. Another related problem that was reported by end
users was the Mail Merge feature. When using the Mail Merge feature to create

The Introduction of OpenOfRce.org in the Brussels PA 131

a mailing based on an address list in a database, OpenOffice.org creates a new
document for each addressee. Therefore, a script was developed to merge these
documents back into one file. In OpenOffice.org 2.0 however, this script has be
come obsolete, since the user is given the choice between generating a separate
file for each addressee, or to generate one large file.

As mentioned in Sect. 4.5, BRIG is already using OpenOffice.org version 2.0
since December 2005. In their experience, it appears that most of the difficulties
mentioned above are solved in this new version. In general, OpenOffice.org 2.0
is considered to be an important improvement compared to version 1.1. Apart
from the improved functionality, the look and feel more closely resembles that
of MS Office which will make it easier to use than the pr^evious version. The key
users of each ministerial cabinet have already been migrated to OpenOffice.org
2.0 to provide feedback on this new version. First impressions of these key
users confirm that OpenOffice.org 2.0 indeed solves a number of issues that
were present in OpenOffice.org 1.1. On the other hand, it is noted by BRIO
that OpenOffice.org 2.0 still contains a number of important defects. Although
workarounds are possible for most of these problems, they could still have a
negative impact on the general perception of OpenOffice.org.

Finally, several authors have noted that migration costs for training, docu
ment conversion and building up expertise can be an important barrier to the
adoption of open source software [19, 21, 22]. In the past 18 months, BRIG
needed to invest a lot of time in building up expertise in OpenOffice.org, de
veloping training material and rewriting several templates that are in use by
the ministerial cabinets. However, as mentioned in Sect. 4.1, a TGO analysis
was not performed, neither before nor after the implementation. Hence, it is
not possible at this time to assess whether the migration has resulted in a lower
TGO. Nevertheless, these migration costs only occur once and could be com
pensated by additional savings in license costs in the following years. Moreover,
the time that BRIG has invested in OpenOffice.org has paid off. Thanks to
the experience with the prior installation of OpenOffice.org, BRIG was able to
reduce the time required for installation considerably. While the initial instal
lation of OpenOffice.org 1.1 at BRIG required 4 days, the upgrade to version
2.0 was completed in 1 day.

6 Conclusion

In this paper we reported on the migration of BRIG and the ministerial cabinets
of the Government of the Brussels-Gapital Region to OpenOffice.org. Our study
has a number of contributions. First, we provided insight into how the migration
to OpenOffice.org was undertaken by BRIG. Second, the main contribution of
this paper is that it further builds upon previous studies on the adoption of
OpenOffice.org as well as traditional IS literature. Hence, the findings of our
case study were contrasted with the findings of previous studies. This allowed
us to further validate these findings and provided the necessary grounding of

132 Kris Yen, Dieter Van Nuffel, and Jan Verelst

our findings in literature. Third, we discussed which successes and shortcomings
were encountered during the transition towards OpenOffice.org. It was estab
lished that while it is possible to migrate from MS Office to OpenOffice.org
for most daily use of an office productivity suite, a number of issues required
special attention which are of interest for potential adopters of OpenOffice.org.

We have seen that there were a number of technical issues that arose during
the migration towards OpenOffice.org. Much effort was spent on the conversion
of organization-specific templates. Additionally, some of the issues we discussed
were specific to the environment under study, and were for example due to the
bilingualism of Brussels. As a result of these issues, users had to alter their
way of working when formatting a document. The import and export filters of
OpenOffice.org were deemed sufficient in most cases, although some incompat
ibilities arose when repeatedly saving a file back and forth in OpenOffice.org
and MS Office format. A work-around for this problem has however been de
vised. User feedback also indicated that OpenOffice.org was not considered a
fully fledged alternative for MS Office by most users. For example, some ad
vanced features of MS Office were not supported, and the look and feel of
OpenOffice.org was considered outdated by end users. It is however expected
by BRIG that the upgrade to OpenOffice.org 2.0 could alleviate a number of
important nuisances which will improve its perception by end users. This is
supported by the feedback received from the key users who have already been
migrated to OpenOffice.org 2.0. This new version however still contains a num
ber of issues which may negatively influence the end user experience.

The migration performed by BRIG also confirmed the importance of proper
training for end users. Although the training that was provided by BRIG con
cerned basic office tasks, it was noted that users who attended the training
session reported less problems in their daily tasks. Furthermore, the training
sessions also proved to be important in creating an initial positive attitude
towards OpenOffice.org, since it was observed that attitudes of end users are
difficult to alter after the implementation. Although training material and doc
umentation was available from the OpenOffice.org community, it was observed
that there were considerable differences in quantity and quality between the
Dutch and French community material. Hence, potential adopters should take
differences between language communities into account when using documen
tation produced by the OpenOffice.org community.

While most of our findings are consistent with previous studies on the migra
tion towards OpenOffice.org, we have found a number of contradictions with
previous studies. Based upon the information we obtained from our respon
dents, users within BRIG and the ministerial cabinets did not articulate a fear
for becoming deskilled or did not suffer from any noticeable lapses in produc
tivity shortly after the upgrade. Additionally, the; "big bang" approach that
was taken did not seem to have a negative impact on the user's perceptions.
However, detailed analysis of the user evaluations is required in order to further
verify these results.

The Introduction of OpenOfRce.org in the Brussels PA 133

Thanks to the migration towards OpenOffice.org, BRIG was able to real
ize a significant reduction in license costs. It remains however unclear whether
the resulting TOO of OpenOffice.org in this case was indeed lower, since there
were considerable migration costs including training, conversion of templates
and building up expertise with OpenOffice.org. The result of these efforts will
however be useful in the following years, so these initial costs could be com
pensated by additional savings in license costs in the future. Organizations and
public administrations that are willing to adopt OpenOffice.org should however
be aware that the transition will require significant investments in training and
data migration, yet the long-term efTects of the transition should also be taken
into account.

References

1. Ghosh R, Glott R (2005) Results and policy paper from survey of govern-
' ment authorities. Technical report, MERIT, University of Maastricht, Maastricht.

Free/Libre and Open Source Software: Policy Support (FLOSSPOLS) Deliverable
D3

2. Yin RK (2003) Gase study research: Design and methods. Sage Publications,
Newbury Park, Galifornia, 3rd edition

3. Benbasat I, Goldstein DK, Mead M (1987) The case research strategy in studies
of information systems. MIS Quarterly ll(3):368-386

4. Phillips LW (1981) Assessing measurement error in key informant reports: A
methodological note on organizational analysis in marketing. Journal of Marketing
Research (JMR) 18(4):395-415

5. Eisenhardt KM (1989) Building theories from case study research. Academy of
Management Review 14(4):532-550

6. European Gommunities (2003) The IDA open source migration guidelines, h t tp :
//europa.eu.int/idabc/servlets/Doc?id=1983

7. Zuliani P, Succi G (2004a) Migrating public administrations to open source soft
ware. In: Proceedings of e-Society 2004 lADIS International Gonference. Avila,
Spain

8. Rossi B, Scotto M, Sillitti A, Succi G (2005) Griteria for the non invasive transition
to openoffice. In: Scotto M, Succi G (eds) Proceedings of the First International
Gonference on Open Source Systems. Genova, Italy, pp. 250-253

9. Kovacs GL, Drozdik S, Zuliani P, Succi G (2004a) Open source software for the
public administration. In: Proceedings of the 6th Gomputer Science and Informa
tion Technologies (GSIT), Budapest, Hungary

10. Nelson RR, Gheney PH (1987) Training end users: An exploratory study. MIS
Quarterly 11 (4): 546-559

11. Thompson RL, Higgins GA (1991) Personal computing: Toward a conceptual
model of utilization. MIS Quarterly 15(1):125-143

12. Zuliani P, Succi G (2004b) An experience of transition to open source software in
local authorities. In: Proceedings of e-Ghallenges on Software Engineering. Vienna,
Austria

13. Drozdik S, Kovacs GL, Kochis PZ (2005) Risk assessment of an open source mi
gration project. In: Scotto M, Succi G (eds) Proceedings of the First International
Gonference on Open Source Systems. Genova, Italy, pp. 246-249

134 Kris Yen, Dieter Van Nuffel, and Jan Verelst

14. Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance
of information technology. MIS Quarterly 13(3):319-340

15. Venkatesh V, Davis FD (2000) A theoretical extension of the technology accep
tance model: Four longitudinal field studies. Management Science 46(2): 186-204

16. Venkatesh V, Morris MG, Davis GB, Davis FD (2003) User acceptance of infor
mation technology: Toward a unified view. MIS Quarterly 27(3):425-478

17. Olfman L, Mandviwalla M (1994) Conceptual versus procedural software train
ing for graphical user interfaces: A longitudinal field experiment. MIS Quarterly
18(4):405-426

18. Fitzgerald B, Kenny T (2003) Open source software in the trenches: Lessons from
a large scale implementation. In: Proceedings of 24th International Conference on
Information Systems (ICIS). Seattle, Washington

19. Fitzgerald B (2005) Has open source software a future? In: Feller J, Fitzgerald B,
Hissam S, Lakhani K (eds) Perspectives on free and open source software. MIT
Press, Cambridge, MA, pp. 93-106

20. Kovacs GL, Drozdik S, Zuliani P, Succi G (2004b) Open source software and open
data standards in public administration. In: Proceedings of the IEEE International
Conference on Computational Cybernetics. Vienna, Austria

21. Goode S (2005) Something for nothing: Management rejection of open source
software in Australia's top firms. Information & Management 42(5):669-681

22. Dedrick J, West J (2004) An exploratory study into open source platform adop
tion. In: Proceedings of the 37th Hawaii International Conference on System Sci
ences. IEEE Computer Society, Washington, DC

Networks of Open Source Health Care
Action

Knut Staring^ and Ola Titlestad^
1 University of Oslo, Department of Informatics, Gaustadalleen 23,

N-0316 Oslo, Norway

{knutst, olati}@ifi.uio.no

WWW home page: http://folk.uio.no/knutst

Abstract. This paper reports on an effort to create a network of both developers
and users of a public health information system. Through an analysis of
capacity, recruitment, and power in the network, issues related to choice of
technologies, global-local tensions, and parameters of institutional
collaboration, we illustrate a number of challenges. Comparing OSS principles
to a "Networks of Action" approach, conditions for learning in organizing
training and development of software with participants from Africa, Asia, and
Europe, as well as the involvement of advanced students in such efforts are
discussed.

Keywords: capacity building, networks, action research, open source software

1 Introduction

Several authors underscore the significance of open source software (OSS) to
countries in the South. In contrast to much outsourcing work, it enables skill
development in the full software stack (Weerawarana and Weeratunga 2004), and
OSS solutions are starting to appear in vertical domains such as health care
(Fitzgerald and Kenny 2003). This paper explores how this has played out in practice
in one such effort, the Health Information Systems Programme (HISP). HISP is a
research-driven network of universities and public health care organisations in
Norway and several developing countries in Africa and Asia, targeted at improving
development and implementation of computerised health information systems in the
south. HISP is developing and providing implementation support of an open source
software application (DHIS), a system supporting local level information use and
analysis in the primary health care sector.

Braa et al. (2004) put forward an action research approach called "networks of action"
that addresses sustainability of information systems in poor countries through
establishing a network of sites mutually supporting local learning processes, and
aligning interventions with existing institutions. The basic tenets of the open source
development model, as spelled out in the classic essay by Raymond (2000) would
seem a near perfect fit for such an effort. However, Heeks (2005) is skeptical, and
questions whether this isn't a blind alley for developing countries, pointing out that

Please use the following format when citing this chapter:
Staring, K., and Titlestad, O., 2006, in IFIP Intemational Federation for Information
Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi,
W., Scotto, M., Succi, G., (Boston: Springer), pp. 135-141

136 Knut Staring and Ola Titlestad

extensive piracy, lack of awareness of OSS, and poor links to global developer
communities limit its potential.

Monteiro et al (2005) point out that the dominant accounts of OSS tend to emphasize
high quality code and the elite character of hackers. However, just releasing source
code (to Sourceforge for example) is not likely to attract enough capable developers,
and many projects struggle with labor shortage. In line with the recommendations by
Watson et. al. (2004), the project described here has so far relied on advanced
students, as well as on hiring fresh local graduates. The strengthening of local
knowledge, skills, and institutional capacity in a global network is a central goal to
the project addressing sustainability of local implementations.

An important research question is how this "networks of action"-influenced approach
affects issues of quality, openness, and participation is a globally distributed OSS
development process.

Krishna et al. (2004) point out how differing conceptions of "politeness"can be a
source of tension in cross cultural software teams, whereas OSS relies on the initiative
of individuals with "itches to scratch" (Raymond 2000) and vigorous discussion. The
HISP network represents an interesting case for cross cultural collaboration and the
authors will explore how cultural differences have influenced participation around the
network.

2 Method

HISP is organized as a long term action research network of researchers and
organizations, where researchers must participate in the specific context(s) to obtain
insights that can not be understood by studying it "from a distance" (Greenwood and
Levin 1998). The empirical evidence was collected partly through interviews and the
reading of documents, but mainly through participant observation. Like Duchenaut
(2005), we take an interest in the trajectories of the various developers over time, as
they e. g. grow into core roles or leave. The authors have been involved with the
project for over three years and are coordinating the development process.
Additionally, the authors have created and conducted a master level course around
HISP development, with student reports and feedback providing additional material.

3 The development network

HISP was initiated in South Africa after the fall of apartheid, and is based on
collaboration between academic institutions, health authorities, and private
organizations. Funding has been secured through various local and global donors.

Networks of Open Source Health Care Action 137

though mainly by the Norwegian Agency for Development Co-operation (NORAD)
and the European Commission (EC). The District Health Information System (DHIS)
software was developed in South Africa, and is presently rolled out on a national level
there. It has also been introduced in several African and Asian countries. The versions
up to and including the current 1.4 are built on the MS Access platform, and the
software is provided gratis and with the source code available. A DHIS2 effort was
initiated in 2004 aiming to make the DHIS platform and database independent and
web enabled (while still serving users without internet connection). There was also
need for a more layered and modular architecture supporting distributed development,
to allow for the creation of developer teams in several nodes in the global HISP
network. Local involvement and capacity building around the network are seen as
central to the viability of the project.

3,1 The Oslo node
The HISP project is coordinated from this node, where the authors are based, and
several Norwegian master students fill key roles in the development process as part of
their master thesis research. These core developers have also been deeply involved as
teaching assistants for a project oriented master level course designed around DHIS2
technologies, with a total of 80 students in the course of two semesters. The course
projects have prototyped functionality, explored alternative technologies and project
extensions. Furthermore, the course has served as a recruiting base for the project.
The core developers have done field work in Vietnam and India, while conducting
extensive training of the local teams in the technologies used.

3.2 The Saigon node
Initial collaboration was set up ̂ yith a large local outsourcing company in Saigon
where a total of six Vietnamese intern students participated in the DHIS2
development over a period of nine months. The project thus had a local base where
both Norwegian researchers and master students could work for shorter or longer
periods, and also hold courses in OSS Java technologies for the firm's employees.
This collaboration was terminated in July 2005, which prompted the project to seek
collaboration with a local university. A research group of students and faculty
focusing on DHIS2 technologies was set up in September 2005, and three of the best
undergraduate students from this group were subsequently hired to work full time on
DHIS2, guided by Norwegian master students doing their fieldwork, who have also
conducted seminars on the technologies at the university.

3.3 The Kerala node
The development process for DHIS2 was tried with a number of DHIS 1.3
implementation facilitators, who all had degrees in computer science. However, they
turned out to have very little real programming experience, and were quite unfamiliar

138 Knut Staring and Ola Titlestad

with both Java and web programming, far less the modern frameworks suggested by
the Oslo team. Close to nothing came of this initial foray into creating an Indian
development hub. A subsequent effort in the spring of 2005 was similarly ill-fated,
and three out of four developers were gone from the project within only a few
months.

A third round was initiated in late 2005, when two developers recreated the basic
parts of the DHIS 1.4 in a month's time, but using plain JSP without any of the
DHIS2 layered architecture or frameworks, and in isolation from the efforts ongoing
in Oslo and Vietnam. Their relative success and commitment led to their hiring, and
they are now being trained in the DHIS2 technologies.

4 Technology and Process

The initial stage of the DHIS2 involved a time-consuming process of selecting the
technological platform and tools to meet the new demands of platform independence,
web-enabling, modular architecture and distributed development. The field of web
technologies has evolved considerably over the last decade, and the pace of
innovation has shown no sign of abating over the two years since the inception of the
DHIS2 effort, but remains a complex undertaking.

The so called LAMP^ stack has become widely popular, helped by a thriving market
in inexpensive web hosting solutions and a large range of discussion forum, content
management, and blogging software becoming available to anyone with modest
technical skills. Thus LAMP were perceived to have a simpler learning curve for less
well trained developers.

However, such suggestions were met with strong resistance both from developers in
India who had barely heard about them (and similarly were skeptical to the web
frameworks and tools introduced by the Oslo developers), as well as from the
Norwegian students who regarded the other tools as "toys" (one of them being a
committer to a well known open source Java project). While all saw the need to shift
away from MS Access towards the web, the decision to use an "object-relational
mapping" framework became more palatable to the Indian developers after one ex-
employee reported being asked about this in an outside job interview. Similarly,
contacts in leading consultancy companies providing views from industry served as
an important legitimation strategy for the frameworks chosen. The Oslo students have
all had formal exposure to Java, and its position as an established, "enterprise"
language backed by huge companies, and therefore palatable to government standard
bodies (see e.g. The Uttaranchal guidelines). On the other hand, sorting out the most
suitable choices from the plethora of available web frameworks created stress on
leaders of the effort. After much search, the project ended up with a stack of advanced
modem Java frameworks.

Networks of Open Source Health Care Action 139

5 Discussion

5.1 Challenges of building a global network
As we have seen, the HISP effort to cultivate local teams around the global network
has proved challenging and time-consuming. Leading forces in the project pursued
the latest OSS frameworks and mechanisms, both because of a desire to work with the
best tools and concern for the long term viability of the project, as well as for
"marketing" within the OSS community, where high quality and general code is
highly valued. Difficulties in mastering these tools and technologies has hampered the
participation in India and Vietnam, and the substantial amount of time spent on
training and supervision of local recruits have taken away valuable coding time from
the core developers. Despite the time and efforts spent at building local teams in India
and Vietnam, 80-90% of the code in the first milestone release in February 2006 had
been committed by the Oslo team. Almost all the code so far produced by the Asian
teams have proved to be of limited value, and has not become part of the release.
Though all developers have source code commit access, the power of deciding what
gets released and what gets factored out or should remain in the "incubator" rests with
the coordinators and core developer in Oslo.

In India HISP pay is low, conditions can not compete with big companies, and career
prospects uncertain, making it hard to attract highly skilled developers who are much
sought after by outsourcing companies. In addition, the Indian project leaders were
also too busy with implementation (of a previous DHIS version) to muster the energy
needed to learn new technologies.

Open participation is a lot more difficult in practice than most accounts make it,
probably because of a bias towards high profile projects and elite developers. The
experienced Indian team lost confidence and were bewildered by the new
technologies and tools introduced in the DHIS 2 process, and similarly in Vietnam
HISP has struggled to establish an independent developer team able to contribute to
the project.

5. 2 Distributed OSS development across cultures and contexts

The Norwegian developers had a hard time understanding the lack of internet use on
the part of the other developers, both in terms of using mailing lists actively and in
more independently seeking out information on technical issues. This is partly due to
the fact that ready broadband access is a very recent phenomenon in these nodes.
While the culture of always being online and constantly using search engines is
second nature to the Oslo team, even people with IT degrees seem to use the web
mainly for email. It has been frustrating for the coordinators and core developers in
Oslo how difficult it has been to engage Indian and Vietnamese developers in
discussions on the mailing list or to get them to document their work on the wiki
website. Lack of fluency in English is probably a contributing factor, if you don't
master the language you don't have a voice. But it is even more a case of not speaking

140 Knut Staring and Ola Titlestad

the "language" of open source and distributed development. In the early stages of the
project, project staff in India were very hesitant to enter into discussions on
technologies as choice of framework is more than a technological decision; it is a
display of power/position. When collaborating on the same modules, the Norwegian
students had difficulties of communicating directly with the Vietnamese students as
almost all communication on the list from the Vietnamese side was done by the
faculty coordinating the group there. To the Vietnamese students it was natural that
the leader of the group took care of the communication with Oslo, while the
Norwegian students were used to participating more openly in discussions and felt
that this hampered effective communication.

6 Conclusion

Building networks of actions (Braa et al 2004) or distributed nodes of locally skilled
software developers in a network of developing countries has proved challenging and
time-consuming. The differences in programming skills and OSS experiences
between the Norwegian core developers and the developer teams in India and
Vietnam show that there is a need to adapt the distributed process to fit the whole
network. The use of familiar tools and technologies might have changed the situation
in the south, but would again have made the project unattractive to the developers in
Oslo and other potential contributors. Still, a greater involvement in the technology
selection from all the nodes, and especially the Indian, could have given a more
unified situation. One important lesson learned here is that coordination of such a
distributed process across different contexts and cultures demands much traveling and
face to face communication in order to align interests of the network, and to
overcome the apparent difficulties of online communication.

The fact that there is a lack of skilled developers and generally poor infrastructure for
distributed development in many developing countries is nothing new, and is the very
reason for the strong focus on capacity-building and university collaborations (Braa et
al 2004) in HISP, and also the main reason to confinue this long-term work. However,
when it comes to software development and producing quality software on time to
demanding customers, the distributed HISP approach seem to need adjustments. This
context of software production also clashes with the OSS ethos of "It's done when it's
done", and unwillingness to compromise on quality. As a short term goal it seems
difficult to establish effective OSS development nodes in India and Vietnam that can
deliver quality software, given the resources in HISP. However, as a long-term goal,
and part of a long-term strategy on local capacity-building, such a distributed north-
south-south development process will have greater chances of success.

Networks of Open Source Health Care Action 141

References

Braa, J., Monteiro, E., and Sahay, S. (2004) "Networks Of Action: Sustainable Health
Information Systems Across Developing Countries," MIS Quarterly (28:3), pp 337-
362

Department of Information Technology (2004), "Standards for eGovemment
Applications Uttaranchal Portal",
h ttp: //'w vv vv. i tdaua. org/i Ida/A tt̂ ic h ments/ i T̂ S tan d ards .pdf

Duchenaut, N. (2005), "Socialization in an Open Source Software Community: A
Socio-Technical Analysis", Computer Supported Cooperative Work 14:323-368

Fitzgerald, B. & Kenny, T. (2003) Open Source Software the Trenches: Lessons from
a Large-Scale OSS Implementation", in ICIS 2003, pp. 316-326.

Heeks, R. (2005) "Free and Open Source Software: A Blind Alley for Developing
Countries?", eDevelopment Briefing No. 1 2005, Development Informatics Group,
University of Manchester

Krishna, S., Sahay, S., and Walsham, G. (2004), "Managing Cross-Cultural Issues in
Global Software Outsourcing", Communicatoins of the ACM, (47:4) pp 62 - 66

Raymond, Eric (2000) "The Cathedral and the Bazaar",
http://vv^ww.catb.org/-esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html

Weerawarana, Sanjiva and Weeratunga, Jivaka (2004), "Open Source in developing
countries", SIDA report

• Linux, Apache, MySql, and either PHP, Python, or Perl. Recently, Ruby has also received much

publicity through the "Ruby on Rails" framework.

2The selected technologies are Hibernate, Spring, and Webwork

Licensing Services: An "Open" Perspective

Vincenzo D'Andrea and G.R.Gangadharan

Department of Information and Communication Technology,
University of Trento,

Via Sommarive, 14, Trento, 38050 Italy
{dandrea,gr}@dit.unitn.it

Abstract . Though service orientation is an incipient technology, the
inherently infinite potentiality of services makes them to proliferate
seamlessly, serving in myriad domains. Licensing of services enables
to regulate the commercial use and modifications of service, retaining
the copyright with owner of the service. With the growing influence of
open source initiatives today, it becomes a significant topic to analyze
'open'ing services. In this paper, we present a concept of 'open service'
and analyze the implications of open source approach on service licenses.

1 Introduction

Service oriented computing (SOC) is an emerging distributed systems paradigm,
addressing the aspects of real world applications, crossing organizational and
technical boundaries. With a vision of dynamically composing service oriented
and non-service oriented appHcations, SOC continues to proliferate as a tech
nology for connecting applications in a loosely coupled manner. Today, web
services are being used as a component or utility and offer programmatic in
terfaces to applications. However, many available web services are not even
considered as providing relevant business value. The majority of attention on
SOC has been contemplated on its related technical standards and technol
ogy integration. Managerial issues and business strategy for implementing SOC
have not been studied intensively.

One of the relevant issues from this perspective is the role of licensing for
services. In the case of software, licensing is generally considered the way for
extending property rights into software. Thus, software licensing [1] is consid
ered to include all transactions between the Ucensor and the licensee in which
the licensor agrees to grant the licensee the right to use some specific software
or contents of information for a specific tenure under predefined terms and
contracts.

In [2], the author describes a distributed software licensing framework using
web services and SOAP. However, [2] addresses a framework using web services
but does not address licensing of web services itself. The technical contracts of
web services are described in [3], but business and legal contents of contracts
are not considered. In [4], we had elaborated the dimensions of web services

Please use the following format when citing this chapter:
D'Andrea, V., and Gangadharan, G.R., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 143-154

144 Vincenzo D'Andrea and G.R.Gangadharan

differing from software and proposed an anatomy of a service license with a set
of key negotiation issues.

As the foundations of open source regime rely on licenses, an approach in
spired by open source could be considered during the process of conceptualizing
licenses for services. The Free / Open Source Software (FOSS) approach protects
the unconditional rights of modification and redistribution by the collaborating
developers, making the source code freely available [5]. Freedom of distribution
and freedom of modification are the core principles of open source licensing.
To the best of our knowledge, the idea of making services 'open' is completely
new and no previous work exists in this field. In this paper, we present a novel
concept of licensing services, inspired by open source movement.

The rest of the paper is organized as follows. Section 2 introduces the con
cept of service oriented computing. Section 3 presents the distinguishing char
acteristics of services which preclude the direct adoption of software licenses for
licensing services. Section 4 elaborates licensing of services, describing the issues
of composition. A comprehensive description of what we mean by 'open' services
is elucidated in Section 5. Section 6 describes the consequences of adoption of
open principles in services paradigm, drawing some conclusions.

2 Service Orientation of Software

Most of the products fall in a continuum having pure service on a terminal
point and pure commodity good on the other one [6]. Software, traditionally,
has been perceived as a product, requiring possession and ownership, in order
to receive the desired performance. Software-as-a-service [7] is a mechanism
of renting software where users are subscribed to the software they use. SOC
allows the software-as-a-service concept to expand to include the delivery of
complex business process and transactions- as a service, allowing applications to
be constructed on the fly and services to be' reused everywhere [8].

The idea of software composition and refinement instead of software de
velopment from scratch nowadays is elaborated to the platform-independent,
distributed and standardized services paradigm [9]. In such paradigm, services
reflect self-contained processes that can be described, published, discovered and
invoked in a distributed environment, connecting people, processes, and applica
tions. Services are intended to represent meaningful business functionality that
can be federated with other services, to enhance more value to the business
functionality.

The apphcation of SOC model (see Figure 1) to web resources is manifested
by web services to provide a loosely coupled model for distributed processing.
Web services are the enabling technology, standardized to construct and inte
grate applications and organizational interfaces as services, using the Internet
as the communication medium and open Internet-based standards [10]. A ser
vice is represented by an interface part defining the functionality visible to the
external world as a means to access the functionality and an implementation

Licensing Services: An "Open" Perspective 145

UDDI

WSDL

Publish / '^ Fiwd

1 /
fC:>.%

f^y:^>'^S^s, Bind ,..,, ., ^ , ,,

^fW^''^^ ^^4~-----^8^>
SOAP

Fig. 1. Service Oriented Computing (Instances with Web Service)

part realizing the interface. The Web Services Definition Language (WSDL)
is an XML based interface definition language, describing services as a collec
tion of messages (abstract descriptions of the data being exchanged) and port
types (abstract collections of operations), separated from their concrete net
work deployment or data format bindings. Directories of services are necessary
in order to find services usable for a specific application. Universal Description,
Discovery, and Integration (UDDI) enables publishing and accessing WSDL
specifications in directories. Simple Object Access Protocol (SOAP) is a plat
form and language independent protocol, providing a way of communication
between applications.

3 Dimensional Analysis of Software and Services

Software is an intangible asset, protected by copyright. Being a digital work,
it can be vulnerable for perfect copying, and unfimited copies identical to the
original can be made. Software is an experience good, whose value is not quan
tifiable without consumption. Thus, the socio-economic analysis of software
signifies distribution strategies. While services (see Figure 2) present several
similarities with software, we claim that it is not possible to adopt the software
[11] and/or component [12] licensing models directly for licensing services. The
reproduction of services could vary in the levels of interface, implementation,
and execution (see Section 5 for details). Further, composition of services [13]
is significant in reproduction of value added services. The following characteris
tics of services associated by functional and non-functional properties differing
appreciably from software become the cornerstones for licensing of services:

Configurability: Generally software serves as a standalone application li
censed by shrink-wrap or click-wrap licenses. In contrast, web services are not

146 Vincenzo D'Andrea and G.R.Gangadharan

Discoverable

Composab le / - - '••'-•--' \ Discrete

Semces

Configurable y —-\ AutonomoTis

Intercoimected

Fig. 2. Service Characteristics

targeted as standalone applications. The rationale behind web services is making
network-accessible operations available anywhere and anytime. The counterpart
of a software application in terms of services is a reconfigurable composition of
distributed services. Service implementation may involve many steps, executed
in distributed manner, supporting interoperability and location transparency
[14]. In contrast to software components, consumers are not required to down
load them for local use.

Discreteness: Software ranges from small fragments to sophisticated appli
cations. The separation of a software package will not be meaningful as it was
originally intended to function. Similarly, services can also vary in complex
ity of functions. A service, as a self-contained software module, semantically
encapsulates discrete functionality [8].

Autonomy: Unlike general software and components, services are con
nected to other services and clients using message based methods. They do
not require knowledge of any internal structures or context at the client or ser
vice side. Thus, loose coupling allows service providers to modify the service
interfaces, without impacting consumers.

Interconnectedness: Software programs run on infrastructures and con
sumers are responsible for maintaining the infrastructure on which the software
executes. In case of services, functionality and reliability can be affected by
problems in the network between consumers and services. The availability and
performance of a service could not be directly guaranteed.

4 Towards Licensing Services

All the characteristics of SOC lead to composability, to form composite services
by combining elementary and/or composite services. Service composition [15] is
related to the implementation of a web service whose internal logic involves the
invocation of operations offered by other web services. Services can be composed

Licensing Services: An "Open" Perspective 147

(see Figure 3a) as a part of composite service, encapsulating individual services
and exposing a different set of operations. Another perspective on composition
(see Figure 3b) is by defining the invocation order of individual services [16].
Service composition allows a recursive process of composition of services i.e.
a composed service can be composed with an other elementary and/or com
posite service. Thus, individual services can be composed up to any levels of
hierarchies.

(a) a»)

Fig. 3. Service Composition (a) by Encapsulation and (b) by Sequencing

Besides the functional operations, from the point of view of a service con
sumer, it is important to consider also other, non-functional, aspects of service
provisioning, such as the cost or the reliability of a service. These aspects are
collectively referred to as Quality of Service (QoS) or non-functional properties
of a service. The QoS of a composite service is derived from the aggregation of
QoS of each individual services, where the aggregation could be a simple com
bination such as adding the cost of individual services, or taking the maximum
among the performances of the individual services to estimate the response
time of a composite service. For other aspects, the combination requires the
definition of a specific model, such as combining security aspects or rehability,
availability, scalability and so on.

Analyzing the characteristics of services as discussed in Section 3, depicts
the nature of services diflPering from software and/or components and rises a
requirement for licensing services. Questions of ownership and distribution could
impede composition, thereby impacting the reuse of services. Thus, the license
of a service [4] is defined as not only the description of the terms and conditions
for the use of service as in the case of software, but also a detailed description
of clauses regarding reuse.

Though the concept of arbitrarily mixing and matching the services from
different providers seems interesting, the basic clauses of service licenses would
enforce certain terms and conditions on composition. To illustrate the issues
that could arise in the context of licensing web services, we consider a simple

148 Vincenzo D'Andrea and G.R.Gangadharan

scenario where i^ is a restaurant service providing the following operations:
RQ, information on location and opening hours; Ri, the facility for reserving
table; R2^ a catalogue of specialty cuisines; i?3, a daily recipe for one of the
specialty cuisine. Another service, F , a restaurant finder service uses R, for
the following operations: Fi , a restaurant locator giving a list of restaurants
close to a given location and using RQ (as well as similar operations for other
restaurants); F2, for intermediating table reservation, using Ri; F3, a daily
recipe randomly selected among the recipes provided by the restaurants Hsted
using F (in the case of R, it will use operation R^). The license terms of R
may deny the provision of Rs to other services intended for providing recipe
information exclusively or may require attribution for the use of R^. The license
terms of R can even require the same set of terms and conditions for any
hierarchy of composed services, even the successive compositions use F. In this
case, the license terms of F will have to comply with i?, for the request and
deny provision of F3 to other services intended to provide the recipe information
exclusively. Another restaurant service, 5 , has a similar set of operations 5o, 5 i ,
«S'2, S3 as i?, but having a different license that freely allows the use of operations
anywhere. If F uses also 5 , then it could be possible to have a different license
when F3 presents a recipe chosen from S. Even in this simple scenario, it is
apparent that the composition of licenses could easily bring to incompatibility
between the composed services.

The license compatibility is a complex issue, requiring careful attention be
fore attempting to merge licenses. The licensing of a composed service would be
based on the licenses used in different service and the way they are combined
together. As composition of services is established dynamically ('just-in-time')
and composed service is created on-the-fly, the license of composed service would
be program generated and needed to be validated by analyzing the licenses of
composing services.

5 'Open'ing Services

Free software is a matter of the users' freedom to run, copy, distribute, study,
change and improve the software. According to [17], it refers to four kinds of
freedom, for the users of the software:

1. The freedom to run the program, for any purpose (freedom 0).
2. The freedom to study how the program works, and adapting to the needs

(freedom 1).
3. The freedom to redistribute copies (freedom 2).
4. The freedom to improve the program, and release improvements to the

public, so that the whole community benefits (freedom 3).

Open source software, as a superset of free software, exists in a plethora
of initiatives today, representing a variety of technology innovations and ap
proaches [18]. Some of the key conditions of Open Source Definition (for au
thoritative definition, see [19]) are as follows:

Licensing Services: An "Open" Perspective 149

1. The software should be freely redistributable.
2. The software must include source code, and must allow distribution in

source code as well as compiled form.
3. The software must permit modifications and derived works, and must allow

them to be distributed under the same terms as the license of the original
software.

4. The rights attached to the software must apply to all to whom the software
is redistributed without the need for execution of an additional license.

5. The license must not discriminate against any person or group of persons
or any field of endeavor.

Following FOSS definitions [17, 19], we define an 'Open Service' as follows:

1. An 'Open Service' should be free for use.
2. The source code of the interface (WSDL descriptions) as well as the

implementation of an 'Open Service' should be available.
3. The service implemented by creating a new service using the source

code and interface of an 'Open Service' should be freely distributable
as an independent service. The modification of interface and imple
mentation should be permitted.

4. The service using an 'Open Service' as part of a composite service
should be freely distributable as an independent service, even when
using a separate interface. The modification of interface and imple
mentation should be permitted.

5. Derived services and modified services must be allowed and be ca
pable of distribution.

6. The license must not discriminate against any person or group of
persons or any field of endeavor.

7. The license agreement must provide an 'Open Service' "as is" with
no warranties either to functional and/or non-functional properties
or non-infringement of third party rights.

8. The license must not place restrictions on composition with other
services and on distribution of composed services.

Open service perspective enhances the quality properties of a service, lever
aging the availability of the source code and the right to modify it. Beyond
composition, the 'open'ness of service makes the class of derivative service, a
service being modified and re-distributed with more value addition.

Now, we exemplify the freedom and openness exclusively associated with
'open'ing of services, varying in the levels of interface and implementation and
in the levels of composition and execution.

1. Service Usage
Service usage describes the freedom to execute a service by other applica
tions, for any purpose. The basics of 'open'ing service allows the use (exe
cution) of service by any other service oriented and/or non-service oriented
applications, adhering the given open service license.

150 Vincenzo D'Andrea and G.Ft.Gangadharan

2. Service Implementation
With the opening of service, we are provided with the freedom to know how
the service works and could be adapted to our needs, making the source code
of service interface as well as service implementation freely available.
a) A service is described by WSDL. Service orientation obligates WSDL

code to be available publicly for service discovery, and composition.
b) In addition, an 'open' service allows the availability of the source code

of implementation (the real functionality of a service).
c) The source code of a service wrapping the functionality of another pro

prietary software partially or fully, can be available publicly with ser
vice interface and implementation, except the source code of proprietary
software being wrapped in the given service. Consider a spell checker
service wrapping PWP-^ spell check API. As PWP is proprietary, its
source code can not be available. However, a service can use the PWP
spell checker API for spell checking operation. Thus, an 'open' service
wrapping the PWP spell checker API allows users to read the source
code of interface and implementation of the service except the source
code of the wrapped system.

3. Service Redistribution
Service redistribution describes the freedom to distribute a service as a
separate service. Further, any entity can create a new service which would
use the interface of an 'open' service, without the need to implementing the
service realization.
a) Separate and independent service: replica of an 'open' service:

Opening of service allows to create independent services, attributing to
the 'open' service. Let SA be an 'open' service providing a spell check
ing operation for words, say, Spell{word). Consider SA provides this
service by wrapping PWP spell checker API. Let SB be an another
independent service, providirig the same Spell{word), created by repli
cating the source code of implementation and WSDL of the 'open' SA-
Albeit SA and SB are performing the same operations, SA and SB are
two different services, executed separately.

b) Separate but dependent service with same interface: This is
a common scenario in SOC; our perspective stresses the attention on
licensing aspects. 'Open'ing service adds value to a service by distribut
ing the service, not requiring to implement the service again. Let SB be
a service providing a spell checking operation Spell{word) for words,
using (copying) the WSDL interface Spell{word) of 'open' SA- SB is
designed in such a way that Spell{word) of SB directly invokes the
operation of SA ? executing on the host of 5^ .

Prom a service consumer perspective, in both cases, SA and SB are provid
ing exactly the same Spell{word) interface, thus they are interchangeable
in an application on the consumer side. The two implementations of SB are

^ PWP is a fictitious name for a Proprietary Word Processor.

Licensing Services: An "Open" Perspective 151

not distinguishable. Theoretically, there will not be any differences in per
formances of both the services, apart from possible network latency between
SA and SB-

4. Service Derivation & Distribution
Service derivation and distribution offer the freedom to improve the ser
vice, and release improvements to the public, so that the whole community
benefits. Opening of services allows to perform modifications on the WSDL
interface and implementation of the service and thus, derived services are
created. Derived services could be executed independently (together with
separate interface and implementation) or could use the implementation of
the parent service.
a) Separate and independent service: replica of an 'open' service

with modified interface and implementation: Now, consider the
case similar to 3(a) with interface of the open service SA be modified in
SB' The modified interface of SB provides Spell (sentence) which com
poses a pa r se r0 and repeated invocation of the code derived from SA, to
access PWP API. Now, SA and SB are the different services, executing
independently. Spell (sentence) of SB is derived and improved version
(having an own additional functionahty parser()) of Spell(word) of SA-

b) Separate but dependent service with modified interface and
implementation: Consider a service SB similar to the case of 3(6),
but with modified WSDL interface as well as implementation of the
open service SA- Spell (sentence) of SB comprises a parser() and re
peated invocation of the spell checking operation provided by SA via
the interface Spell(word). Thus, the word spell checking operation of
SB is executed in the host of SA (invoking repetitively the service of
Spell(word) of SA) for spell checking of a given prose Spell(sentence).

The cases presented above are only a partial view of all the possible combi
nations of derivation (or not) from the source code, modification (or not) of the
service interface, and relationship between services (compositional properties).
Due to space constraints, the most common and significant cases of SOC have
been illustrated and summarized in Table 1.

Table 1. Partial view of 'open'ing of services

Interface
Unmodified
Modified
Unmodified
Modified

Implementation
Unchanged
Derived
Unchanged/Derived
Unchanged/Derived

Composition
No
No
Yes
Yes

Case
3(a)
4(a)
3(b)
4(b)

152 Vincenzo D'Andrea and G.R.Gangadharan

6 Consequences and Conclusions

The 'open'ing of services significantly contributes to the development of new
services from existing services by adding new operations. Consider Sx be an
open service. Sy could be developed by extending Sx in any of the ways dis
cussed in Section 5, keeping 5 r as 'open'. A new service Sz could be developed
by incorporating 5y, which in turn provides access to Sx operations. Sz could
even enhance 5 x , with additional operations.

Free services inspired by FOSS licenses could make value addition by com
position, resulting composed services as 'free'. Thus, free services (with free
licenses) could create a chain effect on composition of services to be free, even
if one of the composing service may be not 'free'.

Let Sp and SQ be the two individual services of a composite service S. Sp
and SQ may be licensed by free or proprietary licenses not imposing restrictions
on the use in a composition. The composition of Sp and SQ inspired by FOSS
scheme, is illustrated in Table 2. Making services free will be highly beneficial

Table 2. Service composition enriching 'Free Culture'

SP

Free
Free
Proprietary

SQ

Free
Proprietary
Proprietary

S = {SP,SQ}
Free
Free
Free

for government sectors, education, and non-profitable organizations to explore
and enjoy the benefits of services.

'Open'ing services may raise an emergent question of how a service provider
could profit by providing services. Many OSS business models are in practice of
the community [20]. Some of these business models could be adaptable to the
'open' service context.

1. Support Seller: 'Open' services could adopt this scheme where revenue
comes from media distribution, branding, training, consulting, and custom
development.

2. Service Enahler: An 'open' service could be created and distributed pri
marily to support access to revenue-generating on-line services.

3. Sell It, Free It: Like traditional commercial softwares, services would
begin their product Hfe cycle as closed and then are converted as 'open'
service when appropriate.

4. Brand Licensing: An 'open' service provider can charge other service
providers/ aggregators/ consumers for the right to use its brand names and
trademarks in creating derivative services.

Further, a copyright holder can release his/her works under any license,
including multiple licenses and users of that work are allowed use under one of
the licenses they choose [21]. Dual licensing is a business model for open source

Licensing Services: An "Open" Perspective 153

software exploitation based on the idea of simultaneous use of both open source
and proprietary licenses [22]. Several open source projects, including MySQL,
Perl, and Qt use dual licensing for their business model. Following the dual
licensing strategy, a service can be licensed under open source inspired license
as well as a proprietary license.

According to GPL [23], the distribution of GPL'd software must include
source code. A GPL'd apphcation delivered as a web service is not actually
distributed to the end user. Hence, in this case, the application license does not
require to disclose the source code. The nature of web services allows users to
interact with the application via an interface, without downloading the software.
This can result against the 'freedom' of GPL, i.e. users consuming services
without having access to the source code as delivered by the providers, retaining
the rights to modify arid distribute. More precisely, GPL acts on the source code,
but not on the use of source code by a service. Consider a service wrapping
FWP2 instead of PWP (a Proprietary Word Processor). As FWP is a GPL'd
software, a wrapper for FWP is also GPL'd code. However, GPL does not
restrict the use of this FWP wrapper provided by a web service. Since, the
service is using only the execution of FWP (not the source code of FWP), GPL
does not effect the licensing of composite services based on 'FWP wrapper'
service. Even the draft version of GPL3 [24] is silent about this issue.

Nowadays, standards are 'open' in SOC. But, the services developed using
these standards are unfortunately 'closed'. If services are 'open', service con
sumers can add value beyond the concept of composition. Hence, we introduced
the concept of open services in this paper and analyze the impacts of open source
inspired licenses on SOC. The wedding of services with open source would be
beneficial for both communities, spreading services 'open'ly. In our future work,
we aim to embed formal licenses in services and make legally enforceable service
composition.

References

1. Classen, W.: Fundamentals of Software Licensing. IDEA: The Journal of Law
and Technology 37(1) (1996)

2. Clarke, N.: Distributed Software Licensing Framework based on Web Services and
SOAP. http://www.dsg.es.ted.ie/'^dowlingj/students/clarken/clarken_02.pdf
(May 2002)

3. Tosic, v., Pagurek, B.: On Comprehensive Contractual Descriptions of Web Ser
vices. In: Proceedings of the IEEE e-Technology, e-Commerce, and e-Service
(FEE). (2005) 444-449

4. D'Andrea, V., Gangadharan, G.R.: Licensing Services: The Rising. In: Pro
ceedings of the IEEE Web Services Based Systems and Applications (ICIW'06),
Guadeloupe, French Caribbean. (2006)

^ FWP is a fictitious name for a free word processor.

154 Vincenzo D'Andrea and G.R.Gangadharan

5. Feller, J., Fitzgerald, B.: A Framework Analysis of the Open Source Software
Development Paradigm. In: Proc. of the 21st Annual International Conference on
Information Systems. (2000) 58-69,

6. Wikipedia: Service. http://en.wikipedia.org/wiki/Services (Accessed on
27.12.2005)

7. Bennett, K., Layzel, P., Budgen, D., Brereton, P., Macaulay, L., Munro, M.:
Service-Based Software: The Future for Flexible Software. In: Proceedings of
the Asia-Pacific Software Engineering Conference (APSEC). (2000) 214-221

8. Papazoglou, M., Georgakopoulos, D.: Service Oriented Computing. Communica
tions of the ACM 46(10) (2003) 25-28

9. D'Andrea, V., Marchese, M., Gangadharan, G.R., Ivanyukovich, A.: Towards a
Service Oriented Development Methodology. In: Proceedings of the Eighth World
Conference on Integrated Design and Process Technology, Beijing, China. (2005)

10. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.: Web Ser
vices Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Rehable Messaging, and More. Prentice Hall P T R (2005)

11. Kendra, G.: The Anatomy of a Technology License. Michigan's Lawyer's Weekly
16(34) (2002)

12. Chavez, A., Tornabene, C , Wiederhold, G.: Software Component Licensing: A
Primer. IEEE Software 15(5) (1998) 47-53

13. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services Concepts, Archi
tectures, and Applications. Springer Verlag (2004)

14. Golan, M.: Service Oriented Architecture expands the vision of Web
services. http://www-128.ibm.com/developerworks/webservices/library/ws-
soaintro.html (2004)

15. Alvarez, P.A., Baares, J.A., Ezpeleta, M.J.: Approaching Web Service Coordi
nation and Composition by means of Petri Nets. In: Proceedings of the 3rd
International Conference on Service Oriented Computing. (2005) 185-197

16. Dustdar, S., Schreiner, W.: A Survey on Web Services Composition. International
Journal of Web and Grid Services 1(1) (2005) 1-30

17. Free Software Foundation: The Free Software Definition.
http://www.fsf.org/licensing/essays/free-sw.html (Accessed on Jan. 2006)

18. Brown, A., Booch, G.: Reusing Open Source Software and Practices: The Impact
of Open Source on Commercial Vendors. In: Proc. of 7th International Conference
on Software Reuse. (2002) 123-136

19. Open Source Initiative: The Open Source Definition.
http://opensource.org/docs/definition.php (Accessed on Jan. 2006)

20. Raymond, E.: The Magic Cauldron, ht tp: / /www.catb.org/ esr/writings/magic-
cauldron/magic-cauldron.html (1999)

21. Wikipedia: Dual license. http://en.wikipedia.org/wiki/Dual_license (Accessed on
29.12.2005)

22. Valimaki, M.: Dual Licensing in Open Source Software Industry. Systemes d'
Information et Management (2003)

23. Free Software Foundation: GNU General Public License.
http://www.gnu.org/copyleft/gpl.html (Accessed on Jan. 2006)

24. Free Software Foundation: GNU General Public License Version 3.
http://gplv3.fsf.org (Accessed on Jan. 2006)

Perceptions and Uptake of Open Source in
Swedish Organisations

Bjom Lundell, Brian Lings, and Edvin Lindqvist
University of Skovde, P.O. Box 408, SE-541 28 Skovde, Sweden

{bjom.lundell | brian.lings | edvin.lindqvist}@his.se,
WWW home page: http://www.his.se/lunb

Abstract. There are many different ways in which Open Source ideas can be
adopted by business, and influence the way in which companies do business. A
number of different surveys have been conducted in different countries with the
purpose of understanding the state of practice with respect to Open Source in
companies. A number of different business models have been observed, ranging
from the use of Open Source infrastructure products to basing a company's
entire business model on Open Source. In this paper we report on a study of the
perceptions of Open Source and the uptake of open source products and
development models in Swedish companies. We investigate this from the
standpoint of stakeholders in those companies which have an expressed interest
in Open Source, allowing a more in-depth analysis of the extent to which Open
Source has influenced business thinking. From our analysis we find that uptake
is much higher than reported in earlier studies, but is still concentrated in
SMEs, consistent with the findings of previous studies. There is increased
evidence of interest beyond the simple use of OS components at the (LAMP)
infrastructure level. In particular, a significant proportion of the companies are
in a symbiotic relationship with the OS community, supporting both through
participation in existing projects and the release of new software under OS
licences.

Keywords: Open Source in Swedish Companies, Qualitative Survey, Open
Source Adoption, Percepfions of Open Source.

1 Introduction

Open Source (OS) is an issue of increasing significance for organisations today [1],
all the more so given current perceptions that it can offer effective business solutions
and new business opportunities. Most companies will be aware at least of elements of
the LAMP suite [2], even if they are not yet using them. However, as well as
involvement in conventional OS component adoption many companies are getting
involved in open source software (OSS) development projects, considering that in
itself this can bring competitive advantages. There is in particular a strong European
interest in Open Source (or Libre), with an ITEA report [3] suggesting that 70% of

Please use the following format when citing this chapter:
Lundell, B., Lings, B., and Lindqvist, E., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 155-163

156 Bjom Lundell, Brian Lings, and Edvin Lindqvist

OSS developers live within the EU, and several EU funded projects investigating the
phenomenon (e.g. FLOSS, COSPA, Calibre, OSIRIS, COSI).

A number of surveys have considered the OS phenomenon from a variety of
perspectives [4-8]. There have been few previous studies of the OSS phenomenon in a
Swedish context. One notable recent exception is the study by Dahlander and
Magnusson [9]. Case studies were undertaken in three Swedish companies,
investigating the relationship between companies and the OS community. This led to
a characterisation of three types of relationship: parasitic (in which the commercial
interest is indifferent to its effect on OSS) - of great concern to the OSS community^
as over-exploitation can threaten the "OSS ecosystem"; symbiotic (in which each
gains advantage); and commensalistic (referring to a commercial interest not harming
the OSS project). Apart from benefiting by improving an OSS product on which a
company relies, a symbiotic relationship may result from less obvious benefits. For
example, Lussier [10] details an instance of process enhancement in a company
brought about through the experience of its developers in an OSS development
project. Within our study we found evidence of symbiotic and commensalistic
relationships.

The FLOSS project [11] included a telephone survey of companies and public
organisations in Germany, Sweden and the UK with at least 100 employees. Those
identified as using OSS (in total 395 for the three countries) were further surveyed,
using a quantitative questionnaire. The lowest represented sector in this survey was
found to be large Swedish companies (at least 500 employees).

The goal of the research reported here was to investigate the state of practice with
respect to Open Source in Swedish companies across the SME and large company
sectors which have adopted OSS. In particular, it was designed to get an insight into
the views of key individuals influencing OS practice and policy within the companies.

2 Research IMethod

In this paper, we report on a telephone survey of companies selected via
purposeful sampling. The survey is a qualitative study of Swedish practitioners within
companies known to be active users of OSS. Company size was not a selection factor.
The qualitative techniques used are designed to lead to richer information on the
phenomenon studied, but do not allow any claim that the results are representative of
organisations generally. However, the FLOSS project suggests that Swedish
companies lag somewhat behind those in the UK and Germany in their uptake of OS,
so the level of OS perceptions reported here may somewhat under-represent those
held more generally within the EU.

Sampling was conducted starting from an initial shortlist of practitioners known
by the researchers to be interested in OS. Prior knowledge of OS-related activities

^ A recurring concem raised by practitioners during the EU FP6 Calibre series of industrial
conferences/workshops.

Perceptions and Uptake of Open Source in Swedish Organisations 157

informed further searches in IT magazines and on the WWW for company
involvement in OS, and for practitioner involvement in OS-related seminars and
conferences within Sweden. The appropriateness of a qualitative approach with such
sampling is in line with the conclusions of Nikula and Jantunen [8], who observe that
"companies basing their business on OSS are likely to be better suited for qualitative
methods".

The purposeful sampling led to 45 telephone interviews, conducted in Swedish
(the native language of all interviewees and the interviewer) and transcribed. Of these,
5 interviews resulted in conversations with practitioners whose companies had no
current involvement with OS. Any quotes from these 5 non-adopters are clearly noted
in the text. All quotations used in the analysis phase and reported in the paper are
translations into English.

The interviews were conducted over a two month period, and based on a number
of open questions - a sub-set of which had one or more follow-up questions
depending on the initial response. Specifically, questions for the analysis reported in
this paper related to:

1. The concept of Open Source
2. Company use of OS products
3. Company participation in OS projects

3 Results

3.1 Perceptions of OS,

Question: What is your immediate reaction when I say ''Open Source "?

Firstly, it should be noted that the question deliberately probes immediate
connections with the term, and that on several occasions this caused respondents to
hesitate before replying. As put by one consultant: "is this a context where I must
explain from the start what is meant by Open Source code, or can I take for granted
that these people know what the term means? I ask myself whether I need to explain
or not".

There is a great variation in perceptions of the OS phenomenon, which correlates
reasonably well with the level of involvement with OS. In particular, we see four
categories of involvement, the top level having two variants:

no OS
use of OS infrastructure internally
use of OS infrastructure and applications
involvement in code generation

variant 1: commensalistic

158 Bj6m Lundell, Brian Lings, and Edvin Lindqvist

variant 2: symbiotic

The main discriminator of the category 3 companies is that OS is immediately
associated with the business or process levels, or an ideological view. Respondents
typically stressed one or, other of these views, although some hesitated to give a short
answer - in particular those heavily involved in OS projects ("that is a good question
..."; "I don't know, but ..."). However, their deep knowledge of the concept became
evident during the course of the interview.

Those emphasising a process view associate the concept with, for example: "a
development model", "collaboration and an ability to influence" or "that you develop
the software together with the users". Some were more elaborate in their responses,
for example "Freely available source code to tools or software where you try to use a
large community over the whole world ... with Linux as the prime example" and "...
Eclipse and such things ... a way of working in which you are contributing and use
code in different ways."

Those taking a business view tend to associate the concept with their own
business: "We build our entire business on it, so [the company] is my first thought."

The ideological view primarily stressed the OS community concept, placing it
above the idea of OS products, for example "I think of community, and as a second
thought of tools", in particular implying a "free-basis community" with "non-
ownership". Only one respondent in the study used the term "libre", which is
common in the South of Europe.

A smaller group primarily associated OS with free access to the source code - a
rather pragmatic view. Several respondents stressed the ability to modify source code:
"literally that you get access to the source code and are allowed to modify the source
code"; "I am allowed to play with it myself, if I want". This can be contrasted with
the view from a non-OS user whose immediate association in this regard was rather
different: "you are expected to modify [the code]".

The main discriminator of the category 0, 1 and 2 companies was an emphasis on
- OS products, sometimes specific products, and properties of OS products - including
quality and cost.

On the product side, the major association was with the LAMP suite - for example
"My first thought is Linux". However, some were non-specific "application servers
and testing tools, and similar things" and others went beyond LAMP in including
desktop products also: "Linux, MySQL, Apache, OpenOffice etc.".

On the properties side, although many placed "no cost" uppermost in their minds,
several referred to the quality of OS products: "I really think about very competent
software" or even both: "software at no cost that often is just as good as commercial".

3.2 Company use of OS products

Question: Does your company use any Open Source products

Perceptions and Uptake of Open Source in Swedish Organisations 159

After this confirming question, the interviewer asked about the most important OS
products for the company, and their general experience in using these products.

Overall, in citing the most important OS products for their company: 75% cited
elements of the LAMP stack; 50% cited other infrastructure products; 12% cited
Open Office; and 10% cited OS tools for application development. Perhaps not
surprisingly, with one exception all companies mentioning Open Office also
mentioned Linux. In terms of quality, no negative comments were made about any
OS product actually adopted. Some of the larger companies not heavily into OS
development show higher scepticism, but more involved respondents did not share
this scepticism. For example, "our experience is that [OS products] are very secure,
and have become more stable over time; if you follow the distributions, you can see
that it has improved over time".

The attitude of the respondents towards OS usage depended largely on the level of
company involvement in OS. For example, a developer from a large company which
ships products with OS components commented: "we have really tried to explore and
asses the quality, so we typically don't read about them - instead we want to dig into
the source code and assess the quality". Others differentiate between products which
they ship, and those they use internally. For example, for one SME "as a consultancy
company, we have adopted some OS products which we deploy at customer sites ...
but Open Office is a product we use on a daily basis ourselves".

There is a perception that it takes longer to become productive using the LAMP
stack, with developers able to more quickly use proprietary development tools "out of
the box". However, the view of experienced LAMP developers is that this is not an
ongoing problem.

An experienced OS developer, commenting on the quality of OSS, states that, in
his view, it is "always good". Further, "functionality has increased significantly but
above all the number of areas in which you can use OS". The Office package, for
example, "wasn't available in a usable form five years ago but this is not at all a
problem today." Another advantage seen with OS is that using OS products there is a
better response to development questions. In the words of one developer: "Open
Source is interesting because there is a potential for quickly developing code and
quickly getting responses to questions in a way which you do not get in a commercial
environment."

Alongside this, astute developers are aware of the broader costs of adopting
software: "It is absolutely not for free, because you have to invest time in order to
understand the software, and there is no possibility of writing formal complaints if it
doesn't perform adequately. There is a certain risk associated with if. However, in
his experience "the support in itself is easily as good as for commercial products".

Some company experience is with OS products not so commonly adopted
amongst Swedish companies: "We use ObjectWeb, from a European OS consortium,
which I would call a hidden pearl. We have used this in a large project at a customer
site, and it runs on like a Swiss clock."

Finally, many companies are aware of the licensing advantages of OS: "What I
like most with OS is the licence model. It gives a freedom and control over your IT
investment, and that I think is a very important factor."

160 Bjom Lundell, Brian Lings, and Edvin Lindqvist

3.3 Company participation in OS projects

Question: Does your company participate in any Open Source projects

After a positive response to this question, the interviewer clarified which ones and
in what way the company was involved. Those not participating were asked whether
there was a specific reason.

Of the companies actually using OSS within a development environment, 75%
actively contribute to OS projects in one way or another. That is, 75% can be
classified as having a symbiotic relationship with the OS community, the remaining
25% having a commensalistic relationship. Over 50% of all the companies in the
survey were in one of these categories.

A number of companies proved to be highly active in the OS community. In the
view of one developer: "life is too short not to get involved in OS developmenf.
Others are so heavily involved in OS within their business model, that they take it as a
firm responsibility to be aware of, and actively encourage successful projects: "If you
look on SourceForge there are 1,000,000 projects 950,000 of which consist of a piece
of code which is going nowhere. There are a number which win in the longer term,
and it is part of our job to identify those, and become active in them."

The level of activity varied widely. Some companies started OS projects by
releasing source code under an OS licence. Others were strategically involved in OS
projects as "commiters" and other leading roles, including responsibility for publicity.
In other cases there was a lower level of interaction, including bug reports and
submitting bug fixes for consideration.

4 Discussion and Conclusions

Open Source In this paper we have illuminated perceptions amongst stakeholders in
Swedish companies adopting OS. These perceptions seem to graduate from OS
perceived as specific tools and products to something which can revolutionise
business models and development processes. One important factor seems to be the
level of company commitment to OS, in that practitioners in companies contributing
to OS projects or modifying OS code seem much more aware of the broader issues
related to OS. Developer involvement with OS projects is apparent in half of the
companies approached, and in the majority of these the relationship can be said to be
symbiotic.

The observation about the very small percentage of OS projects which are likely
to be successful may partly relate to the fact that most OS projects are developed by a
tiny number of developers [12, 13]. Within the projects adopted in Swedish
companies, the vast majority are large, well known projects with significant diffusion.
They can therefore be considered low risk.

Perceptions and Uptake of Open Source in Swedish Organisations 161

It is also worthy of note that large companies (over 250 employees) within the
sample are more conservative in there uptake than SMEs, being primarily involved
only at the level of adopting products from the LAMP suite. However there are
exceptions, including both a large IT and a non-IT company, the latter with very
specific requirements. Further, we found only one example of inner source
development; that is, development of software within a company using Open Source
processes and principles [14].

One question is why profit-oriented companies enter the OS field [15]. A number
of Swedish companies now see a business in repackaging OS components and
offering added value. Many adopt OS products and components within their own
development activities, for competitive advantage. Some go further, releasing the
products they have developed under OS licences. A strong motivation for both
company and individual involvement in OS projects is seen as personal skills
development. A major motivation for releasing code as OS is to gain benefit from a
larger user and developer community. Of course, a prerequisite for obtaining such
benefit is that the community can be built and sustained - something which has been
shown to be complex [16].

Overall, the survey suggests that organisational involvement in OS development
is a promoter of change: of perceptions, development processes and ultimately
business models. This is a phenomenon worthy not only of monitoring but of
studying, to understand the key tools, techniques, architectures, development methods
and licensing for promoting symbiotic relationships. Such alignment is a challenge
both for the OS communities and commercial software development organisations.

It is perhaps worth conjecturing how such alignment might be supported. OS
champions within larger organisations might help this process by promoting inner
source projects within their organisationj By doing this, the OS development model
will be taken in-house, and organisational learning follow. OS communities could
make it easier for organisations to assess the maturity and quality of products, thereby
benefiting from wider uptake and increased interest and subsequent contributions.
Responsiveness to contributions from commercial organisations is an issue which has
been raised; it is sometimes difficult for organisations with substantive contributions
to find an OS developer with upload rights who is willing to accept.

In conclusion, this study complements the findings of the FLOSS quantitative
survey of Swedish companies, concentrating on qualitative issues in order to
understand the underlying dynamics behind the OS phenomenon in companies
adopting OS. In essence, though, some see the growth of OS usage in stark terms, as
expressed by one interviewee: "Our company wouldn't be where it is today if not for
Open Source".

162 Bjdm Lundell, Brian Lings, and Edvin Lindqvist

4 Acknowledgements

This research has been financially supported by the European Commission via FP6
Co-ordinated Action Project 004337 in priority IST-2002-2.3.2.3 'Calibre'
(http://www.calibre.ie), and also by Sparbanksstiftelsen Alfa.

5 References

1. p. J. Agerfalk, A. Deverell, B. Fitzgerald, and L. Morgan. Assessing the Role of Open
Source Software in the European Secondary Software Sector: A Voice fi-om Industry, In
Proceedings of the 1st International Conference on Open Source Systems (Scotto, M. and
Succi, G. Eds.), p. 82-87, Genoa, Italy (2005).

2. G. Lawton. LAMP Lights Enterprise Development Efforts, IEEE Computer, September, p.
18-20(2005).

3. ITEA. ITEA Report on Open Source Software, ITEA: Information Technology for
European Advancement. ITEA Office Association, January 2004, www.itea-office.org
(2004).

4. P. Gustafson and W. Koff Open Source for Business. Computer Science Corporation,
California, <www.csc.com/features/2004/uploads/LEF_OPENSOURCE.pdft>, September,
(2004).

5. M. Schiitz, N. Khan, and A. Chand. A Baseline Survey on Free and Open Source Software
(FOSS) in the South Pacific: Knowledge, Awareness, and Usage, ICT Capacity Building at
USP Project, The University of South Pacific, ISBN 982-01-0640-0 (2005).

6. e-Cology. Open Source Software - OSS - In Canada: A Collaborative Fact Finding Study,
e-Cology Corporation, <www.e-cology.ca/canfloss/report/CANfloss_Report.pdf>,
September (2003).

7. J. Giera. The Costs And Risks Of Open Source, April 12, Forrester Research Inc.,
Cambridge, US (2004).

8. U. Nikula, and S. Jantunen. Quantifying the Interest in Open Source Systems: Case South-
East Finland. In Proceedings of the 1st International Conference on Open Source Systems
(Scotto, M. and Succi, G. Eds.), p. 192-95, Genoa, Italy (2005).

9. L. Dahlander and M. G. Magnusson. Relationships between open source software
companies and communities: Observations from Nordic firms. Research Policy, 34(4), 481-
493 (2005).

10. S. Lussier. New Tricks: How Open Source Changed The Way My Team Works, IEEE
Software, 21(1), 68-72 (2004).

Perceptions and Uptake of Open Source in Swedish Organisations 163

11.FLOSS. FLOSS Final Report - Part 1: Free/Libre Open Source Software: Survey and
Study, University of Maastricht, The Netherlands www.infonomics.nl/FLOSS/report
(2002).

12. S. Krishnamurthy. Cave or Community? An Empirical Examination of 100 Mature Open
Source Projects, First Monday, 7(6), www.firstmonday.org/issues/issue7_6/
krishnamurthy/> (2002).

13.L. Zhao and S. Elbaum. Quality assurance under the open source development model.
Journal of Systems and Software, 66(1), 65-75 (2003).

14. V. K. Gurbani, A. Garvert and J. D. Herbsleb. A Case Study of Open Source Tools and
Practices in a Commercial Setting. In Proceedings of the 5th Workshop on Open Source
Software Engineering, p. 24-29, ACM (2005).

15. C. Rossi and A. Bonaccorsi. Why profit-oriented companies enter the OS field? Intrinsic vs.
extrinsic incentives. In Open Source Applications Spaces: Fifth Workshop on Open Source
Software Engineering (5-WOOSE) May 17, ACM (2005).

16. J. West and S. O'Mahony. Contrasting Community Building in Sponsored and Community
Founded Open Source Projects, In Proceedings of the 38th Annual Hawaii International
Conference on System Sciences (HICSS'05) - Track 7, January 03-06, 2005, IEEE
Computer Society, Los Alamitos, lOp (2005).

A study on the introduction of Open Source
Software in the Public Administration

Bruno Rossi^ Barbara Russo', and Giancarlo Succi*
1 Free University of Bolzano-Bozen, Faculty of Computer Science,

Domenikanerplatz 3, 39100 Bolzano-Bozen, Italy
{bruno.rossi,barbara.russo,giancarlo.succi}@unibz.it

WWW home page; http://www.case.unibz.it

Abstract. This paper reports about a study on the introduction of Open Source
Software (OSS) in a Public Administration located in Europe. The Public
Administration examined has introduced OSS as a means to save on the license
costs and to have a larger space for customisation purposes. The adoption of
new software may have an impact on the employees' productivity that need to
be addressed. In this article, we compare the usage of OpenOffice.org and
Microsoft Office. Data about the usual office activities performed by the users
participating to the experimentation have been collected by means of an
automated non-invasive data collection tool. The result of this study reports a
similar usage pattern of both suites in terms of workload, but a different
approach in using ftinctionalities provided by each software. A ftirther analysis
on the life cycles of documents elaborated with the office suites seems to
validate the similarities among the software solutions examined.

1 Introduction

The introduction of Open Source Software (OSS) in substitution or in parallel with
Closed Source SoflAvare (CSS) is an argument that acquired recently great relevance.
The proposed savings in terms of license costs and the broader opportunities for
software customisation are arguments that interest particularly private and public
companies. There are many studies atid market researches on the convenience of the
migration that privilege one of the two solutions, depending mainly of the factor of
cost considered [1]. A complete migration is not an easy step, especially in working
environments where the interdependencies and the vertical integration is a key issue
[2]. Supporters of OSS also stress the importance to avoid the realisation of
phenomena of lock-ins, situations in which a company commits itself to a single
supplier or single data format [2, 3]. There are cases of successful migrations, like the
city of Calgary in Canada [4] or the region of Extremadura in Spain [5]. But there are
also cases of unsuccessful deployment, like the city of Nummberg [6] or delays and
over expenditures like the case of the city of Munich [7], both cases in Germany. The
case study discussed in this paper concerns an European Public Administration. For
two months a successful migration to OSS on the desktop side has been monitored.
The analysis reported has focused on the software for office automation. The
contribution to the field of this study is an evaluation of the similarities and

Please use the following format when citing this chapter:
Rossi, B., Russo, B., and Succi, G., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G, (Boston: Springer), pp. 165-171

166 Bruno Rossi, Barbara Russo, Giancarto Succi

differences in usage patterns of OpenOffice.org and Microsoft Office. This can shed
some light on the effect of a transition on the routine of the office work in a PA.

2 The Study

2.1 Study description

The study has been based on the data collected from a Public Administration in
Europe during a migration to the OpenOffice.org suite. This office automation suite
offers similar functionalities as the ones offered by Microsoft Office. It is composed
by a word-processor, spreadsheet software, presentation software and a drawing tool.
The Public Administration (PA) examined has been adopting OSS for some time; the
analysis we report refers to a situation, where the proprietary and open solution
coexisted in the working environment. To monitor the time spent on different
solutions, data have been collected with the aid of the PROM software [8]. With a
non-invasive impact, the software gives the opportunity to register for every
document the time spent, the name of the document and the functions used. This last
feature is at the moment still limited, but can give useftil insights of the different
patterns of usage between the two solutions. The monitoring of users as we report in
this paper has been performed during 2 months with both solutions installed in
parallel. 100 users have been involved in the experimentation.

2.2 Dataset distribution

To have an idea of the evolving situation during the first two months of the
experimentation, we can see in figure 1 the comparison between Microsoft Office and
OpenOffice.org usage. The figure refers to the average number of documents worked
by all users on a specific day. As these numbers seem to report the daily averages are
very.

A study on the introduction of Open Source Software in the Pubhc Administration 167

Average documents per day

10 Avg doc per day OOOl
BAvgdocperdayMSO

Fig. 1. Average number ofOpenOffice.org documents per day (outlined) and MS Office
documents per day (in black).

In Figure 2 the total daily number of documents per solution is reported. This is
the global sum of all the documents handled daily by all users participating to the
experimentation.

Total documents per day

• Total docs MSO|
g Total docs Ooo

Fig. 2. Total OpenOffice.org documents per day (outlined) and MS Office documents per day
(in black).

From this table can be derived that more users are in fact adopting the open
solution. At the end of the period considered, the documents handled with
OpenOffice.org have been 4.032 against 1.206 opened with Microsoft Office. This to
justify that the migration examined is already in a mature state, in which the new
technology introduced is taking over the old one.

The purpose of these figures is to give an idea of the existing situation in the PA
that is the focus of our study.

168 Bruno Rossi, Barbara Russo, Giancarlo Succi

2.3 Functions used

In this section we report the functionahties used on the different suites, divided per
software. At the moment, the version of the software used for the data collection does
not allow a more fme-grained analysis. In table 1 the total numbers of functions
adopted during the study. These were selected being the most representative one.

Table 1. Total functions used according to application type

Open
Save As
Print
Spelling
Insert table
Find and replace

Microsoft Office
145
205
170
178

2
7

OpenOffice.org
1038
1321
1109
578
43
39

In table 2, the same functions are reported, this time normalised with the number of
documents handled per solution.

Table 2. Total functions weighted per document handled

Open
Save As
Print
Spelling
Insert table
Find and replace

Microsoft Office
0.15
0.21
0.18
0.18
0.00
0.01

OpenOffice.org
0.24
0.31
0.26
0.13
0.01
0.01

The impact of activities like inserting tables and finding and replacing words seem
very low in both solutions. We could not trace keyboard shortcuts, so the analysis in
this sense is limited. In general the usage pattern of OpenOffice.org seems different,
with more actions performed, like opening documents, saving and printing. Spelling
instead had a higher impact in Microsoft Office than in OpenOffice.org.

2.4 Documents life cycle

To deepen the analysis of the differences between the two solutions, we derived a
concept similar to the one of Product Life Cycle (PLC), in our case applied to
documents. The concept of Product Life Cycle was first introduced by Theodore
Levitt in 1965 [9]. Typical stages in a product life cycle are: Introduction, Growth,
Maturity and Decline. There are many different variations of the Product Life Cycle
model that differ mainly in the names used to describe the different stages and the

A study on the introduction of Open Source Software in the Pubhc Administration 169

purpose of the underlying analysis. A similar model has been used to study the
difftision of new technology [10]. In figure 3 a typical product life cycle is depicted,
together with the different phases of maturity.

ii

Introduction

/ \

Growth Maturity Decline

Fig. 3. A typical product life cycle, with four phases of maturity (Introduction, Growth,
Maturity, Decline).

- The Introduction phase is where the product is introduced on the market, in this
phase marketing has the strongest importance than in other phases.
- The Growth phase is where the increase in sales supported by marketing becomes
considerable.
- In the Maturity phase the sales are stabilised and the speed of increase of sales is
slowly reduced until it begins to become negative.
- In the Decline phase, the product is no more attractive to possible customers that
may prefer a more technological concurrent product.
In the Product Life Cycle, the duration of each phase may be different between
different products, as the adoption curve may have a different aspect.
We decided to model the DLC as a measure of software usage to further discover
existing analogies between CSS and OSS. Following an analogy with PLC, we
considered the life of a single document, as composed from different phases: its
creation phase that starts with the generation of the underlying file, the grow1;h phase
where the document usage increases, the maturity where the usage reaches maximum
levels and the decline phase, when the document's usage begins to decrement to the
complete halt. To perform this task we analysed all 5.238 documents and divided
them in two groups, the ones handled with OpenOffice.org and the ones handled with
Microsoft Office. Subsequently, we reported the life of each document into the PLC
model framework. The last step was to analyse, the distribution of the derived DLCs.
In table 3 we report the results obtained. The average length of the documents is very
similar in a comparison between both solutions.

170 Bruno Rossi, Barbara Russo, Giancarlo Succi

Table 3. Comparison of DLC of all documents, the scale is in days. Averages marked with a *
have been obtained by excluding documents with a life cycle of one day

Application Avg DLC length St. Dev. Avg DLC length* Max DLC length
Microsoft Office
OpenOffice.org
All documents

1.83
1.78
1.82

3.45
3.74
3.47

4.64
4.06
4.11

51
46
51

As we should expect, the results of the DLC analysis are comparable, the
difference between the two software solutions are minimal. As a side note, we
discovered that only 25% of all documents have a life cycle greater than one day.

3 Conclusions

While the study is still limited, we are getting a clearer picture on the interactions of
users with their desktop software. The study reported refers to a Public
Administration where OSS has already been adopted in parallel with the closed
solution for some time. In this sense we are in a more mature moment during the
technology adoption, not the early phases of a complete migration. The next step
would be the complete adoption of OSS for office automation, if the feasibility study
performed show favourable. The results of our analysis show that proprietary and
open solution can coexist on the working environment on the desktop side. Also the
average number of documents per day seems domparable. Focusing on the functions
used, some activities seem to be more adopted by users with the open solution than
the closed one. During our study, some function we thought at first important were
rarely used. A more fine-grained analysis will be possible with more accurate
software for data collection, collecting more measures necessary to evaluate fully all
the functions used. The analysis and evolution of the documents' life cycle, a concept
borrowed from economics, seem also to justify the strong similarities between the two
solutions offered.

References

1. The Yankee Group (2005) North American Linux TCO Survey,
www.yankeegroup.com, June 2005

2. C. Shapiro, and H. R. Varian Information Rules: A Strategic Guide to the Network
Economy (Harvard Business School Press, 1999).

3. S. Liebowitz, S. Margolis, Winners, losers & Microsoft, Competition and Antitrust
in High Technology (Oakland, Calif : The Independent Inst., 1999)

A study on the introduction of Open Source Software in the Public Administration 171

4. Real World Linux 2004 Conference and Expo Reports, (May 2004);
http://www.realworldlinuxbiz.com/artman/publish/printer_rwl04rp.shtml

5. Extremadura Linux Migration Case Study (2005);
http://insight.zdnet.co.uk/software/linuxunix/0,39020472,39197928,00.htm

6. Stadt Numberg (2004). Strategische Ausrichtung im Hinblick auf
Systemunabhdngigkeit und Open Source Software; http://online-
service.nuernberg.de/eris/agendaItem.do?id=49681

7. Landeshauptstadt Munchen (2003). Clientstudie der Landeshauptstadt Munchen\
http://www.muenchen.de/aktuell/clientstudie_kurz.pdf

8. A. Sillitti, A. Janes, G. Succi, T. VQxm.7Zdi,Collecting, Integrating and Analyzing
Software Metrics and Personal Software Process Data, EUROMICRO 2003, Belek-
Antalya, Turkey, 1-6 September 2003.

9. T. Levitt, Exploit the Product Life Cycle (Harvard Business Review, Vol 43,
November-Dicember 1965, pp 81-94)

10. M. Bass Frank, "A New Product Growth Model for Consumer Durables, 1969,
Management Science, 15, pp215-227)

Exploring the potential of OSS
in Air Traffic Management

Jean-Luc Hardy and Marc Bourgois
EUROCONTROL Experimental Center

Innovative Research Department
91222 Bretigny-Sur-Orge CEDEX France
{jl.hardy,marc.bourgois}@eurocontrol.int,

WWW home page: http://www.eurocontrol.int/eec/

Abstract. This paper introduces a project that aims at defining an Open Source
Software (OSS) policy in the field of Air Traffic Management (ATM). In order
to develop such a policy, we chose to investigate first a set of predictive hy
potheses. Our four initial hypotheses were presented, refined and discussed in
bi-lateral meetings with experts in the ATM field and in several conferences
and workshops with OSS experts. At a roundtable, jointly organized by
CALIBRE and EUROCONTROL, we confi-onted early open source expe
riences and insights in the ATM domain with experiences and knowledge fi-om
a panel of OSS experts and practitioners from academia and industry. The
revised initial hypotheses are presented using a fixed format that should
facilitate fijrther evolution of these hypotheses.

1 Introduction

EUROCONTROL is the European Organisation for the safety of Air Navigation. It
has as its primary objective the design and development of a safe and seamless pan-
European Air Traffic Management (ATM) system in Europe. Founded in 1960 as a
civil/military intergovernmental organisation, it is now a world leader, pioneering
advances in ATM technology, operational procedures and system interoperability.
The number of Member States has grown from the original 6 to 36.

Many ATM projects are implemented partially or totally through software
developments. Proprietary software is the usual practice in the ATM industry. Most
software produced by the EUROCONTROL Agency is outsourced. Presently, OSS
principles and licenses are not included in the official Intellectual Property Right
(IPR) policy of EUROCONTROL.

The next section presents the structure of the study in five parts: a project
(OSIFE), a network (CALIBRE), an event (roundtable), a formalism, and a
knowledge base.

2 The OSIFE project

By the middle of 2004 we started a study project to get a better understanding of the
potential impact of the OSS movement on ATM. The OSIFE acronym was coined:
"Open Source Implications For EUROCONTROL". We started by reviewing the

Please use the following format when citing this chapter:
Hardy, J.-L., and Bourgois, M., 2006, in IFIP Intemational Federation for Information
Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi,
W., Scotto, M., Succi, G., (Boston: Springer), pp. 173-179

174 Jean-Luc Hardy and Marc Bourgois

basic literature concerning Open Source and Free Software. The outcome was a
definition of the scope, the objective and the method of the project.

In terms of scope, we decided to limit our investigation to the impact of OSS on
the core business of EUROCONTROL, i.e. ATM. In terms of objective, we want to
understand if, when and how OSS could impact the business in ATM. In terms of
method, we chose to describe our insights as a set of predictive hypotheses. To launch
the debate, four broad hypotheses about the potential of OSS for ATM were
introduced [1]. They can be summarized as follows: the OSS paradigm will

1. facilitate the harmonization of ATM,
2. maintain or improve the quality of ATM software,
3. affect the ATM industry in a positive way,
4. help EUROCONTROL to better meet its public service obligation.

3 The CALIBRE network

Through this first presentation, it became clear that the ATM community was
interested about OSS, that further investigations were needed, and that networking
was necessary to gather facts and arguments about the 4 hypotheses. During 2005,
networking proceeded twofold: within the ATM world and within the OSS world.

To explore the ATM world, we made numerous contacts inside EUROCON
TROL. It transpired that many experts involved in the improvement of ATM systems
are unaware or unclear about the OSS paradigm. For example, OSS is often wrongly
considered as equal to freeware. However, we also had the nice surprise to discover a
few projects and experiences where the OSS concepts were used or considered
helpful.

To explore the OSS world, the CALIBRE consortium [2] quickly appeared as
the appropriate network. It is supported by the European Sixth Framework
Programme. As part of its commitments to promote the OSS paradigm in Europe,
CALIBRE facilitates an industry forum called CALIBRATION, which provides
contacts with representatives of other industries.

The CALIBRE conference at Limerick in September 2005 was a first opportunity
to present the 4 initial hypotheses of OSIFE to the OSS community and to collect
feedback. The second opportunity was a CALIBRE workshop at Krakow, about
quality, safety and security in OSS initiatives. In preparation for the Krakow
workshop we were stimulated to deepen our comprehension of these issues: following
discussions with EUROCONTROL colleagues at the EUROCONTROL Maastricht
ATC centre we introduced two new hypotheses, one about safety and the other about
security.

Exploring the potential of OSS in Air Traffic Management 175

4 The OSS-in-ATM roundtable

Assuming that the stimulating spirit of the CALIBRE network could help to increase
the OSS awareness among ATM circles, we dreamed about a meeting between both
worlds: the OSS world and the ATM world. Aside the OSS2005 conference in June
2005 at Genova, the idea of such a meeting was proposed to B. Fitzgerald, CALIBRE
project leader and immediately endorsed. The format chosen for this meeting was a
roundtable on the subject: "Potential of OSS in ATM" [3]. It was co-organised with
CALIBRE and took place in December 2005 at the EUROCONTROL Experimental
Center (South of Paris). It drew a participation of 28 persons from the CALIBRE
expert circle, the EUROCONTROL staff, and the ATM industry. Several outcomes
were expected from such a confrontation: (i) increased awareness of the OSS
paradigm in the ATM circles; (ii) better appreciation of the relevance of early open
source experiences in the ATM domain; and (iii) modification or confirmation of the
validity of the hypotheses.

5 The formalism used to describe hypotheses

The discussion about our hypotheses and the difficulty to extract knowledge from
the abundant OSS literature calls for the adoption of some kind of formalism to
describe pros and cons. The CALIBRE team has used SWOT analysis in previous
cases to help clarify the potential of OSS [4].

In this paper, we use the SWOT analysis to articulate a model that should
facilitate the identification of the critical semantic elements of each hypothesis and
should help to trace the evolution of the hypotheses.

The SWOT analysis of a system classifies facts intrinsic to the system in terms of
strengths or weaknesses and facts intrinsic to its environment in terms of
opportunities and threats. For the purposes of our research, we try to predict how
strengths and weaknesses of a system in the environment - the OSS paradigm -
translate to opportunities and threats for the system in focus - the ATM system.

Systematic matching of threats with strengths and opportunities with weaknesses
leads to the identification of positive (win-win) and negative (loose-loose) synergies
between a system and its environment:
a) (How) could OSS strengths become an opportunity to compensate or correct

some of the weaknesses of the ATM systems?
b) (How) could OSS weaknesses become a threat for the ATM systems?

6 The knowledge base of hypotheses

The preliminary hypotheses of the OSIFE project have been revisited using insights
that were collected through the networking process, including lessons learned from

116 Jean-Luc Hardy and Marc Bourgois

the roundtable. To respect the 6 pages limitation of the proceedings, only 3 critical
hypotheses are presented in this paper, about quality, safety, and security. Quality,
and more specifically safety, is the bread and butter of the ATM domain.

6.1 On the quality of ATM software

In our research we take an external perspective on quality. We interpret wide adoption
of software and complexity of systems constructed with that software as indications
of high quality software.

It is a fact that ATM systems are complex, essentially because of the highly
sophisticated user interfaces and the stringent performance requirements put onto the
ATM systems. The complexity of ATM systems is continually increasing with their
ever-increasing interconnectivity.

6.1a Fact (ATM weakness):
Most ATM software applications are complex.

There is ample evidence of the wide adoption of OSS for tools like operating systems,
databases etc. which are' undoubtedly complex. Such achievements are only possible
if OSS indeed has high intrinsic quality.

6.1b Fact (OSS strength):
OSS can result in complex applications with high quality.

Several authors are sceptical about generalisations of quality statements on OSS, for
two reasons: either because in the absence of a hierarchical development team where
one person is in charge of the product, "modifications can be made to an individual
module that could have a deleterious effect on the maintainability of the open-source
software product as a whole" [5], or because "in the absence of firm design and
documentation standards, and the ability to enforce those standards, the quality of the
code is likely to suffer" [7].

6.1c Fact (OSS weaknesses):
Quality of OSS cannot be guaranteed in the absence of a hierarchical
development team and firm standards for design and documentation.

Taking all these arguments together we logically come to:
6.Id Hypothesis:
OSS can result in complex ATM applications with high quality, provided that
a hierarchical development team and firm standards for design and
documentation are enforced.

6.2 On safety in ATM

The first objection raised when considering a change to the ways ATM systems are
developed or operated is that the change will not be compatible with the stringent
safety-critical constraints of the field. Not surprisingly, this objection was prominent
in the feedback from attendees at presentations on the potential introduction of OSS,
both from an ATM audience [1] and from an OSS audience [8, 9].

Exploring the potential of OSS in Air Traffic Management 177

During our research we noted the lack of OSS penetration for safety-critical
applications. No examples could be found in the literature, neither could any be
recalled by the OSS expert panel at the roundtable.

6.2a Fact (OSS weakness):
OSS does not propose specific solutions for safety-critical systems,
6.2b Fact (OSS strength):
By facilitating the peer review process,
an OSS approach can eliminate some safety-critical problems.

Does this mean that the ATM domain cannot benefit from the potential of OSS? No,
it merely means that the safety-critical applications in ATM should not be the first to
be explored. But then again, there are very many non safety-critical components in
the overall ATM system, so plenty of opportunities to build experience with OSS
exist. In fact, one ATM expert at the roundtable ably, but provokingly argued that
ATM applications are not safety-critical at all, because by definition the traffic is
constantly kept conflict free, offering several minutes of reaction time for the humans
in the system to deal with outages of automated components. The argument continues
to identify the avionics components as the truly safety-critical parts. Nonetheless we
can conclude:

6.2c Hypothesis:
The safety of ATM systems will be improved through OSS practices, provided
that the peer review process is actively engaged in.

6.3 On security of ATM systems

The second objection that comes to mind when considering the introduction of OSS
in ATM is that OSS could create security problems. The security issue has gained
prominence because of 9/11. This event has demonstrated that security attacks beyond
the worst scenario ever imagined for aviation can happen and that a creative paranoia
to guard against such attacks is justified.

6.3a Fact (ATM weakness):
Security flaws in ATM can have catastrophic consequences.

In the OSS literature, the concept of security symmetry is discussed [10]. As
summarized by Brian Fitzgerald [private communication]: «'Security Symmetry' is a
reference to Ross Andersen's conjecture (discussed in [11]) which proposes that open
systems may be more prone to security attacks (because 'evil' crackers can see the
code) but this is balanced by more opportunity to identify and fix potential security
flaws in the first place (because 'good' hackers can also see the code). »

6.3b Fact (OSS weakness):
'Evil' crackers can exploit security risks.
6.3c Fact (OSS strength):
'Good' hackers can detect and eliminate security risks.

In addition, the OSS paradigm allows software users to check any code incorporated:
6.3d Fact (OSS strength):
Users can perform a security screening of any code incorporated.

178 Jean-Luc Hardy and Marc Bourgois

Considering ATM, the security of the operational system (i.e. the run-time system) is
normally guaranteed by strict physical isolation. For example, operational ATM
systems are completely isolated from the internet, and regular audits to ensure this are
common practice.

6.3e Fact (ATM strength):
Non-ATM systems (including people) cannot
access the A TM operational system.

When taken all together, 6.3e cancels out 6.3b:
6.3 f Hypothesis:
The security of the A TM system will be improved through OSS practices,
particularly if the software is subject to a security screening.

B. Fitzgerald concluded: «Breaking the security symmetry would be trying to shift the
balance more towards realising the benefits, at the expense of incurring the risks.» For
ATM, leveraging the security symmetry would require a security screening in the
acceptance protocol.

7 Conclusions

This article exploits a formalism for systematically accumulating knowledge
about the potential of the OSS in ATM. Starting from a preliminary set of predictive
hypotheses, a networking process, engaging both the OSS and the ATM worlds, has
been efficient in producing novel insights. The analysis of the outcome from the
roundtable is still going on and further refinement of our hypotheses is expected.

8 References

1. J-L. Hardy and M. Bourgois, Open Source Implications for EUROCONTROL
(OSIFE), in: Proceedings of the 3rd EUROCONTROL Innovative Research
Workshop, edited by Eurocontrol (December 2004).

2. CALIBRE, Limerick (March 6, 2006); http://www.calibre.le.
3. M. Bourgois, J-L. Hardy, J. O'Flaherty, and J. Seifarth (Eds), Proceedings of the

roundtable "Potential of OSS in ATM" (Bretigny, France, December 2005);
http://wwvv.oss~ In-atni. 1 n fo.

4. P.J. Agerfalk, A. Deverell, A. Fitzgerald, and L. Morgan, Assessing the Role of
Open Source Soft^vare in the European Secondary Software Sector: A Voice from
Industry, in: Proceedings of the First International Conference on Open Source
Systems (OSS2005), edited by M. Scotto and G. Succi (Genova, Italy, July 2005),
pp. 82-87; http://oss2005.case.unibz.it/dovvnload.php.

5. S. Schach, B. Jin and D. Wright, Maintainability of the Linux kernel, in:
Proceedings of 2nd Workshop on Open Source Software Engineering, ICSE2002,
edited by J. Feller, B. Fitzgerald, F. Hecker, S.C. Hissam, K.R. Lakhani, and A.
van der Hoek (Orlando, Florida, 2002); http://opensourcc.ucc.ic/icse2002.

Exploring the potential of OSS in Air Traffic Management 179

6. J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani (Eds.), Perspectives on Free
and Open Source Software (The MIT Press, Cambridge, USA, June 2005).

7. S. Rusovan, M. Lawford and D. Pamas, Open Source Software Development:
Future or Fad? In: [7], pp. 107-121.

8. CALIBRE, 2nd International Conference: The Next Generation of Software En
gineering Integrating Open Source, Agile Methods and Global Software
Development (Limerick, Ireland, September 9, 2005), http://www.calibre.ie/
events/conferences .php.

9. CALIBRE, Quality and Security Workshop (Krakow, Poland, October 18, 2005);
www.calibre.ic/cvents/vvorkshops.php.

10. J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani, F/OSS Project Leaders and
Developers, in: [6], page XXIX.

11. R. Anderson, Open and Closed Systems Are Equivalent, in: [6], pp. 127-142.

Part V

Empirical Analysis of OSS

Institutional Entrepreneurs and the
Bricolage of Intellectual Property

Discourses

Ann Westenholz
Department of Organization and Industrial Sociology, Copenhagen

Business School, Kilevej 14, 2000 Frederiksberg, Denmark.
(aw.ioa@cbs.dk)

Abstract. Commercial software firms are increasingly becoming involved
with open source communities. In this research-in-progress paper I briefly
analysed a single firm case that demonstrates how an institutional entrepreneur
mixes in an innovative way different discourses in an attempt to legitimise a
new mode for developing software applying both open and closed source codes.
The institutional entrepreneur does this by creating new distinctions in his daily
software developing work. I am not arguing that the institutional entrepreneur is
creating these new distinctions in an instrumental rational process, but that the
distinctions emerge in sensemaking processes along his 'doing' something in
the firm.

1 Introduction

In the paper I focus on how intellectual property rights develop within software
development that involves both business firms and open-source communities, and on
the role of institutional entrepreneurs in this development. The basic assumption is
that the parties involved are embedded in different institutional logics concerning the
understanding of the nature of intellectual property right, implying their different
perceptions of and practices for knowledge sharing and organizing product
development. What are the stories about intellectual property rights emerging from
this interface? And what role does the institutional entrepreneur play in this
development?

The issue is attempted elucidated from the perspective of New Institutional
Organization theory (DiMaggio and Powel, 1983 ; Meyer and Rowen, 1983; Scott,
1995) and concerns how institutions change - in casu 'intellectual property right'. In
the 1970s and 1980s New Institutional theory represented a novel perspective within
organization theory compared to the rational one by singling out institutions as
independent variables that could explain organizational behaviour. However, by
understanding institutions as independent variables New Institutional theory became
unable to explain organizational change. A number of researchers have since
attempted to develop a New Institutional theory capable of explaining organizational
change as the outcome of the role that institutional entrepreneurs play in the
development (Borum and Westenholz, 1995; Boxenbaum and Battilana, 2004; Brint
and Karabel, 1991; Christensen and Westenholz, 1997; DiMaggio, 1988; Fligstein,
1997; Friedland and Alford, 1991; Greenwood and Hinings, 2002,; Oliver, 1991;

Please use the following format when citing this chapter:
Westenholz, A., 2006, in IFIP International Federation for Information Processing,
Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto,
M., Succi, G., (Boston: Springer), pp. 183-193

184 Ann Westenholz

Scott, 1995; Seo and Creed, 2002; Tolbert and Zucker, 1983). In the paper, I elaborate
these ideas by combining the theory of institutional entrepreneurs with discourse
theory. (Collinson, 1988 1992; Gabriel, Handy and Phillips, 2004; Graesser,
Gemsbacher and Goldman, 2003; Grant, Hardy, Oswick and Putnam, 2004ba and b;
Jorgensen and Phillips, 2002; Wetherell, Taylor and Yates, 2001).

In the paper I draw on a project-in-progress\ and the paper is thus a first step
toward elucidating the issue. Section 2 of the paper describes a single case in which a
business firm uses open-source. Section 3 describes the historical-social context of the
case, and section 4 accounts for the theories underlying the analysis. In section 5 I
analyze the case and conclude in section 6.

2 The case

John is about forty years old, and worked in the media world in the past. In the mid-
1990s he started a Danish IT firm. In 2000, he wanted to publish a product he had
developed as an open-source programme, in order to disseminate it and encourage
others to elaborate on it. John had learned about open source from a programmer with
whom he had collaborated. He was attracted by the idea because, as he says: 'It makes
knowledge sharing possible. I think that what we are doing is universal, and should be
accessible for all applications involving our product. Therefore it made sense to
involve people working with similar problems in the development of the basic
functions. Based on these functions, tailor-made solutions could be developed for
various customers.'

During 2000, John became increasingly burdened with debts that required him to
find venture capital. Although he succeeded in attracting capital, the venture
capitalists would not accept open source as part of their business recipe. John was
sacked, and in early 2001 found himself without a firm.

John mortgaged his flat and hired three employees who have developed a new
model from scratch. As their point of departure, they downloaded an open programme
from the Internet, further developed it, and subsequently uploaded the elaborated
version, making it available for others. In further developing the programme, they
collaborated with IT programmers who formally worked in other places, while
simultaneously working openly on the Internet. As John says: 'To resolve problems at
the same speed as was possible via the Internet would require several hundred
employees. Many of the problems concern very specific issues, and when we inquire
on the Internet it is rarely more than 24 hours before we have one or several
responses.'

But even as John's employees draw their knowledge from the Internet, others have
started to ask them questions via the Internet. If the questions concern issues that do
not interest them but are easily resolved, they respond. As one of John's employees

^ The name of the project is Institutional Entrepreneurs and it is financed by the Danish Social
Research Council 2005-2009. Homepage: www.IICO.dk

Institutional Entrepreneurs and the Bricolage of Intellectual Property Discourses 185

says, 'It's cool being able to produce something that others can use and to help some
of the guys in the USA that you admire: Just do so and so.' Being able to respond to
questions gives people status in the open-source community. But as John says: 'We
don't spend a week correcting errors for somebody in the USA if it isn't something
that we can use.'

John's firm makes money by adapting the product to the specific needs of specific
customers. If Microsoft had developed the product, similar adaptations to customer
needs would be required. The difference is that had Microsoft developed the product,
the customer would have to pay a start fee, which is not the case when the product is
available as an open-source programme. The advantage for John's firm is, however,
that having developed the product, it occupies the cutting edge. It will take some time
before others become equally adept at adapting it to customer specific needs. But it
also means that the firm must compete for producing the best quality rather than
dominating the market, leaving customers with few other options.

John says that his firm rests on 'a reverse line of thought in relation to traditional
economy and business strategy: 'It has taken a long time and we have been subject to
great ridicule, but it has been fun to see that the customers now realise the great
advantage of our approach. They have started to demand open-source products. The
concept suddenly starts to spread - and quickly now.'

Sometimes the firm is also involved in the development of closed-systems
products, as when the firm collaborates with hardware producers who are working
with closed codes. But the closure is immaterial, according to John, because the
product cannot be used in other contexts. 'It's fine. There are situations in which it is
better to produce your own things and keep them as a business secrets, particularly if
it concerns an area.' Nevertheless he admits that other programmers may be able to
transfer the codes to other situations, but the company with which John collaborate
will not concede to openness for the product. He has accepted this condition, because
'It's worth more to us to produce this for 'CLOSED-SYS' under the conditions which
they stipulate. Then we can work for others in the way we prefer. So in the case of
'CLOSED-SYS', we work with a closed system.' John estimates that about 10% of
the firm's jobs involve working with closed codes, and he does not expect this share
to change to any appreciable extent.

(The data for this case description was gathered in 2002)

3 The historical social context of the case

The case about John and his firm is the story about how different institutional logics
governing open and closed codes respectively meet and mix - an issue of different
understandings of 'property rights to intellectual work'. The story is far from an
isolated occurrence, and today we observe many different ways of mixing the two
logics in the production of software. In Denmark, for instance, various interest
organisations/groups have emerged over the last two years that work for the

186 Ann Westenholz

dissemination of open source commercial suppliers and producers. And the
phenomenon is far from local, but a global one.

In order to understand this development it might be fruitful to look into what has
happened with the concept of 'property' over the last decades. Traditionally the
concept of property embraces a number of rights that in various ways are allocated to
individuals, groups or society. In the capitalist production the concept of property is
tied to firms and embedded in a conception of the right of private owners to manage
the firm, yield profit, and wind up/transfer/sell the firm to others. In western societies
the prevailing assumption has been that combined these three rights were related to
the efficiency of the firm (Lindkvist and Westenholz, 1987). Concurrently with
production being transformed from material production to the production of
intellectual work (innovations, ideas, knowledge, information, symbols, expressive
manifestations, images, music, etc., detached from specific physical objects) the
intellectual property right has attracted growing attention in society, and some
researchers argue that intellectual property rights require a specific justification. The
reason is, among other things, that non-physical phenomena like intellectual work are
not immediately reduced from being shared with and used by many people such as
physical phenomena are reduced by being shared with or used by others besides the
owner. (Barlow, 2002; Coleman and Hill, 2005; Cornish, 2004; Davis, 2004a;
Rivette and Kline, 2000; Stahl, 2005; Thierer and Crews, 2002; Wright, 1979).

One of the most characteristic sectors in society that has placed the discussion of
intellectual property rights on the agenda in recent years is that of software
development within the hacker-culture^ related to the communities 'Free Software'
and 'Open Source' and the concept of 'copyleft'. (Davis, 2004 b; DiBona, Ockman
and Stone, 1999; Kaisla, 2001; Laurent, 2004; Moody, 2002; Pavlicek, 2000;
Raymond, 1999; Rosen, 2005; Stahl, 2005; Torvads, 2001; Wark, 2004; Weber, 2004;
Williams, 2002). Within private software firms many saw the hackers as a kind of
communist movement, but the boundary between private business and the hacker
community was surprisingly transgressed by the end of the 1990s. Among other
things the privately owned Netscape announced that it would publish its source codes
on the Internet and thus make the codes accessible to the public. This triggered a
process through which managers and hackers developed a marketing strategy aiming
at making private firms interested in the working methods of hackers. Previous ethical
imperatives were shelved in exchange for a more instrumental concept that would be
easier to understand for private business firms. Among other things the concept
introduced the possibility of privatising software modifications and demand payment
for their applications. The concept 'free software' was exchanged for 'open source',
and a growing number of private firms have started using Open Source over the last
five-six years. (DiBona, Ockman and Stone, 1999; Fink, 2003; Hippel and Krogh,

^ The term 'hacker' is applied here in the same way as the hacker-community does: a hacker is
an enthusiastic, often highly intelligent person who develops IT software in collaboration
with other hackers across universities and firms. Thus, a hacker is not someone involved in
criminal acts and hacking into others' computers.

Institutional Entrepreneurs and the Bricolage of Intellectual Property Discourses 187

2003; Hoick, Larsen and Pedersen, 2004; J0rgensen, 1999; Kaisla,2001; Koch, 2005;
Larsen, Hoick and Pedersen, 2004; Pavlicek; 2000, Raymond, 2001; Weber, 2004).

4 Theoretical background

In recent years different perspectives have been applied to studying the right to
intellectual work, such as an issue of moral/philosophy, of economic theory, of law
and of organisational sociology. The present research -in-progress paper will apply
the latter approach, with a focus on the theory of new-institutional organisational
sociology that investigates how the social construction of intellectual property unfolds
in the meeting between business firms and voluntary communities.

New-institutional theory focuses in particular on cognitive institutions - that is
internalised symbolic images of reality - and less on regulative and normative
institutions. (DiMaggio and Powell, 1983; Friedland and Alford 1991, Meyer and
Rowen, 1983; Scott, 1991; Scott, 1995). The theory, which was developed in the late
1970s and 1980s, understands cognitive institutions as independent variables, which
implies "a turn toward cognition and cultural explanations and an interest in
properties of supra-individual units of analysis that cannot be reduced to aggregations
or direct consequences of individuals' attributes or motives" (DiMaggio and Powell,
1991). This understanding of cognitive institutions as independent variables has
subsequently been subject to severe criticism as it made it unsuitable for explaining
institutional changes. A number of researchers have attempted resolving this problem
by introducing an 'actor' as independent variable. They have thus gone back to where
the new-institutional theory started its criticism: that individuals have motives and
attitudes that, under certain circumstances, contribute to explain institutional changes.
(Brint and Karabel, 1991; DiMaggio, 1988; Oliver, 1991; Scott, 1995; Tolbert and
Zucker, 1983). Other researchers have attempted solving the problem - not by going
back to individual motives and attitudes as the explanatory power of institutional
changes - but by further developing new-institutional theory by adding to it a
phenomenon called institutional entrepreneurs. Institutional entrepreneurs are
socially constructed actors of social capabilities to motivate others to collaborate by
bringing about in social practices characterised by multiple institutional logics a
shared sense making and identity. These logics constitute the organising principles
and they are accessible to organisations and individuals interested in further
developing micro processes through which the parties make sense of what has
happened, what is happening, and what is going to happen. (Borum and Westenholz,
1995; Boxenbaum and Battilana, 2004; Christensen and Westenholz, 1997; Fligstein,
1997; Friedland and Alford, 1991; Greenwood and Hinings, 2002; Seo and Creed,
2002). The theory of institutional entrepreneurs is currently in the process of being
developed, and the project wishes to contribute to further develop this phenomenon
focusing on the explanatory power of institutional entrepreneurs in relation to the
emergence of intellectual property.

188 Ann Westenholz

In further developing the phenomenon 'institutional entrepreneurs' I shall argue
for the fertility of combining new-institutional organisational theory and
organisational discourse theory. (Graesser, Gemsbacher and Goldman, 2003; Grant,
Hardy, Oswick and Putnam, 2004ba; Jorgensen and Phillips, 2002; Wetherell, Taylor
and Yates, 2001). Organisational discourse theory refers to the structural collection of
texts embedded in practice when talking and writing (in casu about intellectual
property). The assumption is that discursive practice not only describes things, but
also 'do' them in that the discourse brings life to the phenomena by categorising and
combining them in ways that make sense in an otherwise meaningless reality. Within
the realm of discursive theory it is methodologically relevant to distinguish between
'discourses-in-use' and 'discourses-in-context'. (Grant, Hardy, Oswick and Putnam,
2004 b). The latter concept 'discourses-in-context' is not alien to new-institutional
concepts such as cognitive institutions/institutional logics as institutional contexts are
used for understanding the formation of language. (Grant, Hardy, Oswick and
Putnam, 2004 b). By supplementing new-institutional organisational theory with
'discourses-in-context' analyses it becomes possible to elucidate the way in which
institutions prevail in everyday discourses. This will balance and concretise new-
institutional organisational theory, but it will not bring the theory further in the
analyses of institutional changes. For this purpose the approach of'discourses-in-use'
is applicable in that it focuses on interaction in micro processes through which
discourses are attempted authorised through, and counter-discourses are produced to
escape authorisations. (CoUinson, 1988 1992, Gabriel, Handy and Phillips, 2004).

5 And back to the case and the social context

Looking at the historical development in which John's firm is embedded, several
discourses-in-context' concerning the right to intellectual work are emerging within
software development. Each of these discourses points towards heroes and villains in
the development. This has been analyzed by, among others, Szczepanska, Bergquist
6 Ljungberg (2005) who identifies a 'hacker discourse' developed within various
software developing movements and communities. In the discourse a 'hacker' appears
who in most cases is. characterized as the creative and genuinely interested
troubleshooter developer - a character or an identity that marks a difference between
'us' and 'the others'. In the 1990s the hacker-discourse split into two as a result of
arguments over how to approach and to organize software development. One of the
discourses, the 'free-software-discourse', strongly emphasizes the ideological aspects
of the freedom to hack and to get and use information, whereas the other one, the
'open-source-discourse' attaches less importance to the ideological aspects of
freedom and more to the concrete product developed by using open codes. Both
discourses share the ambition to produce free software of high quality, but the
differences between the discourses are sufficient to identify two stories about
'hackers' each of which is closed around an 'us' and sees the others as - 'the others'.
Nevertheless both stories share a mutual enemy represented by Microsoft which is
characterized as the 'evil empire' as opposed to hackers, who like to see themselves

Institutional Entrepreneurs and the Bricolage of Intellectual Property Discourses 189

as romantic rebels. Microsoft has responded by developing its own 'proprietarian-
discourse' that tells a story about not only the necessity of firms protecting their
codes, but also about the importance of firms possessing the property right to
intellectual work in order to secure society innovation. In this story the hackers are
identified as the villains comparable to communists and anti-American behavior. As
Szezepanska and others stress it is interesting that all three discourses claim to
support 'the American way' in their attempts to legitimize their own discourse in the
societal arena.

Turning to John and his firm we can now see that John operates as an institutional
entrepreneur. John operates at the firm level, and in his local context he draws on the
open-source-discourse and the proprietarian-discourses. The nature of his
entrepreneurship is not to (further) develop one of the two discourses as e.g. Stallman,
Raymond and Gates have done, but to mix them in his daily practice in the firm.
Mixing the discourses requires that John renders them legitimate, enabling him to live
with himself and persuade his employees and other partners of collaboration to accept
the mix. For this purpose he applies two techniques: First of all he develops a
distinction between 'universal themes' and 'specific themes' in software
development. When developing 'universal themes' one should keep one's hacker
identity whereas it is fine to work in closed codes if the theme is specific and cannot
be used by others anyhow - according to John's arguments. Second, he develops a
pragmatic/instrumental attitude toward working with closed codes for CLOSE-SYS
arguing that it creates the financial possibility for working with open codes, which is
what he prefers - his substantive values. In the terminology of March and Olsen
(1989:23) John applies a logic of consequentiality working together with CLOSE-
SYS and logic of appropriateness when he is working with open codes. Both logics
seem to have fiinctioned in his daily practice.

6 Conclusion

I have briefly analysed a single firm case that demonstrates how an entrepreneur
brings into an organizafional IT field an open-source-discourse-in-use, a field in
which the nature of the dominant discourse-in-context and discourse-in-use are
properietarian. This CQUSQS problems of legitimacy f6r the entrepreneur, and he fails in
his attempt to procure from the organizational field the necessary resources for
developing and continuing the company; he is unable to render the open-source
concept legitimate. Financially he only survives by selling his apartment for
contributing to the assets of the company. At this point in the process the entrepreneur
sticks to his open-source and does not assume the character of an institutional
entrepreneur. Only late in the process does he 'assume character' as an institutional
entrepreneur by mixing in an innovative way different discourses in an attempt to
legitimise a new mode for developing software applying both open and closed source
codes. He does this by creating new distinctions in the discourse-in-use applied in his
daily software developing work (universal versus specific themes; and instrumental

190 Ann Westenholz

versus substantive values). I am not arguing that the institutional entrepreneur is
creating these new distinctions in an instrumental rational process, but that the
distinctions emerge in sensemaking processes along his 'doing' something in this
firm.

In the further study it would be interesting to:
• identify other discourses-in-context and discourses-in-use within software

development,
• identify other ways of mixing (other) discourses in the daily software

development and analyse how these are established as discourses-in-use,
• analyse whether and how new/mixed discourses are disseminated in the field

of software development. Here it would be relevant to incorporate different
analyfical units as institutional entrepreneurs (e.g. individuals, firms,
communities), and different analytical levels (global level, nationally level,
organizational level, and the level of concrete projects).

References

Barlow, John P. (2002) Intellectual Property , Informational Age. In: Thierer, Adam
and Clyde Wayne Crews Jr. (eds.) Copy Flights - The future of intellectual
property in the information age. Washington, D.C.: CATO Institute

Borum, Finn and Ann Westenholz (1995) The incorporation of Multiple Institutional
Models - Organizational Field Multiplicity and the Role of the Actor. In: W.
Richard Scott and Soren Christensen (eds.) The Institutional Construction of
Organizations - International and Longitudinal Studies. Thousand Oaks: Sage
Publ.

Boxenbaum, Eva, and Julie Battilana (2004) The Innovative Capacity of Institutional
Entrepreneurs - A Reconstruction of Corporate Social Responsibility. Academy
of Management Annual Conference. New Orleans, August 6-11, 2004

Brint, S. and Karabel, J. (1991) Institutional Origins and Transformations: The Case
of American Community Colleges. In Powell, W.W. and P. J. DiMaggio (Eds.)
The New Institutionalism in Organizational Analysis. Pp. 337-360
Chicago:University of Chicago Press.

Christensen, Soren and Ann Westenholz (1997) The social/behavioural construction
of employee as strategic actors on company boards of directors. American
Behavioral Scientist: AO'.A

Coleman, and Hill (2005) The Social Production of Ethics in Debian and Free
Software Communities: Anthropological Lessons for Vocational Ethics.In:
Koch, Stefan ed. Free/open Source Software Development. Hershey: IDEA
group Publishing

Collinson, D. (1988) 'Engineering humor': Masculinity, joking and conflict in shop-
floor relafions. Organization Studies, 9: 181-99

Collinson, D. (1992) Managing the shop floor: Subjectivity, masculinity, and
workplace culture. New York: De Gruyter

Institutional Entrepreneurs and the Bricolage of Intellectual Property Discourses 191

Cornish, William (2004) Intellectual Property - Omnipresent, Distracting,
Irrelevant? Oxford: Oxford University Press

Davis, Lee (2004 a)Intellectual property rights, strategy and policy. Economics of
Innovation and New Thechnology, 13(5):399-415

Davis, Lee (2004 b) Levaranging copyrights to appropriate profits in the nes
'information' industries. Paper presented at the AHRB Copyright Research
Network Conference, London

DiBona, Chris, Sam Ockman and Mark Stone (eds.) (1999) Open Sources - Voices
from the Open Source Revolution. Beijing: O'Reilly

DiMaggio, P.J. (1988) Interest and Agency in Institutional Theory, in Zucker, L.G.
(ed.) Institutional Patterns and Organizations: Culture and Environment. Pp. 3-
21. Cambridge, MA: Ballinger.

DiMaggio, P.J. and Powell, W.W. (1983) The Iron Cage Revisited: Institutional
Isomorphism and Collective Rationality in Organizational Fields. American
Sociological Review, 48:147-160.

DiMaggio, P.J. and Powell, W.W. (1991) Introduction. In Walter W. Powell and P.J.
DiMaggio (Eds.) The New Institutionalism in Organizational Theory. Chicago:
University of Chicago Press.

Fink, Martin (2003) The Business and Economics of Linux and Open
iSowrce.Uppersaddle River, NJ: Prentice Hall PTR

Fligstein, Neil (1997) Social Skill and Institutional Theory. The American Behavioral
Scientist (40:4)

Friedland, R. and Alford, R.R. (1991) Bringing Society Back In: Symbols, Practices,
and Institutional Contradictions. In W.W. Powell and P.J. DiMaggio (Eds.) The
New Institutionalism in Organizational Analysis. Pp. 232-263. Chicago:
University of Chicago Press.

Gabriel, Yiannis (2004) Narratives, Stories and Text. In: Grant, David, Cynthia
Hardy, Cliff Oswick and Linda Putnam (eds.): The SAGE Handbook of
Organizational Discourse, London: Sage Publications

Graesser, Arthur C, Morton Ann Gernsbacher and Susan R. Goldman (2003)
Handbook of discourse processes. Mahwah: Lawrence Erlbaum Associates

Grant, David, Cynthia Hardy, Cliff Oswick and Linda Putnam (eds.) (2004a): The
SAGE Handbook of Organizational Discourse, London: Sage Publications

Grant, David, Cynthia Hardy, Cliff Oswick and Linda Putnam (2004b): Introduction:
Organizational Discourse: Exploring the Field. In: Grant, David, Cynthia Hardy,
Cliff Oswick and Linda Putnam (eds.) (2004): The SAGE Handbook of
Organizational Discourse, London: Sage Publications

Greenwood, Royston, Suddaby, Roy and C.R. Hinings (2002) Theorizing Change:
The role of professional associations in the transformation of institutionalised
fields. Academy of Management Journal:45,\

Hippel, Eric von and Georg von Krogh (2003) Open Source Software and the
'Private-Collective' Innovation Model: Issues for Organization Science.
Organizational Science vo. 14, no. 2: 209-223

Hoick, Jesper, Michael Holm Larsen and Mogens Kuhn Pedersen (2004) Identitying
Business Barriers and enablers for the adoption of open source software. ISD

192 Ann Westenholz

2004, Thirteenth International Conference on Information System Development
- Advances in Theory, Practice and Education. Vilnius, Lithuania, 9-11
September

Jorgensen, Marianne and Louise Phillips (2002) Discource analysis - as theory and
method. London: Sage Publ.

Jorgensen, Niels (1999) Giv det hele vcek! Handelshojskolen i Kobenhavn
Kaisla, Jukka (2001) Constitutional Dynamics of the Open Source Software

Development. Department of Industrial Economics and Strategy, CBS
Koch, Stefan ed. (2005) Free/open Source Software Development, Hershey: IDEA

group Publishing
Larsen, Michael Holm, Jesper Hoick and Mogens Kuhn Pedersen (2004) The

Challenges of Open Source Software in IT Adoption: Enterprise Architecture
versus Total Cost of Ownership. IRIS 2004, Information System Research in
Scandinavia, Falkenberg, Sverige, 14-17 August

Laurent, Andrew M. St. (2004) Open Source and Free Software Licensing. Beijing:
O'Reilly

Lindkvist, Lars och Ann Westenholz (red.) (1987) Medarbetardgde foretag I Norden
- Historisk Parentes eller framtida mojlighet? Nordisk Ministerrad, NU:1

March, James G. and Johan P. Olsen (1996) Institutional Perspectives on Political
Institutions. Governance: An International Journal of Policy and
Administration, Vol 9, No. 3: 247-264

Meyer, John W. and Brian Rowan (1983) Institutionalized Organizations: Formal
Structure as Myth and Ceremony. American Journal of Sociology (2)

Moody, Glun (2002) Rebel Code - Linux and the open source revolution. London:
Penguin Books

Oliver, Christine (1991) Strategic responses to institutional processes. Academy of
Management Review (18:1)

Pavlicek, Russell C. (2000) Embracing insanity - open source software development.
Indianapolis: Sams Publ.

Raymond, Eric, S. (1999) The Cathedral and the Bazaar - Musings on Linux and
Open Source by an accidental revolutionary.BQ\]mg: O'Reilly

Rivette, Kevin G. and D. Kline (2000) Discovering new value in intellectual
propQvty.HarvardBusiness Review: 54-66

Rosen, Lawrence (2005) Open Source Licensing - Software Freedom and Intellectual
Property Law, New Jersey: Pearson Professional Education

Scott, W. Richard (1991) Unpacking Institutional Arguments. In: Walter W. Powell
and Paul J. DiMaggio (eds.) The New Institutionalism in Organizational
Analysis. Chicago: the University, of Chicago Press

Scott, W. Richard (1995) Institutions and Organizations. Thousand Oaks: Sage Publ.
Seo, Myeong-Gu and W.E. Douglas Creed (2002) Institutional Contradictions, Praxis,

and Institutional Change: A Dialectical Perspective. Academy of Management
Review. 27,2

Stahl (2005) 'The Impact of Open Source Development on the Social Construction of
Intellectual Property'. In: Koch, Stefan ed. Free/open Source Software
Development. Hershey: IDEA group Publishing

Institutional Entrepreneurs and the Bricolage of Intellectual Property Discourses 193

Szczepanska, A. M., Bergquist, M., & Ljungberg, J. (2005). High Noon at OS Corral:
Duels and Shoot-Outs in Open Source Discours. In: J. Feller, B. Fitzgerald., S.
A. Hissam, and K. R. Lakhani, eds. Perspectives on Free and Open Source
Software, Cambridge, Mass.: MIT Press.

Thierer, Adam and Clyde Wayne Crews Jr. (eds.) (2002) Copy Flights - The future of
intellectual property in the information age. Washington, D.C.: CATO Institute

Tolbert, Pamela S. and Lynne G. Zucker (1983) Institutional Sources of Change in the
Formal Structure of Organizations: the Diffusion of Civil Service Reform, 1880-
1935. Administrative Science Quarterly (28)

Torvalds, Linus {20Q\)Just for Fun - The story of an accidental revolutionary. New
York: Texere

Wark, McKenzie (2004) A Hacker Manifesto. Cambridge, Mass.: Harvard University
Press

Weber, Steven (2004) The Succes of Open Source. Cambridge, Mass.: Harvard
University Press

Wetherell, Margaret, Stephanie Taylor and Simeon J. Yates (2001) Discource theory
and practice - A reader Sage Publ.

Williams, Sam (2002) Free as in Freedom - Richard Stallman 's crusade for Free
Software. Beijing: O'Reilly

Life cycle of Defects in Open Source
Software Projects

Timo Koponen
1 Department of Computer Science, University of Kuopio

P.O.B 1627, FIN-70211 Kuopio, Finland
timo. koponen@uku. fi

Abstract. We studied the maintenance process from the viewpoint of defect
management and the defect life cycle. First, we outline a model for the defect
life cycle based on ISO/IEC standards, the Framework for Open Source
maintenance process, and the Bugzilla defect management system. Thereafter,
we analyze defects from two Open Source software projects. The aim of the
study was support the maintenance reliability. However, we found that most of
the defects did not follow the life-cycle model. Defects were usually directly
resolved from initial state without being assigned.

1 Introduction

Most Open Source software users are not soft^vare developers or programmers and
they are rarely able to modify or repair software. So it is hard to imagine that software
will be adopted if users do not have confidence in the software itself and in the
maintenance provided Open Source users are often encouraged to report defects and
request enhancements, and for this they need a channel to communicate with
developers. Many projects use dedicated systems such as Bugzilla [1] for defect
reporting and management. These systems provide a communication channel and a
system for maintenance process management.

Nowadays, the reliability of the maintenance process is based on a well-described
process. A standard model of the maintenance process is presented in the Software
Engineering Body of Knowledge (SWEBOK), ISO/IEC 12207 and ISO/IEC 14764
standards [2], [5]. These ISO/IEC Maintenance standards describe the activities
required and their inputs and outputs [2], [5], but it is not known if the standard model
is applicable for Open Source maintenance. In our earlier studies, we described a
framework for the Open Source maintenance process [4] and found it similar to the
ISO/IEC Maintenance standard.

However, a well-defmed process does not provide reliability if it is not followed.
In fact, it is not known if the defects in Open Source projects follow the described
process. This study explored defect management and the life cycle of defects in Open
Source projects. Our first objective was to define a model for the life cycle of the
defect. The second objective was to find the most common life cycles from the case
studies and compare them with the life-cycle model. The third objective was to
evaluate reliability of the maintenance process by analyzing life cycles. The rest of
the article is organized in the following way. Section 2 presents background of the
study. Section 3 introduces the case studies and data. Section 4 explains and analyzes

Please use the following format when citing this chapter:
Koponen, T., 2006, in IFIP Intemational Federation for Information Processing, Volume
203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M.,
Succi, G., (Boston: Springer), pp. 195-200

196 Timo Koponen

the results of the case studies. Section 5 presents related work and Section provides a
brief conclusion.

2 Background

Defect management systems (DMS) allow users to report problems, bugs or
enhancement requests as a defect. They also provide flexible possibilities to track,
control, and assign defects. These features allow the maintenance process to be
managed. Defect management systems present defects as defect reports.

A defect report contains many attributes but we focused on analyzing the
attributes state and resolution of the defect. The state describes the defect's condition,
such as new or resolved. In the Bugzilla defect management system defects can be in
the seven states presented in Table 1. It is not allowed to transit between all states
directly: for example, it is not allowed to transit from closed Xo new. To illustrate the
allowed state changes we drew a state transition diagram (Figure 2), which presents
the allowed state transitions in the Bugzilla defect management system.

Table 1. States of the defect in the Bugzilla defect management system

State Explanation
Unconfirmed Defect has been recently added and it is not confirmed yet.
New Defect has been recently added and others have confirmed it.
Assigned Defect has been assigned to proper person.
Resolved Defect has been resolved but it is in quality assurance.
Verified Defect has been resolved and accepted by quality assurance.
Closed Defect has been resolved, verified and closed
Reopened Defect was resolved but now it has been reopened for some reason.

A defect should be resolved even it does not lead to changes or modification of
software. State does not describe the outcome of the defect so resolution is needed to
express this . Earlier studies have shown that many of the resolved defects do not
cause changes to software [3], Table 2 shows the resolutions that are possible in the
Bugzilla system. Figure 2 and Framework for Open Source Maintenance process [4]
show that the most common defect life-cycles should be similar to those presented in
Table 3. Some of the defects can be classified as duplicate or invalid immediately and
they can be resolved without assignment. On the other hand, a defect that leads to
changes in the source code should always be assigned.

Table 2. Resolutions of defects in the Bugzilla defect management system

Resolution Explanation
empty Defect does not have resolution yet
Fixed Defect is fixed and changes have been made
Works for me Defect does not occur in other users' systems
Won't fix Defect is not a fault or real problem; or it is a feature
Invalid Defect is invalidly reported or information is missing
Duplicate Defect is a duplicate

Life cycle of Defects in Open Source Software Projects 197

Table 3. Expected defect life-cycles

Resolution Life-cycle
Fixed Unconfirmed->New->Assigned->Resolved->Verified->Closed
Other Unconfirmed^Resolved->(Verified)->Closed

3 Case studies

To study the life cycles of defects in the real world, we collected and analyzed defects
of the Apache HTTP Server and Mozilla Firefox. These are widely used and their
quality is highly appreciated so they are representative case studies. We selected a
two-year time-period for analysis, and all the defects reported between September
2003 and September 2005 were analyzed. This sampling produced 1266 defects from
Apache and 27681 from Mozilla. The resolutions of the analyzed defects are
presented in Table 4.

Resolution

Apache
Mozilla

Table 4. Resolution of the defect in Apache and Mozilla

Duplicate Fixed Invalid Won't Works Later Remind
fix for me

162 288 370 84 33 5 1
10038 2414 3404 714 3730 0 0

Not
resolved
323
7381

Table 4 shows that Apache had 943 resolved defects and Mozilla had 20 300
resolved defects. However, not all of the resolved defects led to a change or
modification of software. In the case of Apache, 288 defects (less than 31 percent of
all resolved defects) ended up fixed, and in the case of Mozilla 2414 defects (less than
12 per cent of resolved defects) ended up fixed. Furthermore, there were also two
additional resolutions, Remind and Later, in the Apache. Those states were rarely
used.

However, the final state and resolution does not explain defect processing and the
defect management process so we analyzed the life cycles of the defects in both case
studies. Table 5 presents the most common defect life-cycles in the Apache and
Mozilla projects.

Table 5. Two most common defect life-cycles in the Apache and Mozilla projects

Apache Mozilla
247 New-^Resolved 3764 Unconfirmed^Resolved->Verified
511 New->Resolved->Closed 11133 Unconfirmed-^Resolved

A direct transition from the state new to the state resolved is the most common
life-cycle of defects in the Apache project. There was no significant use of the state
unconfirmed. However, according to Bugzilla [1] unconfirmed should be the initial
state of the defect. Furthermore, there was also a new state, needinfo, meaning that the
defect report did not contain all the necessary information.

A direct transition to the state resolved is also very common in Mozilla. However,
in this case, it was usually from unconfirmed to resolved. In addition, it seems to be

198 Timo Koponen

very uncommon to close a defect, so most defects end up resolved. Furthermore, we
found state transitions that were not allowed, such as a transition from verified or
resolved to unconfirmed. However, all state transitions were allowed in the Apache
project.

4 Results

As the cases in the previous section show, the defect life cycles do not correlate with
the life-cycle model and the state of the defect transits almost directly to the state
resolved. Furthermore, Table 4 also shows that most of the defects did not lead to a
change or modification of software. In case of the Apache, over 800 of 943 defects
transited directly from the state new to the state resolved. The most common life cycle
in the Apache project is presented with bold black line in Figure 2.

#»WUrwcw5mve<t jssjfta^ / ^ ^** B^*X X M '^^'^^ P \ x H - '̂**'*'*̂ H

Figure 2. The most common defect life cycle in the Apache (Black bold line) and in the
Mozilla (Gray bold line)

According to the life cycle model it means that those defects did not lead to
changes in the source code. The resolutions of the defects in the Apache project are
presented in Table 7. It shows that there were also defects that led to change or
modification.

Project
Apache
Mozilla

Table 7.

Duplicate
65
5409

Resolution of defects with most common life cycle

Fixed Invalid Later Won't fix Works for me
142 236 2 47 0
246 2443 0 326 2709

As we see in Table 4, only about 290 defects, which is about 30 per cent, lead to
fixes. However, these defects should have followed the life cycle model. Surprisingly,
142 of 288 defects that led to source code changes were changes directly from the
state new to resolved. Furthermore, there were other almost direct jumps to the state
resolved, which together covered 237 of 288 fixed defects (82 per cent). Thus, only
51 of 288 defects (18 per. cent) that were fixed followed the life cycle model and went
through the states new, unconfirmed, assigned and resolved. If we then look at
Mozilla, we can see in Table 6 that over 16 000 of 20 300 defects jumped directly

Life cycle of Defects in Open Source Software Projects 199

from the state unconfirmed or new to resolved. The most common life cycle in the
Mozilla project is presented with bold gray line in Figure 2.

According to the life cycle model, those defects did not cause changes in the
source code. The resolutions of the analyzed defects from the Mozilla project are
presented in Table 4: only about 2400 defects were fixed, which is less than 12 per
cent. However, these defects should have followed the expected life cycle and others
should have jumped more or less directly to resolved. Surprisingly only 246 of
11 133 defects that jumped directly from unconfirmed to resolved were fixed.
However, there were other almost direct jumps to resolved, such as from unconfirmed
to resolved V\2i new, which together covered 1652 of 2414 fixed defects (68 per cent).
Thus, 748 of 2414 defects (31 per cent) that led to fixing followed the expected life
cycle or went through at least the states new or unconfirmed, assigned and resolved.
There were also 14 defects that could not be classified into either group because they
had so many state changes.

Despite the number of defects, both cases have similar characteristics. The
proportion of defects that led to changes (fix) was relatively small. Most of the
defects transited directly to the state resolved and it was possible to have a resolution.
It seems that developers just pick up a defect and resolve it without assigning, and
they did not update the state of the defect before it was resolved. However, the state
of the defect does not tell the whole truth since defect management systems allow
users to leave comments without changing the status of the defect. There were also
discussions in the mailing lists, which we did not analyze in this study.

5 Related Work

To our knowledge, this is the first work that studies a defect life cycle in Open Source
projects. However, the defects and defect management systems have been previously
studied from other viewpoints. Mockus et al. [6] has studied defects and changes of
the source code in the Apache and Mozilla projects. They compare the numbers of
changes and defects per developer in commercial projects. Furthermore, they measure
defect density in the projects and compare it with the size of the source code. Huntley
[7] has studied the defects of the Apache and Mozilla projects from the viewpoint of
Organizational learning. Fisher et al. have combined version control and defect
information in their studies [8] creating a release history from the version control
system and bug tracking system. They describe the changes of the source code and
defects from the release history viewpoint.

5 Conclusion

We studied maintenance process and expected that the life cycle of defects would be
similar to the maintenance process, with several states during the process. However,
the study shows that the defect life cycle in two well-known Open Source Software

200 Timo Koponen

projects was much more straightforward. The state of the defect was set to resolved
directly after the initial state. More surprisingly, the outcome of the defect did not
seem to have any relation with its life cycle: even the defects led to changes they were
not assigned. The states of the defect could be simplified to open and closed. These
two states are enough to cover 84 per cent of all defects in the Apache project and 79
per cent in the Mozilla project. So, the usage of a defect management system does not
seem to be efficient in the Open Source projects studied. It is generally claimed that
defect management is a crucial part of maintenance, leading to the assumption that
users cannot rely on the maintenance of Open Source Software.

To improve maintenance reliability from the user's viewpoint, these software
projects should use defect management more intensively or publish a document
explaining the procedures in use. At least, developers should assign a defect when
they start working with it so that users and other developers could see that the defect
is being dealt with. Unfortunately, similar data have not been published concerning a
proprietary project. In our experience, proprietary projects have a similar type of
defect life cycle.

7 References

1. Bugzilla.org, 2005. http://www.bugzilla.org
2. ISO/IEC. ISOAEC 12207:1995/Amd 2002: Software Engineering: Software life cycle

processes. ISO/IEC, 2002.
3. T. Koponen and V. Hotti. Defects in open source software maintenance - two case studies -

apache and mozilla. In Proceedings of The 2005 International MultiConference in
Computer Science and Computer Engineering, Las Vegas, NV, USA, 2005. CSREA Press.

4. T. Koponen and V. Hotti. Open source software maintenance process framework. In 5-
WOSSE: Proceedings of the fifth workshop on Open source software engineering, pp. 1-5,
New York, NY, USA, 2005. ACM Press.

5. IEEE Computer society. Guide to the Software Engineering Body of Knowledge (SWEBOK).
IEEE Computer society, Los Alamitos, Califomia, USA, 2001.

6. A. Mockus, R. Fielding, and J. Herbsleb. Two case studies of open source software
development: Apache and mozilla. ACM Trans. Softw. Eng. MethodoL, 11 (3):309-346,
2002

7. C. Huntley. Organizational learning in open source software projects: An analysis of
debugging data IEEE Transactions on Engineering Management, 50(4), 2004.

8. M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from version
control and bug tracking systems. In ICSM '03: Proceedings of the Inter- national
Conference on Software Maintenance, pp. 23, Washington, DC, USA, 2003. IEEE
Computer Society.

Insiders and outsiders: paid contributors
and the dynamics of cooperation in

community led F/OS projects

Evangelia Berdou
Media and Communications Department, London School of Economics

and Political Science, Houghton Street, London W2A 2AE, UK
e.berdou@lse.ac.uk

Abstract. This paper examines the role of paid developers in mature free/open
source (F/OS) communities. In particular it provides a typology for their
involvement based on their employment and sponsorship arrangements and
elaborates a framework for understanding the dynamics of cooperation
developing between them and the volunteers based on their community ties.
The evidence presented is drawn from individual interviews conducted with
volunteer and paid contributors from the GNOME and KDE projects within the
context of a PhD research focusing on commercialization and peripheral
participation in F/OS communities. The paper highlights the various
interdependencies that form between communities and companies and adds to
our understanding of the dynamics of commercialization in F/OS projects.

1 Introduction

Companies contribute to F/OS projects in many ways. They support promotional
activities and community conferences, including providing venues, travel costs and
hardware. The website and the CVS tree of the GNOME project, for example, is
hosted by Redhat and KDE's is hosted by Trdlltech. However, arguably the most
important and, many would say, the most potent form of involvement of companies in
projects, since it has a direct impact oil the development process, is through their
contributing labour by committing employees to the development process.

This issue has been largely overlooked in the F/OS literature. This paper
addresses this gap by providing a typology for the involvement of paid contributors in
community led projects and contributes to our understanding of their involvement in
terms of their community ties. The aim of the paper is to highlight certain aspects of
commercialization in community led projects. The study is based on PhD research
into the dynamics of cooperation in F/OS projects, which investigates
commercialization and peripheral participation (integration of new coders and
participation of non-coders).

Please use the following format when citing this chapter:
Berdou, E., 2006, in IFIP International Federation for Information Processing, Volume
203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M.,
Succi, G., (Boston: Springer), pp. 201-208

202 Evangelia Berdou

2 Background to the study

This section situates the argument within the context of existing contributions related
to commercialization of F/OS communities and outlines the theoretical and
methodological framework for the study.

2.1 F/OS communities in/and the economy

The considerations of commercialization issues needs to be positioned within the
corpus of contributions related to commercialization of F/OS communities. F/OS
communities have often been considered to occupy a space between the organized
supply of products and services offered by firms and the wider, emergent, market
dynamics of software production, supply and demand. O'Mahony [1], for example,
talks of community managed open source projects as a new type of commercial actor
and von Hippel [2] considers open source development as the template for an
innovation process which is primarily driven by software users.

At the same time it has often been argued, by both practitioners and academics,
that the motivations of developers contributing to F/OS projects differ significantly
from those underlying proprietary software development [3-5]. This view has been
interpreted as suggesting a contrast between two kinds of economic rationality; the
gift economy and the exchange economy. Whereas the first is based on the principle
of reciprocity, upholds the idea of software as a public good and is often associated
with abundance, the second relies predominantly on monetary fiows, market
transactions and is organised around a scarcity of resources.

This interpretation has been challenged on several fronts by researchers who draw
attenfion to the interconnections between the two spheres of economic activity. David
Lancashire [6], for example, employs a political economy perspective to explain the
distribution of F/OS development worldwide. At the same time large scale surveys of
F/OS communities indicate that approximately half of F/OS developers have earned
money through their work in F/OS [7].

Although there has been considerable progress in understanding the links between
the exchange economy and the gift economy at the level of developer motives, few
studies have examined in detail how commercialization affects cooperation within
projects. O'Mahony [1] approached the issue by focusing on the organizational
structures that projects develop in order to interface with companies and West and
O'Mahony [8] contrasted the dynamics of cooperation between community led and
sponsored projects. Freeman and Siltala [9] have highlighted the hybrid practices
developing in GNOME and Open Office due to corporate involvement. Adopting a
different perspective Lin [10] examined developers' practices in firms that participate
in F/OS development and the forms and tensions that arise from this collaboration. In
addition, Dahlander and Magnusson [11] have examined the types of relationships
companies develop with communities. Lastly, Krishnamurti and Tripathi's [12] study
of bounty programs that offer developers monetary incentives for addressing specific

Insiders and outsiders 203

software issues, highlights an alternative used by companies to participate in the
development process rather than directly hiring developers.

This paper complements these contributions by developing a framework for
understanding the dynamics of cooperation between corporate actors and volunteers
through the involvement of paid developers. The theoretical and methodological
framework for the research reported here is outlined in the next section together with
highlights of the empirical data and the method of analysis.

2.2 Theoretical framework, empirical data and method of analysis

The study draws on the communities of practice perspective [13] and mobilizes
Foucault's idea of relational power [14] in order to study relations between the
volunteer community and commercial actors with stakes in the development.

The communities of practice perspective argues that society's knowledge is
organized in different communities of practice, which are essential groups formed
around the pursuit of a shared enterprise[15]. The approach offers an intuitive way of
understanding F/OS development (since F/OS communities are essentially built
around the practice of developing software) and has been adopted within the context
of other investigations of F/OS [16-18]. In the context of this paper it is argued that
F/OS communities do not constitute a homogenous community of practice consisting
only of experienced and new (peripheral) developers, but form constellations of
practices [13].

Foucault argued that power is neither a zero-sum game where different actors
compete for resources nor something that is given or exchanged, but rather is
something that is exercised; a force that creates complex dependencies and invites a
diversity of initiations and reactions on the part of the people involved in them. The
idea of relational power does not imply that the relations to be examined are
symmetrical, but is meant to acknowledge and map the multiple interdependencies
and structures that are developed within the context of this study.

Both these approaches have methodological implications. The idea of F/OS
communities as constellations of practice draws attention to the different groups of
contributors operating within projects, groups with distinctive characteristics and
modes of engagement (volunteers, paid developers external to the community,
community integrated developers). At the same time, the idea of relational power
guides an investigation that aims to highlight the interdependencies forming between
the different groups of contributors at different levels of interaction.

The data presented in this paper are drawn from 40 individual, semi-structured
interviews conducted with volunteer and paid contributors from the GNOME and
KDE projects between 2004-2005. Their analysis involved a two-step process. First
the materials were organized thematically and then were analysed in more depth using
a form of discourse analysis. This involved the identification of the particular
domains of reference, types of calculation and forms of statement connected with
specific knowledge domains, and the examination of the associations made between

204 Evangelia Berdou

them [19] (F/OS, traditional working environments, volunteerism, professionalism,
etc).

3 Research findings

Based on the analysis of the empirical data, a typology for understanding sponsorship
and employment in community led F/OS projects is developed (section 3.1) followed
by a consideration of the dynamics of cooperation developing between volunteer and
paid developers based on the latters' community ties.

3.1 Types of employment and sponsorship

From the analysis of the interview data it seems that, depending on the kind of
mandate they are given, paid developers can be divided in the following categories:

a. Those that have a free sponsorship. This group receives no clear instruction
from their employers about what they should be working on. They are usually former
volunteers who are expected more or less to work on the same things that they were
contributing to before they were hired.

b. Those that have a clear mandate from their employers as to what they should
be doing. For example, some developers working at Linux distribution companies, are
expected to help integrate different aspects of the project into company products or
build on top of their projects' platforms to create commercial applications.

c. Those that are have KDE or GNOME "friendly" jobs. These are people who
are hired by companies or departments of companies with a strong F/OS orientation.
They are usually hackers who are expected to work on developing proprietary
company products, but who are also allowed to spend part of their time working on
community projects. Their working terms, can be formal or informal, and resemble
part-time free sponsorship.

d. Those that are being hired or compensated in order to solve a particular
problem or develop a specific application. This type of involvement is akin to sub
contracting. For example. Sun Microsystems, a company involved in Gnome
development has hired developers from Wipro, a large Indian software house, to help
them on certain aspects that their own team did not have the time to deal with. This
category could also include development conducted within the context of bounty
programs, and self-employed developers.

3.2 Working from the outside and the inside: external and community
integrated contributors and community development

In addition to the above categorization, there is an important distinction to be made
between contributors that formerly worked for the project on a volunteer basis and
those external programmers who are commissioned to work on it without having any

Insiders and outsiders 205

previous ties with tlie community. Proprietary developers that are brought to work on
community projects have to learn the ways of the community and adjust to the
rhythms and the demands of F/OS development. Most interviewees tended to think
that this group has significant difficulties in adjusting to the often unstructured work
flows of the community.

Some of these problems have been resolved. The regularization of release cycles
for GNOME and KDE, for example, allows companies to better time the release of
their own products. Although they stressed the frequent incommensurability of
community and corporate agendas and processes (which was often seen as a divide
between the F/OS way and proprietary development) almost all the interviewees
believed that these days communities are doing more to accommodate companies'
needs. Despite the progress being made, however, there appear to be more gaps than
areas of contact in the more formal aspects of community-corporate cooperation, such
as the incommensurability between companies' Quality Assurance processes and
those of the community (such as its bug-tracking systems).

On the community's part companies' contributions to the code base can be too
specialized for the overall aims of the project and, consequently, the issue of "pushing
the patches upstream" (i.e. integrating them into the main development tree) does not
make any sense, or they may be relevant. In the latter case companies usually pursue
integration because it saves on the time and effort required to maintain the changes
made to the code base. An underlying assumption in the acceptance of code submitted
by paid contributors is that it is done on the same kind of meritocratic basis that
applies to the rest of the community.

Some of the issues are aptly illustrated by the case of Wipro. Wipro, an Indian
Software House, was subcontracted by Sun Microsystems to work on the GNOME
project. Although they were expected to work with the community, Wipro developers
were not expected to become members. Their success was measured according to
specific metrics (bugs fixed, bugs logged). Due, however, to their lack of prior
knowledge about the code base and to the inadequacy of available documentation
they had to resort to asking for information on community mailing lists and chat
channels. The presence of some 10 new developers all asking questions stretched the
learning resources of the community and created a stir among volunteer developers.

Developers that worked as volunteers or paid developers who became accepted as
community members based on their longstanding contributions, carry with them a
network of connections and an extensive know-how of community processes that
both facilitates their work in terms of its acceptance by the community and helps
connect corporate and community teams.

In companies such as Sun Microsystems that have large teams of developers
working on F/OS projects, these people sometimes assume the role of intermediary
between the rest of the corporate team and the community.

A company's strategy to recruit volunteers who are already on a "critical path"^ in
the project, who are heavily involved in central aspects of development, means that
very often employed contributors are maintainers of key parts of the project. It is a

* I would like to thank Luis Villa for suggesting this term.

206 Evangelia Berdou

plausible hypothesis that the combination of their potential as volunteer contributors
with the opportunity to work full-time in the project enhances their position as core
developers. These central actors not only have the ability to control key aspects of the
project, but also have an interest in keeping an eye on its overall development.

At the same time employed community members demonstrate an increased
sensitivity to community issues, which makes them cautious with regard to balancing
community and company interests. Employers' links with projects and with the F/OS
source community in general affects developers' relations with their employer and
influences their everyday working life. Where companies have strong ties with the
F/OS world the confluence between community and corporate interests appears
relatively uncomplicated. The fact that they do not need to explain community
processes and policies makes the developers' relationship with the management
easier. More importantly, in contrast to working in a company with a less developed
F/OS culture, upholding community values and ideals seems to be conducted not in
opposition (we and the rest of the company) but collectively (we with the rest of the
company in F/OS).

4 Conclusions

This paper elaborated an initial framework for understanding the role of paid
developers in community led F/OS projects. After developing a typology of their
employment/sponsorship arrangements (free sponsorship, clear mandate, F/OS-
friendly jobs, subcontracting) the differing community ties of employed developers
were examined.

The role of developers with weak community ties, those external to the
community, is consistent with the view of companies as external actors in the
development process, whose involvement in the project is regulated through
community values and mediated through appropriately developed institutional
interfaces. The case of community-integrated employees, however, suggests that the
boundaries between corporate and community actors are often permeable. More
specifically, it appears that in most cases the connections between companies and
projects develop at different levels of involvement and hinge upon complex
interpersonal dynamics. Many of the elected members on the Foundation and the
KDE e.V. Boards for example, are either hired or self-employed contributors.

It should be noted that despite their involvement in projects, companies generally
avoid exercising direct pressures on the community, since it is in their interests that
projects retain their largely volunteer basis. It appears that the preservation of the
balance in favour of the gift economy is as much to the benefit of companies as is that
of communities.

The analysis in this paper is a first attempt to untangle some of the complex issues
underlying community-corporate cooperation in F/OS projects. One of the most
important emerging questions is whether paid developers constitute a distinctive
group, not just at the level of engagement with the community, but at the level of their

Insiders and outsiders 207

contributions. The interview data suggest that the group of community integrated
employed developers includes members of the group of core developers,
programmers who contribute to the programs' most critical parts. This question is
addressed through examining the findings of a social network analysis of the
Gnome's Foundation and KDE e.V. members (see [20]). The question of how
employment/sponsorship arrangements affect cooperation between paid and volunteer
developers and how community and corporate boundaries are managed within the
context of development is not addressed in this paper.

Despite its limitations the paper proposes a framework for understanding the
complex interdependencies that frequently develop between companies and
communities not only at the institutional level, but within the context of mundane
development. In addition it offers a view of F/OS projects not as uniform
communities organized around a homogenous practice, but as complex spaces
incorporating different types of contributors. In doing so it invites an examination not
just of the differences and barriers existing between the exchange and the gift
economy, but of the ways they are embedded in each other.

The research was funded by the Greek State Scholarships Foundation (IKY). In its later stages
the study was supported by the EU Digital Business Ecosystem (DBE) project (contract no
507953) http://www.digital-ecosystem.org/. The views expressed in this paper are those of the
author.

References

1. C. S. O'Mahony, The emergence of ^ new commercial actor: community managed
software projects.' Doctoral Dissertation, Stanford University, Department of
Management Science and Engineering Management, (2002).
2. E. von Hippel, Open Source Projects as Horizontal Innovation Networks-by and
for users. MIT Sloan School of Management, Working Paper No. 4366-02, Boston,
MA 2002 (accessed 23/07/2003).
3. M. S. Elliot and W. Scacchi, Free Software: a Case Study of Sofware Development
in a Virtual Organization Culture. Working Paper, Institute for Software Research,
UC Irvine, April 2003, available at:
http://www.ics.uci.edu/%7Ewscacchi/Papers/New/Elliott-Scacchi-GNUe-Study-
Report.pdf 2003 (accessed 6/06/04).
4. K. Lakhami and R. G. Wolf, Why hackers do what they do: Understanding
Motivation Effort in Free/Open Source Software Projects. MIT Sloan School of
Management Working Paper No. 4425-03, 2003 (accessed 01/03/04).
5. E. S. Raymond, The Cathedral and the Bazaar. The Cathedral and the Bazaar:
Musings on Linux and Open Source by an Accidental Revolutionary, ed. E. S.
Raymond (O'Reilly, Sebastopol, CA, 200IMC).
6. D. Lancashire, Code, Culture and Cash: The Fading Altruism of Open Source
Development, First Monday, peer-reviewed journal on the Internet 6(12) (2001).

208 Evangelia Berdou

7. P. David, A. Waterman and S. Arora, FLOSS-US/ The Free/Libre/Open Source
Developer Software Survey for 2003: A First Report.
http://vvww.stanford.edu/group/floss-us/report/FLOSS-US-Report.pdf, 2003
(accessed 5/5/04).
8. J. West and C. S. O'Mahony, Contrasting Community Building in Sponsored and
Community Founded Open Source Projects.
http://opensource.mit.edu/papers/westomahony.pdf, 2004 (accessed 25/07/04).
9. S. Freeman and J. Siltala, Freedom and Profit: how suits and hackers are working it
out on the desktop. Working paper presented in 4/EASST Joint Meeting, Paris
26/08/04 http://personal.inet.fi/koti/jsiltala/juha/floss/freedom-profit-paper.pdf, 2004
(accessed 19/01/06).
10. Y. Lin, Hybrid Innovation: How Does the Collaboration Between the FLOSS
Community and Corporations Happen? , Forthcoming in Knowledge, Technology and
Po//c>^XVIV(l)(2005).
I L L . Dahlander and G. M. Magnusson, Relationships between open source software
companies and communities: Observations from Nordic Firms, Research Policy,(34):
p. 481-493 (2005).
12. S. Krishmamurti and A. Tripathi, Bounty Programs in Free/Libre/Open source
SoftAvare (FLOSS): An Economic Analysis", in The Economics of Open Source
Software Development (Forthcoming), J. Bitzer and P. Schroeder, Editors (Elsevier
Publications, 2005).
13. E. Wenger, Communities of Practice: Learning, Meaning and Identity (Cambridge
University Press, Cambridge, 1998).
14. M. Foucault, The Subject and Power, in Michel Foucault: Power/ Essential works
of Foucault 1954-1984. Vol. 3, J. D. Faubion, Editor (Penguin Books, London; New
York, 1982) p. 326-348.
15. E. Wenger and J. Lave, Situated learning: Legitimate Peripheral Participation
(Cambridge University Press, Cambridge, 1991).
16. K. Edwards, Epistemic Communities, Situated Learning and Open Source
Software Development. http//opensource.mit.edu/papers/kasperedwards-ec.pdf, 2001
(accessed 1/03/05).
17. S. Sharma, V. Suguraman and B. Rajagopalani, A framework for creating hybrid
open source communities. Information Systems Journal. 12: p. 7-25 (2002).
18. M. S. Elliot and W. Scacchi, Free Software Developers as an Occupational
Community: Resolving Conflicts and Fostering Collaboration. In revised version in
ACM Group'03 Conference. 2003. Sanibel Island, FL 9-12.
19. G, Kendall and G. Wickham, Using Foucault's methods (Sage, London, 1998).
20. E. Berdou, 'Commercialization and Peripheral Participation in Community led
Free/Open Source Projects: Evolving Forms of Work and Power at the Intersection of
Online and Offline Worlds.' Doctoral Dissertation, London School of Economics and
Political Science, Media and Communications Department, (Forthcoming 2006).

Adopting Open Source for Mission-Critical
Applications: A Case Study on Single Sign-On

Claudio Agostino Ardagna^, Ernesto Damiani^ Pulvio Prati^ and Salvatore
Reale^

^ University of Milan - via Bramante 65, Crema (CR), Italy
ardagna, damicini, f r a t iSd t i . unimi. i t

^ Siemens S.p.A.
Carrier Research & Development Radio Access - Network Management, Via

Monfalcone 1, 20092, Cinisello Balsamo (MI), Italy salvatore.realeQsiemens.com

Abstract . In this paper, we describe a specific selection process for
security-related open source code, based on a methodology aimed at
evaluating open source security frameworks in general and Single-Sign-
On (SSO) systems in particular. Our evaluation criteria for open source
security-related software include the community's timeliness of reaction
against newly discovered vulnerabilities or incidents.

Keywords: Open Source, Security, Single Sign-On, Authentication,
Federation, Trust Model.

1 Introduction

Accessing information on the global Net has become a fundamental requirement
of the modern economy. Recently, focus has shifted from access to data stored
in WWW sites to invoking e-services such as e-Government (e-Gov) services,
remote banking, or airline reservation systems [4]. In the above scenario, the
problem of securing access to network resources is of paramount importance.
More specifically, security requirements include: i) confidentiality, data should
be released to authorized users only; nj integrity, unauthorized data insertion,
modification or deletion must be prevented; Hi) availability users must always
be able to access data whereby they are authorized for, preventing, for instance,
attacks such as Denial of Service (DoS). In order to satisfy these requirements,
some basic security mechanisms are available:

- identification and authentication supporting users identification and verifica
tion of their identity;

- access control evaluating access requests submitted by users against prede
fined access control rules in order to grant or deny the access;

- audit monitoring access requests post-evaluation, to find out security infringe
ments;

Please use the following format when citing this chapter:
Ardagna, C.A., Damiani, E., Frati, F., and Reale, S., 2006, in IFIP International
Federation for Information Processing, Volume 203, Open Source Systems, eds. Damiani,
E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 209-220

210 C. A. Ardagna, E. Damiani, F. Frati and S. Reale

- cryptography protecting data integrity and confidentiality by ensuring that
data stored or transmitted are kept secret and only authorized users can
decrypt them.

Security issues represent a critical aspect for most software applications. Due
to the criticality of this requirement, proprietary solutions are widespread, be
cause many companies consider them more secure and reliable. Adoption of
open source solutions, especially at the middleware level, is slowed down by
the fact that most companies do not completely trust the open source commu
nity and consider open source middleware a potential "backdoor" for attackers,
affecting overall system security. However, proprietary security solutions have
their own drawbacks such as vendor lock-in, interoperability limitations, and
lack of flexibility. Recent research suggests that the open source approach can
overcome these limitations [3, 18]. It is also widely acknowledged that open
source solutions may in the end improve security, as they give both attackers
and defenders greater visibility of software vulnerabilities [9]. In this paper, we
discuss the idea of adopting open source for some key security-related func
tionalities, including access control and authentication systems, and discuss the
requirements that open source security solutions must follow to be suitable for
large scale deployment. In particular, our work focuses on open source Single
Sign-On (SSO) solutions [2]. SSO gives a mechanism to manage authentication
process and allows users to enter a single username and password to access
systems and resources, to be used in the framework of an open source e-service
scenario.

2 Basic Concepts

The huge amount of services available on the Net has caused unchecked prolifer
ation of user accounts. Typically, users have to log-on to multiple systems, each
of which may require different usernames and authentication information. All
these account may be managed independently by local administrators within
each individual system [12, 11]. SSO [8] systems are security frameworks aimed
at simplifying log-on process, managing users multiple identities and present
ing users credentials to network applications for authentication. SSO approach
provides reduction of time spent by the users during log-on operations to in
dividual domains, failed log-on transactions, time used to log-on to secondary
domains, and costs and time used for users profiles administrations. SSO also
increases services usability and provides simple administration thanks to a sin
gle, centraHzed administration point. Additional motivations that suggest SSO
adoption are provided by Sarvanes Oxley (SOX) directive and the Health Insur
ance Portability and Accountability Act (HIPAA) that mandate provisions for
maintaining the integrity of user profile data as an essential component of an
effective security policy. HIPAA, for example, explicitly states that companies
are required to assign a unique profile for tracking user identities. Also, it man
dates procedures for creating, changing, and safeguarding profiles. Traditional

Adopting Open Source for Mission-Critical Applications 211

authentication policies infrastructures do not even come close to fulfilling these
requirements.

2.1 Requirements of a Single Sign-on solution

We are now ready to list the requirements that a Single Sign-On solution should
satisfy [2]. Our analysis brought us to formulating the following seven functional
requirements: i) Basic Authentication: SSO systems must provide an authen
tication mechanism. Usually, authentication is performed through the classic
username/password log-in, whereby a user can be unambiguously identified;
a) Strong Authentication: for highly secure environments, the traditional user-
name/password authentication mechanism must be integrated with strong au
thentication mechanisms based on biometric properties of the user (fingerprints,
retina scan, and so on); Hi) Authorization: after the authentication process,
the system must determine the level of information/services the requestor can
see/use. iv) Secure Exchange of Client Status Information: the SSO system ar
chitecture implies the exchange of user information in secure manner between
SSO server and remote services during authentication and authorization pro
cesses v) Multi'domain Management: the SSO system could provide support for
managing authorizations (e.g. role acquisitions and revocations) that apply to
multiple domains; vi) Provisioning: a provision is a pre-condition that must be
met before an action can be executed. It is responsibility of the user to ensure
that requests are sent only to environments satisfying all pre-conditions; vii)
Federation: a user should be able to select the services she wants to federate
and de-federate to protect her privacy and to select the services to which she
will disclose her own authorization assertions.

Several non-functional requirements can also be identified, namely:
i) Autonomy a SSO server should be a stand alone module in order to clearly

separate the authorization point from business implementations, avoiding the
rephcation and the ad-hoc implementation of authorization mechanisms for each
domain; ii) Standard Compliance: it is import9,nt for a SSO to support stan
dard communication protocols fostering integration in different environments;
Hi) Centralized Management: centralization of authentication and authoriza
tion mechanisms and, more in general, centralization of identity management
implies a simplification of the user profile management task; iv) Cross-Language
availability: SSO solutions should permit the integration of services implemen
tation based on different languages, without substantial changes on services
code; v) Password Proliferation Prevention: the system should support parsi
monious creation of costly resources such as passwords and public-private key
pairs.

3 Open source Single Sign-on systems

Now, we shall briefly introduce some Open Source Single Sign-on systems. Our
description will be made with reference to the above requirements and some

212 C. A. Ardagna, E. Damiani, F. Frati and S. Reale

other evaluation parameters. For more architectural details about these Single
Sign-on systems see [2].

Central Authentication Service. Central Authentication Service (CAS) [5, 20]
is an open source framework developed at Yale University. It implements
a SSO mechanism aimed at providing a Centralized Authentication to a
single server and HTTP redirections. When an unauthenticated user sends
a service request, this request is redirected from the application to the
authentication server (CAS Server), and then back to the application after
the user has been authenticated. The CAS Server is therefore the only
entity that manages passwords to authenticate users and transmits and
certifies their identities. The information is forwarded by the authentication
server to the application during redirections by using session cookies. CAS
is composed of modular Java servlets that can run over any servlet engine
and provides a web-based authentication service.

SourcelD. SourcelD [19], first released in 2001 by Ping Identity Corporation
Company, is an open source multi-protocol project for enabling identity fed
eration and cross-boundary security. SourcelD focuses on simple integration
and deployment within existing Web applications and provides high-level
developer functionalities and customization. SourcelD also implements Lib
erty Alliance Single Sign-On specifications [16] and it is a framework that
integrates SSO features into new and existing Web portals. The lower level
implementation of Liberty specifications, as for instance SOAP, SAML, Lib
erty features, protocols and metadata schemas, are transparent for Web de
velopers. Prom the architectural point of view, SourcelD system is composed
by three modules plugged into the middle of Web applications to provide
SSO facilities: i) Profile implements the Liberty Single Sign-On features, as
for instance Federation, Single Sign-On and Log-Out, ii) Message provides
features to create specific XML messages (for instance Liberty protocol and
authentication), and Hi) Utility provides, functionality as Exception Han
dling, Data Format encoding and decoding.

Shibboleth. Shibboleth [17] is an open source implementation of Internet2/MA-
CE, aimed at developing architectures, policy structures, practical tech
nologies, to support sharing of Web resources subject to access control.
Shibboleth is not only a SSO implementation, but it is a more general
architecture that tries to protect privacy and more in general to manage
user credentials. However, in this paper, we focus on the Shibboleth SSO
implementation that is very close to Liberty Single Sign-on specifications
[16]. The lower level implementation relies on different standards as HTTP,
XML, XML Schema, XML Signature, SOAP and SAML. As in Liberty
Alliance approach. Shibboleth uses Federation concept, named Shibboleth
Club, between identity and service providers.

Java Open Single Sign-On (JOSSO). T Java Open Single Sign-On (JOSSO) is
an open source J2EE-based SSO infrastructure aimed at providing a solu
tion for centralized platform-neutral user authentication[14]. In the JOSSO

Adopting Open Source for Mission-Critical Applications 213

architecture we can identify three main actors: i) Partner application, a
web application that uses SSO Gateway services to authenticate users;
a) SSO Gateway, represents the SSO server and provides authentication
services to users who need authentication with partner applications; Hi)
SSO Agent, is a SSO Gateway chent installed on managed services. More
specifically, JOSSO supplies: i) components-based framework, since it pro
vides a component-oriented infrastructure to support multiple authentica
tion scheme, credential, and session stores, ii) support for integration with
Tomcat web container, without requiring code customization. Hi) cross plat
form, allowing integration with Java and non-Java applications, using stan
dard solutions such as J A AS, SOAP, EJB, servlet/JSP and Struts, and
iv) support for strong authentication, through the use of X.509 standard
certificates.

Open Web SSO. The Open Web SSO [15] project provides core identity services
for implementing transparent Single Sign-On as an infrastructure security
component. In this paper, we will do not discuss Open Web SSO in detail
because it is still in a very early stage of development.

4 Evaluation of OSS Single Sign On Systems

Generally speaking, few organizations rely on internal guideUnes for the se
lection of open source products. In most cases, users select an open source
solution which is readily available and fulfills their functional requirements.
Several researchers [6, 10] have proposed more complex methodologies dealing
with the evaluation of open source products from different perspectives, such
as code quality, development flow and community composition and participa
tion. In this paper, we put forward the idea of a specific selection process for
security-related open source code. A major challenge is to establish a security-
specific evaluation methodology capable of reducing users mistrust, e.g. due to
the feeHng that security open source appUcations are an "intrinsic backdoor"
for attackers. Our main evaluation criteria highlight the promptness of reacting
against newly discovered vulnerabilities or incidents. Applications success de
pend on the above principle because a low reaction rate to new vulnerabilities
or incidents implies higher risk for users that adopt the software, potentially
causing loss of information and money.

4.1 Evaluation principles

To select and find out the metrics that haye to be evaluated in order to com
pare different security-related OSS implementations, let us first spell out the
principles our analysis will be based on. We consider six partially overlapping
macro-areas:

Generic Aspects (GA). An open source application must be categorized in
terms of its generic aspects, i.e. ones not related to its purpose or scope.

214 C. A. Ardagna, E. Damiani, F. Frati and S. Reale

including all the quantitative attributes proposed in the literature [6] that
effectively describe a generic open source implementation. Such aspects in
clude: the duration and size of the project, the programming language, the
number of downloads and accesses.

Developers Community (DC). A critical success factor for any open source
project is the composition and diversity of the developers community. A
high number of developers allows sharing of diverse backgrounds and skills,
giving vitality and freshness to the community and helping in solving prob
lems, including bugs definition and fixing. Examples of DC properties are
the number of developers and their roles, the existence of a core group and
its stability over time.

Users Community (UC). The success of an open source application can be mea
sured in terms of number and profile of the users that adopt it and rely on
it. Obviously, measuring and evaluating the users community is less simple
than doing so for developers because users interacting with an open source
project are often anonymous. The overall quality of the users community,
however, can be estimated by means of the number of downloads, the num
ber of requests, the number of posts inside the forum, and the number of
users subscribed to the mailing list. A qualitative measure of this macro-
area could be the profile of the users adopting the project: if users belong
to well-known companies or organizations and report positive results, their
importance arises.

Software Quality (SQ). This area include metrics of quaUty built into the soft
ware by the requirements, design, code and verification processes to ensure
that reliability, maintainability, and other quality factors are met. A sub
set of this macro area is the evaluation of code quality via coarse-grained
factors such as operating system support, language support, level of modu
larity, compliance with the standards and so forth.-^

Documentation and Interaction support (DIS). This macro area is composed
of two major sub-areas: traditional documentation that explains the char
acteristics, functionalities and peculiarities of the software and support in
terms of time allotted by developers to give feedback about the project and
documentation, through forums, mailing lists, whitepapers, and presenta
tions.

Integration and Adaptability with new and existing technologies (lA). A funda
mental tenet of open source projects is full integration with existing tech
nologies at project startup and a high level of adaptability to new technolo
gies presented during project fife. Another aspect that arise is the ability of
the developers community to solve and fix bugs and react to new vulnera
bilities.

^ As far as evaluating code quality is concerned, we remark that open source SSO sys
tems lend themselves to quality assurance and evaluation based on shared testing
and code walkthrough as outlined in [1]. However, comparing reference implemen
tations based on code walkthrough is outside the scope of this paper.

Adopting Open Source for Mission-Critical Applications 215

4.2 Evaluation parameters

In this section we provide a description of the metrics (see Table 1 and 2) we
used to evaluate critical open source security applications. This set of metrics
will be later used for comparing open source SSO architectures (see Section 5).

Within the above areas, we can now define quantitative metrics. They can
be orthogonally divided in two categories: i) Core Metrics (CM), including
all metrics that can be readily computed from current technologies, statistics,
and information on the projects; ii) Advanced Metrics (AM), including all pa
rameters that require additional information and some privileged access to the
development group. Advanced metrics may be available only as rough estimates
or not available entirely. A brief definition of the parameters semantics is shown
in Table 1 and 2. For a detailed explanation of advanced metrics, we refer to
Section 4.3.

4.3 Advanced Metrics

Advanced Metrics represent the evaluation parameters that would require priv
ileged access to the developers community. Otherwise, they can be estimated
based on raw data. In particular, we propose three major metrics: i) Re
action Rate, estimating the average time the developers community took to
find solutions to newly discovered vulnerabilities. This parameter measures
the community vitality in reacting against vulnerabilities that represent the
main problem in security applications; ii) Incident Frequency, which measures
the robustness of the application with respect to discovered vulnerabilities; Hi)
Group/Developers Stability, which measures the degree of stability of developers
group. Regarding the first two parameters, we remarks that various security-
related Web portal provides databases that contain information about vulnera
bilities and related incidents summaries. In particular, three main portals stand
out: Secunia (h t t p : / / s e c u n i a . c o m /) that offers monitoring of vulnerabilities
in more than 6000 products. Open Source Vulnerability Database (OSVDB)
(ht tp: / /www.osvdb.org/) an independent database that provides technical
information about vulnerabilities and, finally, CERT that provides a database
containing information about vulnerabilities, incidents and fixes. Further, we
describe how to use the CERT database, the more complete and well supported
repository of security concerns, in order to describe problems related to vulnera
bilities and incidents prevention. The last metrics. Groups/Developers Stability^
is not easy to estimate from outside the developers community, due to the fact
that does not exist a formal categorization of the information related to the
users and developers that belong to a particular project. It may be however
available to insiders, e.g. to companies that adopted an open source product
and openly contribute to its community.

CERT The Computer Emergency Response Team (CERT) [7] is an organi
zation focused on ensuring that appropriate technologies and systems man
agement practices are used to resist to attacks on networked systems, to

216 C. A. Ardagna, E. Damiani, F. Frati and S. Reale

Core Metrics
Name
Age
Project Core
Group

Number of
Core Devel
opers

Number of
Releases
Bug Fixing
Rate
Update Aver
age Time

Forum and
Mailing List
Support
Number of
Users

Documentatio
Level
Code Quality

Community
Vitality

Definition
Age of the project
Evaluate the existence of a group of core develop
ers. Further analysis could evaluate the composi
tion of the group
Number of core developers contributing the
project. Core developers are defined as the persons
that contributes both to the project management
and code implementation
Number of releases since project start up

Measures the rate of bug fixed. This rate is com-
putea as. ^^fi^^^dUected
Measures the vitality of developers group and in
other word the mean number of days to wait for
a new update (releases or patches). This metrics

10 COmpUtCa a s . ^ofvatches+#ofreleases

Check forum and mailing list availability

Number of users that adopt the application. When
not available, this parameter is approximated as:
^of downloads

i^of releases

Level of documentation of a project, in terms of
API, user manuals, whitepapers
Qualitative measure of code quality. Several stan
dard source code metrics could be adopted.
Represents the vitality of the community in
terms of number of forum threads and replies:
i^of forumreplies
if^of forumthreads

Values
Days
Boolean

Integer

Integer

[0..100]

days

boolean

Integer

Mbyte

Real

Area
GA
GA,DC

DC

SQ,IA

SQ,IA

SQ,IA

GA,DIS

UC

DIS

SQ,IA

DC,UC

Table 1. Evaluation Metrics Definition: Core Metrics

limit damages and ensure continuity of critical services despite successful at
tacks, accidents, or failures. The CERT is located at the Software Engineer
ing Institute (SEI), a Federally Funded Research and Development Center
(FFRDC) operated by Carnegie Mellon University. The CERT Coordination
Center (CERT/CC), a major center for internet security problems, component
of the larger CERT Program, was established in November 1988 after that
the "Morris Worm" brought down much of the internet and demonstrated the
growing network susceptibility to attack. For the purposes of the present paper,
we take into consideration CERT information about vulnerabilities, incidents
and vulnerabilities fixing, which provides the raw data over which our advanced
metrics are computed.

Adopting Open Source for Mission-Critical Applications 217

Advanced Metrics
Name Definition Values Area
Reaction Rate Average time needed by the developers com

munity to find solutions for newly discovered
vulnerabilities. More specifically, it represents
the project developers ability in reacting to
the set V of vulnerabilities. It is defined as
r 1] _ ^ Update Aver ageTime

y]''_ (Fixing^Date(Vi)-Discovering-Date{Vi))

lA

where Vi EV and n = |V|
Incident
quency

Fre- Measures the number of incidents due to vul
nerabilities. This parameter is computed as:
i^o f incidents

lA

Group/
velopers
Stability

De- Measures the degree of stability of a develop
ers group. Each developer is classified as sta
ble or transient where stable is a developer that
continuously contributes code. The exact num
ber of contributions to make a developer stable
are project-dependent. This value is computed as:
:^of stabledevelopers -i /-vr»

[0..100%] DC

#of developer s

Table 2. Evaluation Metrics Definition: Advanced Metrics

US-CERT Vulnerability Notes Database A vulnerability [13] is defined as a
set of conditions that leads or may lead to an implicit or explicit failure of
the confidentiality, integrity, or availability of an information system. Exam
ples of the unauthorized or unexpected eflfects of a vulnerability may include
executing commands as another user, accessing data in excess of specified or
expected permission, posing as another user or service within a system, caus
ing an abnormal denial of service, inadvertently or intentionally destroying data
without permission and exploiting an encryption implementation weakness that
significantly reduces the time or computation required to recover the plain text
from an encrypted message. Common causes of vulnerabilities are design flaws
in software and hardware, patched administrative processes, lack of awareness
and education in information security, and advancements in the state of the art
or improvements to current practices, any of which may result in real threats
to mission-critical information systems. The accidental introduction of defects
into software is expected to comprise a significant portion of the vulnerabilities
addressed by this framework. CERT alerts users to potential vulnerabilities to
the security of their systems and provide information about how to avoid, min
imize, or recover from the damage. A vulnerabilities database is maintained by
US-CERT [21] and contains descriptions of vulnerabilities, their impacts, and
solutions. US-CERT publishes information on a wide variety of vulnerabilities.
Descriptions of these vulnerabilities are available from this web page in a search
able database format, and âre published as "US-CERT Vulnerability Notes".

218 C. A. Ardagna, E. Damiani, F. Prati and S. Reale

The notes are very similar to alerts, but they may have less complete informa
tion. In particular, solutions may not be available for all the vulnerabilities in
this database. The US-CERT Vulnerability Notes database is cross-referenced
with the Common Vulnerabilities and Exposures (CVE) catalog.

CERT/CC Incident Notes CERT Incident Notes have become a core com
ponent of US-CERT's Technical Cyber Security Alerts and Current Activity;
this bulletin provides information about the exploiting of the vulnerabilities to
convey an attack to the affected systems. In particular, incident notes provide
information such as the overview and description of the incident and optionally
the solution to the vulnerabiHty that causes the incident.

Vulnerability Fixing US-CERT Vulnerability Notes Database and CERT/CC
Incident Notes provides additional information about the solution applied to
fix the discovered vulnerabilities. It is widely acknowledged that most of the
incident reports of computer break-ins received at the CERT/CC could have
been prevented if system administrators and users kept their computers up-to-
date with patches and security fixes. US-CERT provides only the link to the
available patches and security fixes that are usually hosted on the vendor sites.
In summary, most information necessary to calculate the provided advanced
metrics set is already available on' the Net. Unfortunately, this information is
in raw format and then is difficult to automatize the calculation of the met
rics. Substantial pre-processing is needed to compute these metrics, that are of
paramount importance in evaluating the risk of open source security applica
tions adoption. We are currently working on a tool for security metrics (Sect.
6)

5 Open Source Comparison

Table 3 gives a comparison of open source Single Sign-On implementations.
Before discussing it, we remark that while CAS, SourcelD and JOSSO are fully
dedicated SSO systems. Shibboleth is a more comprehensive framework which
contains, among other things, a SSO implementation. Focusing on the compar
ison, we remark that as shown by the table, all the analyzed systems are quite
stable due to the fact that their startup happens more than a year ago. The
CAS implementation stands out; it has a long time history because it started
about five years ago. A common characteristic of the projects is that they are
managed by a consolidated core group that gives stability to the project and
coordination to open source community. Also the level of documentation is
similar and is included between 6.80 MB of JOSSO and 10.05 MB of CAS. Al
though CAS seems the more lively project due to the great number of releases,
we argue that the more active and viable implementation is JOSSO, because
it provides a new release every 21 days, while CAS implementation only pro
vided a release every 79 days. This gap could give to adopters of the JOSSO

Adopting Open Source for Mission-Critical Applications 219

Metrics
Age (GA)
Project Core Group (GA,DC)
Number of Core Developers (DC)
Number of Releases (SQ,IA)
Bug Fixing Rate (SQ,IA)
Update Average Time (SQ,IA)
Forum and Mailing List Support
(GA,DIS)
Number of Users (UC)

Documentation Level (DIS)
Community Vitality (DC,UC)

CAS
1500 days

Yes
5
19

N/A
79 days
Mailing

List Only
45

10.05 MB
N/A

SourcelD
812 days

Yes
N/A

7
N/A

116 days
Mailing

List Only
N/A

8.96 MB
N/A

Shibboleth
926 days

Yes
5
10
0%

92,6 days
Mailing

List Only
N/A

7.04 MB
N/A

JOSSO
489 days

Yes
2
7

67%
21 days

Yes

3161
approx.
6.80 MB

3,12

Table 3. Comparison of proposed implementations at 31 December 2005

framework an higher assurance of the project's reliability, because continuous
releases keep the implementation up to date and resistant to new technologies
and vulnerabilities. However, JOSSO very short update time is also influenced
by the fact that the project is the youngest; probably, in the next year, the up
date average time will rise although it will probably maintain the lowest update
average time. Regarding other metrics, for the sake of conciseness we avoid a
complete discussion. It is easy to see that JOSSO is the only implementation
that furnishes all the information allowing a complete metrics measurement. To
conclude this overview, our analysis showed that JOSSO is the most suitable
and flexible open source SSO solution if analyzed from security point of view.

6 Conclusions

In this paper, we presented a quantitative approach to the comparative evalua
tion of security-related software. Then as a case-study, we compared five major
implementations of Single-Sign-On systems. Our evaluation methodology re
lates on a structured set of metrics specifically designed for security-related
open source systems. Some of these metrics are based on event logs of some
well-known security portals (e.g., the CERT one) and their computation would
be made much easier should CERT support some level of data warehousing. We
are now working on a tool for creating a warehouse of quantitative data about
security events to be used in the framework of our evaluation.

Acknowledgments

This work was supported in part by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591 and by
the Italian MIUR within the KIWI and MAPS projects.

220 C. A. Ardagna, E. Damiani, F. Prati and S. Reale

References

1. S. Abiteboul, X. Leroy, B. Vrdoljak, R. Di Cosmo, S. Fermigier, S. Lauriere,
F. Lepied, R. Pop, F. Villard, J .R Smets, C. Bryce, K.R. Dittrich, T. Milo,
A. Sagi, Y. Shtossel, and E. Panto. Edos: Environment for the development
and distribution of open source software. In The First International Conference
on Open Source Systems, pages 66-70, Genova (Italy), July 2005.

2. C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, F. Frati, and P. Samarati.
C A S + + : an open source single sign-on solution for secure e-services. Submitted to
21st IFIP International Information Security Conference "Security and Privacy
in Dynamic Environments", May 2006.

3. C.A. Ardagna, E. Damiani, F. Frati, and M. Madravio. Open source solution to
secure e-government services. Encyclopedia of Digital Government, 2006.

4. C.A. Ardagna, E. Damiani, F. Frati, and M. Montel. Using open source middle
ware for securing e-gov applications. In The First International Conference on
Open Source Systems, pages 172-178, Genova (Italy), July 2005.

5. P. Aubry, V. Mathieu, and J. Marchal. Esup-portal: open source single sign-
on with cas (central authentication service). In Proceedings of EUNIS04 - IT
Innovation in a Changing World, pages 172-178, Bled (Slovenia), 2005.

6. A. Capiluppi, P. Lago, and M. Morisio. Characteristics of open source projects.
In CSMR, page 317, 2003.

7. CERT-CC. Cert coordination center, h t t p : / / w w w . c e r t . o r g / .
8. Jan De Clercq. Single sign-on architectures. In International Conference on

Infrastructure Security, InfraSec, LNCS, 2002.
9. C. Cowan. Software security for open-source systems. lEEE-SEC-PRIV, 1(1):38-

45, January/February 2003.
10. J. Feller and B. Fitzgerald. A framework analysis of the open source software

development paradigm. In WIS, pages 58-69, 2000.
11. B. Galbraith and et al. Professional Web Services Security. Wrox Press, 2002.
12. The Open Group. Single sign-on. h t t p : / / w w w . o p e n g r o u p . o r g / s e c u r i t y / s s o / .
13. John T. Chambers and John W. Thompson. Vulnerability disclosure framework.

Final report and recommendations by the council, National Infrastructure Advi
sory Council, January 2004.

14. JOSSO. Java open single sign-on. h t t p : / / s o u r c e f o r g e . n e t / p r o j e c t s / j o s s o .
15. OpenSSO. Open web sso. h t t p s : / / o p e n s s o . d e v . j a v a . n e t / .
16. Liberty Alliance Project, h t t p : / / w w w . p r o j e c t l i b e r t y . o r g / .
17. Shibboleth Project, h t t p : / / s h i b b o l e t h . i n t e r n e t 2 . e d u / .
18. E.S. Raymond. The cathedral and the bazaar, h t tp : / /www.openresources .com/

documen t s / ca thed ra l -bazaa r / , August 1998.
19. SourcelD. Open source federated identity management, h t tp : / /www. source i d .

o rg / .
20. Yale University. Central authentication service, h t t p : / / t p . i t s . y a l e . e d u / t i k i /

t i k i - i ndex .php?page=Cen t r a lAu then t i ca t i onSe rv i ce .
21. US-CERT. Vulnerability notes database, h t t p : //www .kb. c e r t . o r g / v u l s / .

Participation in Free and Open Source
Communities: An Empirical Study of
Community Members' Perceptions.

Andrew Schofield* and Professor Grahame S. Cooper̂
1 Information Systems Institute, University of Salford, Salford, M5 4WT,

UK, a.j.schofield@pgt.salford.ac.uk,
WWW Home page: http://www.postgrad.isipartnership.net/~aschofield/

2 School of Computing, Science, and Engineering, University of Salford,
Salford, M5 4WT, UK, g.s.cooper@salford.ac.uk,

WWW Home page:
http://www.cse.salford.ac.uk/profiles/profile.php?profile=G.S.Cooper

Abstract. Although the defining factors of Free and Open Source Software
(FOSS) are generally seen as the availability and accessibility of the source
code, it is what these facilitate that is perhaps of more significance. Source code
availability allows the sharing of code, skills, knowledge, and effort, focused on
a particular piece of software under development. The result of this is the FOSS
community, which although often perceived as a single group, is actually many
small groups, each bound by a common interest in a particular piece of software
and using the Internet as a communication medium. Although there have been
studies focusing on the motivation of FOSS developers to contribute to
software, there has been little investigation into the motives, attitudes, and the
culture within the communities as a whole. There is much more to most of these
communities than software development. Many also have extensive support
networks for the use of software, portals for research, and social facilities. This
paper describes the results of an investigation into how FOSS community
members perceive the communities that they belong to, their reasons for being
in the community, and the manner in which they participate!

1 Introduction

Free and Open Source Software communities remain elusive and intangible
despite the significant amount of research that has been done on the subject. The
significance of these communities is also something that has been under much debate.
Some authors (Raymond^ 2000; Lanzara & Momer, 2003; Oh & Jeon, 2004) describe
FOSS communities as entirely virtual systems that operate almost exclusively over
the Internet on a global scale. Other authors (Krishnamurthy, 2002; O'Mahony &
Ferraro, 2004) maintain that in many cases, a significant amount of FOSS
communities often operates off-line in the 'real world', and that a considerable
quantity of FOSS development is actually performed by individuals. It is probable
that in actual fact, FOSS development is a mixture of both these theories. While some
projects will have large numbers of people working on them, other projects may have
few or a single developer. Furthermore, although some projects will exist entirely on-

Please use the following format when citing this chapter:
Schofield, A., and Cooper, G.S., 2006, in IFIP International Federation for Information
Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi,
W., Scotto, M., Succi, G., (Boston: Springer), pp. 221-231

222 Andrew Schofield and Professor Grahame S. Cooper

line, others may involve off-line meetings between people, especially between the
core development team and in projects originating from within organisations
(Schofield & Mitra 2005).

The community members themselves are not easily put into categories. The work
by Zhang & Storck (2001) illustrates this issue by putting forward the definition of
"peripheral members". These are members of the FOSS community that may not
directly participate within the community. To take this idea further, the only visible
members of a FOSS community are those who participate in discussion forums,
bulletin boards, named code development, or those who make themselves known in
other ways. Members who visit the on-line communities, perhaps reading from
forums, but not posting anything, may still be considered to be part of the community
but will remain unknown to other members. In contrast to this, it is the belief of many
authors (Sagers, 2004; O'Mahony, 2004) that social interaction is the foundation to
FOSS community existence, which suggests that without a critical mass of
participating members, a community cannot exist.

How members interact with their community is ultimately defined by the
available interaction mechanisms and the particular needs of the member. There are
several reasons why people may choose to become part of a FOSS community. The
bulk of the literature on this subject has focused on the motivation of developers
(Hann et al 2004; Hertel et al 2003; Lakhani & Wolf 2003; Scacchi et al 2005;
Schofield & Mitra 2004). Suggested reasons include; pragmatic reasons for needing
specific software functionality, enjoyment of software development as a hobby,
educational benefits, feelings of belonging to a community and/or to a large scale
movement, the need for recognition, self-gratification from a sense of achievement,
and career advancement though skill acquisition. Although the above work gives
some insight into the reasons members have for being involved in community-based
FOSS development, it does not provide a whole picture of motivation in FOSS
communities beyond software development, nor how members' perception of the
community defines their participation

2 Research Method

The data collected for this research used a predominantly quantitative on-line survey
method. Reaching members of FOSS communities for data collection is inherently
difficult, for the reasons of intangibility and levels of participation explained above.
The sample set of this research consisted of a particular type of Open Source group
within the UK, the Linux User Groups (LUGs). The term is slightly deceptive as most
of these groups do not only concentrate on the Linux Operating System but on a wide
variety of other Open Source operating systems, application and programs. The
research findings presented in this paper are based on the 145 survey submissions
received

Participation in Free and Open Source Communities 223

Although the survey was directed at the UK LUGs, it was open for others to
participate. Analysis revealed that of the total number of submissions, approximately
12% came from people who were not part of a FOSS society, club, or user group.
Many of the LUGs are involved in software development in some way, and members
may also be involved in other software development communities. The survey used
dealt with individuals' experiences of on-line FOSS communities in general, not
specifically the LUGs, and although for some members, experience of a FOSS
community will only be the LUG, others will certainly have a broader experience
including other communities. The survey results demonstrate this, as many members
have referred to other communities in their submissions.

The survey itself dealt with several aspects of FOSS communities and the attitudes
and participation of community members. This paper covers the areas of the survey
that collected data about the specific reasons a member may have for participating, in
terms of the actual activities involved, and how and for what purpose a member
makes use of communities.

3 Research Findings

The basic motivation for anyone making use of an on-line FOSS community is to
perform some function, i.e. to use an on-line tool to achieve a desired action. It is
which functions a member uses and why they use them that the initial phase of the
research attempted to discover. This section of the survey collected community
members' perceptions of what they actually do within FOSS communities and the
pragmatic reasons for participating. Research subjects were presented with several
possible reasons for making use of on-line FOSS communities;

• To find out how to perform a task in a software application (Problem solving).
• To help other people to use software applications (Providing support).
• To suggest alterations or improvements to software programs (Peer review).
• To contribute bug fixes or code improvements (Software development).
• To meet people or talk to people with similar interests (Social exchange).

The survey question was designed to allow members to select more than one reason
or to specify one or more of their own. Expressed as the actual number of choices,
figure 1 shows how many members chose the above reasons i.e. 127 members chose
(not exclusively) problem solving to be a reason for participating in a FOSS
community. Figure 2 shows this data presented in percentage form (i.e. 25% of all the
choices submitted by all members were for providing support).
As not all members of FOSS communities are developers, it was expected that the
peer review, and software development factors would be less popular than those
relating to support. In addition to these choices, members also posted other reasons
including: being the leader/manager of a community, lurking (Members may have

224 Andrew Schofield and Professor Grahame S. Cooper

many reasons to lurk perhaps bom out of a simple interest in observing discussion), to
encourage the advocacy of FOSS, to build business relations, to learn industry
standards and trends, and finally, just for fun!

Figure 1: Reasons for Participation

The first phase of the research identified the reasons why community members
participate in FOSS communities, in terms of what activifies they are involved in. The
next phase of the research was to investigate how these community activities are used.

Other Reason
2%

Social ^ - .
exchange-^^H

21% ^^^^B

Sof tw are [y
development-A y^

12% \ ^

Peer review j
13%

Problem solving

^ f c l ^ 27%

^ ^ ^ Providing
support

25%

Figure 2: Reasons for Participation as a Percentage

Participation in Free and Open Source Communities 225

and to collect self-reflective perceptions of why they are used in the manner to which

60

50 W gii"ii1ii'iUUiiii.U&i.iMiHnuiimi»iitrj|i%j>iiA.1wi»M^ •;̂ P5 ^ ^
r^^

'%^^£'^^ii^l::,lS fmn
^ ^

m I usually do not use forums.

B I read what others have said but
rarely participate myself.

a I sometimes participate but only
when it's useful for me to do so.

a I often participate to help both
myself and others.

• I often participate primarily to be
social.

0 Other

Figure 3: Use of Support Forums

the member refers. This phase of the research was split into two sections; the first
looking exclusively at the community aspects which provide support for the use of
software, and the second at the aspects revolving around software development.

The members were presented with the following alternative ways of interacting with
FOSS support community forums:

I usually do not use forums.
I read what others have said but rarely participate myself.
I sometimes participate but only when it's useful for me to do so.
I often participate to help both myself and others.
I often participate primarily to be social.

Many members chose to leave additional comments for this question, almost all of
which stating that they preferred mailing lists to discussion boards. There was some
suggestion that discussion boards were more for beginners, and that they are more
focussed on specific issues as oppose to mailing lists which have more general
coverage. The interface of the majority of discussion boards was also criticised and
listed as another reason for members preferring mailing lists.

Finally, those members with software development experience were asked how they
use FOSS community funcfions for software development. The following possibilities
were given and, as before, members could specify their own alternatives.

I mainly participate just to gei help with my own development work.

226 Andrew Schofield and Professor Grahame S. Cooper

• I participate both to receive help myself with my own work and to help others with
theirs.
• I mainly participate to get involved in the development projects of others.

-1

/^^l^L""^"
"Y H H I

1 ™|™

\x J
33%

e 1 usually do not use forums.

a 1 read what others have said
but rarely participate myself.

D 1 sometimes participate but
only when it's useful for me to
do so.

D 1 often participate to help both
myself and others.

• 1 often participate primarily to
be social.

o Other

Figure 4: Reasons for Participation as a Percentage

I mainly participate to be sociable.

The order of the questions in the survey and, the request that the completion of this
question is by developers only, is based on the assumption that all developers are also
users of FOSS software. More specifically this means that both users and developers
will make use of the support forums, but that only developers will make use of the
software development forums. It is acknowledged that in some cases these may be the

'> 1 ^ ^

'"'^''^^^iY WM\
ggjM^'^t^ii>i^i::g

f)

WMmmm

m

m I mainly participate just to
get help w ith nny ow n
development projects

B I participate both to
receive help myself w Ith
my ow n w ork an to help
others w Ith theirs

D I mainly participate to get
Involved in others'
deyelopment projects

a I mainly participate to be
sociable

I Other

Figure 5: Use of Development Forums

Participation in Free and Open Source Communities 227

same forums but it is still possible to separate the two activities.
Again the members were also given the opportunity to provide their own answer to
the question in case none of these options were appropriate. For this question
members were asked to choose only one option from the list. Figure 3 shows the
choices made by the members and Figure 4 the results as a percentage.
Figure 5 shows the results of this question being put to the developers and Figure 6
shows the same data in a percentage format.
Other uses specified by the developers were: to use the development forums as a
source of research material, to disseminate software to others, to use FOSS
development activities for personal professional development, and again, just for the
fun of it.

66%

m I mainly participate just to get lielp
w itii rrv ow n development
projects

B I participate both to receive help
nryself w ith ny ow n w ork an to
help others w ith theirs

D I mainly participate to get involved
in others' development projects

a I mainly participate to be sociable

l a h e r

Figure 6: Use of Development Forums as a Percentage

4 Research Analysis

By their very nature, FOSS development and the communities performing it are open
to anyone who wants to get involved at any level. The fact that they are also
facilitated by the Internet means that a community is not usually confined by any
geographical constraints, but rather exists on an international or global scale. It is this
fact that justifies the use of the UK Linux/Open Source User groups as the sample set
for this research. The groups may have members from all over the world and each
member is likely to be involved with a myriad of other diverse communities. The
collection of the data for this research itself is a good example. The request for

228 Andrew Schofield and Professor Grahame S. Cooper

participation was sent to specific UK groups and resulted in submissions arriving
from many other countries which were not specifically targeted. An acknowledged
potential limitation of the research is that LUGs are perhaps more likely to focus on
support than other kinds of FOSS community. There are some communities that are
almost entirely focused on software development and much less on support. Although
many LUG members are involved in other communities there is no way of proving
that the members reached by this survey are entirely representative of FOSS
community members in general. It may be that communities are far more focused on
software development than has been demonstrated by this research. Furthermore, it is
acknowledged that the data has only been collected from FOSS community members
who are not opposed to filling in surveys. This of course is a potential problem for all
academic research but as a person's views on surveys are not directly related to their
views on the subject matter, this should not significantly distort the results.

The research has investigated communities that are involved with both support and
development activities and consequently has collected data from the different types of
members. The data has shown that in terms of support, problem solving is the main
reason that members have for using FOSS communities, concurring with the work by
Lakhani & Wolf (2003). Interestingly however, only slightly fewer members chose
providing support as a reason. This suggests two things; firstly that the majority of
FOSS community members, in this type of community, perceive support as being the
primary reason or function of the community. Secondly that members rank getting
help from others, and giving it to others, as equally important. The moral views of
Stallman (1999) therefore may be just as applicable now as they were during the early
years of Free Software . Although it is possible that members who prefer to receive
support rather than give it may be less likely to fill in a survey, the significant number
of members who chose providing support as a reason for participating, shows that this
view is common among FOSS community members. It also shows that those
involved in FOSS are aware and appreciate the importance of sharing and
collaboration in community systems as well as software development.

Members also saw peer review and actual software development as being of equal
importance. Since peer review can be performed by member who may have little or
no knowledge of software development, in the programming sense, this highlights the
importance of the user in the FOSS development process and the close user-developer
relationship that exists (Scacchi 2005). It also demonstrates that FOSS communities
are highly involved in the development of software, even when many of the
participating members are not contributing code and may not even be programmers.
These contributions would instead be in the form of software testing, bug reporting
and general suggestions on function and operation (Pavlicek 2000; Moody 2001;
Raymond 1999). If these results are to be considered representative of FOSS
communities in general, the results would suggest that only approximately 50% of
member activities within the community are for reasons of software development.
This supposition is however dependent on the factors of survey participation and
sample set community types.

Participation in Free and Open Source Communities 229

An extremely interesting result was the apparent importance of social exchange
within the communities. 70% of the surveyed members, stated that meeting and
talking to people with similar interests was one of their main reasons for their
participation. This made up 21% of the reasons for member participation (See Figure
2). Sagers' (2004) and O'Mahony's (2004) work would seem to fit in with these
findings. However, in specific terms of support and development (See figure 4
through 6), only around 1% of members felt that social factors drove them to use
support or development forums. This suggests that the social activities within the
communities are not confined either to support or development activities but instead
extend to broader social interest.

The second phase of the research, investigating how members use the communities,
has also produced some interesting results and helped to define the different types of
members that make up a community. From this sample set, the majority of members
(36%) use communities for getting support with their software and giving support to
others. Logically this means that many members will login to a FOSS community
website only to help others with their problems, quite possibly with no tangible
benefit to themselves. This correlates with the results of the first phase, in which 25%
of members listed providing support as a reason for participation (See Figure 2). A
slightly smaller number of members stated that they would participate only if it was
useful for them to do so, suggesting that, in terms of support, the two types of
community members are those who perceive giving and taking as being equally
important, and those who require some incentive or personal benefit for them to
participate. Additionally, Zhang & Storck's (2001) research into "peripheral
members", supports the research's finding that approximately 23% of members will
observe the community but rarely participate themselves. This too could be a matter
of incentive but is a very difficult subject to research given the apparent unwillingness
of the members to participate. It is quite possible that there are a great deal more
members that very rarely participate in the sample communities and consequently
were not reached by this survey.

The members of the community involved in development provided a much more
clear-cut set of results. The majority of them (66%) stated that they were involved in
FOSS development communities both to get help with their work, and help others
with theirs, again demonstrating the attitude of collaboration and team work that
exists within FOSS. Only 20% of members said that they participated only to get help
with their own work. This mirrors the findings from the support communities but
indicates that the bi-direction collaborative aspects are more important in actual
software development. Only a very small number of members participated to get
involved in others projects. It is likely that these will be new members, attempting to
get involved with projects for educational purposes.

230 Andrew Schofield and Professor Grahame S. Cooper

5 Conclusions

The presented research has extracted information about FOSS communities from the
very members that they consist of. It is this unique viewpoint that has revealed the
very interesting inferences that have been taken from the research findings. It has
looked at the ways in which members of a FOSS community perceive the group that
they are in, and has revealed some of the very specific motivational aspects involved.

Although FOSS communities are still often seen as ad-hoc and chaotic, the research
has shown that it is common interest and community relations that bind these
communities together, and allows them to produce both knowledge and software in
such an effective fashion. The research has demonstrated that there is strong sense of
sharing and collaboration within communities that support FOSS development and
use. This manifests itself in two main ways, firstly in the areas of software
development where code, ideas and suggestions are shared and secondly in the
software support area, where information about software use is the object of transfer.
It is this code and knowledge generation and transference between community
members with diverse sets of expertise and backgrounds that allows FOSS
communities to function so well.

6 References

Dibona, C, Ockham, S., Stone, M. (1999), Open Sources: Voices from the Open Source
Revolution, O'Reilly & Associates, Inc., CA, USA

Hann, I. H., (2004) "Why Developers Participate in Open Source Software Projects: And
Empirical Study", Twenty-Fifth International Conference on Information Systems.

Hertel, G., Niedner, S., Herrmann, S. (2003), "Motivation of Software Developers in Open
Source Projects: An Intemet-based Survey of Contributors to the Linux Kernel", Research
Policy, Special Issue on Open Source Software Development, Available at:
http://opensource.mit.edu/papers/hertel.pdf, Accessed (February 2004)

Krishnamurthy, S., (2002) "Cave or Community? An Empirical Examination of 100 Mature
Open Source Projects", Available at http://opensource.mit.edu/. Accessed (Feb 2005)

Lakhani, K. R., Wolf, R.G. (2003), "Why Hackers Do What They Do: Understanding
Motivation Effort in Free Open Source Software Projects", MIT Sloan School of
Management Working paper, Available at:
http://freesoftware.mit.edu/papers/lakhaniwolfpdf. Accessed (February 2004)

Participation in Free and Open Source Communities 231

Lanzara, G.F., Momer, M. (2003), 'The knowledge ecology of Open-Source Software
Projects', paper presented at seminar on 'ICTs in the contemporary world' at LSE
Department of Information Systems on 2nd October

Moody, G. (2001), "Rebel Code: How Linus Torvalds, Linux and the Open Source
Movement Are Outmastering Microsoft", The Penguin Press, England

O'Mahony, S., Ferraro, F., (2004) "Hacking Alome? The Effects of Online and Offline
Participation on Open Source Community Leadership", Available at
http://opensource.mit.edu/. Accessed (Dec 2004)

Oh, W., Jeon, S., (2004) "Membership Dynamics and Network Stability in the Open-Source
Community: The Ising Perspective" Twenty-Fifth International Conference on Information
Systems.

Pavlicek, R. C. (2000), "Embracing Insanity: Open Source Software Development", Sams
Publishing, USA

Raymond, E. S, (1999), 'The Magic Cauldron",
Available at: http http://www.catb.org/~esr/writings/cathedral-bazaar/magic-cauldron/
(Accessed December 2003)

Raymond, E. S, (2000), "The Cathedral and the Bazaar",
Available at: http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
(Accessed November 2003) and in Dibona et al (1999)

Sagers, G.W., (2004) "The Influence of Network Governance Factors on Success in Open
Source Software Development Projects", Twenty-Fifth International Conference on
Information Systems.

Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S., Lakhani, K., (2005) "Understanding
Free/Open Source Software Development Processes", Available at:
(http://www.ics.uci.edu/~wscacchi/Papers/New/SPIP-FOSS-Intro-Dec2005.pdf) (Accessed
December 2005)

Schofield, A., Mitra, A. (2004), "Complexities of Classifying Open Source: Developing a
Framework for Categorising Open Software Development", UK Academy of Information
Systems conference 2004, Glasgow, UK.

Schofield, A., Mitra, A. (2005), "Free and Open Source Software Communities as a Support
Mechanism", UK Academy of Information Systems conference 2005, Newcastle, UK

Stallman, R. (1999), "The GNU Operating System and the Free Software Movement", in
Dibona etal (1999).

Zhang, W. & Storck, J, (2001) "Peripheral Members in Online Communities", Americas
Conference on Information Systems, Boston, USA.

Collaborative Maintenance in Large
Open-Source Projects

Matthijs den Besten'" ,̂ Jean-Michel Dalle*'̂ and Fabrice Galia^
* Universite Pierre et Marie Curie, Paris, France

<jean-michel.dalle@upmc.fr>
^ Universite Paris-Dauphine, Paris, France

<matthijs.denbesten@lamsade.dauphine.fr>
^ Universite Pantheon-Assas Paris II, Paris, France

<galia@u-paris2. fr>

Abstract. The paper investigates collaborative work among maintainers of open
source software by analyzing the logs of a set of 10 large projects. We inquire
whether teamwork can be influenced by several characteristics of code.
Preliminary results suggest that collaboration among maintainers in most large
open-source projects seems to be positively influenced by file vintage and by
Halstead volume of files, and negatively by McCabe complexity and size
measured in SLOCs. These results could be consistent with an increased
attractivity of files created early in the history of a project, and with maintainers
being less attracted by more verbose code and by more complex code, although
in this last case it might also reflect the fact that more complex files would be
de facto more exclusive in terms of maintenance.

1 Introduction

Teams in general, and virtual teams in particular, enjoy an increasing interest from
scholars in organizational science.^'^ In the absence of a strong managerial hand, it is
not obvious indeed how team members collaborate - especially when the members
are located in various parts of the world. Nonetheless, in many circumstances virtual
teams appear to be remarkably successful and until now, no real and clear
understanding exists of the conditions of their success and efficiency.

In this context, the work of virtual teams is at least partly traceable in the activity
logs that those teams leave behind in, their virtual environments. Open source
software projects are natural candidates in this respect, i.e. for quantitative empirical
studies of virtual teams, given their increasing economic success and the free and easy
access they typically provide to such data."* Several steps in this direction have already
been made by others^ This conviction that the by-products of collaboration provide a
wealth of data that could be harnessed is also behind the study of collaborative
maintenance activity in open source project logs that we present here..

Section 2 introduces open source software and reviews some of the research done
in that area. In section 3, we describe the database we studied and how we created it,
and we introduce a few important methodological caveats. It is followed, in section 4,

Please use the following format when citing this chapter:
den Besten, M., Dalle, J.-M., and Galia, F., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 233-244

234 Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia

by an analysis of the results of our investigations. We conclude by briefly pointing
out several avenues for further research.

2 Open Source Software

Open source software (OSS) is a type of software that has become increasingly
prevalent over recent years. In contrast to closed source software, in OSS the human
readable source code of the software program is distributed along with the program
itself. With this source code it becomes then possible for users of the program to
scrutinize the inner workings of the program and to adapt the program to their needs.
The most famous example of OSS is Linux, an operating system developed based on
Unix that is developed by Linus Torvalds and many other developers.̂ Microsoft, a
dominant player in the market for operating systems, acknowledged the strength of
Linux very early on, in what is now known as the "Halloween document" ,̂ and since
then, the software industry has looked for ways to adapt features of the open source
development model in more traditional closed environments.̂ '̂

Yet, there is still something particular, and largely puzzling, about the OSS
development model. In general, what is understood as the OSS development model is
that it corresponds to the community-based voluntary self-organizing effort of various
virtual teams of physically dispersed computer programmers to develop software -
that is itself open to inspection to everyone who is interested. Eric Raymond famously
likened the OSS development model to the interactions that are going on in a
"bazaar".^ However, since then, several case studies of open source software projects
showed that in many projects' hierarchies tend to persist and that there is larger
diversity in organizational forms from one project to the other than would have been
expected.'̂ Indeed, in so far as there is a OSS development model, recent research
seems to point towards an "onion model" of organization in which a core team of just
a few developers is aided by a larger group of co-developers who are in turn aided by
an even larger group of bug-submitters and feature-requesters, etc. '̂ That is, open
source development typically involves the participation of a large number of users
who report bugs and request features, to be compared to a more limited number of co-
developers who suggest software code that addresses those bugs and features; and to
yet a smaller set of core developers who review the suggested code contributions and
incorporate them in the existing code base.

What makes open source software projects particularly attractive as a topic for
research is that virtually the whole development process is recorded and that the
archives of these recordings are freely available for investigation. More in particular,
open source software projects typically feature mailing lists where developers discuss
their work and non-developers submit requests or ask for help. In addition, there may
be discussion forums and bug tracking tools. Last, but not least, the source code is
available and, when, as is often the case, a version control system is employed, in fact
all old versions of the source code so that the development process can be traced back
to the start. Researchers of software engineering have started to make use of this
wealth of data to inform their investigations. Notable examples are the work of Walt

Collaborative Maintenance in Large Open-Source Projects 235

Scacchî ,̂ who performed an in-depth ethnographical analysis of the implicit ways in
which requirements are gathered in open source projects, and that of Mockus and
Herbsleb^ ,̂ who studied the pace with which bugs were resolved based on
information in mailing lists and software logs. Hashler and Kocĥ "* propose a larger
scale mining of the available information and discuss what kind of questions could be
explored on the basis of that information.

The data that we looked at for our particular investigation of the allocation of
tasks in open source software project teams was extracted from logs of development
activity that are maintained by software version control systems. Version control
systems are used by development teams in order to keep track of what was
contributed, when and by whom. If conflicts arise due to a change in the code, a
version control system makes it possible to undo that change and revert to the source
code as it was before the change was made. Note, however, that in most OSS projects,
a possible change has already been thoroughly reviewed before it is applied to the
source code. Also, the people who commit the change are not necessarily the ones
who wrote the code incorporated in that change. Rather, they are likely to be the
maintainers of a part of the source code, who after a review of a change suggested by
others, decide it is a good change and apply it to their part of the source code. In some
cases, each change has to be approved of by a committee of core developers. In other
cases, the review of suggested changes is completely up to the digression of the
maintainer of the part of the source code to which the change is applied.

3 Database & Caveats

To create a database adapted to our investigations, we selected a set of open-
source projects, attempting to obtain a set that was diverse in terms of product
complexity, task uncertainty, and target audience. In addition, the projects needed to
have a minimum amount of code, contributors and development history: in the list
below, the logs typically span a period of five to ten years. Obviously, only those
projects that provided easy access to their code repositories could qualify. In the end
we settled for ten projects: An operating system - NetBSD, a data base - PostgreSQL,
a web server - Apache, a web browser - Mozilla, an instant messaging application -
Gaim, a secure networking protocol - OpenSSH, a programming language - Python, a
compiler - GCC, an interpreter for the PostScript language and for PDF - Ghostcript,
and a version control system - CVS, Several of these projects, most notably Mozilla
and Apache, have already received a lot of attention from researchers. Others, like
Gaim, stand out because of the amount of activity or because of the sheer length of
activity. Finally, and although we only selected "large" projects, we selected projects
whose sizes belong to different orders of magnitude (in terms #contributors, #files,
#years of history), which could have an impact on their characteristics, and we would
precisely like to discriminate between characteristics of projects and features more
generally associated with the open-source mode of software development. There are
also strong and potentially relevant differences among these projects in terms of
organization and in terms of maintenance policies.

236 Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia

We extracted CVS logs for all these projects. CVS is the most widely used version
control system for open source software development and its logs are relatively easy
to parse.'^ The log lists for each file each revision of that file and for each revision
when the revision was made, who was responsible for the revision and how many
lines of code were added to and deleted from the file as a result of the revision
(example given in Annex). At this level of analysis, we have restrained our sample to
all the files that contain source code written in C or C++ i.e. to files with .c, .C, .cc, or
.cpp suffixes. However, in some projects, e.g. Python, most code is obviously written
in another language (e.g. python, precisely). In others, specially in gcc, there is a large
portion of test files.

For each of the 10 projects, we computed descriptive data similar to what is
available for various open-source projects'^ reported partially in Table 1. Then, more
specifically for the purpose of studying collaborative maintenance, for each file that
was studied and for each month we computed how many distinct maintainers had
committed a change to that file during that period, and how many commits the file
had received during the same period.

Before we proceed to presenting our investigations and their results, a few caveats
have to be mentioned, which appeared as we progressed in the series of experiments
that we conducted with our database.

1. About the constitution of the database and its suitability for econometric
inquiries, it is not fully clear where the boundaries of a given project are.
For instance, Apache and Mozilla have their own repositories but both host
multiple applications. Lacking a clear rule for now about where to draw
these limits, we decided that in the case of Apache, we would restrict
ourselves to the logs concerning Apache HTTP Server 2.0. In the case of
Mozilla, we considered the whole suite. In the case of NetBSD, we only
looked at the kernel of the operating system, while in the case of OpenSSH,
which is part of OpenBSD, we focused at the subdirectory within OpenBSD
where OpenSSH resides.

2. The first date recorded in the repository does not necessarily coincide with
the creation date of the project. However, the earliest record in the log does
not necessarily coincide with the start of the project itself as the decision to
adopt CVS could have been made well into the development of the project:
A case in point is GCC, which started well before the first recorded commit
in 1997.

3. For now, we only consider the main branch and ignore activity in other
development branches. More generally, it is not completely clear when a file
is really part of the project's code base. That is, some files are explicitly
deleted when they are no longer needed, but we cannot be sure that this
policy is always enforced. Some files are "bom dead" (which happens when
a file is created in a branch other than the main branch). Sometimes files that
are registered as dead are "revived". All of this is mainly CFiS-specific.

Collaborative Maintenance in Large Open-Source Projects 237

Finally, it might be necessary to investigate at some point whether CVS
accounts could be used by more than one maintainer, which could create
another potential source of bias.

4 Empirical Investigations

To study collaborative maintenance activity, the econometric tests presented in this
paper address two different measures for each file, the average number of maintainers
per month ("maint's"), and the average number of revisions per month ("revisions").
The first measure can be considered as an indicator of collaborative maintenance
while the second addresses activity more specifically.

However, previous investigations^^ have attracted our attention to the time variability
of collaborative maintenance and activity on a given file. We had typically found that
in 80 to 90% of the cases, only one maintainer had committed a change to a given file
during a given month. As a consequence, we investigate also two other variables: the
maximum number of maintainers per month over the period ("max maint's") and the
maximum number of revisions of files per month over the period ("max revisions") in
order to address this issue. These last two variables focus on intensive periods of
maintenance and activity to deal with the fact that there are large periods of low
activity, which is rather intuitive once said, but which we fear might create a
significant bias: in doing so, they allow us to focus specially on periods of teamwork.

We run several specifications for all 10 projects, trying to explain four dependant
variables (maint's, max maint's, revisions and max revisions) by the size of the file
defined as its number of single lines of code ("SLOCs"), the maximum McCabe
complexity index for all functions in the file ("McCabe"), Halstead volume
("Halstead") of the file, and the date of creation of the file ("Relative creation date").

Taking Apache as an example (Table 2), we find that:

a. maint's is explained positively by the relative creation date of the files: even
controlling by their age, younger files attract on average more maintainers than older
ones. A similar, but opposite, dependence characterizes max maint's: in that case, the
older the file the higher the maximum number of maintainers during one month.
Similar dependencies (positive for revisions and negative for max revisions), and
therefore similar tentative explanations, characterize activity: still controlling by their
age, younger files attract more activity on average, but a lower maximal activity per
month. Generally, younger files tend to attract a higher average number of
maintainers per month, and a higher average number of revisions per month, but
lower maxima in both cases.

-> This could be explained by a larger global audience of the project, meaning that
more recent files could attract more numerous maintainers just because the population
of developers would be larger, because the growth of the total number of maintainers
for the project over time, meaning that the files could therefore be "touched" by more
maintainers simply because there are more maintainers in the project. At the same

238 Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia

time, older files have more intense (collaborative) maintenance & activity peaks: this
could maybe be related to older files - files with an older vintage - being more
attractive to development and maintenance activity because of their importance in the
project, or to the fact that early development activity was more collaborative in itself,
due for instance to the role of initial core teams.

b. File size, measured in SLOCs, does not explain the average number of maintainers
per month on a file, nor the average number of revisions jDcr month, except when
associated with Halstead, but has always some explanatory power for the related
maxima. McCabe is not significant for maint's, whereas it is for the 3 other dependent
variables. Halstead is significant for the estimations of all 4 dependent variables, and
renders SLOCs insignificant: indeed, Halstead is more strongly correlated to SLOCs
(though both complexity variables actually are). Adjusted R2 are considerably higher
for both maxima with Halstead.

-> This could be consistent with the idea suggested above that there are limited
periods of intense activity for files, outside of which "normal" activity is less relevant
for this kind of analysis. In all circumstances, Halstead has a strong explanatory
power, which is relatively intuitive is we analyse it as a combination of size and
complexity of code.

c. Results with Halstead are therefore presented in synthetic form for all 10 others
projects in Table 3. There are only few differences such as the absence of explicative
power of the relative creation date for gaim^ except for maint's, which would notably
deserve further and more specific investigations. The significance of SLOCs, and the
sign of the dependence when it exist, appear more subject to variations than for
Halstead, but might point more to a measurement issue more than to actual
differences among projects, save at least for Python where it is probably in relation
with the number of files written in python, precisely, and which have therefore been
excluded for now from our analysis.

-> These results confirm the robustness of the findings and interpretations presented
above, and suggest that these characteristics could generally characterize the open-
source mode of development in large projects. Together with results obtained for
Apache, they might also suggest more subtle dependencies associated with other
measures of code size (SLOCs) or complexity (McCabe).

d. In this last respect, and turning back to Apache, Table 4 presents an additional
estimafion of max maint's using Halstead, SLOCs, McCabe, and Functions (which
gives the number of functions in a file). Interesfingly, all these variables are
significant: a higher number of functions tends to significantly increase the maximum
number of maintainers in a file; on the contrary, higher McCabe and SLOCs
significantly decreases the number of maintainers.

-> This finding could be consistent with an enhanced division of labour between
maintainers inside a given file when more modular, i.e. allowing for more maintainers
when there are more functions; and with more complex and longer files being more
difficult to maintain and less attractive for maintainers respectively.

Collaborative Maintenance in Large Open-Source Projects 239

e. Finally, Table 5 also presents a more complete estimation of max revisions using
Halstead, SLOCs, McCabe, Functions and now Max maint's, as it appears reasonable
indeed to suggest that the maximal activity on a file could be explained by the
maximum number of maintainers. It is indeed so, and the relative creation date,
SLOCs and Functions lose all statistical significance, which Halstead and McCabe
retain.

-> This validates the idea that vintage explains the maximum number of maintainers
on a file and thus indirectly its maximum activity, and also that the division of a file
into functions is consistent with organizing maintainer collaboration more than with
explaining activity per se. Halstead and McCabe have a strong positive and negative
explanatory power vis a vis activity, respectively, controlling by the number of
maintainers: therefore, they could also provide explanations for the attractivity of a
file per se (in terms of contributions).

Generally speaking, and awaiting further confirmation of these results on a larger
collection of open-source projects, our investigations suggest that a metrics of code
size and complexity such as Halstead volume and file vintage are major determinants
of teamwork on files. In this respect, the significance of vintage could be consistent
with the idea that core teams play a specially significant role when projects are recent.
In this general framework, more modular code - here, more functions in files - is
associated with more maintainers, which is consistent with insights from modularity
theory and with a more efficient division of labour. Still in this context, more
complex files attract a lower number of collaborative maintainers, maybe because
they induce a more exclusive selection of who could maintain a given piece of
specially complex code. Finally, more "verbose" code - more lines of code for a
given complexity - is less attractive for maintainers, perhaps because it could
correspond to less attractive features inside projects. These findings appear consistent
with suggestionŝ '̂̂ ^ according to which maintainers would respond to technical
considerations, either based on use value or on challenge and peer regard, in their
motivations and in their choices among modules, and therefore in the global
allocation of efforts in large open-source software projects.

5 Further Work

This paper documented investigations of detailed development records to study
collaborative maintenance in open-source projects. The success that many of these
projects have had in recent years and the voluntary nature of their development
process make them extremely interesting to study, especially since abundant
documentation of the development history of each project is readily available on the
Internet. We came to the conclusion that collaborative maintenance in large open-
source projects seems to be generally influenced by Halstead volume and also by the
vintage of the files in a given project. Further studies are needed to uncover the role
played by various factors which would be candidates to increase the explanatory
power of the simple econometric models presented in this paper, including notably
more technical characteristics of files. Furthermore, the extent to which maintainers

240 Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia

actually coordinate their work is not yet clear, nor are the dynamic interplay of the
variables we have studied or the fact that such dynamics can give birth to hot spots. It
could be interesting too to study more qualitatively subsets of files, and more deeply
the interactions between maintainers within files.

Acknowledgments

Our research has been partly supported by Calibre^ a EU FP6 Coordination Action.
The support of the US National Science Foundation (NSF Grant No. IIS-0326529
from the DTS Program) is also gratefully acknowledged by one of us (JMD).

REFERENCES
1. C. U. Ciborra, Teams, Markets and Systems (Cambridge University Press,

1993).
2. J. Olson and K. M. Branch, in: Communication, Management Benchmark

Study, edited by E. L. Malone (Office of Science, Department of Energy,
Washington D.C., 2002) pp. 133-142.

3. W. vander Aalst, B. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A. Weijters, Workflow Mining: A Survey of Issues and Approaches, Data &
Knowledge Engineering, 47, 237-267 (2003).

4. S. Koch and G. Schneider, Effort, Cooperation and Coordination in an Open
Source Software Project: Gnome, Information Systems Journal, 12(1), 27-42,
(2002).

5. J. Y. Moon and L. Sproull, Essence of Distributed Work: The Case of the
Linux Kernel, First Monday, 5, (2000).

6. V. Valloppillil, Open source software: A (new?) development methodology.
Microsoft memo, 1998 (unpublished).

7. J. Matusow, S. McGibbon, and D. Rowe, in: Proceedings of the 1st
International Conference on Open Source Systems, edited by M. Scotto and
G. Sued, (Genoa, 2005), pp. 263-266.

8. G. D. Prato and D. Gagliardi, in: Proceedings of the 1st International
Conference on Open Source Systems, edited by M. Scotto and G. Succi,
(Genoa, 2005), pp. 237-240.

9. E. S. Raymond, The Cathedral and the Bazaar, First Monday, 3 (1998).
10. S. Krishnamurthy, Cave or Community? An Empirical Investigafion of 100

Mature Open Source Projects, First Monday, 6 (2002).
11. K. Crowston and J. Howison, The Social Structure of Free and Open Source

Software Development, First Monday, 10 (2005).
12. W. Scacchi, Understanding the Requirements for Developing Open Source

Software Systems, lEE Proceedings - Software, 149, 24-39 (2002).

Collaborative Maintenance in Large Open-Source Projects 241

13. A. Mockus, R. T. Fielding, and J, D. Herbsleb, Two Case Studies of Open
Source Software Development: Apache and Mozilla, ACM Transactions on
Software Engineering and Methodology, 11, 309-346 (2002).

14. M. Hahsler and S. Koch, Discussion of a Large-Scale Open Source Data
Collection Methodology, Proc. HICSS 3S, (2005).

15. G. Robles, S.Koch, and J. M. Gonzalez Barahona, Remote Analysis and
Measurement of Libre Software Systems by Means of the CVSAnalY Tool,
Proc. ICSE 2, (2004),

16. J. Howison, M. Conklin, and K. Crowston, in: Proceedings of the 1st
International Conference on Open Source Systems, edited by M. Scotto and
G. Succi, (Genoa, 2005), pp. 54-60.

17. A. Capiluppi, A. E. Faria, and J. F. Ramil, Exploring the Relationship between
Cumulative Change and Complexity in an Open Source System, Proceedings of
the Ninth European Conference on Software Maintenance and Reengineering
(2005).

18. J.-M. Dalle and P.David, Simulating Code Growth in Libre (Open-Source)
Mode, in: The Economics of the Internet, edited by N. Curien and
E. Brousseau, (Cambridge University Press, 2005).

19. J.-M. Dalle and P. David, The Allocation of Software Development Resources
in 'Open Source' Production Mode, Discussion Paper 02-27, 2003 (Stanford
Institute for Economic Policy Research).

20. M. den Besten and J.-M. Dalle, Assessing the Impact of Product Complexity on
Organizational Design in Open Source Software: Findings & Future Work,
Proceedings of the ECCS 2005 Satellite Workshop: Embracing Complexity in
Design (2005).

242 Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia

ANNEX

Table 1: Descriptive elements of the sample in the database. Other statistics available
upon request.

apache

CVS

gaim

gcc

gostscript

mozilla

NetBSD

openssh

postgresql

python

First
mont
hof
act.

07/96

12/94

03/00

08/97

03/00

03/98

03/93

09/99

07/96

08/90

Files

4133

1062

5158

34757

2819

40545

19514

289

4102

4643

"c"

files

(#)
657

287

681

16405

932

8370

7081

138

904

419

maint's

(total

#)
79

30

39

250

23

595

267

50

25

88

maint's
(av)

7.67

3.67

3.62

2.56

3.68

7.77

6.48

5.32

4.53

5.94

max
maint's

(av)

2.60

1.41

1.74

1.19

1.76

1.90

1.66

2.21

1.92

1.94

revisio
ns (av)

32.38

23.74

26.91

6.30

9.08

21.11

18.00

35.56

42.00

31.59

max
revisio
ns (av)

5.96

3.01

4.62

1.46

1.76

3.31

2.94

4.93

4.38

4.78

McCa
be

(av)

18.24

19.25

17.10

17.62

25.04

15.39

10.03

19.67

18.75

21.53

Halstead

(av)

14483.73

16643.53

25181.14

4526.51

21445.66

18064.63

15846.91

13779.09

17190.52

33965.03

SLOCs

(av)

523.85

1456.00

3581.71

3546.63

3197.25

1606.94

7805.33

9230.17

1246.06

14453.06

Table 2: Econometric estimations (OLS) for Apache. Dependent variables: average
number of maintainers per month, maximum number of maintainers per month,
average number of revisions per month, and maximum number of revisions per month
(parameter estimate, above, and standard error, below). Stars signal confidence levels
- 95% = *, 99% = **, and 99.9% = ***.

maint's maint's l^ax Max revisions revisions Max Max
maint's maint's revisions revisions

I n t e r c e p t 0.14039*** 0.12214*** 3.21049*** 2.93030*** O.6O443*** O.398OO*** 6.56893*** 4.98504***

0.02860 0.02683 0.11575 0.09999 0.12597 0.11208 0.58216 0.48336

SLOCs

Mc Cabe

Halstead

Relative
creation
date

1.165E-5

1.227E-5

6.8159E-4

6.4246E-4

9.11E-3***

1.05E-3

4.30E.6

1.212E-5

2.12E-6***

7.54826E-7

8.95E-3***

9.9214E-4

4.090E-5**

5.047E-5

7.39E-3***

2.56E-3

-3.433E-2***

4.10E-3

-1.189E-4**

4.553E-5

3.280E-5***

2.83E-6

-3.057E-2***

3.58E.3

1.3514E-4

5.404E-5

8 89E-3**

2.83E-3

1.824E-

2***

4.61 E-3

1.579E-

5***

5.064E-5

2.786E-***

1.5E-6

1.948E-

2***

4.15E-3

7.047E-4***

2.5383E-4

4.469E-2***

1.288E-2

-7.575E-2***

2.060E-2

-2.0944E-4

2.2009E-4

1.855E-4***

1.370E-5

-5.449E-2***

1.733E-2

Collaborative Maintenance in Large Open-Source Projects 243

Table 3: Summary of econometric tests (OLS) for all 10 projects with variable
Halstead. Full results, including results with variable McCabe, available upon request.
Stars signal confidence levels - 95% = *, 99% = **, and 99.9% = ***; (-) signals a
negative coefficient.

Project

Intercept

SLOCs

Halstead

Relative

creation

date

Adjusted

R2

Apache

maint'
s

i | » K i K

0.1456

max revisio
maint ns

's

JtcJtote « » < *

}tc9te« * * *

f. * * *

0.3272 0.1792

max
revisio

ns

r.***

0.3210

CVS

maint'
s

0.1668

max
maint'

s

(-)***

0.2392

revisio
ns

0.2233

max
revisio

ns

/ ***

0.3601

Gaim

maint'
s

0.2116

max
maint'

s

0.0256

revisio
ns

0.5750

max
revisio

ns

**

0.0615

Project

Intercept

SLOCs

Halstead

Relative

creation

date

Adjusted

R2

GCC

maint'
s

f.***

0.2259

max
maint

's

(•

0.3091

revisio
ns

(-)***

* 3 ¥ *

0.2731

max
revisio

ns

f.***

0.3334

Ghostcript

maint'
s

(-)**

0.036

0

max
maint'

s

• * *

(-)***

0 4648

revisio
ns

0 2028

max
revisio

ns

* * •

/ . •) * * *

0.4648

Mozilla

maint'
s

(-)*

0.0313

max
maint'

s

/ \#*5(C

0.2623

revisio
ns

0. 1341

max
revisio

ns

**

/ ***

0.2862

Project

Intercept

SLOCs

Ha}§£ead

Relative

creation

date

Adjusted

R2

NetBSD

maint'
s

»»*
j ^ * *

0.0780

max
maint

's

nnn

(-

0.2765

revisio
ns

5 (C * *

« » S

s * t s (c *

0.1001

max
revisio

ns

^ 3 1 ^

^ . J * * *

0 2496

OpenSSH

maint'
s

0.1657

max
maint'

s

t e * *

**̂ *
^ _ J * * *

0.5289

revisio
ns

++*

(_ j * * *

0.3576

max
revisio

ns

* *+

/_***

0.4869

PostgreSQL

maint'
s

**

0.1413

max
maint'

s

«»
*««

(-)***

0.2593

revisio
ns

0.1814

max
revisio

ns

/_***

0.3229

244 Matthijs den Besten, Jean-Michel Dalle, and Fabrice Galia

Project

Intercept

SLOCs

Halstead

Relative

creation date

Adjusted R2

Python

maint's

(-)**

0.0946

nnax revisions
maint's

(-)*** (-)**
*** ***

f_*** * * *

0.2830 0.0553

max
revisions

/ ***

0.1137

Table 4: Further econometric estimations (OLS) for Apache. Dependent variables:
maximum number of maintainers per month and maximum number of revisions per
month (parameter estimate, above, and standard error, below). Stars signal confidence
levels - 95% = *, 99% = **, and 99.9% = ***.

Max Max Max Max Max Max
maint's maint's maint's revisions revisions revisions

Intercept 3.21049*** 2.93030*** 3.07637*** 6.56893*** 4.98504*** -2.61835***

0.11575 0.09999 0.10384 0.58216 0.48336 0.75211

SLOCs 4.090E-5** -1.1890E-4** -5.1764E- 7.047E-4*** -2.0944E-4 l.OOE-3

5.047E-5 4.553E-5 4*** 2.5383E-4 2.2009E-4 5.4907E-4

1.2736E-4

McCabe 7.39E-3*** -9.55E-3** 4.469E-2*** -3.457E-2**

2.56E-3 2.97E-3 1.288E-2 • 1.272E-2

Halstead

Functions

Max

maint's

3.280E-5***

2.83E-6

4.708E-5***

3.96E-6

8.26E-3***

2.41E-3

1.855E-4***

1.370E-5

1.0795E-4***

1.918E-5

-1.657E-2

1.032E-2

2.64696***

0.19833

Relative -3.433E-2*** -3.057E-2*** -3.053E-2*** -7.575E-2*** -5.449E-2*** .2.358E-2

creation 4.10E-3 3.58E-3 3.61E-3 2.060E-2 1.733E-2 1.643E-2

date
Adjusted 0.1580

R2

0.3272 0.3669 0.0909 0.3210 0.5243

Part VI

Case Studies and Experiments

Comparing macro development for
personal productivity tools:

an experience in validating accessibility of
Talking Books

Gabriella Dodero\ Katia Lupi', and Erika Piffero^
1 DISI, Universita di Genova, Via Dodecanese 35, 16146 Genova, Italy

dodero@disi.unige.it, {katia.lupi, erika.piffero}@gmail.com
WWW home page: http://sealab.disi.unige.it/Krakatoa/DisiAbles

Abstract. We describe an experience in developing macros for both Power
Point and Impress, to be used in accessibility validation for educational
multimedia (Talking Books) designed for visually impaired people. Minor
disadvantages in the use of Impress are outlined, which however do not
constitute a serious obstacle to adoption of Open Source tools for our purposes.

1 Introduction

There is a number of experiences and studies on how personal productivity tools are
being used, and the issues in migrating from one proprietary environment, like MS
Office, to an open source one, like OpenOffice.org, have extensively been dealt with
(see for example [1]). However the issue of macro development in either
environments has not yet received comparable attention, and most of available studies
about macros are related to their use in spreadsheets or word processors [2].

This paper describes an experience in validating accessibility of Talking Books,
i.e. multimedia training materials, developed with the two most popular personal
productivity tools (Impress and PowerPoint) and validated by means of macros. It is
the natural follow-up of a previous experience [3, 4], where we described how
Cultural Heritage professionals without technical expertise may produce a Talking
Book, a computer based teaching aid both for normal and for visually impaired
people. The first Talking Book was developed with PowerPoint, following the
detailed instructions in the manual [5].

The guidelines to be followed in order to make an accessible Talking Book are
partly suggested in such a manual, partly derived from Italian legislation about
accessibility [6, 7], as well as from the expertise of therapists employing computer
based aids for visually impaired people. Once the content of the Talking Book has
been developed, a tedious manual task is started, by enforcing compliance to the
accessibility rules, in order to make it truly accessible. Automation of compliance
checks to accessibility rules avoids such a task, and it is made possible by a suitable
set of macros.

Two implementations of such a validation procedure have been undertaken [8, 9],
by developing macros for both PowerPoint and Impress (respectively using Visual

Please use the following format when citing this chapter:
Dodero, G., Lupi, K., Piffero, E., 2006, in IFIP International Federation for Information
Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi,
W., Scotto, M., Succi, G., (Boston: Springer), pp. 247-252

248 Gabriella Dodero, Katia Lupi, and Erika Piffero

Basic for Applications and Basic). Such macros have been used both to test the
existing Talking Book for accessibility, and for developing new ones.

This paper describes our experiences and compares the two implementations.

2 Development of a Talking Book

Talking Books are usually created by people with minimal computer literacy, having
expertise or interest in cultural or entertainment activities of visually impaired people.
So, creators of Talking Books may be schoolteachers, parents of disabled children,
CH university students or museum personnel, all of them not being professional
software developers.

Talking Books creators are interested in making certain contents accessible, and
the availability of open source applications saves them licence costs, both for creation
and for redistribution of the Talking Book to other visually impaired people (of
course costs due to reproduction of copyrighted contents, if any, cannot be avoided).
To this aim, a new manual was prepared [10], which details the various operations to
be done, illustrating how to use OpenOffice.org Impress to create a Talking Book, on
a PC equipped with Windows XP.

Then, we developed macros, that should be applied by the Talking Book creator
when he/she decides to validate his product for accessibility, either during the
development, slide by slide, or when the Talking Book is completed. Compliance
with accessibility guidelines requires the following checks:

Font size greater or equal to 20;
Font must be one out of: Arial, Tahoma, Verdana, Times New Roman;
Italic modifier not allowed;
Double spacing between words;
Check of brightness for text and background with the following formula
(Red, Green and Blue are the RGB components of text or background
colors): ((Red * 299) + (Green * 587) * (Blue * 114)) / 1000 >= 125

• Check of contrast between text and background colors with the following
formula (considering Color 1 the text color and Color2 the background
color):
[Max (Redl, Red2) - Min (Redl, Red2)] +
[Max (Green 1, Green2) - Min (Green 1, Green2)] + •
[Max (Bluel, Blue2) - Min (Bluel, Blue2)] >= 500.

When the check is performed, the macro user (Talking Book creator) is prompted
with a list of possible incompatibilities. Then he/she may decide whether to manually
correct them, or let the macro automatically perform the suggested modifications.

In this way such a macro may be used as a pure validator, or even, it may be used
to automatically transform a non accessible file into an accessible one. In fact, as a
useful side result, these macros may be applied to presentations for lectures or
conferences (PowerPoint or Impress files without audio components), so that visually
impaired people in the audience are not discriminated.

Comparing macro development for personal productivity tools: an experience... 249

3 Validation macros

Macro development within Microsoft PowerPoint and OpenOffice.org Impress can be
done by means of two very similar object oriented programming languages,
respectively Visual Basic for Applications and Basic. Our macros must access
objects, and possibly change their properties in order to implement the above
described checks. The two tools use different objects and properties in order to define
a presentation, and the example provided in the Appendix (the function removing the
Italic modifier) gives a flavour of such differences, most of which are just syntactical
ones. The only significant difference in internal object structure and properties is
described hereafter.

A Power Point presentation consists on a set of slides, each one containing various
shapes. Inside shapes we may find text frames, that is where macros must operate.
Shapes describe an area inside the slide, having properties like HasTextFrame (true if
there is text inside).

An Impress presentation is composed by a set of draw pages, each one made by a
set of typed elements called shapes. Text is contained only inside shapes having
certain types, so if we wish to identify where text can be found, we have to check if
the current shape has one of the following types: TitleTextShape, SubTitleShape,
TextShape, OutlinerShape.

For both tools, it is possible to customize the toolbar by adding a new button in
order to activate the accessibility validation macro on a new presentation.

On the other hand, we found a minor but sometimes annoying difference in
macros behaviour. OOo does not apply macros to currently selected text elements,
while Power Point makes no difference in treatment between selected and non
selected texts.

During macro development, we carefully searched websites devoted to macro
developers, like for example www.bettersolutions.com, ww^.ooomacros.org and
others. We realized that the Web provides many more details, useful examples, and
explanations on how to manipulate Power Point objects with respect to what is
available about Impress objects.

Specifically, we were unable to find the object names and properties of
background colors, so the check on contrast between background and text colors has
not yet been implemented in the Impress macro. The documentation describing such
objects and their properties for OOo appears more difficult to be searched than it is
for Power Point, and the effort required to find out the names and properties we need,
by actually inspecting the source code, is possible in principles, but appears too big.
However the frequent updates to OOo related sites make us confident that information
about background color properties will soon be available as well.

This would complete our experience, so that our macros will finally be made
available to the public.

250 Gabriella Dodero, Katia Lupi, and Erika Piffero

4. Conclusions

We have described our experience in developing macros for both Power Point and
Impress, to be used in accessibility validation for educational multimedia (Talking
Books) designed for visually impaired people. We experienced minor disadvantages
in the use of Impress macros, which however do not constitute a serious obstacle to
adoption of Open Source tools for our purposes.

Use of macros for improving accessibility inside personal productivity
applications is a technique which has proven successful for Microsoft Word (see for
example [11, 12]), yet it has not received so far a widespread diffusion as one might
expect. Furthermore, the application of macros inside validation tools for Talking
Books, as those we have developed, is the only one we are aware of.

It should be remarked that there are two types of stakeholders for accessibility
validating tools: creators of Talking Books (or just creators of PowerPoint and
Impress presentations), and visually impaired people, who in the end shall be the
users of such products (or the audience of such a presentation). The first experiences
collected with the creators (a group of Cultural Heritage university students,
developing Talking Books to illustrate the contents of various Museum rooms to
visually impaired visitors) showed the ease of use of the validation tools, especially
appreciating the possibility of automatic corrections. Almost no one in the creators
group was aware of the existence of the OOo toolset, while most of them had some
familiarity with the MS Office suite. They all worked with Impress without
difficulties, following the detailed instructions in [10].

The resulting Talking Books are being experienced with a real audience including
both normal and visually impaired people, inside the Museum. Meantime, conference
presentations with accessible slides have already been given (at a national Computers
and Disabilities conference, Handy TED 2005) with both normal and visually
impaired attendees.

5 Acknowledgements

The authors are grateful to Silvia Dini from Istituto Chiossone, who gave precious
suggestions about accessibility guidelines for visually impaired people, and to the CH
students from the Muscology Course of Dr.A.Traverso, who developed the Talking
Books.

6 References

[1] COSPA Consortium for Open Source in the Public Administration. Website:
ŵ ww .cospa-proj ect.org

Comparing macro development for personal productivity tools: an experience... 251

[2] I.e. Laurenson, Introduction to OOo macro development, OOCON 2005, Koper,
September 2005. Website: http://marketing.openoffice.org/ooocon2005/.
[3] P. Signorini, Multimedia products for visually impaired people in archaeological
museums, Graduation Thesis (in Italian), University of Genova, Laurea in
Conservazione dei Beni Culturali, July 2005.
[4] G.Dodero, P.Garibaldi, P.Signorini, and A.Traverso, Visually impaired people and
archaeology: a Talking book to know the "Principe delle Arene Candide", Proc.
Handy TED 2005 (in Italian), ITD-CNR, Genova, November 2005. Website:
www.itd.cnr.it/handyted2005.
[5] R. Walter, How to create talking books in Power Point 97 and 2000, ACE Centre
2002. Website v^^vw.auxilia.it.
[6] Dispositions to ease access of disabled individuals to computer based systems,
Italian Law no. 4/2004, appeared on GU n. 13 on 17 Jan 2004. Website:
http://www.innovazione.gov.it/ita/news/2003/cartellastampa/doc_leggestanca.shtml.
[7] Requirements for compliance with Law 4/2004, Act of the Italian Ministry of the
Innovation and Technologies, appeared on GU n.l83 on 8 July 2005.
[8] K.Lupi, Talking Books for Visually Impaired People: user interfacing features.
Final Report (in Italian), University of Genova, Laurea in Informatica, Oct. 2005.
[9] E.Piffero, Access to heritage related information for visually impaired users, Final
Report (in Italian) University of Genova, Laurea in Informatica, Oct. 2005.
[10] L.De Lucia, How to create a Talking Book with OpenOffice.org 2.0, Final
Report (in Italian), University of Genova, Laurea in Informatica, 2006.

[11] A.Cantor, Enhancing the accessibility and usability of Microsoft Office
applications using Visual Basic, Technology and Persons with Disabilities
Conference, California State University at Northridge, 2004. Website:
http://www.csun.edu/cod/conf/2004/proceedings/csun04.htm .
[12] A.Cantor, Macros FAQ, version2.0.(2005). Website:
www.cantoraccess.com/macro-docs/macrosfaq.htm

252 Gabriella Dodero, Katia Lupi, and Erika Piffero

Appendix: Two functions for removing the Italic font modifier

Public Function correctItalic()

For i = 1 To ActivePresentation.Slides.Count

With ActivePresentation. Slides(i)

For k = 1 To .Shapes.Count

If .Shapes(k).HasTextFrame Then

With .Shapes(k).TextFrame.TextRange.font

If .Italic = msoTriStateMixed Or .Italic = msoCTrue Or .Italic = msoTrue Then

.Italic = False

End If

End With

End If

Nextk

End With

Nexti

End Function

Function correctltalic (slides)

for i = 0 to slides.getCountO-1

slide = slides.getBylndex(i)

if slide.hasElementsOthen

for k = 0 to slide.getCountO-1

shape = slide.getBylndex(k)

tipo = shape. getShapetypeO

if tipo = "com.sun.star.presentation.TitleTextShape" or

tipo ="com.sun.star.presentation.TextShape" or

tipo = "com.sun.star.presentation.SubtitleShape" or

tipo = "com.sun.star.presentation.OutHnerShape" then

fPosture = shape. getTextO-CharPosture

if fPosture = com.sun.star.awt.FontSlant,ITALIC then

testo = shape. Text

cursor = shape. createTextCursor

cursor. CharPosture = com,sun.star.awt.FontSIant.NONE

testo. CharPosture = com.sun.star.awt.FontSlant.NONE

testo.Insertstring(cursor,"", false)

End If

End If

Nextk

End if

Nexti

End Function

The function in the top box is written for Power Point, the one in the bottom box is
written for Impress.

A tool to support the introduction of
GNU/Linux desktop system in a

professional environment

Francesco Di Cerbo^ Daniele Favara^ Marco Scotto ,̂

Alberto Sillitti^ Giancarlo Succi^ TuUio Vemazza'

1 DIST - Universita di Genova
Via Opera Pia, 131-16145 Genova

{Francesco.DiCerbo,Tullio.Vemazza}@unige. it,
Daniele.Favara@gmail.com

WWW home page: http://www.lips.dist.unige.it

2 Libera Universita di Bolzano/Bozen
Piazza Domenicani, 3

1-39100 Bolzano-Bozen,
{Marco.Scotto, Alberto.Sillitti, Giancarlo.Succi@unibz.it

WWW home page: http://www.unibz.it

Abstract. The introduction of a GNU/Linux-based desktop system in a large
company is often problematic, in terms of technical issues but especially for
employees' training costs. Mainly, these obstacles are represented by different
hardware configurations that might require several ad-hoc activities to adapt a
standard release to the specific environment, including company's application
profile. On the other hand, GNU/Linux live distributions provide to the users'
community new and interesting capabilities, as self-configuration and better
usability, but loosing compatibility with original distributions, that is
unaffordable in professionals scenarios. DSS (Debased Scripts Set) is an answer
to both questions. It is a live distribution that includes an unmodified Debian-
based Linux release and a modular-designed file system.

Keywords: GNU/Linux, live distributions, meta-distribution, early user-space,
usability, scalability, large environments application deployment

1 Introduction

When dealing with massive installation of desktop computers in a professional
scenario, usually the choice falls on proprietary solutions for both the operating
system and deployment tools. This happens thanks to their capability to lower total
costs in many aspects, first of all simplifying overall complexity and time required for
deployment operations.

Please use the following format when citing this chapter:
Di Cerbo, P., Favara, D., Scotto, M., Sillitti, A., Succi, G., and Vemazza, T., 2006, in
IFIP International Federation for Information Processing, Volume 203, Open Source
Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G., (Boston:
Springer), pp. 253-260

254 Francesco Di Cerbo, Daniele Favara, Marco Scotto,
Alberto Sillitti, Giancarlo Succi, Tullio Vemazza

The introduction of GNU/Linux[l] desktop systems in large companies is often
problematic for both startup and successive maintenance operations. These obstacles
are often represented by different hardware configurations that may require several
ad-hoc activities to adapt a standard release to the a specific environment. On the
other hand, GNU/Linux live distributions provides to the users' community new and
interesting capabilities, such as self-configuration and better usability, but the trade
off is represented by some relevant differences with the distributions from which they
derive. Such differences make them useless in a professional scenario.

DSS (Debased Scripts Set) is an answer to previous issues. It is a live distribution
based on an unmodified Debian[2]-based Linux release (Ubuntu[3]), including a pure
"stock" kernel, i. e. a standard distribution-provided precompiled Linux kemel[4].
DSS includes innovative hardware detection and configuration techniques, even if
based on sound and largely adopted software (such as hotplug daemon), that is loaded
since the very first boot operations. Combining these aspects with a modular software
package approach, made it possible by using a specialunification file system
(Unionfs [5]), DSS is also able to deploy, in a single package, a customized company-
specific release containing both the operating system and all the desired applications.
To summarize, DSS is a framework that allows an easy customization of a 100%
Debian-based GNU/Linux live-cd distribution. It provides tools to repackage all the
modifications into a derived Linux distribution. Morevover, thanks to its smart file
system design, completely constituted by modular parts loaded at runtime, it may be
easily repackaged again into a live distribution.

State of the art - Knoppix live distribution

Knoppix[6] may be considered the pioneer of GNU/Linux live distributions, both for
diffusion, also demonstrated by a large number of works based on it, and historical
reasons.
However, its approach to make a Debian GNU/Linux distribution bootable from a
CD / DVD / USB pen-drive, makes its use, in a professional setting, practically
impossible, except for data recovery or hardware testing. Its severe modifications to
the standard Debian distribution, cross-combining unstable and testing versions,
makes new application's distribution and upgrade quite difficult, requiring a great
effort to bring to stability a new hypothetical desktop installation based on Knoppix.
Moreover, "exotic" hardware suffers about Knoppix deep-kernel specificity, fit to its
hardware detection requirements. Uncommon or not completely supported hardware
often comes with drivers usually not contained in standard kernels, which may be
provided with commercial license, incompatible with GPL (Generale Public License)
statements and so undeliverable inside Debian. In this cases, the adoption of Knoppix
can be a great deal. Last but not least, hardware detection and configuration

A tool to support the introduction of GNU/Linux desktop system in a professional 255
environment

techniques come with special boot applications (knoppix-autoconfig, hwsetup,
kudzu), that require a constant maintenance process to be able to recognize new or
uncommon hardware. Moreover, their approach, based on kernel-space routines,
forces successive setups (e.g. file systems configuration) to be unfit to use user-space
libraries and applications, to give a user flexibility in data and device access,
especially in case of plug-and-play USB hardware. Such features use ad-hoc scripts
running with maximum privileges, which may lead to security problems, particularly
critic in an industrial environment.

DSS main features

DSS adopts a completely new approach to live distributions based on a "early user-
space"[7] mode. It is a set of libraries and programs (that are available even without a
running Linux kernel) which provide various functionalities required while a Linux
kernel is coming up .
The "Early user space" mode allows DSS to use hotplug, a daemon program normally
used for hardware discovery and configuration in standard non-live GNU/Linux
distributions, since the first boot. This is a great advantage, as the booting kernel
relies on already detected hardware, and using its 2.6 series features, may
automatically load needed kernel modules to use just discovered hardware, quite like
in a common installed GNU/Linux system. Due to this feature, DSS does not require
developing and maintaining an ad-hoc kernel, but it may use a stock one, exactly like
any other Debian release.
"Early user-space" mode is based on initramfs, a chunk of code that unpacks a
compressed file system image (in cpio format) midway through the kernel boot
process. It replaces the old initrd file system format, which contained a set of kernel
modules stated to be available at boot time, before mounting root file system and so
before having all kernel resources available. The main advantage of initramfs is its
capability to be used with ramfs, a file system designed to work on physical RAM,
scalable in size, instead of usual initrd. This allows DSS, in conjunction with unionfs,
to save time in the boot phase: instead of setting up a boot environment for hardware
detection/configurafion operations, DSS directly sets up a final working environment,
and when the kernel finishes its startup operations, the boot process is over, with a
simple environment update. This because RAM allocated since boot start for required
boot operations does not need to be freed/removed, and running klibc environment is
not used anymore except for boot process. Eventually, it is possible to allocate all
available RAM on system to improve overall performances, reducing physical
medium access delays. Moreover, DSS adopts unionfs, a file system designed to
merge different devices, allows to group physical devices with ramfs devices to set up
final root filesystem.

256 Francesco Di Cerbo, Daniele Favara, Marco Scotto,
Alberto Sillitti, Giancarlo Succi, TuUio Vemazza

In this way, except for a small set of scripts which effectively coordinates boot
process, no ad-hoc component is used to bring a Debian GNU/Linux release to be live
bootable and completely able to fulfill hardware detection/configuration for Linux's
supported peripherals.
DSS is also designed to be a meta-distribution framework, allowing creation of
derivative distribution, both live or in standard package, built up upon a pure Debian
release, in a very simple way. This feature is provided thanks to a special modular file
system design, made possible by adoption of Unionfs[8].
DSS root filesystem is split into modules, which are added together via Unionfs.
All modules in DSS are compressed archives, which can be mounted at runtime, as
filesystem. These modules contains programs and libraries, which are merged
together into a unique filesystem, thanks to Unionfs; additivity in modules
management permits to create a final filesystem layout which may be different from
distribution to distribufion, allowing different installation profiles, e. g. a server one,
without graphical server, or a customized GNU/Linux desktop distribution,
containing a specific corporative environment ready-to-use.
Moreover, as compressed modules are merged in an ordered way, a single installafion
may be multi-purpouse, including or excluding any of them from boot loader
parameters. This feature is very important to contain different installation profiles in a
single location, and it's extremely useful in a network installation, or in a DVD
release, for example.
Module creafion process is also very simple, and it may be created in two way: non-
interactive, which relies On "debconf program, just producing a list of desired debian
packages to include in outcoming module, and a script would download packages and
compress them into a cpio archive, or in an (interacfive way, booting DSS, using
"synaptic" program and then executing another script. Resulting archives may be
redistributed inside a standard DSS release without any further modifications to
original status.

Key technology: UnionFS

Unionfs is a stackable file system that operates on multiple underlying file systems. It
merges the updated contents of multiple directories but keeps their original physical
content separated. The Dsslive iriiplementation of UnionFS merges the Dsslive
RAMdisk with the read-only file systems on the boot CD so it's possible to modify
any read-only file as if it was writeable. UnionFS is part of FiST, File System
Translator project. Its goal is to address the problem of file system development, a
critical area of operating-system engineering. The FiST lab notes that even small
changes to existing file systems require deep understanding of kernel internals,
making the barrier to entry for new developers high. Moreover, porting file system
code from one operating system to another is almost as difficult as the first port.

A tool to support the introduction of GNU/Linux desktop system in a professional 257
environment

FiST, developed by Erez Zadok and Jason Nieh in the computer science department at
Columbia University, combines two methods to solve the above problems in an
innovative way: a set of stackable file system templates for each operating system,
and a high-level language that can describe stackable file systems in a cross-platform
portable fashion. The key idea is that with FiST, a stackable file system would need to
be described only once. Then FiST's code-generation tool would compile one system
description into loadable kernel modules for different operating systems (currently
Solaris, Linux and FreeBSD are supported).

DSS inside UnionFS

Dsslive within the "pre-USS" script mount different compressed file systems in
different mount points and uses a read-writable directory as last layer, with a outcome
to have just one final mount point (the root directory). UnionFS allows DSS to
virtually merge- (or unify-) different directories (recursively) in a way that they
appear to be one tree; this is done without physically merging the directories content.
Such namespace unification has a benefit in allowing the files to remain physically
separate, even if they appear as belonging in one unique location. The collection of
merged directories is called a union, and each physical directory is called a branch.
When creating the union, each branch is assigned a precedence and access
permissions (i.e., read-only or read-writable). Unionfs is a namespace-unificafion file
system that addresses all of the known complexities of maintaining Unix semantic
without compromising versatility and the features it offers. It supports two file
deletion modes that manage even partial failures. It allows efficient insertion and
deletion of arbitrary read-only or read-writable directories into the union. Unionfs
includes in-kemel handling of files with identical names; a careful design that
minimizes data movement across branches; several modes for permission inheritance;
and support for snapshots and sandboxing.
Unionfs has an n-way fan-out architecture [5,6]. The benefit of this approach is that
Unionfs has direct access to all underlying directories or branches, in any order.
Even if the concept of virtual namespace unification appears simple, there are three
key problems that arise when using it as root file system of Dsslive.
The first is that two or more unified directories can contain files with the same name.
If such directories are unified, duplicate names must not be returned to user-space for
obvious reasons, Unionfs solves this point defining a priority ordering of the
individual directories being unified. When several files have the same name, files
from the directory with higer priority take precedence.

The second problem relates to file deletion. Files with same name could appear in the
directories been merged or files to be deleted reside on a read-only branch. Unionfs
handles this sitruation inserting a without, a special high-priority entry that marks the
file as deleted.

258 Francesco Di Cerbo, Daniele Favara, Marco Scotto,
Alberto Sillitti, Giancarlo Succi, Tullio Vemazza

When file system code finds a without for a file, it simply behaves as the file doesn't
exists.
The third problem is relegated to the previous one and it involves mixing read-only
and read-write directories in the union. When users want to modify a file that resides
in a read-only branch, Unionfs performs a "copyup", the file is copied to the higher
priority directory and modified there.

Unionfs and The Upstream Salmon Struct (USS)

The power of Dsslive resides on its design, offering high modularity and allowing the
customization as easy as possible. This has been achieved by designing the USS and
using Unionfs as background.

The unified root file system is made of the content of different modules, each module
is a squashfs compressed file system:

l.base: console mode module, it contains a basic bootstrapped debian system;
2.kernel: it contains the /lib/modules/ directory plus kernel related utilities;
3.xserver: graphical mode modules, (in case of file names clash, the priority in the
unified directory is defined by sorting the modules name);
4.deliver: it contains the runlevel scripts needed to reconfigure "debconf' database
and the environment reading the user configuration from /proc/cmdline passed to
kernel at boot from boot loader (e.g.: locales informafion, force screen resolufion);
5.overall: the read-writable branch, it can reside in ram or even be an external hd;
Base, kernel and xserver use is self-explaining enough, but the packages inside those
modules are stored using a "noninteractive" debconf frontend, and so they maintain
their ovm default configurations, that's why Dsslive can be considered a pure debian
system hoofing from a cdrom. Anyway to allow the user to use his own locales
setdngs (i. e. language, keyboard) and video card optimized drivers, some packages
need to be reconfigured: and this is made using the runlevel scripts in deliver.

Deliver

The scripts in "yuch-bottom", the directory within the initramfs, write the
environment variables in the file /etc/deliver.conf, parsing command line parameters
from boot loader, as lang(uage), username, hostname etc. Deliver uses those variables
to reconfigure some packages, upgrading at the same time the debconf database.

A tool to support the introduction of GNU/Linux desktop system in a professional 259
environment

The scripts in deliver are plain text bash scripts, this allows DSS use not only for a
1386 livecd distribution, but even for powerpc or spare computers, and all the other
11 architectures that debian supports, making DSS fully architecture-independent.
Thanks to its scripts, DSS, to be ported from an architecture to another, just needs a
right initramfs and the deliver module, without caring about kernel customization, as
it is sufficient a pure debian stock kernel.
Dsslive, differently from knoppix, uses debconf to configure the system, which
provides a consistent interface for configuring packages, allowing to choose from
several user interface frontends. It supports even a special "pre-configuration" of
software packages before they are actually installed, which allows massive
installation or upgrade sessions demanding all necessary configuration informations
up front, without user interactions (frontend "noninteractive"). It allows to skip over
less important questions and informations while installing a package, giving anyway a
chance to revise them later.
It is also interesting to remark that debconf itself is completely a Debian supported
tool, and its use is not customized at all: another key point into 100% Debian
compatibility.

Conclusion

DSS is a 100% Debian live distribution, and may be proficiently used to install a
pure Debian system on a desktop pc. Thanks to its features, it's very simple to
customize starting base version, in a way to meet, for example, large-scale
installations with specific requirements, such as in large companies networks. Its
maintenance is not effort-prone, due to adoption of standardized technologies, but
their use in a live environment, thanks to DSS innovative design, represents a unicum
in current scenario. Moreover, there are ^o limitations to port DSS into any of Debian
supported architectures, of to use it in embedded systems.

References

[1], Stallman, R. et al.. Free Software, Free Society: Selected Essays of Richard M.
Stallman,, www.gnu.org
[2], Ian Murdock, "Overview of the Debian GNU/Linux System", Linux Journal,
Volume 1994 Issue 6es
[3], Ubuntu group, Ubuntu philosophy,, http://www.ubuntu.com/ubuntu/philosophy
[4], D. Rusling, The Linux Kernel,, http://www.tldp.org/LDP/tlk/tlk.html
[5], E. Zadok and J. Nieh, FiST: A Language for Stackable File Systems, 2000
[6], Knopper, K. "Building a self-contained auto-configuring Linux system on an
iso9660 filesystem", Usenix 2000 Conference

260 Francesco Di Cerbo, Daniele Favara, Marco Scotto,
Alberto Sillitti, Giancarlo Succi, Tullio Vemazza

[7] Petullo, M,, "Encrypt your root filesystem", Linux Journal,Volume 2005 , Issue
129 (January 2005) Page: 4, 2005,ISSN: 1075-3583
[8], CP Wright, J Dave, P Gupta, H Krishnan, E Zadok, Versatility and Unix
Semantics in a Fan-Out Unification File System, ,
http://www.fsl.cs.sunysb.edu/docs/unionfs-tr/

A Framework for Teaching Software Testing
using F/OSS Methodology

Sulayman K Sowe^, loannis Stamelos^ and Ignatios Deligiannis^

^ Department of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece. Tel: +30-2310-991927 Fax: +30-2310-998419

sksoweQcsd.auth.gr, stamelosOcsd.auth.gr
Information Technology Department, Technological Education Institute,

54700 Thessaloniki, Greece, igndel@it.teithe.gr

2

Abstract . In this paper we discuss a framework for teaching software
testing to undergraduate students' volunteers. The framework uses open
source software development methodology and was implemented in the
"Introduction to Software Engineering" course at the department of
Informatics, Aristotle University, Greece. The framework is in three
phases, each describing a teaching and learning context in which stu
dents get involved in real software projects activities. We report on our
teaching experiences, lessons learned and some practical problems we
encountered. Results from preliminary evaluation shows that students
did well as bug hunters in the bazaar and are willing to participate in
their projects long after graduation.

1 Introduction

Software engineering (SE) educators are always in search of relevant materi
als and novel pedagogies that will provide life-long learning experiences and
improve the quality of students learning outcomes. However, the teaching and
learning situation in SE courses in most universities is acute. Students do not
get the chance to participate in long-term projects where they can be exposed
to the SE principles and techniques we teach them. In most cases students have
to complete their assigned projects in one semester, making it difficult for them
to be involved in large and long-term projects. The reality is that SE education
does not always expose students to "real-world" projects [3]. Involving students
in software projects in local companies is one way of exposing them to real
software projects. However, [7] concluded that most companies are not wilHng
to sacrifice their software to students. By utilizing Free and Open Source Soft
ware (F/OSS) projects freely available in the Internet, computer science (OS)
lecturers may overcome this obstacle. F/OSS projects are ^bazaars of learning^-
they offer a meaningful learning context in which students can be exposed to
real-world software development. In this paper we present a framework which
provides such a context. The framework was implemented as a pilot program to
teach software testing in the Introduction to Software Engineering (ISE) course.
Fifteen undergraduate students took part in the program. Our evaluation of the

Please use the following format when citing this chapter:
Sowe, S.K., Stamelos, I., and Deligiannis, I., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 261-266

262 Sulayman K Sowe, loannis Stamelos and Ignatios Deligiannis

framework shows that students did well in software testing in F/OSS projects.
Our contribution may also strengthen some areas of the IEEE/ACM CS curricu
lum guidelines [4], which recommends that a CS curriculum should incorporate
Capstone projects. Like F/OSS projects, capstone projects are managed by the
students and solve a problem of the student's choice.

F/OSS in Software Engineering Education: The Bazaar model [5] of
developing F/OSS represents a decentralized software development where vol
unteers develop software online, relying on extensive peer collaboration through
the Internet. In F/OSS projects, the developer-user alliance exposes the source
code to a large number of testers and ensures rapid evolution of the code.
According to Linus Law ("Given enough eyeballs all bugs are shallow''^), many
people (testers, debuggers, co-developers) looking at the source code will ensure
that bugs/defects will be found and fixed quickly. Many studies (e.g. [1, 2, 3, 6])
see F/OSS as a pedagogical tool and a viable methodology which gives students
practice in dealing with large quantities of code written by other people. Impor
tant as these studies are, a framework for teaching SE courses in general and
software testing in particular in the informal context of F/OSS is lacking in the
literature. The overlook might be that the F/OSS paradigm has some pecuHar
characteristics which make teaching in this context harder to integrate into the
formal SE curricular structure of most universities.

1 Phal l i

» Pm^asSetecdcn. 1̂ fiTvoViig students i i ^

[^ ,

Fig. 1. F/OSS Teaching and Learning Framework.

2 F/OSS Framework for Teaching Software Testing

The Introduction to Software Engineering (ISE) course, in which the framework
was implemented, is offered as a 12 weeks course during the 5*̂ ^ semester. The
F/OSS framework for teaching software testing is shown in Figure 1.

2.1 Phase 1

At the beginning of the semester we discussed with the 150 students enrolled in
the course about involving them in software testing in F/OSS projects. Fifteen
students volunteered to take part. For the first two weeks the students received
8hrs of lectures on the following topics:

A Framework for Teaching Software Testing using F/OSS Methodology 263

- F/OSS project (Activities and Testing in F/OSS).
- F/OSS communities (Formation and Roles).
- Communication (Etiquettes of forums/mailing lists).
- Collaborative platforms (CVS, Bugzilla, Bug Tracking Systems (BTS), etc).

At the end of the session students were guided to browse projects hosted
at sourceforge.net. In choosing a project, students were asked to pay particular
attention to the following F/OSS projects selection criteria:

- operating system (Linux, Windows) and programming language used,
- number of developers and how active the forums are,
- development status (Alpha, Beta, Mature).

Having identified their projects, each student was asked to make a class
presentation, detailing the history of the project, bug reporting procedures,
and testing tools used.

2.2 Phase 2

In week 3 students learnt how to register in their projects, use bug tracking
systems, and browse and report bugs. They practiced writing fictitious bug
reports for their colleagues to criticize. In their projects, students implemented
the testing strategy shown in Figure 2.

R»ipT.»5Mr.wy ««»i<*ig
yurHLfet,iri«.Vt»MtJ05»

Fig. 2. F/OSS Testing Strategy.

They download and installed the software (1 - 2) and applied various soft
ware testing techniques (3). This may result in the discovery of bugs, which are
then logged into the project's bug database using standard bug reporting pro
cedure and tools (4). Where a student is not able to find a bug, he/she may run
more tests (5) or selected another project to continue testing (6). Every time
a student submitted a bug, he/she notifies the lecturer. Students were asked
to continuously login to check the status of their submission and engage com
munity members. During the fifth week students who already made progress in

264 Sulayman K Sowe, loannis Stamelos and Ignatios Deligiannis

their projects by finding and submitting 2-3 bugs were asked to make a class
presentation to discuss their experiences (e.g. types of bugs found, how they
were found, what they think caused the problem, how they reported them, and
what responses, if any, were received).

2.3 Phase 3

Based on their presentations and testing activities, the students were graded
as follows: Class presentation (10%), Project participation (12%), Concise bug
reports (13%), and Testing activity (15%).

3 Results and Discussions

In validating the framework we discuss students' participation in their respective
projects and the results of a survey we conducted.

3.1 Students Testing Activates

At the end of Phase 2, two students withdrew from the program. The remaining
13 tested in 16 projects^, found 72 bugs, reported 68, fixed 15, and received 43
rephes from the F/OSS community. The mean numbers of bugs found and
reported per student were 5.54 and 5.23, respectively. This means that students
reported slightly less bugs than they found, because some of the bugs they
found were already reported. The mean value of bugs fixed per student was
1.15. Thus, the students performed best in finding and reporting bugs in their
projects. They did not do well in fixing bugs. The mean number of responses
to a bug report was 3.31. Figure 3 shows how the students fair in each activity.

Fig. 3. Distribution of students' testing activities. (6/n)=bugs found. (6r*p)=bugs
reported. (6/cc)=bugs fixed. (rep)=replies to a submitted bug.

^ Games (8), Mozilla Suite (4), Multimedia (2), Mobiles and Networks (1), Astronomy
(1)

A Framework for Teaching Software Testing using F/OSS Methodology 265

3.2 Survey results

In week 6 the students were invited to complete an online questionnaire con
taining 21 items. The aim of the survey was to validate the framework from
students' point of view. Ten students completed the survey. We group the re
sponses into five categories.

1. Students Motivation. According to the survey students enjoyed software
testing in F/OSS projects (100%) and would continue testing in their projects
after graduating (90%). Furthermore, most students would prefer to have
their other CS courses taught using F/OSS methodology (90%).
2. The Teaching Context. 80% of the students reported getting help
from the lecturer when selecting their projects, making it easy for 60% of
them to find a project to participate in. While students collaborated and
discussed their projects amongst themselves (90%), 80% preferred discussing
their projects and bug reports (50%) with the lecturer.
3. Using F / O S S Testing Tools. 80% of students prefer the BTS to report
bugs because it is easy to use.
4. Testing Activity. On average, students used the software for at least 1-2
days (50%) before they could find any bugs. Since students found the BTS
easy to use, the process of reporting bugs was also easy (90%). While it was
easy for most students to describe the bugs they found (70%), 20% found
this exercise difficult. When asked if finding bugs in their projects was easy,
students responses were evenly split (50% - 50%). Students were able to read
and understand bugs others reported (80%), but only a few (30%) are able
to fix any bugs reported in their projects. Even a smaller percentage (20%)
were able to fix their own bugs. So our students could best be described as
bug hunters than bug fixers. In this role Students are able to contribute to
their projects 'eyeballs' just looking for and contributing bugs.
5. F / O S S Community Response. At the beginning many students were
hesitant that they were not getting prompt feedback, but 70% of them later
reported that their projects' communities are very responsive. 60% reported
that their projects (or rather the portals which host the project) provided
useful information to help them in their bug reporting activity.

4 Conclusion

In this paper we have proposed a framework for teaching software testing us
ing F/OSS methodology. The implementation of the framework in a formal CS
course with a sample of fifteen undergraduate volunteers was discussed. Our
experience shows that SE education could benefit from such a teaching and
learning approach by exposing students to "real-world" software engineering
projects. The projects in which the students tested were very responsive and ap
preciative. While we have already graded and published the students results, we
still continue to get emails from them about responses they received from their

266 Sulayman K Sowe, loannis Stamelos and Ignatios Deligiannis

projects. We enthusiastically continue to respond accordingly. Our presentation
resolves two key issues about F/OSS in SE education. Firstly, project-based
CS courses need not depend on closed-source projects outside the university in
order to give students experience in real-world projects. Second, it is possible
for CS lecturers to integrate the informal F/OSS teaching and learning context
into their formal curricular structure to teach CS courses (e.g. software test
ing). It was satisfying to note that most students will continue participating
in F/OSS projects after the end of our pilot program. However, we were faced
with the hard reality that students must complete their testing activity at the
end of the semester.

Validity threats and future work: Our data set consists of a small ran
dom sample of student volunteers, about 10% of the students in the ISE course.
Thus, there is danger in generalizing the results to other CS courses, classes,
and possibly to other universities, where sample size, skills, and backgrounds of
the students are probably different. However, because there are few published
results in this area, we hope that our findings will act as a base for further
research in this area. We plan to repeat the program with a larger sample next
semester. Furthermore, we are currently conducting two online surveys (post-
students survey and staff survey) to help us further validate the framework.

References

1. D. Carrington, and S. Kim, Teaching Software Engineering Design with Open
Source Soitware.33rd ASEE/IEEE Frontiers in Education Conference,{Ma.y 16,
2005); http://www.cs.wm;edu/~coppit/csci690-spring2004/papers/1273.pdf

2. M. D. German, Experience teaching a graduate course in Open Source Software
Engineering. In Proceedings of the first International Conference on Open Source
Systems. Geneva, 326-328 (2005)

3. C. Liu, Enriching software engineering courses with service-learning projects and
the open-source approach. In Proceedings of the 27th international Conference on
Software Engineering, ICSE '05. ACM Press, 613-614 (2005).

4. Software Engineering 2004 Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering, IEEE/ACM Joint Task Force on Comput
ing Curricula, (2004), (December 10, 2005); ht tp: / /s i tes .computer .org/ccse/
SE2004Volume.pdf

5. S. E. Raymond, The Cathedral and the Bazaar. O'Reilly, Sebastopol,(1999).
6. S. K. Sowe, A. Karoulis, and I. Stamelos, A Constructivist View of Knowledge

management in Open Source Virtual Communities. In A. D. Figueiredo, A. P.
Afonso (Eds), Managing Learning in Virtual Settings: The Role of Context. Idea
Group Inc., 285-303 (2005).

7. Z. Alzamil, Towards an effective software engineering course project. In Proceed
ings of the 27th international Conference on Software Engineering, ICSE '05.
ACM Press, 631-632 (2005).

Organization of Internet Standards

Mehmet Genger^ Beyza Oba^, Biilent Ozel^, and V. Sinan Tunalioglu^

^ Istanbul Bilgi University, Department of Computer Science
Kurtulu§ Deresi Cad. No:47 34440 Dolapdere, Istanbul, Turkey

{mgencer,bulento,vst}Qcs.bilgi.edu.tr
WWW home page http://cs.bilgi.edu.tr/~mgencer

^ Istanbul Bilgi University, Institute of Social Sciences
inonii Cad. No:28 34387 §i§U, Istanbul, Turkey bobaQbilgi.edu.tr

Abstract . In this study we look at a body of standards documents
in RFCs(Request For Comments) of IETF (Internet Engineering Task
Force). The cross references between these documents form a network.
Approaches from social network analysis are deployed to assess central-
ity of artifacts in this network and identify cohesive subgroups and lev
els of cohesion. Our results demonstrate major groups centered around
key standard tracks, and application of network metrics reflect diff'erent
levels of cohesion for these groups. As application of these techniques
in such domains is unusual, possible uses in open source projects for
strategizing are discussed.

1 Introduction

Open Source Software (OSS) has a good reputation for its compliance with
standards. Capability of open source processes for handling such externalities
is a major reason of interest on and adoption of this social network analysis
methodology[15]. Most such externalities are formalized elsewhere by authori
tative bodies of standardization, with close cooperation with the open source
software development community.

In this study we analyze several aspects of the body of standards docu
ments in RFCs(Request For Comments) of IETF (Internet Engineering Task
Force). IETF is an organization with major influence in development of Internet
standards. Formation of IETF standards resembles very much the processes in
open source development: influential members first issue RFCs reporting cur
rent practices and propose solutions to interoperability problems of Internet
technologies, later these proposals are converged into standards. The process is
similar to the development and release cycles in software development.

There are some major motivations which makes the organization of IETF
standards interesting for us: (l)full history of its development is recorded in
RFCs themselves and available for longitudinal analysis, and (2)techniques for
assessment of structural interdependency and insights about its evolution which
may be gained from such analysis, can be equally applicable to other domains
such as structure of software conglomerates, like Debian GNU/Linux packages.

Please use the following format when citing this chapter:
Gen9er, M., Oba, B., Ozel, B., and Tunalioglu, V.S., 2006, in IFIP Intemational
Federation for Information Processing, Volume 203, Open Source Systems, eds. Damiani,
E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 267-272

268 Mehmet Genger, Beyza Oba, Blilent Ozel, and V. Sinan Tunalioglu

Also as a practical result, such analysis provide hints on importance level of
some contemporary standardization efforts.

Our aim in this research is (l)to assess relative importance of Internet stan
dards, and inter-dependencies among them using techniques from social network
analysis practice, (2)to identify groups of standards that are related to each
other more so than they are to the rest, and levels of cohesion in these groups,
and (3)to find stabilization patterns of structural centrahty through longitu
dinal analysis. Development of such approaches can be valuable, for example,
in identifying critical segments of similar conglomerates(e.g. software conglom
erates like Debian GNU/Linux), in management of processes within them (e.g.
release scheduHng and team splitting), in partitioning of training programs, and
similar strategizing tasks.

An overview of data and the network analysis approach is summarized in
section 2. Results for influence and its historical development are presented in
section 3, and findings for specialization in section 4. An overview of results and
possible other applications of social network analysis methods in OSS processes
are discussed in section 5.

2 Standards data and network analysis methods used

Software development processes are studied for the mechanisms of their evolu
tion as a coherent system, and as a community practice of actors[13, 6]. Other
research on software call our attention to importance of discursive practices
and alignment of software development efforts[10]. Clusters and their formation
in similar collaboration systems have been a subject of interest. There exist in
social sciences research, valuable frameworks and methodologies for assessment
of structural features of networks and their evolution[l, 12, 11, 7, 8, 9]. There is
also a group of methods in computer and informatics developed for analyzing
different structures (such as for web page rankings) within surprisingly similar
terms[5]. However, not only that, to our interest, their application to domains
of software processes and standards formation is limited, but also there is much
way to go for developing frameworks for sensibly combining these different lenses
for a better identification and understanding of structural features common in
different contexts[4, 14, 2]. ,

There are over four thousand RFC documents published by the IETF. Most
standards start as informational class documents. Best Practices documents are
more influential than informational ones. But standard class RFC are by far the
most important within this collection. In this study we have used only the 1.460
standard class RFCs for analysis. The referral relations between the RFCs is a
directed relation. Although there may be several references from one document
to another, a dichotomous relation is assumed in the analysis, as the number
of references varies greatly.

Our method for analyzing this data consists of several steps:

Organization of Internet Standards 269

Selection of structurally important standards based on prestige measures.
These standards have more influence than others.
Identification of subgroups formed around influential standards, key techno
logical questions addressed by them, and their cohesion levels. Subgroups,
analysis of their cohesion, and connections between subgroups are impor
tant in understanding specialization in growing networks.
Sampling of historical patterns of centrality metrics for some key standards
and demonstration of stabilization patterns in structural development of
Internet standards.

3 Structural importance and influence

Degree prestige(number of references) and relative in-degree prestige[14] are
used for assessment of structural importance of a node in a network. Table 1
shows top 15 RFCs according to these centrality measures. Fig.l is a graphical
representation of top 55 nodes, where labels reflect the ranking of RFCs. Den
sity (ratio of existing relations to possible number of relations between nodes)
of the RFC network is found to be 0.003716. As best demonstrated by top 7
nodes which have many relations to each other, success of an Internet stan
dard is closely related to its positioning with other standards and success of its
siblings.

3.1 Historical development of influence

There are not many established methods available for longitudinal analysis of
network formation. One would expect that standards that appear earlier would
have higher centrality measures as recent standards are built by referencing
the older ones. However results shown in Table 1 only partially conflrms this
insight.

Table 2a shows changes in density of the network through years. Unlike
earlier years of Internet standards, the density decreases as standards becomes
more specialized on certain issues, but the rate of decrease is becoming lower.

Table 2b shows changes in relative degree prestige of some key standards
through years. This sample is insufficient to suggest a unifying pattern. However
it is worth noting that in all of the first three cases, centrality measure first rises
to a climax, followed by a decrease as the standard ages and possibly replaced
by newer versions at a later stage.

4 Subgroups and specialization

Many standards are related to some others in terms of the technical issues
they address. Fig.l shows how relations concentrated around standards that
are influential. Three major groups a;re identifiable in the network. One group

270 Mehmet Genger, Beyza Oba, Biilent Ozel, and V. Sinan Tunalioglu

Fig. 1. Groups of standard class RFCs. Top 55 nodes according to degree prestige.
Three subgroups are identifiable here: (1) the group on the bottom-right is "network
management" related standards, (2) bottom-left group is mostly related to Internet
protocol and its security extensions, and (3)top-middle is a mixed group including
standards such as www domain names, e-mail content, etc.

which seems quite isolated is related to network management protocols. Another
group includes Internet protocol and its security extensions. There is also a
third group in Fig.l, however there are many links between the second and
third groups.

Further assessment is helpful in understanding the cohesion of these groups.
Relative cohesion of a group is defined as the ratio of the number of ties between
group members to the number of ties to outside nodes[14]. That ratio can be
regarded as relative strength of "centripetal" and "centrifugal" properties of the
group. This measure for the first group in Fig.l is found to be 2.25, whereas it is
0.47 and 0.65 for the second and third group, respectively. A value larger than
one should be regarded as an indicator of stronger in-group ties(centripetal).
Thus, it is only the first group (network management protocols) which exhibit
this level of cohesion. Its only link with other major standards is indirectly

Organization of Internet Standards 271

Table 1. Top ranking RFCs according to in-degree and relative in-degree prestige
measures.

Deg.(rel) RFC: Year, Short title
1 141(0.0966) 1213 : 1991, MIB-II for Network Man. of TCP/IP internets
2 129(0.0884) 1212 : 1991, Concise MIB definitions
3 127(0.0870) 2578 : 1999, Structure of Management Information(SMIv2)
4 126(0.0863) 1155 : 1990, Structure and identification of management in

formation for TCP/IP-based internets
5 125(0.0856) 2579 : 1999, Textual Conventions for SMIv2
6 118(0.0808) 2580 : 1999, Conformance Statements for SMIv2
7 111(0.0760) 1905 : 1996, Protocol Operations for SNMPv2
8 108(0.0740) 2234 : 1997, Augmented BNF for Syntax Specifications
9 89(0.0610) 2045 : 1996, MIME Part One: Format of Internet Message

Bodies
10 89(0.0610) 1906
11 79(0.0541) 2401
12 76(0.0521) 1035
13 72(0.0493) 1034
14 69(0.0473) 2396
15 64(0.0438) 2460

1996, Transport Mappings for SNMPv2
1998, Security Architecture for the IP
1987, Domain names - implementation and spec.
1987, Domain names - concepts and facilities
1998, URI: Generic Syntax
1998, IPv6 Specification

Table 2. Historical changes in structure: (a)changes in the network density through
years, and (b)changes in relative in-degree prestige of some RFCs.

(a) (b)

T q q 2 ? n ? S ^^^2 1995 1998 2001 2004
iqq^ n n m s n RFC-1035(1987) 0.0242 0.0495 0.0608 0.0553 0.05584
iqqs n mIfiqi RFC-1213(1991) 0.3273 0.2473 0.1597 0.1369 0.1269

n nns^fi^ RFC-1738(1994) - 0.0177 0.0486 0.0415 0.0393
2004 0 007312 RFC-2045(1996) - - 0.0608 0.0636 0.06980

through node 31(UTF-8 standard), which has an important role in this sense
not captured by degree prestige measure.

5 Conclusion

Our results for structural features of the interrelated system of IETF standards
demonstrate that methods from social network analysis can be applied to stan
dards or software processes, and to our best knowledge such cross applications of
these methods are rare. Structural measures are valuable in determining which
artifacts in a system are more influential, can deteriorate the overall quality
of a system when they malfunction, or whether introduction of new relations
may compromise integrity. As our results suggest, higher levels of subgroup
cohesion(i.e. refined specialization) brings success.

272 Mehmet Genger, Beyza Oba, Bulent Ozel, and V. Sinan Tunalioglu

Our research was limited as there are many more centraUty measures such
as betweenness centraHty[14, 3]. These were not preferred in this study as their
interpretation may be problematic in a first probation, compared to more di
rect measures we have used. However, note that role of some standards such as
UTF-8 which is not captured by prestige centrality can be successfully assessed
by incorporation of other measures, such as betweenness centrality. There has
been criticisms in the past regarding the meaning of several network analysis
instruments [4], Despite their value in quantitative assessment of structural fea
tures of interlinked artifacts, most network metrics has to be combined with
due attention to the discourse of application.

Approaches for historical analysis of such networks are limited in the
literature[14]. Our results are very limited but nevertheless hints on existence
of common patterns. Further research is needed, for example to understand
whether subgroup cohesion levels show any such patterns over time, or whether
any of these instruments can be consolidated into models for forecasting struc
tural features.

Most parts of our analysis can be appHed to similar systems. For example
releases of Debian distributions are known to have timing problems. Identifica
tion of structural bottlenecks and subgroups in software processes, can improve
release schedules and further help in successful management of workforce allo
cation in such development efforts.

References

1. Borgatti SP (2005) Social Networks 27:
2. Bonacich P, Lloyd P (2001) Social Networks 23/3:191-201
3. Burt RS (1995) Structural holes : the social structure of competition. Harvard

University Press, Cambridge, Mass
4. Cook KS, Whitmeyer JM (1992) Annual Review of Sociology 18/1:109-127
5. Kleinberg J (1999) Journal of the ACM 46/5:604-632
6. Lehmann F (2004) First Monday 9/11
7. Oliver AL, Ebers M (1998) Organization Studies 19/4:549-583
8. Oliver AL (2001) Organization Studies 22/3:467-489
9. Powell WW, Koput KW, Smith-Doerr L (1996) Administrative Science Quarterly

41:116-145
10. Raymond ES 2004 The art of Unix programming. Addison-Wesley, Boston
11. Ring PS, van de Ven AH (1994) Academy of Management Review 19/1:90-118
12. Stephenson K, Zelen M (1989) Social Networks 11:1-37
13. Tuomi I (2000) First Monday 6/1
14. Wasserman S, Faust K (1999) Social Network Analysis: Methods and Applica

tions. Cambridge University Press, Cambridge New York
15. West J (2002) Journal of Research Policy 32/7:1259-1285

Contributor Turnover in Libre Software
Projects

Gregorio Robles and Jesus M. Gonzalez-Barahona

GSyC/LibreSoft, Universidad Rey Juan Carlos, Spain
{grex,jgbJQgsyc.escet.urj c.es

Abstract. A common problem that management faces in software
companies is the high instability of their staff. In libre (free, open source)
software projects, the permanence of developers is also an open issue,
with the potential of causing problems amplified by the self-organizing
nature that most of them exhibit. Hence, human resources in libre soft
ware projects are even more difficult to manage: developers are in most
cases not bound by a contract and, in addition, there is not a real
management structure concerned about this problem. This raises some
interesting questions with respect to the composition of development
teams in libre software projects, and how they evolve over time. There
are projects lead by their original founders (some sort of "code gods"),
while others are driven by several different developer groups over time
(i.e. the project "regenerates" itself). In this paper, we propose a quan
titative methodology, based on the analysis of the activity in the source
code management repositories, to study how these processes (developers
leaving, developers joining) affect libre software projects. The basis of
it is the analysis of the composition of the core group, the group of de
velopers most active in a project, for several time lapses. We will apply
this methodology to several large, well-known libre software projects,
and show how it can be used to characterize them. In addition, we will
discuss the lessons that can be learned, and the validity of our proposal.
Keywords: open source, human resources, turnover, mining software
repositories

1 Introduction

Employee turnover (the ratio of the number of workers replaced in a given period
to the average number of workers), is known to be high in the (proprietary)
software industry [1]. In the libre software world^ the study of turnover has
not been a research target (at least to the knowledge of the authors) profusely.
Most of the attention has been focused on the organizational structure of the

In this paper we will use the term "libre software" to refer to any software licensed
under terms compliant with the FSF definition of "free software", and the OSI
definition of "open source software", thus avoiding the controversy between those
two terms.

Please use the following format when citing this chapter:
Robles, G., and Gonzalez-Barahona, J.M., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 273-286

274 Gregorio Robles and Jesus M. Gonzalez-Barahona

projects, and how developers move to a central position in that structure, but
not on how they are replaced when leave it.

In this line, probably the best known model about the organizational struc
ture of Hbre software projects is the onion model [2, 3, 4], a visual analogy
that represents how developers and users are positioned in communities. In
this model, it is possible to differentiate among core developers (those who
have a high involvement in the project), co-developers (with punctual, but
frequent contributions), active users (that contribute only occasionally) and
passive users [8, 7].

But the onion model provides only a static picture of a project, lacking
the time dimension that is required for studying joining and leaving processes.
Advancing to fill in this shortcoming, it has been complemented by Ye et al. with
a more theoretical identification and description of the roles, including also some
dynamism [11]. According to this refinement, a core developer is supposed to go
through all the outlying roles, starting as a user, until she eventually reaches the
core group. An alternative approach is proposed by Jensen and Scacchi [6], who
have studied and modelled the processes of role migration for some libre software
communities, focusing on end-users who become developers. They have found
different paths for this process, concluding that the organizational structure of
the studied projects is highly dynamic in comparison to traditional software
development organizations.

With respect to abandonment, it is worth mentioning a study [9] which
analyzes how many Debian developers leave the project, and how this affects
it (i.e. what happens to those software packages that become unmaintained).
The authors propose a half-Hfe parameter, defined as the time required for a
certain group of contributors to fall to half of its initial population, which is of
7.5 years for the Debian project.

Given these precedents, the research goal for the study presented in this pa
per is to gain further understanding of the evolution of libre software developers,
and especially of the "core group", those most active. Therefore, we will study
the evolution over time of this core in some libre software projects. We consider
at least two possible scenarios: one in which the first core group is highly stable
and does not change over time, and one in which the core group "regenerates".
This first case (which will be codenamed the code gods scenario) assumes that
projects rely heavily on their initiators and that their absence would suppose
a great loss for, if not the death of, the project. The second scenario assumes
that as time passes, the core group changes its composition with some of the
initial members leaving the project, but others joining and filling the gap. One
of the main goals of this study is to find which of these two approaches is the
most common in fibre software projects.

This paper is organized as follows. First, the methodology that has been used
to extract information from source code management systems is described. The
next section contains the results of applying the methodology to 21 large libre
software projects. Finally, conclusions are drawn and some hints about further
research are given.

Contributor Turnover in Libre Software Projects 275

2 Methodology

Our methodology is based on mining source code management system reposito
ries, in our case the well-known and widely-used CVS systems. We analyze the
log history of the versioning systems using CVSAnalY [10], a tool that retrieves
the information related to every commit to the repository, and inserts it to a
database where it can be conveniently analyzed.

To identify the "generations" of the core developers, we split the project
life-time into ten equally large intervals, which means that intervals will be
of different lengths depending on the project, but will have the same relative
importance in the context of its history. Selected projects for this study are all
at least three years old, and therefore the minimum length of the time interval
is more than three months (which is considered to be significative enough,
although further research should clarify if this is a correct assumption or not).

For each interval we consider the activity measured in terms of commits to
the repository. The most active 20% of all commiters (rounded by excess) for
that interval is what we consider the "core group". Therefore, for each project
we identify ten different core groups, one per interval. Of course, the composition
of the core group in each interval depends on the total number of commiters
in that interval. If only 10 commiters participated in the first interval, the core
group would be composed of two persons. If in the last interval the number
of participants is 19 commiters, the core group would have 4 members. This
means that the core group has always the same relative importance, despite the
growth in number of developers in the project.

Some other possibilities for selecting the fraction of commiters that form a
core groups, or the duration of the intervals could be considered. Using these
other approaches would lead to different definitions of "core group" and "gener
ation" . However, after experiencing with some of them (we tried with thresholds
of 5% and 10%, and with 5 and 20 intervals), we have found that they do not
give more insight.

The technique we use is based on visualizing the contribution of the core
groups over time. We identify the core group in the first interval, and then plot
its contribution not only for the first time interval, but also for all the others.
After that, we go on with the core group that corresponds to the second interval,
plotting the aggregate^d contribution of all of its members for all the intervals,
and so on, until we have done that for the core groups in all the intervals. In
the end, we obtain ten curves (one per core;group) which show the evolution of
the contributions for all of them since the beginning to the end of the project.

To better understand the visual information that the plots provide, it is
important to notice that core groups may have members in common. This is the
case if a commiter is part of the most active 20% in several time intervals. This is
not easy to identify at first sight, since we plot only the aggregated contribution
of all the members of the core group. Though, in some cases, subsequent core
groups will be composed by the same persons. In that case, this will be easy to
identify visually, as the corresponding curves will have exactly the same shape.

276 Gregorio Robles and Jesus M. Gonzalez-Barahona

For each project, we will plot the resulting data in three different graphs,
which differ in how the contribution of the various core groups (the vertical
axis) is represented:

- Absolute graph. Displays the absolute number of commits by each core group
(vertical axis) for each interval over time (horizontal axis).

- Aggregated graph. Displays the aggregated number of commits by each core
group since the beginning of the project (vertical axis) vs. time (horizontal
axis). This graph is the integral of the absolute graph.

- Fractional graph. Displays the fraction of the total commits performed by
each core group for each interval (vertical axis) vs. time (horizontal axis). This
graph provides the same information than the absolute graph, but normalized
by the number of commits performed in each period.

From our experience the fractional plot is usually the better one to perform
the generations analysis. Nonetheless, it should be compared to both the abso
lute and the aggregated graphs since, for instance, periods of little or a lot of
activity cannot be identified in the fractional graph.

From the observation of the resulting graphs, it can be inferred whether the
same core group rides the project from its beginning to current days or not.

3 Observations on some libre software projects

The 21 case studies shown in the next subsections will help us considering the
convenience of this methodology. Among them, we have selected three examples
to illustrate the study more in detail. Two of them can be considered as canon
ical patterns: no generations (The GIMP), and several generations over time
(Mozilla). The third one (Evolution) shows results which cannot be assigned to
the previous patterns. The rest of case examples, up to 18, will provide us with
some evidence about the most frequent pattern found in large libre software
projects.

3.1 Observations on The GIMP

The GIMP can be considered as a canonical example of a project with "code
gods". Table 1 provides a small summary of the most important facts related
to our analysis. The size of the code developed is over half a million lines of
code, with an activity of more than 100,000 commits (which means that The
GIMP is a very active project).

Although The GIMP started before December 1997 (which is why the date
appears in brackets in table 1), it was only then when it was uploaded to the
GNOME CVS repository, so we have only data from that moment onwards.
The version 1.0 of The GIMP was released in June 1998, so we can consider
it a stable project by that time. The length of the intervals in which we have
divided the project is shghtly over half a year (7.5 months).

Contributor Turnover in Libre Software Projects 277

Project
Size

Commits
Start

Ver 1.0
Interval

Generations

The GIMP
557 K

125,590
(Dec 97)

Jun98
7.5 months

Code god

Table 1. Summary of the most important facts for The GIMP project

'^' \ /

Fig. 1. Right: Absolute graph for The GIMP project. Left: Aggregated graph for The
GIMP project.

Figure 1 shows on the left the absolute graph of commits for each core group
and for each interval. We can see that there are at least two groups (generations),
as it seems that the core group in the beginnings is different from the ones found
in the rest of the intervals. In any case, the members of these core groups do
not all leave the project as their contribution in subsequent intervals is in the
thousands.

A detailed study of the developers forming the core groups yields that one
of the most active is present in all of them. The second and third most active
developers enter during the third interval (which starts around mid-99) and
stay in the project until today.

The plot on the right in figure 1 strengthens this perception. Here the com
mits performed by each core group are displayed as aggregated. Parallel curves
are indicative of core groups for which the most contributing developers are the
same. We can easily identify the first two core groups as their curve is below
the rest of the curves for later intervals. On the other hand, the shape of the
curves from the core group in the third interval onwards shows that they only
differ in the number of members of the core group, which as we have seen is
variable depending on the total number of contributors for a given interval.

The fractional graph, depicted in figure 2, gives further information. Now
the vertical axis has been normaHzed to 100% of the total commits done in
a given interval. By definition the maximum in each interval will correspond

278 Gregorio Robles and Jesus M. Gonzalez-Barahona

KwHt ti o«

.1 / \

\ /

Fig. 2. Fractional graph for The GIMP project.

to the core group that has been identified in it. In the case of a "code gods"
project, the other core groups should be near that maximum (or at the same
level) as the composition has not changed much over time. In the case of The
GIMP this is true, except for the first two intervals, as we have seen in the
previous plots. There is a fall of the contribution of the two first core groups,
especially in the sixth interval, where it lies under 20%.

Interestingly enough, all core groups show a development share of more than
80% in their corresponding intervals, and even over 90% for those core groups
after the third interval. This shows again evidence about the inequality that
exist in the contributions of libre software projects. We knew by now that a
20%-80% Pareto distribution is a common work distribution pattern in libre
software projects [5]; these graphs shows that, at least for The GIMP (but we
will see that this happens in almost all other projects considered in this paper)
this is general even for (large enough) time intervals in the project.

3.2 Observations on Mozilla

We have selected the Mozilla Internet suite as the example of libre software
project in which several generations can be identified. Mozilla is a well-known
libre software project, the follow-up of the Netscape Internet suite. Mozilla is
a multi-million project, with more than three million source lines of code. The
CVS activity around the project is over 650,000 commits, more than five times
larger than that of The GIMP (which is by itself already a large libre software
project); Table 2 summarizes the relevant information for our analysis.

The Mozilla project started in 1998. Although its beginnings were not very
promising, the project surpassed its early problems, and its version 1.0 was
released in June 2002. Following our methodology, we have ten intervals of 6.5
months each, slightly below the 7.5 months used for The GIMP.

Contributor Turnover in Libre Software Projects 279

Project
Size
Commits
Start
Ver 1.0
Interval
Generations

Mozilla
3,414 K
663,454
(Oct 1998)
Jun 2002
6.5 months
Multiple

Table 2. Summary of the interesting information on Mozilla.

L4 I

. te^^/

/ , ' ' A ^, ,/ ,

'/* ~̂ r . * f \̂ , -' ^

Fig. 3. Right: Absolute graph for the Mozilla project. Left: Aggregated graph for the
Mozilla project.

Figure 3 groups the absolute (left) and aggregated (right) plots of the ten
core groups for each interval. At first sight, we can already see that there exist
many differences between these plots and the corresponding ones of The GIMP.
The absolute graph shows interesting information about the overall activity in
the repository. It can be seen how in the first two intervals, and for the fifth
one, the peak of the core groups is not that high, a fact that is indicative of
less activity. Attending to the aggregated graph, we can see how the number
of curves which follow their own way (i.e. are not parallel one to each other) is
larger. In other words, the composition of core groups varies more frequently
than in The GIMP.

Once more, the figure which provides more information is the fractional one
(see 4). It shows clearly several generations over time. For all of them, there are
peak values of over 75% in their intervals (over 80% in later ones).

Interestingly enough, the core group in the last interval contributed already
in the early stages a small amount of commits (around 5%). Its contribution
grows then almost continuously (the sequence in the ten intervals is the follow
ing: 5%, 11%, 18%, 21%, 21%, 34%, 27%, 55% and finally 78% where it is the
leading core group). The core group that achieves its peak contribution in the
first interval has an opposite trend with a substantial decline as time passes. In
between we find several core groups that have both behaviors found in the first
and last core group: an increasing shape until they arrive to the peak and a

280 Gregorio Robles and Jesus M. Gonzalez-Barahona

* . . ^ (, 4 <,1%K «

A -^

(̂ v̂̂ r̂ "̂ '̂ \

•!)jrc* »-i«r< - ifei i'-«l«i.-

Fig. 4. Fractional graph for the Mozilla project.

declining part afterwards. If we compare this figure with the corresponding one
for The GIMP, it can be observed that the more chaotic a fractional graph is
(or the less background color we can see in it), the more generations there are.
"Code god" projects have a tendency to show parallel curves, while projects
with many generations show a lot of curves crossing each other.

3.3 Observations on Evolution

Finally, we have selected a project which shows a mixed behavior between code
gods and generations. This is the case of Ximian Evolution (currently renamed
to Novell Evolution), a groupware solution for the GNOME project. Table 3
shows the most important information about this software, a medium-sized
appHcation with around 200 KSLOG. The amount of commits is in the order
of magnitude of The GIMP.

The history of Evolution gives further insight about the results which will
be shown below. Evolution started as a community-driven project in December
1998. By the end of the 1999 it was chosen by a small start-up company called
Ximian as a strategic application. This meant that hired developers started to
work on it, changing its governance to one more typical of a company-driven
project. Version 1.0 was delivered in late 2001. The duration of each interval is
around 6.4 months, similar to the one for Mozilla and The GIMP.

The absolute graph on the right of figure 5 gives a clear idea of the lower
activity that prevailed in Evolution before Ximian developers took over the
project in the third interval. Then, an increase in activity can be observed
during several years (reaching up to 16,000 commits in each interval), declining
in the last year to values close to 9,000 commits per interval. The aggregated
graph on the right supports our findings: we can see how the first two core
groups (which are identical in their composition) do not contribute after the

Contributor Turnover in Libre Software Projects 281

Project
Size
Commits
Start
Ver 1.0
Interval
Generations

Evolution
208 K
92,333
Dec 1998
Dec 2001
6.4 months
Composition

Table 3. Summary of the interesting information on Evolution.

initial periods, while the third one shows to be a combination of the first two
with some new developers that have prevailed from then. The other core groups
show the typical code god behavior with almost parallel curves.

.«»c»i.

.«.**[

i I[
« [̂

..4

;;:,; ̂ i:i:^ ::. ^ j .

^ ;̂i(|ĵ ;,L:4::S ;̂;̂

/ > ^ %

/ ; /

j ^ / - - , • • • " • •

A
«̂«

...

..«

«

"';>.<.. «.-,.t',J',, :,. <w. x;MVvh»."

4;u s; , ;;-;;-;;«;:;; . :;s;: ,^.- . : . : . .

^.....~v-.?..T.v.-:~rr^^'..... i ,

Fig. 5. Right: Absolute graph for the Evolution project. Left: Aggregated graph for
the Evolution project.

The fractional graph shown in figure 6 is the best one to observe the mixed
behavior. We can see how during the first three (even four) intervals we have
a similar pattern to niultiple generations. From then on, the code god pattern
is clearly identifiable with a small reminiscence from the past in the curve
that achieves its peak in the third interval and that does not disappear in the
following intervals.

3.4 Observations on other libre software projects

In this subsection we want to infer which of the three described behaviors (code-
god, multiple, composition) is the most common pattern in large libre software
applications. The selected case studies are part of GNOME (Gnumeric, GTK+,
Galeon and Nautilus), KDE (kdelibs, KOffice, kdepim, kdebase, kdenetwork and
KDEvelop), Apache (Jakarta-commons, xml-xalan and ant). Mono (mono and
mcs) and FreeBSD. In the case of FreeBSD, we analyze only the src module of
its CVS repository which contains many applications besides the kernel.

282 Gregorio Robles and Jesus M. Gonzalez-Barahona

Tuol-^Hi": I.? on'vxHr •:op o»»'Tii irr»l>u (>«"-!v»t)i*̂ <»

^s A "tv -r-v^t

t'̂ * y-x -'••••'" ^"--"•-'

Fig. 6. Fractional graph for the Evolution project

Table 4 shows a summary of the projects, which will be relevant for our
analysis. The starting years of the projects range from December 1993 (earher
commits of the FreeBSD project) to June 2001 for the Mono project. With the
exception of Jakarta-commons, all of them have delivered a 1.0 version, so we
can assume they are stable software. The length of each interval depends on the
starting date of the repository. Hence, we have intervals ranging from 1 year to
three months (for Mono and mcs, the two younger applications). The project
size, the number of commits and commiters have been added to give additional
insight on the applications and to show that they can be considered large in
size and in number of contributors.

Fractional graphs for the selected projects are shown in the two 2x4 matrix
tables (tables 5 and 6). They have been ordered, putting those that have several
generations (multiple) first, then those that have a composite behavior and
finally the projects that have a code god behavior. After a quick inspection
of the fractional graphs, it is easy to classify eight of the projects as having
multiple generations, six as showing a composite model, and finally only two
projects behaving as having code gods.

4 Conclusions and further research

In this paper we have shown a methodology to answer the question of how the
transition (developers joining and leaving) in a libre software project is. We
have used the methodology to classify projects in three categories: those based
on "code gods", those with generations of core developers, and those which
show a mixed model. Most of the projects we have analyzed enter clearly into
one of the presented categories.

Contributor Turnover in Libre Software Projects 283

Project Start Ver 1.0 Size Interval Commits Commiters Type
PreeBSD (src)

kdelibs
j akart a-commons

mcs
kdenetwork

kdevelop
koffice

kdepim
g tk+

galeon
xml-xalan
kdebase

ant
nautilus
gnumeric

mono

Mar 93
May 97

1 Mar 01
Jun 01
Jun 97
Dec 98
Apr 98
Jun 97
Dec 97
Jun 00
Nov 99
Apr 97
Feb 00 (
Feb 98
Jul 98

Jun 01

Dec 93
Jul 98

-
Jun 04
Jul 98

Dec 99
Jan 01
Jul 98

Apr 98
Dec 01
Oct 00
Feb 99

[Aug 03)
May 01 '•
Jun 02
Jun 04

1500K
615K
429K

1081K
293K
386K
780K
512K
388K

90K
337K
362K
120K
200K
229K
222K

12.1
8.3
3.3
2.7
8.1
6.2
7.1
8.1
7.7
4.5
4.9
8.3
4.7
7.3
6.9
2.7

554,764
217,961

39,370
32,566
98,282
69,890

172,564
93,632
68,279
31,153
54,267

330,009
43,955
63,760
81,019
11,936

352
441

72
114
332
152
247
284
265
110
32

450
33

236
166
91

M
M
M
M
M
M
M
M
C
C
C
C
C
C
G
G

Table 4. Summary of the findings for a generations analysis applied to the projects
listed in the first column. Start is the starting date of the CVS, Ver 1.0 the date of
version 1.0 if available, size gives the size of the software in SLOG, interval gives a
tenth of the life-time (in months), commits the total number of commits, commiter the
total number of commiters and generations their type (G = code gods, M = multiple,
C = composition).

T h e methodology we present is quant i ta t ive , based on the d a t a publicly
available in t he CVS reposi tory of t he projects . It uses information ab o u t t he
his tory of source code managemen t sys tems (mainly who performed commi ts
and when he did i t) , and could be therefore influenced by diff'erent policies t h a t
projects may have regarding the use of versioning sys tems. However, we have
checked t h a t using other pa ramete r s , such as number of lines changed (instead
of number of commits) yield similar results .

Fur the r research should s tudy how much the selection of t h e interval length
aff'ects t h e (visual) results . Our experience so far proves t h a t selecting t ime slots
larger t h a n five to six mon ths are sufficient to identify t he existence of several
generat ions, b u t it does not allow to recognize t he to ta l number of t h e m .

On the o ther hand , our sample is composed of large libre software projects .
An interest ing future research act ivi ty could be to invest igate t he results ob
ta ined from applying th is methodology to projects wi th a smaller number of
cont r ibutors .

T h e research we make public here is backed by a reasonably large number
of projects analyzed, bu t can of course be improved in the future by analyzing
more cases, and by compar ing the results to o ther s tudies , such as t he growth
of t he code size, or of t he change over t ime of the project s t ruc tu re . Our results
show t h a t a major i ty of projects have mult iple core groups over t ime, so t h a t
a na tu ra l regenerat ion process can be inferred. Pro jec t s t h a t are still led by

284 Gregorio Robles and Jesus M. Gonzalez-Barahona

founding core groups have been the less frequent, with only 3 cases over 21
applications under consideration.

In any case, the study of the behaviour of human resources in libre software
projects, and the relationship between its join/leave patterns and the evolution
of the project, is a field to explore. Our study tries to be a first step in this
direction, focused on studying its dynamics, and on finding how projects cope
with the changes caused by those patterns.

References

1. Barry W. Boehm, editor. Software risk management IEEE Press, Piscataway,
NJ, USA, 1989.

2. K. Crowston, B. Scozzi, and S. Buonocore. An explorative study of open source
software development structure. In Proceedings of the ECIS, Naples, Italy, 2003.

3. Kevin Crowston and James Howison. The social structure of oss development
teams. In Proc Intl Conf on Information Systems, Seattle, USA, 2003.

4. Kevin Crowston and James Howison. The social structure of free and open source
software development. First Monday, 10(2), February 2005.

5. Rishab A. Ghosh and Vipul Ved Prakash. The orbiten free software survey. First
Monday, 5(7), May 2000.

6. Chris Jensen and Walter Scacchi. Modeling recruitment and role migration pro
cesses in OSSD projects. In Proceedings of 6th International Workshop on Soft
ware Process Simulation and Modeling, St. Louis, May 2005.

7. Stefan Koch and Georg Schneider. Effort, cooperation and coordination in an open
source software project: GNOME. Information Systems J, 12(l):27-42, 2002.

8. Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of
Open Source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology, ll(3):309-346, 2002.

9. Gregorio Robles, Jesus M. Gonzlez-Barahona, and Martin Michlmayr. Evolution
of volunteer participation in libre software projects: evidence from Debian. In
Proc 1st Intl Conf Open Source Systems, pages 100-107, Genoa, Italy, July 2005.

10. Gregorio Robles, Stefan Koch, and Jesus M. Gonzalez-Barahona. Remote analysis
and measurement of libre software systems by means of the CVS Anal Y tool. In
Proc 2nd Workshop on Remote Analysis and Measurement of Software Systems,
pages 51-56, Edinburg, UK, 2004.

11. Yuwan Ye, Kumiyo Nakakoji, Yasuhiro Yamamoto, and Kouichi Kishida. The
co-evolution of systems and communities in Free and Open Source software devel
opment. In Stefan Koch, editor, Free/Open Source Software Development, pages
59-82. Idea Group Publishing, Hershey, Pennsylvania, USA, 2004.

Contributor Turnover in Libre Software Projects 285

> ' : /

i .'

!̂ - .'V.V/

At -̂

'L „

/ / \
N

rA^\

v»-mt ^> .«

r'

7
f̂ /

f

> ^-x^U-v

\̂

y

' \

V.

If « . -

x ' .

/

\i

< %

,>r'

4^. ' - ' f '5

' ""
>4 KI

\

/'

i...

^y>U*1,*,.„K.'-

*v.» ><;,i..

< ^^t .^^v:

^Y*:::,j?: f̂ '

/ . / •
'^ / / i

i '

i .

» ^ t W v « . . -

, » V* ^ i v i

-/̂ *!,%

'S.'-^ " '

\

\

v t -x»^ u>v^.f

v,»»x. >

^is^c: ^ - ^ ^

s

,^ «!;rr.,-;^-tr.%/,Nr^'.^v:;;^a r "

•' ... h \

/

• / /
. . , .^

N)

««
»» >-

1 \

. 1

^ - > / '
- /̂ .
- , " / •

:L_

1
I

/

\

'

A
^ \

—r-

t

1

>'

\
i

.J

~5f7 't* xiVx »

z :: .4 .

^
y' ^*

\

"-••

' ^-^ 4.

•"7777"

x ^ ^

/
'

/
- ̂ ̂
-

7m7T
. . t

'2hi

/
/

/

"̂-̂

4.

^ H

^

V^j

Table 5. 2x4 matrix with fractional generation plots for 8 libre software systems.
Projects with heavy generational turn-over have been situated at the top. More infor
mation can be found in table 4.

286 Gregorio Robles and Jesus M. Gonzalez-Barahona

^̂ . . i U \ ; X f̂'̂ -V%v , -
1̂

A 1r

/ \ I

" > / V

1 ^^

i f

•

.- .\ /

,L-u»»«

'

^

'

I

*̂

/**•

)S*

/'

*) OU .V .« ' „,i . , ™ ^

• • . \ • - , : ' • ~ -

\
\

i , 1

; - / . /
•^., •^ 7

/

1 W /

/ / ^ /

:_.^--i

/ /

Table 6. 2x4 matrix with fractional generation plots for 8 libre software systems.
Projects with heavy generational turn-over have been situated at the top. More infor
mation can be found in table 4.

Critical Success Factors for Migrating to
OSS-on-the-Desktop: Common Themes

across Three South African Case Studies

Daniel Brink, Llewelyn Roos, James Weller and Jean-Paul Van Belle
Department of Information Systems, University of Cape Town

Private Bag, Rondebosch 7701, South Africa
jvbelle@commerce.uct.ac.za

www.uct.ac.za

Abstract. This paper investigates the critical success factors associated with the
migration from proprietary desktop software to an open source software (OSS)
desktop environment in a South African context. A comparative case study
analysis approach was adopted whereby three organisations that have migrated
to desktop OSS were analysed. For diversity, one case study each was drawn
from government, private industry and the educational sector. Most of the
findings agree with those in the available literature though there are notable
differences in the relative importance of certain factors.

1. Introduction

The market share of OSS is growing significantly [1]. Some of the factors
contributing to the growth include the rising prices of Microsoft products, increased
availability of OSS, increased quality and effectiveness of desktop OSS software and
the drive for open standards in organisations and governments [1].

Correspondingly, there has been an increased interest and awareness of OSS in
South Africa. Whilst OSS has been accepted as a viable alternative to proprietary
software (PS) in the network server market for some time, desktop usage of OSS still
remains fairly limited [2]. The high PS licensing and computer hardware costs in
South Africa relative to the developed countries in combination with the several other
perceived advantages of OSS have prompted several OSS on the desktop pilot
projects in the education, public and private sectors. However, because no
comprehensive follow-up study has been conducted to investigate the long-term
outcomes of these projects, little is known about the true benefits and problems
associated with the migration to desktop OSS in South Africa, why these migrations
were undertaken in the first place, or how to successfully go about migrating to
desktop OSS [3]. This lack of knowledge was the inspiration for our research.

This research seeks to uncover the critical success factors associated with the
migration to desktop OSS in a South African context by means of a multiple case
study analysis approach. In this paper, desktop OSS comprises those OSS applications
that are utilised by every day users to perform daily work tasks. Hopefully future
migrations to desktop OSS may be assisted by taking cognisance of the critical
success factors found in this research.

Please use the following format when citing this chapter:
Brink, D., Roos, L., Weller, J., and Van Belle, J.-P., 2006, in IFIP International
Federation for Information Processing, Volume 203, Open Source Systems, eds. Damiani,
E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 287-293

288 Daniel Brink, Llewelyn Roos, James Weller and Jean-Paul Van Belle

2. Previous Research

A number of researchers have proposed methodologies or guidelines to implement
Desktop OSS. The Lachniet [4] framework focuses on the pre-work which needs to
be done before migrating to desktop OSS in a corporate environment. The pre-
migration tasks are divided into three sections: administrative tasks, application
development tasks and information technology tasks with each grouping sub-divided
in a number of tasks.

The methodology suggested by the Wild Open Source Inc consultants [5] consists
of three phases: the planning phase, design phase and implementation phase. Here,
the users are not involved in the migration process and only receive training at the
very end of the migration. Also, their methodology does not specify how the
migration should be done, merely stating that it should be planned and documented.

NetProject proposes an OSS Migration Methodology which divides the migration
into following five exercises: data gathering and project definition phase, justification
for the migration and estimate migration costs, Piloting phase, complete roll-out and
implementation monitoring against the project plan [6].

3. Research Methodology

The main research question which is explored in this paper is "What are the
critical success factors for migrating to desktop OSS, particularly in a South African
context?" Because of the nature of the question, the research is exploratory as
opposed to explanatory in nature. A qualitative approach was chosen as appropriate
for this research because it enables researchers to make sense of a situation and gain a
much richer understanding of a process or experience, via the analysis of people's
spoken words and or writings, than a quantitative approach permits. The research
methodology adopted was case study research because of its ability to provide subtle
yet deep insights into social phenomena surrounding Information Systems [7]. Three
case studies were conducted; one in each of the government, private (business) and
education sectors. Thematic analysis was utilised to analyse data obtained in the case
studies. First, theme analysis was performed for each case study separately. In a
second round the common themes relating to the critical success factors across all
three case studies were extracted. Two data gathering instruments were used for this
research; semi-structured interviews and document analysis. The semi-structured
interviews were held with stakeholders from three different organisation levels:
management level staff who was involved in the decision to migrate to desktop OSS;
IT support staff who was involved in the migration process and/or support of the
OSS; and users who experience the desktop OSS on a day-to-day basis. In addition,
relevant document were also studied.

Critical Success Factors for Migrating to OSS-on-the-Desktop: Common Themes 289
across Three South African Case Studies

4. The Three Case Studies

Three case studies were analysed. For diversity, these were drawn from three different
sectors: government, private (business) and education.

4.1 Case Study 1: Novell SA

In 2003, Novell acquired SUSE, the developer of a popular Linux distribution, which
would become the new platform for their product range. In 2005, a corporate decision
was taken to migrate Novell globally towards OSS. Being a relatively small office
with a young management team, Novell SA made the decision to blaze the trail for
desktop migration and adopt the Linux desktop across the country and employees
were switched directly from Microsoft Windows to Linux overnight. Today there are
no Microsoft Windows machines in Novell SA, except for a few software engineers
who keep a copy for application compatibility testing. The rapid adoption of Novell
Linux Desktop across South Africa did cause some problems as expected, but they
were quickly resolved as the software matured.

4.2 Case Study 2: Mossel Bay Municipality.

The Municipality of Mossel Bay, a coastal town located in the Western Cape
endeavoured to migrate to desktop OSS after software licensing issues, related to
Microsoft products in use, were raised by the Business Software Alliance (BSA). In
response to the letters from the BSA and the threat of possible legal issues, the
majority of the PCs in the Financial Department were migrated to Linux, as the users
use primarily network-based financial systems, email and spreadsheets. Although a
number of different productivity suites and Linux versions were tested, the final
configuration consisted of OpenOffice running on Novell SUSE Linux. In order to
run Linux with a Graphical User Interface (GUI) some of the PCs had to be upgraded.
The total duration of the migration to OSS was about 3 months. The IT Manager
classifies the migrafion as a success, but admits that it "did not solve all the problems;
at this point in time [the Municipality is] still under-licensed',

4.3 Case Study 3: Pinelands High School

Pinelands High School (hereafter referred to as "the school" or "Pinelands") is a
secondary education school in the Cape Town metropolitan area. Their catalyst for
getting OSS software onto more desktops at Pinelands was the failure of the school's
intercom and announcements system in January 2004. The amount required to
completely replace the existing system was considered exorbitant by school
management. At this point, the IT Manager came up with the idea to replace the
announcements system with a computer-based one. The new computer-based

290 Daniel Brink, Llewelyn Roos, James Weller and Jean-Paul Van Belle

announcements system, affectionately known as IntraCom, is a web-based application
running on the school's intranet. Furthermore, staff can access the internet and email,
as well as produce text documents, spreadsheets and presentations, using
OpenOffice.org, all from the comfort of their own classroom.

5. Common Emergent Themes across the Case Studies

Each of the cases was first analysed on its own, with a number of emergent themes
emanating from each case. The emergent themes exposed in each of the three cases
analysed were then synthesised into a group of themes found to be both common and
of importance across all three cases. Based upon these derived themes. Critical
Success Factors (CSFs) for the migration to desktop OSS are then presented.

5.1 Financial Motivating Factor
In all three cases, the primary reason for migrating to desktop OSS was financially
related. For Novell, it was a case of moving into an emerging market and gaining
competitive advantage, in order to secure better long-term financial performance. For
the Mossel Bay Municipality, the move was required in order to avoid a large fine
from the BSA or the expense of purchasing and maintaining a large number of
Microsoft Windows licenses. For Pinelands, desktop OSS provided a cheap
alternative to replacing the school's defunct intercom system. Thus, consistent with
the literature [8], financial reasons seemed to be one of the key drivers when deciding
to migrate to desktop OSS.

5.2 Top Management Support
In all cases, the migration project was strongly supported by top management. In the
case of Novell, the project was championed globally; in Mossel Bay, the project was
endorsed by Council and finally, in the Pinelands case, the school's governing body
fully backed the migration. This is essential since a project which introduces such a
drastic degree of change into the organisation inevitably meets with fierce resistance
from those affected, and migration to desktop OSS is no exception.

5.3 User Awareness and Communication
Although no strong evidence is available from the analysis of the Pinelands High
School case study, both the Novell and Mossel Bay Municipality cases provide
evidence of the value of facilitating good communication between management and
users, as well as the creation of user awareness early on the migration process. Novell
created a large and informative internal website called OpenZone, containing
information on the why, how and when of the project, including discussion forums
where participation was incentivised. Additional, a local advocate/expert was
identified in each department. Mossel Bay Municipality also instigated significant
user awareness and communication measures.

Critical Success Factors for Migrating to OSS-on-the-Desktop: Common Themes 291
across Three South African Case Studies

5.4 Detailed Planning, Analysis and Testing
In all three cases, the importance of thorough planning, as well as the effects of
improper planning, was apparent. In the Novell case, extensive planning and analysis
was conducted before the migration commenced. This included the discovery of
affected users and application dependencies, the construction of an application and
hardware inventory, a list of new application requirements, as well as the derivation
of a detailed time frame and list of objectives. With the Mossel Bay Municipality, the
first rollout attempt was a failure due to technical problems, caused by not fully
testing the system before handing it over to users, not correctly investigating the
hardware requirements of some of the software installed, as well as installing office
productivity software that did not meet user requirements. In Pinelands, several
unique technical and ftinctional requirements were overlooked due to the "one size
fits all" approach of the tuXlabs implementation plan.

5.5 Training
All of the organisations studied conducted user training as part of the migration
process but their approach, attitude and methods towards training all varied
significantly. The best training practices were evident at Novell By acknowledging
the fact that individuals possess different styles and paces at which they learn, a
flexible training programme was implemented, using web-based interactive tutorials,
watching webcasts and training documentation. This fosters an active learning style.
In contrast, Mossel Bay Municipality utilised the passive approach initially.
Introductory seminars for the Linux desktop and OpenOfftce. org were held, but some
users did not attend. As a result, the trainer spent a lot of time running around in the
office assisting users with problems, once the migration was rolled out. The training
received at Pinelands High School was found to be of little use and once, again,
attempts to conduct passive training sessions were not particularly successful.

5.6 Pilot Project and Partial Migration
[4] argues for implementing a pilot migration project with only a select group of
users. Analysis of the three cases revealed a general agreement amongst the IT
Managers interviewed with the arguments presented in the literature. Whilst Novell
managed to leverage its resources to enable a complete migration, both Mossel Bay
Municipality and Pinelands High School found it impossible to migrate ftilly to
desktop OSS. This was due to the presence of "mission critical" legacy applications
that no suitable OSS alternative could be found for. In both cases, this meant that
Microsoft Windows had to be retained on some of the organisational computers.

5.7 Support
In all cases, the importance of post-implementation support was highlighted. In the
case of Novell, a 24 hours, 7 days per week helpdesk is available, along with
numerous online support websites, to assist users in resolving problems.
Furthermore, a large base of in-house support is available. Mossel Bay municipality
outsources a large part of its desktop OSS support, as only the IT Manager possesses

292 Daniel Brink, Llewelyn Roos, James Weller and Jean-Paul Van Belle

detailed in-house support skills. Furthermore, the majority of interviewees felt that
the level of support required at Mossel Bay was not being met. At Pinelands High
School, support also remains a problem and forms a large portion of the IT budget.

6. Conclusion and Summary

This research aimed to identify critical success factors for projects dealing with
migration towards OSS-on-the-desktop, in a developing world context. This was done
by an in-depth analysis of three case studies.

Consistent with the literature, the main driver for deciding to migrate to desktop
OSS was the promise of financial benefits, such as decreased license costs and the
ability to redistribute funds that would have been spent on software licenses to other
areas. No evidence of any of the migrations being motivated by political or social
responsibility factors could be found. There was also mention of intangible benefits,
such as the freedom from vendor lock-in and the ability to customise the software
should one wish to do so. Other supposed benefits identified in the literature, such as
improved security, did not appear to be important to the organisations studied.

The problems of legacy applications preventing total migration, user resistance
and high support costs were identified in all of the case studies. Problems related to
training, specifically the general perception of non-usefulness of training and the lack
of a hands-on, practical approach to training, were identified.

Future research should investigate to which extent these findings can be
generalised to other contexts. The researchers are currently using the findings as a
basis for the development of a more comprehensive migration methodology.

7. References (abbreviated list)

[1] Wheeler, D. Why Open Source Software / Free Software (OSS/FS, FLOSS, or FOSS)?
Look at the Numbers! (2 April 2005) http://www.dwheeler.com/oss_fs_why.html.
[2] Prentice, S. & Gammage, B. Enterprise Linux: Will Adolescence Yield to Maturity?
Gartner Symposium/ITxpo (2005),
[3] Bruggink, M. Open Source Software: Take It or Leave It? The Status of Open Source
Software in Africa, International Institute for Communication and Development, (16 June
2003) http://www.ftpiicd.org/files/research/reports/reportl6.doc.
[4] Lachniet, M. Desktop Linux Feasibility Study Overview, (20 August 2004),
http://lachniet.com.desktoplinux.
[5] Wild Open Source. Steps to Take when Considering a Linux Migration, (25 August 2005),
http://www.wildopensoufce.com/technology_center/steps_linux_migration.php
[6] Netproject. IDA OSS Migration Guidelines, (29 August 2005),
http://www.netproject.eom/docs/migoss/v 1.0/methodology .html.
[7] Walsham, G. 'Interpretive Case Studies in IS Research: Nature and Method', European
Journal of Information Systems, 4(2), 74-81 (1995).

Critical Success Factors for Migrating to OSS-on-the-Desktop: Common Themes 293
across Three South African Case Studies

[8] Gardiner, J.; Healey, P.; Johnston, K. & Prestedge, A. The State of Open Source Software
(OSS) in South Africa, Unpublished Technical Report, University of Cape Town, 2003.

Part VII

Impact of OSS on Social Networks

Communication Networks in an Open
Source Software Project

Jeffrey Roberts^ Il-Hom Hann ,̂ Sandra Slaughter*
1 Tepper School of Business, Carnegie Mellon University

Pittsburgh, PA{jroberts, sandras}@andrew. cmu.edu
2 Marshall School of Business, University of Southern California

Los Angeles, CA, hann@marshall.usc.edu

Abstract. This study explores the nature of the social network and the patterns
of communication that exist in an open source software development project,
the Apache HTTP (WEB) server project. Our analysis of archival data on
email communications between developers in the Apache HTTP server project
suggests an interesting pattern of communication. We find that the core
developers self-organize into three sub-groups that communicate intensely in
completing the project. Our analysis also reveals that a few prominent
developers who are centrally located in the network are driving
communications within the project. We identify the implications of our findings
and suggest areas for further research.

1 Introduction

Open source software (OSS) development, i.e., public software development
projects where participants can read, modify, and redistribute the software source
code [1] is arguably one of the most exciting phenomena in the software industry
today. Open source has played a fiindamental role in the development of the Internet
by contributing to such remarkable software as TCP/IP, BIND, Sendmail, Linux, and
the Apache WEB server. From a software engineering perspective, the open source
community has harnessed the Internet like no other by making it the critical piece of
its communication and collaboration infrastructure. This prima facie simple
innovation has resulted in a revolutionary organization of software production and has
sparked discussion on a wide variety of issues, ranging from project organization,
software development methodology, information architecture, and standards to
incentives and intellectual property rights. The open source movement has also been
of great interest for academics. Researchers with diverse backgrounds such as
computer science, psychology, sociology, and economics have started to investigate
the topic, making open source development a truly interdisciplinary research field.

The first works in this rapidly developing field were descriptive in nature [e.g., 2]
followed by theory driven explanations [e.g., 3] and early empirical research [e.g., 4 -
7]. Many of the early explorations into the inner workings of the open source
development process have sought to explain the mechanisms by which open source
projects attract and motivate volunteers to produce such seemingly high quality
software [e.g., 2, 8]. One aspect, however, of the OSS phenomenon that has received

Please use the following format when citing this chapter:
Roberts, J., Hann, I.-H., and Slaughter, S., 2006, in IFIP Intemational Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 297-306

298 Jeffrey Roberts, Il-Hom Hann, Sandra Slaughter

relatively little attention is the nature of the project communication in open source
projects.

We are specifically interested in advancing the understanding of project
communication and its role in managing the process of creating open source software.
How open source developers communicate and interact is an interesting and
important question given the geographic distribution of the developers and the
unstructured process of software development in the open source context (compared
to software development in a closed source setting). This study utilizes archival data
to explore the nature of the social network and the patterns of communication that
exist in one OSS project, the Apache HTTP (WEB) server.

2 Communication and Social Networks in OSS Projects

In his seminal work on embeddedness, Granovetter [9] outlines how the structural
properties of social networks can be significant in explicating outcomes. Researchers
have linked an individual's position within social networks to advantages such as
promotions [10] or to disadvantages such as turnover [11]. From an embeddedness
perspective, social interaction plays an essential role in one's ability to access
organizational resources and hence impact one's performance [12]. OSS projects
exist largely to perform a specific task or goal, like building an operating system
(Linux), a WEB server (Apache) or WEB browser (Mozilla Firefox). The success of
an individual within an OSS project requires significant project specific knowledge
and/or access to others who may possess information required for success. The
"knowledgeable" individual may be especially important in an OSS project as many
customary artifacts and processes of sofl̂ vare engineering, such as design
documentation and methodologies, are typically non-existent [2].

To observe or measure this knowledgeable individual within an OSS project we
use the network measure of centrality. In the context of an OSS project's
communication network, centrality refers the relative prominence of a developer in
the project's network structure [13]. In this case, the degree centrality of a developer
measures the number of other developers to which that developer is in contact. So,
degree centrality can be taken as a measure of a developer's involvement or
participation in the project's communication network [14].

Recent advances in communication technologies and the Internet have greatly
improved the ability of individuals to collaborate across time and geographical
distance. There can be little doubt that these advances are responsible for the
explosive growth in OSS projects, both in terms of numbers of projects and
participants [15]. One prominent form of communication is email. In a recent on-line
article, Bezroukov [16] compares the collaboration among OSS developers to that of
academic researchers. One key observation made in this work is crucial role that
email plays in OSS project management. In contrast, researchers exploring the role of
email in scientific collaborations have found the email alone does not stimulate new
relationships; rather, it serves to enhance existing relationships [17, 18]. Thus, an

Communication Networks in an Open Source Software Project 299

interesting and unresolved question is how email-based communication is conducted
in an open source setting and the relationship between project communication
characteristics (or patterns) and project processes and/or outcomes. This question is
important because the developers in OSS projects are distributed, and email is the
primary communication mechanism available for coordinating their work.

3 Research Setting

To evaluate the social and communication network in an open source context, we
targeted one project from the Apache Software Foundation (ASF) as the basis for
empirical investigations. The Apache HTTP (WEB) server and associated projects
are some of the most successful OSS products to date. The Apache server, the
original ASF project, and its derivatives, have a dominant 70% share of the WEB
server market [19]. Since its inception, the Apache WEB server has had over 7,000
source code contributions from more than 400 different open source developers [20].
The ASF is a not-for-profit corporation that provides the legal, organizational and
financial infrastructure for the software projects gathered under the ASF open-source
umbrella. Each of the ASF projects operates autonomously controlling all aspects of
product development including project management, requirements specification,
architecture, design, development, testing, and configuration management. ASF
projects are characterized by a "collaborative, consensus based development process,
an open and pragmatic software license, and a desire to create high quality software
that leads the way in its field" [21]. Membership in the ASF is by invitation only and
is based on a strict meritocracy. Those contributors who exhibit a commitment to the
ideals of open-source software development and sustained participation may be
nominated for membership by another ASF member.

The ASF encompasses a significant number of subprojects related to the
development and support of a full-featured WEB server product offering. Although
any of the Apache subprojects might provide an interesting vehicle to explore
communicafion patterns, we concentrated on the HTTP server project for the
following two reasons. First, for the time period studied, the HTTP server project
was one of the largest and most successful ASF projects both in the number of
developers and contribufions. Second, access to archival data for this project proved
to be less problematic than for some of the smaller ASF projects.

4 Data Sources

One basic tenet of OSS is that the development process and resulting products are
"open" and freely available. Fundamentally, OSS projects represent large-scale
publicly distributed software development processes. As such, and in keeping with
free and open access, all OSS work products are placed in the public domain under
various "free software" licensing arrangements.

300 Jeffrey Roberts, Il-Horn Hann, Sandra Slaughter

For the purposes of this study, a participant refers to anyone participating in the
Apache developer discussion group during the period in question. Apache developers
are those individuals who have made a source code contribution to the Apache project
during the time period studied. The "Apache Core" includes those Apache
developers who make up the nucleus of the Apache HTTP project. There are
approximately 22 Core participants. These 22 individuals account for more than 80%
of all source code submissions to the Apache HTTP project. To operationalize the
communication between Apache developers, two constituent or dyad communication
matrices (i.e., adjacency matrices) were constructed from Apache developer email
archives to record email communications between each dyad or pair of developers.
The Apache projects maintain email list-serves to conduct all project related
activities. The software used to maintain the email lists is fully RPC-822 compliant
and supports conversation threads. A series of scripts were written to reconstruct
conversation threads, identify the participants and produce various "flavors" of
matrices suitable for input into UCINET. For the purposes of this research, a person
participating in a thread was recorded as having a communication with all other
thread participants.

5 Results

In this section we briefly describe some of the characteristics of the Apache
communication network for the period we studied. Of interest here is the fact that the
structure of the communication network essentially supports or reinforces what we
already know about the Apache project from examination of the patch level
contributions. That is, imagine the project as a funnel or a set of concentric circles,
progressively getting refined or smaller. In other words, as participation increases the
number of participants decrease. The full communication adjacency matrix for the
focal period contains 453 nodes (individuals) and has a network density of .0218.
Given the number of individuals involved in this network, we could have anticipated
a relatively sparse network [22]. As a refinement on this network, we reduced the
nodes to only those participants who were known to be active contributors to the
Apache project during the period in question. This reduced the matrix to 83 nodes
having a much greater network density of .25. As a further still refinement, we
reduced the nodes to only those participants who were known to be in the Apache
Core during the period in question. This reduced the matrix to 22 nodes with an
extremely dense structure measured at .72.

To get a visual sense of the proximity, in terms of shared communication, of the
Apache Core developers, we conducted a Multidimensional scaling (MDS) metric
analysis of the similarity of the Core developers' communication matrix. The goal of
our MDS analysis was to detect meaningful underlying dimensions that help to
explain observed similarities in patterns of communication frequency among the
Apache Core developers. Several measures of similarity were explored including
Pearson's product-moment correlation and mean-centered cross products.

Communication Networks in an Open Source Software Project 301

Interestingly, this analysis reveals three identifiable sub-groups even within the
relatively small Core of the Apache development team. These sub-groups are

0.40

0.36 ~

0.32 ~

0.28 ~

0.24 ~

0.20 ~

0.16 ~

0.12 ~

0.08 ~

0.04 ~

,.•••" -HA11E2 ^;^^^9

/ \ ,B001F. ; .B012c-- . . ' ' ^ \ "

/ / 4<A1044\ ,^*)M012
: ^A*104C .•" "•.. \ ;
/ / / V A 1 1 D 6 \ \ \

: : 4./iei199 4-A100E . ^ .
;+A1060\ ^ \ 4^B013IC / ;
\ •. ••.. ..* / ^.A11C4

\ \ . . ^A107B p^^'^' /

'•... ^A105E 4. All-si)

1 1 1 1

Fig. 1. Apache Core Communication Pattern Similarities - Metric MDS
identified in a series of concentric circles in Figure 1.

We further visually explore the nature of the Apache Core developer's
communication network by plotting the dyadic communication relationships between
core developers using the MDS coordinates to position the developers in a graph.
The resulting graph, or sociogram, represents tlie communication relationships among
Apache Core developers (represented by points or nodes) and a "communicates-with"
relationship (represented by connecting lines.) Figure 2 shows the full Apache Core
communication network.

302 Jeffrey Roberts, Il-Hom Hann, Sandra Slaughter

Fig. 2. Apache Core Commun^M^n Sociogram - Cqjĵ ĵ l̂ te

Figure 3 shows the network from the perspective of MDS Group 1. In this graph,
members of Groups 2 and 3 each appear as a single collective entry. It is easily
discemable from this graph that the MDS Group 1 developers constitute a fully
connected communication graph.

Fig. 3. Apache Core Communication Sociogram - MDS Group 1 Perspective

Communication Networks in an Open Source Software Project 303

Similarly, Figures 4 and 5 show the network from the perspective of MDS Groups
2 and Group 3, respectively.

Fig. 4. Apache Core Communication Sociogram - MDS Group 2 Perspective

Fig. 5. Apache Core Communication Sociogram - MDS Group 3 Perspective

304 Jeffrey Roberts, Il-Hom Hann, Sandra Slaughter

6 Discussion

From the network density measures, MDS plots of communication pattern
similarity, and sociograms displaying the communication network structure of the
Apache Core developers, we observe that the Apache Core maintains a relatively
dense communication structure with active participation from all Core members.
Further, from the MDS procedure we conclude that this Apache Core exhibits three
identifiable sub-groups with varying degrees of influence and similarity within the
communication network. For example, as shown in Figure 3, Group 1 consists of
three developers (AlOOE, A11D6, B019C). Although Group 1 is smaller than the
other two groups (Group 2 has five developers, and Group 3 has thirteen developers)
the three developers in Group 1 are among the most central or prominent in the
overall Apache core communication network in terms of their network centrality
scores (see the central location of these three developers in the network illustrated in
Figure 2). This suggests that a small number of prominent individuals are influencing
communication patterns for the project. In general, our findings are consistent with
Krackhardt's "Iron Law of Oligarchy", which is the tendency for groups to ultimately
end up under the control of a few people.

Open source represents an exciting opportunity for research in a wide variety of
disciplines. This paper applies social network analysis to understand how developers
communicate in an open source project. Since the developers in open source projects
are geographically distributed and may never meet face-to-face, it is important to
understand how they communicate to organize and coordinate their efforts. Our
analysis of the Apache HTTP server project suggests an interesting pattern of
communication where the core developers self-organize into sub-groups that
communicate intensely in completing the project. Our analysis also reveals that
communications within the project are driven by a few prominent developers in one
sub-group who are centrally located in the network. These results suggest interesting
opportunities for future research. For example, one could examine whether developers
in other OSS projects organize their communication patterns similar to the HTTP
server project. One could also consider the influence of communication patterns on
aspects of project performance or outcomes. Lastly, measures of influence and
position within an OSS project's social networks may help explicate relationships
between individual developer participation and performance.

Communication Networks in an Open Source Software Project 305

7 References

1. OSI, The Open Source Definition, The Open Source Initiative, (Accessed: May
2001); http://opensource.org/docs/definitionj3lain.html

2. E. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary (O'Reilly, Cambridge, 1999).

3. J. Lemer and J. Tirole, The Simple Economics of Open Source, The National
Bureau of Economic Research, Inc. (Accessed: April 2001);
http://papers.nber.org/papers/W7600

4. K. Lakhami, and E. von Hippel (2000). How Open Source Software works:
"Free" user-to-user assistance. MIT Sloan Open Source Project, (Accessed: October
2001); http://opensource.mit.edu/papers/lakhanivonhippelusersupport.pdf

5. A. Mockus, R. Fielding and J. Herbsleb, A Case Study of Open Source
Software Development: The Apache Server, Proceedings of the Proceedings of the
22nd International Conference on on Software Engineering, Limerick Ireland (2000).

6. S. Koch and G. Schneider, Results for Software Engineering Research into
Open Source Development Projects Using Public Data, Open Source Research
Community, MIT Sloan Open Source Project, (Accessed: April 2001);
http://opensource.mit.edu/papers/koch-ossoftwareengineering.pdf

7.1. Stamelos, L. Angelis, et al.. Code Quality Analysis in Open Source Software
Development, Information Systems Journal 12(1), (2002).

8. B. Fitzgerald and J. Feller, Open Source Software: Investigating the Software
Engineering, Psychosocial and Economic Issues, Information Systems Journal 11(4),
(2001).

9. M. Granovetter, Economic Action and Social Structure: The Problem of
Embeddedness, American Journal of Sociology 91(3), 481-510 (1985).

10. R.S. Burt, Structural holes: The social structure of competition (Harvard
University Press, Cambridge, 1992).

11. D. Krackhardt and L.W. Porter, The snowball effect: Turnover embedded in
communication networks. Journal of Applied Psychology, 71, 50-55 (1986).

12. D. Brass, Being in the Right Place: A Structural Analysis of Individual
Influence in an Organization, Administrative Science Quarterly, 29, 518-539 (1984).

13. J, Scott, Social Network Analysis (Sage Publications, Thousand Oaks, 2000).
14. L.C. Freeman, Centrality in Social Networks: Conceptual Clarification, Social

Networks 1, 215-239 (1979).
15. R.A. Ghosh, Interview with Linus Torvalds: What motivates free software

developers?. First Monday 3(3), (1998).
16. N. Bezroukov, Open Source Software Development as a Special Type of

Academic Research, First Monday 4(10)^ (1999).
17. R.E. Kraut, C. Egido, et al.. Patterns of Contact and Communication in

Scientific Research Collaboration, Intellectual Teamwork: Social and Technological
Foundations of Cooperative Work. J. Galegher, R. E. Kraut and C. Egido Eds., (L.
Erlbaum Associates, Hillsdale), 149-171 (1990).

306 Jeffrey Roberts, Il-Hom Harm, Sandra Slaughter

18. K. Carley and K. Wendt, Electronic Mail and Scientific Communication: A
Study of the SOAR Extended Research Group, Knowledge: Creation, Diffusion,
Utilization 12(4), 406-440 (1991).

19. Netcraft, The Netcraft WEB-server Survey, (Accessed: August 2005);
http://news.netcraft.com/archives/2005/08/01/august_2005_WEB_server_survey.html

20.1. Hann, J. Roberts, S.A. Slaughter and R. Fielding, Economic incentives for
participating in open source software projects. Proceedings of the 22nd International
Conference on Information Systems, Barcelona (2002).

21. Apache Software Foundation, (Accessed: March 2001);
http://www.apache.org/foundation/, Apache Software Foundation.

22. S.R. Barley, J. Freeman, et al. Strategic alliances in commercial
biotechnology. Networks and Organizations: Structure, Form, and Action, N. Nohria
and R. G. Eccles Eds., (Harvard Business School Press, Boston), 311-347 (1992).

Impact of Social Ties on Open Source
Project Team Formation

Jungpil Hahn', Jae Yoon Moon ,̂ and Chen Zhang ̂
1 Krannert School of Management, Purdue University

West Lafayette, IN 47907, USA
{jphahn, zhangl 53 }@mgmt.purdue.edu

2 Business School, Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

jmoon@ust.hk

Abstract. In this paper, we empirically examined the role of social ties in
OSSD team formation and developer joining behavior. We find that the
existence and the amount of prior social relations in the network do increase the
probability of an OSS project to attract more developers. Interestingly, for
projects without preexisting social ties, developers tend to join the project
initiated by people with less OSSD experience. This research fills a gap in the
open source literature by conducting an empirical investigation of the role of
social relations on project team formation behavior. Furthermore, the adoption
of social network analysis, which has received little attention in the OSS
literature, can yield some interesting results on the interactions among OSS
developers.

1 Background and Motivation

The creation of industrial-strength software code (or software development) has
traditionally been regarded as an activity that can only be effectively conducted and
managed within a firm setting. Recently however, an alternative model of sofi;ware
development, the open source software development (OSSD) in which programmers
in Internet-based communities collaborate to voluntarily contribute programming
code, has emerged as a promising approach to developing high-quality software [1].
During the past few years, a number of open source software (OSS) products, ranging
from end-user applications (e.g., Emacs and OpenOffice), programming languages
(e.g., Perl and PHP) to applications supporting the Internet infrastructure (e.g.,
sendmail), have been widely adopted. The prominence garnered by well-known OSS
projects such as the Apache Web Server and the Linux operating system kernel are
testimonies to the attractiveness and viability of OSSD as an alternative to the
conventional proprietary model of producing software [1-3].

Despite the impressive success of some OSSD projects, it is a harsh reality that
the vast majority of OSS projects fail to take off and become abandoned. One of the
main reasons cited for the failure of OSS projects is the lack of developers in the
project teams, or the inability of the project to bring together a critical mass of
developers [2, 4]. Since it is typically the case that OSSD projects do not provide
monetary rewards for developers' contributions, many OSSD projects are under-

Please use the following format when citing this chapter:
Hahn, J., Moon, J.Y., and Zhang, C , 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 307-317

308 Jungpil Hahn, Jae Yoon Moon, and Chen Zhang

staffed and consequently are not well-equipped to deal with the complexity in
software development. Hence, in order to understand and solve the key problems
related to staffing, it is important to understand the dynamics of software team
formation - how developers self-organize into project teams.

In this paper, we undertake an empirical examination of the formation of OSS
project teams from a social network perspective. The OSSD community is essentially
a complex collaborative social network endowed with social capital. Just as the social
position of a firm within inter-organizational networks influences its alliance
strategies and consequent outcomes [5-6], we argue that social relations forged during
past collaborations will have an impact on how OSS project teams take form.
However, despite the apparent relevance and importance of social capital in OSSD,
only a few studies have examined its impact on developer behavior in team formation
from a social network perspective. In this paper, we ask ourselves whether the
existence and amount of prior social ties in an OSS project helps it attract additional
developers. The remainder of this paper is organized as follows. In section 2, we
present our theoretical background and develop our research hypotheses. We outline
the empirical research methodology in section 3 and present the results in section 4.
We conclude in section 5 by discussing the implications, contributions and directions
for future research.

2 Theoretical Background and Research Hypotheses

This study draws from two streams of research - 1) open source software
development (OSSD), and 2) social network analysis and network structure. We
review and synthesize the relevant literature to develop our research hypotheses.

2.1 Open Source Software Development (OSSD)

Since its emergence, OSSD has posed many interesting questions for researchers in
many fields. A number of researchers have addressed the factors that motivate
individuals to participate in OSSD despite the lack of monetary compensation.
Among the possible explanations for developers' participation in OSS projects are
incentives related to career concerns and ego gratification [7]. Hars and Qu [8]
identify both intrinsic motivations such as altruism and extrinsic motivations such as
direct compensation. Another study surveys the motivations of the contributors to a
large OSS project and finds that participation is mainly driven by developers' group
identification, by the possibility of improving their own software, and by their
tolerance of the required time investments for contributing to the project [9]. Lakhani
and Wolf [10] identify enjoyment-based intrinsic motivation, user need, and learning
as the most pervasive drivers of developer participation. In summary, the studies
suggest that developers participate in OSSD mainly because of intrinsic factors such
as enjoyment and extrinsic factors such as career advancement. However, the
motivations identified from these surveys of developers do not explain why

Impact of Social Ties on Open Source Project Team Formation 309

developers choose to join one project over other possible similar projects. When
deciding whether to join an OSS project, in addition to the previously cited
motivational factors, a developer will also be concerned about issues related to
coordination and communication with other team members. In general, when forming
teams people prefer to work with those with whom they have worked in the past [11].
Familiarity bred from preexisting social relations with others can facilitate the
newcomer's socialization process. Hence, we identify and test social ties among
developers as a potential driver behind developer joining behavior and project team
formation.

2.2 Social Network Analysis

Social network analysis aims to understand the relationships between people, groups,
organizations, and other types of social entities [12-14], and has been used
extensively in fields such as sociology [13, 15] and management [16-17] among
others [18-19]. A social network is modeled as a graph with nodes representing the
individual actors in the network and ties representing the relationships between the
actors.

In a social network the actors maintain a tie by exchanging either tangible or
intangible resources such as information, goods and services, and financial support.
The strength of a social tie varies depending on a number of factors. Granovetter [12]
distinguishes between strong and weak ties and asserts that tie strength depends on
the amount of time, the emotional intensity, the intimacy, and the reciprocal services
associated with the relationship. Strong ties are characterized by a sense of special
relationship, an interest in frequent interactions, and a sense of mutuality of the
relationship [20]. In contrast, weak ties are maintained infrequently or indirectly
between the actors who belong to different social clusters. Both strong ties and weak
ties play an important and differential role in a social network. Strong ties maintain
and promote trust and collaboration whereas weak ties enable actors to access
resources and information that are unavailable in their immediate social circles [12,
21].

2.3 Social Network Perspectives of Open Source Software Development

Although it has been recognized early on that OSSD has become a significant social
phenomenon and that OSS developers and users form a complex social network via
various electronic communication channels on the Internet [22], few researchers have
examined this phenomenon from a social network perspective. Madey, Freeh, and
Tynan [23] conducted the first empirical investigation of the open source movement
by modeling OSS projects as a collaborative social network and found that the OSSD
community can be modeled as a self-organizing social network. Others propose the
methodology of applying social network analysis to data gathered from CVS code
repositories of OSS projects [24]. Xu, Gao, Christley, and Madey [25] explored some
social network properties in the open source community to identify patterns of

310 Jungpil Hahn, Jae Yoon Moon, and Chen Zhang

collaborations. However, the works cited above tend to be highly technical and
mainly investigate the network properties of the OSSD community, offering limited
theoretical and practical contributions. The work most similar to our research is done
by Ducheneaut [26] who examined the socialization process of newcomers over time
as a learning process and a political process by analyzing the developer activities in a
large OSS project.

2.4 Research Hypotheses

Conventionally, project teams are formed by a manager assigning individuals to a
team based on certain characteristics such as expertise and personality. An alternative
approach is driven by team members' self-selection into teams. As such, in OSSD,
some project initiators may formally recruit developers' (e.g., by broadcasting
position openings and required qualifications to the entire community), or
alternatively developers may voluntarily join a project team or be invited to
participate in a project team by its existing members. Prior research suggests that
people are more likely to work together when they have prior social ties [27-28].
Moreover, teams consisting of individuals with preexisting relationships have been
shown to solve complex problems better than teams of strangers because they are able
to pool information more efficiently [29]. In the open source software development
context in particular, due to the lack of opportunities for face-to-face contact,
developers face greater barriers to effective communication and coordination and are
thus more likely to be concerned about these issues. Direct social relations with
existing members of a project can mitigate concerns regarding communication and
coordination difficulties due to the shared context accrued from prior interactions. We
propose the following hypothesis with regard to the impact of preexisting social ties
on open source software development project team formation:

HI: Projects whose initiators have preexisting social ties with the network are
more likely to have other developers join the development team than those whose
initiators do not have ties.

Projects can fall into two categories depending on whether or not their initiators
have relationship ties in the network. Some projects are initiated by developers who
have participated in other projects and formed social relationships with other
developers in the community. For this type of project, the more social ties the
initiators have, the larger will be the pool of potential developers. Consequently, these
projects will be able to attract or invite others into the development team more easily.

* Interestingly, the extent of recruiting is surprisingly low based on our informal observations.
For example, there are only about 200 position openings posted on SourceForge.net. When
we consider that there are currently over 100,000 OSS projects are hosted on
SourceForge.net, this number is quite inconsequential.

Impact of Social Ties on Open Source Project Team Formation 311

Therefore, we propose the following hypothesis regarding the impact of the amount
of preexisting strong ties in a project:

H2: For those projects whose initiators have preexisting social ties with the
network, the amount of such ties is positively associated with the probability of
having other developers join the project team.

It may not necessarily be the case that projects are initiated by developers who are
well connected to the network. Some projects may be initiated by developers who
have yet to collaborate with others in the open source software development
community even though they may have experience in managing softAvare projects
before (i.e., self-developed projects). In such cases, developers with prior open source
project experience will have superior knowledge of OSS development and
management processes. As a result, projects initiated by developers with prior
experience may be more likely to have additional team members than projects
initiated by developers with no prior experience. We propose the following
hypothesis:

H3: For those projects whose initiators do not have preexisting social ties in the
network, the experience of initiators is positively associated with the probability of
having other developers join the project team.

3 Results

3.1 Data Collection and Measures

We collected data from open source software projects hosted on SourceForge.net. As
the largest repository of open source applications on the Internet, SourceForge.net
currently provides free hosting to more than 100,000 projects and more than
1,100,000 subscribers. It also offers a variety of services to hosted projects, including
site hosting, mailing lists, bug tracking, message boards, file archiving, and other
project management tools. SourceForge.net has been an attractive source of data for
many researchers studying open source software mainly due to the abundance of
publicly accessible data [30].

We randomly selected 1030 new projects that were registered between September
and November in 2005. A web crawler downloaded the HTML files containing
project summary data and developer information on the date of registration. We
revisited sample projects one month after their respective registration dates to identify
those developers who had subsequently joined. This process enables us to distinguish
between the initiator and the developers who subsequently join. Further, in order to
identify the social ties of the developers, we collected data on other projects that each
developer has participated in before to identify their past collaborators. Based on this

312 Jungpil Hahn, Jae Yoon Moon, and Chen Zhang

data, we are able to construct affiliation matrices of developers and projects that
depict the existence and strengths of the relationships ties between developers.

The following measures were computed for empirical analysis (see Table 1).

Table 1. Summary of Measures
Variable | Definition

Dependent Variable
DevelopersJoin 1 if at least one developer joined the project within the first month

of project initiation, 0 otherwise.
Independent Variable
InitiatorHasTies

InitiatorTiesAmount

InitiatorExperience

1 if project initiator(s) have preexisting social ties in the network,
0 otherwise.
The amount of direct ties that the project initiators have prior to
project registration calculated as the number of distinct developers
who have collaborated with the project initiator(s).
Number of projects that the project initiators have participated in
before.

Control Variables
Numlnitiators
ProJAmbiguity

Number of project initiators^.
Level of ambiguity of project definition (i.e., how ill-defined a
project is) calculated as the number of project characteristics left
undefined^.

3.2 Results

The descriptive statistics and pairwise correlations of the measures for the sample are
summarized in Table 2. The highest correlation between the independent variables is
between InitiatorHasTies and InitiatorTiesAmount (p = 0.333,/? < 0.001). The sample
projects had 1.13 initiators on average. Within the first month 43% of the 1030
projects had at least one developer joining the development team. Most projects
(55%) attracted one developer, 170 projects (40%) had added two to five developers,
and 20 projects (5%) had more than five additional developers.

The granularity of data collection is daily. In other words, we were unable to distinguish
between initiators and subsequent joiners if the project registration and the developer's join
event happened on the same day. We classified all members that joined on the day of
registration as initiators.

^ On SourceForge.net, project administrators may clarify the details of the project in terms of
several characteristics such as development status, database environment, intended
audience, license type, operating system, programming language, software category,
translations and nature of user interface.

Impact of Social Ties on Open Source Project Team Formation 313

Table 2. Descriptive Statistics

Variable Descriptive Statistics
Mean St. Dev Min Max

Correlations
i l) (2) (3} {*1 (51

\(]) DeveioerJoin
\(2) InitatorHasTies
\(3) InitiatorTieAmount
\(4) InitiatorExperience
\(5) Numlnitiators
\(6) ProjAmbuguity

p.43
b.26
14.01
1.12
1.13
13.92

0.495
0.441
20.149
4.708
0.510
3.216

0.00
0.00
0.00
0.00
1.00
0.00

1.00
1.00
330.00
81.00
9.00
7.00

to.06

0.04
0.01
•0.22*"

0.33
0.33**'
0.18**'
-0.05*"

0.22
0.13**'

'-0.05*
0.30*'
0.00 -0.09"

Note: Sample size N = 1030.
[Significance Levels: ***p < O.Ol, **p < 0.05, * /? < 0.1

Since our dependent measure (i.e., Developers Join) is binary, we test the impact
of the existence of initiators' prior social ties on developer joining behavior
(hypothesis HI) by estimating the parameters for the following logistic regression
model:

logit \P (DevelopersJoin = l)) = a + pJnitiatorHasTies + ft ̂ Numlnitiators + /JJnitiator Experience

+/̂ ^ ProjA m b iguity + e

A positive and significant estimate of parameter fij would indicate that the
probability of other developers becoming members of a project whose initiators have
direct social ties is greater than that of a project whose initiators have no direct social
ties in the network. The results of the logistic regression are presented in Table 3
(Model 1). The model shows a good fit with the data (likelihood ratio x^ = 58.428, p
< 0.01). The variable InitiatorHasTies has a significant positive effect on the
likelihood of developers joining {fij = 0.389, p < 0.05). The results suggest that
projects with initiators who have preexisting ties with the developer network are
47.6% more likely to have at least one additional developer join the project team
compared to those with initiators who do not have any preexisting ties with the
network (HI supported).

Next we test the impact of number of prior social ties on developer joining
behavior (hypothesis H2) by estimating the parameters for the following logistic
regression model:

\ogii{P {DevelopersJoin = \)) = a + ftJnitiatorTieAmount + p^Numlnitiators + pjnitiatorExperience

+p^ProjAmbiguity + e

The results of the logistic regression are presented in Table 3 (Model 2). The
model shows good fit with the data (likelihood ratio ^ = 24.556, p < 0.01),
InitiatorTieAmount has a significant positive effect on the likelihood of developers
joining {fij = 0.0145, p < 0.05). The results suggest that an additional tie for an
initiator increases the likelihood of at least one developer joining the project team by
1.5%. Given that on average an initiator has had prior relationships with
approximately 4 other developers, this would amount to an average increase in the
likelihood by 6%. Thus, projects with initiators with more ties with the developer
network are more likely to attract additional developers than those with initiators with
fewer direct ties (H2 supported).

314 Jungpil Hahn, Jae Yoon Moon, and Chen Zhang

Finally, we examined the impact of initiators' experience with open source
software development projects on developer joining behavior for those projects
without preexisting social ties (hypothesis H3). We estimate the parameters for the
following logistic regression model:

logit {P {DevelopersJoin = \)) = a + pJnitiatorExperience + p^Numlnitiators + p^ProjAmbiguity + s

Table 3 (Model 3) summarizes the results of the logistic regression. The model
shows a good fit with the data (likelihood ratio ^ = 51.092, p < 0.01). The parameter
estimate for InitiatorExperience is significant but negative {fii = -0.604, p < 0.01),
indicating that projects whose initiators have more OSSD experience are less likely to
attract additional developers than those whose initiators have less OSSD experience, a
result which may seem counter-intuitive. An alternative explanation may be that
developers in the OSS community support newcomers by joining their projects and at
the same time expand their existing social relationships. Therefore, hypothesis H3
that for those projects without preexisting strong social ties the experience of
initiators tend to have a positive impact on the probability of having other developers
join the project team was not confirmed by the results.

Table 3. Logistic Regression Results

Variable
Constant
InitiatorHasTies
InitatorTieAmount
InitiatorExperience
Numlnitiators
ProjAmbiguity

Model 1 (HI)
Parameter Odds
Estimate Ratio

0.2878
0.3891** 1.476

-0.0464 0.955
-0.0742 0.928
-0.1416*** 0.868

Model 2 (H2)
Parameter Odds
Estimate Ratio

0.4896*

0.0145** 1.015
-0.0363 0.964
-0.0997 0.905
-0.1400*** 0.869

Model 3 (H3)
Parameter Odds
Estimate Ratio

0.4986'

-0.6040*** 0.547
-0.1787 0.836
-0.1432*** 0.867

Model Statistics
Sample Size (AO
Likelihood Ratio (x2)
Significance levels: " '

1030
58.428***

p < 0.01, "yt?< 0.05,'/

271
24.556

?<0.1

759
51.092***

6 Conclusion and Discussions

In this study we investigated the role of social ties in OSSD team formation.
Specifically, we examined whether the existence of prior social ties impacts the
probability of an OSS project to attract more developers. We find that overall the
existence of prior social ties does increase the probability that developers join a
project. We also find that, for projects with preexisting social ties, the number of such
ties has a positive influence on whether additional developers join the project.
Interestingly, for projects without preexisting social ties, developers tend to join the
project initiated by people with less OSSD experience. This research fills a gap in the

Impact of Social Ties on Open Source Project Team Formation 315

open source literature by conducting an empirical investigation of the role of social
relations on project team formation behavior. Second, the adoption of social network
analysis, which has received little attention in the OSS literature, can yield some
interesting results on the interactions among OSS developers.

However, the study has some limitations. For example, we only look at joining
behavior within the first month after project registration. The joining behavior may
differ during different stages of project development. While controlling for
development stage would shed more theoretical insights, practically many newly
registered projects do not define their development stages explicitly, which limits our
ability to incorporate this factor into the analysis. Moreover, we assume that
developers who have collaborated on a project before have developed direct social
ties of uniform strength. In reality, the strength of the tie may depend on many factors
such as developers' roles, duration of collaboration, and outcome of the collaboration.
We hope to distinguish the strength of social ties in a follow-up study. An important
extension of this paper is to study the effect of developer joining behavior on the
network structural characteristics within project team as well as its performance
implications.

REFERENCES

[1] E. S. Raymond and B. Young, The Cathedral and the Bazaar: Musings on Linux
and Open Source by an Accidental Revolutionary (O'Reilly & Associates,
Sebastopol, CA, 2001).

[2] T. O'Reilly, Lessons from Open-Source Software Development, Comm. ACM.
42(4), 33-37 (1999).

[3] E. S. Raymond. The Cathedral and the Bazaar;
http://www.41inux.com.br/arquivos/cathedral-bazaar.pdf

[4] J. Lerner and J. Tirole, The Open Source Movement: Key Research Questions,
European Econom. Rev. 45(4-6), 819-826 (2001).

[5] W. W. Powell, K. W. Koput, and L. Smith-Doerr, Interorganizational
Collaboration and the Locus of Innovation: Networks of Learning in
Biotechnology, Admin. Sci. Quart. 41(1), 116-145 (1996).

[6] R. Gulati, Social Structure and Alliance Formation Pattern: A Longitudinal
Analysis, Admin. Sci. Quart. 40, 619-652 (1995).

[7] J. Lerner and J. Tirole, Some Simple Economics of Open Source, J. Industrial
Econom. 50(2), 197-234 (2002).

[8] A. Hars and S. Qu, Working for Free? Mofivations for Participating in Open-
Source Projects, Internal J. of Electronic Commerce. 6(3), 25-39 (2002).

[9] G. Hertel, S. Niedner, and S. Herrmann, Motivation of Software Developers in
Open Source Projects: An Internet-Based Survey of Contributors to the Linux
Kernel, Res. Policy. 32(7), 1159-1177 (2003).

316 Jungpil Hahn, Jae Yoon Moon, and Chen Zhang

10]K. R. Lakhani and R. Wolf, in Perspectives on Free and Open Source Software,
edited by J. Feller, B. Fitzgerald, S. Hissam, and K.R. Lakhani (MIT Press:
Cambridge, MA. 2005).

11] P. J. Hinds, K. M. Carley, D. Krackhardt, and D. Wholey, Choosing Work Group
Members: Balancing Similarity, Competence, and Familiarity, Organ. Behavior
and Human Decision Processes. 81(2), 226-251 (2000).

12]M. Granovetter, The Strength of Weak T\Qs,Amer. J. Sociology, 78, 1360-1380
(1973).

13] S. Wasserman and J. Galaskiewicz, Advances in Social Network Analysis (Sage,
Thousand Oaks, CA, 1994)

14] B. Wellman and S. D. Berkowitz, Social Structures: A Network Approach
(Cambridge University Press, Cambridge, 1998)

15]K. S. Cook and J. M. Whitmeyer, Two Approaches to Social Structure: Exchange
Theory and Network Analysis, ̂ ««. Rev. Sociology. 18, 109-127 (1992).

16] S. P. Borgatti and P. C. Foster, The Network Paradigm in Organizational
Research: A Review and Typology, J. Management. 29(6), 991-1013 (2003).

17] W. Tsai, Knowledge Transfer in Intraorganizational Networks: Effects of
Network Position and Absorptive Capacity on Business Unit Innovation and
Performance, ^ca^. Management J. 44(5), 996-1004 (2001).

18] J. Singh, Collaborative Networks as Determinants of Knowledge Diffusion
Patterns, Management Sci. 51(5), 756-770 (2005).

19] S. Huang and G. DeSanctis. Mobilizing Informational Social Capital in Cyber
Space: Online Social Network Structural Properties and Knowledge Sharing.
Proceedings of the 26^^ International Conference on Information Systems (ICIS
2005). Las Vegas, NV.

20] J. Walker, S. Wasserman, and B. Wellman, in Advances in Social Network
Analysis, edited by S. Wasserman and J. Galaskiewicz (Sage, Thousand Oaks,
CA. 1994).

21] R. Burt, Structural Holes: The Social Structure of Competition (Harvard
University Press, Cambridge, MA, 1992)

22] E. von Hippel and G. von Krogh, Open Source Software and the 'Private-
Collective' Innovation Model: Issues for Organization Science, Organ. Sci. 14(2),
209-223 (2003).

23] G. Madey, V. Freeh, and R. Tynan. The Open Source Software Development
Phenomenon: An Analysis Based on Social Network Theory. Proceedings ofS^^
Americas Conference on Information Systems (AMCIS 2002). Dallas, Texas.

24] L. Lopez-Fernandez, G. Robles, and J. M. Gonzalez-Barahona. Applying Social
Network Analysis to the Information in CVS Repositories. Proceedings of the r*
International Workshop on Mining Software Repositories (MSR 2004).
Edinburgh, UK.

25] J. Xu, Y. Gao, S. Christley, and G. madey. A Topological Analysis of the Open
Source Software Development Community. Proceedings of 38^^ Hawaii
International Conference on System Sciences (HICSS 2005). Hawaii, HI.

26]N. Ducheneaut, Socialization in an Open Source Software Community: A Socio-
Technical Analysis, Computer Supported Cooperative Work. 14, 323-368 (2005).

Impact of Social Ties on Open Source Project Team Formation 317

[27] D. McClelland, J. Atkinson, R. Clark, and A. Lowell, The Achievement Motive
(Appleton-Century-Crofts, New York, 1953)

[28] S. Schachter, The Psychology of Affiliation (Stanford University Press, Stanford,
CA, 1959)

[29] D. H. Gruenfeld, E. A. Mannix, K. Y. Williams, and M. A. Neale, Group
Composition and Decision Making: How Member Familiarity and Information
Distribution Affect Process and Performance, Organ. Behavior and Human
Decision Processes. 67(1), 1-15 (1996).

[30] J. Howison and K. Crowston. The Perils and Pitfalls of Mining Sourceforge.
Proceedings of the r^ International Workshop on Mining Software Repositories
(MSR 2004), Edinburgh, UK.

Social dynamics of free and open source team
communications

James Howison, Keisuke Inoue, and Kevin Crowston

School of Information Studies
Syracuse University

Syracuse, USA
{jhowison,kinoue,crowston}0syr.edu

Abstract^ This paper furthers inquiry into the social structure of free
and open source software (FLOSS) teams by undertaking social network
analysis across time. Contrary to expectations, we confirmed earlier
findings of a wide distribution of centralizations even when examining
the networks over time. The paper also provides empirical evidence that
while change at the center of FLOSS projects is relatively uncommon,
participation across the project communities is highly skewed, with
many participants appearing for only one period. Surprisingly, large
project teams are not more likely to undergo change at their centers.
Keywords: Software Development, Human Factors, Dynamic social networks,
FLOSS teams, bug fixing, communications, longitudinal social network anal
ysis

1 Introduction and Literature Review

Free/Libre Open Source Software (FLOSS^) is a broad term used to embrace
software developed and released under an "open source" license allowing inspec
tion, modification and redistribution of the software's source without charge
("free as in beer"). Much though not all of this software is also "free software,"
meaning that derivative works must be made available under the same unre-
strictive license terms ("free as in speech", thus "libre"). We study FLOSS
teams because they are remarkable successful distributed work teams; we are
interested in understanding how these teams organize for success.

In this paper, we investigate the informal social structure of FLOSS develop
ment teams by examining the pattern of communications between developers.

^ Acknowledgement: This research was partially supported by NSF Grants 03-41475,
04-14468 and 05-27457. Any opinions, findings, and conclusions or recommenda
tions expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation

^ The free software movement and the open source movement are distinct and have
different philosophies but mostly common practices. In recognition of these two
communities, we use the acronym FLOSS, standing for Free/Libre and Open Source
Software.

Please use the following format when citing this chapter:
Howison, J., Inoue, K., and Crowston, K., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 319-330

320 James Howison, Keisuke Inoue, and Kevin Crowston

We are seeking social patterns reflected in artifacts of project activity, what de
Souza et al call "an 'archeology' of software development processes" [5]. In this
paper, we analyze communication network data over time, using snapshot data,
to understand better how social structures in projects are changing over time.
We first examine average centralization over time, then we examine change at
the center and finally the stability of participation in project communications'^.

White et al [15] introduced the modeling of social structure over time using
snapshot data. Our method is similar and their clear comment also applies,
we "present no models of processes over time; there are neither predictions of
other behavior nor explications of a stochastic process of tie formation and
dissolution" (p 732). Rather the analysis below seeks merely to describe the
structures as found at different points in time. Analysis of networks over time
with attention to causes and predictions from structure and its change, such as
preferential attachment, is an active area of research [11, 9] and one that may
be fruitful on this data.

Analysis of networks over time is also new to analysis of software develop
ment communications. Recently de Souza et al [5] reported their examination
of FLOSS project communications for a small number of projects at two points
in time; they were able to see the movement of developers between the core and
the periphery of the project. The work presented below extends such analysis
to a large sample of data using automated analysis techniques.

Fig. 1. squirrelmail from [4] Modular, or changes at the center over time?

Prior research has shown that FLOSS teams exhibit a wide range of central
izations, counter to both the common image of teams as totally decentralized
and the academic expectation of centralization [3, 4]. This work has also shown
that centralization scores are negatively correlated with number of participants
in the bug report discussions, specifically, that small projects can be centralized

^ A longer version of this paper, that presents full summary statistics and time series
of network centralization over time, is available online at h t tp : / / f loss . sy r . edu /
publications/

Social dynamics of FLOSS team communications 321

or decentralized, but larger projects are decentralized. Figure 1 shows a large
decentralized network.

Two explanations have been offered for this finding: first, the fact that in a
large project, it is simply not possible for a single individual to be involved in
fixing every bug. As projects grow, they have to become more modular, with
different people responsible for different modules. In other words, a large project
is in fact an aggregate of smaller projects, resulting in what might be described
as a "shallot-shaped" structure, with layers around multiple centers.

An alternative explanation is that the larger projects are more likely to
have experienced changes in leadership. This seems particularly credible when
one considers that participant counts are positively affected by project lifespan.
During any given period, the network may be centralized around a current
leader, but overlapping the networks from all periods gives a total network
with multiple centers and thus an artificially decentralized network.

Accordingly after comparing average centralization over time with the over
all centralizations reported in [4], we then examine changes at the center of the
communications networks. Stability at the center of a project is likely impor
tant to the team's performance. Linus Torvald's position in the Linux project
is legendary and there is constant concern that he is being over-stretched [10].
This concern is based, in part, on the knowledge that transition is difficult;
central personnel likely hold much tacit knowledge and stability in structure
ought to assist coordination through transactive memory.

Finally we examine the frequency of participation in project communica
tions. The ability to attract and retain project participants is an important
measure of FLOSS project success, demonstrating the project's viability as well
as its ability to satisfy its participants. Repeated involvement, or what we might
call tenure, should also serve as a knowledge and skill transmission device. This
is particularly important amongst the core team but is also important amongst
the periphery of active users, who learn to provide "usable" bug reports as well
as how to run the latest development snapshots. Long-term active users may
step in as 'newbie wranglers' able tjO answer the frequency asked questions and
thus shielding the core developers, freeing up their time and attention. We ex
amine the frequency of participant's involvement across time and relate it to
the patterns of difference in centralizations

2 Data and Method

For this analysis we utilized data collected from the SourceForge bug tracker.
The bug fixing process provides a "microcosm of coordination problems" [2]
and is a collaborative task in which, as Eric Raymond [12] paraphrases Linus
Torvalds: the people finding bugs are different from those that understand the
bugs and those that fix the bugs.

We selected projects from SourceForge and downloaded project and bug
database data using Web spiders (see [8]). The projects selected were projects

322 James Howison, Keisuke Inoue, and Kevin Crowston

that had had more than 100 bugs (open or closed) in the tracker at the time of
selection in April 2002 and which had more than seven developers active overall
in the discussions. This yielded data on 120 relatively successful projects.

We extracted interaction data from the project bug reports to create inter
action matrices. These were analyzed using social network analysis (SNA) [14].
The bug reports contain a thread of discussion (shown elsewhere in Figure 4
of [4]). The initial bug-reporter posts via a web interface, typically triggering a
message to a group of developers, or the development maihng list, depending
how the project is organized. Replies, often seeking more information or confir
mation, are then posted to the bug, being copied to all previous recipients and
posted in the public forum.

SNA requires the construction of sociomatrices, depictions of social networks
organized around dyads (pairs of senders and receivers). The appropriate dyad
in the case of an open forum is an interesting question in its own right. While the
origin of the message can be determined from the Sourceforge ID, the message
may well be received by all project participants (if the tracker is copied to a
mailing Hst), by all previous posters to the tracker, or merely by the previous
poster in the thread. This question is of great importance to studies relying on
the information flow characteristics of social networks.

For this reason, we simply coded the interaction as occurring between the
sender and the immediately previous poster and calculated outdegree central
ization. This was reasonable because our reading of the bug-reports showed
that most messages are a reaction to the immediately prior message and be
cause we are primarily interested in contribution, and not information flows per
se. Our dyad can be understood as 'was prompted to speak in public by,' an
interpretation which is robust with our interpretations below. These 'in-pubhc'
dyads mean that it is conceptually difficult to utilize network measures, such
as betweenness centrality, which assume that only the recipient has read the
message, and that the recipient chooses whether to forward that information
onwards.

Outdegree centralization measures inequality in the proportion of the total
population spoken to by each node. A network in which a single individual has
spoken with all other participants, but where those others have only spoken
with that single individual would have very high outdegree centralization (1.0).
Conversely a network in which each participant has spoken with every other
participant would have very low outdegree centraUzation (0.0).

Each message has a time-stamp given when the message is received by the
tracker system. We used this data to divide the networks into over-lapping
snapshots. We sampled the network in 90-day windows, moving the window
forward 30 days at a time. This means that a single dyad may be reflected
in up to three consecutive snapshots. We chose to use overlapping windows
to smooth changes in the network structure and 90 days was chosen so that
the majority of the projects contain enough communications to analyze in each
time period. The data and analysis scripts for this paper are available through
FLOSSmole [7].

Social dynamics of FLOSS team communications 323

3 Findings

3.1 Centralization

Our snapshot data provided an outdegree centralization figure for each project
in each frame. Thus we have a time series for project centralization. We hope
to explore such patterns in detail using time-series techniques to measure sta
bility and trends across the data set, but at present we describe the series only
through their means and variance. The left-hand figure in Figure 2 shows the
distribution for the average outdegree centralization over time. Centralization is
distributed, with a mean of 0.59, and Median of 0.58 and a standard deviation
of 0.15. The right-hand figure in Figure 2 attempts to measure the stability
of the centralization scores by examining the standard deviations of the series.
Given that centralization is normalized between 0 and 1, it is reasonable to
compare the standard deviations. The distribution shows that the majority of
centralization scores vary ± 0.2 through their lifetime.

0.0 0.2 0.4 0.6 0.8 1.0

Avg Outdegree Centralization of Messages

k L
I — \ — \ — I — I — I

0.0 0.2 0.4 0.6 0.8 1.0

Standard Deviation of Outdegree Centralization

Fig. 2. Average Centralization over time is widely distributed, with moderate internal
variance

If the hypothesis expressed in [4] was correct, and changes at the center had
artificially reduced the centralization score by collapsing time, the distribution
of average centralization ought to be higher overall than the distribution of
overall centralization. This was not the case. There was no statistical difference
between the distribution of average centrahzation presented in this paper and
overall centralization presented in [4].

Figure 3 shows the diff'erences between the average of our centralization
scores computed from the snapshots, and the centralization score obtained by
collapsing the network over time. The diagonal line shows equality, and the
perpendicular distance from that line shows the difference, either positive (the
collapsing of the network has produced an 'artificially' decentralized network)
or, somewhat unexpectedly, negative (where the collapsing of the network has
produced an 'artificially' centralized network). We can see that the projects
with positive and high differences appear to include some of the projects, such

324 James Howison, Keisuke Inoue, and Kevin Crowston

q

00

to
d ~

d

o

d

30 have higher
Average than Overall

geeKlog »

cplusplus« «

squirrelmail * * / ^ s

zsnes« * V * * *

dri 0 J^-

^^»^ . f t |. * Ipr

*^ *Aoscar
.̂. tcllib

55 have lower
y ^ Average than Overall

Overall Outdegree Centralization

Fig. 3. The effects of collapsing networks over time

as s q u i r r e l m a i l , that we anticipated might have undergone change at the
center, but the significant number of projects with low negative differences
renders the two distributions statistically similar.

To clarify, we considered two ideal cases of networks over time that would
produce such differences in overall and average centralizations. The first, shown
in Figure 4, depicts the network where change at the center in an otherwise
centralized network has lead to lower overall centralization. The second, shown
in Figure 5, introduces a new case, in which an otherwise decentralized net
work is rendered centralized by collapsing over time due to a single participant
appearing in each frame, but with entirely different 'partners'. Even in a de
centralized network the developer with high 'tenure' appears to form a core, in
regular discussion with a transient periphery.

In concrete terms these structures might indicate projects at different stages
of their lifecycle (as described in [13]). The first, centralized structure might
indicate projects on a growth trajectory driven by the creative vision of their
leaders in communication with a group of active alpha testers. The second,
decentralized structure might indicate a project in a maintenance mode, being
tended to by a few long-timers and a transient group of infrequent bug reporters.

3.2 Changes in central members

We can assess the occurrence of change at the center graphically by examining
individual centralities over time. In our data, individual outdegree centrality
is a measurement of the number of individuals that a participant has replied
to, standardized by the total number of participants (the potential audience).
For the projects with the highest positive difference between average and overall
centralization, we selected the five nodes with the highest average centralization
as candidates for being at the center. We then computed their ranks in each

Social dynamics of FLOSS team communications 325

t1: t2:
Centered on Initial Leader Future Leader Arrives Centered on New Leader

Across Time
Reduces Cent.

P2 0

Outdegree Cent: 1 Outdegree Cent: 0.9i Outdegree Cent: 1 Outdegree Cent: 0.8

Fig. 4. Ideal Type: Change at the center

Centralization increases when
network viewed across time

with partially changing membership

Outdegree Cent: 0 Outdegree Cent: 0 Outdegree Cent: 0.25

Fig. 5. Ideal Type depicting inequality in tenure

time period and graphed them in Figure 6. When the line ascends to the top
(rank 1) it indicates that the node had the highest centralization, on its own, in
that period. (Ties were separated by assigning the minimum value for the tied
group, so if all lines head down to rank < 5 that indicates that the 'central'
position was shared during that period.)

c u r l is plotted first for comparison; it has not undergone change at the
center. Its central node, the solid line, has maintained the top rank in individual
centralities throughout the time period, shown by the horizontal line at rank
1. In contrast the four projects with highest differences show clear changes in
the developer in the most central; position, cp lusp lus is the clearest of all,
we see that the developer represented by the solid line rapidly assumed the

326 James Howison, Keisuke Inoue, and Kevin Crowston

Mar 00 Jun 00 Sep 00 Dec 00 Mar 01 Jun 01 Sep 01 Dec 01 Mar 02 Jun 02 Sep 02 Dec 05

LJZJ2£\
I—I—I—I—I—I—I—I—r—1—I—I—I—I—I—I—I—I—1—I—I—I—I—I—I—I—I—I—I—I—I—I

Jun 00 Sep 00 Dec 00 Mar 01 Jun 01 Sep 01 Dec 01 Mar 02 Jun 02 Sep 02 Dec 02

cplusplus

Jan 00 Apr 00 Jul 00 Oct 00 Jan 01 Apr 01 Jul 01 Oct 01 Jan 02 Apr 02 Jul 02 Oct 02

licq

:] i^^TT

I—r—T—I—I—I—I—I—I—I—I—I—I—n—I—I—I—I—I—I—I—I—I—I—r~i—i—i—i—i—i—i—i—i—i—i
Jan 00 Apr 00 Jul 00 Oct 00 Jan 01 Apr 01 Jul 01 Oct 01 Jan 02 Apr 02 Jul 02 Oct 02 Jan O;

squirrelmail

I — I — I — I — I — I — 1 — 1 — I — I — m — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — \ — I — I — I — I

Apr 00 Jul 00 Oct 00 Jan 01 Apr 01 Jul 01 Oct 01 Jan 02 Apr 02 Jul 02 Oct 02 Jan 03

Fig. 6. Individual centrality ranks indicate change at the center

central position in early 2000 and maintained that until May 2001. At that time
the developer represented by the single long dashed line emerged as a central
participant, first taking the second spot and then assuming the top position
until June 2002. Similar patterns are visible in other projects, s q u i r r e l m a i l
had a dominant center (dot-dashed) through until April 2001 It was not until
January 2002 that another relatively stable center, the solid line, emerged but
he was soon replaced by the developer represented by the dashed line who was
replaced in turn by the dotted Une. The graphical analysis suggests that change
at the center is a good explanation for the reduction in centralization that
occurs when the networks are flattened across time.

The snapshot data allows a numerical assessment of stability at the center
two ways for each project in our sample. First we counted the number of de
velopers ever at the top rank of individual centrality, and second we counted
the number of times the top rank position changed (we counted a change if the
top ranked developer at ^ + 1 was different than the developer at t). If there are
developers alternating in the center then the second figure will be larger than
the first. We expected to find that most projects were more similar to cu r l
than to s q u i r r e l m a i l , that the node at the center would be stable through the
project, quite possibly the project founder.

Social dynamics of FLOSS team communications 327

\ff'

\'' '-'S

i. •.

^
••• t •• ; , l

° 1

1 2 3 4 5 6 7

Number of Developers Ever at Centre

0 5 10 15 20

Number of Changes at Centre

Fig. 7. Change at the center is uncommon

Figure 7 shows the distributions for our two measures of center stabiUty.
Among our sample the majority had only ever had one developer ever at the
center and seven was the largest count. Leadership changes showed a similar
distribution (the measures correlated at r = 0.73). This is an interesting finding
because it suggests that change at the center of a project is uncommon.

We expected that larger projects, with many more candidates for the center
and a greater 'load' on the central participants, would experience more change
at the center. However our measures did not show correlation with the number
of participants (0.18 and -0.02 respectively); larger projects do not seem more
likely to undergo more changes at the center.

The measures of change at the center did show correlation (r=0.4) with
the difference between average and overall centralization, lending quantitative
support to the graphical exploration of change at the center in Figure 6 and to
the hypothesis expressed in [4] at least for the cases with positive differences.
We now turn to examine the potential of transient peripheries suggested by 5
above.

3.3 Transient Peripheries?

As an heuristic to understand stability in participation, we measured the num
ber of time windows in which each participant posted a message and expressed
that as a percentage of the total number of snapshots of the project's lifetime
in our data. Figure 8 shows the distribution of this measure for projects where
we had data on at least 10 periods. The data show a highly skewed distribution;
the majority of participants are active for only between 10 and 20 percent of the
periods in which we had data. This reflects the fact that the mode was activity
for just a single period. On the other hand there are a number of projects, like
lyxbugs, ucsf-nomad and oscar , that had their participants active in half of
the periods examined, indicative of a fairly stable team.

While this finding is interesting on its own and would bear further investiga
tion, it showed low correlation with the differences between overall and average

328 James Howison, Keisuke Inoue, and Kevin Crowston

I °
o

lyxbugs
ucsf-nomad

T 1 1 1 1 1

0 20 40 60 80 100

s -J
§ -

o _

n -

o

o

o

§

;
1 A

Index Average Percentage of periods active

Fig. 8. Most participants are highly transitory

centralization suggesting that the second ideal-type model is not that common
amongst our dataset.

4 Discussion

Our initial expectation that a dynamic snapshot analysis would revive our ex
pectation of a pattern of high centrahzation in FLOSS project communications
was not supported. There was no significant difference between the overall and
average means and there were a large number of projects that had the opposite
reaction, where collapsing the network over time in fact raised their centrahza
tion. We found reasonable evidence that changes in leadership played a role in
suppressing the expected centralizations but did not find a full explanation for
the negative cases.

Nonetheless, our analysis also provides possible insight into project lead
ership and change. Outdegree centrality in our study is essentially measuring
contribution in the bug tracker. Contribution is crucial to leadership of FLOSS
projects, partially a result of its self-organization and volunteer nature and par
tially as a result of its ideological commitment to meritocracy. It is tempting
then to make a direct connection between high outdegree centrality and thus a
central position, and project leadership.

Caution is called for, however, because this data is only measuring commu
nications contribution, which is controversial as a measure of leadership com
pared to development contribution. In fact Raymond expects FLOSS leaders to
'speak softly' [12] and'Alan Cox provides anecdotal reports of blow-hard 'town
councilors' who speak a lot without writing code [1]. On the other hand our
data comes from the bug tracker, a place of focused activity, rather than the
project mailing lists where 'town councilors' are more likely to be found. Sus
tained contribution in the bug tracker, answering questions and seeking further
information is likely to indicate a participant who is at least important to the
project, if not the over-all leader.

Social dynamics of FLOSS team communications 329

An expectation that figures central to a project would be found in the bug
tracker is in marked contrast to expectations in proprietary software develop
ment teams. Here bug-fixing is likely to be 'grunt work'; a leader in proprietary
teams is more Hkely to be found in an architecting and over-sight role. Empirical
work is needed to explore this difference further.

5 Conclusion

This analysis of FLOSS project communications over time has presented three
substantive findings:

- We confirmed the finding reported in [4]. Projects vary widely in their social
structures between projects even when the networks are analyzed over time.
Initial examination of centralization over time within projects also shows
substantial variance.

- We found that the majority of projects examined retain a single participant
at the center for substantial periods of time, and found that larger projects
do not change central participants more often than smaller projects. Per
haps 'Linus' does scale after all (contra McVoy et al [10]), or, more likely,
lieutenants face a glass ceiling, collecting below and buffering a still active
central actor,

- We provide evidence that a vast majority of project participants are involved
for only a very small number of periods, and there is a characteristic power
law distribution whereby a very small number are involved for long periods.

This paper, and the longer version available online, also makes a method
ological contribution, describing a dynamic analysis of FLOSS project commu
nication and suggesting that collapsing a network over time is not a reliable
way to describe social structure as experienced by participants. Finally, the
paper also introduces a possible quantitative method for assessing leadership
change, a crucial event in virtual team dynamics. The individual centralization
rank graphs in Figure 6 identify time periods where qualitative investigation
of the project communications would be likely to reveal evidence of leadership
change. Thus a dynamic SNA approach can function as a data reduction device.
We hope to extend this work by examining the time series, combining it with an
analysis of contribution in code repositories and exploring 'concentration' [6],
a newly introduced SNA measure of centralization capable of placing a group,
rather than an individual at the center of a project

References

1. Alan Cox. Cathedrals, Bazaars and the Town Council. Slashdot, 13 October 1998
1998.

2. K. Crowston. A coordination theory approach to organizational process design.
Organization Science, 8(2): 157-175, 1997.

330 James Howison, Keisuke Inoue, and Kevin Crowston

3. Kevin Crowston and James Howison. Hierarchy and centralization in free and
open source software team communications. Knowledge, Technology and Policy,
18(4), 2005.

4. Kevin Crowston and James Howison. The social structure of open source software
development teams. First Monday, 10(2), 2005.

5. C. de Souza, J. Froehlich, and P Dourish. Seeking the source: Software source code
as a social and technical artifact. In Proceedings of GROUP '05, pages 197-206,
2005.

6. Martin Everett and Stephn P Borgatti. Extending centrality. In Peter J Carring-
ton, John Scott, and Stanly Wasserman, editors, Models and Methods in Social
Network Analysis. Cambridge University Press, 2005.

7. James. Howison, Megan Conklin, and Kevin Crowston. Ossmole: A collaborative
repository for floss research data and analyses. In Proc. of 1st International
Conference on Open Source Software, Genova, Italy, 2005.

8. James Howison and Kevin Crowston. The perils and pitfalls of mining source-
forge. In Proc. of Workshop on Mining Software Repositories at the International
Conference on Software Engineering ICSE, 2004.

9. M. Huisman and T. A. B. Snijders. Statistical analysis of longitudinal network
data with changing composition. Sociological Methods & Research, 32(2):253-287,
2003.

10. L. McVoy, E. Raymond, and Others. A solution for growing pains (mailing
list thread), email to linux kernal mailing list (30 sep 1998). Available from:
http://www.ussg.iu:edu/hypermail/linux/kernel/9809.3/0957.html, 1998.

11. P. Monge and N. Contractor. Emergence of communication networks. In F. Jablin
and L Putnam, editors, New Handbook of Organizational Communication, pages
440-502. Sage, Newbury Park, CA, 2001.

12. Eric S. Raymond. The Cathedral and the Bazaar. First Monday, 3(3), March
1998.

13. Anthony Senyard and Martin Michlmayr. How to have a successful free software
project. In Proceedings of the 11th Asia-Pacific Software Engineering Conference,
pages 84-91, Busan, Korea, 2004. IEEE Computer Society.

14. S. Wasserman and K. Faust. Social Network Analysis. Cambridge University
Press, Cambridge, 1994.

15. H. C. White, S. A. Boorman, and R. L. Brieger. Social structure from multiple
networks I. Blockmodels of roles and positions. American Journal of Sociology,
81(4):730-780, 1976.

Part VIII

Posters

How is it possible to profit from innovation
in the absence of any

appropriability?

Andrea Bonaccorsi\ Lucia Piscitello^,Monica Merito' ,and Cristina Rossî
1 DSEA-University of Pisa, Via Diotisalvi 2, 56126 Pisa, Italy

{bonaccorsi,merito}@sssup.it,
2 DIG-Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano,

Italy
{lucia.piscitello,cristinal.rossi}@polimi.it

Abstract. Open Source Software (OSS) represents an "open innovation"
paradigm based on knowledge produced and shared by developers and users.
New findings from a large survey of European software companies show that:
(i) the OSS business model is currently involving almost one third of the
industry, although with different intensity; (ii) compared with pure proprietary
software producers, OSS firms have a broader product portfolio and are more
diversified; moreover, (iii) OSS firms provide more complementary services to
their customers; (iv) over time OSS firms increase the share of OS turnover out
of the total turnover, becoming more and more OSS oriented; (v) both NOSS
and OSS firms do not consider appropriability as a crucial requirement for
innovation and do not consider the lack of appropriability as an obstacle to
profitability.

Open Source (OS) software is now booming. More and more users are running open
programs on their systems, and several OS solutions have turned out to be extremely
successful (e.g., the Open Source Web server Apache). Such a bright demand together
with the availability of software of good technical quality has stimulated firms'
involvement in the OS movement The new production paradigm has progressively
acquired increasing importance within the soft^vare industry. Large incumbents like
IBM, Hewlett Packard, Compaq, and Sun Microsystems have decided to release their
source code to the comrnunity [1]. Furthermore, particularly after the drawing up of
the Open Source Definition in 1998, many new software firms have entered the
market, trying to profit not from traditional license fees but from other software-
related services [2], Bonaccorsi et al. [3] have examined in great detail these
companies finding that the large majority of them follow what they call a "hybrid"
business model (as opposed to a pure OS model) by mixing products, types of
licenses, and sources of revenues. Using a large dataset on software companies
(NACE code 72, computer and related activities) based on a field survey in five
European countries (Finland, Germany, Italy, Portugal, and Spain), we find strong
evidence supporting this view.

The offering profiles of the 769 respondents take place along a continuum ranging
from the exclusive provision of proprietary solutions to a product portfolio entirely
based on OS. In particular, 66.8% of the firms supply only proprietary products
and/or services, whereas only 19 provide just OS solutions. Of the 236 (30.7%) firms
supplying both types of software, a large fraction (38.1%) claim to provide open

Please use the following format when citing this chapter:
Bonaccorsi, A., Piscitello, L., Merito, M., and Rossi, C, 2006, in IFIP International
Federation for Information Processing, Volume 203, Open Source Systems, eds. Damiani,
E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 333-334

334 Andrea Bonaccorsi, Lucia Piscitello,Monica Merito ,and Cristina Rossi

source and proprietary software with no distinction. Among companies supplying also
OS based products and services (OSS firms), the proportion of sales generated by
open software increases over time. Between 2000 and 2003, the percentage of
respondents whose OSS turnover is above 50% has increased from 17.25% to
25.49%, while those who work with OSS without generating revenues out of it have
decreased from 33.33% to 10.98%. If the OSS business model were not sustainable,
we would not observe such an increase.

Compared with pure proprietary firms, OSS firms have a broader product
portfolio, as measured by the number of product areas in which the firms are active.
The majority of the firms working with proprietary software are acfive mainly in
management and data management software while no other applications involve more
than one third of them. In addition, compared with pure proprietary firms, OSS firms
provide more complementary services to customers, as measured using a detailed
taxonomy derived form the literature [1]. This corroborates the hypothesis that the
increase in the number of product supplied is made possible by the exploitation of the
open knowledge base created by the community of developers.

Data also show that, OSS firms do not consider the lack of appropriability as an
obstacle to profitability and do not consider appropriability as a crucial requirement
for innovation. Both OSS and proprietary firms agree that patents are costly
(72.55%), do not constitute a valid barrier to entry (71.70%), and need a too long
legal procedure (68.81%). Such negative effects are not compensated by their
capacity of providing incentives to innovators (only 32.09%). These results are in line
with the literature claiming that patents increase the cost of innovations while the
impact on the expected revenues may be dubious [4]. In general, respondents have a
more positive attitude towards licenses. However, the percentage of respondents
agreeing that licenses are an appropriate mean of marketing products and recovering
R&D investments is decreasing with the degree of openness of the firm.

1. Wichmann, T., 2002. Firms' Open Source activities: motivations and policy
implications. International Inistitute of Infonomics, Berlecom Research GmbH,
Maastricht.

2. Hawkins, R.E., 2004. The economics of the Open Source Soft̂ vare for a
competifive firm. Why give it away for free?. Netnomics 6, 103-117.

3. Bonaccorsi, A., Giannangeli, S., Rossi, C, 2006. Entry strategies under
dominant standards. Hybrid business models in the Open Source software industry.
Management Science, forthcoming.

4. Levin, R.C., Klevorich, A.K., Nelson, RjR., Winter, S.G., 1987. Appropriating
the returns from industrial research and development. Brookings Papers on Economic
Activity 3, 783-820.

Producing and Interpreting Debug Texts
An Empirical Study of Distributed, Parallel Debugging

in Open Source Software Development

Thomas Osterlie
Norwegian University of Science and Technology
Sem Saelands vei 7-9, 7491 Trondheim, Norway

thomas.osterlie@idi.ntnu.no

Abstract. This paper presents preliminary findings from an ethnographic study
of distributed, parallel debugging in an open source software (OSS)
community. Focusing on the OSS developers' daily activities, I propose the
concept of making software debuggable. In so doing, I see a somewhat different
story than common narratives of debugging in current OSS research, which
describes distributed, parallel debugging as a set of highly cohesive tasks within
loosely couple groups. I find that parallel, distributed debugging is rather a
closely coupled collective process of producing and interpreting debug texts
with high cohesion between the activities of reporting, finding, and
understanding bugs.

1 Introduction

Parallel debugging is identified as one of the key characteristics of OSS development
processes [1], and "is the site of claims of effectiveness made for [OSS] projects" [2].
While empirical research show that defects are found and corrected rapidly with
parallel debugging [3][4], explanations for these findings remain inconclusive. It has
been proposed that OSS is more maintainable than commercial software. However,
no difference is found in the maintainability between commercial and OSS software
[3]. Another proposed explanation is that successful OSS projects exhibit a specific
social structure [5]. Yet, research has shown the structure varies among projects and
that different successful OSS projects may exhibit different social structures [2].

In my research I seek to explore an explanation to the success of parallel
debugging that lies in the ev^rycjay activities of debugging. Existing studies of
parallel debugging tells us little about what OSS developers do on a day-to-day basis.
The key question raised in my research is therefore: what are OSS developers daily
activities in parallel debugging?

My research is based on materials collected during ten months ethnographic
studies in the Gentoo OSS community. The Gentoo community develops, maintains,
and operates a system for distributing and installing third-party OSS on various Unix
variants, along with their own GNU/Linux distribution. Gentoo releases its software
for parallel debugging by the community as part of a formalized process.

Please use the following format when citing this chapter:
Osterlie, T., 2006, in IFIP International Federation for Information Processing, Volume
203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M.,
Succi, G., (Boston: Springer), pp. 335-336

336 Thomas Osterlie

2 Preliminary findings

Mockus et al. [4] find that "most of the effort in bug fixing is generally in tracking
down the source of the problem". I find that tracking down the bug need not be all
that simple in practice. It need not be obvious what the bug "really is". Rather, it is
subject to interpretation. To make sense of failures reported in bug reports, the
developers discuss a number of possible sources for the failure. Of these possible
explanations, I find that none are dismissed on conclusive evidence. Instead,
alternative explanations for reported failures are made more or less plausible by
producing new debug texts, trying to reproduce the bug, and drawing on external texts
like installation scripts, source code, documentation, and change logs.

Wherein previous studies seek to explain the success of debugging in OSS as a
function of qualities with the software product [3], my observation is that the success
of debugging may be found in the daily activities of OSS users and developers.
Finding the source of a bug is a process where the person reporting the bug and those
trying to understand make the bug debuggable by working together to find relevant
pieces of information and producing new debug texts. Making the soft^vare
debuggable can therefore be interpreted as a collective process including both the
person submitting the bug report, those trying to understand and resolve the problem,
as well as the tools involved in producing the various debug texts being interpreted. It
is by iteratively producing debug texts and extracting pieces of from these texts into
meaningful combinations that bugs are made debuggable.

3 References

1. J. Feller and B. Fitzgerald, Understanding Open Source Software Development (Pearson
Education Limited, Harlow, 2002)

2. K. Crowston and J. Howison, The Social Structure of Free and Open Source Software
Development, First Monday 10(2), 2005.

3. J.W. Paulson, G. Succi and A. Eberlein,, An Empirical Study of Open Source and Closed-
Source Software Products, IEEE Transactions on Software Engineering 30(4):246-256
(2004).

4. A. Mockus, R.T. Fielding amd J.D. Herbsleb, Two Case Studies of Open Source Software
Development: Apache and Mozilla, Transactions on Software Engineering and
Methodology 11(3), 309-346 (2002):

5. J.Y. Moon and L. Sproull, The Essence of Distributed Work: The Case of the Linux Kernel,
First Monday 5(11), 2000.

A graphical installation system for the
GNU/Linux Debian distribution

Fiandrotti Attilio ,Pierluigi Di Nunzio', Federico Di Gregorio^Angelo Raffaele Meo'
1 Politecnico di Torino, Dipartimento Automatica e Informatica,

Centro Primario di Competenza sul Software Libero
Corso Duca degli Abruzzi 24, Torino, Italy

fiandro@initd.org, pierluigi.dinunzio@polito.it,
fog@debian.org, meo@polito.it

WWW home page: http://freesoflware.polito.it/

Abstract. One of the main objectives of the Centro di Competenza sul Software
Libero del Politecnico di Torino is to provide custom GNU/Linux distribution
to the Public Administration, small and medium enterprise and schools. Debian
GNU/Linux was choosen as the base for the custom distributions because of its
strong support of free software and its long-standing technical merits:
minimalist hardware requirement, the best available packaging system, support
for 13 different architectures and a strict set of quality guidelines adopted by all
the active Debian developers. The only foreseeable limitation, the Debian
default text-based installer, was overriden by restarting the development of the
then-abandoned Debian graphical installer. Now the new graphical installer is
developed by tens of people and it will be included in the next official Debian
release.

1 Custom Debian distributions

One of the main objectives of the Centro di Competenza sul Software Libero del
Politecnico di Torino is to provide custom GNU/Linux distributions to the PA and
educational world; such distributions will be preconfigured and easily installable to
minimize the amount of manual operations required to the final user.
Debian GNU/Linux was deemed to be the perfect distribution to base our custom
work on, mainly because of its strong support of free software (as in the Debian Free
Software Guidelines), its support for multiple hardware architectures, robust package
management system and flexible and easily customizable installation system.
In particular, we needed an installation system with the following characteristics:

L Released (and releasable) under a free software license (Debian does);
2. With a strong developers base (Debian does);
3. Modular and independent on packages about to be installed (Debian does);
4. Pre-configurable, to reduce the steps needed to install a working system

(Debian does);
5. With a state-of-the-art User Interface supporting non-latin wide-char

alphabets and a variety of input/output devices.
The only limitation to use the default Debian installer was point (5): when the project
was started the Debian installer only supported a text-based front-end; user interaction

Please use the following format when citing this chapter:

Attilio, F., Di Nunzio, P., Di Gregorio, F., and Meo, A.R., 2006, in IFIP International
Federation for Information Processing, Volume 203, Open Source Systems, eds. Damiani,
E., Fitzgerald, B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 337-338

338 Fiandrotti Attilio, Pierluigi DiNunzio, Federico DiGregorio, Angelo Raffaele Meo

was poor and support for non-latin alphabets only partially working (mainly because
of the limitations of a fixed-size cell-based output device.)

2 The graphical debian-installer

Classical text-based Debian installer supports 13 different architectures (from
embedded systems to mainframes) and provides a solid technical base on which to
build a graphical installer:

1. It is completely based on independent back-end modules (micro-debs or
udebs) to which the install procedures (hardware recongition, hard disk
partitioning, base system install,...) are delegated.

2. The back-end modules communicates with the front-end using a well-
defmed and well-tested protocol (i.e., the debconf protocol.)

3. It is ready for localization and internationalization (even if the text-based
front-end cannot render correctly non-latin or complex alphabets.)

4. Can be easily customized by providing package pre-configuration (pre-
seeds) and/or custom procedures in the form of extra udebs.

The development of a graphical front-end module was based on previous work that
used the GTK toolkit and was coordinated on the debian-boot mailing list, getting
precious feedback and support by the official Debian Installer team. What we wanted
was to be able to perform graphical installations even on low-resources machines, so
we gave up using an X server and decided to put efforts in reviving the GTK-over-
DirectFrameBuffer project. DirectFrameBuffer (DFB) is a small set of libraries
designed to be used in embedded Linux systems: the GTK-over-DFB project consists
in a GDK backend module for the GTK libraries that allows GTK to run even without
an X server. The work on the graphical debian-installer also gave new life to the DFB
port of the GTK libraries: some talented developers from other projects put a great
deal of efforts in fixing it and making it work with the last releases of GTK.
Hand-crafted prototypes of grapical ISO installations images led to full integration
into the standard Debian ISO building system and after about 1 year of work the
debian-installer team officially adopted the new codebase and announced the next
Debian release will feature the new graphical front-end. The prototypes allows
optimal rendering of over 70 different languages, included Indie ones, and run on
less then 64 megabytes of RAM.
Also, Debian-derived LinEx distribution, developed in Extremadura and whose
regional govemament even sponsored a worksession on the grapgical installer, is
going to be the first Debian derived distribution to offer a graphical, native, debian-
installer.

The micro-dynamics of open source
software development activity

Paul A. David\ Francesco Rullanî
1 Stanford University, Economics Bldg 333

Stanford, California, 94305-6072, United States; and All Souls College,
Oxford, 0X1, 4AL, United Kingdom.

2 Sant'Anna School of Advanced Studies, Piazza Martiri della Liberta 33,
56127 Pisa, Italy.

pad@stanford.edu, rullani@sssup.it

Abstract. This study aims to isolate and identify the properties of FLOSS
development insofar as these can be revealed by examining the ecology of
SF.net. It characterizes the contrast between the many "lurkers" and a much
smaller core of "entrepreneurial" developers who are responsible for launching
new projects, and gives an interpretation of the function of platforms such as
SF.net as sites that people with a propensity to start open source projects can
use to recruit "laborers". It describes the process underpinning the mobility of
those who are recruited among the projects that are launched and provides
insights on the evolution of developers' level and mode of involvement in
FLOSS production.

1. Research Questions

The FLOSS model has given rise to a self-organjzing global ecology of atomistic and
collective projects that both share and compete for productive resources as well as for
final "users". This structure is manifested within the microcosm of the
SourceForge.net {SF.net henceforth), the largest platform for FLOSS development
worldwide. By studying a dataset containing information about the population of
222,835 developers who registered themselves on SF.net during an early period in the
platform's history (specifically, from September 1, 2000 through October 26, 2001),
we have been able to address the following questions.

Is there a stable, distinct typology of actors, e.g. "entrepreneurial" developers who
launches many projects, "laborers" who participate as group members of existing
projects without launching any projects themselves, and "lurkers", who simply
observe or contribute form outside the projects teams? How and one the basis of
which characteristics individuals move over time between lurking, laboring, and
launching projects?

2. Analysis

We define the following 7 states and assign each developer to one of these for every
30-days period of his/her "life" in SF.net:

O=non member and non founder, inactive (i.e. she/ he did not post any bug report.

Please use the following format when citing this chapter:
David, P.A., and Rullani, F., 2006, in IFIP Intemational Federation for Information
Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi,
W., Scotto, M., Succi, G., (Boston: Springer), pp. 339-340

340 Paul A. David, Francesco Rullani

patch or feature request);
l=non member and non founder, active;
2=member of 1 project and non founder of any project (active or inactive);
3=member of more than 1 projects and non founder of any project (either active or
inactive);
4=founder of 1 project and member of 1 project (either active or inactive);
5=founder of 1 project and member of more than 1 projects (either active or
inactive);
6=founder of more than 1 project and member of more than 1 projects (either
active or inactive).

We study the transitions from one state to the others by applying Markov chain
theory to describe how developers' involvement changes over time, obtaining
estimates of a series of transition probability matrices pertaining to mutually
exclusive sub-samples of developers, spanning the most important characteristics
provided in the dataset: developers' registration date to SF,net; developers' state in
pre-analysis periods; developers' characteristics such as the skills they declare to
have, the main language they declare to speak, and the provision or not of an email
address to be directly contacted.

3. Results and Limitations

Comparisons among the obtained strata enable us to better understand the nature of
the mechanism triggering the launching of new projects, the participation in existing
projects (i.e. the laboring activity) and "passive" participation (i.e. lurking activities).

In particular we have found that early-registered users have higher persistence in
their foundation activity, and that developers who send "signals" into the community
(e.g. disclosing their skills sets or their email addresses) tend to be, and become over
time, more active and "entrepreneurial". The level of pre-analysis activity induces a
sort of "role exchange" between the developers, where initially active individuals
become inactive, and vice versa. Eventually, languages differences also matter. While
English speakers follow the whole population dynamics, European, and even more so
Asian, languages speakers enter mainly as lurkers, and then move in a greater
proportion to more active states.

The main limitation of the study concerns the focus on the SourceForge
population, which is only a sample of the universe of FLOSS projects, and one that
does not capture phenomena characteristic of the very large projects. These points to
the need, and the opportunities to apply the methodology developed here to the study
of other sites, such as Savannah, and FreshMeat.

Development Platforms as a Niche for Software
Companies in Open Source Software

Marinette Savonnet^, Eric Leclercq^, Marie-Noelle Terrasse^, Thierry Grison^,
George Becker^, Anne Sophie Farizy^, and Ludovic Denoyelle'^

^ LE2I, Universite de Bourgogne, France Mariiiette.Savonnet@u-bourgogne.fr
^ LE2I, Universite de Bourgogne, France Eric.Leclercq@u-bourgogne.fr

^ LE2I, Universite de Bourgogne, France Marie-Noelle.Terrasse@u-bourgogne.fr
^ LE2I, Universite de Bourgogne, France Thierry.Grison@u-bourgogne.fr

^ gbecker@nerim.net
^ ARIST Bourgogne, France

'̂ ARIST Bourgogne, France l.denoyelle@bourgogne.cci.fr

As long as information systems do not become overly large and while they
address a well-known domain, they can be controlled by engineering staff. Nev
ertheless, when dealing with large-scale, complex, or innovative information
systems, it can be difficult to separate design issues and to formulate a mean
ingful information system proposal. In such a context, platforms for software
engineering appear to be a promising approach. In this paper, we propose to
view development platforms as a major opportunity for Open Source Software
and Open Formats.

One of the major evolutions in the Open Source world is its integration with
the proprietary world. Open Source tools and proprietary tools keep mixing up
which each other at various levels: on the same machine, on the same company
network, on the Internet and more recently even on the same platform (see, e.g.,
Eclipse [7]). In terms of business strategies, very large companies or very inno
vative ones enter consortiums for standard definitions. At the same time, small
companies offer Open Source products and sell their competency in customizing
their products (e.g., technical support, relevant sets of data, fine tuning of the
basic software) to a given business context. In both cases, companies now act
as service providers rather than as mere producers.

In such a context, development platforms appear to be a sound basis for
engineering of flexible products built on consolidation of computer-based solu
tions and the know-how of users [2, 3, 5, 6]. In order to develop such platforms
as meaningful industrial products, it is necessary to assure that Open Formats
soon become more generally accepted, and completed with exchange and de
scriptive languages (such as XMI and the MOF for MOF-repositories [4, 8]).

Thus, development platforms need to evolve towards the schema depicted in
Figure 1: a description of a business knowledge made available through
open formats and plug-ins (either proprietary or Open Source plug-ins).
Such platforms can offer (under Open Source licences) basic business-related

Please use the following format when citing this chapter:
Savonnet, M., Leclercq, E., Terrasse, M.-N., Grison, T., Becker, G., Farizy, A.S., and
Denoyelle, L., 2006, in IFIP International Federation for Information Processing, Volume
203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M.,
Succi, G., (Boston: Springer), pp. 341-342

342 M. Savonnet, E. Leclercq, MN. Terrasse, & al.

\ue

d>ADS

t

''^|s<ig4t R^pnycct Open
'•:S<:;'r^7 Ortlce

J % f ^ f ^ ? (MUissnad

>;/.'"•.< -̂ 'V ctunpijtintjs

1 t t
iMDS-lMoimil

SlSi-: Ibrinat
\U'{\ OASIS immis

\

Specification for Social Da(a (DADS-Uj
orticji
Ink-̂ gn

t\\MK4'U\pknmiCixk>iSmi}
jkxl Koinenciatura lln- IidacaUon

Plug>"ins
- I'or general use:

Open Oftkc
R~project istaij>iicc«l compuUng) | H |

- Doruaifj-cclatcd:
Apouec (Student iiianaiieinenO
{)A DS~U Wie n)A!)S^icwor j

i>|)i*n FotmiUss |
- ForoOiccaiilonuiiion; OASIS (i0|
- In'>r domain-related data:

SISH Ueachiuii aeuvitic^) | I2j
i)ADS-l.' {eiiijpio)ee iiuumgcincnl) 19|

Donuilu kn<i\% knige descriptloii
- In^egmkxi jioiiKniclaCura tXn' educalion [11
- Data specillcation lor shUistiad analysis:

orunî 'ei-̂ iity tenchut<j? actjvNy {12 j
of univcii>lly einployecs}<)}

Fig. 1. An example platform for university management

functionalities and can be fine-tuned for specific uses. As an illustration, we
describe a platform for education and job market surveys which encompasses:
domain knowledge description and specifications, Open Formats, and domain
specific plug-ins (Open Source/Format plug-ins are depicted in yellow and pro
prietary ones in green).

References

10.
11.
12.

Nomenclatures integrees dans FeDoX {Nomenclatures integrated into FeDoX).
URL h t tp : / / f edox. i r i s a . f r/Pages/nomenclature2. htm.
ARIST Bourgogne. Resultats d'enquete sur I'usage de I'informatique et des logi-
ciels fibres dans les entreprises bourguignonnes. {Survey Results on the Use of
Open Software in Burgundy Companies)
J. Koenig. Seven OS Business Strategies for Competitive Advantage. 2005.
Meta Object Facility (MOF) Specification, V. 1.4, 2002. URL www.omg.org.
T. O'Reilly. OS Paradigm Shift. In Proc. of OSBC'04, 2004.
C. Shirky. The Interest Horizons and the Limits of Software Love. 1999.
Eclipse Platform. URL http://www.eclipse.org/.
XML Metadata Interchange (XMI). URL http://www.omg.org.
Declaration annuelle des donnees sociales unifiee (DADS-U, Annual Report of
Standardized Social Data). URL http://www.travail .gouv.fr/dossiers.
OASIS Open Document Format for Office Applications.
The R-Project for Statistical Computing. URL http://www.r-project.org/.
Programme des operations statistiques et de controle de gestion, SISE. {Program
of statistical operations and management inspections) Official Report of the De
partment of Education, France, 2000.

Reusable Parser Generation from Open Source
Compilers

Kazuaki Maeda

Chubu University
1200 Matsumoto, Kasugai, Aichi 487-8501, JAPAN

kcLzQacm. org

Many Open Source Software (called OSS) projects have been proposed and
many software developers have contributed to develop software by OSS style. In
the OSS development style, the source code is opened to the public and checked
by the distributed software developers to improve the quality. The source code
is, however, not effectively used to improve the productivity of other software
development. This paper describes reusable parser generation from the source
code of popular open source compilers.

In construction of code analyzers or reverse engineering tools, the parser de
velopment is a time-consuming task. To improve the productivity of the task,
a renewal parser generator MJay was developed. MJay generates grammar def
initions and some utility programs. It is useful to construct software tools to
analyze source code.

Based on my experiences to construct software tools to generate UML dia
grams from source code, there are three approaches to develop the parser.

1. To develop a parser from scratch by reading the programming language
specification.
It takes about one week to develop the parser from scratch to the best of
my knowledge. There are some cases where it takes more than one week
to develop it with high quality because the specification of recently pop
ular programming languages is very complex. It is too long to catch up
with the short-term development in the current situation as agile software
development grows in popularity.

2. To get grammar definitions from major web sites, or find them using web
search engines.
There are some web sites including collections of public grammar definitions [1].
The collections in the web sites are very useful, but many public grammars
contain errors and they provide no sufficient guarantee that they are strictly
correct. As a result of this, we must debug them to improve the quality by
ourselves with spending much time.

3. To extract source code of the parser from open source compilers.
There are free open source compilers available with high quality. One of
the famous compilers is GNU compiler collection[2], The other is Mono C #
compiler which is an open source implementation of .NET development
environment available on major operating systems (e.g. Linux, Mac OS X,

Please use the following format when citing this chapter:
Maeda, K., 2006, in IFIP International Federation for Information Processing, Volume
203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M.,
Succi, G., (Boston: Springer), pp. 343-344

344 Kazuaki Maeda

Solaris and Windows) [3]. These compilers, however, were developed with
only consideration for generating object code from source code. It is difficult
to extract only the parser to reuse for another purpose because it is tightly
coupled with other modules in the compiler.

This paper proposes the other approach, that is, to replace the parser gen
erator with a renewal parser generator MJay. If we develop a parser for C # , we
can reuse Mono C # compiler[3]. The parser in Mono C # compiler is developed
using a parser generator Jay. After the replacement of Jay with MJay, MJay
generates grammar definitions for a reusable parser in addition with a com
monly used LALR parser. As a result of this, the parser in Mono C # compiler
is opened and we can construct software tools quickly.

The development process is the following;

1. MJay reads the grammar definition G, and it generates the parser PI of
the usual C # compiler written in C # , the grammar definition H and some
utility programs for the reusable parser.

2. PI and the related files are compiled, and the special Mono C # compiler
is built. The compiler reads C # source code and generates parser behavior
in addition with the object code. The parser behavior consists of primitive
actions for a typical LALR parser, for instance, shift, reduce, et al.

3. Jay reads the grammar definition H and generates the reusable parser P2
written in C # .

4. P2 and the related files are compiled by the usual Mono C # compiler, and
a software tool is built. The reusable parser P2 reads the parser behavior
and it takes the same sequence of actions as the parser PI does.

In summary, this paper describes the motivation and the idea about reusable
parser generation from the source code of popular open source compilers us
ing the renewal parser generator MJay. It is based on my hard experiences of
constructing reverse engineering tools, by oneself, which extract design infor
mation and draw diagrams (e.g. class diagram, communication diagram, et al.)
from source code. It took a few weeks to construct it according to traditional
parser development. MJay was developed to help me build the parser as soon
as possible.

Now another reverse engineering tool for Visual Basic is under construction.
It took just only two hours to develop the parser using MJay. I believe that MJay
becomes an important tool to construct programming tools using open source
compilers.

References

1. Grammar List, http://www.antlr.org/grammar/list
2. Free Software Foundation, GCC Home Page, http://gcc.gnu.org/.
3. Main Page - Mono, http://www.mono-project.com/Main-Page .
4. jay Homepage, http://www.informatik.uni-osnabrueck.de/alumni/bernd/jay/ .

Open Source Software Development
(OSSD) Based On Software Engineering

Dengya Zhu, Vidyasagar Potdar, and Elizabeth Chang
School of Information Systems, Curtin University of Technology.

GPO Box U1987,Perth WA 6845, Australia
{dengya.zhu, vidyasagar.potdar, elizabeth.chang}@cbs.curtin.edu.au

Abstract. With the advent of Open Source Software (OSS) at the end of last
century, many proponents believe that OSS is a new software development
process and some even advocate OSS as a revolution for software engineering.
The Cathedral and the Bazaar is a typical metaphor of the software
development methodologies for the Closed Source Software (CSS) and the
OSS. By comparing the phased (namely, requirement analysis, document
design and system design, coding, testing and maintenance) software
development methodology proposed by Software Engineering (SE), and by
studying the management tools provided by SourceForge.net, we believe OSS
development method not only follows the phased software development
process, but also in return enriches the theory of SE.

"Software engineering: (1) The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the
application of engineering t o software. (2) The study of approaches as in (1)" [5].
Software product engineering includes softAvare requirements, design, coding, testing,
and software operation and maintenance [2]. Contemporary software development
process is also iterative and agile [5]. Frederick and Brooks claim No Silver Bullet [1];
Raymond, however, argues that OSS development process is a breakthrough of SE.
By comparing the different development phases suggested by SE with the typical
development procedure of OSS, the writers try to verify that the OSS development
process is not only based on SE, but also in return enriches the SE theory in testing
and maintenance phase.

The purpose of requirement analysis is to manifest the exact needs of sofl^vare and
document it unambiguously. It is true that seldom are there formal documents of
requirements among OSS development. However, usually there is a mailing list or
newsgroup to discuss the requirements [9]; some OSS programmers are themselves
user [7]. They can also refer to the existing CSS to get the requirement [3].
Software design concerns with the transformation of requirements into a description
of how these requirements are to be implemented. Although lack of formal design
documentation, successftal OSS project tend to be architected by developers of
extraordinary skills and experience; the underlying architecture and implementation
often begins as an inheritance from a traditional SE project [3]; mail archives and
community chat sites are also sources of relevant documentation.
Construct software components that are identified and described in the design
documents is the goal of coding. While coding is only a small percentage within the
phased SE, for some OSS developers, software is nothing but coding. Spend a lot

Please use the following format when citing this chapter:
Zhu, D., Potdar, V., and Chang, E., 2006, in IFIP International Federation for Information
Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi,
W., Scotto, M., Succi, G., (Boston: Springer), pp. 345-346

346 Dengya Zhu, Vidyasagar Potdar, and Elizabeth Chang

time on coding can compensate the lack of sufficiency design document, by "release
early, release often, and listen to your customers" [6], this OSS development strategy
has been proven results in faster, feasible and economic coding [4].
"Given enough eyeballs, all bugs are shallow" [6]. "By sharing hypotheses and results
with a community of peers, the scientist enable many eyes to see what one pair of
eyes might miss" [9]. The success of many OSS products has proven that software
test productivity scale up as the number of developers helping to debug the software
increases [8].

SourveForge.net is the world's largest OSS development web site which provides free
hosting and management to OSS development projects (http://sourceforge.net).
SourgeForge.net provides a wide range of services, such as web tools for community
and project management, file release system, compile farm, version control system,
communication tools, publicity, and project web service. These services facilitate the
OSS developers to follow the phased development process suggested by SE.

References

1. Frederick, P. and Brooks, Jr. No Silver Bullet: Essence and Accidents of Software
Engineering, IEEE Computer 20 (1987), 10-19.

2. Hilbum, T. B. Hirmanpour, I. Khajenoori, S Turner, R. and Qasem, A. A Software
Engineering Body of Knowledge, Carnegie Mellon Software Engineering Institute,

3. Massey, B. Where Do Open Source Requirements Come From. In Proceedings of the 2nd
Workshop on Open-Source Software Engineering, (Orlando, Florida, May 19-25, 2002).

4. Potdar, V. and Chang, E. 2004, Open Source and Close Source Software Development
Methodology. In The 4th Workshop on Open Source Software Engineering, (Edinburgh,
Scotland, May 25, 2004). ACM Press, New York, 2004, 105-110.

5. Rressman, R.P. Software Engineering: A Practitioner's Approach, 6th edt. McGraw-Hill,
New York, 2005.

6. Raymond, E. S. The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolution, O'Reilly, Sebastopol, 1999.

7. Scacchi, W. Software Development Practices in Open Software Development Communities.
In Proceedings of the 23rd Intemational Conference on Software Engineering. (Toronto,
Canada, May 15, 2001). ACM Press, New York, 2001, 48-51.

8. Schmidt, D. C. and Porter, A. Leveraging Open-Source Communities to Improve the Quality
& Performance of Open-Source Software. In Proceedings of the 23rd Intemational
Conference on Software Engineering. (Toronto, Canada, May 15, 2001). ACM Press, New
York, 2001, 52-56.

9. Vixire, P. Software Engineering. In C. DiBona, S. Ockman & M. Stone(eds), Open Sources:
Voices fi"om the Open Source Revolution, O'Reilly Sebastopol, 1999.

Open Source in Web-based Periodicals

Andres Baravalle and Sarah Chambers
Department of Computer Science, University of Sheffield, UK.

email: {andres,sarah}@dcs.shef ac.uk

Abstract. In this paper we aim to investigate the role of the media in the
diffusion of Open Source, analysing three web-based periodicals from Italy,
United Kingdom and USA. The influence of the media in our society is wide
and we have to look to that direction if we want to seriously investigate the in-
depth causes of the different trends. Nevertheless, our results show a picture
that may not be familiar to many researchers of the field.

1 Introduction

The starting point for our research was the COSPA project which is investing the
use of Open Source (OS) and Open Data Standards in the public administrations in
Europe. It quickly became apparent that there was a different perception of Open
Source across the different project partners and that OS is more positively perceived
in some countries than others.

Decisions to use OS depends on numerous factors, including technical,
economical and socio-cultural, but the information that the persons have plays a
fundamental role [Lippmann 1950]. A question that arose was: why does OS has such
different levels of acceptance and success in different countries, and what are the
factors that influence it? We thought that these differences in opinion may be linked
to the way that OS had been reported in the media the these countries and this is what
we set to to investigate further.

2 Method

For our research, we selected three web-based periodicals The Register (UK);
Punto Informatico (Italy) and C-Net News.com (USA). The periodicals are amongst
the most read IT periodicals in their respective countries. At present we do not aim to
identify global patterns or rules but specifically look at UK, Italy and USA.

To harvest the information from the periodicals, we developed a set of parsers,
that can be used though a web interface. Using the parser, we have been able to
collect information about more than 13,000 articles on OS, from 1998 until December
2005.

The core analysis is based, on almost 500 articles published in the periodicals
during November and December 2005. We analysed these articles categorizing them
by level of relevance to OS. This was carried out to select the number of articles that

Please use the following format when citing this chapter:
Baravalle, A., and Chambers, S., 2006, in IFIP International Federation for Information
Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi,
W., Scotto, M., Succi, G., (Boston: Springer), pp. 347-348

348 Andres Baravalle and Sarah Chambers

were discussing issues related to OS, compared to the number of articles that had just
were just referring to OS in passing. Articles were also classified by the topic of the
article, the categories included: software, community and business.

3 Results and Discussion

In all the periodicals OS is well represented. There is not a overload of
information, with articles on OS in a ocean of articles on proprietary software. Punto
Informatico had a higher percentage of articles related to OS that were actually
focused on OS, while both The Register and C-Net News.com had a higher number of
OS articles on business aspects. Punto Informatico had a higher ratio of articles on OS
compared with the number of articles including the keyword "Microsoft".

However, both The Register and C-Net News.com have been featuring more
articles on OS migrations compared with Punto Informatico. Moreover, Punto
Informatico has been always the last periodical to report on the migrations.

5 Conclusions

Our experience working on the COSPA project in the UK and the failure in
finding suitable test location sites for migrations lead us to consider whether the press
in the UK was biased against OS or whether there was a lack of coverage on the
ongoing migrations, compared to other countries like Italy. The data of our sample
period shows that this is not true, and a more in-depth analysis shows that it is neither
true using a longer time frame.

However, according to our research, OS was covered as well in the UK and USA
as it was in Italy. In fact, the Italy periodical contained a few less articles on OS
migrations.

Future work might focus more on the topics that have been covered in the web-
based periodicals and we plan to continue our research investigating different causes,
to try to define more clearly which are the significant factors that influence the
adoption of OS.

References

Lippmann, W. 1950. Public opinion. New York : Macmillan.

Software Patents and Open Source Software in
the European Union: Evidences of a Trade-Off ?

Francesco Rentocchini^ and Giuditta De Prato^

^ Department of Economics, University of Bologna, Italy
frsincesc.rentocchini (9studio.unibo.it

^ Department of Economics, University of Bologna, Italy deprato@spbo.unibo.it

Abstract . The present work aims at giving an account of the patenting
behaviour in the software sector, focusing on the European Union and
pointing out issues regarding a trade-off which would support a policy
attitude in favour of a wider diffusion of the Open Source model.

1 Introduction

It is well known that art. 52 of the European Patent Convention regulates
patenting activities within the Union and expressively do not allow software
and business methods patentability. This exception is not completely applied
in practice. In fact, more than 70,000 patents are found to have been accorded
by the European Patent Oflfice in the period 1982-2004. The aim of this paper
is threefold: first, economic literature on patents is reviewed concentrating on
more recent contributions; second, an original database for the European Union
is constructed which links the number of software patents filed at the European
Patent Office by European firms with their R&D spending and other relevant
variables, and advanced econometric techniques for data counting are applied
to find out the most relevant factors affecting the accorded software patents;
finally, conclusions are drawn showing that support to Open Source Software
(OSS) could help stimulating competition in the ICT sector and increasing the
innovation rate, while in fact, on the other side, strategic patenting is confirmed
by available data analysis.

2 Recent Developments in the Theoretical Literature

Since a long time, the economic literature has recognised the importance of
the patent system in shaping and directing the rate of appropriation of the
iimovative effort of the firm [1, 6]. In addition to 'classical' contributions, the
literature that has been developed to explain the recent trends in worldwide
patenting, has relied on Schumpeter's contributions to economic thought [7].
More recently, evolutionary economics [5] has focused on the role of patents in
enhancing or hindering innovation depending on sectors where firms compete.
Therefore, a number of authors underlines that, depending on appropriability

Please use the following format when citing this chapter:
Rentocchini, F., and De Prate, G., 2006, in IFIP International Federation for Information
Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald, B., Scacchi,
W., Scotto, M., Succi, G., (Boston: Springer), pp. 349-351

350 F. Rentocchini and G. De Prato

conditions of sectors in which they are used, patents might be, or not, a useful
institutional mechanism in order to promote the variety of technological solu
tions and the selection by market forces via competition. In addition, empirical
contributions have shown that firms do not always rate patents as effective
appropriability mechanisms [3]. Hence, on one side, empirical literature shows
how patents are not suitable appropriability mechanisms in a high number of
sectors, but, on the other side, we witness an explosion in the number of patents
filed in recent years. Why is there such a trade-off? Which factors contribute
to explain it? One of the main reason refers to strategic patenting, which is a
strategic behaviour of firms aimed at hindering competition, obtain licensing
revenues and to have stronger power in negotiations.

3 Data Collection and Econometric Analysis

In order to analyse recent trends in software patenting in the European Union,
we relied on the Gauss.ffii database. The subset of data relevant to the present
work had been built by extracting and collecting all records regarding patents
filed between January, 1st 1995 and December, 31st 2004, thus obtaining a
total of 65.536 patent records. After that, a relation has been established be
tween the collected dataset and the 2004 EU Industrial Research Investment
Scoreboard. The resulting dataset is composed by 1000 firms both European
and non European whose data concerning Research and Development spending,
FTSE sectoral classification and geographical classification, number of software
patents filed at EPO, net sales, number of employees and operating profit and
revenue are available for the period 2000-2003. Hence a panel dataset has been
created with information on one thousand firms through a four year long time
period (2000-2003). After that, econometric techniques have been applied in
order to analyse more in deep the relationship between software patents and
other variables in the dataset. Results show that R&D and size contribute to
explain the number of software patents filed within this period. A second spec
ification of the model is used to investigate sectorall differences in the number
of software patents firms apply for. Results show that, in line with empirical
studies conducted in ¥ S [2, 4], only electronic and electrical and IT hardware
industries are found to be highly significant in explaining the number of software
patents filed during the period of consideration. Hence, it seems that software
patents are principally filed by firms which do not have software production
as primal activity. Electronic and IT hardware firms instead are found to rely
disproportionally on software patenting.

4 Which Role for the Open Source Software?

Such conclusions coming from the data analysis are then put in relation to the
support in principle accorded by the European Union to the Open Source model

Software Patents and Open Source Software in the EU 351

and to the fact that OSS demonstrated a potential in stimulating innovation and
technological improvement. OSS is perceived as suitable to promote innovation
to different extents, because free circulation of software makes progress results
fully available and it provides incentives to users to innovate, to freely reveal and
to diffuse innovations, making them affordable also to small enterprises. Early
surveys showed OSS is likely to promote innovation among SMEs by lowering
costs for knowledge appropriation and licences, while lack of information and
proprietary innovation delay the process of innovation adoption. Along with
similar arguments, the European Union declared a willingness to consolidate a
dominant position in the Open Source environment, also in order to find a new
role in the software sector. The paper therefore proposes some reflections, which
could help to draw policy indications, on the limitations which the analysed
patenting system could pose to the role of OSS in diffusing innovation, and
on alternative strategies which EU Instititions could push forward to promote
alternative methods of intellectual property protection involving -for example-
GPLs.

References

1. K. Arrow. Economic welfare and the allocation of resources for invention. In
R. Nelson, editor. The Rate and Direction of Inventive Activity: Economic and
Social Factors. NBER, Princeton University Press, 1962.

2. J. Bessen and R. Hunt. The software patent experiment. In Patents, Innovation and
Economic Performance, pages 246-263. Organisation for Economic Cooperation
and Development (OECD), April 2003.

3. W. Cohen, R. Nelson, and J. Walsh. Protecting their intellectual assets: Appro-
priability conditions and why U.S. manufacturing firms patent (or not). Working
Paper 7552, 2000.

4. B. Hall. Exploring the patent explosion. Journal of Technology Transfer, 30(1-
2):35-48, 2004.

5. R. Nelson and S. Winter. An Evolutionary Theory of Economic Change. Belknap
press, 1982.

6. W. Nordhaus. Invention, Growth and Welfare. MIT Press, Cambridge Massachus-
sets, 1969.

7. J. Schumpeter. Capitalism, Socialism and Democracy. McGraw Hill, 1942.

