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Abstract. Source code author identification deals with the task of identifying 
the most Hkely author of a computer program, given a set of predefined author 
candidates. This is usually .based on the analysis of other program samples of 
undisputed authorship by the same programmer. There are several cases where 
the application of such a method could be of a major benefit, such as 
authorship disputes, proof of authorship in court, tracing the source of code 
left in the system after a cyber attack, etc. We present a new approach, called 
the SCAP (Source Code Author Profiles) approach, based on byte-level n-
gram profiles in order to represent a source code author's style. Experiments 
on data sets of different programming language (Java or C++) and varying 
difficulty (6 to 30 candidate authors) demonstrate the effectiveness of the 
proposed approach. A comparison with a previous source code authorship 
identification study based on more complicated information shows that the 
SCAP approach is language independent and that n-gram author profiles are 
better able to capture the idiosyncrasies of the source code authors. Moreover 
the SCAP approach is able to deal surprisingly well with cases where only a 
limited amount of very short programs per programmer is available for 
training. It is also demonstrated that the effectiveness of the proposed model is 
not affected by the absence of comments in the source code, a condition 
usually met in cyber-crime cases. 

1 Introduction 

Nowadays, in a v^ide variety of cases it is important to identify the author of a 
(usually limited) piece of code. Such situations include authorship disputes, proof of 
authorship in court, cyber attacks in the form of viruses, trojan horses, logic bombs, 
fraud, and credit card cloning etc. Although source code is much more formal and 
restrictive than spoken or written languages, there is still a large degree of flexibility 
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when writing a program [6]. Source code author identification is much harder than 
natural language authorship attribution or writer identification (of handwriting) or 
even speaker recognition. The traditional methodology that has been followed in this 
area of research is divided into two main steps ([5, 7, 1]). The first step is the 
extraction of software metrics representing the author's style and the second step is 
using these metrics to develop models that are capable of discriminating between 
several authors, using a classification algorithm. 

However, there are some disadvantages in this traditional approach. The first is 
that software metrics used are programming language dependant. For example 
metrics used in Java cannot be used in C or Pascal. The second is that metrics 
selection is not a trivial process and usually involves setting thresholds to eliminate 
those metrics that contribute little to the classification model. As a result, the focus in 
a lot of the previous research efforts, such as [1] and [5] was into the metrics 
selection process rather than into improving the effectiveness and the efficiency of 
the proposed models. 

In this paper we present an approach to source code author identification we call 
the SCAP (Source Code Author Profiles) approach, which is an extension of a 
method that has been applied to natural language text authorship identification [3]. hi 
the SCAP method, b3^e-level n-grams are utilised together with author profiles. We 
propose a new simplified profile and a less complicated similarity measure that 
proved to be quite effective even in cases where only limited training set is available 
for each author. Our methodology is programming language independent since it is 
based on low-level information and has been tested to data sets from two different 
programming languages Java and C++. Special attention is paid to the evaluation 
methodology. Disjoint training and test sets of equal size were used in all the 
experiments in order to ensure the reliability of the presented results. Moreover, the 
significance of the comments in the source code is examined. It is demonstrated that 
the effectiveness of the SCAP model is not affected by the absence of comments, a 
condition usually met in cyber-crime cases. 

The rest of this paper is organized as follows. Section 2 describes our approach 
and section 3 includes the source code author identification experiments. Finally, 
section 4 contains conclusions and future work. 

2 The SCAP Approach 

In this paper, we present the SCAP (Source Code Author Profiles) approach, which 
is an extension of a method that has been successfully applied to text authorship 
identification [3]. It is based on byte level n-grams and the utilization of a similarity 
measure used to classify a program to an author. Therefore, this method does not use 
any language-dependent information. 

An n-gram is an n-contiguous sequence and can be defined on the b3^e, 
character, or word level. Byte, character and word n-grams have been used in a 
variety of applications such as text authorship attribution, speech recognition, 
language modelling, context sensitive spelling correction, optical character 
recognition etc. In our approach, the Perl package Text::N-grams [4] has been used 
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to produce n-gram tables for each file or set of files that is required. The n-gram table 
contains the n-grams found in a source code file and their corresponding frequency 
of occurrence. 

The algorithm used, computes n-gram based profiles that represent each of the 
author category. First, for each author the available training source code samples are 
concatenated to form a big file. Then, the set of the L most frequent n-grams of this 
file is extracted. The profile of an author is, then, the ordered set of pairs {(xi; fi). 
(x2; f2),...,(xL; fO} of the L most frequent n-grams Xj and their normalized 
frequencies fi. Similarly, a profile is constructed for each test case (a simple source 
code file). In order to classify a test case in to an author, the profile of the test file is 
compared with the profiles of all the candidate authors based on a similarity 
measure. The most likely author corresponds to the least dissimilar profile (in 
essence, a nearest-neighbour classification model). 

The original similarity measure (i.e. dissimilarity more precisely) used by Keselj 
[3] in text authorship attribution is a form of relative distance: 

.2 
f r.. . r . r . y f^.r.r^.. r..^..^' 

n^ profile 

fl{n)-fl{n) 
f\{n)+f2{n) 

V 2 
/l(«)+/2(«) " Z J 

ne profile 

2(fl(n)-f2in)) 

f\{n) + /2(«) 
(1) 

where fi(n) and f2(n) are the normalized frequencies of an n-gram n in the author and 
the program profile, respectively, or 0 if the n-gram does not exist in the profile. A 
program is classified to the author, whose profile has the minimal distance from the 
program profile, using this measure. Hereafter, this distance measure will be called 
Relative Distance (RD). 

One of the inherent advantages of this approach is that it is language independent 
since it is based on low-level information. As a result, it can be applied with no 
additional cost to data sets where programs are written in C++, Java, perl etc. 
Moreover, it does not require multiple training examples from each author, since it is 
based on one profile per author. The more source code programs available for each 
author, the more reliable the author profile. On the other hand, this similarity 
measure is not suitable for cases where only a limited training set is available for 
each author. In that case, for low values of n, the possible profile length for some 
authors is also limited, and as a consequence, these authors have an advantage over 
the others. Note that this is especially the case in many source code author 
identification problems, where only a few short source code samples are available for 
each author. 

In order to handle this situation, we introduce the SCAP approach. It includes a 
new similarity measure that does not use the normalized frequencies fi of the 
n-grams. Hence the profile we propose is a Simplified Profile (SP) and is the set of 
the L most frequent n-grams {xi, X2,..., XL}. If SPA and SPp are the Author and 
Program Simplified Profiles, respectively, then the similarity distance is given by the 
size of the intersection of the two profiles: 

\SP^r^SPp\ (2) 
where |X| is the size of X. In other words, the similarity measure we propose is the 
amount of common n-grams in the profiles of the test case and the author. The 
program is classified to the author with whom we achieved the biggest size of 
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intersection. Hereafter, this similarity measure will be called Simplified Profile 
Intersection (SPI). We have developed a number of perl scripts in order to create the 
sets of n-gram tables for the different values of n (i.e., n-gram length), L (i.e., profile 
length) and for the classification of the program file to the author with the smallest 
distance. 

Table 1. The data sets used in this study. Program sample length is expressed by means of 
Lines Of Code (LOG) 

MacDonellC++ OSJaval NoComJava OnlyComJava 0SJava2 
No Authors 6 
Min-Max 
Samples per 5-114 
Author 
Total Samples 268 
Training Set 
Samples 
Testing Set 
Samples 
Size of 
smallest 
sample ( LOG) 
Size of biggest ^^^^ 
sample ( LOG) 
Mean LOG in 
Training Set 
Mean LOG in 
Test Set 
Mean 
LOG/sample 

134 

133 

19 

206.4 

213 

210 

8 

4-29 

107 

56 

51 

23 

760 

155.48 

134.17 

145 

8 

4-29 

107 

56 

51 

10 

639 

122.28 

95.92 

109.1 

6 

9-25 

92 

46 

43 

6 

332 

64.58 

56.48 

60.53 

30 

4-29 

333 

170 

163 

20 

980 

170.84 

173.03 

172 

3 Experiments 

3.1 Comparison with a previous method 

Our purpose during this phase was to check that the presented approach works at 
least equally well as the previous methodologies for source code author 
identification. For this reason, we run this experiment with a data set that has been 
initially used by Mac Donell [7] for evaluating a system for automatic discrimination 
of source code author based on more complicated, programming language-dependent 
measures. All the source code samples were written in C++. The source code for 
programmers one, two, and three were from programming books and programmers 
four, five, and six were experienced commercial programmers. Detailed information 
for the C++ data set is given in Table 1. The best reported result by Mac Donell [7] 
on the test set was 88% using the case-based reasoning (that is, a memory-based 
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learning) algorithm. Table 2 includes the classification accuracy results for various 
combinations of n (n-gram size) and L (profile size). In most cases, classification 
accuracy reaches 100%, much better than the best reported ([7]) accuracy for this 
data set (88% on the test set). This proves that the presented methodology can cope 
effectively with the source code author identification problem based on low-level 
information. 

More importantly, RX) performs much worse than SPI in all cases where at least 
one author profile is shorter than L. This occurs because the RD similarity measure 
(1) is affected by the size of the author profile. When the size of an author profile is 
lower than L, some programs are wrongly classified to that author. In summary, we 
can conclude that the RD similarity measure is not as accurate for those n, L 
combinations where L exceeds the size of even one author profile in the dataset. In 
all cases, the accuracy using the SPI similarity measure is better than (or equal to) 
that of RX). This indicates that this new and simpler similarity measure included in 
SCAP approach is not affected by cases where L is greater than the smaller author 
profile. 

Table 2. Classification accuracy (%) on the MacDonellC++ data set for different values of 
n-gram size and profile size using RD and SPI similarity measures 

Pro 

file 

Size 

1000 

1500 

2000 

2500 

3000 

RD 

100 

100 

98 

99 

56 

3 

SPI 

100 

100 

100 

100 

100 

RD 

100 

100 

100 

100 

100 

4 

SPI 

100 

100 

100 

100 

100 

RD 

100 

100 

100 

100 

100 

n-gram Size 

5 

SPI 

100 

100 

100 

100 

100 

RD 

100 

100 

100 

100 

100 

6 

SPI 

100 

100 

100 

100 

100 

RD 

100 

99 

100 

100 

100 

7 

SPI 

100 

99 

100 

100 

100 

RD 

99 

99 

100 

100 

100 

8 

SPI 

99 

100 

100 

100 

100 

Table 3. Classification accuracy (%) on the OSJaval data set 

Pro 

file 

Size 

1500 

2000 

RD 

88 

35 

3 

SPI 

100 

100 

RD 

100 

80 

4 

SPI 

100 

100 

RD 

100 

100 

n-gram Size 

5 

SPI 

100 

100 

RD 

100 

100 

6 

SPI 

100 

100 

RD 

100 

100 

7 

SPI 

100 

100 

RD 

100 

100 

8 

SPI 

100 

100 

Table 4. Classification 

Pro 

file 

Size RD 

500 94 

1500 35 

2000 33 

3 

SPI 

94 

98 

92 

I accuracy (%) 

RD 

94 

47 

14 

4 

SPI 

94 

90 

98 

on the NoComJava set 

RD 

94 

80 

20 

n-gram Size 

5 

SPI 

94 

98 

100 

RD 

94 

96 

31 

6 

SPI 

94 

98 

100 

RD 

92 

98 

61 

7 

SPI 

94 

98 

100 

RD 

92 

98 

78 

8 

SPI 

92 

98 

100 
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Table 5. C Classification accuracy (%) on the OnlyComJava data set 

Pro 
file 
Size 

1500 
2000 

RD 

98 
23 

3 
SPI 

98 

91 

RD 

98 
98 

4 
SPI 
98 

100 

RD 

98 
98 

n-gram Size 
5 

SPI 

100 
100 

RD 

95 
95 

6 
SPI 

95 
100 

RD 

95 
95 

7 
SPI 

95 
98 

RD 

95 
95 

8 
SPI 

98 
98 

3.2 The role of comments 

The experiments described in this section are based on a data set of open source 
programs written in Java. In more detail, source code samples by 8 different authors 
were downloaded from freshmeat.net. The amount of programs per programmer is 
highly unbalanced, ranging from 4 to 30 programs per author. The source code 
sample size was between 23-760 lines of code. In many cases, source code samples 
by the same programmer have common comment lines at the beginning of the 
program. Such comment lines were manually removed since they could (positively) 
influence the classification accuracy. The total number of programs was 107 and 
they were split into equally-sized training and test sets. Hereafter, this data set will 
be called OS-Java 1. 

This data set provides a more realistic case of source code author identification 
than student programs that have been used in similar studies ([2], [5]). Open source 
code is similar to commercial programs which usually have comments and they are 
usually well structured. Most of the open source programs are longer than the 
student programs. More importantly, this data set enables us to examine the role 
comments play in the classification model. We have decided to perform three 
different experiments on this data set. For this reason, we first filtered out any 
comments from the OS Java 1 data set, resulting a new data set (hereafter, called 
NoComJava). Then, another data set was constructed using only the comments from 
each source code sample (hereafter, called OnlyComJava). Note that in the latter 
case, the resulting data set includes fewer programs than the original because any 
source code files with no comments were removed. The OnlyComJava data set 
includes samples by 6 different authors with 9 - 2 5 files per author. Detailed 
information for OSJaval, NoComJava, and OnlyComJava data sets is shown in 
Table 1. 

The application of the proposed methodology to the OSJaval, NoComJava, and 
OnlyComJava data sets is described in Tables 3, 4, and 5, respectively. Notice that 
two different profile sizes are indicated (1500 and 2000) since they provide the best 
results (as has been demonstrated in previous study [2]). The classification results for 
the OSJaval data set are perfect for any n-gram size and similarity measure. This is 
mainly because the source code samples of this data set are relatively long. 
Moreover, for many candidate authors there is a sufficient amount of training 
samples. Interestingly, the accuracy remains at the top level when removing the 
comment lines of these samples (NoComJava data set). However, this stands only for 
the SPI similarity measure. RD fails to retain such performance in most cases. In 
more detail, for L=500, RD and SPI have (almost) identical performance. When L 
increases to 1500, the accuracy of RD drops for low values of n (n<6). When L 
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increases to 2000, the accuracy of RD drops for all values of n. This happens because 
at least one author has author profile shorter than the predefined value of L. RD is 
not able to handle effectively such cases. Note that the accuracy of SPI increases 
with L. This is a strong indication that the proposed SPI similarity measure better 
suits the source code author identification problem. On the other hand, when 
examining only the comments of each source code sample (OnlyComJava dataset), 
the RD similarity measure is more competitive, which indicates that it better suits 
natural language. 

Table 6. Classification accuracy (%) on the 0SJava2 data set 

Pro 
file 

Size 

1000 

1500 

2000 

2500 

3000 

RD 

93 

92 

31 

13 

14 

3 
SPI 

93 

92 

92 

93 

89 

RD 

93 

94 

72 

37 

13 

4 
SPI 

94 

94 

94 

94 

94 

RD 

95 

95 

95 

54 

24 

n-gram Size 

5 
SPI 

95 

95 

95 

95 

95 

RD 

94 

96 

95 

79 

38 

6 
SPI 

94 

96 

94 

94 

95 

RD 

96 

96 

95 

94 

58 

7 
SPI 

95 

97 

96 

94 

95 

RD 

94 

95 

96 

95 

75 

8 
SPI 

94 

95 

96 

95 

95 

Again, the best results are obtained using the SPI measure. Probably, this is 
explained by the extremely short samples that constitute the OnlyComJava data set. 

3.3 Dealing with many authors 

The previous experiments have shown that our approach is quite reliable is quite 
reliable when dealing with a limited number of candidate authors (6 to 8). In this 
section we present an experiment that demonstrates the effectiveness of the proposed 
method when dealing with dozens of candidate authors. For that purpose a data set 
was created by downloading open-source code samples by 30 different authors from 
freshmeat.net. Hereafter, this data set will be called 0SJava2. Details on this data set 
can be found in Table 1. Note that the available texts per author ranges from 4 to 29. 
Moreover, in average the samples of this data set are longer in comparison to the 
OSJaval. This data set includes programs on the same application domain written 
by different authors. In addition the samples of many authors are written over a long 
time period and therefore there might be programming style changes of certain 
authors. 

The samples were split into equally-sized training and test set. Note that the 
training set was highly unbalanced (as OSJaval). The best accuracy result was 
96.9% and has been achieved using the SPI similarity measure as can be seen in 
Table 6. Again, RD fails to deal with cases where at least one author profile is 
shorter than L. In most cases, accuracy exceeds 95%, using the SPI similarity 
measure indicating that the SCAP approach can reliably identify the author of a 
source code sample even when there are multiple candidate authors. The best result 
corresponds to profile size of 1500. 
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4 Conclusions 

In this paper, the SCAP approach to source code authorship analysis has been 
presented. It is based on byte-level n-gram profiles, a technique successfully applied 
to natural language author identification problems. This method was applied to data 
sets of varying difficulty demonstrating surprising effectiveness. The SCAP 
approach includes a new simplified profile and a less-complicated similarity measure 
that better suit the characteristics of the source code authorship analysis problem. In 
particular the SCAP approach can deal with cases where very limited training data 
per author is available (especially, when at least one author profile is shorter than the 
predefined profile size) or there are multiple candidate authors, conditions usually 
met in source code authorship analysis problems (e.g. source code authorship 
disputes, etc.) with no significant compromise in performance. 

More significantly, the role of comments in the source code is examined. The 
SCAP method can reliably identify the most likely author when there are no 
comments in the available source code samples, a condition usually met in cyber-
attacks. However, it is demonstrated that the comments provide quite useful 
information and can significantly assist the classification model to achieve quasi-
perfect results. Actually, the comments alone can be used to identify the most likely 
author in open-source code samples where there are detailed comments in each 
program sample. 

A useful direction for further work would be the discrimination of different 
programming styles in collaborative projects. In addition, cases where all the 
available source code programs are dealing with the same task should be tested. 
Finally, the visualization of the stylistic properties of each author could be of major 
benefit in order to explain the differences between candidate source code authors. 
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