
Designing a Solver for Arithmetic Constraints
to Support Education in Mathematics"^

Ana Paula Tomas, Nelma Moreira, and Nuno Pereira

DCC-FC & LIACC
University of Porto, Portugal

X-Capt, nam, nf p\}Qdcc. f c. up. pt

Abstract. We present a conditional rewrite system for arithmetic and
membership univariate constraints over real numbers, designed for com
puter assisted learning (CAL) in elementary math. Two fundamental
principles guided the design of the proposed rewrite rules: cognitive fi
delity (emulating steps students should take) and correctnesSf aiming
that step-by-step solutions to problems look like ones carried out by
students. In order to gain more flexibility to modify rules, add new ones
and customize solvers, the rules are written in a specification language
and then compiled to Prolog. The rewrite system is complete for a rel
evant subset of problems found in high-school math textbooks.

1 Introduction

To understand what people do when they do mathematics and write programs
emulating that process is a continuous research topic in Artificial Intelligence,
Automated Reasoning, and Symbolic Computation [3, 8]. Computer Mathe
matics is by now an established, although developing, subject. The challenge
is to make the systems, including Computer Algebra systems and Proof Assis
tants, more (mathematician-)£riendly [1]. Symbolic computation systems, like
the commercial packages Maple and Mathematica, are widely used, though
they can produce unexpected or wrong answers [1, 2, 5]. Nevertheless, in order
to reduce the eflPort of writing solvers, some web-based learning environments
and e-learning authoring tools support (unsafe) interaction with them [7, 10].
Those packages were not developed specifically for education, which makes it
diflficult to get them generate step-by-step solutions that are cognitive faith-
fdy i.e. that emulate the steps a student should take. In [2] a discussion
about design criteria of software for mathematics education is given. AG-
ILMAT - Automatic Generation of Interactive Drills for Mathematics Learning
(vvw.ncc.up.pt/AGILMAT/) - aims at the design and implementation of a sys
tem to automatically create and solve math exercises, continuing research work
reported in [9]. There, we introduced a prototype, called DEMOMATH, that also

Partially funded by FCT and POSI, co-financed by EC fund FEDER, under project
AGILMAT (contract POSI/CHS/48565/2002).

Please use the following format when citing this chapter:
Tomas, Ana Paula, Moreira, Nelma, Pereira, Nuno, 2006, in IFIP International Federation for
Information Processing, Volume 204, Artificial Intelligence Applications and Innovations, eds.
Maglogiannis, I., Karpouzis, K., Bramer, M., (Boston: Springer), pp. 433-441

434 Artificial Intelligence Applications and Innovations

yields one-line solutions for some exercises. Its solver is fairly ad-hoc, and can
not be eaisily adapted to present step-by-step solutions with pedagogic interest,
which motivated our current work. We propose a conditional rewrite system for
arithmetic and membership univariate constraints over real nimabers. To gain
flexibility, the rules are written in a specification language and then compiled
to Prolog. In the next section we recall basic notions of real-valued functions
and give examples of problems we want to automate. In Section 3 we intro
duce our representation for problems and constraints and show how to convert
membership to arithmetic constraints, and reciprocally. Section 4 is devoted to
the presentation of the proposed rewriting system, which was designed to be
complete for the problems that can be solved by analyzing the sign variation of
functions created by DEMOMATH.

2 Some Mathematical Background and Examples

We start with some notions about real-valued functions. E stands for the set
of the real numbers, a, 6, c, k for real constants, / , p, h for generic real-valued
functions over R, and x, y, z for real valued variables. As usual, Vf is the domain
of the function / , and its image (a.k.a., range) is f{Vf) = {f{x) : x € P / } .
We represent the restriction of f to D C Vf by flo and the inverse function
by /~^, if it exists. If / is strictly monotonic over Dy then flo is invertible. The
following table shows the basic functions studied in math at high school and
some of their properties, if we exclude the trigonometric functions and generic
polynomial functions i>oZon,...,ao • ^ *~* IDILô *̂ *-

Artificial Intelligence Applications and Innovations 435

/
id: xi-^ X
Ck '' Xh-¥ k
Pk :xi-^ kxj k^O

pola,b : a; !-• aar 4- &

pOW2n+l ' X i-^ a? "̂"*"̂

pow2n ' a; »-• x^^

Vf fiVf) Behavior in Vf
R
R
R

R

R
R

rodbn+i : x ^ ^'^^-^ R
rackn ' X1-^ ^ ^

o5s : a? h-> |a;|

ea;pa : a; i-^ a®

loQa : a; >-• log^ x

R
w
R

R

R

K

R

RjRj
R

R

R+

R+

R+R

strictly increase, odd
constant, even
strictly increases if AJ > 0
strictly decreases if A; < 0
odd
strictly increase if a > 0
strictly decreases if a < 0
odd if 6 = 0
strictly increases, odd
symmetric w.r.t. a; = 0
pow2n\^ strictly increase
even
strictly increases, odd
strictly increases
symmetric w.r.t. x = 0
o6s|g+ strictly increases
even
strictly increase if a > 1
strictly decreases if 0 < a <]
strictly increases if a > 1
strictly decreases if 0 < a < 3

Inverse function
id-' = id

—
Pk^ix^ Ix

i^C.b -^^^l^-z

POW2n-\-l=rad2n+l

(pow2n\^)~^ = rad2n

rad2n^i == pow2n-^i
rad^n = POW2n\^

{abs\^)-^=id\^

exp~^ = log a

lOQa^ = expa

Composition, sum, difference, product and quotient of functions are represented
by o, +, - , X and / . We have Vfog = Pp n {a: : g{x) € 2>/}, 2>/©p ^VfOVg
for 0 € {-!-, —, x} and T>f/g = 2>/ fl P^ \ {a:: ^(a;) = 0}. A piecewise fimction
/ is of form (/f, A)£=ij with n > 2, being f{x) given by fi(x) If x e Di.

Drills and practice We now give some ̂ camples of exercises we are interested
in automating. The first ones are from a high school math textbook (grade 11).
To create the two last ones and get their solution we have used AGILMAT
(available at www.ncc.up.pt:8080/Agiliaat/).

- Find the domain of /(x) = ̂ _f^^^
- Express g{x) = |a; — l|-f-|a; + l|-|-aj without using the absolute value function.

Solve g{x) < |a; + 3|. ^

- Study the sign variation of — y ^^z|^z^ — 1 for a; € M. (Solution: Negative
in] — 00, — |] U {0} (the domain of the expression)).

-Solve (2 \'-x^-2x + l\f {2x^-x^-3) ^ 0 foi x e R. (Solution:
] - o o , o o [\ { - l - V 2 , - i v ^ , - l + %^,ix/6})

436 Artificial Intelligence Applications and Innovations

3 Constraints and Problems

We would like to solve problems that may involve arithmetic and member
ship constraints, because both types coexist in some math problems. We define
atomic and complex constraints as follows.

The atomic arithmetic constraints are either of the form f{x) ^ g{x) and
f{x) ^ k with ^ € {=, ̂ , > , < , < , > } , / and g are real valued functions on reals
and k m & ground axithmetic-term. The atomic membership constraints are of
form f{x) ^ S with ^ € {€, ̂ } and 5 is a groimd set-term. The conjunction
and disjunction of a finite number of constraints in the variable a; is a (complex)
constraint C{x).

We often write C instead of C(a;), since we will addr^s only problems that
involve a unique variable. We use ^"^ to denote the inverse of the binary
relation ^ , for ^ € {=, f̂ , <, >, >, <}. We inductively define the domain of cons
traint C (denoted by VQ) by P/(a:)^^(x) = ^ / H Vg, T>f{x)4k = ^f{x)4S = %>
'^^Z.tOi = nS=i2>Q and PvtL.a = Uf^iPci-

The problem P of finding all a; € -D that satisfy the constraint C is denoted
by a tuple (C^x^D). A problem is in solved form iff it is {id{x) € D^x^D)
and D is then called the solution set of the problem. (For short, we shaU write
{x € D^ Xj D) instead.)

3.1 Membership versus Arithmetic Constraints

It is important to be able to convert membership to arithmetic constraints
and reciprocally. For that we define two representations for sets. A set is in a
standard form if it is either 0 or the union of a finite sequence 5 i , . . . , 5n of
non-empty intervals and/or finite sets of E, that are pairwise disjoint and such
that sup(5t) £ inf(5i+i) for all 1 < i < n and if sup(iS'i) = inf(5i+i) then
sup(5i) ^ Si and iBf{Si+i) ^ Si^i. The infimum and supremum of each set
may be — oo and -foo. A constraining set m a subset of E that may be written
in standard form.

Although the constraining sets do not fully repr^ent all subsets of E, they
cater for the mast frequent types of sets that occur in notath drills, if trigonom
etry is excluded. This standard form is like a picture of the set in the real
axis.

Example 1. The set ([-3, -1[U{2,17} U [8,11[U]11,14[) \ {10} is a constraining
^ t and it standard form is [-3, -1[U{2} U [8,10[U]10,11[U]11,14[U{17}.

We now introduce the reduced normal form which gives a more compact
arithmetic repr^entation of each constraining set, being thus relevant for CAL.
The reduced normal form is unique. A constraining set is in reduced normal form
(mf) iff it is given in one of the following forms: E, 0, a finite non-empty set,
UjLiSi, E \ 5n+i, (UJLiSi)\Sn+i,((U?=i5i)\5n+i)U5n+2, or (UjLiSi)U5„+2,
for a finite sequence of non-empty and non-universal intervals Si,,.,,Sn with
sup(5i) < inf(iS'i-i.i), for 1 < i < n and Sn+uSn+2 non-empty disjoint finite

Artificial Intelligence Applications and Innovations 437

sets such that iS'n+i C Ug=i5i and Sn+2 H {Si U{inf (5^), sup(5i)}) = 0, for every
i < n.

Example 2. mf([-3,-l[U{2,17}U[8,ll[U]ll,14[)\{10}) = (([-3,-l[U[8,14[)\
{10,11}) U {2,17}.

Let «S| denote the set {x € R : a; ̂ fe}, for fc € E and ^ € {=, 7̂ , >, <, <, >}.
E.g., 5>^ is [-3, +oo[, a n d 5 | and «Sj are]—00,5[and 1R\{2}. To help transform
membership constraints into arithmetic constraints we introduce n that writes
sets given in reduced normal form in terms of S^% for suitable A;*s and ^'s and
is defined as follows.

The map n is given by: ri(E) = E, ri(0) = 0, ri({ai,..,,an}) = U?=i52?,
Ti([a,+oo[) = 5 | , ri(]-oo,a]) = 5 5 , ri(]a,+oo[) = 5^, Ti(]-oo,a[) = 5^,
ri([a,6]) = S% n 5 | , ri([a,6{) = 5 | n 5 ^ , ri(]a,6]) = 5^ n 5 | , ri(]a,6[) =
55n5^,fora,5€E,and,Ti(E\{ai . . . , a j)) = n|Li5^Sri(A\{ai ...,an}) =
ri(.4) n (n|Li5^0, for A ^ E, and ri(UjLi.4i) = \J^^^Ti{Ai).

This transformation n is quite convenient to convert f{x) € S into an
arithmetic constraint, for 0 ^ iS* ^ E.

The transformation T2 acts on membership constraints f{x) € 5, for 5
presented in terms of 5^'s, being inductively given by: T2{f{x) € E) = {f{x) €
K), r^Uix) e 0) = Oix) 6 0), T2(/(a;) € S%) = {/{x) < fc), r2(/(x) €
Ut i^ i) = (V.tLir2(/(a;) € Si)) and T2(/(X) € n^Si) = (A?=ir2(/(x) € 5^)).
Each of these reductions between different set representations was implemented
in Prolog. We reused a module developed for DEMOMATH for operating cons
training sets in standard form [9]. Union, intersection and set difference are
translated by cup, cap and setminus. Some ĵnoaboMc representations were in
troduced for 5^, e.g., s (real) , s ([]) , s(K,eq), s (K, l t) , s(K,leq). Exact
arithmetic for a subset of E is supported also by a module defined for DEMO
MATH, that uses CLP(Q) for some computations [6].

For every given constraining set S (s.t. 0 ^ S ^ R) and function / , we
shall write r{f{x) € 5) as an abbreviation of T2{f{x) € Ti(mf (5))). Clearly,
'7"2(/(aj) € ri(mf (5))) is an arithmetic constraint that is equivalent to f{x) € S.
Because we consider that a; € 5 is simpler than r{x € 5), we introduce yet
another transformation F defining it by r{id{x) e S) = {id{x) € mf (5)) and
rif{x) eS) = r(/(x) e 5), for / ^ id.
Proposition 1. For all constraining sets S, {f{x) € S^x^D) is equivalent to
(r{f{x)€S),x,D).

Example 3.1fS= (-3, -l[U[8,ll[U]ll,+oo[), we may rewrite, r{f{x) e S) as

rif{x) e 5) = T2{fix) e n{{[-3, -i[u[8,+oo[) \ {ii})) =
= r2if{x) e ((5>3 n 5<i) u 5«) n 5̂)̂ =
= am > - 3 A fix) < -1) V fix) > 8) A fix) jt 11

If / is rods opol2,-7, i.e., fix) = ^2x — 7, for solving (fix) e 5, x,R), students
transform the membership constraint to arithmetic constraints. Our solver does
the same thing.

438 Artificial Intelligence Applications and Innovations

Each atomic constraint C = (f{x) ^ fc) or C = {f{x) ^ 5) , is ^uivar
lent to {f{x) € c t rSe t (C)) , for ctrSet(C7) given by ctrSet(/(a;) e S) = S,
ctrSet(/(a;) 9̂ 5) = E \ 5 and ctrSet(/ (a;) ^ k) = S^. So, c t rSe t (C) is
a constraining set that contains f(x) if C holds. We also introduce a partial
function nf that writes some constraints to a standard form: nf (/(a;) ^ p) =
ir{f{x) € ctrSet(/ (a;) ^ p))) for ground 0 and nf ((g)^gj(/(aj) ^ i A)) =
ir{f{x) e ®^gjCtrSet(/(a;) ^ i pi))) for ground Pi, Here V = U and A = H.

4 Solving Problems

To design pedagogically relevant solvers we cannot manipulate problems and
constraints in an arbitrary way. The rewrite rules we propose use some ex
tra mathematical knowledge, e.g. about functions behavior, and, if applicable,
transform a problem into an equivalent one, under some specific conditions.
For instance, the rule BOUNDRANGB checks whether an atomic constraint is
valid or inconsistent based on functions range. It states that: for any generic
Junctions f and g, f T^ idj and any ground set-term or ariikmetic'term /?, if
D C Vfog and S is such that fiPf) Q S then

((/ o g)(x) ^ p, X, D)-^{x€ D,x, D) if ctrSet((/ o g){x) ^ p) 2 S;
((/og){x) ^ p,X,D) --* (a; € 0,x,0> if c t rSe t ((/og) (x) ^p)ne = 0;
{(/ o g)ix) ^ p, X, D) ^ {r{{f og)(x)eSn s), x, D)

if ^ ^ {=, ^ } , 0 ^ 5 n £ # 5 ond 5 2 ^r where S = ctrSet((/ o g){x) ^ P).

The rewrite rules look like P -^ P' if condition although some preconditions
were stated in a global head. This kind of mathematical representation d o ^
not make clear the intended operational reading of each rule. Implicit meta
knowledge should be made explicit in order to be able to explain solution steps.
Because of that, and to gain also more flexibility to modify rules, add new ones
and customize solvers to different users or curricula, we developed a language for
specification of rewrite rules. The corresponding formulation of BOUNDRANGE
looks as follows. Relevant conditions for writing explanations are annotated
with (#) .

BOUNDRANGE(P)

begin
is-atomic(P: ctr) , is-ground(P: c t r : rhs),
subseteq(fimc_dom(P: c t r : llis: f tmc) ,P : dom),
(#)P :c t r : lhs : f imc - ? F o G , J F - ? i d ,
E : - (#)boundImage(F,fimc-dom(P)),
S : - {#)ctrSet(P:ctr)
if (#)supseteq(5,E), (#)note("valid %", P : c t r)

rewrite-to s^rob(P: var, inset ,P: dom)
eHf (#)seteq(5 cap JE,s(n)), (#)note("inconsist«it %", P : c t r)

rewrite_to sJ^rob(P: var,liiset,s (D))
else ! inMst (P: c t r : op, [eq,ziec[]),

(#)note("nec^sarUy %", ctr(P: c t r : Ihs: fTmc,P: var,iiiset,E cap S)),

Artificial Intelligence Applications and Innovations 439

!seteq((#)rnf(^ cap 5),5) rewrite-to
prob(tgni(ctr(P: ctr: Ihs: f imc,P: var,ias©t,J5 cap S)) ,P: var,P: dom)

endif
end

The specification language is a functional language with implicit types. Primi
tive (data)typ^ axe boolean, real, set, f\mctioii, coEstraint and problem.
Ail built-in constructs are typed and every rule definition must be type checked.
Due to space limitations we can not describe its details in this paper. The def
inition of a rule consists of a name, a parameter (of type problem) and a se
quence of conditions followed either by a nested if-block or by a rewrite_to
exp, where exp corresponds to the r^ulting problem, if no condition is false.
Atomic conditions will allow the specification and the verification of mathemat
ical knowl^ge as relations between functions, sets and real numbers; equality
of problems or constraints; properties of functions; transformations and com
putations, etc. Each rule is compiled to a Prolog predicate. The if-block is
translated to an auxiliary predicate, whose clause correspond to the branches
of the if-block. A single branch may succeed. Besides defining the rewrite rules,
we need to specify how they are applied for solving problems. For that we use
the notion of strategy [4]. A trivial strategy is to try to apply all available
rules until either a solved form or an upper bound on the nmnber of steps (rule
applications) is reached. But other strategies may be defined.

4.1 Cognitive faithful rewriting rules

We now present some of the rewrite rules, that contribute to the novelty of this
work. The whole set is complete for a set of problems arising in high-school
math curricula and that can be generated by DEMOMATH. The grammar that
describes the arithmetic expressions involved in them is pr^ented in [9]. For
space reasons, we omit their formal definition, except for a few, presenting their
aim instead. We start by REDUCEPROBDOMAIN, that says that solutions must
hem DnVc' Then, we give four rules for handling complex constraints and
the rules for atomic constraints, omitting BOUNDRANGE.

ReduceProbDomain To giiarantee that solutions are m Df) Vc*
SplitConstraints To rewrite several top level conjuncts (or disjuncts).
AggregateNormalize To rewrite several atomic constraints f{x) ^i Pi, that

occur at top level, to a simpler form (may detect inconsistency/validity).
Conjunctive To rewrite a single conjunct at top level.
Disjimctive To rewrite a single disjunct at top level.
ArithNormalize To convert a single membership constraint to an arithmetic

constraint if the latter is simpler.
DefRealValuedFunc To rewrite membership constraints f{x) € S or f{x) ^ S

for 5 = 0 or 5 = R, to solved form.
DomainAtomConstr To rewrite a constraint {x ^ /3) to solved form.

440 Artificial Intelligence Applications and Innovations

ConstantPunc To rewrite a constraint involving the constant function to a con
straint f{x) ^ fc or to a solved form.

StrictMonotonic To rewrite (/ o g){x) ^ A; to a simpler form when / is strictly
monotonic.

AxialSymMonotonicBranch To rewrite {fog)(x) ^ A; to a simpler form when /
is symmetric w.r.t. x ^a^ strictly monotonic on Vj°' (i.e., the set of points
in Vf that are greater than or equal to a).

We also introduce five specific rules AfRneTransf, Power, Absolute-
Value, Quadratic, Radix to rewrite ifog){x) ^ A; to a simpler form, when / is
Pola,bi poWn, G&s, pola,b,c and rodn* Although they are instances of the Strict
Monotonic and AxialSymMonotonicBranch, these more advanced rules
are best suited for handling generic functions, once students have already stud
ied their behavior. For all but pola.b and pow2n+i (whose range is R), conditions
are imposed to disallow their application if it can be trivially deduced that the
constraint is inconsistent (by using BoundRanpe). For example, Absolute-
Value is defined by {{abs o f){x) ^ k, x, D) -> (r{f{x) € B^^), x, D) if A; € E
and A; > 0, where Bf̂ ^ is {a; € E : |a: - a| ^ J}. That is, B { ^ = S^^ U S'^A,

if J > 0, and ^G {>, >}, Bi^^ = S^^ n S^A, if (̂ > 0 and ^€ {<, <}, and so
forth. The following rules handle constraints involving sum, product, difference
and quotient of functions and also the piecewise function.

Piecewise To replace a constraint that involves a piecewise function / , given
by / = (/i,£)»)|Li, by a disjimctive constraint induced by the relevant
branches /i's.

ProductByConstant To rewrite (c^ x f){x) ^ AJ' to a simpler form.
DiffSquare To factorize a difference of two squares {jfxmNog—p(m}M^K){x) ^ 0,

for N and M even.
NuUProduct To simplify a constraint by applying the rul^ for null product

and sign of a product.
FactMonotonic To simplify constraints {f o g)(x) < (/ o h){x) when / ^ id is

strictly monotonic. It is useful for solving radn{X) < radn{Y) for instance.
FactOdd To simplify (/ o g){x) ^ ((- /) o h){x) when f ^idm odd. It states

thBt: {{fog){x) ^ {{-f)oh){x\x,D) ^ {{f og){x) ^ {f o (-h)){xU,D)
if f ^ id m an odd function and g^h.

ToHomQuotient To rewrite {f/g){x) ^ A; to (/ - CA- x g)/g){x) ^ 0.
DiffMono To rewrite {f o g - f oh){x) ^0 to {f o g){x) ^ (/ o h){x) when / is

strictly monotonic.
SignDiff To rewrite f{x) ^ g{x) to (/ - g){x) ^ 0.
SumNuU To simplify (/ 4- Sf)(a;) = 0 and (/ 4- g)(x) ^ 0 when the ranges of /

and g are both in E^ or E j .
SquarePol To simplify constraints of form {rad2 o / — 5)(a?) ^ 0 and {rad2 o

f)ix)^gix).
We need the last rules to guarantee the solvers completeness for the expressions
that DEMOMATH creates. The solvers will not support user-defined expressions

Artificial Intelligence Applications and Innovations 441

/(a;), unless they may be recoffnized by the system. Simple algebraic manipu
lations may be carried out to express / in terms of a different combination of
primitive functions.

AppUcations of CAL to math education require a careful analysis of proce-
dinres that students usually apply to solve math drills to d^ign generic solvers
with pedagogic relevance. We claim that solvers based on the proposed rewrite
rules set fulfills this requirement. The system is being implemented in Prolog.

References

1. H. Barendregt. Towards an Interactive Mathematical Proof Language, in F. Ka-
mareddme (ed.), Thirty Five Years of Automafh, Kluwer (2003) 25-36.

2. M. Beeson. Design Principles of Mathpert: Software to support education in al
gebra €UQd calcultis. In N. Kajler (ed.), Computer-Human Interaction in Symbolic
Computation^ Texts and Monographs in SymboUc Computation, Springer-Verlag
(1998), 89-115.

3. A. Bimdy. The Computer Modelling of Mathematical Reasoning. A. Press (1983).
4. H. Cirstea, C. Kirchner, L. Liquori, and B. Wack. Rewrite strategies in the rewrit

ing calculus. Electr, Notes Theor. Comput ScL, 86:4 (2003).
5. H. Gottliebsen, T. Kelsey, U. Martin. Hidden Verification for Computational

Mathematics. J. Symbolic Computation 39 (2005) 53^567.
6. C. Holzbaur. OFAI clp(q,r) Manual, Edition 1.3.3. Austrian R^earch Institute

for Artificial Intelligence, TR-95-09, Vienna (1995).
7. E. Melis, E. Andres, J. Biidenbender, A. Prischauf, G. Goguadze, P. Libbrecht,

M. Pollet, C. Ullrich. ActiveMath: A Generic and Adaptive Web-Based Learning
Environment, Int. J. of AI in Education 12'A (2001) 385-407.

8. A. Robinson, A. Voronfeoy (Eds). Handbook of Automated Reasoning^ Elsevier
Science (2001).

9. A. P. Tomas, J. P. Leal. A CLP-Based Tool for Computer Aided Generation and
Solving of Maths Exercises. In V. Dahl, P. Wadler (Eds), Practiced Aspects of
Declarative Languages, 5th Int Symposium PADL 2003^ LNCS 2562, Springer-
Verlag (2003) 223-240.

10. G. Xiao. WIMS - An Interactive Mathematics Server, Journal of Online Mathe
matics and its Applications 1, MAA (2001).

