
MDA-Based Architecture of a Description 
Logics Reasoner 

Nenad Krdzavac^ Dragan Duric ,̂ Vladan Devedzic^ 
1 Faculty of Electrical Engineering, University of Belgrade, 

Bulevar ICralja Aleksandra 73, 11 000 Belgrade, Serbia and Montenegro 
nenadkr@galeb.etfbg.ac.vii 

2F0N - School of Business Administration, 
Dept. of Information Systems and Technologies, Univ. of Belgrade 

FOB 52 Jove Ilica 154, 11000 Belgrade, Serbia and Montenegro 
dragandj@gmail.com, devedzic@fon.bg.ac.yu 

Abstract. The paper presents the architecture and design of a description 
logics (DLs) reasoner based on the Model Driven Architecture (MDA) 
methodology. The architecture relies on OMG's description logics metamodel, 
tableau metamodel, and model transformations using a language for model 
transformation. We show an example of DLs knowledge base using UML 
notation in context of MDA. The idea can be easily applied to implementation 
of a first-order logic theorem prover. The paper does not discuss 
implementation details of reasoning algorithms and the reasoner performance. 

1 Introduction 

Almost every software project needs an analysis of the range of problems that the 
software being developed should solve [13]. One way is to specify and build the 
system using modeling tools. For example, a modeling tool such as UML supports 
full development life-cycle of such software: design, implementation, deployment, 
maintenance, evaluation, and integration with other systems [16]. Model Driven 
Architecture (MDA) is an approach to IT system specification that separates the 
specification of functionality from the specification of implementation on a specific 
technology platform [10]. 

The basic notations in description logics (DL) are concepts (unary predicate) and 
roles (binary predicates) [2]. One of the most important constructive properties of 
DLs is their reasoning services, which can be applied for reasoning with ontologies. 
Some publicly available implementations of DLs reasoners [7], [6], [15] can reason 

Please use the following format when citing this chapter: 
Krdzavac, Nenad, Djuric, Dragan, Devedzic, Vladan, 2006, in IFIP Intemational Federation for 
Information Processing, Volume 204, Artificial Intelligence Applications and Innovations, eds. 
Maglogiannis, I., Karpouzis, K., Bramer, M., (Boston: Springer), pp. 98-105 



Artificial Intelligence Applications and Innovations 99 

with ontologies, but the authors of those reasoners did not implement their reasoners 
using advanced model engineering techniques (such as MDA) and current software 
engineering standards. 

The goal of this paper is to describe the architecture of a description logics 
reasoner in an MDA environment, and some benefits of using that methodology to 
implementant that kind of software. We suggest possible applications of such 
description logics reasoners as plug-ins to intelligent systems (we exemplify it by the 
AIR system [5]), or in intelligent analysis of students' solutions in Web-based 
intelligent tutoring systems (ITS). 

In section 2, we describe basic concepts of Model Driven Architecture (MDA) 
and refer to basic research papers where readers can fmd useful information about 
that methodology. Section 3 is the main section in this paper and describes the 
architecture of a description logic reasoner. That section also explains some benefits 
of using MDA in the implementation of the reasoner. We show a method for 
implementing the reasoning algorithms for description logics based on the Atlas 
Transformation Language (ATL) [8] that is an altemative to OMG's standard [14] 
for model transformations. Within the scope of section 3, we describe basic concepts 
of description logics and give example of a DL based knowledge base in DL syntax 
and in UML notation. 

2 Model Driven Architecture 

Model Driven Architecture (MDA) is defined as a realization of model-engineering 
principles proposed by Object Management Group (OMG) [11]. According to [3], 
there are a few central properties of the MDA: 

1. Four layer architecture and relationships among them (see Fig. 1). 
2. Transformation among the models on the same layers Ml and M2 
3. XML-based standard for sharing metadata, called XMI 

The top-most layer (M3) is called meta-meta model layer and OMG has defined a 
standard at this layer as well - MOF (Meta Object Facility). According to [10], MOF 
is the language intended for defining meta-models at M2 layer. 

MOF defines a set of reflective APIs consisting of reflective interfaces. Java 
Metadata Interfaces (JMI) is a realization of the standard called JSR040 [4], and JMI 
defines Java programming interfaces for manipulating MOF-based models and 
metamodels [4], JMI interfaces allow users to create, update, and access instances of 
metamodels using Java language. 
In terms of MDA, a metamodel makes statements about what can be expressed in the 
valid models described in a certain modeling language. Examples of a metamodels 
are UML metamodel (Fig. 1) and OMG's Description Logics metamodel (Fig. 2) 
[13]. The next layer is the model layer (Ml) - the layer where we develop real-world 
models. In terms of UML, it means classes and relationships among them. MDA 
layers are called linguistic layers, but the concepts from the same linguistic layer 
belong to different ontological layers [1]. 



100 Artificial Intelligence Applications and Innovations 

There is an XML-based standard for sharing metadata that can be used for all of the 
MDA's layers. This standard is called XML Metadata Interchange -XMI [12] (Fig. 
!)• 

The object-oriented paradigm uses the terms 'HnstanceOf and 'Hnherits'' to 
describe relations between classes and objects. Model engineering uses the terms 
''representedBy and ^^conformantTd" [3] to establish relations between the models 
in MDA layers (see Fig. 1). Model-based engineering and object technologies in 
software development can be viewed as complementary approaches [3]. 

Modei Driven Architecture 

i / 

1VI3 

XVI2 

IV I l 

Meta-metamodet (MOF) 

Metamodel (UML, CWS) 

Models, Model Instances 

Real-World things 

M 3 

M 2 

M 1 

1 MOF 

X> -5 
Desscription Logics 

/^- xV ,.-' 
rtje»crrpra,rj rwla^on "i 

Conforms To 

ATL Transfodfiiilioo 

Taiileim 

" " • \ 

Models j 

Fig. 1. Four layer architecture of MDA 
(see [3]) 

Fig. 2. Architecture of a Description Logic 
Reasoner 

3 MDA-based Architecture of a Reasoner 

Our DL reasoner is based on the DLs metamodel, proposed by OMG consortium 
fwww.omg.org) [13], and on the tableau metamodel (Fig. 2). 

Some publicly available DL reasoners are successfully implemented in object-
oriented technology [15], or in the LISP programming language [6], [7] for very 
expressive description logics. The authors of such reasoners did not follow software 
engineering standards, i.e. they did not describe the models of the reasoners in the 
standard UML notation. The advantage of using such modeling tools is in supporting 
the full life cycle of software: design, implementation, deployment, maintenance, 
evaluation and integration. UML supports MDA concepts of software development. 
Implementation of a MDA-based reasoner includes a few steps: 

1. Building the tableau metamodel for description logics; 
2. Implementating the repository for OMG's DLs metamodel and the tableau 

metamodel; 
3. Implementating the reasoning algorithms using model transformation. 

The tableau metamodel can be built using UML. The tableau algorithm uses a tree 
(T) to represent the model being constructed [7], hence the Composite design pattern 
can be used in describing the tableau metamodel. 



Artificial Intelligence Applications and Innovations 101 

3.1 UML Model of Description Logics Knowledge Bases 

The basic notations in description logics (DL) are concepts (unary predicate) and 
roles (binary predicates). Specific description logic is mainly characterized by a set 
of constructors that provides to build more complex concepts (concept expressions) 
and role expressions [2]. A knowledge base (KB) developed using DL consists of 
two components, TBox and ABox. Reasoning in description logics (such as 
satisfiability) is based on tableaux algorithm [7]. A plenty of details in the field of 
description logics and reasoning can be found at [2]. 
There are two ways to represent a DL-based knowledge base: 

1. Using UML language to describe a model that conforms to DLs 
metamodel (Fig. 2) 

2. Using the definition of the knowledge base and syntax of DLs languages. 
Example describes a TBox of family relationships. The first part of the example 
describes family relationships using DL notations, but the second one describes them 
in UML and represents a UML model that conforms to DL metamodel proposed by 
0MG[13]. 

Example 1: Suppose that nouns Human, Male and Parent are atomic concepts and 
hasChild is an atomic role, than means that every Male is Human but not vice versa 
(Formula 1). Concept definition represents all Fathers that have only male children 
(Formula 2). 

Male c Human (1) 

Father=Male n VhasChild.Male (2) 

j tefm_' 

fe^E 

{erm_l' 

'il.^fus'mm. 

fonstructor 

<on'>tructoi 

.Definition 

Intersection 

i f l d u a m 

M.̂ le (^ncept 

teira_2 

.ed£>ipi,9.n<.iffin, i 

t e r m j 

Human Concept 

'-̂:i 
f Xwm_\ teim_2\ 

Fig. 3. The "Father" model in the MDA technological space [Online]. Available: 
http://www.gentleware.com/index.php 

The same knowledge base can be expressed using UML language but in MDA 
environment. Fig. 3. The model shown in Fig. 3 belongs to the Ml layer of the 4-
layer MDA (Fig. 2 and Section 3) and conforms to the OMG's DL metamodel. 



102 Artificial Intelligence Applications and Innovations 

The semantics (Tarski style) of formulas (1), (2), and semantics of DL model (Fig. 2 
and Fig. 3) are the same. According to OMO's ODM proposal [13], the concepts 
Father, Male and Parent, represented in Fig. 3 in UML notation, are instances of the 
metaciass Concept. Term_l and Term_2 are association ends in association relation 
between the metaclasses Term and Expression. Term_l represents dyadic 
constructor, but Term_2 represents monadic constructor [13], 

3.2 Implementation of the Repository for Description Logics and Tableau 

Metamodels 

The repository is used for storing and retrieving the models that conform to both DLs 
and tableau metamodels. It is built using the Metadata Repository (MDR) for 
Nets cans project fwww.mdr.netbeans.org) and Java metadata interfaces (JMI). 
According to [4], the JMI specification defines Java mappings for MOF. The 
repository provides standard services for creating, accessing, updating, deleting and 
validating metadata. There are a few steps in implementing the repository for both 
metamodels: 

1. Converting the UML metamodels into MOF metamodels; 
2. Generating JMI interfaces for both metamodels; 
3. Instantiating the models in the repository. Imported models conform to 

both metamodels (Fig. 2). 
Using Poseidon for UML tool fwww.gentleware.com), the metamodels can be saved 
in the XMI format. The uml2mof.jar tool (www.mdr.netbenas.org) can be used to 
generate MOF metamodels. 
In spite of all the advantages of OMG's DL metamodel [13] and the defined tableau 
metamodel, there are also several practical problems related to the implementafion of 
the repository for both metamodels: 

1. Association ends of the composition relation between the metaclasses 
Assertion and Instance [13] have the same name. When we generate JMI 
interfaces in the association proxy interface we find objects that for 
different metaclasses have the same name, so we have to change them 
manually. 

2. Association ends between the metaclasses Term and Expression [13] do 
not have names, so we have to name them, as we could not generate JMI 
interfaces. 

3. The DL meta-model cannot support a very important class of DLs called 
description logics with concrete domain [2], as it does not have 
metaclasses defined in their definitions of both syntax and semantics. 
Accordingly, the meta-model would not be able to support reasoning 
with a knowledge base in such logics. 

4. During the generation of JMI interfaces all the OCL constraints were 
ignored and we had to implement the constraints manually. 

There are a few advantages of using the MDA methodology to implement the 
reasoner, wrt. classical object-oriented programming or LISP programming 
language: 



Artificial Intelligence Applications and Innovations 103 

1. Automatic transformation of the model-driven system, from higher-level 
abstract models to object-oriented models, to a running system. 

The metamodels are built using UML. MDR NetBeans Explorer 
(wAvw.mdr.netbeans .org) enables generating JMI interfaces according to JSR040 [4] 
standard. These interfaces allow for handling the models at the Ml level (Fig. 2). It 
cannot be done using object-oriented methodology or LISP programming. 

2. Some publicly available reasoners [15] implemented in object-oriented 
technology used ontology parsers. In our implementation, parsers are not 
used. 

3. Reasoning algorithms, such as checking for consistency, are 
implemented using data structures like trees or hash tables [15]. In this 
solution, tableau can be represented using XML 

Tableau model can be described using XML Metadata Interchange. XMI has a tree 
structure - every tableau model is a tree [2]. Because of this similarity, it is easy to 
describe a tableau model (which conforms to the tableau metamodel) using XMI. 
JMI interfaces generated for tableau metamodel are used for creating, accessing, 
updating, deleting and validating tableau models according to JSR040 standard [4]. 

4. Existing publicly available reasoners [7], [6] may not be integrated in 
today's intelligent metamodeUng frameworks, like AIR [5] or intelligent 
web-based education systems as plug-ins, especially if such a reasoner 
should be plugged into the Eclipse Modeling Framework (EMF) 
(www.eclipse.org). 

5. Suitability for making ftirther extensions of the reasoner. 
Reasoners hke PELLET [15] or FACT [7] are YES/NO sort of software. Their 

reasoning algorithm for consistency answers only Yes or No when checking the 
consistency of ontology. It is difficult to use them that way in, e.g., intelligent 
analysis of the semantics of students' solutions in intelligent web-based educational 
systems [9]. Using JMI interfaces, generated from the tableau metamodel, the 
tableau model may be analyzed to fmd useful information about the students' 
solutions in cases when the students give wrong answers. 

3.3 Implementation of the Reasoning Algorithms 

A transformation from one model to another is the key technology in the MDA 
paradigm [3]. OMG proposed a standard [14] for model transformation. Three vital 
subjects of the proposal that ensure the fiill realization of MDA are: 

1. Queries: Take as input a model, and select specific elements from that 
model. 

2. Views: Represent models that are derived from other models. 
3. Transformations: Take as input a model and update it or create a new 

model. 
The Atlas Transformation Language (ATL) [8] is an answer to the OMG's QVT 
RFP [14]. A plenty of useful details about the language is described in [8]. This 
section describes only some benefits of using such a language for implementing the 
reasoning algorithms. Some of these advantages are: 



104 Artificial Intelligence Applications and Innovations 

1. ATL can be integrated in the Eclipse Modeling Framework (EMF) 
(www.eclipse.org/gmt) as a plug-in. 

ATL is a declarative and hybrid language. The syntax of the language can be 
integrated into a Java-based environment. It means that the reasoning rules for 
description logics can be written directly in some Java environment using the 
expressive power of the language. In the EMF environment, the ATL code can be 
run and debugged. 

2. A transformation model in ATL is a set of transformation rules and Boolean 
operations. 

Reasoning algorithms, based on the tableau for description logics, are based on a set 
transformation rules [7], including Boolean operations. The ATL language supports 
set and Boolean operations. The syntax and semantics of the language are described 
in [8]. 

3. During the generation of JMI interfaces, all OCL constraints were ignored. 
We have to implement them manually. 

The ATL language is implemented with respect to the OCL standard. 
4. ATL is compatible with JMI interfaces. 

ATL transformation model is first read using the ATL parser and loaded into Java 
meta-data repository which is based on a JMI compliant repository. The generated 
JMI interfaces for both metamodels can be integrated into the ATL language and 
help in the implementation of the reasoning rules. The interfaces support extension 
of the rules for very expressive description logics. Although mainly intended to deal 
with MDA models (based on MOF meta-models and accessible via XMI or JMI), the 
EMF framework with integrated ATL should also handle other kinds of models from 
different technological spaces (e.g. Java programs, XML documents, DBMS 
artifacts, etc.) [8]. This is important in case of using the reasoner in other platforms 
like intelligent metamodeling frameworks, especially in case of using such a 
reasoning machine to reason on UML models (not UML diagrams). 

The first step in implementing the reasoning algorithms is bridging the DL 
metamodel and the tableau metamodel at the M2 level (Fig. 2), using the ATL 
language. At the Ml level (Fig. 2), the DL model in negation normal form must be 
transformed into the tableau model according to the reasoning expansion rules [7]. 

4 Conclusion and Future Works 

The paper proposed the architecture of a description logic reasoner based on the 
OMG's DL metamodel. We also proposed a method for implementation of reasoning 
algorithms for description logics using the ATL language. Such an implementation 
methodology for the reasoner is flexible in practical uses of the reasoner in today's 
intelligent metamodeling framework or web-based intelligent tutoring systems. In 
the future we will try to test our reasoner in various Semantic Web applications. 



Artificial Intelligence Applications and Innovations 105 

References 

1. Atkinson C , Kuhne T., Model-Driven Development, A Metamodeling Foundation, IEEE 
Software 20 5 (2003) 36-41 

2. Baader F., Calvanese D., D. McGuinness, Nardi D., Patel-Schneider P., The Description 
Logic Handbook-Theory, Implementation and Application, Cambridge University Press 
(2003) 

3. Bezivin J., In Search of Basic Principles for Model Drive Architecture, The European 
Journal ftjr The Informatics Professional, 5 2 (2004) 

4. Dirckze R., (spec, leader): Java Metadata Interface (JMI) API Specification ver. 1.0 (2002) 
[Online]. Available: http://jcp.org/aboutJava/communitvprocess/final/jsr040/ 

5. Djuric D., Gasevic D., Damjanovic V., AIR-A Platform for Intelligent Systems, In 
Proceedings of AIAI 2004: First IFIP International Conference on Artificial Intelligence 
Applications and Innovations, Toulouse France (2004) 

6. Haarslev V., Moller R., RACER Systems Description, Lecture Notice in Computer Science 
20083(2001) 

7. Horrocks I., Optimising Tableaux Decision Procedures for Description Logics, PhD 
Thesis, University of Manchester (1997) 

8. Jouault F., Kurtev I., Transforming Models with ATL, In Proc. of the Model 
Transformations in Practice Workshop at MoDELS, Jamaica (2005). Available: 
http://sosvm.dcs.kcl.ac.uk/events/mtip/submissions/jouault kurtev transforming_models 
_with_atl.pdf 

9. Krdzavac N., Gasevic D., Devedzic V., Description Logic Reasoning in Web-based 
Education Environment, In Proceedings of the Workshop on Adaptive Hypermedia and 
Collaborative Web-based Systems (4th International Conference on Web Engineering), 
Munich, Germany (2004) 

lO.Meta Object Facility (MOF) Specification, vl.4, 
[Online]. Available: http://www.omg.org/docs/formal/02-04-Q3.pdf 

ll.Mukerji J., Miler J., MDA Guide Version. 1.0.1, [Online]. Available: 
http://www.omg.org/docs/omg/03-06-01 .pdf 

12.0MG XMI Specification, ver. 1.2, OMG Document Formal/02-01-01 (2002) [OnHne.] 
Available: http://www.omg.org/cgi-bin/doc7formal/2002-01 -01 .pdf 

13. Ontology Definition Metamodel, Preliminary Revised Submission to OMG RFP ad/2003-
03-40 1 (2004) [Online]. Available: http://codip.grci.com/odm/draft 

14.Request for Proposal: MOF 2.0 Query / Views /Transformations RFP, OMG Document: 
ad/2002-04-10 (2002) [Online]. Available: http://www.omg.org/docs/ad/02-04-10.pdf 

15.Sirin E., Parsia B., An OWL DL Reasoner, Proceedings on International Workshop on 
Description Logics (DL2004), British Columbia, Canada 6. - 8. June (2004) 

16. Soley R., MDA, An Introduction, [Online]. Available: http://www.omg.org. (2004) 




