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Via Claudio, 21 - 80125 Napoli (Italy) mallozzi@unina.it

2 Dipartimento di Matematica e Statistica, Università di Napoli “Federico II”,
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Summary. In this paper we consider a two-stage three-players game: in the first
stage one of the players chooses an optimal strategy knowing that, at the second
stage, the other two players react by playing a noncooperative game which may
admit more than one Nash equilibrium. We investigate continuity properties of the
set-valued function defined by the Nash equilibria of the (second stage) two play-
ers game and of the marginal functions associated to the first stage optimization
problem. By using suitable approximations of the mixed extension of the Nash equi-
librium problem, we obtain without convexity assumption the lower semicontinuity
of the set-valued function defined by the considered approximate Nash equilibria
and the continuity of the associate approximate average marginal functions when
the second stage corresponds to a particular class of noncooperative games called
antipotential games.
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1 Introduction

Let X,Y1, Y2 be compact subsets of metric spaces and f1, f2 be two real valued
functions defined on X×Y1×Y2. Consider the parametric noncooperative two
players game Γ (x) = {Y1, Y2, f1(x, ·, ·), f2(x, ·, ·)} where x ∈ X and f1, f2 are
the payoff functions of players P1 and P2. Any player is assumed to minimize
his own payoff function called cost function. For all x ∈ X, we denote by
N(x) the set of the Nash equilibria ([19]) of the game Γ (x), i.e. the set of the
solutions to the following problem N (x)
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find (ȳ1, ȳ2) ∈ Y1 × Y2 such that
f1(x, ȳ1, ȳ2) = inf

y1∈Y1
f1(x, y1, ȳ2)

f2(x, ȳ1, ȳ2) = inf
y2∈Y2

f2(x, ȳ1, y2).

When the set N(x) has more than one element for at least one x ∈ X, one can
investigate some continuity properties of the set-valued function defined by
the set N(x) for all x ∈ X. These properties could be useful, from theoretical
and numerical point of view, in problems involving the so-called marginal
functions. More precisely, let l be a real valued function defined on X ×
Y1 × Y2. For any x ∈ X, one can consider the following functions associated
to optimization problems in which the constraints describe the set of Nash
equilibria of the game Γ (x):

w(x) = sup
(y1,y2)∈N(x)

l(x, y1, y2)

u(x) = inf
(y1,y2)∈N(x)

l(x, y1, y2)

These marginal functions, called respectively sup-marginal function and
inf-marginal function, are concerned in many applicative situations as illus-
trated in the following.
• The multi-stage problem involving the marginal function w(x)⎧⎪⎨⎪⎩

find x̄ ∈ X such that

inf
x∈X

sup
(y1,y2)∈N(x)

l(x, y1, y2) = sup
(y1,y2)∈N(x̄)

l(x̄, y1, y2) = w(x̄)
(1)

corresponds to a two-stage game with the three players P0, P1, P2 and l cost
function of P0. In the first stage, player P0 (called the leader) chooses an
optimal strategy knowing that, at the second stage, two players P1 and P2

(called the followers) react by playing a non cooperative game. When there
exists more than one Nash equilibrium at the second stage for at least one
strategy of P0, if it is assumed that the leader cannot influence the choice of
the followers, then the followers can react to a leader’s strategy by choosing a
Nash equilibrium which can hurt him as much as possible. Therefore, P0 will
choose a security strategy which minimizes the worst, assuming that he has
no motivation to restrict his worst case design to a particular subset of the
Nash equilibria. The hierarchical problem (1) is called “Weak Hierarchical
Nash Equilibrium Problem”, in line with the terminology used in previous
papers on hierarchical problems (see, for example, [5], [11]). Economic exam-
ples of such games can be found in [21], [22], [14] where the supply side of
an oligopolistic market supplying a homogeneous product non cooperatively is
modelled and in [20], where in a two country imperfect competition model the
firms face three different types of decisions. In the setting of transportation
and telecommunications see, for example, [15] and [1].
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• The multi-stage problem involving the marginal function u(x)⎧⎪⎨⎪⎩
find x̄ ∈ X such that

inf
x∈X

inf
(y1,y2)∈N(x)

l(x, y1, y2) = inf
(y1,y2)∈N(x̄)

l(x̄, y1, y2) = u(x̄)
(2)

corresponds to a two-stage three-players game when there exists again more
than one Nash equilibrium at the second stage for at least one strategy of P0,
and it is assumed now that the leader can force the choice of the followers
to choose the Nash equilibrium that is the best for him. The hierarchical
problem (2) is called “Strong Hierarchical Nash Equilibrium Problem” in
line with the terminology used in previous papers on hierarchical problems
([5], [11]). It is also known as a mathematical programming problem with
equilibrium constraints (MPEC) in line with the terminology used in [12], [6],
[7], where one can find applications and references.

Remember that, if l is a continuous real valued function defined on X ×
Y1 × Y2 and N is a sequentially lower semicontinuous and sequentially closed
graph set-valued function on X, then the marginal functions w and u are
continuous on X ([9]). A set-valued function T is said to be sequentially lower
semicontinuous at x ∈ X if for any sequence (xn)n converging to x in X and
for any y ∈ T (x), there exists a sequence (yn) converging to y in Y such that
yn ∈ T (xn) for n sufficiently large (see, for example, [2], [9]). The set-valued
function T is said to be sequentially closed graph at x ∈ X if for any sequence
(xn)n converging to x in X and for any sequence (yn)n converging to y in Y
such that ynk

∈ T (xnk
) for a selection of integers (nk)k, we have y ∈ T (x) (see,

for example, [2], [9]). For simplicity in the following the word “sequentially”
will be omitted.

Unfortunately, the set-valued function N can be non lower semicontinuous
even when smooth data are present (see, for example, [19], [17]). So, in [17]
a suitable approximate Nash equilibrium concept has been introduced which
guarantees lower semicontinuity results under some convexity assumption on
the cost functions. When these convexity assumptions are not satisfied, as
in the case of zero-sum games previously investigated by the authors ([13]),
one can consider mixed strategies for P1 and P2 and the mixed extension of
the parametric Nash equilibrium problem N (x). More precisely, let M(Y1),
M(Y2) be the sets of Radon probability measures on Y1 and Y2 ([4], [23]) and
assume that the cost functions of P1 and P2, respectively f1(x, ·, ·), f2(x, ·, ·),
are continuous functions on Y1×Y2 for all x∈X. The average cost functions of
players P1 and P2 are defined by (see, for example, [3]):

f̂i(x, μ1, μ2)=
∫

Y1

∫
Y2

fi(x, y1, y2) dμ1(y1) dμ2(y2)

for i = 1, 2. We denote by N̂(x) the set of Nash equilibria of the extended
game defined by Γ̂ (x) = {M(Y1),M(Y2), f̂1(x, ·, ·)f̂2(x, ·, ·)}, i.e. the set of
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mixed Nash equilibria of the game Γ (x). Assuming that l(x, ·, ·) is a continuous
function on Y1×Y2, for all x∈X, one can consider the average cost function
for P0 defined by

l̂(x, μ1, μ2)=
∫

Y1

∫
Y2

l(x, y1, y2) dμ1(y1) dμ2(y2).

The following real functions defined on X by

ŵ(x) = sup
(μ1,μ2)∈N̂(x)

l̂(x, μ1, μ2)

û(x) = inf
(μ1,μ2)∈N̂(x)

l̂(x, μ1, μ2)

will be called respectively sup-average marginal function and inf-average
marginal function. Having in mind to obtain the continuity of the average
marginal functions, now we look for the lower semicontinuity of the set-valued
function defined, for all x ∈ X, by the set N̂(x) of Nash equilibria of the game
Γ̂ (x) (i.e. mixed Nash equilibria of the game Γ (x)).

Unfortunately, the following example deals with a game where the set-
valued function defined by N̂(x) is not lower semicontinuous on X.

Example 1.1 Let X = [0, 1] be the set of parameters and Y1 = {α1, β1},
Y2 = {α2, β2} be the strategy sets of P1, P2 respectively. For any x ∈ X, we
have the following bimatrix game:

α2 β2

α1 −1,x 0,2x

β1 0,−1 0,x

Then:

N(x) =
{
{(α1, α2), (α1, β2)} if x = 0
{(α1, α2)} if x �= 0.

Here M(Yi) is the set of the discrete probability measures on Yi (i = 1, 2).
The extended cost functions are:

f̂1(x, μ1, μ2)=− pq

f̂2(x, μ1, μ2)=xp− xq + x− q + pq

where μ1 = pδ(α1)+(1−p)δ(β1) ∈M(Y1), μ2 = qδ(α2)+(1−q)δ(β2) ∈M(Y2)
and p, q ∈ [0, 1]. δ is the Dirac measure and μ1 means that the strategy α1 is
chosen with probability p and the strategy β1 is chosen with probability 1−p,
for p ∈ [0, 1].
In this case we have:
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N̂(x) =
{
{(1, q), q ∈ [0, 1]} if x = 0
{(1, 1)} if x �= 0

which is not a lower semicontinuous set-valued function at x = 0 .

However, by considering suitable approximations of the mixed extension
of the Nash equilibrium problem, we will prove, without any convexity as-
sumption, that the set-valued function defined by the considered approximate
Nash equilibria is lower semicontinuous and that the corresponding approxi-
mate average marginal functions are continuous functions. More precisely, in
Section 2 we introduce two concepts of approximate Nash equilibria for the
extended game Γ̂ (x) and we investigate the properties of lower semicontinu-
ity and closedness of the set-valued functions defined by these approximate
Nash equilibria. In Section 3 continuity of the associate approximate average
marginal functions is obtained.

2 ε-approximate Nash equilibria

In line with the approximate solution concept introduced in [10] and in [17],
we introduce a concept of approximate mixed Nash equilibrium:

Definition 2.1 Let x ∈ X and ε > 0; a strict ε-approximate mixed Nash
equilibrium is a solution to the problem N̆ (x, ε) :⎧⎪⎨⎪⎩

find (μ̄1, μ̄2) ∈M(Y1)×M(Y2) s.t.
f̂1(x, μ̄1, μ̄2) + f̂2(x, μ̄1, μ̄2)

< inf
μ1∈M(Y1)

f̂1(x, μ1, μ̄2) + inf
μ2∈M(Y2)

f̂2(x, μ̄1, μ2) + ε

The set of solutions to the problem N̆ (x, ε) will be denoted by N̆(x, ε).

Remark 2.1 For all x ∈ X, the set of the strict ε-approximate mixed
Nash equilibria N̆(x, ε) is not empty, differently from the set of the strict
ε-approximate Nash equilibria Ñ(x, ε) ([18]) defined by

Ñ(x, ε) = {(ȳ1, ȳ2) ∈ Y1 × Y2 : f1(x, ȳ1, ȳ2) + f2(x, ȳ1, ȳ2) <

inf
y1∈Y1

f1(x, y1, ȳ2) + inf
y2∈Y2

f2(x, ȳ1, y2) + ε}

which can be empty. In fact, in the matching pennies example Ñ(x, ε) = ∅
but N̆(x, ε) is an open nonempty square. More precisely, let X be the set of
parameters and Y1 = {α1, β1}, Y2 = {α2, β2} be the strategy sets of P1, P2

respectively. For any x ∈ X, we have the following bimatrix game:
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α2 β2

α1 1,−1 −1,1

β1 −1,1 1,−1

Then for any x ∈ X we have that N(x) = ∅ and Ñ(x, ε) = ∅ for any
ε > 0. If mixed strategies are considered M(Yi) (i=1,2), f̂1(x, μ1, μ2)=4pq −
2p − 2q + 1, f̂2= − f̂1 for p, q ∈ [0, 1] and N̂(x) = {(1/2, 1/2)}, N̆(x, ε) =
{(p, q) ∈ [0, 1]2 : p ∈]1/2 − ε/2, 1/2 + ε/2[, q ∈]|p − 1/2| + (1− ε)/2,−|p −
1/2|+ (1 + ε)/2[}.

Obviously, the set-valued function defined by the set of the strict ε-
approximate mixed Nash equilibrium of a game is not always closed graph
on X. The following theorem gives sufficient conditions for its lower semicon-
tinuity on X and will be used later on.

Theorem 2.1 Assume that f1, f2 are continuous functions on X × Y1 × Y2.
Then, for all ε>0, the set-valued function N̆(·,ε) is lower semicontinuous on
X.

Proof. We have to prove that for all x ∈ X, for all (xn) converging to x and
for all (μ1, μ2) ∈ N̆(x, ε), there exists a sequence (μ1,n, μ2,n) converging to
(μ1, μ2) s.t. (μ1,n, μ2,n) ∈ N̆(xn, ε) for n sufficiently large.

Let (xn) be a sequence converging to x and (μ̄1, μ̄2) ∈ N̆(x, ε). Then

f̂1(x, μ̄1, μ̄2)+f̂2(x, μ̄1, μ̄2) < inf
μ1∈M(Y1)

f̂1(x, μ1, μ̄2)+ inf
μ2∈M(Y2)

f̂2(x, μ̄1, μ2)+ε.

(3)
Since f̂1, f̂2 are continuous, for all sequences (μ̄1,n) converging to μ̄1 and (μ̄2,n)
converging to μ̄2 we have that

lim
n→+∞

(
f̂1(xn, μ̄1,n, μ̄2,n) + f̂2(xn, μ̄1,n, μ̄2,n)

)
= f̂1(x, μ̄1, μ̄2) + f̂2(x, μ̄1, μ̄2).

(4)
Since M(Y1), M(Y2) are compact, inf

μ1∈M(Y1)
f̂1(·, μ1,·) and inf

μ2∈M(Y2)
f̂2(·, ·, μ2) are

lower semicontinuous functions (Proposition 4.1.1 in [9]). Therefore, in light
of (3) and (4)

lim
n→+∞

(
f̂1(xn, μ̄1,n, μ̄2,n) + f̂2(xn, μ̄1,n, μ̄2,n)

)
= f̂1(x, μ̄1, μ̄2) + f̂2(x, μ̄1, μ̄2) <

inf
μ1∈M(Y1)

f̂1(x, μ1, μ̄2) + inf
μ2∈M(Y2)

f̂2(x, μ̄1, μ2) + ε ≤
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lim
n→+∞

(
inf

μ1∈M(Y1)
f̂1(xn, μ1, μ̄2,n) + inf

μ2∈M(Y2)
f̂2(xn, μ̄1,n, μ2)

)
+ ε.

For n sufficiently large, we can deduce:

f̂1(xn, μ̄1,n, μ̄2,n)+f̂2(xn, μ̄1,n, μ̄2,n)

< inf
μ1∈M(Y1)

f̂1(xn, μ1, μ̄2,n)+ inf
μ2∈M(Y2)

f̂2(xn, μ̄1,n, μ2)+ε

that is (μ̄1,n, μ̄2,n) ∈ N̆(xn, ε).

Remark 2.2 Let us note that Theorem 2.1 can be applied also in the case
where N(x) = ∅ for some x ∈ X. In fact ∅ �= N̂(x) ⊆ N̆(x, ε) for all x ∈ X
and ε > 0.

Having in mind to obtain closedness and lower semicontinuity simulta-
neously, we introduce now a suitable concept of approximate mixed Nash
equilibrium.

Definition 2.2 Let x ∈ X and ε > 0; an ε-approximate mixed Nash equili-
brium is a solution to the problem N̂ (x, ε) :⎧⎪⎨⎪⎩

find (μ̄1, μ̄2) ∈M(Y1)×M(Y2)
s.t.f̂1(x, μ̄1, μ̄2) + f̂2(x, μ̄1, μ̄2)

≤ inf
μ1∈M(Y1)

f̂1(x, μ1, μ̄2) + inf
μ2∈M(Y2)

f̂2(x, μ̄1, μ2) + ε

The set of solutions to the problem N̂ (x, ε) will be denoted by N̂(x, ε).

Remark 2.3 It is easy to see that if f1, f2 are continuous functions on X ×
Y1×Y2, then the set-valued function N̂(·, ε) is closed graph at x, for all x ∈ X.

Example 2.1 In Example 1.1 we have that inf
μ1∈M(Y1)

f̂1(x, μ1, μ2) =−q and

that inf
μ2∈M(Y2)

f̂2(x, μ1, μ2) = xp−1 + p. The set of the ε-approximate mixed

Nash equilibria is:
for x ≤ ε

N̂(x, ε) = {(p, q) ∈ [0, 1]2 s. t. p ∈ [1− ε+ x− xq, 1], q ∈ [0, 1]},

for x > ε

N̂(x, ε) = {(p, q) ∈ [0, 1]2 s. t. p ∈ [1− ε+ x− xq, 1], q ∈ [1− (ε/x), 1]}.

Note that the set-valued function x ∈ X �→ N̂(x, ε) is closed graph and
lower semicontinuous on X.
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The bimatrix game in Example 1.1 has a special structure connected with
the definition of exact potential games ([16]). Recall that the two players game
{A,B,K,L}, where K,L are real valued functions defined on A×B, is called
an exact potential game if there is a potential function P : A×B �→ R such
that
K(a2, b)−K(a1, b) = P (a2, b)−P (a1, b), for all a1, a2∈A and for each b∈B
L(a, b1)−L(a, b2)= P (a, b1)−P (a, b2), for each a∈A and for all b1, b2∈B.

In exact potential games, information concerning Nash equilibria are incorpo-
rated into a real-valued function that is the potential function.

The following theorem gives a lower semicontinuity result for the set-valued
function defined by the set of the ε-approximate mixed Nash equilibria.

Theorem 2.2 Assume that f1, f2 are continuous functions on X×Y1×Y2 and
that the game Ω(x) = {Y1, Y2, f1(x, ·, ·),−f2(x, ·, ·)} is an exact potential game
for all x ∈ X ( Γ (x) will be said to be an antipotential game for all x ∈ X).
Then, for all ε > 0, the set-valued function N̂(·, ε) is lower semicontinuous
on X.

Proof. Since Ω(x) is an exact potential game, according to [8], there exists a
potential function P defined on X × Y1 × Y2 such that

f1(x, y1, y2) = P (x, y1, y2) + h(x, y2)

−f2(x, y1, y2) = P (x, y1, y2) + k(x, y1)

where h, k are real valued functions defined and continuous on X × Y2, X ×
Y1 respectively. By considering the mixed extensions of Y1, Y2, the function
f̂1 + f̂2 = ĥ − k̂ is convex on M(Y1) ×M(Y2) and one can apply Corollary
3.1 in [18] to get the lower semicontinuity of N̂(·, ε) on X. For the sake of
completeness we give the proof.

Let (μ1, μ2) ∈ N̂(x, ε) such that (μ1, μ2) �∈ N̆(x, ε). Since N̆(x, ε) �= ∅,
there exists (μ̆1, μ̆2) ∈ N̆(x, ε) and consider the sequence μi,n = (1/n)μ̆i +
(1− 1/n)μi (i = 1, 2) for n ∈ N . We have that μi,n �→ μi, i = 1, 2 and

f̂1(x, μ1,n, μ2,n) + f̂2(x, μ1,n, μ2,n) < (1/n)
[
v̂1(x, μ̆2) + v̂2(x, μ̆1) + ε

]
+

(1− 1/n)
[
v̂1(x, μ2) + v̂2(x, μ1) + ε

]
≤ v̂1(x, μ2,n) + v̂2(x, μ1,n) + ε

being v̂1(x, μ2) = inf
μ1∈M(Y1)

f̂1(x, μ1, μ2) and v̂2(x, μ1) = inf
μ2∈M(Y2)

f̂2(x, μ1, μ2).

This means that (μ1,n, μ2,n) ∈ N̆(x, ε) and then N̂(x, ε) ⊆ clN̆(x, ε), where
clN̆(x, ε) is the sequential closure of N̆(x, ε). By Theorem 2.1 for all sequences
(xn)n converging to x we have N̆(x, ε) ⊆ Liminf

n
N̆(xn, ε). Therefore

N̂(x, ε)⊆ clN̆(x, ε)⊆ clLiminf
n

N̆(xn, ε) = Liminf
n

N̆(xn, ε) ⊆ Liminf
n

N̂(xn, ε)

Remark that, since M(Y1) and M(Y2) are first countable topological
spaces, Liminf

n
N̆(xn, ε) is a closed subset in M(Y1)×M(Y2).
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Example 2.2 Note that in Example 1.1,

Ω(x) = {Y1, Y2, f1(x, ·, ·),−f2(x, ·, ·)}

is an exact potential game with potential

α2 β2

α1 −x −2x

β1 1− x −2x

Remark 2.4 Theorem 2.2 extends Theorem 3.1 in [13] where existence of
approximate mixed strategies for zero-sum games is obtained without convexity
assumptions.

3 Continuity properties of the approximate average
marginal functions

By using the concepts of approximate mixed Nash equilibria given in Section 2,
we give the continuity results for the following approximate average marginal
functions.

Definition 3.1 Let x ∈ X and ε > 0; the following real functions defined on
X:

ŵ(x, ε) = sup
(μ1,μ2)∈N̂(x,ε)

l̂(x, μ1, μ2)

û(x, ε) = inf
(μ1,μ2)∈N̂(x,ε)

l̂(x, μ1, μ2)

will be called ε-approximate sup-average marginal function and ε-approximate
inf-average marginal function respectively.

So, we have the following theorem.

Theorem 3.1 Assume that l, f1, f2 are continuous functions on X ×Y1×Y2

and that Γ (x) is an antipotential game for all x ∈ X. Then, for all ε > 0, the
ε-approximate average marginal functions ŵ(·, ε) and û(·, ε) are continuous
on X.

Proof. In light of the assumptions l̂ is continuous on X ×M(Y1) ×M(Y2),
the set-valued function N̂(·, ε) is lower semicontinuous and closed graph on
X. We obtain the proof by using the results given in [9] on the inf-marginal
function in a sequential setting.
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Example 3.1 In Example 1.1, let l be defined as follows:

α2 β2

α1 x− 1 x

β1 0 x

In this case the inf-marginal function u(x) = x− 1 is continuous on [0, 1],
while the sup-marginal function

w(x) =
{

0 if x = 0
x− 1 if x �= 0

is not lower semicontinuous at x = 0. Even if we use mixed Nash equilibria of
the game Γ (x), the sup-average marginal function may be not continuous. In
fact l̂(x, μ1, μ2) = (x− 1)pq + x(1− q) and

ŵ(x) = sup
(μ1,μ2)∈N̂(x)

l̂(x, μ1, μ2) = w(x) =
{

0 if x = 0
x− 1 if x �= 0

so ŵ is not continuous at x = 0.
However, by considering for ε > 0 the set of the ε-approximate mixed Nash

equilibria, the ε-approximate inf-average marginal function

ŵ(x, ε) =
{
x if 0 ≤ x ≤ ε
x− 1 + ε/x if x > ε

is continuous on [0, 1].
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