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1 Introduction

Bilevel programming is among the frontier areas of modern optimization the-
ory. Apart from its importance in application it is also a theoretically chal-
lenging field. The first such challenge comes when one wants to write Karush-
Kuhn-Tucker type optimality conditions for bilevel programming problems.
The major drawback is that most standard constraint qualifications are never
satisfied for a bilevel programming problem. Thus it is interesting to devise
methods in which one may be able to develop in a natural way constraint
qualifications associated with bilevel problems and thus proceed towards ob-
taining Karush-Kuhn-Tucker type optimality conditions. The recent literature
in optimization has seen quiet a few attempts to obtain optimality conditions
for bilevel programming problems. See for example Ye and Zhu [27],[28],[29],
Ye and Ye [26], Dempe [9],[10], Loridan and Morgan [15], Bard [3], [4],[5] and
the references there in. In 1984 J. F. Bard [3] made an attempt to develop
optimality conditions for bilevel programming problems though it was later
observed to have some error. The recent monograph by Dempe [9] is one help-
ful source to study optimality conditions for bilevel programming problems.

In this article we consider the special type of bilevel programming which
has a convex programming problem as its lower-level problem. Using the re-
cent advances made in the understanding of the solutions sets of variational
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systems (see for example Dontchev and Rockafellar [11],[12] and Levy and
Mordukhovich [14]) we will develop some new necessary conditions for bilevel
programming problems with convex lower-level problems. In section 2 we be-
gin with the basic formulation of a bilevel programming problem and motivate
the type of problems we intend to study in this article. Then we outline the
variational tools that are required to represent the necessary optimality con-
ditions. In section 4 we present the main results, i.e the necessary optimality
conditions for each of the problem formulations that we have described earlier.

2 Motivation

Consider the following bilevel programming problem (P)

min
x
F (x, y) subject to y ∈ S(x), x ∈ X,

where F : R
n×R

m → R, X ⊆ R
n and S(x) is the solution set of the following

problem (LLP)

min
y
f(x, y) subject to y ∈ K(x),

where f : R
n×R

m → R and K(x) ⊆ R
m is a set depending on x. The problem

(LLP) is called the lower-level problem and the problem (P) is called the
upper-level problem. For simplicity we consider only the case where X = R

n

and where for each x the function f(x, ·) is convex and the set K(x) is convex.
Thus in our setting the problem (P) will be as follows

min
x
F (x, y) subject to y ∈ S(x)

where S(x) as before denotes the solution set of the lower-level problem (LLP)

min
y
f(x, y) subject to y ∈ K(x).

From now on we will assume that the problem (LLP) always has a solution.
However the term min in the upper level problem is slightly ambiguous since
one is not sure whether the lower-level problem has an unique solution or not.
If f(x, ·) is strictly convex in y for each x then S(x) is a singleton for each
x or rather S is a single-valued function. If however f(x, ·) is only assumed
to be convex one cannot always guarantee the single-valuedness of S(x). It
is important to observe that the main complication in bilevel programming
arises when the lower-level problem does not have a unique solution, i.e. S(x)
is not a singleton for some x. Thus for that particular case the objective
function of the upper-level problem would look like⋃

y∈S(x)

F (x, y) = F (x, S(x)).
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The bilevel programming problem (P) is then rather a set-valued optimization
problem, see e.g. G.Y. Chen and J. Jahn [7]. To treat this situation within
bilevel programming problems at least two approaches have been reported
in the literature, namely the optimistic solution and the pessimistic solution.
We will consider here the optimistic solution approach for reasons which will
be clear as we progress further. For details on the pessimistic solution ap-
proach see for example Dempe [9]. One of the reasons are the less restrictive
assumptions needed to guarantee the existence of an optimal solution in the
optimistic case. To introduce the optimistic case consider the function

ϕ0(x) = inf
y
{F (x, y) : y ∈ S(x)}.

We remark that ϕ0(x) denotes the infimal function value of the upper level
objective over the solution set of the lower-level problem parameterized by x
and that we do not demand that it is attained. For each x ∈ R

n, this function
gives the lowest bound for possible objective function values of the upper
level objective function on the set of optimal solutions of (LLP). Then, the
optimistic bilevel problem reads as

min
x
ϕ0(x). (1)

Definition 2.1 A point x is called a (global) optimistic solution of the prob-
lem (P) if ϕ0(x) ≥ ϕ0(x) for all x.

An optimal solution of this problem exists whenever the function ϕ0(x) is
lower semicontinuous and some boundedness assumptions are satisfied.

Theorem 2.1 Consider problem (P) with continuous functions F, f and a
continuous point-to-set mapping K : R

n ⇒ R
m. Then, if gph K is bounded,

problem (P) has a solution.

Here gph K = {(x, y) : y ∈ S(x)} denotes the graph of the mapping K. To
guarantee continuity of the point-to-set mapping some regularity condition
(as Slater’s conditions for all x) is needed. The main reason for this result is
that the assumptions imply upper semicontinuity of the point-to-set mapping
S : R

n ⇒ R
m which in turn implies lower semicontinuity of the function ϕ0(·),

see Bank et al. [2].
Let us now consider the problem (P1) given as

min
x,y

F (x, y) subject to (x, y) ∈ gphS.

If local optimal solutions are under consideration it is easy to find examples
showing that local optimal solutions of problem (P1) need not to correspond
to local optimal solutions of (P). But, for each local optimal solution x of (1),
some point (x, y) with y ∈ S(x) is a local optimal solution of (P1).



54 Joydeep Dutta and Stephan Dempe

Proposition 2.1 Let x̄ be a local optimistic solution to the bilevel program-
ming problem (P) whose solution set mapping S is upper-semicontinuous as
a set-valued map. Then (x̄, ȳ) with y ∈ S(x) and ϕ0(x) = F (x, y) is also a
solution of (P1).

Remark 2.1 We note that we have used the implicit assumption in the
proposition that the lower-level problem (LLP) has an optimal solution for
x = x. Let us recall that we have already made this assumption in the begin-
ning of this section.

Proof. Let x be a local optimistic solution to (P) and assume that there
exists y with the properties as formulated in the statement. Then we first
have ȳ ∈ S(x̄) and

F (x̄, ȳ) ≤ F (x̄, y), ∀y ∈ S(x̄).

By assumption ϕ0(x̄) = F (x̄, ȳ). Further we also have

ϕ0(x̄) ≤ ϕ0(x), ∀x ∈ R
n (2)

sufficiently close to x. By definition of ϕ0(x) one has ϕ0(x) ≤ F (x, y) for all
y ∈ S(x). Using (2) we immediately have

F (x̄, ȳ) =ϕ0(x̄) ≤ ϕ0(x) ≤ F (x, y), ∀y ∈ S(x) and x sufficiently close to x.

Let V be an open neighborhood of S(x̄) , i.e. S(x̄) ⊂ V . Since S is upper-
semicontinuous as a set-valued map we have that there exists an open neigh-
borhood U of x̄ such that for all x ∈ U one has S(x) ⊂ V ( For a definition of
upper-semicontinuous set-valued map see for example Berge [6]). Thus we can
find a δ > 0 such that Bδ(x̄) ⊂ V and for all x ∈ Bδ(x̄) we have ϕ(x) ≥ ϕ(x̄).
Here Bδ(x̄) denotes a ball centered at x̄ and of radius δ. Thus arguing in a
similar manner as before one has

F (x̄, ȳ) ≤ F (x, y) ∀y ∈ S(x) and x ∈ Bδ(x̄).

However for all x ∈ Bδ(x̄) we have S(x) ⊂ V . This shows that

F (x̄, ȳ) ≤ F (x, y) ∀(x, y) ∈ (Bδ(x̄)× V ) ∩ gphS.

Thus (x̄, ȳ) is a local optimal solution for (P1). �

Remark 2.2 It is important to note that assumption of upper-semicontinuity
on the solution set-mapping is not a strong one since it can arise under natural
assumptions. Assume that feasible set K(x) of the lower-level problem (LLP)
is described by convex inequality constraints, i.e.

K(x) = {y ∈ R
m : gi(x, y) ≤ 0, i = 1, . . . , p},
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where for each x the function g(x, ·) is convex in y. Assume now that the
set {(x, y) ∈ R

n × R
m : gi(x, y) ≤ 0, i = 1, . . . , p} is non-empty and compact

and the lower-level problem (LLP) satisfies the Slater’s constraint qualification
then we can conclude that the solution set mapping S is upper-semicontinuous
as a set-valued map, cf. Bank et al. [2].

Let us note that if we now consider a global optimistic solution then there
is no necessity for any additional assumption on the solution set mapping.
Thus we have the following proposition.

Proposition 2.2 Let x̄ be a global optimistic solution to the bilevel program-
ming problem (P). Then (x̄, ȳ) with y ∈ S(x) and ϕ0(x) = F (x, y) is also a
global solution of (P1).

Proof. Let x be a global optimistic solution to (P) and assume that there
exists y with the properties as formulated in the statement. Then we first
have ȳ ∈ S(x̄) and

F (x̄, ȳ) ≤ F (x̄, y), ∀y ∈ S(x̄).

By assumption ϕ0(x̄) = F (x̄, ȳ). Further we also have

ϕ0(x̄) ≤ ϕ0(x), ∀x ∈ R
n. (3)

By definition of ϕ0(x) one has ϕ0(x) ≤ F (x, y) for all y ∈ S(x). Using (3) we
immediately have

F (x̄, ȳ) = ϕ0(x̄) ≤ ϕ0(x) ≤ F (x, y), ∀y ∈ S(x).

Hence the result. �

The opposite implication is also valid for global optima.

Proposition 2.3 Let (x, y) be a global optimal solution of problem (P1).
Then, x is a global optimal solution of problem (P).

Proof. Assume that x is not a global optimal solution of problem (1) then
there is x̃ with ϕ0(x̃) < ϕ0(x) and, by definition of the function ϕ0(·) there is
ỹ ∈ S(x̃) with ϕ0(x̃) ≤ F (x̃, ỹ) < ϕ0(x). Now, y ∈ S(x) and, hence,

F (x, y) = ϕ0(x) > F (x̃, ỹ).

Then F (x̃, ỹ) < F (x, y) which contradicts optimality of (x, y). �

The last two propositions enable us to reformulate the bilevel problem in
its optimistic version to the problem (P1). Note that this excludes the case
when the function ϕ0 is determined as the infimal objective function value of
the lower-level problem (LLP) (which is then not assumed to have an optimal
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solution), implying that the function ϕ0 may have a minimum even in the
case when the problem (P1) has no solution.

We have already stated that we will restrict ourselves to the case where
the lower-level problem is a convex minimization problem. Let for the moment
the set K(x) in (LLP) be expressed in terms of convex inequalities:

K(x) = {y : gi(x, y) ≤ 0, i = 1, . . . , p},

where gi(x, ·) are convex in y for each x and are sufficiently smooth i.e of
class C2. Finding the minimum of a regular convex problem is equivalent to
solving the Karush-Kuhn-Tucker type conditions associated with the problem.
Thus a bilevel programming problem can be posed as single level problem
with the lower-level problem being replaced with its Karush-Kuhn-Tucker
system which now become additional constraints to the problem (P1). Thus
the problem (P1) can be reformulated as

min
x,y,λ

F (x, y)

subject to ∇yf(x, y) +
p∑

i=1

λi∇ygi(x, y) = 0 (4)

λigi(x, y) = 0 i = 1, . . . , p.
gi(x, y) ≤ 0, λi ≥ 0 i = 1, . . . , p.

This is the so-called Karush-Kuhn-Tucker (KKT) formulation of a bilevel
programming problem with a convex lower-level problem. Problem (4) is a
special kind of the so-called Mathematical Program with Equilibrium Con-
straints (MPEC). It is well-known that many standard constraint qualifica-
tions like the Mangasarian-Fromowitz constraint qualification and the Abadie
constraint qualification fail due to the presence of the complementary slack-
ness condition of the lower-level problem which is now posed as an equality
constraint. The reader is referred to the paper Ye [23] where possible regularity
conditions are identified. The challenge therefore is to devise natural qualifica-
tion conditions which can lead to KKT type optimality conditions for a bilevel
programming problem. Here we suggest one new approach through which this
may be possible. Similar investigations have been done in Ye [23] under the
assumptions that the problem functions are either Gâteaux differentiable or
locally Lipschitz continuous using the Michel-Penot subdifferential.

It should be mentioned that the KKT reformulation is equivalent to the
problem (P1) only in the case when the lower-level problem is a convex regular
one and global optimal solutions of the upper level problem are investigated
(cf. Propositions 2.2 and 2.3). Without convexity, problem (4) has a larger
feasible set than (P1) and an optimal solution of (4) need not to correspond
to a feasible solution of problem (P1). Even more, an optimal solution of
problem (P1) need also not be an optimal solution of (4), see Mirrlees [16].
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What concerns optimality conditions the main difficulty in using the re-
formulation (4) of the bilevel programming problem is the addition of new
variables. If these Lagrange multipliers of the lower-level problem are not
uniquely determined, the optimality conditions of the MPEC depend on the
selection of the multiplier but the conditions for the bilevel problem must not.
This can easily been seen e.g. in the case when the lower-level problem is a
convex one for which the Mangasarian-Fromowitz constraint qualification to-
gether with the strong sufficient optimality condition of second order and the
constant rank constraint qualification are satisfied at a point (x, y). Then, the
optimal solution of the lower-level problem is strongly stable in the sense of
Kojima [13], Lipschitz continuous and directionally differentiable, see Ralph
and Dempe [20] and the bilevel programming problem can be reformulated as

min{F (x, y(x)) : x ∈ R
n}.

Necessary optimality conditions for this problem reduce to nonexistence of
directions of descent for the function x �→ F (x, y(x)), cf. Dempe [10]. If this
problem is reformulated as (4) and a Lagrange multiplier is fixed it is possible
that there is no direction of decent in the problem (4). But what we have done
is to compute the directional derivative of the function x �→ F (x, y(x)) only in
directions which correspond to the selected Lagrange multiplier, i.e. directions
for which a certain linear optimization problem has a solution, see Ralph and
Dempe [20]. But there is no need that the directional derivative of the function
F (x, y(x)) into other directions (corresponding to other Lagrange multipliers)
does not give a descent.

With other words, if optimality conditions for an MPEC are investigated,
a feasible solution of this problem is fixed and optimality conditions are de-
rived as in Pang and Fukushima [19], Scheel and Scholtes [22]. Considering
the optimality conditions in primal space (i.e. formulating them as nonexis-
tence of descent directions in the contingent cone) we see some combinatorial
structure since the contingent cone is not convex. This approach has been ap-
plied to the KKT reformulation of a bilevel programming problem in Ye and
Ye [26]. But to obtain a more useful condition for selecting a locally optimal
solution we have to investigate the resulting systems for all Lagrange multi-
pliers of the lower-level problem, or at least for all the vertices of the set of
Lagrange multipliers, if some condition as the constant rank constraint quali-
fication in the differentiable case is satisfied. Hence, this approach needs to be
complemented by e.g. a method for an efficient computation of all Lagrange
multipliers.

Hence we believe that other approaches are more promising. These are
on the one hand approaches using the normal cone (or the contingent cone)
to the graph of the solution set mapping of the lower-level problem and on
the other hand approaches using the reformulation of the bilevel programming
problem using the optimal value function of the lower-level problem. The latter
approach has been used e.g. in the papers Babahadda and Gadhi [1], Ye [23].
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Here we investigate the possibility to derive necessary optimality conditions
using the normal cone.

3 Basic tools

Let (x̄, ȳ) be a local (or global) solution of (P1) and let us assume that F is
smooth. Then one has

0 ∈ ∇F (x̄, ȳ) +NgphS(x̄, ȳ).

In the above expression Ngph S(x̄, ȳ) denotes the Mordukhovich normal cone
or the basic normal cone to the graph of the set-valued map S at (x̄, ȳ).
For more details on Mordukhovich normal cone and the derivation of the
above necessary optimality condition see for example Mordukhovich [17] and
Rockafellar and Wets [21]. It is moreover important that the Mordukhovich
normal cone is in general a closed and non-convex object. The basic normal
cone to a convex set coincides with the usual normal cone of convex analysis.
In order to obtain a KKT type optimality condition our main task is now to
compute the basic normal cone to the graph of the solution set mapping at the
point (x̄, ȳ). Thus the qualification conditions that are required to compute
the normal cone are indeed the natural qualification conditions for the bilevel
programming problem. However let us note that it is in fact a formidable task
to compute the normal cone to the graph of the solution set mapping. This
is mainly due to the fact that even if the lower-level problem is convex the
graph gphS of the solution set mapping S need not be convex. The following
simple example demonstrates this fact.

Example 3.1 Let the lower-level problem be given as

S(x) = argmin
y

{f(x, y) = −xy : 0 ≤ y ≤ 1}.

Observe here that K(x) = [0, 1] for all x ∈ R. Observe that the problem is
a convex problem in y. Also note that the solution set mapping S in this
particular case is given as

S(x) =

⎧⎨⎩
{0} : x < 0
[0, 1] : x = 0
{1} : x > 0.

It is now simple to observe that the gphS is a non-convex set. �

Professor Rockafellar suggested that an interesting approach to bilevel
programming may be obtained by having a minimax problem or rather a
primal-dual problem in the lower-level instead of just a convex minimization
problem. This can in fact be motivated from the KKT representation of a
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bilevel programming problem with convex lower-level problems. Observe that
the KKT problem brings in an additional variable λ ∈ R

p
+ which is actu-

ally the Lagrange multiplier associated with the problem as well as the dual
variable associated with the Lagrangian dual of the convex lower-level prob-
lem. Hence both the primal variable y and the dual variable λ of the convex
lower-level problem are present in the KKT formulation of the bilevel pro-
gramming problem with convex lower-level problems. Thus one may as well
define a lower-level problem which has both the primal and dual variable and
that naturally suggests us to consider the lower-level problem as a minmax
problem. Thus we can have a new formulation of the bilevel programming
problem (P2) with a minimax lower-level problem as follows

min
(x,y,λ)

F (x, y, λ) subject to (y, λ) ∈ S(x),

where F : R
n × R

m × R
p → R and the set-valued map S : R

n ⇒ R
m × R

p is
a solution set of the following problem (LLP2)

minimaximizeL(x, y, λ) subject to (y, λ) ∈ Y ×W,

where Y ⊂ R
m and W ⊂ R

p are non-empty convex sets and L(x, y, λ) is
convex with respect to y for each (x, λ) ∈ R

n ×W and is concave in λ for
each (x, y) ∈ R

m × Y . Thus we can write

S(x) = {(y, λ) : (y, λ) solves (LLP2)}.

By a solution (y, λ) ∈ S(x) we mean

y ∈ argmin
y∈Y

L(x, y, λ) and λ ∈ argmax
λ∈W

L(x, y, λ).

Let us end this section by defining the nonsmooth tools that would be
required for the proofs of the optimality conditions. We first begin with the
definition of the normal cone to a set C at a given point in C. Let C be a
non-empty subset of R

n and let x̄ ∈ C. A vector v is called a regular normal
to C at x̄ if

〈v, x− x̄〉 ≤ o(‖x− x̄‖),

where
o(‖x− x̄‖)
‖x− x̄‖ → 0 as ‖x − x̄‖ → 0. The set of all regular normals form

a convex cone denoted by N̂C(x̄). This is also known as the Fréchet normal
cone in the literature.

A vector v ∈ R
n is said to be a normal or a basic to C at x̄ if there exist

a sequence {vk}, with vk → v and a sequence {xk}, xk ∈ C with xk → x
and vk ∈ N̂C(xk). The set of all normals forms a closed ( but not necessarily
convex) cone denoted as NC(x̄). The basic normal cone has also been referred
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to as the Mordukhovich normal cone in the literature. For more details on
the basic normal cone in the finite dimensional setting see for example Mor-
dukhovich [17] or Rockafellar and Wets [21]. It is important to note that if
the interior of C is nonempty and x̄ ∈ intC then NC(x̄) = {0}.
Let S : R

n ⇒ R
m be a set-valued map and let (x, y) ∈ gphS. Then the

coderivative at (x̄, ȳ) is a set-valued map D∗S(x̄|ȳ) : R
m ⇒ R

n given as

D∗S(x̄|ȳ)(w) = {v ∈ R
n : (v,−w) ∈ Ngph S(x̄, ȳ)}.

For more details on the properties of the coderivative see for example Mor-
dukhovich [17] and Rockafellar and Wets [21]. Further given a function
f : R

n → R ∪ {+∞} and a point x̄ where f is finite the subdifferential or
the basic subdifferential at x̄ is given as

∂f(x̄) = {ξ ∈ R
m : (ξ,−1) ∈ Nepi f (x̄, f(x̄))},

where epi f denotes the epigraph of the function f . The asymptotic subdiffer-
ential of f at x̄ is given as

∂∞f(x̄) = {ξ ∈ R
m : (ξ, 0) ∈ Nepi f (x̄, f(x̄))}.

We will now present Theorem 2.1 in Levy and Mordukhovich [14] in the
form of two lemmas whose application would lead to the necessary optimality
conditions.

Lemma 3.1 Consider the set-valued map S : R
n ⇒ R

m given as follows

S(x) = {y ∈ R
m : 0 ∈ G(x, y) +M(x, y)}, (5)

where G : R
n × R

m → R
d is a smooth vector-valued function and M : R

n ×
R

m ⇒ R
d is a set-valued map with closed graph. Let (x̄, ȳ) ∈ gph S and let

the following qualification condition hold

v ∈ R
d with 0 ∈ ∇G(x̄, ȳ)T v +D∗M((x̄, ȳ)| −G(x̄, ȳ))(v) =⇒ v = 0.

Then one has

D∗S(x̄|ȳ)(y∗) ⊆ {x∗ : ∃v∗ ∈ R
d, (x∗,−y∗) ∈ ∇G(x̄, ȳ)T v∗ +
D∗M((x̄, ȳ)| −G(x̄, ȳ))(v∗)}.

Lemma 3.2 Consider the set-valued map S : R
n ⇒ R

m given in formula
(5) where G : R

n × R
m → R

d is a smooth vector-valued function and M :
R

n × R
m ⇒ R

d is a set-valued map with closed graph. Further assume that
M only depends on y i.e M(x, y) = M(y). Assume that the matrix ∇xG(x̄, ȳ)
has full rank. Then one has

D∗S(x̄|ȳ)(y∗) = {x∗ : ∃v∗ ∈ R
d, x∗ = ∇xG(x̄, ȳ)v∗,

−y∗ = ∇yG(x̄, ȳ)T v∗ +D∗M(ȳ| −G(x̄, ȳ))(v∗)}.
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4 Main Results

In this section we shall present necessary optimality conditions for the two
classes of bilevel programming problems which we have discussed in the pre-
vious sections. First we shall derive necessary optimality conditions for the
problem format defined by (1) in which the lower-level problem is a convex
minimization problem. Then we shall consider the case when K(x) = K for
all x and then move on to the case where the lower-level problem is given in
the form a primal-dual problem. Then we will present a more refined optimal-
ity condition using the second-order subdifferential of the indicator function
which would appear to be a very novel feature. Before we begin let us define
the following set-valued map which can also be called as the normal cone map

NK(x, y) =
{
NK(x)(y) : y ∈ K(x)
∅ : y �∈ K(x)

Theorem 4.1 Consider the problem (P1) given as

min
x,y

F (x, y) subject to (x, y) ∈ gph S,

where F : R
n×R

m → R is a smooth function and S : R
n ⇒ R

m is a set-valued
map denoting the solution set of the problem (LLP) i.e.

S(x) = argmin
y

{f(x, y) : y ∈ K(x)},

where f(x, ·) is a smooth convex function in y for each x and K(x) is a
closed convex set for each x. Let (x̄, ȳ) be a local (or global) solution of (P1).
Further assume that ∇yf : R

n ×R
m → R

m is continuously differentiable. Set
p̄ = ∇yf(x̄, ȳ). Assume also that the following qualification condition holds at
(x̄, ȳ) :

v ∈ R
m with 0 ∈ ∇(∇yf(x̄, ȳ))T v +D∗NK((x̄, ȳ)| − p̄)(v) =⇒ v = 0.

Then there exists v∗ ∈ R
m such that

0 ∈ ∇F (x̄, ȳ) +∇(∇yf(x̄, ȳ))T v∗ +D∗NK((x̄, ȳ)| − p̄)(v∗).

Proof. They key to the proof of this result is Lemma 3.1. To begin with note
that since (LLP) is a convex minimization problem in y for each given x we
can write S(x) equivalently as

S(x) = {y ∈ R
m : 0 ∈ ∇yf(x, y) +NK(x)(y)}.

It is not much difficult to show that the normal cone map has a closed graph.
Since (x̄, ȳ) is a local (or global) solution of the problem (P1) then we have

−∇F (x̄, ȳ) ∈ Ngph S(x̄, ȳ).
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Now by using the definition of the coderivative and then applying Lemma 3.1
we have that there exists v∗ ∈ R

m such that

−∇F (x̄, ȳ) ∈ ∇(∇yf(x̄, ȳ))T v∗ +D∗NK((x̄, ȳ)| − p̄)(v∗).

This proves the result �

We will now apply the above result to bilevel programming

Corollary 4.1 Let us consider the bilevel programming problem (P)

min
x
F (x, y) subject to y ∈ S(x),

where F : R
n × R

n → R is a smooth function and S(x) is the solution set of
the following problem (LLP)

min
y
f(x, y) subject to y ∈ K(x),

where f : R
n × R

m → R is a smooth strictly convex function in y for each x
and K(x) is a compact convex set for each x. Let (x̄, ȳ) be a local solution of
(P). Further assume that ∇yf : R

n×R
m → R

m is continuously differentiable.
Set p̄ = ∇yf(x̄, ȳ). Assume further that the following qualification condition
holds at (x̄, ȳ) :

v ∈ R
m with 0 ∈ ∇(∇yf(x̄, ȳ))T v +D∗NK((x̄, ȳ)| − p̄)(v) =⇒ v = 0.

Then there exists v∗ ∈ R
m such that

0 ∈ ∇F (x̄, ȳ) +∇(∇yf(x̄, ȳ))T v∗ +D∗NK((x̄, ȳ)| − p̄)(v∗).

Proof. By the hypothesis of the theorem for each x the problem (LLP) has
a unique solution. Hence the solution of the problem (P) is also a solution of
(P1). The rest of the proof follows as in Theorem 4.1. �

Corollary 4.2 Let us consider the bilevel programming problem (P)

min
x
F (x, y) subject to y ∈ S(x),

where F : R
n × R

n → R is a smooth function and S(x) is the solution set of
the following problem (LLP)

min
y
f(x, y) subject to y ∈ K(x),

where f : R
n×R

m → R is a smooth convex function in y for each x and K(x)
is a convex set for each x. Further assume that the solution set mapping S is
upper-semicontinuous as a set-valued map. Let x̄ be a local optimistic solution
of (P) and assume that y ∈ S(x) with F (x, y) = ϕ0(x) exists. Further assume
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that ∇yf : R
n × R

m → R
m is continuously differentiable. Set p̄ = ∇yf(x̄, ȳ).

Assume further that the following qualification condition hold at (x̄, ȳ) :

v ∈ R
m with 0 ∈ ∇(∇yf(x̄, ȳ))T v +D∗NK((x̄, ȳ)| − p̄)(v) =⇒ v = 0.

Then there exists v∗ ∈ R
m such that

0 ∈ ∇F (x̄, ȳ) +∇(∇yf(x̄, ȳ))T v∗ +D∗NK((x̄, ȳ)| − p̄)(v∗).

Proof. Our assumptions imply that (x, y) is a local solution of the problem
(P1) due to Proposition 2.1. The rest of the proof follows as in Theorem 4.1.
�

Remark 4.1 An interesting feature in the optimality conditions presented
in the above theorem is the presence of second-order partial derivatives in
the expression of first order optimality conditions. This is essentially due to
presence of the matrix ∇(∇yf(x̄, ȳ)). The presence of second-order partial
derivatives in the first conditions is a hallmark of bilevel programming. Further
note that one can have analogous results for global optimistic solution using
Proposition 2.2 and without any additional assumption on the nature of the
solution set mapping S.

We will now turn to the case when K(x) = K for all x ∈ R
n. In such a case

we have a much simplified qualification condition which amounts to checking
whether a matrix is of full rank.

Theorem 4.2 Consider the problem (P1) given as

min
x,y

F (x, y) subject to (x, y) ∈ gphS,

where F : R
n×R

m → R is a smooth function and S : R
n ⇒ R

m is a set-valued
map denoting the solution set of the problem (LLP) i.e.

S(x) = argmin
y

{f(x, y) : y ∈ K(x)},

where f(x, ·) is a smooth convex function in y for each x and K(x) = K
for all x where K is a fixed closed and convex set. Let us also assume that
the function f is twice continuously differentiable. Let (x̄, ȳ) ∈ gphS be a
solution of problem (P1). Set p̄ = ∇yf(x̄, ȳ). Further assume that the matrix
∇x(∇yf(x̄, ȳ)) = ∇2

xyf(x̄, ȳ) has full rank, i.e.

rank
(
∇2

xyf(x̄, ȳ)
)

= m.

Then there exists v∗ ∈ R
m such that the following conditions hold

i) 0 = ∇xF (x̄, ȳ) +∇2
xyf(x̄, ȳ)v∗

ii) 0 ∈ ∇yF (x̄, ȳ) +∇2
yyf(x̄, ȳ)v∗ +D∗NK(ȳ| − p̄)(v∗).
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Proof. In this particular case when K(x) = K then one can write NK(x, y) =
NK(y). Further the solution set mapping S can also be equivalently written
as

S(x) = {y ∈ R
m : 0 ∈ ∇yf(x, y) +NK(y)}.

Since (x̄, ȳ) solves (P1) we have

−∇F (x̄, ȳ) ∈ Ngph S(x̄, ȳ).

This shows that

−(∇xF (x̄, ȳ),∇yF (x̄, ȳ)) ∈ Ngph S(x̄, ȳ).

Hence by definition of the coderivative we have

−∇xF (x̄, ȳ) ∈ D∗S(x̄|ȳ)(∇yF (x̄, ȳ)).

Now by using Lemma 3.2 we see that there exists v∗ ∈ R
m such that

−∇xF (x̄, ȳ) = ∇2
xyf(x̄, ȳ)v∗

and

−∇yF (x̄, ȳ) ∈ ∇2
yyf(x̄, ȳ)T v∗ +D∗NK(ȳ| − p̄)(v∗).

Hence the result. �

Remark 4.2 The qualification condition that we have used in the above theo-
rem is called the ample parametrization condition in Dontchev and Rockafellar
[11]. However in Dontchev and Rockafellar [11] the proto-derivative of the so-
lution set mapping S is computed. The proto-derivative is the tangent cone
to the graph of S at (x̄, ȳ). Thus the approach due to Dontchev and Rock-
afellar [11] can be used in the dual setting given in terms of the tangent cone.
However as we have noted the approach through coderivatives is essential in
surpassing the computation (a difficult one that too) that is required to com-
pute the normal cone to the graph of S at (x̄, ȳ). Thus the results in Levy and
Mordukhovich [14] will play a very fundamental role in the study of mathe-
matical programming with equilibrium constraints (MPEC) and also bilevel
programming with convex lower-level problems.

It is now easy to observe that the above theorem can be used to deduce
optimality conditions for a bilevel programming problem with a convex lower-
level problem with K(x) = K for all x ∈ R

n if the lower-level problem has a
unique solution or we consider an optimistic solution of the bilevel program-
ming problem. However we are not going to explicitly state the results here
since this can be done as in the corollaries following Theorem 4.1.
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One of the main drawback of the optimality conditions derived above for
problem (P) and (P1) is the presence of the coderivative of the normal cone
mapping. Thus the optimality conditions are more abstract in nature. The
computation of the coderivative of the normal cone map seems to be very
difficult. However by using an approach due to Outrata [18] by using some
different qualification condition we can derive an optimality condition in which
the explicit presence of the coderivative of the normal cone map is not there
though as we will see that it will be implicity present. We now present the
following result.

Theorem 4.3 Consider the problem (P1) given as

min
x,y

F (x, y) subject to (x, y) ∈ gphS,

where F : R
n×R

m → R is a smooth function and S : R
n ⇒ R

m is a set-valued
map denoting the solution set of the problem (LLP) i.e.

S(x) = argmin
y

{f(x, y) : y ∈ K(x)},

where f(x, ·) is a smooth convex function in y for each x and K(x) = K
for all x where K is a fixed closed and convex set. Let us also assume that
the function f is twice continuously differentiable. Let (x̄, ȳ) ∈ gphS be a
local solution of problem (P1). Further assume that the following qualification
condition holds at (x̄, ȳ) :

(w, z) ∈ Ngph Nk
(ȳ,−∇yf(x̄, ȳ)) with

(∇2
xyf(x̄, ȳ))T z = 0, w − (∇2

yyf(x̄, ȳ))T z = 0 =⇒ w = 0, z = 0.

Then there exists a pair (w̄, z̄) ∈ Ngph Nk
(ȳ,−∇yf(x̄, ȳ)) such that

i) ∇xF (x̄, ȳ) = (∇2
xyf(x̄, ȳ))T z̄.

ii) −∇yF (x̄, ȳ) = w̄ − (∇2
yyf(x̄, ȳ))T z̄.

Proof. Observe that according the hypothesis of the theorem the problem
(P1) is equivalent to the following problem (P4)

min
x,y

F (x, y) subject to 0 ∈ ∇yf(x, y) +NK(y).

Now by applying Theorem 3.1 in Outrata [18] we reach our desired conclusion.
�

Observe that the qualification condition in Theorem 4.3 guarantees that
(∇2

xyf(x̄, ȳ))T has full rank which is similar to the qualification condition
appearing in Theorem 4.2. However there is also an extra qualification condi-
tion since we now have two Lagrange multipliers instead of one. Though the
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coderivative does not appear explicitly in the representation of the optimality
condition but the condition (w̄, z̄) ∈ Ngph Nk

(ȳ,−∇yf(x̄, ȳ)) tells us that

w̄ ∈ D∗(ȳ| − ∇yf(x̄, ȳ))(−z̄).

Thus the conditions obtained in Theorem 4.2 are same as that of Theorem
4.3. However the approach due to Outrata [18] seems to have an additional
advantage. This apparent advantage is that we can use Outrata’s approach
even when in the problem x is lying in a proper closed set X of R

m. In such
a situation the problem (P1) gets slightly modified and looks as follows

min
x,y

F (x, y), subject to (x, y) ∈ gphS x ∈ X.

Also note that since NK(y) = ∅, when y �∈ K it is clear that y ∈ K is implied
by 0 ∈ ∇yf(x, y) +NK(y). Thus S(x) can also be written as

S(x) = {y ∈ R
m : 0 ∈ ∇yf(x, y) +NK(y)}

= {y ∈ K : 0 ∈ ∇yf(x, y) +NK(y)}.

Hence S(x) ⊂ K. So when we write the expression for S(x) there is no need
to explicitly write that y ∈ K. Thus when x ∈ X the modified version of the
problem (P1) is equivalent to

min
x,y

F (x, y) subject to 0 ∈ ∇yf(x, y) +NK(y), (x, y) ∈ X × R
m

Hence, if (x̄, ȳ) is a solution of the modified (P1) then it also solves the above
problem. Thus in this scenario the qualification condition in Theorem 3.1 in
Outrata reduces to the following. Consider (w, z) ∈ Ngph Nk

(ȳ,−∇yf(x̄, ȳ)).
Then

((∇2
xyf(x̄, ȳ))T z, w − (∇2

yyf(x̄, ȳ))T z) ∈ NX×Rm(x̄, ȳ) =⇒ w = 0, z = 0.

Then by applying Theorem 3.1 in Outrata [18] we arrive at the conclusion that
there exists a pair (w̄, z̄) ∈ Ngph Nk

(ȳ,−∇yf(x̄, ȳ)) and (γ, 0) ∈ NX×Rm(x̄, ȳ)
such that

i) −∇xF (x̄, ȳ) = −(∇2
xyf(x̄, ȳ))T z̄ + γ .

ii) −∇yF (x̄, ȳ) = w̄ − (∇2
yyf(x̄, ȳ))T z̄.

Note that NX×Rm(x̄, ȳ) = NX(x̄)×NRm(ȳ) (see for example Rockafellar and
Wets [21]). And since NRm(ȳ) = {0}, it is clear that

NX×Rm(x̄, ȳ) = {(γ, 0) : γ ∈ NX(x̄)}.

Further if X = R
n which is the case in Theorem 4.3 one has NRn×Rm(x̄, ȳ) =

{(0, 0)}.
Let us now turn our attention of how to calculate the normal cone to the
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graph of the normal cone mapping associated with a given set K in the lower-
level problem. However if K has some special form then one can have an
explicit expression for Ngph NK

(ȳ, z̄). For example if K = R
m
+ then such an

explicit expression for Ngph NK
(ȳ, z̄) is given by Proposition 3.7 in Ye [24].

The result in Proposition 3.7 in Ye [24] depends on Proposition 2.7 in Ye [25].
In Proposition 2.7 of Ye [25] the normal cone to the graph of the normal cone
mapping NR

m
+

is calculated. Let C ⊂ R
n be a closed set. Then v ∈ R

n is said
to be proximal normal to C at x̄ ∈ C if there exists σ > 0 such that

〈v, x− x̄〉 ≤ σ‖x− x̄‖2

The set of all proximal normals forms a cone called the proximal normal cone
which is denoted by NP

C (x̄). It is also important to note that if C is a closed
set then a normal vector can be realized as a limit of proximal normal vectors.
More precisely if C is closed and v ∈ NC(x̄) then there exist sequences vk → v
and xk → x̄ with vk ∈ NP

C (x̄). It is clear from the definition of the proximal
normal cone that

NP
C (x̄) ⊆ N̂C(x̄) ⊆ NC(x̄).

For more details on the proximal normal cone see for example Clarke, Ledyaev,
Stern and Wolenski [8].
We will now consider the simple case when (x, y) ∈ R

2 and we shall consider
the set K(x) = K = [0, 1] as the feasible set of the lower-level problem. Our
aim is to precisely calculate Ngph NK

(ȳ, z̄). Observe that

NK(y) =

⎧⎨⎩
(−∞, 0] : y = 0
{0} : 0 < y < 1
[0,+∞) : y = 1

It is easy to sketch the graph of the normal cone map NK where K = [0, 1].
The proximal normal cone to gphNK is given as follows.

NP
gph NK

(ȳ, z̄) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−∞, 0]× [0,+∞) : ȳ = 0, z̄ = 0
{0} × R : 0 < ȳ < 1, z̄ = 0
R× {0} : ȳ = 1, z̄ > 0
R× {0} : ȳ = 0, z̄ < 0
[0,+∞)× (−∞, 0] : ȳ = 1, z̄ = 0

Using the fact that the basic normal cone can be obtained as a limit of
the proximal normal cone we obtain the following

Ngph NK
(0, 0) = {(w, v) ∈ R

2 : w < 0, v > 0} ∪ {(w, v) ∈ R
2 : v = 0}

∪{(w, v) ∈ R
2 : w = 0}

and
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Ngph NK
(1, 0) = {(w, v) ∈ R

2 : w > 0, v < 0} ∪ {(w, v) ∈ R
2 : v = 0}

∪{(w, v) ∈ R
2 : w = 0}.

For all other points the basic normal cone coincides with the proximal normal
cone.
We have shown earlier that using the approach of Outrata [18] we are able
to develop optimality conditions for the problem (P1) when x ∈ X and X is
a closed subset of R

n. We would like to remark that by using the conditions
(a), (b) and (c) in Theorem 3.2 of Ye and Ye [26] we can arrive at the same
conditions as we have obtained using Outrata’s approach. However the most
interesting condition in Theorem 3.2 of [26] is (b). In our case this corresponds
to the assumption that for each fixed x ∈ X the function y �→ f(x, y) is
strongly convex. This may actually appear in practical situations.

We will now turn our attention to study the bilevel programming prob-
lem (P2) whose lower-level problem (LLP2) is of a primal-dual nature i.e. a
minimax problem.

Theorem 4.4 Let us consider the problem (P3) given as follows

min
x,y,λ

F (x, y, λ) subject to (x, y, λ) ∈ gph S,

where F : R
n × R

m × R
p → R is a smooth function and the set-valued map

S : R
n ⇒ R

m × R
p is a solution set of the following problem (LLP2)

minimaximizeL(x, y, λ) subject to (y, λ) ∈ Y ×W,

where Y ⊂ R
m and W ∈ R

p are non-empty convex sets and L(x, y, λ) is
convex with respect to y for each (x, λ) ∈ R

n ×W and is concave in λ for
each (x, y) ∈ R

n × Y . Further assume that L(x, y, λ) is a twice continuously
differentiable function. Let (x̄, ȳ, λ̄) be a solution to (P3). Set

p̄ = (∇yL(x̄, ȳ, λ̄),−∇λL(x̄, ȳ, λ̄)).

Further assume that the following qualification condition holds :

rank
[
∇2

xyL(x̄, ȳ, λ̄)|∇2
xλL(x̄, ȳ, λ̄)

]
= m+ p

Then there exists v∗ ∈ R
m+p such that

i) 0 ∈ ∇xF (x, y, λ) +
[
∇2

xyL(x̄, ȳ, λ̄)|∇2
xλL(x̄, ȳ, λ̄)

]
v∗

ii) 0 ∈ ∇(y,λ)F (x̄, ȳ, λ̄) +
[
∇2

yyL(x̄, ȳ, λ̄)|∇2
yλL(x̄, ȳ, λ̄)

]
v∗

+D∗NY ×W ((ȳ, λ̄)| − p̄)(v∗).

Proof. Since (x̄, ȳ, λ̄) is a solution of (P3) then (x̄, ȳ, λ̄) ∈ gphS. Hence from
Proposition 1.4 in Dontchev and Rockafellar [12] we have that

−∇yL(x̄, ȳ, λ̄) ∈ NY (ȳ) and ∇λL(x̄, ȳ, λ̄) ∈ NW (λ̄).
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This is equivalent to the fact that (ȳ, λ̄) is solving the following variational
inequality over Y ×W namely

0 ∈ G(x̄, y, λ) +NY ×W (y, λ),

where

G(x̄, y, λ) = (∇yL(x̄, y, λ),−∇λL(x̄, y, λ)).

The result then follows by direct application of Lemma 3.2. �

It is important to note that all the above optimality conditions are ex-
pressed in terms of the coderivative of the normal cone map. We can however
provide a slightly different reformulation of the optimality conditions by us-
ing the second-order subdifferential of the indicator function. To do this let
us observe that if the lower-level problem (LLP) in (P) is convex then the
solution set mapping S can be equivalently written as follows

S(x) = {y ∈ R
m : 0 ∈ ∇yf(x, y) + ∂yδK(x, y)},

where δK(x, y) = δK(x)(y) denotes the indicator function for the set K(y).
For any function f : R

n → R ∪ {+∞} which is finite at x̄ the second-order
subdifferential of f at (x̄, ȳ) is the coderivative of the subdifferential map i.e.

∂2f(x̄|ȳ)(u) = D∗(∂f)(x̄|ȳ)(u).

Theorem 4.5 Consider the problem (P1) and let (x̄, ȳ) be a local solution of
the problem. Consider that f is a twice continuously differentiable function.
Assume that the following qualification condition holds:

(u, 0) ∈ ∂∞δK(x̄, ȳ) =⇒ u = 0.

Additionally assume that the following qualification condition also holds

0 ∈ ∇2f(x̄, ȳ)T (0, v2) +
⋃

w∈∂δK(x̄,ȳ),proj2 w=−∇yf(x̄,ȳ)

∂2δK((x̄, ȳ)|w)(0, v2)

=⇒ v2 = 0,

where proj2 denotes the projection on R
m. Then there exists v∗2 ∈ R

m and
w̄ ∈ ∂δK(x̄, ȳ) with proj2 w̄ = −∇yf(x̄, ȳ) such that

0 ∈ ∇F (x̄, ȳ) +∇2f(x̄, ȳ)T (0, v∗2) + ∂2δK((x̄, ȳ)|w̄)(0, v∗2).

Proof. The key to the proof of this result is the Corollary 2.2 in Levy and Mor-
dukhovich [14]. As per the Corollary 2.2 in Levy and Mordukhovich [14] the
function δK should satisfy the following properties. First gph∂yδK is closed.
This is true since gph ∂yδK = gphNK and we know that gphNK is closed. Sec-
ond δk should be subdifferentially continuous at (x̄, ȳ) for any v ∈ gphNK .
This is true since the indicator function is subdifferentially continuous (see
Rockafellar and Wets [21] pages 610-612). Now the result follows by a direct
application of Corollary 2.2 in [14] �
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