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1 Introduction

The contraction and nonexpansive fixed point–methods for solving variational
inequalities have been developed by several authors (see e.g. [1, 2, 6, 8, 15, 16]
and the references therein). In our recent paper [1] we have used the auxiliary
problem-method and the Banach contraction mapping fixed point principle to
solve mixed variational inequalities involving single valued strongly monotone
and cocoercive operators. Then in [2] we extended our method and combined
it with the proximal point algorithm to solve mixed monotone variational
inequalities.

In this paper we further extend the idea in [1, 2 ] to mixed multivalued vari-
ational inequalities involving strongly monotone and cocoercive cost operators
with respect to the Hausdorff distance. Namely, we show that a necessary and
sufficient condition for a point to be the solution of a multivalued strongly
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monotone mixed variational inequality is that it is the fixed point of a certain
multivalued mapping having a contractive selection. For mixed variational in-
equalities involving multivalued cocoercive cost operators we show that their
solutions can be computed by finding fixed points of corresponding multival-
ued mappings having a nonexpansive selection. These results allow that the
Banach contraction mapping principle and its modifications can be applied
to solve strongly monotone and cocoercive multivalued mixed variational in-
equalities. By the Banach contraction fixed point principle it is straightforward
to obtain the convergence rate of the proposed algorithms.

2 Fixed Point Formulations

Let C be a nonempty, closed, convex subset of IRn, let F : IRn → 2IRn

be a
multivalued mapping. Throughout this paper we suppose that domF contains
C and that F (x) is closed, convex for every x ∈ C. We suppose further that
we are given a convex, subdifferentiable function ϕ : C → IR. We consider
the following multivalued mixed variational inequality problem that we shall
denote by (VIP) :

Find x∗ ∈ C and w∗ ∈ F (x∗) such that

〈w∗, x− x∗〉+ ϕ(x)− ϕ(x∗) ≥ 0 ∀x ∈ C. (2.1)

This problem has been considered by some authors (see e.g., [4, 9, 12, 13, 14]
and the references quoted therein). As usual in what follows we shall refer to
F as cost operator and to C as constraint set.

As an example we consider an oligopolistic Cournot market model where
there are n-firms producing a common homogeneous commodity. We assume
that the price pi of firm i depends on the total quantity of the commodity.
Let hi denote the cost of firm i when its production level is xi. Suppose that
the profit of firm i is given by

fi(x1, ..., xn) = xipi(
n∑

i=1

xi)− hi(xi) (i = 1, ..., n).

Let Ui denote the strategy set of firm i and U := U1 × ... × Un be the
strategy set of the model. In the classical Cournot model the price and the
cost functions for each firm are assumed to be affine of the forms

pi(σ) = αi − βiσ, αi ≥ 0, βi > 0, σ =
n∑

i=1

xi,

hi(xi) = μixi + ξi, μi > 0, ξi ≥ 0 (i = 1, ..., n).

The problem is to find a point x∗ = (x∗1, ..., x
∗
n) ∈ U such that

fi(x∗1, ..., x
∗
i−1, yi, x

∗
i+1, ..., x

∗
n) ≤ fi(x∗) ∀yi ∈ Ui,∀i.
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A vector x∗ ∈ U satisfying this inequality is called a Nash-equilibrium point
of the model.

It is not hard to show (see also [10], and [9] for the case βi ≡ β for all
i) that the problem of finding a Nash-equilibrium point can be formulated in
the form (2.1) where

C = U := U1×, ...,×Un, ϕ(x) :=
n∑

i=1

βix
2
i +

n∑
i=1

hi(xi), F (x) := Bx− α

with

B :=

⎛⎜⎜⎝
0 β1 β1 ... β1

β2 0 β2 ... β2

... ... ... ... ...
βn βn βn ... 0

⎞⎟⎟⎠
and α := (α1, ..., αn)T . Some practical problems that can be formulated in a
problem of form (2.1) can be found, for example, in [6, 9, 11].

For each fixed x ∈ C and w ∈ F (x), we denote by h(x,w) the unique
solution of the strongly convex program

min{1
2
〈y − x,G(y − x)〉+ 〈w, y − x〉+ ϕ(y) |y ∈ C}, (2.2)

where G is a symmetric, positive definite matrix. It is well known (see e.g.,
[5, 9, 11]) that h(x,w) is the solution of (2.2) if and only if h(x,w) is the
solution of the variational inequality

〈w +G(h(x,w)− x) + z, y − h(x,w)〉 ≥ 0 ∀y ∈ C, (2.3)

for some z ∈ ∂ϕ(h(x,w)).
Now for each x ∈ C, we define the multivalued mapping

H(x) := {h(x,w)|w ∈ F (x)}.

Clearly, H is a mapping from IRn to C and, since C ⊆ domH, we have
C ⊆ dom H ⊆ domF .

The next lemma shows that a point x∗ is a solution to (VIP) if and only
if it is a fixed point of H.

Lemma 2.1 x∗ is a solution to (VIP) if and only if x∗ ∈ H(x∗).

Proof. Let x∗ solve (VIP). It means that there exists w∗ ∈ F (x∗) such that
(x∗, w∗) satisfies inequality (2.1). Let h(x∗, w∗) be the unique solution of Prob-
lem (2.2) corresponding to x∗, w∗ and some positive definite matrix G. We
replace x by h(x∗, w∗) in (2.1) to obtain

〈w∗, h(x∗, w∗)− x∗〉+ ϕ(h(x∗, w∗))− ϕ(x∗) ≥ 0. (2.4)
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From (2.3) it follows that there exists z∗ in ∂ϕ(h(x∗, w∗)) such that

〈w∗ +G(h(x∗, w∗)− x∗) + z∗, y − h(x∗, w∗)〉 ≥ 0 ∀y ∈ C. (2.5)

Replacing y by x∗ ∈ C in (2.5) we have

〈w∗ +G(h(x∗, w∗)− x∗) + z∗, x∗ − h(x∗, w∗)〉 ≥ 0. (2.6)

From inequalities (2.4) and (2.6) we obtain

〈G(h(x∗, w∗)− x∗), x∗ − h(x∗, w∗)〉+ 〈z∗, x∗ − h(x∗, w∗)〉

+ϕ(h(x∗, w∗))− ϕ(x∗) ≥ 0, (2.7)

for some z ∈ ∂ϕ(h(x,w)). Since ϕ is convex on C, by the definition of sub-
differential of a convex function, we have

〈z∗, x∗ − h(x∗, w∗)〉 ≤ ϕ(x∗)− ϕ(h(x∗, w∗)) ∀z∗ ∈ ∂ϕ(h(x∗, w∗)).

Hence

〈z∗, x∗ − h(x∗, w∗)〉 − ϕ(x∗) + ϕ(h(x∗, w∗)) ≤ 0 ∀z∗ ∈ ∂ϕ(h(x∗, w∗)). (2.8)

From inequalities (2.7) and (2.8), it follows that

〈G(h(x∗, w∗)− x∗), x∗ − h(x∗, w∗)〉 ≥ 0.

Since G is symmetric, positive definite, the latter inequality implies that
h(x∗, w∗) = x∗.
Now suppose x∗ ∈ H(x∗). Then there is w∗ in F (x∗) such that x∗ = h(x∗, w∗).
But for every x ∈ C,w ∈ F (x), we always have

〈w +G(h(x,w)− x) + z, y − h(x,w)〉 ≥ 0 ∀y ∈ C, (2.9)

for some z ∈ ∂ϕ(h(x,w)). Replacing x,w, z by x∗ = h(x∗, w∗), w∗, z∗, respec-
tively, in inequality (2.9) we obtain

〈w∗ + z∗, y − x∗〉 ≥ 0 ∀y ∈ C, (2.10)

for some z∗ ∈ ∂ϕ(x∗). Using the definition of subdifferential of a convex
function, we can write

ϕ(y)− ϕ(x∗) ≥ 〈z∗, y − x∗〉 ∀y ∈ C. (2.11)

From inequalities (2.10) and (2.11) we have

〈w∗, y − x∗〉+ ϕ(y)− ϕ(x∗) ≥ 0 ∀y ∈ C,

which means that x∗ is a solution of Problem (VIP). �
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Now we recall some well known definitions (see [3, 5]) about multivalued
mappings that we need in the sequel.
• Let A,B be two nonempty subsets in IRn. Let ρ(A,B) denote the Hausdorff
distance of A and B that is defined as

ρ(A,B) := max{d(A,B), d(B,A)},

where

d(A,B) := sup
a∈A

inf
b∈B

||a− b||, d(B,A) := sup
b∈B

inf
a∈A

||a− b||.

Let ∅ �= M ⊆ IRn and K : IRn → IRn be a multivalued mapping such that
M ⊆ domK.
• K is said to be closed at x if xk → x, yk ∈ K(xk), yk → y as k → +∞, then
y ∈ F (x). We say that K is closed on M if it is closed at every point of M .
• K is said to be upper semicontinuous at x if for every open set G containing
K(x) there exists an open neighborhood U of x such that K(U) ⊂ G. We say
that K is upper semicontinuous on M if it is upper semicontinuous at every
point of M .
• K is said to be Lipschitz with a constant L (briefly L-Lipschitz) on M if

ρ(K(x),K(y)) ≤ L||x− y|| ∀x, y ∈M.

K is called a contractive mapping if L < 1 and K is said to be nonexpansive
if L = 1.
• We say that K has a L-Lipschitz selection on M if for every x, y ∈M there
exist w(x) ∈ K(x) and w(y) ∈ K(y) such that

||w(x)− w(y)|| ≤ L||x− y||.

If 0 < L < 1 (resp. L = 1) we say that K has a contractive (resp. non-
expansive) selection on M . It is easy to check that a multivalued Lipschitz
mapping with compact, convex values has a Lipschitz selection. This is why
in the sequel, for short, we shall call a mapping having a Lipschitz selection
a quasi-Lipschitz mapping. Likewise, a mapping having a contractive (resp.
nonexpansive) selection is called quasicontractive (resp. quasinonexpansive).
• K is said to be monotone on M if

〈w − w′, x− x′〉 ≥ 0 ∀x, x′ ∈M, ∀w ∈ K(x), ∀w′ ∈ K(x′).

• K is said to be strongly monotone with modulus β > 0 (briefly β-strongly
monotone) on M if

〈w − w′, x− x′〉 ≥ β||x− x′||2 ∀x, x′ ∈M, ∀w ∈ K(x), ∀w′ ∈ K(x′).

• K is said to be cocoercive with modulus δ > 0 (briefly δ-cocoercive) on M
if



236 Pham Ngoc Anh and Le Dung Muu

〈w − w′, x− x′〉 ≥ δρ2(K(x),K(x′)) ∀x, x′ ∈M, ∀w ∈ K(x), ∀w′ ∈ K(x′),

where ρ stands for the Hausdorff distance.
Note that in an important case when G = αI with α > 0 and I being the

identity matrix, problem (2.2) becomes

min{α
2
||y − x||2 + 〈w, y − x〉+ ϕ(y) |y ∈ C}.

In the sequel we shall restrict our attention to this case. The following theorem
shows that with a suitable value of regularization parameter α, the mapping
H defined above is quasicontractive on C .

In what follows we need the following lemma:

Lemma 2.2 Suppose that C ⊆ IRn is nonempty, closed, convex and F :
IRn → 2IRn

is L-Lipschitz on C such that F (x) is closed, convex for every
x ∈ C. Then for every x, x′ ∈ C and w ∈ F (x), there exists w′ ∈ F (x′), in
particular w′ = PF (x′)(w), such that ||w − w′|| ≤ L||x− x′||.

Here, PF (x′)(w) denotes the projection of the point w on the set F (x′).

Proof. Since w ∈ F (x), by the definition of the projection and the Hausdorff
distance, we have

||w − w′|| = inf
v′∈F (x′)

||w − v′|| ≤ sup
v∈F (x)

inf
v′∈F (x′)

||v − v′||

≤ ρ
(
F (x), F (x′)

)
≤ L||x− x′||.

�

Theorem 2.1 Suppose that F is β- strongly monotone and L- Lipschitz on
C, and that F (x) is closed, convex for every x ∈ C. Then the mapping H is

quasicontractive on C with constant δ :=
√

1− 2β
α + L2

α2 whenever α > L2

2β .
Namely,

||h(x,w(x))− h(x′, w(x′)) ≤ δ||x− x′|| ∀x, x′ ∈ C ∀w(x) ∈ F (x)

where w(x′) is the Euclidean projection of w(x) onto F (x′).

Proof. Problem (2.2) with G = αI can be equivalently rewritten as

min
y
{1
2
〈α||y − x||2〉+ 〈w, y − x〉+ ϕ(y) + δC(y)},

where δC is the indicator function of C. Let h(x,w) be the unique solution of
this unconstrained problem. Then we have

0 ∈ α(h(x,w)− x) + w +NC(h(x,w)) + ∂ϕ(h(x,w)),
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where NC(h(x,w)) is the normal cone to C at the point h(x,w). Thus there
are z1 ∈ NC(h(x,w)) and z2 ∈ ∂ϕ(h(x,w)) such that

α(h(x,w)− x) + w + z1 + z2 = 0.

Therefore
h(x,w) = x− 1

α
w − 1

α
z1 −

1
α
z2. (2.12)

Similarly for x′ ∈ C,w′ ∈ F (x′), we have

h(x′, w′) = x′ − 1
α
w′ − 1

α
z′1 −

1
α
z′2, (2.13)

where z′1 ∈ NC(h(x′, w′)) and z′2 ∈ ∂ϕ(h(x′, w′)).
Since NC is monotone, we have

〈z1 − z′1, h(x,w)− h(x′, w′)〉 ≥ 0. (2.14)

Substituting z1 from (2.12) and z′1 from (2.13) into (2.14) we obtain

〈x−x′− 1
α

(w−w′)− 1
α

(z2−z′2)−(h(x,w)−h(x′, w′)), h(x,w)−h(x′, w′)〉 ≥ 0,

which implies

||h(x,w)−h(x′, w′)||2 ≤ 〈x−x′− 1
α

(w−w′)− 1
α

(z2− z′2), h(x,w)−h(x′, w′)〉

= 〈x− x′ − 1
α

(w − w′), h(x,w)− h(x′, w′)〉 − 1
α
〈z2 − z′2, h(x,w)− h(x′, w′)〉.

(2.15)
Since ∂ϕ is monotone on C, we have

〈h(x,w)−h(x′, w′), z2−z′2〉 ≥ 0 ∀z2 ∈ ∂ϕ(h(x,w)), z′2 ∈ ∂ϕ(h(x′, w′)). (2.16)

From (2.15), (2.16) it follows that

||h(x,w)− h(x′, w′)||2 ≤ 〈x− x′ − 1
α

(w − w′), h(x,w)− h(x′, w′)〉

≤ ||x− x′ − 1
α

(w − w′)|| ||h(x,w)− h(x′, w′)||.

Thus
||h(x,w)− h(x′, w′)||2 ≤ ||x− x′ − 1

α
(w − w′)||2 (2.17)

= ||x− x′||2 − 2
α
〈x− x′, w − w′〉+

1
α2
||w − w′||2.

Since F is L-Lipschitz on C and F (x′) is closed, for every w(x) ∈ F (x), by
Lemma 2.2, there exists w(x′) ∈ F (x′) such that
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||w(x)− w(x′)|| ≤ L||x− x′||

which together with strong monotonicity of F implies

||x− x′ − 1
α

(h(x,w(x))− h(x′, w(x′))||2 ≤ (1− 2β
α

+
L2

α2
)||x− x′||2. (2.18)

Finally, from (2.17) and (2.18) we have

||h(x,w(x))− h(x′, w(x′))|| ≤
√

1− 2β
α

+
L2

α2
||x− x′||. (2.19)

Let δ :=
√

1− 2β
α + L2

α2 , then

||h(x,w(x))− h(x′, w(x′))|| ≤ δ||x− x′|| ∀x, x′ ∈ C.

Note that if α > L2

2β then δ ∈ (0, 1). Thus the multivalued mapping H has a
contractive selection on C with constant δ. �

Remark 2.1 From the definition of H and Theorem 2.1 it follows that when
F is single-valued, the mapping H is contractive on C.

Note that if ϕ is η-strongly convex and subdifferentiable on C, then its
subdifferential is η- strongly monotone on C (see e.g., [5]). This means that

〈z − z′, x− x′〉 ≥ η||x− x′||2 ∀x, x′ ∈ C, z ∈ ∂ϕ(x), x′ ∈ ∂ϕ(x′).

In the following theorem the strong monotonicity of F is replaced by the
strong convexity of ϕ.

Theorem 2.2 Suppose that F is monotone and L- Lipschitz on C, that F (x)
is closed, convex for every x ∈ C and that ϕ is η-strongly convex and subdif-
ferentiable on C. Then the mapping H is quasicontractive on C with constant

δ :=
√
L2 + α2

α+ η
,

whenever α > L2−η2

2η .

Proof. By the same way as in the proof of Theorem 2.1 we obtain

||h(x,w)−h(x′, w′)||2 ≤ 〈x−x′− 1
α

(w−w′)− 1
α

(z2− z′2), h(x,w)−h(x′, w′)〉

= 〈x− x′ − 1
α

(w − w′), h(x,w)− h(x′, w′)〉 − 1
α
〈z2 − z′2, h(x,w)− h(x′, w′)〉

from which it follows that
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||h(x,w)− h(x′, w′)||2 ≤ 〈x− x′ − 1
α

(w − w′), h(x,w)− h(x′, w′)〉

− 1
α
〈z2 − z′2, h(x,w)− h(x′, w′)〉, (2.20)

for all x, x′ ∈ C,w ∈ F (x), w′ ∈ F (x′), for some z2 ∈ ∂ϕ(h(x,w)), z′2 ∈
∂ϕ(h(x′, w′)).
Since ∂ϕ is strongly monotone with modulus η on C, we have

〈z2 − z′2, h(x,w)− h(x′, w′)〉 ≥ η||h(x,w)− h(x′, w′)||2

∀z2 ∈ ∂ϕ(h(x,w)), z′2 ∈ ∂ϕ(h(x′, w′))

⇔ − 1
α
〈z2 − z′2, h(x,w)− h(x′, w′)〉 ≤ − η

α
||h(x,w)− h(x′, w′)||2. (2.21)

Combining (2.20) and (2.21) yields

(1 +
η

α
)2||h(x,w)− h(x′, w′)||2 ≤ ||x− x′ − 1

α
(w − w′)||2

= ||x− x′||2 − 2
α
〈x− x′, w − w′〉+

1
α2
||w − w′||2. (2.22)

Since F is Lipschitz with constant L on C and F (x) is closed, convex, it follows
that for every x, x′ ∈ C, w(x) ∈ F (x), there exists w(x′) ∈ F (x′) satisfying

||w(x)− w(x′)|| ≤ L||x− x′||.

Since F is monotone, we have

〈w(x)− w(x′), x− x′〉 ≥ 0,

which together with (2.22) implies

(1 +
η

α
)2||h(x,w(x))− h(x′, w(x′))||2 ≤ (1 +

L2

α2
)||x− x′||2

⇔ ||h(x,w(x))− h(x′, w(x′))|| ≤ δ||x− x′|| ∀x, x′ ∈ C,

where δ :=
√

L2+α2

α+η . It is easy to verify that δ ∈ (0, 1) when α > L2−η2

2η . �

In the next theorem we weaken strong monotonicity of F by cocoercivity.

Theorem 2.3 Suppose that F is γ-cocoercive on C, and that F (x) is closed,
convex for every x ∈ C. Then the mapping H is quasinonexpansive on C.
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Proof. By the same way as in the proof of Theorem 2.1, for every x, x′ ∈ C,
we have

||h(x,w)− h(x′, w′)||2 ≤ ||x− x′ − 1
α

(w − w′)||2 ∀w ∈ F (x), ∀w′ ∈ F (x′).

(2.23)
From the cocoercivity of F on C with modulus γ, it follows that

γρ2(F (x), F (x′)) ≤ 〈x− x′, w − w′〉 ∀x, x′ ∈ C,w ∈ F (x), w′ ∈ F (x′).

Hence, for every x, x′ ∈ C and w ∈ F (x), w′ ∈ F (x′) we have

||x− x′ − 1
α

(w − w′)||2 = ||x− x′||2 − 2
α
〈x− x′, w − w′〉+

1
α2
||w − w′||2

≤ ||x− x′||2 − 2γ
α
ρ2(F (x), F (x′)) +

1
α2
||w − w′||2.

Let w(x) ∈ F (x), w(x′) ∈ F (x′), such that ρ(F (x), F (x′)) = ||w(x)− w(x′)||.
Substituting w(x) and w(x′) into the last inequality we obtain

||x− x′ − 1
α

(w(x)− w(x′))||2 ≤ ||x− x′||2 − (
2γ
α
− 1
α2

)||w(x)− w(x′)||2.

Since α ≥ 1
2γ , we have

||x− x′ − 1
α

(w(x)− w(x′)||2 ≤ ||x− x′||2 ∀x, x′ ∈ C. (2.24)

From (2.23) and (2.24) it follows that

||h(x,w(x))− h(x′, w(x′))|| ≤ ||x− x′|| ∀x, x′ ∈ C.

�

Remark 2.2 From the proof we can see that the theorem remains true if we
weaken the cocoercivity of F by the following one

∀x, x′ ∈ C,∀w ∈ F (x),∃π′(w) ∈ F (x′) : γρ2
(
F (x), F (x′)

)
≤ 〈w−π′(w), x−x′〉

Below is given a simple example for a multivalued mapping which is both
monotone and Lipschitz.

Example 2.1 Let C = {(x, 0)|x ≥ 0} ⊆ IR2, and F : C → 2IR2
be given as

F (x, 0) = {(x, y)|0 ≤ y ≤ x}.

It is easy to see that F is monotone and Lipschitz on C with constant L =
√

2.
The mapping G := I + F with I identity on IR2 is strongly monotone with
modulus β = 1 and Lipschitz on C with constant L =

√
2 + 1.

Indeed, by definition of F , it is clear that F is monotone on C. Using the
definition of the Hausdorff distance we have

ρ(F (x, y), F (x′, y′)) =
√

2||(x, y)− (x′, y′)|| ∀(x, y), (x′, y′) ∈ C.

Thus F is Lipschitz on C with constant L =
√

2. �
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3 Algorithms

The results in the preceding section lead to algorithms for solving multivalued
mixed variational inequalities by the Banach contraction mapping principle or
its modifications. By Theorem 2.1 and 2.2, when either F is strongly monotone
or ϕ is strongly convex, one can choose a suitable regularization parameter
α such that the solution mapping H is quasi-contractive. In this case, by the
Banach contraction principle the unique fixed point of H, thereby the unique
solution of Problem (2.1) can be approximated by iterative procedures

xk+1 ∈ H(xk), k = 0, 1...

where x0 can be any point in C.
According to the definition of H, computing xk+1 amounts to solving a
strongly convex mathematical program. In what follows by ε-solution of (VIP)
we mean a point x ∈ C such that ||x− x∗|| ≤ ε where x∗ is an exact solution
of (VIP).

The algorithm then can be described in detail as follows:
Algorithm 3.1. Choose a tolerance ε ≥ 0.
Choose α > L2

2β , when F is β-strongly monotone (and choose α > L2−η2

2η ,
when ϕ is η-strongly convex), where L is the Lipschitz constant of F .
Seek x0 ∈ C,w0 ∈ F (x0).
Iteration k (k = 0, 1, 2...)
Solve the strongly convex program

P (xk) : min{1
2
α||x− xk||2 + 〈wk, x− xk〉+ ϕ(x)|x ∈ C},

to obtain its unique solution xk+1. Find wk+1 ∈ F (xk+1) such that ||wk+1 −
wk|| ≤ L||xk+1 − xk||, for example wk+1 := PF (xk+1)(wk) (the projection of
wk onto F (xk+1)) .
If ||xk+1−xk|| ≤ ε (1−δ)

δk , then terminate: xk is an ε-solution to Problem (2.1).
Otherwise, if ||xk+1 − xk|| > ε (1−δ)

δk , then increase k by 1 and go to iteration
k.

By Theorems 2.1 and 2.2 and the Banach contraction principle it is easy
to prove the following estimation:

||xk+1 − x∗|| ≤ δk+1

1− δ ||x
0 − x1|| ∀k,

where 0 < δ < 1 is the quasicontractive constant of h. According to Theorem

2.1 δ =
√

1− 2β
α + L2

α2 , when F is β-strongly monotone, and according to

Theorem 2.2 δ =
√

L2+α2

α+η when ϕ is η-strongly convex.

Theorem 3.1 Under the assumptions of Theorem 2.1 (or Theorem 2.2), the
sequence {xk} generated by Algorithm 3.1 satisfies
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||xk − x∗|| ≤ δk+1

1− δ ||x
0 − x1|| ∀k, (3.1)

where x∗ is the solution of (VIP). If, in addition F is closed on C, then the
sequence {wk} converges to w∗ ∈ F (x∗) with the rate

||wk − w∗|| ≤ Lδk

1− δ ||x
0 − x1|| ∀k.

Proof. First we suppose that the assumptions of Theorem 2.1 are satisfied.
Let x∗ be the solution of (2.1). By Lemma 2.1,

x∗ ∈ H(x∗) := {h(x∗, w)|w ∈ F (x∗)}.

Let w∗ ∈ F (x∗) such that x∗ = h(x∗, w∗) ∈ H(x∗). By the choice of wk+1 in
the algorithm

||wk+1 − wk|| ≤ L||xk+1 − xk|| ∀k.

Then as shown in Theorem 2.1 we have

||h(xk+1, wk+1)− h(xk, wk)|| ≤ δ||xk+1 − xk|| ∀k,

Since h(xk+1, wk+1) = xk+2, we have

||xk+2 − xk+1|| ≤ δ||xk+1 − xk|| ∀k,

from which, by the Banach contraction mapping fixed point principle, it fol-
lows that

||xk − x∗|| ≤ δk+1

1− δ ||x
0 − x1|| ∀k.

Thus xk → x∗ as k → +∞. Moreover using again the contraction property
we have

||xp+k − xk|| ≤ δk (1− δp)
1− δ ||xk+1 − xk|| ∀k, p.

Letting p→ +∞ we obtain

||xk − x∗|| ≤ δk

1− δ ||x
k+1 − xk|| ∀k.

Thus if ||xk+1 − xk|| ≤ ε (1−δ)
δk , then it follows that ||xk − x∗|| ≤ ε which

means that xk is an ε-solution to (VIP).
On the other hand, since

||wk+1 − wk|| ≤ L||xk+1 − xk||

we have
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||wk+p − wk|| ≤ ||wk+1 − wk||+ ||wk+2 − wk+1||+ ...+ ||wk+p − wk+p−1||

≤ L(||xk+1 − xk||+ ||xk+2 − xk+1||+ ...+ ||xk+p − xk+p−1||)
≤ L(δk + δk+1 + ...+ δk+p−1)||x1 − x0||.

Thus
||wk+p − wk|| < Lδk δ

p − 1
δ − 1

||x1 − x0||, (3.2)

which means that {wk} is a Cauchy sequence. Hence the sequence {wk} con-
verges to some w∗ ∈ C. Since F is closed, w∗ ∈ F (x∗). From (3.2) and letting
p→ +∞ we have

||wk − w∗|| ≤ Lδk

1− δ ||x
1 − x0|| ∀j.

The proof can be done similarly under the assumptions of Theorem 2.3. �

Remark 3.1 From δ :=
√

1− 2β
α + L2

α2 (resp. δ =
√

L2+α2

α+η ) we see that the
contraction coefficient δ is a function of the regularization parameter α. An
elementary computation shows that δ takes its minimum when α = L2

β (resp.

α = L2−η2

η ). Therefore for the convergence, in Algorithm 3.1 the best way is

to choose α = L2

β (resp. α = L2−η2

η ).

Remark 3.2 In Algorithm 3.1, at each iteration k, it requires finding wk+1 ∈
F (xk+1) such that |wk+1−wk|| ≤ L||xk+1−xk||, which can be done when F (x)
has a special structure, for example, box, ball , simplex or a convex set given
explicitly. One may ask whether the algorithm remains convergent if it takes
any point from F (xk+1). To our opinion, there is less hope for a positive
answer to this question except cases when the set F (xk+1) can be represented
by any of its elements.

Now we consider a special case that often occurs in practice.
Let μ = sup{diam F (x)|x ∈ C}, τ = diam C. It is well known that if C is

compact and F is upper semicontinuous on C, then μ and τ are finite.
Algorithm 3.2. Choose a tolerance ε > 0, α >

L2
0

2β when F is β-strongly

monotone (and choose α > L2
0−η2

2η when ϕ is η-strongly convex), where L0 ≥
Lτ+μ
ε(1−δ) and δ :=

√
1− 2β

α + L2
0

α2 when F is β-strongly monotone (δ =
√

L2
0+α2

α+η

when ϕ is η-strongly convex).
Seek x0 ∈ C,w0 ∈ F (x0).
Iteration k (k = 0, 1, 2...)
Solve the strongly convex program

P (xk) : min{1
2
α||x− xk||2 + 〈wk, x− xk〉+ ϕ(x)|x ∈ C},
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to obtain its unique solution xk+1. Choose wk+1 ∈ F (xk+1).
If ||xk+1−xk|| ≤ ε (1−δ)

δk , then terminate: xk is an ε-solution to Problem (2.1).
Otherwise, if ||xk+1−xk|| > ε (1−δ)

δk , then increase k by 1 and go to iteration
k.

Theorem 3.2 Suppose that C is compact and F is upper semicontinuous on
C. Then under the assumptions of Theorem 2.1 or Theorem 2.2, the sequence
{xk} generated by Algorithm 3.2 satisfies

||xk − x∗|| ≤ δk+1

1− δ ||x
0 − x1|| ∀k,

where x∗ is the solution of (2.1). Moreover

||wk − w∗|| ≤ L0δ
k

1− δ ||x
0 − x1|| ∀k.

Proof. By the same argument as in the proof of Theorem 3.1 we see that if
||xk+1 − xk|| ≤ ε (1−δ)

δk , then indeed, xk is an ε-solution.
Now suppose ||xk+1 − xk|| > ε (1−δ)

δk . For every wk+1 ∈ F (xk+1), since
L0 ≥ Lτ+μ

ε(1−δ) , we have

||wk+1 − wk|| ≤ d(wk, F (xk+1)) + diamF (xk+1) ≤ L||xk+1 − xk||+ μ

≤ Lτ + μ ≤ L0ε(1− δ) < L0||xk+1 − xk||.
where the last inequality follows from L0 ≥ Lτ+μ

ε(1−δ) and δk ≤ 1 for all k. Since

||xk+1 − xk|| > ε (1−δ)
δk , we have

||wk+1 − wk|| ≤ L0||xk+1 − xk|| ∀k.

Using this inequality we can prove the theorem by the same way as in the
proof of Theorem 2.1 (or Theorem 2.2 when ϕ is strongly convex). �

Now we return to the case when F is cocoercive. Note that in this case
Problem (VIP) is not necessarily uniquely solvable. By Theorem 2.3, a solution
of (VIP) can be obtained by computing a fixed point of mapping H. Since
H has a nonexpansive selection, its fixed point may be computed using the
following theorem.

Theorem 3.3 Let C ⊆ IRn be a nonempty, closed, convex set and S : C →
2C . Suppose that S(x) is compact and that S has a nonexpansive selection on
C. For 0 < λ < 1 define

Sλ := (1− λ)I + λS.

Then the sequences {xk} , {yk} defined by xk+1 ∈ Sλ(xk), i.e.,
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xk+1 := (1− λ)xk + λyk,

with yk ∈ S(xk) satisfy

||yk+1 − yk|| ≤ ||xk+1 − xk|| ∀k = 0, 1, 2, ...

||xk − yk|| → 0 as k → +∞,

Moreover any cluster point of the sequence {xk} is a fixed point of S.

To prove this theorem we need the following lemma:

Lemma 3.1 Under the assumptions of Theorem 3.3, for all i,m = 0, 1, ...,
we have

||yi+m−xi|| ≥ (1−λ)−m[||yi+m−xi+m||−||yi−xi||]+(1+λm)||yi−xi||. (3.3)

Proof. We proceed by induction on m, assuming that (3.3) holds for a given
m and for all i. Clearly, (3.3) is trivial if m = 0. Replacing i with i+1 in (3.3)
yields

||yi+m+1 − xi+1|| ≥ (1− λ)−m[||yi+m+1 − xi+m+1|| − ||yi+1 − xi+1||]

+(1 + λm)||yi+1 − xi+1||. (3.4)

Since xk+1 := (1− λ)xk + λyk with yk ∈ S(xk) that

||yi+m+1 − xi+1|| = ||yi+m+1 − [(1− λ)xi + λyi]||

≤ λ||yi+m+1 − yi||+ (1− λ)||yi+m+1 − xi||

≤ (1− λ)||yi+m+1 − xi||+ λ

m∑
k=0

||xi+k+1 − xi+k||. (3.5)

Combining (3.4) and (3.5) we obtain

||yi+m+1 − xi|| ≥ (1− λ)−(m+1)[||yi+m+1 − xi+m+1|| − ||yi+1 − xi+1||]

+(1− λ)−1(1 + λm)||yi+1 − xi+1|| − λ(1− λ)−1
n∑

k=0

||xi+k+1 − xi+k||.

Since ||xi+k+1−xi+k|| = λ||yk+i−xk+i|| and since the sequence {||ym−xm||}
is decreasing, from

λ||ym− xm|| = ||xm+1− xm|| = ||(1− λ)xm + λym− [(1− λ)xm−1− λym−1]||

≤ (1− λ)||xm− xm−1||+ λ||ym− ym−1|| ≤ ||xm− xm−1|| = λ||ym−1− xm−1||

and 1 +mλ ≤ (1− λ)−m, we have
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||yi+m+1 − xi|| ≥ (1− λ)−(m+1)[||yi+m+1 − xi+m+1|| − ||yi+1 − xi+1||]

+ (1− λ)−1(1 + λm)||yi+1 − xi+1|| − λ2(1− λ)−1(m+ 1)||yi − xi||

= (1− λ)−(m+1)[||yi+m+1 − xi+m+1|| − ||yi − xi||]

+ [(1− λ)−1(1 + λm)− (1− λ)−(m+1)]||yi+1 − xi+1||

+ [(1− λ)−(m+1) − λ2(1− λ)−1(m+ 1)]||yi − xi||

≥ (1− λ)−(m+1)[||yi+m+1 − xi+m+1|| − ||yi − xi||]

+ [(1− λ)−1(1 + λm)− (1− λ)−(m+1)]||yi − xi||

+ [(1− λ)−(m+1) − λ2(1− λ)−1(m+ 1)]||yi − xi||

= (1− λ)−(m+1)[||yi+m+1 − xi+m+1||− ||yi − xi||]+ [1 + λ(m+ 1)]||yi − xi||.

Thus (3.5) holds for m+ 1. �

Proof of Theorem 3.3. Let d := sup{diam S(x)|x ∈ C}, and suppose that
lim

m→∞
||ym − xm|| = r > 0. Select m ≥ d

rλ and ε is a sufficiently small positive

number such that ε(1 − λ)−m < r. Since {||ym − xm||} is decreasing, there
exists an integer i such that

0 ≤ ||yi − xi|| − ||ym+i − xm+i|| ≤ ε.

Therefore, using (3.3) we arrive at the contradiction

d+ r ≤ (1 +mλ)r ≤ (1 +mλ)||yi − xi||

≤ ||ym+i − xi||+ (1− λ)−m[||yi − xi|| − ||ym+i − xm+i||]
≤ ||ym+i − xi||+ (1− λ)−mε < d+ r.

Consequently r = 0, thus lim
m→∞

||xm − ym|| = 0. Since S is a bounded-valued
mapping on C and S is closed, we have that any cluster point of convergent
sequences {xm} is a fixed point of S. �

Now applying Theorem 3.3 to H we can solve Problem (2.1) with F being
cocoercive on C by finding a fixed point of H.
Algorithm 3.3. Step 0. Choose a tolerance ε ≥ 0 and λ ∈ (0, 1), α ≥ 1

2γ and
seek x0 ∈ C,w0 ∈ F (x0). Let k = 0.

Step 1. Solve the strongly convex program
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P (xk) : min{1
2
α||y − xk||2 + 〈wk, y − xk〉+ ϕ(y)|y ∈ C}

to obtain its unique solution yk.
If ||yk − xk|| ≤ ε, then the algorithm terminates.
Otherwise go to Step 2.

Step 2. Take
xk+1 := (1− λ)xk + λyk.

Find wk+1 := PF (xk+1)(wk).
Let k ← k + 1 and return to Step 1.

Theorem 3.4 In addition to the assumptions of Theorem 2.3, suppose that
C is compact, and F is upper semicontinous on C. Then, if Algorithm 3.3
does not terminate, the sequence {xk} is bounded and any cluster point is a
solution of Problem (VIP). In addition, it holds d(xk, H(xk)) → 0 as k →∞.

Proof. In Algorithm 3.3, we have wk+1 := PF (xk+1)(wk) with wk ∈ F (xk).
From Lemma 2.2 and the definition of ρ(F (xk), F (xk+1)) it follows that

||wk+1 − wk|| ≤ ρ(F (xk), F (xk+1)).

From the cocoercivity of F on C with modulus γ, we have

γρ2(F (xk), F (xk+1)) ≤ 〈xk − xk+1, wk − wk+1〉.

Thus
||xk − xk+1 − 1

α
(wk − wk+1)||2

= ||xk − xk+1||2 − 2
α
〈xk − xk+1, wk − wk+1〉+

1
α2
||wk − wk+1||2

≤ ||xk − xk+1||2 − 2γ
α
||wk − wk+1||2 +

1
α2
||wk − wk+1||2

= ||xk − xk+1||2 − (
2γ
α
− 1
α2

)||wk − wk+1||2.

Since α > 1
2γ , we have

||xk − xk+1 − 1
α

(wk − wk+1)||2 ≤ ||xk − xk+1||2

which together with quasinonexpansiveness of H implies

||yk+1 − yk|| ≤ ||xk+1 − xk||,

where

yk = h(xk, wk) ∈ H(xk), yk+1 = h(xk+1, wk+1) ∈ H(xk+1).



248 Pham Ngoc Anh and Le Dung Muu

By Theorem 3.3, every cluster point of the sequence {xk} is the fixed point
x∗ of H which is also a solution to Problem (2.1).

Furthermore, since C is compact and F is upper semicontinous on C, it
follows from wk ∈ F (xk) that the sequence {wk} is bounded. Thus, without
loss of generality, we may assume that the sequence {wk} converges to some
w∗. Since F is closed at x∗, we have w∗ ∈ F (x∗) and x∗ ∈ C.

To prove d(xk, H(xk)) → 0 we observe that yk ∈ H(xk), and therefore

d(xk, H(xk)) ≤ ||xk − yk|| ∀k.

By Theorem 3.3, we have d(xk, H(xk)) → 0 as k → +∞. �
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