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Summary. We consider design centering problems in their reformulation as general
semi-infinite optimization problems. The main goal of the article is to show that the
Reduction Ansatz of semi-infinite programming generically holds at each solution of
the reformulated design centering problem. This is of fundamental importance for
theory and numerical methods which base on the intrinsic bilevel structure of the
problem.

For the genericity considerations we prove a new first order necessary optimality
condition in design centering. Since in the course of our analysis also a certain stan-
dard semi-infinite programming problem turns out to be related to design centering,
the connections to this problem are studied, too.
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1 Introduction

Design Centering. A design centering problem considers a container set
C ⊂ IRm and a parametrized body B(x) ⊂ IRm with parameter vector x ∈
IRn. The task is to inscribe B(x) into C such that some functional f , e.g. the
volume of B(x), is maximized:

DC : max
x∈IRn

f(x) subject to B(x) ⊂ C .

In Figure 1 B(x) is a disk in IR2, parametrized by its midpoint and its
radius. The parameter vector x ∈ IR3 is chosen such that B(x) has maximal
area in the nonconvex container set C.

A straightforward extension of the model is to inscribe finitely many
nonoverlapping bodies into C such that some total measure is maximized.
Figure 2 shows the numerical solution of such a multi-body design centering
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Fig. 1. A disk with maximal area in a nonconvex container

Fig. 2. Twelve disks with maximal total area in a nonconvex container

problem with the same container set as in Figure 1 and twelve nonoverlapping
disks.

Single-body design centering problems with special sets B(x) and C have
been studied extensively, see e.g. [5] for the complexity of inscribing a convex
body into a convex container, [12] for maximization of a production yield
under uncertain quality parameters, and [18] for the problem of cutting a
diamond with prescribed form and maximal volume from a raw diamond.
The cutting stock problem ([2]) is an example of multi-body design centering.

To give an example of a design centering problem with a rather intricate
container set, consider the so-called maneuverability problem of a robot from
[4]:

Example 1. A robot may be viewed as a structure of connected links, where
some geometrical parameters θ1, ..., θR, such as lengths of the links or angles
in the joints, can be controlled by drive motors (cf. Figure 3 which is taken
from [8]).

The equations of motion for a robot have the form

F = A(θ) · θ̈ + H(θ, θ̇) ,
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Fig. 3. A robot with connected links and a tool center point

where F ∈ IRR denotes the vector of forces (torques), A(θ) is the inertia
matrix, and H(θ, θ̇) is the vector of friction, gravity, centrifugal and Coriolis
forces. Given vectors F−, F+ ∈ IRR of lower and upper bounds of F as well
as an operating region Ω ⊂ IRR × IRR, the set

C = { θ̈ ∈ IRR| F− ≤ A(θ)θ̈ +H(θ, θ̇) ≤ F+ for all (θ, θ̇) ∈ Ω }

describes the accelerations which can be realized in every point (θ, θ̇) ∈ Ω.
Since the size of C is a measure for the usefulness of a given robot for certain
tasks, an approximation for the volume of C is sought in [4]: Find a simple
body B which is parametrized by a vector x such that B(x) is as large as
possible and contained in C. In this way we arrive at a design centering
problem DC.

The aim of this article is to use techniques from general semi-infinite pro-
gramming to treat a broad class of design centering problems theoretically as
well as numerically. In fact, Example 1 gave rise to one of the first formulations
of a general semi-infinite optimization problem in [8].

Semi-infinite Programming. The connection of design centering to
semi-infinite programming is straightforward: let C be described by the in-
equality constraint c(y) ≤ 0. Then the inclusion

B(x) ⊂ C = { y ∈ IRm| c(y) ≤ 0 }

is trivially equivalent to the semi-infinite constraint

c(y) ≤ 0 ∀ y ∈ B(x) .

Thus the design centering problem DC is equivalent to the general semi-
infinite problem

GSIPDC : max
x

f(x) subject to c(y) ≤ 0 ∀ y ∈ B(x) .

Problems of this type are called semi-infinite as they involve a finite-
dimensional decision variable x and possibly infinitely many inequality con-
straints
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g(x, y) ≤ 0 ∀ y ∈ B(x) ,

where in design centering the function g(x, y) := c(y) does not depend on x.
On the other hand, in a so-called standard semi-infinite optimization prob-

lem there is no x−dependence in the set B(x), i.e. the semi-infinite index set
B(x) ≡ B is fixed. Standard semi-infinite optimization problems have been
studied systematically since the early 1960s. For an extensive survey on stan-
dard semi-infinite programming see [7].

As it turned out more recently in [16], general semi-infinite programming
is intrinsically more complicated than standard semi-infinite programming,
so that some basic theoretical and numerical strategies cannot be transferred
from the standard to the general case. In particular, the feasible set M of
GSIP may be nonclosed and exhibit a disjunctive structure even for defining
functions in general position. An introduction to general semi-infinite pro-
gramming is given in [21].

Bilevel Programming. The key to the theoretical treatment of general
semi-infinite programming and to the conceptually new solution method from
[23] lies in the bilevel structure of semi-infinite programming. In the following
we briefly sketch the main ideas of this approach.

Consider the general semi-infinite program

GSIP : max
x

f(x) subject to g(x, y) ≤ 0 ∀ y ∈ B(x) ,

where for all x ∈ IRn we have

B(x) = { y ∈ IRm| w(x, y) ≤ 0 } .

Let the defining functions f : IRn → IR and g, w : IRn × IRm → IR be at
least once continuously differentiable, and let ∇xg denote the column vector
of partial derivatives of g with respect to x, etc. Then the set-valued mapping
B : IRn→→ IRm is closed. Let B also be locally bounded, i.e. for all x̄ ∈ IRn there
exists a neighborhood U of x̄ and a bounded set Y ⊂ IRm with B(x) ⊂ Y for
all x ∈ U . Note that then B(x) is compact for each x ∈ IRn. We also assume
that B(x) is nonempty for all x ∈ IRn.

Under these assumptions it is easy to see that the semi-infinite constraint
in GSIP is equivalent to

ϕ(x) := max
y∈B(x)

g(x, y) ≤ 0 ,

which means that the feasible set M of GSIP is the lower level set of some
optimal value function. In fact, ϕ is the optimal value function of the so-called
lower level problem

Q(x) : max
y∈IRm

g(x, y) subject to w(x, y) ≤ 0 .

In contrast to the upper level problem which consists in maximizing f over M ,
in the lower level problem x plays the role of an n−dimensional parameter,
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and y is the decision variable. The main computational problem in semi-
infinite programming is that the lower level problem has to be solved to global
optimality, even if only a stationary point of the upper level problem is sought.

Since under the assumptions of closedness and local boundedness of the
set-valued mapping B and the continuity of g the optimal value function ϕ is
at least upper semi-continuous, points x ∈ IRn with ϕ(x) < 0 belong to the
topological interior of M . For investigations of the local structure of M or of
local optimality conditions we are only interested in points from the boundary
∂M of M , so that it suffices to consider the zeros of ϕ, i.e. points x ∈ IRn

for which Q(x) has vanishing maximal value. We denote the corresponding
globally maximal points of Q(x) by

B0(x) = { y ∈ B(x)| g(x, y) = 0 } .

The Reduction Ansatz. When studying semi-infinite problems, it is
of crucial importance to control the elements of B0(x) for varying x. This
can be achieved, for example, by means of the implicit function theorem.
For x̄ ∈ M a local maximizer ȳ of Q(x̄) is called nondegenerate in the
sense of Jongen/Jonker/Twilt ([14]), if the linear independence constraint
qualification (LICQ), strict complementary slackness (SCS) and the sec-
ond order sufficiency condition D2

yΛ(x̄, ȳ, γ̄)|TȳB(x̄) ≺ 0 are satisfied. Here
Λ(x, y, γ) = g(x, y)− γ w(x, y) denotes the lower level Lagrangian, TȳB(x̄) is
the tangent space to B(x̄) at ȳ, and A ≺ 0 stands for the negative definiteness
of a matrix A. The Reduction Ansatz is said to hold at x̄ ∈ M if all global
maximizers of Q(x̄) are nondegenerate. Since nondegenerate maximizers are
isolated, and B(x̄) is a compact set, the set B0(x̄) can only contain finitely
many points. By a result from [3] the local variation of these points with x
can be described by the implicit function theorem.

The Reduction Ansatz was originally formulated for standard semi-infinite
problems in [6] and [24] under weaker regularity assumptions. It was trans-
ferred to general semi-infinite problems in [9]. For standard semi-infinite prob-
lems the Reduction Ansatz is a natural assumption in the sense that for prob-
lems with defining functions in general position it holds at each local maxi-
mizer ([19, 25]). For GSIP this result can be transferred to local maximizers
x̄ with |B0(x̄)| ≥ n ([20]). Moreover, in [22] it is shown that it holds in the
“completely linear” case, i.e. when the defining functions f , g and w of GSIP
are affine linear on their respective domains. For GSIP without these special
structures, until now it is not known whether the Reduction Ansatz generi-
cally holds at all local maximizers. Note that even if this general result was
true, it would not necessarily mean that the Reduction Ansatz holds generi-
cally at local maximizers of GSIPDC . In fact, only such specially structured
perturbations of the defining functions of GSIPDC are allowed which leave
the function c independent of x.

Under the Reduction Ansatz it was not only shown that M can locally
be described by finitely many smooth inequality constraints ([9]), but it also
serves as a regularity condition for the convergence proof of the numerical
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solution method from [23]. For completeness, we briefly sketch the main idea
of this bilevel method.

A numerical method for GSIP. To make the global solution of the
lower level problem computationally tractable, we assume that Q(x) is a reg-
ular convex problem for all x ∈ IRn, i.e. the functions −g(x, ·) and w(x, ·) are
convex in y, and B(x) possesses a Slater point. It is well-known that then
the global solutions of the problem Q(x) are exactly its Karush-Kuhn-Tucker
points: y solves Q(x) if and only if there exists some γ ∈ IR such that

∇yΛ(x, y, γ) = 0
γ · w(x, y) = 0

γ, −w(x, y) ≥ 0 .

For this reason it makes sense to replace the problem GSIP, in which only
optimal values of the lower problem enter, by a problem which also uses lower
level optimal points. In fact, we first consider the Stackelberg game

SG : max
x,y

f(x) subject to g(x, y) ≤ 0, y solves Q(x) .

Note that the decision variable of SG resides in the higher-dimensional space
IRn × IRm, i.e. GSIP is lifted. In [22] it is shown that under our assumptions
the orthogonal projection of the feasible set of SG to IRn coincides with the
feasible set of GSIP, so that the x−component of any solution of SG is a
solution of GSIP.

In a second step we replace the restriction that y solves Q(x) in SG equiv-
alently by the corresponding Karush-Kuhn-Tucker condition:

MPCC : max
x,y,γ

f(x) subject to g(x, y) ≤ 0

∇yΛ(x, y, γ) = 0
γ · w(x, y) = 0

γ, −w(x, y) ≥ 0 .

The resulting mathematical program with complementarity constraints lifts
the problem again to a higher-dimensional space, but now MPCC solution
techniques may be applied. One possibility is to reformulate the complemen-
tarity conditions in MPCC by means of an NCP function Φ like the Fischer-
Burmeister function Φ(a, b) = a + b − ||(a, b)||2 , and then to regularize the
necessarily nonsmooth or degenerate NCP function by a one-dimensional pa-
rameter τ > 0, e.g. to Φτ (a, b) = a + b − ||(a, b, τ)||2 . An obvious idea for a
numerical method is to solve the finite and regular optimization problems

Pτ : max
x,y,γ

f(x) subject to g(x, y) ≤ 0

∇yΛ(x, y, γ) = 0
Φτ ( γ,−w(x, y) ) = 0
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for τ ↘ 0. For details and for a convergence proof of this method see [21].
As mentioned before, this convergence proof relies on the Reduction

Ansatz in the solution point. Although for general semi-infinite problems it
is not clear yet whether the Reduction Ansatz holds generically in each local
solution, in numerical tests convergence can usually be observed. The numer-
ical examples in Figures 1 and 2 were actually generated by this algorithm,
applied to the general semi-infinite reformulation GSIPDC of DC.

The present article will show that for the specially structured problems
GSIPDC which stem from a reformulation of DC, the Reduction Ansatz in
each local maximizer is generic. In Section 2 we derive a first order necessary
optimality condition for DC which will be the basis of the genericity con-
siderations in Section 3. Section 4 presents some connections to a standard
semi-infinite problem that can be associated with DC, before Section 5 closes
the article with some final remarks.

2 First order optimality conditions

Let us consider the slightly more general design centering problem

DC : max
x∈IRn

f(x) subject to B(x) ⊂ C

with
C = { y ∈ IRm| cj(y) ≤ 0, j ∈ J }

and
B(x) = { y ∈ IRm| v�(y) ≤ 0, � ∈ L, w(x, y) ≤ 0 }

with finite index sets J and L, and with at least once continuously differen-
tiable defining functions f , cj , j ∈ J , v� , � ∈ L, and w. We assume that C
and

Y = { y ∈ IRm| v�(y) ≤ 0, � ∈ L }

are nonempty and compact sets. In applications the set Y can often be chosen
to contain C so that the compactness of C follows from the compactness of
Y . Moreover, the local boundedness of the set-valued mapping B is a trivial
consequence of the boundedness of Y .

The general semi-infinite reformulation of DC now becomes a problem
with finitely many semi-infinite constraints,

GSIPDC : max
x

f(x) subject to cj(y) ≤ 0 ∀ y ∈ B(x) , j ∈ J ,

and finitely many lower level problems Qj(x) with optimal value functions
ϕj(x) and optimal points Bj

0(x), j ∈ J . For x̄ ∈M we denote by

J0(x̄) = { j ∈ J | ϕj(x̄) = 0 }
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the set of active semi-infinite constraints. From the upper semi-continuity
of the functions ϕj , j ∈ J, it is clear that at each feasible boundary point
x̄ ∈ M ∩ ∂M the set

⋃
j∈J0(x̄)B

j
0(x̄) is nonempty. For the problem GSIPDC

we can show that an even smaller set is nonempty. In fact, with

Bj
00(x̄) = { y ∈ Bj

0(x̄)| w(x̄, y) = 0 }

the following result holds.

Lemma 1. The set
⋃

j∈J0(x̄)B
j
00(x̄) is nonempty for each feasible boundary

point x̄ ∈M ∩ ∂M .

Proof. For x̄ ∈ ∂M there exists a sequence xν → x̄ with xν �∈ M for all
ν ∈ IN. By definition of M , for all ν ∈ IN there exists some yν ∈ B(xν) and
some jν ∈ J with cjν

(yν) > 0 .
As J is a finite set, the sequence (jν)ν∈IN contains some index j0 ∈ J

infinitely many times. Taking the corresponding subsequence if necessary, we
may assume jν ≡ j0 without loss of generality.

Moreover, as B is locally bounded at x̄, the sequence (yν)ν∈IN is bounded
and, thus, without loss of generality convergent to some ȳ ∈ IRm. From the
closedness of the set-valued mapping B and xν → x̄ we also obtain ȳ ∈ B(x̄).
The feasibility of x̄means that for all j ∈ J and all y ∈ B(x̄) we have cj(y) ≤ 0,
so that we arrive at

0 ≤ lim
ν→∞

cj0(y
ν) = cj0(ȳ) ≤ 0 .

This implies ȳ ∈ Bj0
0 (x̄) as well as j0 ∈ J0(x̄).

Next, assume that for some ν ∈ IN it is w(x̄, yν) ≤ 0. Since we have
yν ∈ Y , it follows yν ∈ B(x̄). From x̄ ∈ M we conclude that cj0(y

ν) ≤ 0, in
contradiction to the construction of yν . Consequently we have

for all ν ∈ IN : 0 < w(x̄, yν) . (1)

Together with yν ∈ B(xν) for all ν ∈ IN it follows

0 ≤ lim
ν→∞

w(x̄, yν) = w(x̄, ȳ) = lim
ν→∞

w(xν , yν) ≤ 0

and thus ȳ ∈ Bj0
00(x̄). �

A usual starting point for genericity considerations is a first order opti-
mality condition which holds without any regularity assumptions. For general
semi-infinite problems

GSIP : max
x

f(x) subject to gj(x, y) ≤ 0 ∀ y ∈ B(x) , j ∈ J ,

such a condition is given in [16]. To formulate this condition, we denote by
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Λj(x, y, α, β, γ) = α gj(x, y)− β�v(y)− γ w(x, y) , j ∈ J,

the Fritz-John type lower level Lagrangians, and for x̄ ∈ M , j ∈ J0(x̄) and
ȳ ∈ Bj

0(x̄) by

FJj(x̄, ȳ) = {(α, β, γ) ∈ IR× IR|L| × IR| (α, β, γ) ≥ 0, ||(α, β, γ)||1 = 1,
∇yΛj(x̄, ȳ, α, β, γ) = 0, Λj(x̄, ȳ, α, β, γ) = 0 }

the corresponding sets of Fritz-John multipliers.

Theorem 1 ([16]). Let x̄ ∈M∩∂M be a local maximizer of GSIP. Then there
exist pj ∈ IN, ȳj,k ∈ Bj

0(x̄), (αj,k, βj,k, γj,k) ∈ FJj(x̄, ȳj,k), and nontrivial
multipliers κ ≥ 0, λj,k ≥ 0, 1 ≤ k ≤ pj, j ∈ J0(x̄), such that

∑
j∈J0(x̄) pj ≤

n+ 1 and

κ∇f(x̄) −
∑

j∈J0(x̄)

pj∑
k=1

λj,k∇xΛj(x̄, ȳj,k, αj,k, βj,k, γj,k) = 0 .

This condition simplifies significantly for the problem GSIPDC . In fact,
in the lower level Lagrangians

Λj(x, y, α, β, γ) = α cj(y)− β�v(y)− γ w(x, y) , j ∈ J ,

only the function w depends on x, so that we obtain

∇xΛj(x, y, α, β, γ) = −γ∇xw(x, y) .

The following result is thus immediate.

Corollary 1. Let x̄ ∈ M ∩ ∂M be a local maximizer of DC. Then there
exist pj ∈ IN, ȳj,k ∈ Bj

0(x̄), (αj,k, βj,k, γj,k) ∈ FJj(x̄, ȳj,k), and nontrivial
multipliers κ ≥ 0, λj,k ≥ 0, 1 ≤ k ≤ pj, j ∈ J0(x̄), such that

∑
j∈J0(x̄) pj ≤

n+ 1 and

κ∇f(x̄) +
∑

j∈J0(x̄)

pj∑
k=1

λj,k γj,k∇xw(x̄, ȳj,k) = 0 . (2)

A major disadvantage of condition (2) is that it does not guarantee the linear
dependence of the vectors∇f(x̄), ∇xw(x̄, ȳj,k), 1 ≤ k ≤ pj , j ∈ J0(x̄). In fact,
it is easy to construct situations in which κ = 0 and γj,k = 0, 1 ≤ k ≤ pj ,
j ∈ J0(x̄). Since the linear dependence of these vectors is crucial for genericity
investigations, next we will give a stronger optimality condition.

It is not surprising that this strengthening is possible if one compares
the situation to that of standard semi-infinite programming: also there only
one of the lower level defining functions depends on x, namely gj(x, y). The
corresponding first order optimality condition deduced from Theorem 1 in-
volves multiplier products λj,k αj,k as coefficients of the vectors ∇xgj(x̄, ȳj,k),
whereas from John’s original condition for standard semi-infinite programs
([13]) it is clear that a single coefficient μj,k would suffice.
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Theorem 2. Let x̄ ∈M ∩ ∂M be a local maximizer of DC. Then there exist
pj ∈ IN, ȳj,k ∈ Bj

00(x̄), and nontrivial multipliers κ ≥ 0, μj,k ≥ 0, 1 ≤ k ≤ pj,
j ∈ J0(x̄), such that

∑
j∈J0(x̄) pj ≤ n+ 1 and

κ∇f(x̄) +
∑

j∈J0(x̄)

pj∑
k=1

μj,k∇xw(x̄, ȳj,k) = 0 . (3)

The proof of Theorem 2 needs some preparation. Recall that the outer
tangent cone (contingent cone) Γ �(x̄,M) to a set M ⊂ IRn at x̄ ∈ IRn is
defined by d̄ ∈ Γ �(x̄,M) if and only if there exist sequences (tν)ν∈IN and
(dν)ν∈IN such that

tν ↘ 0, dν → d̄ and x̄+ tνdν ∈M for all ν ∈ IN .

Moreover, we define the inner tangent cone Γ (x̄,M) to M at x̄ ∈ IRn as:
d̄ ∈ Γ (x̄,M) if and only if there exist some t̄ > 0 and a neighborhood D of d̄
such that

x̄+ t d ∈M for all t ∈ (0, t̄), d ∈ D .

It is well-known ([17]) that Γ (x̄,M) ⊂ Γ �(x̄,M) and that Γ (x̄,M)c =
Γ �(x̄,Mc), where Ac denotes the set complement of a set A ⊂ IRn. Further-
more, the following primal first order necessary optimality condition holds.

Lemma 2 ([17]). Let x̄ be a local maximizer of f over M . Then there exists
no contingent direction of first order ascent in x̄:

{ d ∈ IRn| 〈∇f(x̄), d 〉 > 0 } ∩ Γ �(x̄,M) = ∅ .

Lemma 3. For x̄ ∈M each solution d0 ∈ IRn of the system

〈∇xw(x̄, y), d 〉 > 0 for all y ∈ Bj
00(x̄), j ∈ J0(x̄) (4)

is an element of Γ (x̄,M).

Proof. Let d0 be a solution of (4) and assume that d0 ∈ Γ (x̄,M)c. Then we
have d0 ∈ Γ �(x̄,Mc), so that there exist sequences (tν)ν∈IN and (dν)ν∈IN
such that tν ↘ 0, dν → d0 and xν := x̄+ tνdν ∈M c for all ν ∈ IN.

Exactly like in the proof of Lemma 1 we can now construct some j0 ∈ J0(x̄)
and a sequence yν ∈ B(xν) with yν → ȳ ∈ Bj0

00(x̄). For all ν ∈ IN the mean
value theorem guarantees the existence of some θν ∈ [0, 1] with

0 ≥ w(x̄+ tνdν , yν) = w(x̄, yν) + tν〈∇xw(x̄+ θνtνdν , yν), dν 〉 .

From (1) and tν > 0 we conclude 0 > 〈∇xw(x̄ + θνtνdν , yν), dν 〉 for all
ν ∈ IN which implies 0 ≥ 〈∇xw(x̄, ȳ), d0 〉. Hence we have constructed some
j0 ∈ J0(x̄) and ȳ ∈ Bj0

00(x̄) with 〈∇xw(x̄, ȳ), d0 〉 ≤ 0, in contradiction to the
assumption. �
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A combination of Lemma 2, the inclusion Γ (x̄,M) ⊂ Γ �(x̄,M), and
Lemma 3 yields that at a local maximizer x̄ of DC the system

〈∇f(x̄), d 〉 > 0, 〈∇xw(x̄, y), d 〉 > 0 for all y ∈ Bj
00(x̄), j ∈ J0(x̄)

is not soluble in d. By a theorem of the alternative this result is equivalent to
the assertion of Theorem 2. In the following conv(S) denotes the convex hull
of a set S ⊂ IRn, i.e. the set of all finite convex combinations of elements from
S.

Lemma 4 (Lemma of Gordan, [1, 10]). Let S ⊂ IRn be nonempty and
compact. Then the inequality system

s�d > 0 for all s ∈ S

is inconsistent for d ∈ IRn if and only if 0 ∈ conv(S).

Recall that in the case 0 ∈ conv(S) it is possible to express the origin as the
convex combination of at most n+ 1 elements from S, due to Carathéodory’s
theorem.

Since the set
⋃

j∈J0(x̄)B
j
00(x̄) is compact as the finite union of closed sub-

sets of the compact set B(x̄), Lemma 4 implies Theorem 2. Note that if
the latter union of sets was empty, we would simply obtain the condition
∇f(x̄) = 0 from unconstrained optimization. However, in view of Lemma 1
under the assumption x̄ ∈M ∩ ∂M of Theorem 2 this is not possible.

3 Genericity of the Reduction Ansatz

Multi-jet transversality. In the following we give a short introduction to
transversality theory, as far as we need it for our analysis. For details, see
[11, 15]. Two smooth manifolds V,W in IRN are said to intersect transversally
(notation: V �∩W ) if at each intersection point u ∈ V ∩W the tangent spaces
TuV, TuW together span the embedding space:

TuV + TuW = IRN . (5)

The number N − dimV is called the codimension of V in IRN , shortly
codimV , and we have

codimV ≤ dimW (6)

whenever V �∩W and V ∩W �= ∅. For our purpose, the manifold W is induced
by the 1-jet extension of a function F ∈ C∞(IRN , IRM ), i.e. by the mapping

j1F : IRN −→ J(N,M, 1), z �−→ (z, F (z), Fz(z))

where J(N,M, 1) = IRN+M+N ·M and the partial derivatives are listed ac-
cording to some order convention ([15]). Choosing W as the graph of j1F
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(notation: W = j1F (IRN )) it is easily shown that W is a smooth manifold of
dimension N in J(N,M, 1). Given another smooth manifold V in J(N,M, 1),
we define the set

�∩1V = {F ∈ C∞(IRN , IRM )| j1F (IRN ) �∩ V } .

Our analysis bases on the following theorem which is originally due to
R. Thom. For proofs see [11, 15].

Theorem 3 (Jet transversality). With respect to the C∞
s -topology, the set

�∩1V is generic in C∞(IRN , IRM ).

Here, C∞
s denotes the Whitney topology ([11, 15]). In particular, �∩1V is C∞

s -
dense in C∞(IRN , IRM ) and hence, Cd

s -dense in Cd(IRN , IRM ) for any d ∈
IN0 = IN ∪ {0} ([11]).

Since jet transversality gives information about certain properties of the
functions under investigation only at every single point we apply the con-
cept of multi-jet transversality instead ([15]). Thereby we are able to study
properties that have to be satisfied at all global maximizers of the lower level
problem at the same time. Let D be a positive integer and define

IRN
D =

{
(z1, . . . , zD) ∈

∏D
k=1IR

N | zi �= zj for 1 ≤ i < j ≤ D
}

as well as the multi-jet space

JD(N,M, 1) ={
(z1, u1, . . . , zD, uD) ∈

∏D
k=1J(N,M, 1)| (z1, . . . , zD) ∈ IRN

D

}
.

The multi-jet extension j1DF : IRN
D −→ JD(N,M, 1) is the mapping

j1DF : (z1, . . . , zD) �−→
(
j1F (z1), . . . , j1F (zD)

)
,

and for a smooth manifold V in JD(N,M, 1) we define the set

�∩1
DV = {F ∈ C∞(IRN , IRM )| j1DF (IRN

D) �∩ V } .

Theorem 4 (Multi-jet transversality). With respect to the C∞
s -topology,

the set �∩1
DV is generic in C∞(IRN , IRM ).

Rank conditions. For M,N ∈ IN and R ≤ min(M,N) let us define the
set of matrices of rank R,

IRM×N
R =

{
A ∈ IRM×N

∣∣∣ rank(A) = R
}
.

Moreover, for M,N ∈ IN, R ≤ min(M,N), I ⊂ {1, ...,M} and

max(R+ |I| −M, 0) ≤ S ≤ min(R, |I|)
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we let
IRM×N

R,I,S =
{
A ∈ IRM×N

R

∣∣∣ A(I) ∈ IR(M−|I|)×N
R−S

}
,

where the matrix A(I) results from A by deletion of the rows with indices in
I. Observe that the above restrictions on S follow from the trivial relations
0 ≤ R− S ≤M − |I| and R− |I| ≤ R− S ≤ R .

These definitions are intimately related to the Reduction Ansatz in the
lower level problem. In fact, for x̄ ∈M and some j ∈ J0(x̄) let ȳ be a maximizer
of Qj(x̄). From the first order necessary optimality condition of Fritz John we
know that then the gradient ∇cj(ȳ) and the gradients of the active inequality
constraints are linearly dependent. To identify these constraints conveniently
we put L = {1, ..., s} with s ∈ IN, vs+1(x, y) := w(x, y), Λ = L ∪ {s + 1},
Λ0(x̄, ȳ) = {� ∈ Λ| v�(x̄, ȳ) = 0}, and s0 = |Λ0(x̄, ȳ)|. Let DyvΛ0(x̄, ȳ) denote
the matrix with rows Dyv�(x̄, ȳ) := ∇�

y v�(x̄, ȳ), � ∈ Λ0(x̄, ȳ). We obtain(
Dycj(x̄, ȳ)
DyvΛ0(x̄, ȳ)

)
∈ IR(1+s0)×m

ρj

with ρj ≤ s0. With this notation, LICQ is equivalent to(
Dycj(x̄, ȳ)
DyvΛ0(x̄, ȳ)

)
∈ IR(1+s0)×m

s0 , {0},0 ,

if we identify the first row of the matrix with the index � = 0. Moreover, SCS
implies (

Dycj(x̄, ȳ)
DyvΛ0(x̄, ȳ)

)
∈ IR(1+s0)×m

s0 , {�},0 ,

for all � ∈ Λ0(x̄, ȳ) .
For a matrix A ∈ IRM×N with rows A1, ..., AM we define the function

vec : IRM×N −→ IRM ·N , A �−→ (A1, ..., AM ) .

Lemma 5 ([15, 20]).

(i) The set vec
(
IRM×N

R

)
is a smooth manifold of codimension

(M −R) · (N −R) in IRM ·N .
(ii)The set vec

(
IRM×N

R,I,S

)
is a smooth manifold of codimension

(M −R) · (N −R) + S · (M −R+ S − |I|) in IRM ·N .

A codimension formula. Let J = {1, ..., p} as well as p0 = |J0(x̄)|. By
Lemma 1, for x̄ ∈M ∩ ∂M the set

⋃
j∈J0(x̄)B

j
00(x̄) is nonempty. We consider

the case in which it contains at least r different elements, say ȳj,k ∈ Bj
00(x̄),

1 ≤ k ≤ pj , j ∈ J0(x̄), with
∑p0

j=1 pj = r.
As ȳj,k is a maximizer of Qj(x̄) we find a unique number ρj,k ≤ sj,k

0 :=
|Λ0(x̄, ȳj,k)| such that
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Dycj(x̄, ȳj,k)
DyvΛ0(x̄, ȳ

j,k)

)
∈ IR(1+sj,k

0 )×m
ρj,k

,

and we define the rank defect dj,k = sj,k
0 − ρj,k . Moreover, we have(

Dycj(x̄, ȳj,k)
DyvΛ0(x̄, ȳ

j,k)

)
∈ IR(1+sj,k

0 )×m
ρj,k , Dj,k , σj,k

for several choices of Dj,k and σj,k, where we can always choose Dj,k = ∅ and
σj,k = 0.

Furthermore, if x̄ is a local maximizer of DC, Theorem 2 guarantees that
for some choice ȳj,k ∈ Bj

00(x̄), 1 ≤ k ≤ pj , j ∈ J0(x̄) with
∑p0

j=1 pj = r ≤ n+1
we also have (

Df(x̄)
Dxw(x̄, ȳj,k)1≤k≤pj , 1≤j≤p0

)
∈ IR(1+r)×n

ρ0 , D0 , σ0

with ρ0 ≤ r. We denote the corresponding rank defect by d0 = r − ρ0 . Our
subsequent analysis bases on the following relation:

0 ≥ d0 + d0(n− r + d0) + σ0(1 + d0 + σ0 − |D0|) (7)

+
p0∑

j=1

pj∑
k=1

[
dj,k + dj,k(m− sj,k

0 + dj,k) + σj,k(1 + dj,k + σj,k − |Dj,k|)
]
.

Put lQd = Cd(IRn, IR) × lCd(c) × lCd(v) × Cd(IRn × IRm, IR), where lCd(c)
and lCd(v) are defined to be the set of vector functions c ∈ Cd(IRm, IRp) and
v ∈ Cd(IRm, IRs) such that C and Y are nonempty and compact, respectively.
Define

Fd = { (f, c, v, w) ∈ lQd| any choice of r elements
from

⋃
j∈J0(x̄)B

j
00(x̄) corresponding to a point

x̄ ∈M ∩ ∂M satisfies relation (7) } .

Theorem 5. F∞ is C∞
s -dense in lQ∞.

Proof. For r ∈ IN and K := {1, ..., r} consider the reduced multi-jet

j1r (f, c, v, w)(x1, y1, ..., xr, yr) = (xk, yk, Dfk, ck1 , ..., c
k
p, Dc

k
1 , ..., Dc

k
p,

vk
1 , ..., v

k
s , Dv

k
1 , ..., Dv

k
s , w

k, Dxw
k, Dyw

k, k ∈ K )

with (x1, y1, ..., xr, yr) ∈ IRn+m
r and Dfk = Df(xk), etc. In the following we

call Kj , j ∈ J̃0, a partition of K if
⋃

j∈J̃0
Kj = K and if the sets Kj , j ∈ J̃0,

are pairwise distinct. For
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r ∈ IN

J̃0 ⊂ J

Kj , j ∈ J̃0, a partition of K = {1, ..., r}

0 ≤ ρ0 ≤ min(1 + r, n)

D0 ⊂ {0, ..., r}

max(ρ0 + |D0| − 1− r, 0) ≤ σ0 ≤ min(ρ0, |D0|)

Λ̃j,k
0 ⊂ Λ

0 ≤ ρj,k ≤ min(1 + sj,k
0 ,m)

Dj,k ⊂ {0, ..., sj,k
0 }

max(ρj,k + |Dj,k| − 1− sj,k
0 , 0) ≤ σj,k ≤ min(ρj,k, |Dj,k|)

k ∈ Kj , j ∈ J̃0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

we define the C∞-manifold Nr,(Kj ,j∈J̃0),ρ0,D0,σ0, (Λ̃j,k
0 ,ρj,k,Dj,k,σj,k, k∈Kj ,j∈J̃0)

to be the set of points

(x̃k, ỹk, F̃ k, c̃k1 , ..., c̃
k
p, C̃

k
1 , ..., C̃

k
p , ṽ

k
1 , ..., ṽ

k
s , Ṽ

k
1 , ..., Ṽ

k
s , w̃

k, X̃k, Ỹ k, k ∈ K )

with the following properties:

• dimensions:

(x̃1, ỹ1, ..., x̃r, ỹr) ∈ IRn+m
r ,

c̃kj , j ∈ J, ṽk
� , � ∈ L, w̃k ∈ IR, k ∈ K

F̃ k, X̃k ∈ IRn, k ∈ K
C̃k

j , j ∈ J, Ṽ k
� , � ∈ L, Ỹ k ∈ IRm, k ∈ K

• conditions on the independent variables:

x̃1 = ... = x̃r

• conditions on the functional values:

c̃kj = 0, k ∈ Kj , j ∈ J̃0 , ṽk
� = 0, � ∈ Λ̃j,k

0 , k ∈ Kj , j ∈ J̃0

• conditions on the gradients:⎛⎝ F̃ 1

(X̃k)k∈Kj , j∈J̃0

⎞⎠ ∈ IR(1+r)×n
ρ0 , D0 , σ0

,

⎛⎝ C̃k
j

Ṽ k
Λ̃j,k

0

⎞⎠ ∈ IR(1+sj,k
0 )×m

ρj,k , Dj,k , σj,k
, k ∈ Kj , j ∈ J̃0 .
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With the help of Lemma 5(ii) we can calculate the codimension of this mani-
fold:

codimNr,(Kj ,j∈J̃0),ρ0,D0,σ0, (Λ̃j,k
0 ,ρj,k,Dj,k,σj,k, k∈Kj ,j∈J̃0)

=

= (r − 1)n+ r +
∑
j∈J̃0

∑
k∈Kj

sj,k
0

+(1 + r − ρ0)(n− ρ0) + σ0(1 + r − ρ0 + σ0 − |D0|)

+
∑
j∈J̃0

∑
k∈Kj

[
(1 + sj,k

0 − ρj,k)(m− ρj,k)

+σj,k(1 + sj,k
0 − ρj,k + σj,k − |Dj,k|)

]
. (9)

Define the set

F� =
∞⋂

r=1

⋂
(Kj ··· J̃0)

�∩1
r Nr,(Kj ,j∈J̃0),ρ0,D0,σ0, (Λ̃j,k

0 ,ρj,k,Dj,k,σj,k, k∈Kj ,j∈J̃0)

where the inner intersection ranges over all possible choices of K1, etc., ac-
cording to (8). F� is C∞

s -dense in lQ∞ by Theorem 4. It remains to be shown
that F� ⊂ F∞. Choose a function vector (f, c, v, w) ∈ F� as well as a lo-
cal maximizer x̄ of DC. By Lemma 1 the set

⋃
j∈J0(x̄)B

j
00(x̄) is non-empty.

From each nonempty Bj
00(x̄) choose some (pairwise distinct) ȳj,k, k ∈ Kj ,

and put Kj = ∅ if Bj
00(x̄) = ∅. Denote the total number of chosen ele-

ments by r and put K = {1, ..., r}. Then Kj , j ∈ J0(x̄), forms a partition of
K, (x̄, ȳ1, ..., x̄, ȳr) ∈ IRn+m

r , and j1r (f, c, v, w)(x̄, ȳ1, ..., x̄, ȳr) is contained in
some set Nr,( ··· J̃0)

. As the intersection of j1r (f, c, v, w)(IRn+m
r ) with Nr,( ··· J̃0)

is transverse, (6) yields r (n+m) ≥ codimNr,( ··· J̃0)
. Inserting (9) now yields

(7) after a short calculation. �

Note that the statement of Theorem 5 is equivalent to saying that F∞ is
Cd

s -dense in lQ∞ for each d ∈ IN0. Since the set C∞(IRN , IR) is also Cd
s -dense in

Cd(IRN , IR) ([11]), it is no restriction to consider the space of smooth defining
functions lQ∞ instead of the space lQd, d ≥ 2.

Corollary 2. For (f, c, v, w) ∈ F� let x̄ ∈ M ∩ ∂M be a local maximizer of
DC. Then the set

⋃
j∈J0(x̄)B

j
00(x̄) contains at most n elements ȳ1, ..., ȳr, and

for each 1 ≤ k ≤ r LICQ and SCS hold at ȳk in the corresponding lower level
problem.

Proof. One can easily conclude from the relations in (8) that each factor in
the right hand side of (7) is nonnegative. Consequently, all summands have
to vanish. In particular we find d0 = dj,k = 0 for all 1 ≤ k ≤ pj , j ∈ J0(x̄).
This implies 0 ≤ n − ρ0 = n − r + d0 = n − r which is the first part of the
assertion.
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A second consequence is σj,k(1 + σj,k − |Dj,k|) = 0 for all 1 ≤ k ≤ pj ,
j ∈ J0(x̄). Hence, |Dj,k| = 1 implies σj,k = 0. This means that LICQ and SCS
hold at each ȳj,k in Qj(x̄). �

With a tedious evaluation of the tangent space condition (5) it is also
possible to show that for (f, c, v, w) ∈ F� and a local maximizer x̄ ∈M ∩ ∂M
of DC at each ȳ ∈

⋃
j∈J0(x̄)B

j
00(x̄) the second order sufficiency condition

holds. Altogether this means that for (f, c, v, w) ∈ F� the Reduction Ansatz
is valid at each local maximizer of DC.

4 An associated standard semi-infinite problem

The first order necessary optimality condition in Theorem 2 has the typical
structure of an optimality condition for some standard semi-infinite program.
In fact, we can construct a certain standard semi-infinite problem which is
strongly related to DC.

For the following arguments we put C≤
j = {y ∈ IRm| cj(y) ≤ 0}, C<

j =
{y ∈ IRm| cj(y) < 0}, etc. for j ∈ J as well asW≤(x) = {y ∈ IRm| w(x, y) ≤ 0}
etc. The main idea is to rewrite the inclusion constraint B(x) ⊂ C of DC in
an equivalent form like Cc ⊂ B(x)c.

Slightly modified this idea proceeds as follows. By definition we have
B(x) ⊂ C if and only Y ∩ W≤(x) ⊂

⋂
j∈J C

≤
j . The latter is equivalent to

Y ∩W≤(x) ∩
⋃

j∈J C
>
j = ∅ and, thus, to

⋃
j∈J

(
Y ∩ C>

j

)
⊂W>(x).

This means that an equivalent formulation of the constraint B(x) ⊂ C is
given by

w(x, y) > 0 for all y ∈ Y ∩ C>
j , j ∈ J .

Due to the strict inequalities these are not semi-infinite constraints in the
usual sense. We can, however, formulate an associated standard semi-infinite
problem for DC:

SIPDC : max
x

f(x) subject to w(x, y) ≥ 0 ∀ y ∈ Y ∩ C≥
j , j ∈ J .

Note that the index sets Y ∩ C≥
j , j ∈ J , of the finitely many semi-infinite

constraints are compact, and certainly nonempty if C ⊂ Y . Recall that we
defined the optimal value functions

ϕj(x) = max
y∈Y ∩W≤(x)

cj(y) , j ∈ J ,

and the active index set J0(x) = {j ∈ J | ϕj(x) = 0} for the problem GSIPDC .
For the problem SIPDC we put analogously

ψj(x) = min
y∈Y ∩C

≥
j

w(x, y) , j ∈ J ,
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JSIP
0 (x) = {j ∈ J | ψj(x) = 0}, and Qj

SIP (x), j ∈ J , for the corresponding
lower level problems. For j ∈ JSIP

0 (x) the optimal points of Qj
SIP (x) form

the set {y ∈ Y ∩ C≥
j | w(x, y) = 0} = Y ∩ C≥

j ∩W=(x) . Fritz John’s first
order optimality condition for standard semi-infinite problems thus yields the
following result.

Proposition 4.1 Let x̄ ∈ ∂MSIP be a local maximizer of SIPDC . Then there
exist pj ∈ IN, ȳj,k ∈ Y ∩ C≥

j ∩ W=(x), and nontrivial multipliers κ ≥ 0,
μj,k ≥ 0, 1 ≤ k ≤ pj, j ∈ JSIP

0 (x̄), such that
∑

j∈JSIP
0 (x̄) pj ≤ n+ 1 and

κ∇f(x̄) +
∑

j∈JSIP
0 (x̄)

pj∑
k=1

μj,k∇xw(x̄, ȳj,k) = 0 .

The resemblance of this result with Theorem 2 is obvious. We emphasize that
we relaxed strict to nonstrict inequalities while deriving the problem SIPDC

from DC, so that an identical result for both problems cannot be expected.
More precisely, the feasible sets

M = { x ∈ IRn| ϕj(x) ≤ 0 , j ∈ J } =
⋂
j∈J

Φ≤
j

and
MSIP = { x ∈ IRn| ψj(x) ≥ 0 , j ∈ J } =

⋂
j∈J

Ψ≥
j

do not necessarily coincide. Their relation is clarified by the next results.

Lemma 6.
(i) For all j ∈ J we have Φ<

j = Ψ>
j .

(ii)For all j ∈ J and x ∈ Φ=
j we have x ∈ Ψ=

j if and only if w(x, ·) is active
in all global solutions of Qj(x).

(iii) For all j ∈ J and x ∈ Ψ=
j we have x ∈ Φ=

j if and only if cj is active in
all global solutions of Qj

SIP (x).

Proof. For all j ∈ J we have x ∈ Φ<
j if and only if Y ∩W≤(x) ⊂ C<

j , and we
have x ∈ Ψ>

j if and only if Y ∩ C≥
j ⊂ W>(x). Since both characterizations

are equivalent to Y ∩ C≥
j ∩W≤(x) = ∅, the assertion of part (i) follows.

From part (i) it is clear that for each j ∈ J the set Φ=
j is necessarily

contained in Ψ≤
j . We have x ∈ Ψ<

j if and only if Y ∩ C≥
j ∩ W<(x) �= ∅.

On the other hand, for x ∈ Φ=
j the set Y ∩ C≥

j ∩W≤(x) is the set of global
solutions of Qj(x). This shows the assertion of part (ii). The proof of part (iii)
is analogous. �

Theorem 6.
(i) Let x ∈M and for each j ∈ J0(x) let w(x, ·) be active in all global solutions

of Qj(x). Then we have x ∈MSIP .
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(ii)Let x ∈ MSIP and for each j ∈ JSIP
0 (x) let cj be active in all global

solutions of Qj
SIP (x). Then we have x ∈M .

Proof. Lemma 6. �

Note that under the assumption of Theorem 6(ii) the global solution set
Y ∩C≥

j ∩W=(x) can be replaced by Y ∩C=
j ∩W=(x) = Bj

00(x), so that the
difference between Theorem 2 and Proposition 4.1 disappears.

5 Final remarks

A main technical assumption for the genericity proof in Section 3 is that only
one of the smooth constraints in the description of B(x) actually depends
on x. There are, of course, design centering problems which cannot be for-
mulated this way. These problems appear to be as difficult as the general
semi-infinite optimization problem without any additional structure, so that
genericity results for this case can be expected as soon as the generic validity
of the Reduction Ansatz at all solutions of GSIP has been shown.

Under the Reduction Ansatz, locally around a local solution x̄ the problem
GSIPDC can be rewritten as a smooth problem with finitely many constraints.
We point out that our genericity proof from Section 3 also shows that for
(f, c, v, w) ∈ F� a local maximizer x̄ ∈ M ∩ ∂M of DC is nondegenerate for
this locally reduced problem.

The results of the present article for single-body design centering problems
can be transferred to the multi-body case with some additional technical effort.
This and efficient numerical methods for multi-body design centering will be
subject of future research.
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