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3 Facultad de Ciencias F́ısico-Matemáticas, Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, N.L., México, 66450 nkalash@fcfm.uanl.mx

Summary. Focus in the paper is on optimality conditions for bilevel programming
problems. We start with a general condition using tangent cones of the feasible set
of the bilevel programming problem to derive such conditions for the optimistic
bilevel problem. More precise conditions are obtained if the tangent cone possesses
an explicit description as it is possible in the case of linear lower level problems. If the
optimal solution of the lower level problem is a PC1-function, sufficient conditions
for a global optimal solution of the optimistic bilevel problem can be formulated.
In the second part of the paper relations of the bilevel programming problem to
set-valued optimization problems and to mathematical programs with equilibrium
constraints are given which can also be used to formulate optimality conditions for
the original problem. Finally, a variational inequality approach is described which
works well when the involved functions are monotone. It consists in a variational
re-formulation of the optimality conditions and looking for a solution of the thus
obtained variational inequality among the points satisfying the initial constraints.
A penalty function technique is applied to get a sequence of approximate solutions
converging to a solution of the original problem with monotone operators.

Key words: Bilevel Programming, Set-valued Optimization, Mathematical
Programs with Equilibrium Constraints, Necessary and Sufficient Optimality
Conditions, Variational Inequality, Penalty Function Techniques

1 The bilevel programming problem

Bilevel programming problems are hierarchical in the sense that two decision
makers make their choices on different levels of hierarchy. While the first one,
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the so-called upper level decision maker or leader fixes his selections x first, the
second one, the follower or lower level decision maker determines his solution
y later in full knowledge of the leader’s choice. Hence, the variables x play the
role of parameters in the follower’s problem. On the other hand, the leader
has to anticipate the follower’s selection since his revenue depends not only
on his own selection but also on the follower’s reaction.

To be more precise, let the follower make his decision by solving a para-
metric optimization problem

Ψ(x) := argmin
y

{f(x, y) : g(x, y) ≤ 0}, (1)

where f, gi : R
n × R

m → R, i = 1, . . . , p are smooth (at least twice continu-
ously differentiable) functions, convex with respect to y for each fixed x.

Then, the leader’s problem consists in minimizing the continuously differ-
entiable function F : R

n × R
m → R subject to the constraints y ∈ Ψ(x) and

x ∈ X, where X ⊆ R
n is a closed set. This problem has been discussed in the

monographs [1] and [5] and in the annotated bibliography [6].
Since the leader controls only the variable x , this problem is well-defined

only in the case when the optimal solution of the lower level problem (1) is
uniquely determined for all parameter values x ∈ X. If this is not the case the
optimistic and pessimistic approaches have been considered in the literature,
see e.g. [32]. Both approaches rest on the introduction of a new lower level
problem.

The optimistic approach can be applied if the leader assumes that the
follower will always take an optimal solution which is the best one from the
leader’s point of view, which leads to the problem

min{ϕo(x) : x ∈ X}, (2)

where
ϕo(x) := min

y
{F (x, y) : y ∈ Ψ(x)}. (3)

Problem (2)-(3) is obviously equivalent to

min
x,y
{F (x, y) : x ∈ X, y ∈ Ψ(x)} (4)

provided that the latter problem has an optimal solution. But note that this
equivalence is true only for global minima [5]. It is easy to see that each
locally optimal solution of problem (2)-(3) is also a locally optimal solution
of problem (4), but the opposite implication is in general not true.

Example 1.1 Consider the simple linear bilevel programming problem

min{x : y ∈ Ψ(x),−1 ≤ x ≤ 1},

where
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Ψ(x) = argmin
y

{xy : 0 ≤ y ≤ 1}

at the point (x0, y0) = (0, 0). Then, this point is a locally optimal solution to
problem (4), i.e. there exists an open neighborhoodWε(0, 0) = (−ε, ε)×(−ε, ε)
with 0 < ε < 1 such that x ≥ 0 for all (x, y) ∈ Wε(0, 0) with y ∈ Ψ(x) and
−1 ≤ x ≤ 1. The simple reason for this is that there is no −ε < y < ε
with y ∈ Ψ(x) for x < 0 since Ψ(x) = {1} for x < 0. But if we consider the
definition of a locally optimistic optimal solution by solving problem (2) then
the point (0, 0) is not a locally optimistic optimal solution since x0 = 0 is not
a local minimum of the function ϕo(x) = x. �

The basic assumption for this approach is cooperation between the follower
and the leader. If the follower cannot be assumed to cooperate with the leader,
the latter applies the pessimistic approach

min{ϕp(x) : x ∈ X}, (5)

where
ϕp(x) := max

y
{F (x, y) : y ∈ Ψ(x)}. (6)

Then, the following notions of optimality can be used:

Definition 1.1 A point (x, y) is called a locally optimistic optimal solution
of the bilevel programming problem if

y ∈ Ψ(x), x ∈ X,F (x, y) = ϕo(x)

and there is a number ε > 0 such that

ϕo(x) ≥ ϕo(x) ∀ x ∈ X, ‖x− x‖ < ε.

Definition 1.2 A point (x, y) is called a locally pessimistic optimal solution
of the bilevel programming problem if

y ∈ Ψ(x), x ∈ X,F (x, y) = ϕp(x)

and there is a number ε > 0 such that

ϕp(x) ≥ ϕp(x) ∀ x ∈ X, ‖x− x‖ < ε.

Using these definitions it is possible to determine assumptions guaranteeing
the existence of locally optimal solutions [5].
(C) The set

{(x, y) : x ∈ X, g(x, y) ≤ 0}
is nonempty and bounded.
(MFCQ) The Mangasarian-Fromowitz constraint qualification is satisfied at
a point (x, y) if there is a direction d such that

∇ygi(x, y)d < 0, ∀ i ∈ {j : gj(x, y) = 0}.

A point-to-set mapping Γ : R
p → 2R

q

maps points w ∈ R
p to sets Γ (w) ⊆ R

q.
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Definition 1.3 A point-to-set mapping Γ : R
p → 2R

q

is said to be upper
semicontinuous at a point w ∈ R

p if for each open set A ⊇ Γ (w) there is an
open set V � w such that Γ (w) ⊆ A for all w ∈ V. The point-to-set mapping
Γ is lower semicontinuous at w ∈ R

p provided that for each open set A ⊆ R
q

with Γ (w) ∩ A �= ∅ there is an open set V � w with Γ (w) ∩ A �= ∅ for all
w ∈ V.

Theorem 1.1 ([21],[33]) A locally optimal optimistic solution of the bilevel
programming problem exists provided the point-to-set mapping Ψ(·) is upper
semicontinuous at all points x ∈ X and assumption (C) is satisfied. A locally
optimal pessimistic solution exists if upper semicontinuity of the mapping Ψ(·)
is replaced by lower semicontinuity.

It should be mentioned that the point-to-set mapping Ψ(·) is upper semi-
continuous at a point x ∈ X if (C) and (MFCQ) are satisfied at all points
(x, y) with y ∈ Ψ(x). In most cases, to guarantee lower semicontinuity of the
point-to-set mapping Ψ(·), uniqueness of an optimal solution of problem (1)
is needed.

2 Optimality conditions

To derive optimality conditions for the optimistic bilevel programming prob-
lem we have two possibilities. Either we apply the contingent or some other
cone to the feasible set of the bilevel programming problem

M := GphΨ ∩ (X × R
m),

where GphΨ := {(x, y)� : y ∈ Ψ(x)} denotes the graph of the point-to-
set mapping Ψ(·) , or we use one of the known reformulations of the bilevel
programming problem to get a one-level optimization problem and formulate
optimality conditions for the latter problem. Focus in this paper is on pos-
sible advantages and difficulties related with the one or the other of these
approaches. We start with the first one.

Definition 2.1 The cone

CM (x, y) := { (u, v)� : ∃{tk}∞k=1 ⊂ R+, ∃{(uk, vk)�}∞k=1 ⊂ R
n × R

m

with (x, y)� + tk(uk, vk)� ∈ GphΨ ∀k, x+ tku
k ∈ X,

lim
k→∞

tk = 0, lim
k→∞

(uk, vk)� = (u, v)�}

is the contingent (or Bouligand) cone of M .

Theorem 2.1 If the point (x, y)� ∈ GphΨ , x ∈ X is a locally optimal solu-
tion of the optimistic problem (4), then
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∇F (x, y)(d, r)� ≥ 0

for all
(d, r)� ∈ CM (x, y).

On the other hand, if (x, y)� ∈ GphΨ , x ∈ X and

∇F (x, y)(d, r)� > 0

for all
(d, r)� ∈ CM (x, y),

then the point (x, y)� is a locally optimal solution of (4).

Proof. Let (x, y)� ∈ GphΨ , x ∈ X be a locally optimal solution of problem
(4). Assume that the proposition of the theorem is not satisfied. Then, there
exists a direction (d, r)� with

(d, r)� ∈ CM (x, y)

and
∇F (x, y)(d, r)� < 0. (7)

Then, by definition there are sequences {tk}∞k=1 ⊂ R+, {(uk, vk)�}∞k=1 ⊂
R

n × R
m with (x, y)� + tk(uk, vk)� ∈ GphΨ ∀k, x + tku

k ∈ X, lim
k→∞

tk = 0,

lim
k→∞

(uk, vk)� = (d, r)�. Hence, using the definition of the derivative we get

F (x+ tku
k, y + tkv

k) = F (x, y) + tk∇F (x, y)(uk, vk) + o(tk)

for sufficiently large k, where lim
k→∞

o(tk)
tk

= 0. Since

lim
k→∞

{
∇F (x, y)(uk, vk) +

o(tk)
tk

}
= ∇F (x, y)(d, r) < 0

by the assumption this implies

∇F (x, y)(uk, vk) +
o(tk)
tk

< 0

for all sufficiently large k and, hence,

F (x+ tku
k, y + tkv

k) < F (x, y)

for large k. This leads to a contradiction to local optimality.
Now, let ∇F (x, y)(d, r)� > 0 for all (d, r)� ∈ CM (x, y) and assume that

there is a sequence (xk, yk) ∈ M converging to (x, y)� with F (xk, yk) <
F (x, y) for all k. Then,
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xk − x

‖(xk, yk)− (x, y)‖ ,
yk − y

‖(xk, yk)− (x, y)‖

)�

converges to some (d, r)� ∈ CM (x, y). Using differential calculus, it is now
easy to verify that

∇F (x, y)(d, r)� ≤ 0

contradicting our assumption. �

Applying this theorem the main difficulty is the computation of the con-
tingent cone. This has been done e.g. in the paper [7].

2.1 The linear case

If bilevel programming problems with linear lower level problems are under
consideration, an explicit description of this contingent cone is possible [8]
under a certain regularity condition. For this, consider a linear parametric
optimization problem

max
y
{c�y : Ay = b, y ≥ 0} (8)

with a (m,n)-matrix A and parameters in the right-hand side as well as in
the objective function. Let ΨL(b, c) denote the set of optimal solutions of (8).
A special optimistic bilevel programming problem reads as

min
y,b,c

{f(y) : Bb = b̃, Cc = c̃, y ∈ ΨL(b, c)}. (9)

Using linear programming duality problem (9) has a reformulation as

f(y) −→ min
y,b,c,u

Ay = b
y ≥ 0

A�u ≥ c
y�(A�u− c) = 0

Bb = b̃
Cc = c̃.

(10)

It should be noted that the objective function in the upper level problem
does not depend on the parameters of the lower level one. This makes a more
precise definition of a locally optimal solution of problem (9) necessary:

Definition 2.2 A point y is a locally optimal solution of problem (9) if there
exists an open neighborhood U of y such that f(y) ≤ f(y) for all y, b, c with
Bb = b̃, Cc = c̃ and y ∈ U ∩ ΨL(b, c).
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The main result of this definition is the possibility to drop the explicit
dependence of the solution of the problem (10) on c. This dependence rests
on solvability of the dual problem and is guaranteed for index sets I in the
set I(y) below.

Let the following index sets be determined at some point y:

1. I(y) = {i : yi = 0},
2. I(u, c) = {i : (A�u− c)i > 0}
3. I(y) = {I(u, c) : A�u ≥ c, (A�u− c)i = 0 ∀i /∈ I(y), Cc = c̃}
4. I0(y) =

⋂
I∈I(y)

I.

Using these definitions, problem (10) can be transformed into the following
one by replacing the complementarity conditions:

f(y) −→ min
y,b,I

Ay = b
y ≥ 0
yi = 0 ∀i ∈ I
Bb = b̃
I ∈ I(y).

(11)

The tangent cone to the feasible set of the last problem is

T (y) :=
⋃

I∈I(y)

TI(y),

where

TI(y) = {d| ∃r : Ad = r, Br = 0, di ≥ 0, ∀i ∈ I(y) \ I, di = 0, ∀i ∈ I}

for all I ∈ I(y). Note that T (y) is the tangent cone to the feasible set of
problem (9) with respect to Definition 2.2.

Theorem 2.2 [Optimality conditions, [8]] If f is differentiable at y, this
point is a local optimum of (9) if and only if∇f(y)·d ≥ 0 for all d ∈ conv T (y).

For an efficient verification of the condition in Theorem 2.2 a compact
formula for the convex hull of the tangent cone of the feasible set is crucial.
For that consider the relaxed problem of (10)

f(y) −→ min
y,b

Ay = b
yi ≥ 0 i = 1, . . . , l
yi = 0 i = l + 1, . . . , k
Bb = b̃

(12)

together with the tangent cone to its feasible set
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TR(y) = {d| ∃r : Ad = r, Br = 0, di ≥ 0, i = 1, . . . , l, di = 0, i = l+1, . . . , k}

(relative to y only) at the point y. Here, it is assumed that I(y) = {1, . . . , k}
and I0(y) = {l + 1, . . . , k}.

Remark 2.1 ([8]) We have j ∈ I(y) \ I0(y) if and only if the system

(A�u− c)i = 0 ∀i /∈ I(y)
(A�u− c)j = 0
(A�u− c)i ≥ 0 ∀i ∈ I(y) \ {j}

Cc = c̃

has a solution.

In the following theorem we need an assumption: The point y is said to
satisfy the full rank condition, if

span({Ai : i = k + 1, . . . , n}) = R
m, (FRC)

where Ai denotes the ith column of the matrix A.

Theorem 2.3 ([8]) Let (FRC) be satisfied at the point y. Then,

conv T (y) = coneT (y) = TR(y). (13)

This theorem together with Theorem 2.2 enables us to check local opti-
mality for the problem (9) in polynomial time while, in general, this is an
NP-hard problem [31].

2.2 The regular case

It is clear that
CM (x, y) ⊆ CΨ (x, y) ∩ (CX(x)× R

m), (14)

where CΨ (x, y) denotes the contingent cone to the graph of Ψ(·):

CΨ (x, y) := { (u, v)� : ∃{tk}∞k=1 ⊂ R+, ∃{(uk, vk)�}∞k=1 ⊂ R
n × R

m

with (x, y)� + tk(uk, vk)� ∈ GphΨ ∀k,
lim

k→∞
tk = 0, lim

k→∞
(uk, vk)� = (u, v)�}

and CX(x) is the contingent cone for the set X at x. This implies that the
sufficient conditions in Theorem 2.1 can be replaced by the assumption that
∇F (x, y)(d, r)� > 0 for all (d, r)� ∈ CΨ (x, y)∩ (CX(x)×R

m). Conditions for
the contingent cone of the solution set mapping of a parametric optimization
problem can be found in the monograph [29] and in [30]. Moreover,CM (x, y) =
CΨ (x, y) if X = R

n.
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Theorem 2.4 If Ψ(x) = {y(x)} for some locally Lipschitz continuous, direc-
tionally differentiable function y(·), then CM (x, y) = CΨ (x, y)∩(CX(x)×R

m).

Here the directional derivative of a function h : R
q → R

s in direction
d ∈ R

q at a point w ∈ R
q is given by

h(w; d) = lim
t→0+

t−1[h(w + td)− h(w)].

Proof of Theorem 2.4: Obviously,

CM (x, y) ⊆ CΨ (x, y) ∩ (CX(x)× R
m).

Let (d, r)� ∈ CΨ (x, y) ∩ (CX(x) × R
m). Then, by the assumptions (d, r)� ∈

CΨ (x, y), i.e. r = y′(x; d) and the directional derivative of y(·) is also locally
Lipschitz continuous with respect to perturbations of the direction d [10].
Now, take any sequences {uk}∞k=1 and {tk}∞k=1 converging to d respectively to
zero from above with x + tku

k ∈ X for all k existing by definition of TX(x).
Then, (y(x+tkuk)−y(x))/tk converges to y′(x; d), which completes the proof.

�
To determine conditions guaranteeing the assumptions of the last theorem

to be valid consider the lower level problem (1) under the assumptions (SSOC),
(MFCQ), and (CRCQ):
(SSOC) The strong second-order sufficient optimality condition for problem
(1) is satisfied at a point (x, y) with g(x, y) ≤ 0 if:

1. The set

Λ(x, y) := {λ : λ ≥ 0, λ�g(x, y) = 0,∇yL(x, y, λ) = 0}

is not empty and
2. for all λ ∈ Λ(x, y) and for all d �= 0 with

∇ygi(x, y)d = 0 ∀ i : λi > 0

there is
d�∇2

yyL(x, y, λ)d > 0.

Here, L(x, y, λ) = f(x, y)+λ�g(x, y) is the Lagrange function of problem (1).
(CRCQ) The constant rank constraint qualification is satisfied for the prob-
lem (1) at the point (x, y) with g(x, y) ≤ 0 if there exists an open neighborhood
V of (x, y) such that for each subset J ⊆ {i : gi(x, y) = 0} the set of gradients

{∇ygi(x, y) : i ∈ J}

has a constant rank on V .

Theorem 2.5 ([28], [38]) Consider problem (1) at a point (x, y) = (x, y)
with y ∈ Ψ(x) and let the assumptions (MFCQ) and (SSOC) be satisfied. Then
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there are an open neighborhood U of x and a uniquely determined function
y : U → R

m such that y(x) is the unique (globally) optimal solution of problem
(1) for all x ∈ U. Moreover, if the assumption (CRCQ) is also satisfied, then
the function y(·) is locally Lipschitz continuous and directionally differentiable
at x.

To compute the directional derivative of the solutions function y(x) it is
sufficient to compute the unique optimal solution of a quadratic optimization
problem using an optimal solution of a linear programming problem as data
[38].

Under the assumptions in Theorem 2.5, the bilevel programming problem
(both in its optimistic (2) and pessimistic (5) formulations) is equivalent to
the problem

min{G(x) := F (x, y(x)) : x ∈ X}. (15)

The necessary and sufficient optimality conditions resulting from Theorem
2.1 under the assumptions of Theorem 2.5 and convexity of the lower level
problem can be found in [4]:

Theorem 2.6 ([4]) Consider the bilevel programming problem and let the
assumptions (SSOC), (MFCQ), (CRCQ) be valid at a point (x, y) ∈M . Then,

1. if (x, y) is a locally optimal solution, we have

G′(x; d) ≥ 0 ∀ d ∈ CX(x).

2. if
G′(x; d) > 0 ∀ d ∈ CX(x),

the point (x, y) is a locally optimal solution.

2.3 Application of the protoderivative

Consider the bilevel programming problem in its optimistic formulation (4)
and assume that the lower level problem is given in the simpler form

ΨK(x) := argmin
y

{f(x, y) : y ∈ K}, (16)

where K ⊆ R
m is a polyhedral set. Then,

ΨK(x) = {y ∈ R
m : 0 ∈ ∇yf(x, y) +NK(y)},

where NK(y) denotes the normal cone of convex analysis to the set K at y
which is empty if y �∈ K. Hence, assuming that X = R

n the problem (4)
reduces to

min
x,y
{F (x, y) : 0 ∈ ∇yf(x, y) +NK(y)}.

Then, if we assume that the regularity condition
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rank(∇2
xyf(x, y)) = m (full rank) (17)

is satisfied, from Theorem 7.1 in [11] we obtain that the solution set mapping
ΨK is protodifferentiable. Using the formula for the protoderivative we obtain:

Theorem 2.7 ([7]) Let (x̄, ȳ) be a locally optimistic solution of the bilevel
programming problem (4), where ΨK(x) is given by (16). Assume that the
solution set mapping ΨK is locally bounded and that the qualification condition
(17) holds. Then one has

∇F (x̄, ȳ)(u, v)� ≥ 0

for all (u, v) ∈ R
n × R

m satisfying

0 ∈ ∇2
xyf(x̄, ȳ)u+∇2

xxf(x̄, ȳ)v +NK∗(v).

Here
K∗ = {d ∈ CK(ȳ) : ∇yf(x̄, ȳ)d = 0}

and

NK∗(v) = cone{ai : i ∈ I(ȳ)}+ span{∇yf(x̄, ȳ)}.

provided that

K = {y ∈ R
m : a�i y ≤ bi, i = 1, . . . , p},

where ai ∈ R
m for i = 1, . . . , p and b ∈ R for i = 1, . . . , p. Here, I(ȳ) denotes

the set of active indices at ȳ.
Optimality conditions for problem (4) using the coderivative of Mor-

dukhovich can be found in the papers [7, 13, 44]. While in the paper [44]
the coderivative is applied directly to the graph of the solution set mapping,
the attempt in the papers [7, 13] applies the coderivative to the normal cone
mapping to the feasible set mapping. We will not go into the details here but
refer to the paper [13] in the same volume.

2.4 Global minima

The following sufficient condition for a global optimal solution applies in the
case when X = R

n.

Theorem 2.8 ([12]) Consider the problem (1), (4), let the assumptions of
Theorem 2.5 be satisfied at all feasible points (x, y) ∈ M . Let x be given and
assume that

G′(x̃; d) > 0 ∀ d �= 0, ∀ x̃ with G(x̃) = G(x)

Then, x is a global minimum of the function G(x) = F (x, y(x)).
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Proof. First, we show that the point x is a strict local minimum of G. If x is
not a strict local minimum then there exists a sequence {xk} converging to

x such that G(xk) ≤ G(x). Put dk =
xk − x
‖xk − x‖ . Then, {dk}∞k=1 is a bounded

sequence and hence has a convergent subsequence {dk} converging to d0 (say).
If we denote this subsequence again by {dk}∞k=1 we have xk = x+ tkd

k where
tk = ‖xk − x‖. Hence,

G(x+ tkd
k)−G(x) ≤ 0.

This immediately leads to

tkG
′(x; dk) + o(tk) ≤ 0.

Passing to the limit we obtain a contradiction to the assumption. Hence x is
a strict local minimum.

Now assume that x is not a global minimum. Then, there exists x0 with
G(x0) < G(x). Consider the line Z := {x : x = λx0 + (1 − λ)x, λ ∈ [0, 1]}.
Then,

1. G is continuous on Z.
2. x0 ∈ Z, x ∈ Z.

Hence, there exist {x1, . . . , xp} ⊆ Z with G(xi) = G(x) for all i and G(x) �=
G(x) for all other points in Z. By the assumption this implies that G(x) ≥
G(x) on Z (remember that Z is homeomorphic to a finite closed interval
in R and that g(λ) := G(λx0 + (1 − λ)x) : R → R). But this contradicts
G(x0) < G(x). �

2.5 Optimality conditions for pessimistic optimal solutions

The pessimistic bilevel programming problem is more difficult than the op-
timistic one. This may be the reason for attacking the optimistic problem
(explicitly or not) in most of the references on bilevel programming problems.
The investigations in the paper [15] in this volume indicate that this may not
be true for discrete bilevel programming problems.

The approach for using the radial directional derivative for deriving neces-
sary and sufficient optimality conditions for pessimistic optimal solutions has
been earlier used for linear bilevel programming problems [5, 9].

Definition 2.3 Let U ⊆ R
m be an open set, x ∈ U and α : U → R. We say

that α is radial-continuous at x in direction r ∈ R
m, ‖r‖ = 1, if there exists a

real number αr(x) such that

lim
t↓0

α(x+ tr) = αr(x).
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If the radial limit αr(x) exists for all r ∈ R
m, ‖r‖ = 1, α is called radial-

continuous at x.
The function α is radial-directionally differentiable at x, if there exists a pos-
itively homogeneous function dα(x; ·) : R

m → R such that

α(x+ tr)− αr(x) = tdα(x; r) + o(x, tr)

with lim
t↓0

o(x,tr)
t = 0 holds for all r ∈ R

m, ‖r‖ = 1, and all t > 0.

Obviously, the vector dα(x; ·) is uniquely defined and is called the radial-
directional derivative of α at x.

It is not very difficult to show, that, for (mixed-discrete) linear bilevel
programming problems, the functions ϕo(·) and ϕp(·) determined in (3) and
(6) are radial-directionally differentiable [5].

A necessary optimality condition is given in the next theorem:

Theorem 2.9 ([9]) Let α : R
m → R be a radial-directionally differentiable

function and x ∈ R
m a fixed point. If there exists r ∈ R

m such that one of
the following two conditions is satisfied then x is not a local optimum of the
function α:

• dα(x; r) < 0 and αr(x) ≤ α(x)
• αr(x) < α(x).

This optimality condition can be complemented by a sufficient one.

Theorem 2.10 ([9]) Let α : R
m → R be a radial-directionally differentiable

function and x a fixed point which satisfies one of the following two conditions.

• α(x) < αr(x) ∀r ∈ R
m

• α(x) ≤ αr(x) ∀r and dα(x; r) > 0 ∀r : α(x) = αr(x), ‖r‖ = 1.

Then, α achieves a local minimum at x.

3 Relations to set-valued optimization

Closely related to bilevel programming problems are also set-valued optimiza-
tion problems e.g. of the kind

“ min
x

”{F(x) : x ∈ X}, (18)

where F : X → 2R
p

is a point-to-set mapping sending x ∈ X ⊆ R
n to a subset

of R
p. To see this assume that F(x) corresponds to the set of all possible upper

level objective function values

F(x) :=
⋃

y∈Ψ(x)

F (x, y).
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Thus, the bilevel programming problem is transformed into (18) in the special
case of F(x) ⊆ R.

An edited volume on the related set-valued optimization problems is [2],
while [23] is a survey on that topic.

Definition 3.1 ([3]) Let an order cone C ⊆ R
p with nonempty interior be

given. A pair (x, z) with x ∈ X, z ∈ F(x) is called a weak minimizer of
problem (18) if z is a weak minimal element of the set

F(X) :=
⋃

x∈X

F(x).

Here, z ∈ F(X) is a weak minimal element of the set F(X) if

(z + intC) ∩ F(X) = ∅.

Let C be a polyhedral cone. Then, there exist a finite number of elements
li, i = 1, . . . , p such that the dual cone C∗ to C is

C∗ = {z : z�d ≥ 0 ∀ d ∈ C} =

{
z : ∃ μ ∈ R

p
+ with z =

p∑
i=1

μil
i

}
.

The following theorem is well-known:

Theorem 3.1 If the set F(X) is convex then a point z ∈ F(X) is a weak
minimal element of F(X) if and only if z is an optimal solution of

min
z

{
p∑

i=1

μil
i�z : z ∈ F(X)

}

for some μ ∈ R
p
+.

In the case of bilevel programming (i.e. F(X) ⊆ R) p = 1, l1 = 1, μ1 = 1
can be selected and the problem in Theorem 3.1 reduces to

min
z
{z : z ∈ F(X)} .

For this, the convexity assumption is not necessary but the set F(X) is only
implicitly given. Possible necessary optimality conditions for this problem
reduce to the ones discussed above.

The difficulty with the optimistic definition is the following: Assume that
there are two decision makers, the first one is choosing x0 ∈ X and the second
one selects y0 ∈ F(x0). Assume that the first decision maker has no control
over the selection of the second one but that he intends to determine a solution
x0 ∈ X such that for each selection ŷ ∈ F(x̂) and x̂ close to x0 of the second
one there exists y0 ∈ F(x0) which is preferable to ŷ. In this case, since the
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selection of the second decision maker is out of control of the first one, the
latter cannot evaluate the quality of her selection chosen according to the
above definition.

To weaken this definition assume that the first decision maker is able to
compute the sets F(x) for all x ∈ X. Then, he can try to compute a point
x∗ ∈ X such that

F(x) ⊆ F(x∗) + C

for all x ∈ X sufficiently close to x∗. In distinction to Definition 3.1 this
reflects a pessimistic point of view in the sense that the first decision maker
bounds the damage caused by the selection of the second one. Let

F(x1) �C F(x2) ⇐⇒ F(x2) ⊆ F(x1) + C.

Definition 3.2 Let an order cone C ⊆ R
p be given. A point x ∈ X is called

a pessimistic local minimizer of problem (18) if

F(x) �C F(x) ∀ x ∈ X ∩ {z : ‖z − x‖ < ε}

for some ε > 0.

Theorem 3.2 Let x ∈ X be not a pessimistic local minimizer and assume
that C and F(x) are convex sets for all x ∈ X. Then there exist a vector
k̂ ∈ C∗ \ {0} and a point x̂ ∈ X such that

min{k̂�y : y ∈ F(x̂)} < min{k̂�y : y ∈ F(x)}.

Proof: Let x ∈ X be not a pessimistic minimizer. Then, by definition
there exists x̂ ∈ X sufficiently close to x such that F(x) ��C F(x̂). Then there
necessarily exists ŷ ∈ F(x̂) with ŷ �∈ F(x) +C. Since by our assumption both
F(x) and C are convex there is a vector k̂ �= 0 with

min{k̂�y : y ∈ F(x̂)} ≤ k̂�ŷ < min{k̂�y : y ∈ F(x) + C}

by a strong separation theorem in convex analysis (see e.g. [42]). Now assume
that k̂ �∈ C∗. Then, since C is a cone, we get

min{k̂�y : y ∈ F(x) + C}
= min{k̂�(y1 + ty2) : y1 ∈ F(x), y2 ∈ C}
= min{k̂�y1 : y1 ∈ F(x)}+ tmin{k̂�y2 : y2 ∈ C}

for all t ≥ 0. But since k̂ �∈ C∗, the last term tends to minus infinity for
increasing t which cannot be true since it is bounded from below by k̂�ŷ.
This proves the theorem. �

This implies that, if for all k ∈ C∗

min
x,y
{k�y : (x, y) ∈ GphF , x ∈ X, ‖x− x‖ ≤ ε} ≥ min

y
{k�y : y ∈ F(x)}
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then x is a local pessimistic minimizer. The main difference of this result to
Theorem 3.1 is that here this condition needs to be satisfied for all elements
k ∈ C∗ whereas there must exist one element k ∈ C∗ with the respective
condition in Theorem 3.1.

Applied to bilevel programming, the notions of both the optimistic and
the pessimistic minimizer coincide.

4 Relation to mathematical programs with equilibrium
conditions

Applying the Karush-Kuhn-Tucker conditions to the lower level problem (1)
in (4) we derive the problem

F (x, y) → min
x,y,u

∇xL(x, y, u) = 0
g(x, y) ≤ 0

u ≥ 0
u�g(x, y) = 0

x ∈ X

(19)

provided that the lower level problem satisfies the (MFCQ) at all feasi-
ble points for all x ∈ X and that it is a convex optimization problem
for fixed x ∈ X. Problem (19) is called a mathematical program with
equilibrium constraints (MPEC) [34, 37]. There has been many interest-
ing results concerning optimality conditions for MPECs in the recent time,
cf. e.g. [16, 17, 18, 19, 40, 43]. Here we are interested in conditions needed for
applying such conditions.

Example 4.1 This example shows that the convexity assumption is crucial.
Consider the problem [35]

min
x,y
{(x− 2) + (y − 1)2 : y ∈ Ψ(x)}

where Ψ(x) is the set of optimal solutions of the following unconstrained
optimization problem on the real axis:

−x exp{−(y + 1)2} − exp{−(y − 1)2} → min
y

Then, the necessary optimality conditions for the lower level problem are

x(y + 1) exp{−(y + 1)2}+ (y − 1) exp{−(y − 1)2} = 0

which has three solutions for 0.344 ≤ x ≤ 2.903. The global optimum of the
lower level problem is uniquely determined for all x �= 1 and it has a jump
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at the point x = 1. Here the global optimum of the lower level problem can
be found at the points y = ±0.957. The point (x0; y0) = (1; 0.957) is also the
global optimum of the optimistic bilevel problem.

But if the lower level problem is replaced with its necessary optimality
conditions and the necessary optimality conditions for the resulting problem
are solved then three solutions: (x, y) = (1.99; 0.895), (x, y) = (2.19; 0.42),
(x, y) = (1.98;−0.98) are obtained. Surprisingly, the global optimal solution
of the bilevel problem is not obtained with this approach. The reason for this
is that the problem

min{(x− 2)+ (y− 1)2 : x(y+1) exp{−(y+1)2}+(y− 1) exp{−(y− 1)2} = 0}

has a much larger feasible set than the bilevel problem. And this feasible set
has no jump at the point (x, y) = (1; 0.957) but is equal to a certain connected
curve in R

2. And on this curve the objective function has no stationary point
at the optimal solution of the bilevel problem. �

The following example can be used to illustrate that the above equivalence
between problems (2) and (19) is true only if global optima are searched for.

Theorem 4.1 ([5]) Consider the optimistic bilevel programming problem
(1), (2), (3) and assume that, for each fixed y, the lower level problem (1)
is a convex optimization problem for which (MFCQ) is satisfied for each fixed
x and all feasible points. Then, each locally optimal solution for the problem
(1), (2), (3) corresponds to a locally optimal solution for problem (19).

This theorem implies that it is possible to derive necessary optimality con-
ditions for the bilevel programming problem by applying the known conditions
for MPECs. This has been done e.g. in [5]. Using the recent conditions in the
papers [16, 17, 18, 19, 43] interesting results can be obtained. It would be a
challenging topic for future research to check if the assumptions used in these
papers can successfully be interpreted for bilevel programming problems.

But, the application of these results to get strong necessary optimality con-
ditions and also to get sufficient optimality conditions seems to be restricted.
This can be seen in the following example.

Example 4.2 We consider a linear bilevel programming problem with an
optimistic optimal solution (x, y). Assume that the linear independence con-
straint qualification is not satisfied at the lower level problem at (x, y) and
that there are more than one Lagrange multiplier for the lower level problem
at y. Then, the situation is as depicted in fig. 1: We see a part of the feasible
set of the upper level problem (which is the union of faces of the graph of the
lower level feasible set {(x, y) : Ax ≤ y}) in the right-hand side picture. There
is a kink at the point (x, y). The point (x, y) belongs to the intersection of two
faces of the graph of the lower level feasible set {(x, y) : Ax ≤ y}. The optimal
solution of the lower level problem is unique for all x, hence the lower level
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solution function can be inserted into the upper level objective function. In
the left-hand side picture we see the graph of the set of Lagrange multipliers
in the lower level problem which is assumed to reduce to a singleton for x �= x
and is multivalued for x = x.

Fig. 1. Feasible set in the upper level problem and Lagrange multiplier mapping of
the lower level problem

Now assume that we have used the MPEC corresponding to the bilevel
programming problem for deriving necessary optimality conditions. For this
we fix a feasible solution (x, y, λ) of the MPEC, where λ denotes one Lagrange
multiplier of the lower level problem at y. Then, the necessary optimality con-
ditions for the MPEC are satisfied. They show, that there does not exist a
better feasible solution than (x, y, λ) in a suitable small neighborhood of this
point for the MPEC. This neighborhood of (x, y, λ) restricts the λ-part to a
neighborhood of λ. Due to complementarity slackness this restriction implies
for the bilevel programming problem that the feasible set of the upper level
problem is restricted to one face of the graph of {(x, y) : Ax ≤ y}, see fig. 2,
where this face is the right-hand sided one. Hence, the necessary optimality
conditions for the corresponding MPEC mean that the point under consid-
eration is a stationary (here optimal) solution of the bilevel programming
problem but only with respect to a part (and not with respect to an open
neighborhood !) of the feasible set.
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Fig. 2. Neighborhood of a Lagrange multiplier λ and corresponding part of the
feasible set of the bilevel programming problem

5 Variational inequality approach

The problem of solving a mathematical program with variational inequalities
or complementarity conditions as constraints arises quite frequently in the
analysis of physical and socio-economic systems. According to a remark in the
paper [20], the current state-of-the-art for solving such problems is heuristic.
The latter paper [20] presents an exterior-point penalty method based on
M.J. Smith’s optimization formulation of the finite-dimensional variational
inequality problem [41]. In the paper by J. Outrata [36], attention is also paid
to this type of optimization problems.

An approach to solving the above-mentioned problem consists in a varia-
tional re-formulation of the optimization criterion and looking for a solution
of the thus obtained variational inequality among the points satisfying the ini-
tial variational inequality constraints. This approach works well for the case
when both operators involved are monotone and it is enlightened in the first
part of the section. Namely, in subsection 5.2, we examine conditions under
which the set of the feasible points is non-empty, and compare the conditions
with those established previously [22]. Subsection 5.3 describes a penalty func-
tion method solving the bilevel problem after having reduced it to a single
variational inequality with a penalty parameter.

5.1 Existence theorem

Let X be a non-empty, closed, convex subset of Rn and G a continuous map-
ping from X into Rn. Suppose that F is pseudo-monotone with respect to X,
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i.e.
(x− y)TF(y) ≥ 0 implies (x− y)TF(x) ≥ 0 ∀x, y ∈ X, (20)

and that there exists a vector x0 ∈ X such that

F(x0) ∈ int (0+X)∗, (21)

where int(·) denotes the interior of the set. Here 0+X is the recession cone of
the set X, i.e. the set of all directions s ∈ Rn such that X + s ⊂ X; at last,
C∗ is the dual cone of C ⊂ Rn, i.e.

C∗ = {y ∈ Rn : yTx ≥ 0 ∀x ∈ C}. (22)

Hence, condition (21) implies that the vector F(x0) lies within the interior
of the dual to the recession cone of the set X.

Under these assumptions, the following result obtains:

Proposition 5.1 ([24]) The variational inequality problem: to find a vector
z ∈ X such that

(x− z)TF(z) ≥ 0 ∀x ∈ X, (23)

has a non-empty, compact, convex solution set.

Proof. It is well-known [27] that the pseudo-monotonicity (20) and continuity
of the mapping G imply convexity of the solution set

Z = {z ∈ X : (x− z)TF(z) ≥ 0 ∀x ∈ X}, (24)

of problem (23) provided that the latter is non-empty. Now we show the
existence of at least one solution to this problem. In order to do that, we use
the following fact [14]: if there exists a non-empty bounded subset D of X
such that for every x ∈ X\D there is a y ∈ D with

(x− y)TF(x) > 0, (25)

then problem (23) has a solution. Moreover, the solution set (24) is bounded
because Z ⊂ D. Now, we construct the set D as follows:

D = { x ∈ X : (x− x0)TF(x0) ≤ 0 }. (26)

The set D is clearly non-empty, since it contains the point x0. Now we show
that D is bounded, even if X is not such. On the contrary, suppose that a
sequence {xk} ⊆ D is norm-divergent, i.e. ‖xk − x0‖ → +∞ when k → ∞.
Without lack of generality, assume that xk �= x0, k = 1, 2, . . . , and consider
the inequality

(xk − x0)TF(x0)
‖xk − x0‖ ≤ 0, k = 1, 2, . . . , (27)

which follows from definition (26) of the set D. Again without affecting gen-
erality, accept that the normed sequence (xk − x0)/‖xk − x0‖ converges to a
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vector s ∈ Rn, ‖s‖ = 1. It is well-known (cf. [39], Theorem 8.2 ) that s ∈ 0+X.
From (27), we deduce the limit relation

sTF(x0) ≤ 0. (28)

Since 0+X �= {0} ( as X is unbounded and convex ), we have 0 ∈ ∂(0+X)∗,
hence F(x0) �= 0. Now it is easy to see that inequality (28) contradicts assump-
tion (21). Indeed, the inclusion F(x0) ∈ int (0+X)∗ implies that sTF(x0) > 0
for any s ∈ 0+X, s �= 0. The contradiction establishes the boundedness of the
set D, and the statement of Proposition 5.1 therewith. Indeed, for a given
x ∈ X\D, one can pick y = x0 ∈ D with the inequality (x − y)TF(y) > 0
taking place. The latter, jointly with the pseudo-monotonicity of F , implies
the required condition (25) and thus completes the proof. �

Remark 5.1 The assertion of Proposition 5.1 has been obtained also in [22]
under the same assumptions except for inclusion (21), which is obviously in-
variant with respect to an arbitrary translation of the set X followed by the
corresponding transformation of the mapping G. Instead of (21), the authors
[22] used another assumption F(x0) ∈ int(X∗) which is clearly not translation-
invariant.

Now suppose that the solution set Z of problem (23) contains more than
one element, and consider the following variational inequality problem: to find
a vector z∗ ∈ Z such that

(z − z∗)TG(z∗) ≥ 0 for all z ∈ Z. (29)

Here, the mapping G : X → Rn is continuous and strictly monotone over X;
i.e.

(x− y)T [G(x)− G(y)] > 0 ∀x, y ∈ X,x �= y. (30)

In this case, the compactness and convexity of the set Z guaranties [14] the
existence of a unique (due to the strict monotonicity of G) solution z of the
problem (29). We refer to problem (23), (24), (29) as the bilevel variational
inequality (BVI). In the next subsection, we present a penalty function algo-
rithm solving the BVI without explicit description of the set Z.

5.2 Penalty function method

Fix a positive parameter ε and consider the following parametric variational
inequality problem: Find a vector xε ∈ X such that

(x− xε)T[F(xε) + εG(xε)] ≥ 0 for all x ∈ X. (31)

If we assume that the mapping F is monotone over X, i.e.

(x− y)T[F(x)−F(y)] ≥ 0 ∀x, y ∈ X, (32)

and keep intact all the above assumptions regarding F ,G and Z, then the
following result obtains:
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Proposition 5.2 ([24]) For each sufficiently small value ε > 0, problem (31)
has a unique solution xε. Moreover, xε converge to the solution z∗ of BVI (23),
(24), (29) when ε→ 0.

Proof. Since F is monotone and G is strictly monotone, the mapping Φε =
F + εG is strictly monotone on X for any ε > 0. It is also clear that if x0

satisfies (21) then the following inclusion holds

Φε(x0) = F(x0) + εG(x0) ∈ int (0+X)∗, (33)

if ε > 0 is small enough. Hence, Proposition 5.1 implies the first assertion
of Proposition 5.2; namely, for every ε > 0 satisfying (33), the variational
inequality (31) has a unique solution xε .

From the continuity of F and G, it follows that each (finite) limit point
x̄ of the generalized sequence Q = {xε} of solutions to problem (31) solves
variational inequality (23); that is, x̄ ∈ Z. Now we prove that the point x̄
solves problem (29), too. In order to do that, we use the following relations
valid for any z ∈ Z due to (23), (29) and (31):

(z − xε)T[F(z)−F(xε)] ≥ 0, (34)

(z − xε)TF(z) ≤ 0, (35)

(z − xε)TF(xε) ≥ −ε(z − xε)TG(xε). (36)

Subtracting (36) from (35) and using (34), we obtain the following series of
inequalities

0 ≤ (z − xε)T[F(z)−F(xε)] ≤ ε(z − xε)TG(xε). (37)

From (37) we have (z − xε)TG(xε) ≥ 0 for all ε > 0 and z ∈ Z. Since G is
continuous, the following limit relation holds: (z−x̄)TG(x̄) ≥ 0 for each z ∈ Z,
which means that x̄ solves (29).

Thus we have proved that every limit point of the generalized sequence
Q solves BVI (23), (24), (29). Hence, Q can have at most one limit point.
To complete the proof of Proposition 5.2, it suffices to establish that the
set Q is bounded, and consequently, the limit point exists. In order to do
that, consider a norm-divergent sequence {xεk

} of solutions to parametric
problem (31) where εk → 0 as k → ∞. Without loss of generality, suppose

that xεk
�= x0 for each k, and (xεk

− x0)
‖xεk

− x0‖ → s ∈ Rn, ‖s‖ = 1; here x0 is the

vector from condition (21). Since ‖xεk
− x0‖ → +∞ , we get s ∈ 0+X (cf.

[39]). As the mappings F and G are monotone, the following inequalities take
place for all k = 1, 2, . . .:

(xεk
− x0)T[F(xεk

) + εkG(xεk
)] ≤ 0, (38)

and hence,
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(xεk
− x0)T[F(x0) + εkG(x0)] ≤ 0. (39)

Dividing inequality (39) by ‖xεk
− x0‖ we obtain

(xεk
− x0)T

‖xεk
− x0‖

· [F(x0) + εkG(x0)] ≤ 0, k = 1, 2, ..., (40)

which implies (as εk → 0) the limit inequality sTF(x0) ≤ 0. Since s �= 0, the
latter inequality contradicts assumption 21. This contradiction demonstrates
the set Q to be bounded which completes the proof. �

Example 5.1 Let Ω ⊆ Rm, Λ ⊆ Rn be subsets of finite-dimensional Eu-
clidean spaces and g : Ω × Λ→ R, f : Ω × Λ→ Rn be continuous mappings.
Consider the following mathematical program with variational inequality con-
straint:

min
(u,v)∈Ω×Λ

g(u, v), (41)

subject to
f(u, v)T (w − v) ≥ 0, ∀w ∈ Λ. (42)

If the function g is continuously differentiable, then problem (41)-(42) is ob-
viously tantamount to BVI (23), (24), (29) with the gradient mapping g′(z)
used as G(z) and F(u, v) = [0; f(u, v)]; here z = (u, v) ∈ Ω × Λ.

As an example, examine the case when

g(u, v) = (u− v − 1)2 + (v − 2)2; f(u, v) = uv; Ω = Λ = R1
+. (43)

Then it is readily verified that z∗ = (1; 0) solves problem (41)-(42) and the
parametrized mapping is given by

Φε(u, v) =
[
ε(2u− 2v − 2);uv + ε(−2u+ 4v − 2)

]
. (44)

Now solving the variational inequality: Find (uε, vε) ∈ R2
+ such that

Φε(uε, vε)T
[
(u, v)− (uε, vε)

]
≥ 0 ∀(u, v) ∈ R2

+, (45)

we obtain

uε = vε + 1; vε = −1
2
− ε+

√
(
1
2

+ ε)2 + 4ε. (46)

Clearly (uε, vε) → z∗ when ε→ 0. �
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