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Preface

Optimization problems involving multivalued mappings in constraints or
as the objective function are investigated intensely in the area of non-
differentiable non-convex optimization. Such problems are well-known under
the names bilevel programming problems [2, 4, 5], mathematical problems
with equilibrium (complementarity) constraints (MPEC) [6, 9], equilibrium
problems with equilibrium constraints (EPEC) [8, 10], set-valued optimiza-
tion problems [3] and so on. Edited volumes on the field are [1, 7]. Since the
publication of these volumes there has been a tremendous development in the
field which includes the formulation of optimality conditions using different
kinds of generalized derivatives for set-valued mappings (as e.g. the coderiva-
tive of Mordukhovich), the opening of new applications (as the calibration
of water supply systems), or the elaboration of new solution algorithms (as
for instance smoothing methods). We are grateful to the contributors of this
volume that they agreed to publish their newest results in this volume. These
results reflect most of the recent developments in the field.

The contributions are classified into three parts. Focus in the first part is
on bilevel programming.

Different promising possibilities for the construction of optimality condi-
tions are the topic of the paper “Optimality conditions for bilevel program-
ming problems.” Moreover, the relations between the different problems in-
vestigated in this volume are carefully considered.

The computation of best tolls to be payed by the users of a transportation
network is one important application of bilevel programming. Especially in
relation to recent economic developments in traffic systems this problem has
attracted large interest. In the paper “Path-based formulations of a bilevel toll
setting problem,” M. Didi-Biha, P. Marcotte and G. Savard describe different
formulations of this problem and develop efficient solution algorithms.

Applying Mordukhovich’s coderivative to the normal cone mapping for
the feasible set of the lower level problem, J. Dutta and S. Dempe derive
necessary optimality conditions in “Bilevel programming with convex lower
level problems.”
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Most papers in bilevel programming concentrate on continuous problems
in both levels of hierarchy. D. Fanghänel investigates problems with discrete
lower level problems in her paper “Optimality criteria for bilevel programming
problems using the radial subdifferential.” Important for her developments
are the notions of the optimistic resp. the pessimistic optimal solution. Both
notions reduce the bilevel problem to the minimization of a discontinuous
function. To develop the optimality conditions she uses the analytic tool of a
radial-directional derivative and the radial subdifferential.

In their paper “On approximate mixed Nash equilibria and average
marginal functions for two-stage three-players games,” L. Mallozzi and J.
Morgan investigate bilevel optimization problems where the two lower level
players react computing a Nash equilibrium depending on the leader’s selec-
tion. Other than in D. Fanghänel’s paper, they apply a regularization approach
to the bilevel problem on order to get a continuous auxiliary function.

The second part collects papers investigating mathematical programs with
equilibrium constraints.

Due to violation of (most of) the standard regularity conditions at all
feasible points of mathematical programs with equilibrium constraints using
classical approaches only necessary optimality conditions in form of the Fritz
John conditions can be obtained. This leads to the formulation of weaker
optimality conditions as A-, B-, C- and M-stationarity. This opens the way for
the investigation of assumptions guaranteeing that one of these conditions can
be shown to be necessary for optimality. In their paper “A direct proof for M-
stationarity under MPEC-GCQ for mathematical programs with equilibrium
constraints,” M. L. Flegel and C. Kanzow give an interesting proof of such a
result.

To solve and to investigate bilevel programming problems or mathematical
programs with equilibrium constraints these are usually transformed into a
(nondifferentiable) standard optimization problem. In “On the use of bilevel
programming for solving a structural optimization problem with discrete vari-
ables,” J. J. Júdice et al. use the opposite approach to solve an applied large-
dimensional mixed integer programming problem. They transform this prob-
lem into a mathematical program with equilibrium constraints and solve the
latter problem using their complementarity active-set algorithm. This then
results in a promising algorithm for the original problem.

A further applied problem is investigated in the paper “On the control of
an evolutionary equilibrium in micromagnetics” by M. Kočvara et al. They
model the problem as an MPEC in infinite dimensions. The problem after
discretization can be solved by applying the implicit programming technique
since the solution of the lower level’s evolutionary inequality in uniquely de-
termined. The generalized differential calculus of B. Mordukhovich is used to
compute the needed subgradients of the composite function.

An important issue of the investigations is the formulations of solution
algorithms. Promising attempts of applying certain algorithms of nonlinear
mathematical programming are quite recent. S. Leyffer investigates in his
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paper “Complementarity constraints as nonlinear equations: Theory and nu-
merical experience” one such algorithm. The method is based on an exact
smoothing approach to the complementarity conditions. Comprehensive nu-
merical tests show the power of the method.

Again a challenging applied problem is investigated in the paper “A semi-
infinite approach to design centering” by O. Stein. He formulated this problem
as a general semi-infinite optimization problem. After certain reformulations,
the intrinsic bilevel structure of the problem is detected.

The third part on multivalued set-valued optimization starts with the
paper “Contraction mapping fixed point algorithms for solving multivalued
mixed variational inequalities” by P. N. Anh and L. D. Muu. They use a fixed-
point approach to solve multivalued variational inequalities and Banach’s con-
traction mapping principle to find the convergence rate of the algorithm.

Mordukhovich’s extremal principle is used in the paper “Optimality con-
ditions for a d.c. set-valued problem via the extremal principle” by N. Gadhi
to derive optimality conditions for a set-valued optimization problem with an
objective function given as difference of two convex mappings. The necessary
optimality conditions are given in form of set inclusions.

Second order necessary optimality conditions for set-valued optimization
problems are derived in the last paper “First and second order optimality
conditions in set optimization” in this volume by V. Kalashnikov et al. The
main theoretical tool in this paper is an epiderivative for set-valued mappings.

We are very thankful to the referees of the enclosed papers who with
their reports for the papers have essentially contributed to the high scientific
quality of the enclosed papers. We are also thankful to Sebastian Lohse for
carefully reading the text and to numerous colleagues for fruitful and helpful
discussions on the topic during the preparation of this volume. Last but not
least we thank John Martindale and Robert Saley from the publisher for their
continuing support.

Freiberg and Monterrey, Stephan Dempe
February 2006 Vyatcheslav V. Kalashnikov
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Part I

Bilevel Programming



Optimality conditions for bilevel programming
problems

Stephan Dempe1, Vyatcheslav V. Kalashnikov2 and Nataliya Kalashnykova3

1 Department of Mathematics and Informatics, Technical University
Bergakademie Freiberg, 09596 Freiberg, Germany dempe@tu-freiberg.de

2 Departamento de Ingenieŕıa Industrial y de Sistemas, Centro de Calidad
ITESM, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur Monterrey,
N.L., México, 64849, on leave from the Central Economics and Mathematics
Institute (CEMI) of the Russian Academy of Sciences, Nakhimovsky prospect
47, Moscow 117418, Russian Federation kalash@itesm.mx

3 Facultad de Ciencias F́ısico-Matemáticas, Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, N.L., México, 66450 nkalash@fcfm.uanl.mx

Summary. Focus in the paper is on optimality conditions for bilevel programming
problems. We start with a general condition using tangent cones of the feasible set
of the bilevel programming problem to derive such conditions for the optimistic
bilevel problem. More precise conditions are obtained if the tangent cone possesses
an explicit description as it is possible in the case of linear lower level problems. If the
optimal solution of the lower level problem is a PC1-function, sufficient conditions
for a global optimal solution of the optimistic bilevel problem can be formulated.
In the second part of the paper relations of the bilevel programming problem to
set-valued optimization problems and to mathematical programs with equilibrium
constraints are given which can also be used to formulate optimality conditions for
the original problem. Finally, a variational inequality approach is described which
works well when the involved functions are monotone. It consists in a variational
re-formulation of the optimality conditions and looking for a solution of the thus
obtained variational inequality among the points satisfying the initial constraints.
A penalty function technique is applied to get a sequence of approximate solutions
converging to a solution of the original problem with monotone operators.

Key words: Bilevel Programming, Set-valued Optimization, Mathematical
Programs with Equilibrium Constraints, Necessary and Sufficient Optimality
Conditions, Variational Inequality, Penalty Function Techniques

1 The bilevel programming problem

Bilevel programming problems are hierarchical in the sense that two decision
makers make their choices on different levels of hierarchy. While the first one,

 pp. , 3-28Optimization with Multivalued MappingsS. Dempe and V. Kalashnikov (eds.),
Media, LLC©2006 Springer Science + Business
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the so-called upper level decision maker or leader fixes his selections x first, the
second one, the follower or lower level decision maker determines his solution
y later in full knowledge of the leader’s choice. Hence, the variables x play the
role of parameters in the follower’s problem. On the other hand, the leader
has to anticipate the follower’s selection since his revenue depends not only
on his own selection but also on the follower’s reaction.

To be more precise, let the follower make his decision by solving a para-
metric optimization problem

Ψ(x) := argmin
y

{f(x, y) : g(x, y) ≤ 0}, (1)

where f, gi : R
n × R

m → R, i = 1, . . . , p are smooth (at least twice continu-
ously differentiable) functions, convex with respect to y for each fixed x.

Then, the leader’s problem consists in minimizing the continuously differ-
entiable function F : R

n × R
m → R subject to the constraints y ∈ Ψ(x) and

x ∈ X, where X ⊆ R
n is a closed set. This problem has been discussed in the

monographs [1] and [5] and in the annotated bibliography [6].
Since the leader controls only the variable x , this problem is well-defined

only in the case when the optimal solution of the lower level problem (1) is
uniquely determined for all parameter values x ∈ X. If this is not the case the
optimistic and pessimistic approaches have been considered in the literature,
see e.g. [32]. Both approaches rest on the introduction of a new lower level
problem.

The optimistic approach can be applied if the leader assumes that the
follower will always take an optimal solution which is the best one from the
leader’s point of view, which leads to the problem

min{ϕo(x) : x ∈ X}, (2)

where
ϕo(x) := min

y
{F (x, y) : y ∈ Ψ(x)}. (3)

Problem (2)-(3) is obviously equivalent to

min
x,y
{F (x, y) : x ∈ X, y ∈ Ψ(x)} (4)

provided that the latter problem has an optimal solution. But note that this
equivalence is true only for global minima [5]. It is easy to see that each
locally optimal solution of problem (2)-(3) is also a locally optimal solution
of problem (4), but the opposite implication is in general not true.

Example 1.1 Consider the simple linear bilevel programming problem

min{x : y ∈ Ψ(x),−1 ≤ x ≤ 1},

where
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Ψ(x) = argmin
y

{xy : 0 ≤ y ≤ 1}

at the point (x0, y0) = (0, 0). Then, this point is a locally optimal solution to
problem (4), i.e. there exists an open neighborhoodWε(0, 0) = (−ε, ε)×(−ε, ε)
with 0 < ε < 1 such that x ≥ 0 for all (x, y) ∈ Wε(0, 0) with y ∈ Ψ(x) and
−1 ≤ x ≤ 1. The simple reason for this is that there is no −ε < y < ε
with y ∈ Ψ(x) for x < 0 since Ψ(x) = {1} for x < 0. But if we consider the
definition of a locally optimistic optimal solution by solving problem (2) then
the point (0, 0) is not a locally optimistic optimal solution since x0 = 0 is not
a local minimum of the function ϕo(x) = x. �

The basic assumption for this approach is cooperation between the follower
and the leader. If the follower cannot be assumed to cooperate with the leader,
the latter applies the pessimistic approach

min{ϕp(x) : x ∈ X}, (5)

where
ϕp(x) := max

y
{F (x, y) : y ∈ Ψ(x)}. (6)

Then, the following notions of optimality can be used:

Definition 1.1 A point (x, y) is called a locally optimistic optimal solution
of the bilevel programming problem if

y ∈ Ψ(x), x ∈ X,F (x, y) = ϕo(x)

and there is a number ε > 0 such that

ϕo(x) ≥ ϕo(x) ∀ x ∈ X, ‖x− x‖ < ε.

Definition 1.2 A point (x, y) is called a locally pessimistic optimal solution
of the bilevel programming problem if

y ∈ Ψ(x), x ∈ X,F (x, y) = ϕp(x)

and there is a number ε > 0 such that

ϕp(x) ≥ ϕp(x) ∀ x ∈ X, ‖x− x‖ < ε.

Using these definitions it is possible to determine assumptions guaranteeing
the existence of locally optimal solutions [5].
(C) The set

{(x, y) : x ∈ X, g(x, y) ≤ 0}
is nonempty and bounded.
(MFCQ) The Mangasarian-Fromowitz constraint qualification is satisfied at
a point (x, y) if there is a direction d such that

∇ygi(x, y)d < 0, ∀ i ∈ {j : gj(x, y) = 0}.

A point-to-set mapping Γ : R
p → 2R

q

maps points w ∈ R
p to sets Γ (w) ⊆ R

q.
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Definition 1.3 A point-to-set mapping Γ : R
p → 2R

q

is said to be upper
semicontinuous at a point w ∈ R

p if for each open set A ⊇ Γ (w) there is an
open set V � w such that Γ (w) ⊆ A for all w ∈ V. The point-to-set mapping
Γ is lower semicontinuous at w ∈ R

p provided that for each open set A ⊆ R
q

with Γ (w) ∩ A �= ∅ there is an open set V � w with Γ (w) ∩ A �= ∅ for all
w ∈ V.

Theorem 1.1 ([21],[33]) A locally optimal optimistic solution of the bilevel
programming problem exists provided the point-to-set mapping Ψ(·) is upper
semicontinuous at all points x ∈ X and assumption (C) is satisfied. A locally
optimal pessimistic solution exists if upper semicontinuity of the mapping Ψ(·)
is replaced by lower semicontinuity.

It should be mentioned that the point-to-set mapping Ψ(·) is upper semi-
continuous at a point x ∈ X if (C) and (MFCQ) are satisfied at all points
(x, y) with y ∈ Ψ(x). In most cases, to guarantee lower semicontinuity of the
point-to-set mapping Ψ(·), uniqueness of an optimal solution of problem (1)
is needed.

2 Optimality conditions

To derive optimality conditions for the optimistic bilevel programming prob-
lem we have two possibilities. Either we apply the contingent or some other
cone to the feasible set of the bilevel programming problem

M := GphΨ ∩ (X × R
m),

where GphΨ := {(x, y)� : y ∈ Ψ(x)} denotes the graph of the point-to-
set mapping Ψ(·) , or we use one of the known reformulations of the bilevel
programming problem to get a one-level optimization problem and formulate
optimality conditions for the latter problem. Focus in this paper is on pos-
sible advantages and difficulties related with the one or the other of these
approaches. We start with the first one.

Definition 2.1 The cone

CM (x, y) := { (u, v)� : ∃{tk}∞k=1 ⊂ R+, ∃{(uk, vk)�}∞k=1 ⊂ R
n × R

m

with (x, y)� + tk(uk, vk)� ∈ GphΨ ∀k, x+ tku
k ∈ X,

lim
k→∞

tk = 0, lim
k→∞

(uk, vk)� = (u, v)�}

is the contingent (or Bouligand) cone of M .

Theorem 2.1 If the point (x, y)� ∈ GphΨ , x ∈ X is a locally optimal solu-
tion of the optimistic problem (4), then
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∇F (x, y)(d, r)� ≥ 0

for all
(d, r)� ∈ CM (x, y).

On the other hand, if (x, y)� ∈ GphΨ , x ∈ X and

∇F (x, y)(d, r)� > 0

for all
(d, r)� ∈ CM (x, y),

then the point (x, y)� is a locally optimal solution of (4).

Proof. Let (x, y)� ∈ GphΨ , x ∈ X be a locally optimal solution of problem
(4). Assume that the proposition of the theorem is not satisfied. Then, there
exists a direction (d, r)� with

(d, r)� ∈ CM (x, y)

and
∇F (x, y)(d, r)� < 0. (7)

Then, by definition there are sequences {tk}∞k=1 ⊂ R+, {(uk, vk)�}∞k=1 ⊂
R

n × R
m with (x, y)� + tk(uk, vk)� ∈ GphΨ ∀k, x + tku

k ∈ X, lim
k→∞

tk = 0,

lim
k→∞

(uk, vk)� = (d, r)�. Hence, using the definition of the derivative we get

F (x+ tku
k, y + tkv

k) = F (x, y) + tk∇F (x, y)(uk, vk) + o(tk)

for sufficiently large k, where lim
k→∞

o(tk)
tk

= 0. Since

lim
k→∞

{
∇F (x, y)(uk, vk) +

o(tk)
tk

}
= ∇F (x, y)(d, r) < 0

by the assumption this implies

∇F (x, y)(uk, vk) +
o(tk)
tk

< 0

for all sufficiently large k and, hence,

F (x+ tku
k, y + tkv

k) < F (x, y)

for large k. This leads to a contradiction to local optimality.
Now, let ∇F (x, y)(d, r)� > 0 for all (d, r)� ∈ CM (x, y) and assume that

there is a sequence (xk, yk) ∈ M converging to (x, y)� with F (xk, yk) <
F (x, y) for all k. Then,
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xk − x

‖(xk, yk)− (x, y)‖ ,
yk − y

‖(xk, yk)− (x, y)‖

)�

converges to some (d, r)� ∈ CM (x, y). Using differential calculus, it is now
easy to verify that

∇F (x, y)(d, r)� ≤ 0

contradicting our assumption. �

Applying this theorem the main difficulty is the computation of the con-
tingent cone. This has been done e.g. in the paper [7].

2.1 The linear case

If bilevel programming problems with linear lower level problems are under
consideration, an explicit description of this contingent cone is possible [8]
under a certain regularity condition. For this, consider a linear parametric
optimization problem

max
y
{c�y : Ay = b, y ≥ 0} (8)

with a (m,n)-matrix A and parameters in the right-hand side as well as in
the objective function. Let ΨL(b, c) denote the set of optimal solutions of (8).
A special optimistic bilevel programming problem reads as

min
y,b,c

{f(y) : Bb = b̃, Cc = c̃, y ∈ ΨL(b, c)}. (9)

Using linear programming duality problem (9) has a reformulation as

f(y) −→ min
y,b,c,u

Ay = b
y ≥ 0

A�u ≥ c
y�(A�u− c) = 0

Bb = b̃
Cc = c̃.

(10)

It should be noted that the objective function in the upper level problem
does not depend on the parameters of the lower level one. This makes a more
precise definition of a locally optimal solution of problem (9) necessary:

Definition 2.2 A point y is a locally optimal solution of problem (9) if there
exists an open neighborhood U of y such that f(y) ≤ f(y) for all y, b, c with
Bb = b̃, Cc = c̃ and y ∈ U ∩ ΨL(b, c).
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The main result of this definition is the possibility to drop the explicit
dependence of the solution of the problem (10) on c. This dependence rests
on solvability of the dual problem and is guaranteed for index sets I in the
set I(y) below.

Let the following index sets be determined at some point y:

1. I(y) = {i : yi = 0},
2. I(u, c) = {i : (A�u− c)i > 0}
3. I(y) = {I(u, c) : A�u ≥ c, (A�u− c)i = 0 ∀i /∈ I(y), Cc = c̃}
4. I0(y) =

⋂
I∈I(y)

I.

Using these definitions, problem (10) can be transformed into the following
one by replacing the complementarity conditions:

f(y) −→ min
y,b,I

Ay = b
y ≥ 0
yi = 0 ∀i ∈ I
Bb = b̃
I ∈ I(y).

(11)

The tangent cone to the feasible set of the last problem is

T (y) :=
⋃

I∈I(y)

TI(y),

where

TI(y) = {d| ∃r : Ad = r, Br = 0, di ≥ 0, ∀i ∈ I(y) \ I, di = 0, ∀i ∈ I}

for all I ∈ I(y). Note that T (y) is the tangent cone to the feasible set of
problem (9) with respect to Definition 2.2.

Theorem 2.2 [Optimality conditions, [8]] If f is differentiable at y, this
point is a local optimum of (9) if and only if∇f(y)·d ≥ 0 for all d ∈ conv T (y).

For an efficient verification of the condition in Theorem 2.2 a compact
formula for the convex hull of the tangent cone of the feasible set is crucial.
For that consider the relaxed problem of (10)

f(y) −→ min
y,b

Ay = b
yi ≥ 0 i = 1, . . . , l
yi = 0 i = l + 1, . . . , k
Bb = b̃

(12)

together with the tangent cone to its feasible set
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TR(y) = {d| ∃r : Ad = r, Br = 0, di ≥ 0, i = 1, . . . , l, di = 0, i = l+1, . . . , k}

(relative to y only) at the point y. Here, it is assumed that I(y) = {1, . . . , k}
and I0(y) = {l + 1, . . . , k}.

Remark 2.1 ([8]) We have j ∈ I(y) \ I0(y) if and only if the system

(A�u− c)i = 0 ∀i /∈ I(y)
(A�u− c)j = 0
(A�u− c)i ≥ 0 ∀i ∈ I(y) \ {j}

Cc = c̃

has a solution.

In the following theorem we need an assumption: The point y is said to
satisfy the full rank condition, if

span({Ai : i = k + 1, . . . , n}) = R
m, (FRC)

where Ai denotes the ith column of the matrix A.

Theorem 2.3 ([8]) Let (FRC) be satisfied at the point y. Then,

conv T (y) = coneT (y) = TR(y). (13)

This theorem together with Theorem 2.2 enables us to check local opti-
mality for the problem (9) in polynomial time while, in general, this is an
NP-hard problem [31].

2.2 The regular case

It is clear that
CM (x, y) ⊆ CΨ (x, y) ∩ (CX(x)× R

m), (14)

where CΨ (x, y) denotes the contingent cone to the graph of Ψ(·):

CΨ (x, y) := { (u, v)� : ∃{tk}∞k=1 ⊂ R+, ∃{(uk, vk)�}∞k=1 ⊂ R
n × R

m

with (x, y)� + tk(uk, vk)� ∈ GphΨ ∀k,
lim

k→∞
tk = 0, lim

k→∞
(uk, vk)� = (u, v)�}

and CX(x) is the contingent cone for the set X at x. This implies that the
sufficient conditions in Theorem 2.1 can be replaced by the assumption that
∇F (x, y)(d, r)� > 0 for all (d, r)� ∈ CΨ (x, y)∩ (CX(x)×R

m). Conditions for
the contingent cone of the solution set mapping of a parametric optimization
problem can be found in the monograph [29] and in [30]. Moreover,CM (x, y) =
CΨ (x, y) if X = R

n.
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Theorem 2.4 If Ψ(x) = {y(x)} for some locally Lipschitz continuous, direc-
tionally differentiable function y(·), then CM (x, y) = CΨ (x, y)∩(CX(x)×R

m).

Here the directional derivative of a function h : R
q → R

s in direction
d ∈ R

q at a point w ∈ R
q is given by

h(w; d) = lim
t→0+

t−1[h(w + td)− h(w)].

Proof of Theorem 2.4: Obviously,

CM (x, y) ⊆ CΨ (x, y) ∩ (CX(x)× R
m).

Let (d, r)� ∈ CΨ (x, y) ∩ (CX(x) × R
m). Then, by the assumptions (d, r)� ∈

CΨ (x, y), i.e. r = y′(x; d) and the directional derivative of y(·) is also locally
Lipschitz continuous with respect to perturbations of the direction d [10].
Now, take any sequences {uk}∞k=1 and {tk}∞k=1 converging to d respectively to
zero from above with x + tku

k ∈ X for all k existing by definition of TX(x).
Then, (y(x+tkuk)−y(x))/tk converges to y′(x; d), which completes the proof.

�
To determine conditions guaranteeing the assumptions of the last theorem

to be valid consider the lower level problem (1) under the assumptions (SSOC),
(MFCQ), and (CRCQ):
(SSOC) The strong second-order sufficient optimality condition for problem
(1) is satisfied at a point (x, y) with g(x, y) ≤ 0 if:

1. The set

Λ(x, y) := {λ : λ ≥ 0, λ�g(x, y) = 0,∇yL(x, y, λ) = 0}

is not empty and
2. for all λ ∈ Λ(x, y) and for all d �= 0 with

∇ygi(x, y)d = 0 ∀ i : λi > 0

there is
d�∇2

yyL(x, y, λ)d > 0.

Here, L(x, y, λ) = f(x, y)+λ�g(x, y) is the Lagrange function of problem (1).
(CRCQ) The constant rank constraint qualification is satisfied for the prob-
lem (1) at the point (x, y) with g(x, y) ≤ 0 if there exists an open neighborhood
V of (x, y) such that for each subset J ⊆ {i : gi(x, y) = 0} the set of gradients

{∇ygi(x, y) : i ∈ J}

has a constant rank on V .

Theorem 2.5 ([28], [38]) Consider problem (1) at a point (x, y) = (x, y)
with y ∈ Ψ(x) and let the assumptions (MFCQ) and (SSOC) be satisfied. Then
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there are an open neighborhood U of x and a uniquely determined function
y : U → R

m such that y(x) is the unique (globally) optimal solution of problem
(1) for all x ∈ U. Moreover, if the assumption (CRCQ) is also satisfied, then
the function y(·) is locally Lipschitz continuous and directionally differentiable
at x.

To compute the directional derivative of the solutions function y(x) it is
sufficient to compute the unique optimal solution of a quadratic optimization
problem using an optimal solution of a linear programming problem as data
[38].

Under the assumptions in Theorem 2.5, the bilevel programming problem
(both in its optimistic (2) and pessimistic (5) formulations) is equivalent to
the problem

min{G(x) := F (x, y(x)) : x ∈ X}. (15)

The necessary and sufficient optimality conditions resulting from Theorem
2.1 under the assumptions of Theorem 2.5 and convexity of the lower level
problem can be found in [4]:

Theorem 2.6 ([4]) Consider the bilevel programming problem and let the
assumptions (SSOC), (MFCQ), (CRCQ) be valid at a point (x, y) ∈M . Then,

1. if (x, y) is a locally optimal solution, we have

G′(x; d) ≥ 0 ∀ d ∈ CX(x).

2. if
G′(x; d) > 0 ∀ d ∈ CX(x),

the point (x, y) is a locally optimal solution.

2.3 Application of the protoderivative

Consider the bilevel programming problem in its optimistic formulation (4)
and assume that the lower level problem is given in the simpler form

ΨK(x) := argmin
y

{f(x, y) : y ∈ K}, (16)

where K ⊆ R
m is a polyhedral set. Then,

ΨK(x) = {y ∈ R
m : 0 ∈ ∇yf(x, y) +NK(y)},

where NK(y) denotes the normal cone of convex analysis to the set K at y
which is empty if y �∈ K. Hence, assuming that X = R

n the problem (4)
reduces to

min
x,y
{F (x, y) : 0 ∈ ∇yf(x, y) +NK(y)}.

Then, if we assume that the regularity condition
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rank(∇2
xyf(x, y)) = m (full rank) (17)

is satisfied, from Theorem 7.1 in [11] we obtain that the solution set mapping
ΨK is protodifferentiable. Using the formula for the protoderivative we obtain:

Theorem 2.7 ([7]) Let (x̄, ȳ) be a locally optimistic solution of the bilevel
programming problem (4), where ΨK(x) is given by (16). Assume that the
solution set mapping ΨK is locally bounded and that the qualification condition
(17) holds. Then one has

∇F (x̄, ȳ)(u, v)� ≥ 0

for all (u, v) ∈ R
n × R

m satisfying

0 ∈ ∇2
xyf(x̄, ȳ)u+∇2

xxf(x̄, ȳ)v +NK∗(v).

Here
K∗ = {d ∈ CK(ȳ) : ∇yf(x̄, ȳ)d = 0}

and

NK∗(v) = cone{ai : i ∈ I(ȳ)}+ span{∇yf(x̄, ȳ)}.

provided that

K = {y ∈ R
m : a�i y ≤ bi, i = 1, . . . , p},

where ai ∈ R
m for i = 1, . . . , p and b ∈ R for i = 1, . . . , p. Here, I(ȳ) denotes

the set of active indices at ȳ.
Optimality conditions for problem (4) using the coderivative of Mor-

dukhovich can be found in the papers [7, 13, 44]. While in the paper [44]
the coderivative is applied directly to the graph of the solution set mapping,
the attempt in the papers [7, 13] applies the coderivative to the normal cone
mapping to the feasible set mapping. We will not go into the details here but
refer to the paper [13] in the same volume.

2.4 Global minima

The following sufficient condition for a global optimal solution applies in the
case when X = R

n.

Theorem 2.8 ([12]) Consider the problem (1), (4), let the assumptions of
Theorem 2.5 be satisfied at all feasible points (x, y) ∈ M . Let x be given and
assume that

G′(x̃; d) > 0 ∀ d �= 0, ∀ x̃ with G(x̃) = G(x)

Then, x is a global minimum of the function G(x) = F (x, y(x)).
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Proof. First, we show that the point x is a strict local minimum of G. If x is
not a strict local minimum then there exists a sequence {xk} converging to

x such that G(xk) ≤ G(x). Put dk =
xk − x
‖xk − x‖ . Then, {dk}∞k=1 is a bounded

sequence and hence has a convergent subsequence {dk} converging to d0 (say).
If we denote this subsequence again by {dk}∞k=1 we have xk = x+ tkd

k where
tk = ‖xk − x‖. Hence,

G(x+ tkd
k)−G(x) ≤ 0.

This immediately leads to

tkG
′(x; dk) + o(tk) ≤ 0.

Passing to the limit we obtain a contradiction to the assumption. Hence x is
a strict local minimum.

Now assume that x is not a global minimum. Then, there exists x0 with
G(x0) < G(x). Consider the line Z := {x : x = λx0 + (1 − λ)x, λ ∈ [0, 1]}.
Then,

1. G is continuous on Z.
2. x0 ∈ Z, x ∈ Z.

Hence, there exist {x1, . . . , xp} ⊆ Z with G(xi) = G(x) for all i and G(x) �=
G(x) for all other points in Z. By the assumption this implies that G(x) ≥
G(x) on Z (remember that Z is homeomorphic to a finite closed interval
in R and that g(λ) := G(λx0 + (1 − λ)x) : R → R). But this contradicts
G(x0) < G(x). �

2.5 Optimality conditions for pessimistic optimal solutions

The pessimistic bilevel programming problem is more difficult than the op-
timistic one. This may be the reason for attacking the optimistic problem
(explicitly or not) in most of the references on bilevel programming problems.
The investigations in the paper [15] in this volume indicate that this may not
be true for discrete bilevel programming problems.

The approach for using the radial directional derivative for deriving neces-
sary and sufficient optimality conditions for pessimistic optimal solutions has
been earlier used for linear bilevel programming problems [5, 9].

Definition 2.3 Let U ⊆ R
m be an open set, x ∈ U and α : U → R. We say

that α is radial-continuous at x in direction r ∈ R
m, ‖r‖ = 1, if there exists a

real number αr(x) such that

lim
t↓0

α(x+ tr) = αr(x).
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If the radial limit αr(x) exists for all r ∈ R
m, ‖r‖ = 1, α is called radial-

continuous at x.
The function α is radial-directionally differentiable at x, if there exists a pos-
itively homogeneous function dα(x; ·) : R

m → R such that

α(x+ tr)− αr(x) = tdα(x; r) + o(x, tr)

with lim
t↓0

o(x,tr)
t = 0 holds for all r ∈ R

m, ‖r‖ = 1, and all t > 0.

Obviously, the vector dα(x; ·) is uniquely defined and is called the radial-
directional derivative of α at x.

It is not very difficult to show, that, for (mixed-discrete) linear bilevel
programming problems, the functions ϕo(·) and ϕp(·) determined in (3) and
(6) are radial-directionally differentiable [5].

A necessary optimality condition is given in the next theorem:

Theorem 2.9 ([9]) Let α : R
m → R be a radial-directionally differentiable

function and x ∈ R
m a fixed point. If there exists r ∈ R

m such that one of
the following two conditions is satisfied then x is not a local optimum of the
function α:

• dα(x; r) < 0 and αr(x) ≤ α(x)
• αr(x) < α(x).

This optimality condition can be complemented by a sufficient one.

Theorem 2.10 ([9]) Let α : R
m → R be a radial-directionally differentiable

function and x a fixed point which satisfies one of the following two conditions.

• α(x) < αr(x) ∀r ∈ R
m

• α(x) ≤ αr(x) ∀r and dα(x; r) > 0 ∀r : α(x) = αr(x), ‖r‖ = 1.

Then, α achieves a local minimum at x.

3 Relations to set-valued optimization

Closely related to bilevel programming problems are also set-valued optimiza-
tion problems e.g. of the kind

“ min
x

”{F(x) : x ∈ X}, (18)

where F : X → 2R
p

is a point-to-set mapping sending x ∈ X ⊆ R
n to a subset

of R
p. To see this assume that F(x) corresponds to the set of all possible upper

level objective function values

F(x) :=
⋃

y∈Ψ(x)

F (x, y).
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Thus, the bilevel programming problem is transformed into (18) in the special
case of F(x) ⊆ R.

An edited volume on the related set-valued optimization problems is [2],
while [23] is a survey on that topic.

Definition 3.1 ([3]) Let an order cone C ⊆ R
p with nonempty interior be

given. A pair (x, z) with x ∈ X, z ∈ F(x) is called a weak minimizer of
problem (18) if z is a weak minimal element of the set

F(X) :=
⋃

x∈X

F(x).

Here, z ∈ F(X) is a weak minimal element of the set F(X) if

(z + intC) ∩ F(X) = ∅.

Let C be a polyhedral cone. Then, there exist a finite number of elements
li, i = 1, . . . , p such that the dual cone C∗ to C is

C∗ = {z : z�d ≥ 0 ∀ d ∈ C} =

{
z : ∃ μ ∈ R

p
+ with z =

p∑
i=1

μil
i

}
.

The following theorem is well-known:

Theorem 3.1 If the set F(X) is convex then a point z ∈ F(X) is a weak
minimal element of F(X) if and only if z is an optimal solution of

min
z

{
p∑

i=1

μil
i�z : z ∈ F(X)

}

for some μ ∈ R
p
+.

In the case of bilevel programming (i.e. F(X) ⊆ R) p = 1, l1 = 1, μ1 = 1
can be selected and the problem in Theorem 3.1 reduces to

min
z
{z : z ∈ F(X)} .

For this, the convexity assumption is not necessary but the set F(X) is only
implicitly given. Possible necessary optimality conditions for this problem
reduce to the ones discussed above.

The difficulty with the optimistic definition is the following: Assume that
there are two decision makers, the first one is choosing x0 ∈ X and the second
one selects y0 ∈ F(x0). Assume that the first decision maker has no control
over the selection of the second one but that he intends to determine a solution
x0 ∈ X such that for each selection ŷ ∈ F(x̂) and x̂ close to x0 of the second
one there exists y0 ∈ F(x0) which is preferable to ŷ. In this case, since the
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selection of the second decision maker is out of control of the first one, the
latter cannot evaluate the quality of her selection chosen according to the
above definition.

To weaken this definition assume that the first decision maker is able to
compute the sets F(x) for all x ∈ X. Then, he can try to compute a point
x∗ ∈ X such that

F(x) ⊆ F(x∗) + C

for all x ∈ X sufficiently close to x∗. In distinction to Definition 3.1 this
reflects a pessimistic point of view in the sense that the first decision maker
bounds the damage caused by the selection of the second one. Let

F(x1) �C F(x2) ⇐⇒ F(x2) ⊆ F(x1) + C.

Definition 3.2 Let an order cone C ⊆ R
p be given. A point x ∈ X is called

a pessimistic local minimizer of problem (18) if

F(x) �C F(x) ∀ x ∈ X ∩ {z : ‖z − x‖ < ε}

for some ε > 0.

Theorem 3.2 Let x ∈ X be not a pessimistic local minimizer and assume
that C and F(x) are convex sets for all x ∈ X. Then there exist a vector
k̂ ∈ C∗ \ {0} and a point x̂ ∈ X such that

min{k̂�y : y ∈ F(x̂)} < min{k̂�y : y ∈ F(x)}.

Proof: Let x ∈ X be not a pessimistic minimizer. Then, by definition
there exists x̂ ∈ X sufficiently close to x such that F(x) ��C F(x̂). Then there
necessarily exists ŷ ∈ F(x̂) with ŷ �∈ F(x) +C. Since by our assumption both
F(x) and C are convex there is a vector k̂ �= 0 with

min{k̂�y : y ∈ F(x̂)} ≤ k̂�ŷ < min{k̂�y : y ∈ F(x) + C}

by a strong separation theorem in convex analysis (see e.g. [42]). Now assume
that k̂ �∈ C∗. Then, since C is a cone, we get

min{k̂�y : y ∈ F(x) + C}
= min{k̂�(y1 + ty2) : y1 ∈ F(x), y2 ∈ C}
= min{k̂�y1 : y1 ∈ F(x)}+ tmin{k̂�y2 : y2 ∈ C}

for all t ≥ 0. But since k̂ �∈ C∗, the last term tends to minus infinity for
increasing t which cannot be true since it is bounded from below by k̂�ŷ.
This proves the theorem. �

This implies that, if for all k ∈ C∗

min
x,y
{k�y : (x, y) ∈ GphF , x ∈ X, ‖x− x‖ ≤ ε} ≥ min

y
{k�y : y ∈ F(x)}
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then x is a local pessimistic minimizer. The main difference of this result to
Theorem 3.1 is that here this condition needs to be satisfied for all elements
k ∈ C∗ whereas there must exist one element k ∈ C∗ with the respective
condition in Theorem 3.1.

Applied to bilevel programming, the notions of both the optimistic and
the pessimistic minimizer coincide.

4 Relation to mathematical programs with equilibrium
conditions

Applying the Karush-Kuhn-Tucker conditions to the lower level problem (1)
in (4) we derive the problem

F (x, y) → min
x,y,u

∇xL(x, y, u) = 0
g(x, y) ≤ 0

u ≥ 0
u�g(x, y) = 0

x ∈ X

(19)

provided that the lower level problem satisfies the (MFCQ) at all feasi-
ble points for all x ∈ X and that it is a convex optimization problem
for fixed x ∈ X. Problem (19) is called a mathematical program with
equilibrium constraints (MPEC) [34, 37]. There has been many interest-
ing results concerning optimality conditions for MPECs in the recent time,
cf. e.g. [16, 17, 18, 19, 40, 43]. Here we are interested in conditions needed for
applying such conditions.

Example 4.1 This example shows that the convexity assumption is crucial.
Consider the problem [35]

min
x,y
{(x− 2) + (y − 1)2 : y ∈ Ψ(x)}

where Ψ(x) is the set of optimal solutions of the following unconstrained
optimization problem on the real axis:

−x exp{−(y + 1)2} − exp{−(y − 1)2} → min
y

Then, the necessary optimality conditions for the lower level problem are

x(y + 1) exp{−(y + 1)2}+ (y − 1) exp{−(y − 1)2} = 0

which has three solutions for 0.344 ≤ x ≤ 2.903. The global optimum of the
lower level problem is uniquely determined for all x �= 1 and it has a jump
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at the point x = 1. Here the global optimum of the lower level problem can
be found at the points y = ±0.957. The point (x0; y0) = (1; 0.957) is also the
global optimum of the optimistic bilevel problem.

But if the lower level problem is replaced with its necessary optimality
conditions and the necessary optimality conditions for the resulting problem
are solved then three solutions: (x, y) = (1.99; 0.895), (x, y) = (2.19; 0.42),
(x, y) = (1.98;−0.98) are obtained. Surprisingly, the global optimal solution
of the bilevel problem is not obtained with this approach. The reason for this
is that the problem

min{(x− 2)+ (y− 1)2 : x(y+1) exp{−(y+1)2}+(y− 1) exp{−(y− 1)2} = 0}

has a much larger feasible set than the bilevel problem. And this feasible set
has no jump at the point (x, y) = (1; 0.957) but is equal to a certain connected
curve in R

2. And on this curve the objective function has no stationary point
at the optimal solution of the bilevel problem. �

The following example can be used to illustrate that the above equivalence
between problems (2) and (19) is true only if global optima are searched for.

Theorem 4.1 ([5]) Consider the optimistic bilevel programming problem
(1), (2), (3) and assume that, for each fixed y, the lower level problem (1)
is a convex optimization problem for which (MFCQ) is satisfied for each fixed
x and all feasible points. Then, each locally optimal solution for the problem
(1), (2), (3) corresponds to a locally optimal solution for problem (19).

This theorem implies that it is possible to derive necessary optimality con-
ditions for the bilevel programming problem by applying the known conditions
for MPECs. This has been done e.g. in [5]. Using the recent conditions in the
papers [16, 17, 18, 19, 43] interesting results can be obtained. It would be a
challenging topic for future research to check if the assumptions used in these
papers can successfully be interpreted for bilevel programming problems.

But, the application of these results to get strong necessary optimality con-
ditions and also to get sufficient optimality conditions seems to be restricted.
This can be seen in the following example.

Example 4.2 We consider a linear bilevel programming problem with an
optimistic optimal solution (x, y). Assume that the linear independence con-
straint qualification is not satisfied at the lower level problem at (x, y) and
that there are more than one Lagrange multiplier for the lower level problem
at y. Then, the situation is as depicted in fig. 1: We see a part of the feasible
set of the upper level problem (which is the union of faces of the graph of the
lower level feasible set {(x, y) : Ax ≤ y}) in the right-hand side picture. There
is a kink at the point (x, y). The point (x, y) belongs to the intersection of two
faces of the graph of the lower level feasible set {(x, y) : Ax ≤ y}. The optimal
solution of the lower level problem is unique for all x, hence the lower level
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solution function can be inserted into the upper level objective function. In
the left-hand side picture we see the graph of the set of Lagrange multipliers
in the lower level problem which is assumed to reduce to a singleton for x �= x
and is multivalued for x = x.

Fig. 1. Feasible set in the upper level problem and Lagrange multiplier mapping of
the lower level problem

Now assume that we have used the MPEC corresponding to the bilevel
programming problem for deriving necessary optimality conditions. For this
we fix a feasible solution (x, y, λ) of the MPEC, where λ denotes one Lagrange
multiplier of the lower level problem at y. Then, the necessary optimality con-
ditions for the MPEC are satisfied. They show, that there does not exist a
better feasible solution than (x, y, λ) in a suitable small neighborhood of this
point for the MPEC. This neighborhood of (x, y, λ) restricts the λ-part to a
neighborhood of λ. Due to complementarity slackness this restriction implies
for the bilevel programming problem that the feasible set of the upper level
problem is restricted to one face of the graph of {(x, y) : Ax ≤ y}, see fig. 2,
where this face is the right-hand sided one. Hence, the necessary optimality
conditions for the corresponding MPEC mean that the point under consid-
eration is a stationary (here optimal) solution of the bilevel programming
problem but only with respect to a part (and not with respect to an open
neighborhood !) of the feasible set.
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Fig. 2. Neighborhood of a Lagrange multiplier λ and corresponding part of the
feasible set of the bilevel programming problem

5 Variational inequality approach

The problem of solving a mathematical program with variational inequalities
or complementarity conditions as constraints arises quite frequently in the
analysis of physical and socio-economic systems. According to a remark in the
paper [20], the current state-of-the-art for solving such problems is heuristic.
The latter paper [20] presents an exterior-point penalty method based on
M.J. Smith’s optimization formulation of the finite-dimensional variational
inequality problem [41]. In the paper by J. Outrata [36], attention is also paid
to this type of optimization problems.

An approach to solving the above-mentioned problem consists in a varia-
tional re-formulation of the optimization criterion and looking for a solution
of the thus obtained variational inequality among the points satisfying the ini-
tial variational inequality constraints. This approach works well for the case
when both operators involved are monotone and it is enlightened in the first
part of the section. Namely, in subsection 5.2, we examine conditions under
which the set of the feasible points is non-empty, and compare the conditions
with those established previously [22]. Subsection 5.3 describes a penalty func-
tion method solving the bilevel problem after having reduced it to a single
variational inequality with a penalty parameter.

5.1 Existence theorem

Let X be a non-empty, closed, convex subset of Rn and G a continuous map-
ping from X into Rn. Suppose that F is pseudo-monotone with respect to X,
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i.e.
(x− y)TF(y) ≥ 0 implies (x− y)TF(x) ≥ 0 ∀x, y ∈ X, (20)

and that there exists a vector x0 ∈ X such that

F(x0) ∈ int (0+X)∗, (21)

where int(·) denotes the interior of the set. Here 0+X is the recession cone of
the set X, i.e. the set of all directions s ∈ Rn such that X + s ⊂ X; at last,
C∗ is the dual cone of C ⊂ Rn, i.e.

C∗ = {y ∈ Rn : yTx ≥ 0 ∀x ∈ C}. (22)

Hence, condition (21) implies that the vector F(x0) lies within the interior
of the dual to the recession cone of the set X.

Under these assumptions, the following result obtains:

Proposition 5.1 ([24]) The variational inequality problem: to find a vector
z ∈ X such that

(x− z)TF(z) ≥ 0 ∀x ∈ X, (23)

has a non-empty, compact, convex solution set.

Proof. It is well-known [27] that the pseudo-monotonicity (20) and continuity
of the mapping G imply convexity of the solution set

Z = {z ∈ X : (x− z)TF(z) ≥ 0 ∀x ∈ X}, (24)

of problem (23) provided that the latter is non-empty. Now we show the
existence of at least one solution to this problem. In order to do that, we use
the following fact [14]: if there exists a non-empty bounded subset D of X
such that for every x ∈ X\D there is a y ∈ D with

(x− y)TF(x) > 0, (25)

then problem (23) has a solution. Moreover, the solution set (24) is bounded
because Z ⊂ D. Now, we construct the set D as follows:

D = { x ∈ X : (x− x0)TF(x0) ≤ 0 }. (26)

The set D is clearly non-empty, since it contains the point x0. Now we show
that D is bounded, even if X is not such. On the contrary, suppose that a
sequence {xk} ⊆ D is norm-divergent, i.e. ‖xk − x0‖ → +∞ when k → ∞.
Without lack of generality, assume that xk �= x0, k = 1, 2, . . . , and consider
the inequality

(xk − x0)TF(x0)
‖xk − x0‖ ≤ 0, k = 1, 2, . . . , (27)

which follows from definition (26) of the set D. Again without affecting gen-
erality, accept that the normed sequence (xk − x0)/‖xk − x0‖ converges to a
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vector s ∈ Rn, ‖s‖ = 1. It is well-known (cf. [39], Theorem 8.2 ) that s ∈ 0+X.
From (27), we deduce the limit relation

sTF(x0) ≤ 0. (28)

Since 0+X �= {0} ( as X is unbounded and convex ), we have 0 ∈ ∂(0+X)∗,
hence F(x0) �= 0. Now it is easy to see that inequality (28) contradicts assump-
tion (21). Indeed, the inclusion F(x0) ∈ int (0+X)∗ implies that sTF(x0) > 0
for any s ∈ 0+X, s �= 0. The contradiction establishes the boundedness of the
set D, and the statement of Proposition 5.1 therewith. Indeed, for a given
x ∈ X\D, one can pick y = x0 ∈ D with the inequality (x − y)TF(y) > 0
taking place. The latter, jointly with the pseudo-monotonicity of F , implies
the required condition (25) and thus completes the proof. �

Remark 5.1 The assertion of Proposition 5.1 has been obtained also in [22]
under the same assumptions except for inclusion (21), which is obviously in-
variant with respect to an arbitrary translation of the set X followed by the
corresponding transformation of the mapping G. Instead of (21), the authors
[22] used another assumption F(x0) ∈ int(X∗) which is clearly not translation-
invariant.

Now suppose that the solution set Z of problem (23) contains more than
one element, and consider the following variational inequality problem: to find
a vector z∗ ∈ Z such that

(z − z∗)TG(z∗) ≥ 0 for all z ∈ Z. (29)

Here, the mapping G : X → Rn is continuous and strictly monotone over X;
i.e.

(x− y)T [G(x)− G(y)] > 0 ∀x, y ∈ X,x �= y. (30)

In this case, the compactness and convexity of the set Z guaranties [14] the
existence of a unique (due to the strict monotonicity of G) solution z of the
problem (29). We refer to problem (23), (24), (29) as the bilevel variational
inequality (BVI). In the next subsection, we present a penalty function algo-
rithm solving the BVI without explicit description of the set Z.

5.2 Penalty function method

Fix a positive parameter ε and consider the following parametric variational
inequality problem: Find a vector xε ∈ X such that

(x− xε)T[F(xε) + εG(xε)] ≥ 0 for all x ∈ X. (31)

If we assume that the mapping F is monotone over X, i.e.

(x− y)T[F(x)−F(y)] ≥ 0 ∀x, y ∈ X, (32)

and keep intact all the above assumptions regarding F ,G and Z, then the
following result obtains:
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Proposition 5.2 ([24]) For each sufficiently small value ε > 0, problem (31)
has a unique solution xε. Moreover, xε converge to the solution z∗ of BVI (23),
(24), (29) when ε→ 0.

Proof. Since F is monotone and G is strictly monotone, the mapping Φε =
F + εG is strictly monotone on X for any ε > 0. It is also clear that if x0

satisfies (21) then the following inclusion holds

Φε(x0) = F(x0) + εG(x0) ∈ int (0+X)∗, (33)

if ε > 0 is small enough. Hence, Proposition 5.1 implies the first assertion
of Proposition 5.2; namely, for every ε > 0 satisfying (33), the variational
inequality (31) has a unique solution xε .

From the continuity of F and G, it follows that each (finite) limit point
x̄ of the generalized sequence Q = {xε} of solutions to problem (31) solves
variational inequality (23); that is, x̄ ∈ Z. Now we prove that the point x̄
solves problem (29), too. In order to do that, we use the following relations
valid for any z ∈ Z due to (23), (29) and (31):

(z − xε)T[F(z)−F(xε)] ≥ 0, (34)

(z − xε)TF(z) ≤ 0, (35)

(z − xε)TF(xε) ≥ −ε(z − xε)TG(xε). (36)

Subtracting (36) from (35) and using (34), we obtain the following series of
inequalities

0 ≤ (z − xε)T[F(z)−F(xε)] ≤ ε(z − xε)TG(xε). (37)

From (37) we have (z − xε)TG(xε) ≥ 0 for all ε > 0 and z ∈ Z. Since G is
continuous, the following limit relation holds: (z−x̄)TG(x̄) ≥ 0 for each z ∈ Z,
which means that x̄ solves (29).

Thus we have proved that every limit point of the generalized sequence
Q solves BVI (23), (24), (29). Hence, Q can have at most one limit point.
To complete the proof of Proposition 5.2, it suffices to establish that the
set Q is bounded, and consequently, the limit point exists. In order to do
that, consider a norm-divergent sequence {xεk

} of solutions to parametric
problem (31) where εk → 0 as k → ∞. Without loss of generality, suppose

that xεk
�= x0 for each k, and (xεk

− x0)
‖xεk

− x0‖ → s ∈ Rn, ‖s‖ = 1; here x0 is the

vector from condition (21). Since ‖xεk
− x0‖ → +∞ , we get s ∈ 0+X (cf.

[39]). As the mappings F and G are monotone, the following inequalities take
place for all k = 1, 2, . . .:

(xεk
− x0)T[F(xεk

) + εkG(xεk
)] ≤ 0, (38)

and hence,
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(xεk
− x0)T[F(x0) + εkG(x0)] ≤ 0. (39)

Dividing inequality (39) by ‖xεk
− x0‖ we obtain

(xεk
− x0)T

‖xεk
− x0‖

· [F(x0) + εkG(x0)] ≤ 0, k = 1, 2, ..., (40)

which implies (as εk → 0) the limit inequality sTF(x0) ≤ 0. Since s �= 0, the
latter inequality contradicts assumption 21. This contradiction demonstrates
the set Q to be bounded which completes the proof. �

Example 5.1 Let Ω ⊆ Rm, Λ ⊆ Rn be subsets of finite-dimensional Eu-
clidean spaces and g : Ω × Λ→ R, f : Ω × Λ→ Rn be continuous mappings.
Consider the following mathematical program with variational inequality con-
straint:

min
(u,v)∈Ω×Λ

g(u, v), (41)

subject to
f(u, v)T (w − v) ≥ 0, ∀w ∈ Λ. (42)

If the function g is continuously differentiable, then problem (41)-(42) is ob-
viously tantamount to BVI (23), (24), (29) with the gradient mapping g′(z)
used as G(z) and F(u, v) = [0; f(u, v)]; here z = (u, v) ∈ Ω × Λ.

As an example, examine the case when

g(u, v) = (u− v − 1)2 + (v − 2)2; f(u, v) = uv; Ω = Λ = R1
+. (43)

Then it is readily verified that z∗ = (1; 0) solves problem (41)-(42) and the
parametrized mapping is given by

Φε(u, v) =
[
ε(2u− 2v − 2);uv + ε(−2u+ 4v − 2)

]
. (44)

Now solving the variational inequality: Find (uε, vε) ∈ R2
+ such that

Φε(uε, vε)T
[
(u, v)− (uε, vε)

]
≥ 0 ∀(u, v) ∈ R2

+, (45)

we obtain

uε = vε + 1; vε = −1
2
− ε+

√
(
1
2

+ ε)2 + 4ε. (46)

Clearly (uε, vε) → z∗ when ε→ 0. �
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Summary. A version of the toll setting problem consists in determining profit
maximizing tolls on a subset of arcs of a transportation network, given that users
travel on shortest paths. This yields a bilevel program for which we propose efficient
algorithms based on path generation.

Key words. Pricing. Bilevel programming. Networks. Column generation.
Combinatorial optimization.

1 Introduction

Bilevel programming offers a convenient framework for the modelling of pric-
ing problems, as it allows to take explicitly into account user behaviour. One of
the simplest instances was analyzed by Labbé et al. [8], who considered a toll
optimization problem (TOP) defined over a congestion-free, multicommodity
transportation network. In this setting, a highway authority (the “leader”)
sets tolls on a subset of arcs of the network, while the users (the “follower”)
assign themselves to shortest4 paths linking their respective origin and desti-
nation nodes. The goal of the leader being to maximize toll revenue, it is not
in its interest to set tolls at very high values, in which case the users will be
discouraged from using the tolled subnetwork. The problem, which consists
in striking the right balance between tolls that generate high revenues and
tolls that attract customers, can be formulated as a combinatorial program
that subsumes NP-hard problems, such as the Traveling Salesman Problem

4 It is assumed that costs and travel times are expressed in a common unit, i.e.,
the monetary perception of one unit of travel time is uniform throughout the user
population.
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(see Marcotte et al [11] for a reduction). Following the initial NP-hardness
proof by Labbé et al., complexity and approximation results have also been
obtained by Roch et al. [12] and Grigoriev et al. [5].

The aim of the present work is to assess the numerical performance of path-
based reformulations of TOP, and to show their ability to solve to optimality
medium-sized instances, and to near optimality large-scale instances. This
stands in contrast with arc-based methods that have been proposed by Labbé
et al. [8] and Brotcorne et al. [1]. Note that Bouhtou et al. [2] have recently
proposed, together with arc-based methods, a path-based approach operating
on a compact reformulation of the problem.

The structure of the paper is as follows: Section 2 introduces three Mixed
Integer Programming (MIP) formulations for TOP; Section 3 introduces a
path generation framework; Section 4 details a sequential implementation;
Section 5 presents numerical results achieved on randomly generated test
problems; Section 6 concludes with avenues for further research.

2 A bilevel formulation

In this section, we present three MIP formulations of TOP. The first, initially
proposed by Labbé et al. [8], relies on the optimality conditions associated
with an arc-commodity formulation. The second utilizes both arc and path
variables, while the third is entirely path-based.

TOP can be analyzed as a leader-follower game that takes place on a
multicommodity network G = (K,N,A) defined by a set of origin-destination
couples K, a node set N and an arc set A. The latter is partitioned into the
subset A1 of toll arcs and the complementary subset A2 of toll-free arcs. We
endow each arc a ∈ A with a fixed travel delay ca. Toll arcs a ∈ A1 also involve
a toll component ta, to be determined, that is expressed in time units, for the
sake of consistency. The demand side is represented by numbers nk denoting
the demand for travel between the origin node o(k) and the destination d(k)
associated with commodity k ∈ K. With each commodity is associated a
demand vector bk whose components are, for every node i of the network:

bki =

⎧⎨⎩
−nk if i = o(k),
nk if i = d(k),
0 otherwise.

Letting xk
a denote the set of commodity flows and i+ (respectively i−) the

set of arcs having i as their head node (respectively tail node), TOP can be
formulated as a bilevel program involving bilinear objectives at both decision
levels:
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TOP: max
t,x

∑
k∈K

∑
a∈A1

tax
k
a

subject to ta ≤ tmax
a ∀a ∈ A1

∀k ∈ K

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xk ∈ arg min
x̄

∑
a∈A1

(ca + ta)x̄a +
∑

a∈A2

cax̄a

subject to
∑

a∈i−
x̄a −

∑
a∈i+

x̄a = bki ∀i ∈ N

x̄a ≥ 0 ∀a ∈ A.
In the above formulation, the leader controls both the toll and flow vari-

ables. However the lower level ‘argmin’ constraint forces the leader to assign
flows to shortest paths with respect to the current toll levels. In order to pre-
vent the occurrence of trivial situations, the following conditions are assumed
to hold throughout the paper:

1. There does not exist a profitable toll vector that induces a negative cost
(delay) cycle in the network. This condition is clearly satisfied if all delays
ca are nonnegative.

2. For each commodity, there exists at least one path composed solely of
toll-free arcs.

Under the above assumptions, the lower level optimal solution corresponds to
a set of shortest paths, and the leader’s profit is bounded from above.

A single-level reformulation of TOP is readily obtained by replacing the
lower level program by its primal-dual optimality conditions. If one expresses
the latter by the equality of the primal and dual objectives, we obtain the
nonlinearly-constrained program

MIP: max
t,x,λ

∑
k∈K

∑
a∈A1

tax
k
a

subject to ta ≤ tmax
a ∀a ∈ A1

∀k ∈ K

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
a∈i−

xk
a −
∑

a∈i+
xk

a = bki ∀i ∈ N

λk
j − λk

i ≤ ca + ta ∀a = (i, j) ∈ A1

λk
j − λk

i ≤ ca ∀a ∈ A2∑
a∈A1

(ca + ta)xk
a +
∑

a∈A2

cax
k
a = (λk

o(k) − λk
d(k))n

k

xk
a ≥ 0 ∀a ∈ A.
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Now, for each commodity k ∈ K, one can substitute for the flow variables
the proportion of the demand d(k) assigned to arc a, and replace the node
demand bki by the unit demand ek

i = sgn(bki ). Slightly abusing notation, we
still denote the flow proportions by xk

a. Since there exists an optimal extremal
solution for the lower program (and the bilevel program as well) one may
assume, without loss of generality, that the variables xk

a are binary-valued,
i.e., each commodity flow is assigned to a single path.

Next, we introduce unit commodity toll revenues tka and replace the bilinear
term tax

k
a by the commodity toll tka, which we force to take the common value

ta whenever the associated flow xk
a assumes the value ‘one’. These operations

yield a mixed-integer program that involves relatively few integer variables,
i.e., one per toll arc and per commodity.

MIP I: max
t,x,λ

∑
k∈K

∑
a∈A1

nkt
k
a

subject to ta ≤ tmax
a ∀a ∈ A1

∀k ∈ K

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
a∈i−

xk
a −
∑

a∈i+
xk

a = ek
i ∀i ∈ N

λk
j − λk

i ≤ ca + ta ∀a = (i, j) ∈ A1

λk
j − λk

i ≤ ca ∀a ∈ A2∑
a∈A1

(caxk
a + tka) +

∑
a∈A2

cax
k
a = λk

o(k) − λk
d(k)

−Mkx
k
a ≤ tka ≤Mkx

k
a ∀a ∈ A1

−M(1− xk
a) ≤ tka − ta ≤M(1− xk

a) ∀a ∈ A1

xk
a ∈ {0, 1} ∀a ∈ A1

xk
a ≥ 0 ∀a ∈ A2.

Note that, in the formulation MIP I, the parameter Mk can be set, for every
commodity index k, to any value that exceeds the difference between the
cost C∞

k of a shortest path that uses only arcs in A2 and the cost C0
k of a

shortest path with all tolls set at zero or, if tmax
a is bounded, to tmax

a , simply.
As for M , it can assume any value larger than the maximum of the Mk’s.
These assignments ensure that formulation MIP I is equivalent to the original
bilevel program. In the case where tolls cannot assume negative values, i.e.,
subsidies are forbidden, these bounds have been refined by Dewez [4].

We now provide two path-based formulations for TOP. To this aim, we
introduce the set Pk of paths from o(k) to d(k) and denote by Ik

a the set of
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elements of Pk that contain a, i.e.,

Ik
a = {p ∈ Pk | a ∈ P}, ∀ a ∈ A, ∀ k ∈ K.

With each path p ∈ Pk, we associate the indicator variable zp, which takes
the value 1 if path p is used by commodity k, and takes the value 0 otherwise.
From the identity

xk
a =
∑
p∈Ik

a

zp, ∀ a ∈ A, ∀ k ∈ K,

there comes the arc-path formulation

MIP II: max
t,z,λ,s

∑
k∈K

∑
a∈A1

nkt
k
a

subject to

∀k ∈ K

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λk
i − λk

j = ca + ta − sk
a ∀a = (i, j) ∈ A1

λk
i − λk

j = ca − sk
a ∀a = (i, j) ∈ A2

0 ≤ sk
a ≤M(1−

∑
p∈Ik

a

zp) ∀a ∈ A

−Mk

∑
p∈Ik

a

zp ≤ tka ≤Mk

∑
p∈Ik

a

zp ∀a ∈ A1

tka ≤ ta ≤ tmax
a ∀a ∈ A1∑

p∈Pk

zp = 1

zp ∈ {0, 1} ∀p ∈ Pk,

where s is the vector of slack variables associated with the dual constraints.
The first three constraints ensure that the selected paths are optimal with
respect to the current toll vector. The fourth and fifth ones, together with
the max operator, ensure that the commodity revenue tka is equal to the true
revenue ta whenever arc a lies on the path actually used by commodity k,
hence that the model is consistent. The set of values that can be assumed by
the constants M and Mk is the same as that for MIP I.

This formulation involves
∑

k∈K |Pk| binary variables. Although this num-
ber grows exponentially with the size of the network, it may very well be less
than the number of variables involved in MIP I, whenever the number of
‘reasonable’ paths is small. In Section 3, we present a procedure that limits
the number of paths to be considered, and consequently makes this approach
practical for realistic instances of TOP.
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The third formulation, MIP III, is entirely path-based. Let us first intro-
duce T k, the profit raised from commodity k, as well as Lk, the disutility (cost
plus delay) associated with the shortest path p actually used by commodity
k. Since at most one path is used for every commodity, we obtain

T k =
∑

a∈p∩A1

ta

and

Lk =
∑
a∈p

(ca + ta)

= T k +
∑
p∈Pk

zp

∑
a∈p

ca.

This leads to the path formulation MIP III, that involves a smaller number
of variables than formulation MIP II.

MIP III: max
t,z,L

∑
k∈K

nkT
k

subject to ta ≤ tmax
a ∀a ∈ A1

∀k ∈ K

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T k ≤
∑

a∈p∩A1

ta +Mk(1− zp) ∀ p ∈ Pk

∑
a∈p∩A1

ta +
∑
a∈p

ca −Mp
k (1− zp) ≤ Lk ≤

∑
a∈p∩A1

ta +
∑
a∈p

ca

∀ p ∈ Pk

Lk = T k +
∑

p∈Pk

zp

∑
a∈p

ca

∑
p∈Pk

zp = 1

zp ∈ {0, 1} ∀ p ∈ Pk.

In this formulation, a suitable value for Mp
k is given by:

Mp
k =
∑
a∈p

ca +
∑
a∈p

tmax
a − C0

k .

3 A path generation algorithm

In this section we propose an algorithmic framework that relies on the follow-
ing three observations:
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• lower level solutions correspond to some shortest paths for each origin-
destination pair;

• for a given lower level extremal solution (collection of shortest paths), one
may efficiently recover a set of revenue-maximizing tolls that is compatible
with this solution;

• one may expect to extract higher revenues from toll arcs belonging to
paths having low rather than large initial delays. (This should come at no
surprise.)

The algorithm generates a sequence of extremal lower level solutions, or
multipath P , which corresponds to vectors of commodity paths, one per com-
modity, e.g.,

P = (p1, p2, . . . , p|K|),with pk ∈ Pk.

We denote by C the set of all multipaths:

C = {(p1, . . . , p|K|) | pk ∈ Pk; k = 1, . . . , |K|}.

Given a multipath P ∈ C, we define c(P ) as the sum of delays on the arcs
belonging to at least one of its paths, i.e.,

c(P ) =
|K|∑
k=1

nk

∑
a∈pk

ca.

Without loss of generality, we assume that the elements of C are indexed in
nondecreasing order of their respective total delays:

c(P 1) ≤ c(P 2) ≤ . . . ≤ c(P |C|).

The algorithm explores multipaths in increasing order of total delay, and stops
as soon as no progress can be achieved. One iteration of the generic algorithmic
scheme is composed of the following operations:

1. Generate the ith multipath P i;
2. Update upper bound on total revenue;
3. Optimize toll schedule with respect to current multipath;
4. Update lower bound on total revenue;
5. If lower and upper bounds coincide, stop with an optimal solution to TOP.

The efficiency of the procedure rests on the quality of lower and upper bounds,
which are crucial in limiting the scope of the enumeration process, and on the
design of an efficient algorithmic procedure for generating multipaths. Those
are considered in turn.
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3.1 Upper bound

Let p∞k (respectively p0
k) denote the shortest path from o(k) to d(k) in the

graph G obtained by setting all tolls to +∞ (respectively 0) and let α∞
k

(respectively α0
k) denote the corresponding delay, i.e.,

α∞
k =

∑
a∈p∞

k

ca

α0
k =
∑
a∈p0

k

ca.

For a given commodity index k in K, an upper bound on the revenue raised
from this commodity k is given by the product of the demand nk and the gap
between α∞

k and α0
k, i.e.,

UB(pk) = nk(α∞
k − α0

k).

This bound can actually be tightened by making it dependent on the delay of
the multipath under consideration:

UB(P ) =
∑
k∈K

nk(α∞
k −

∑
a∈pk

ca).

3.2 Lower bound

If the lower level solution (multipath) is known a priori, all bilinear constraints
become linear, and the resulting program is easy. Its solution yields a toll vec-
tor t that maximizes revenue while being compatible with the multipath. This
operation is tentamount to solving an inverse problem. Loosely speaking, an
inverse optimization problem occurs when one wishes to estimate the param-
eters of a primary optimization problem whose optimal solution is known a
priori. In general, the set of such parameters is not unique, and one may
therefore optimize a secondary objective over this set. In the context of toll
optimization, one seeks tolls that maximize revenue (the secondary objective)
while inducing a predetermined lower level solution, i.e., a toll-compatible
multipath. The resulting toll schedule provides the best solution compatible
with the multipath, and thus a valid lower bound on the problem’s optimum
value.

Let LB(P ) denote the optimal value of the inverse optimization problem
associated with the multipath P = {pk}k∈K , i.e.,

LB(P ) = max
t∈D

|K|∑
k=1

nk

∑
a∈pk∩A1

ta

where
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D =
{
t |
∑
a∈pk

ca +
∑

a∈pk∩A1

ta ≤
∑
a∈p̄k

ca +
∑

a∈p̄k∩A1

ta ∀p̄k ∈ Pk ∀k ∈ K
}
.

While the number of constraints that define the set D is exponential, the
associated separation problem can be solved in polynomial time. Indeed, a
shortest path oracle can be used to check whether a given toll vector t lies in
D, and exhibit, whenever t /∈ D, a violated constraint. It follows from a result
of Grötschel et al [6] that the inverse optimization problem is polynomially
solvable. Alternatively, Labbé et al [8] have shown how to reduce the inverse
problem to a transshipment problem over a suitably defined network, and for
which polynomial algorithms are well known.

3.3 Computation of the ith shortest multipath

The computation of multipaths in increasing order of their fixed costs is an
essential part of the sequential algorithm. In this subsection, we describe a
procedure to compute the ith shortest multipath

P i = (pi(1)
1 , p

i(2)
2 , . . . , p

i(|K|)
|K| ),

where i(k) denotes the ranking of the path associated with commodity k. In
particular, the shortest multipath is

P 1 = (p1
1, p

1
2, . . . , p

1
|K|).

ith shortest multipath

Step 0 [Initialization]
Set j ← 1, and LIST ← ∅.
Compute p1

k and p2
k and set j(k) ← 1, k = 1, . . . , |K|.

P 1 = (p1
1, p

1
2, . . . , p

1
|K|).

Step 1 If j = i, stop: the ith multipath has been obtained.
Step 2 [updating of LIST ]

For all l ∈ {1, . . . , |K|}, let P j,l ← (p1, . . . , p|K|), where pk = p
j(k)
k

if k �= l, and pl = p
j(l)+1
l . Set LIST ← LIST ∪ P j,l.

Set j ← j + 1.
Step 3

Remove the least costly multipath from LIST distinct from
P 1, . . . , P j−1, and output this element P j as the jth shortest
multipath.

Step 4
Let j0 ∈ {1, . . . , j−1} and l0 ∈ {1, . . . , |K|} such that P j = P j0,l0 .
Compute pj0(l0)+2

l0
and set j0(l0) ← j0(l0)+ 1. Return to step 1.�
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The above algorithm requires the knowledge of commodity paths, sorted
in increasing order of their costs. To this end, we adopt a procedure proposed
by Lawler [10], which we describe, for the sake of completeness. Let the arcs of
the directed graph be numbered 1, . . . ,m. For a given path p, let xj = 1 if arc
j is contained in p, and xj = 0 otherwise. Given an integer i, the procedure
generates the first i shortest paths in sequence.

ith-shortest path algorithm

Step 0 [Initialization]
Compute a shortest path x(1) = (x(1)

1 , x
(1)
2 , . . . , x

(1)
m ), without fix-

ing the values of any variables.
LIST ← {x(1)} and j ← 1.

Step 1 [Output the jth shortest path]
Remove the least costly solution from LIST and output this so-
lution, denoted by x(j) = (x(j)

1 , x
(j)
2 , . . . , x

(j)
m ), as the jth shortest

path.
Step 2 If j = i, stop; the ith shortest path has been obtained.
Step 3 [Update of LIST ]

Assume that the jth shortest path was obtained by fixing the
following conditions

x1 = x2 = · · · = xq = 1,
xq+1 = xq+2 = · · · = xs = 0,

where a reordering has been assumed for notational purposes.
Leaving these variables fixed as they are, createm−s new shortest
path problems that must satisfy the additional conditions

xs+1 = 1− x(j)
s+1,

xs+1 = x
(j)
s+1, xs+2 = 1− x(j)

s+2,

...
xs+1 = x

(j)
s+1, xs+2 = x

(j)
s+2, . . . , xm−1 = x

(j)
m−1, xm = 1− x(j)

m .

Compute optimal solutions (i.e, the shortest path subject to con-
ditions above) to each of these m− s problems and place each of
the m − s solutions in LIST, together with a record of the vari-
ables which were fixed for each of them. Set j = j + 1. Return to
Step 1. �

Remark that the first time Step 3 is executed, q = s = 0
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3.4 Algorithm specification

We now formerly state the algorithm. Let LB∗ be the current best profit,
P ∗ the associated multipath, and UB∗ the current upper bound. Note that,
since the upper bound is non increasing, UB∗ is actually the same as UB(P )
evaluated at the current multipath. Let N denote the number of distinct
multipaths.

Multipath Algorithm

Step 0 [Initialization]
LB∗ ← −∞.
i← 1.

Step 1 [Multipath generation and evaluation]
Generate the ith smallest element of C,
P i = (pi(1)

1 , p
i(2)
2 , . . . , p

i(|K|)
|K| ).

UB∗ ←
∑

k∈K

nk(α∞
k −

∑
a∈p

i(k)
k

ca).

Compute LB(P i) by inverse optimization.
Set LB∗ ← max{LB∗, LB(P i)}.

Step 2 [Stopping criterion]
If UB∗ ≤ LB∗ or i = N , stop. The optimal solution is the multi-
path P ∗ that has achieved the best lower bound.
i← i+ 1 and return to step 1. �

In order to prove the correctness of the algorithm, it suffices to remark that
the upper bound UB∗ does not increase at each iteration, so that an optimal
multipath cannot be missed. Note that the algorithm may have to scan the
entire list of multipaths, and that it may terminate with the local upper bound
UB∗ being strictly less than the lower bound LB∗. This can be observed on
the single-commodity example illustrated in Figure 1, taken from Labbé et
al. [9]. In this example, the first multipath P 1 (a single path in this case)
generated is {(1 − 2 − 3 − 4 − 5)}. Its upper bound is 22 − 6 = 16 while its
lower bound (this easy to check), is equal to 15. The algorithm stops after
generating P 2 = {(1 − 2 − 4 − 5)}, whose upper bound 11 is less than the
lower bound of the first path. There does not exist a path that achieves an
upper bound equal to the optimal value.

3.5 Redundant paths

A serious drawback of formulations MIP II and MIP III is that all paths
between all origin-destination pairs must be enumerated a priori. Obviously,
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2 3 4 5
2 2 2 0

10 12

9

1

Fig. 1. The multipath algorithm terminates with LB∗ �= UB∗

many paths are suboptimal and irrelevant. For instance, one need not consider
paths that contain toll-free subpath that are not shortest subpaths. Along
this line of reasoning, Kraaij [7] constructed a Shortest Path Graph Model
(SPGM), equivalent to TOP, where subpaths between toll arcs are replaced
by single arcs with cost set to that of a shortest subpath; similarly, subpaths
from the origins to the tail of toll arcs, and from the head of toll arcs to the
destinations, are shrunk to single arcs. While this preprocessing does not affect
the combinatorial nature of the problem, it may reduce computing times by a
(roughly) constant factor. Note that, in some cases, the SPGM may contain
more arcs than the original network, and the computational burden of setting
up an SPGM may actually greatly exceed that of solving the resulting problem
(see [2]).

While we have not adopted the SPGM formulation, we have implemented
a technique for eliminating a subset of dominated paths, according to the
criterion outlined in the following lemma. This allows to limit the number of
problems created at step 3 of the ith-shortest path algorithm.

Lemma 3.1 (Bouhtou et al [2]) Consider an instance of TOP where tolls
are restricted to be nonnegative. Let p and p∗ be two paths between an origin-
destination pair k ∈ K, and let p = (p1, p2) and p∗ = (p1

∗, p
2
∗) denote their

partition into toll and toll-free arcs, respectively. Assume that p1
∗ ⊆ p1 and

that ∑
a∈p∗

ca ≤
∑
a∈p

ca.

If p, together with a toll schedule t, is optimal for TOP, it follows that the
couple (p∗, t) is also optimal for TOP.

Based on the above result, one may reduce the number of problems generated
at step 3 of the ith shortest path algorithm by only considering the toll arcs
and undominated paths. Suppose, without loss of generality, that the arcs
of A1 are numbered 1, . . . , |A1| and that the jth shortest path contains arcs
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1, . . . , r, r ≤ |A1|. Suppose, moreover, that the jth shortest path is the shortest
path obtained by fixing the following variables

x1 = x2 = . . . = xp = 1,
xr+1 = xr+2 = . . . = xq = 0,

and the other toll variables (non fixed) verify

x
(j)
p+1 = x

(j)
p+2 = . . . = x

(j)
r = 1,

x
(j)
q+1 = x

(j)
q+2 = . . . = x

(j)
|A1| = 0.

Leaving the fixed variables as they are, create r−p new shortest path problems
that must satisfy the additional conditions

xp+1 = 0,
xp+1 = 1, xp+2 = 0,

...
xp+1 = xp+2 = . . . = xr−1 = 1, xr = 0.

4 A block sequential heuristic (BLOSH)

While, as we shall see in the next section, the three MIP reformulations and
the exact multipath algorithm allow to tackle medium size problems, the NP-
hard nature of TOP will ultimately limit the size of problems that can be
solved to prove optimality. The main limitation is due both to the large num-
ber of commodities and their interactions. To circumvent the problem, we
have implemented a windowing technique that consists in optimizing over a
subset of commodities at a time, keeping fixed the paths associated with the
(temporarily) fixed commodities. This results in a block sequential heuristic
(BLOSH), reminiscent of the Gauss-Seidel approach, well known in optimiza-
tion. At each iteration, the subproblems are solved using either one of the
algorithms presented previously. For our purpose, we have used the MIP III
formulation, which involves a small number of binary variables, and proved ef-
ficient for solving problems involving a small number of commodities. MIP III
was solved using the commercial software CPLEX [3].

More precisely, let us consider a partition K into the set of active and inac-
tive commodities (origin-destination pairs), i.e., K = K1∪K2. The restricted
MIP III formulation then takes the form:
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MIP III–R: max
t,z,L

∑
k∈K

nkT
k

subject to

∀k ∈ K1
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T k ≤
∑

a∈p∩A1

ta +Mk(1− zp) ∀ p ∈ Pk

∑
a∈p∩A1

ta +
∑
a∈p

ca −Mp
k (1− zp) ≤ Lk ≤

∑
a∈p∩A1

ta +
∑
a∈p

ca

∀ p ∈ Pk

Lk = T k +
∑

p∈Pk

zp

∑
a∈p

ca

∑
p∈Pk

zp = 1

zp ∈ {0, 1} ∀ p ∈ Pk

∀k ∈ K2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T k =
∑

a∈p
i(k)
k ∩A1

ta

Lk ≤
∑

a∈p∩A1

ta +
∑
a∈p

ca ∀ p ∈ Pk

Lk = T k +
∑

a∈p
i(k)
k

ca.

In practice, the number of active commodities, |K1| is small with respect
to the number of inactive commodities |K2|. In that case, MIP III-R involves
a small number of binary variables and is efficient. A pseudocode for the
algorithm is outlined below.
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Algorithm BLOSH

Step 0 [initialization]
Compute a feasible paths solution and the associated optimal tax
vector (e.g. based on the shortest multipath).
Let k be the number of active commodities.
i← 1.

Step 1
K1 ← {[(i− 1) mod |K|] + 1, [(i) mod |K|] + 1, . . . , [(i+ k − 2)
mod |K|] + 1}
K2 ← K \K1

Solve MIP III–R and let V i be its optimal value.
If V i = V i+1, stop.

Step2
i← i+ 1.
Return to step 1.

5 Numerical results

The numerical tests have been performed on randomly generated networks,
and give a good idea of the various algorithms’ behaviour with respect to
the size of the instances. They have been conducted in two steps. We first
tested the multipath algorithm on medium-size instances, rapidly showing
the limitations of this approach. We then assessed the efficiency of the three
MIP formulations, using the commercial MIP solver CPLEX 6.0, versus that
of the sequential heuristic. The tests were performed on a SUN ULTRA60
workstation.

The main parameters of the test problems were |N | (number of nodes), |A|
(number of arcs), |A1| (number of toll arcs), |K| (number of commodities).
For each toll-free arc (respectively toll arc), an integer fixed cost ca was uni-
formly chosen in the interval [2,20] (respectively [0,6]). The origin-destination
pairs were uniformly chosen, and their demands set to uniform random vari-
ables on the interval [20,100]. Finally, to ensure connectivity of the underlying
graph and the existence of toll-free paths for each origin-destination pair, a
Hamiltonian circuit composed only of toll-free arcs was integrated within the
network.

Tables 1,2 and 3 illustrate the (in)efficiency of the multipath algorithm.
Each table presents the solution of 10 randomly generated problems. We ob-
serve that the multipath approach can solve small to medium scale problems,
but fails on larger instances. Whenever the number of commodities increases,
the approach rapidly shows its limits, mainly due to the large number of mul-
tipaths with similar length values. This disappointing performance is due to
the existence of nearly identical multipaths. This resulted in upper bounds



44 Mohamed Didi-Biha, Patrice Marcotte and Gilles Savard

that decrease very slowly, as well as lower bounds that increase by steps, after
having stalled for several iterations. This can be observed on Figures 2, 3 and
4.

The next tables illustrate the performance of CPLEX on the three MIP
formulations, comparing with algorithm BLOSH, for various problem sizes.
Each MIP problem was solved with the default parameters of CPLEX 6.0.
Running times include the elimination of dominated multipaths.

Algorithm BLOSH was initiated with a shortest multipath. The first k
active commodities (set to 20) were chosen as follows: we solved independent
TOP problems, one for each commodity and reordered them from higher to
lower revenue. These revenues were obtained by inverse optimization.

Random networks were generated for various values of the main param-
eters (|N |, |A|, |A1| and |K|). The results of our computational experiments
are presented in Tables 4 to 9, where each line corresponds to one specific
instance. Column headers show the instance number, as well as the running
times and the number of Branch-and-Bound nodes explored by CPLEX, for
the three MIP formulations. We also indicated, in the BLOSH column, the
percentage of optimality reached by the algorithm, 100% indicating that an
optimal solution was obtained.

Tables 4 and 5 provide the running times for the four algorithms. While
no clear conclusion could come out concerning the average number of nodes,
MIP III came out the winner, as it could process each node much faster. On
these medium-sized problems, Algorithm BLOSH converged to an optimal
solution on all but two instances, with running times slightly less, on the
average, that those of MIP III. In Tables 6, 7, 8 and 9, we focused on the
following issues:

– How close is the solution provided by BLOSH to an optimal solution?
– How many iterations are required for BLOSH to converge?

On the larger instances, it was not always possible to answer the first question,
due to excessive running times. Indeed, MIP III could not reach an optimal so-
lution, or prove that such solution was reached, within the imposed time limit
set respectively at 10 000 seconds (Tables 6 and 7) and 15 000 seconds (Table
9). Three instances (marked with an asterisk in Table 7) were subsequentially
allowed 40 000 of CPU time and yet failed to reach an optimum. Actually, the
best solution achieved by MIPIII was improved for most instances reported in
Tables 8 and 9, i.e., whenever the deviation from MIPIII’s best value exceeded
100 in the corresponding entry of the percentage column.

Finally, note that it is not straightforward to compare our numerical results
with those obtained by the MIP formulation of Bouhtou et al. [2]. Indeed:

– The nature of the problems generated in their paper is quite different
from ours. First, the number of paths between OD pairs is less than 3, on
average it is of the order of 30 undominated paths for our instances.

– The proportion of toll arcs is much higher in our experiments.
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– Computers used are from different generations.

This being said, the ratio of improvement between MIP I and MIP III is
comparable to the ratio observed in [2] between MIP I (AMIP according to
their notation) and their path-based formulation PMIP, once the computa-
tional time associated with the generation of the SPGM has been taken into
account. Note that, on the set of problems considered by these authors, most
of the running time is spent in the preprocessing phase.

6 Conclusion

In this paper, we have proposed new approaches, based on path variables, for
addressing an NP-hard problem having applications in the context of optimal
pricing. The two main results of the paper were to assess the quality of MIP
reformulations of TOP, and to show that the best formulation (MIP III) could
be used as the core of a promising heuristic procedure (BLOSH). We are
currently working along two lines of attack. First, we wish to embed the most
efficient procedures within a decomposition framework. Second, sophisticated
techniques (partial inverse optimization) are being investigated, with the aim
of improving the upper bound of the multipath algorithm (which is typically
of very bad initial quality) and of reducing the number of multipaths explored
in the course of the algorithm.
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Instances Nodes time (s) gap (%)

1 42 0.11 0.00
2 287 0.12 0.00
3 27 0.13 0.00
4 102 0.17 0.00
5 21 0.14 0.00
6 8 0.12 0.00
7 152 0.17 0.00
8 86 0.16 0.00
9 54 0.17 0.00
10 194 0.20 0.00

Table 1. Problems with 60 nodes, 200 arcs, 20 tolled arcs and 10 O-D-pairs

Instances Nodes time (s) gap (%)

1 1061001 14022.78 18.04
2 1161001 14006.93 7.46
3 2313001 14006.94 8.91
4 495542 2559.90 0.00
5 1375001 14002.36 3.78
6 1270001 14021.93 21.00
7 1220001 14024.66 20.70
8 78019 1017.52 0.00
9 1501001 14012.94 3.92
10 1219001 14015.69 8.86

Table 2. Problems with 60 nodes, 200 arcs, 40 tolled arcs and 20 O-D-pairs
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Fig. 2. Upper and lower bounds: instance 1 (60,200,20,10)

Fig. 3. Upper and lower bounds: instance 1 (60,200,40,20)
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Instances Nodes time (s) gap (%)

1 550001 14010.68 39.20
2 933001 14029.33 14.03
3 849001 14019.97 17.17
4 482001 14012.71 28.91
5 729001 14019.96 30.34
6 697001 14012.32 21.81
7 645001 14019.11 28.36
8 645001 14013.17 16.05
9 1016001 14015.23 25.54
10 1112001 14026.46 39.12

Table 3. 90 nodes, 300 arcs, 60 tolled arcs and 40 O-D-pairs

Fig. 4. Upper and lower bounds: instance 1 (60,300,60,40)
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Instance MIP I MIP II MIP III BLOSH

Nodes time (s) Nodes time (s) Nodes time (s) % time (s)

1 48 9.48 44 2.50 46 0.97 100.00 1.32

2 30 3.98 32 2.02 20 0.88 100.00 1.42

3 30 6.70 42 1.63 41 0.47 100.00 0.77

4 144 21.00 45 4.98 67 1.03 100.00 1.59

5 29 8.13 15 1.69 26 0.46 100.00 0.73

6 40 5.97 32 3.31 88 1.02 100.00 1.37

7 36 7.28 55 3.76 62 0.99 100.00 1.39

8 14 5.37 16 1.86 29 0.63 100.00 0.77

9 62 9.70 50 2.91 52 0.59 100.00 0.80

10 12 4.16 9 1.07 16 0.42 100.00 0.58

Table 4. 60 nodes, 20 O-D pairs, 200 arcs, 40 tolled arcs.

Instance MIP I MIP II MIP III BLOSH

Nodes time (s) Nodes time (s) Nodes time (s) % time (s)

1 5010 5998.84 77500 19806.00 6881 34.11 99.76 12.51

2 496 147.98 232 114.89 1015 3.85 100.00 3.80

3 87 79.23 49 7.63 154 2.46 100.00 3.49

4 243 146.00 361 51.45 479 3.61 100.00 4.44

5 1076 830.20 1618 473.02 622 3.99 100.00 4.36

6 346 808.50 312 259.06 1264 8.61 100.00 7.74

7 425 237.03 1903 260.51 1829 6.87 100.00 5.27

8 145 67.19 295 47.39 856 7.34 100.00 8.04

9 736 2350.88 1129 904.61 3638 19.97 98.29 8.34

10 264 274.21 182 43.40 179 5.00 100.00 6.61

Table 5. 90 nodes, 40 O-D pairs, 300 arcs, 60 tolled arcs.

Instance MIP III BLOSH

Nodes time (s) % time (s)

1 61897 460.00 97.08 25.37

2 2570196 29661.00 99.21 44.30

3 3542 38.00 98.81 11.12

4 202271 1027.00 97.76 20.52

5 38777 120.00 99.42 10.88

6 43588 239.00 98.20 16.05

7 378033 2609.00 98.75 33.67

8 133873 1002.00 98.39 26.09

9 3170 42.00 99.95 11.65

10 12549 181.00 99.24 31.57

Table 6. 120 nodes, 60 O-D pairs, 400 arcs, 80 tolled arcs.
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Instance MIP III BLOSH

Nodes time (s) % time (s)

1 800166 11304 97.15 122

2 852734 5739 97.46 66

3 3615113 39555 99.28 102

4 3059449 27559 100 91

5(*) 518756 10056 96.22 162

6 2129948 35160 99.39 127

7 182957 2868 100 133

8(*) 432250 10057 99.86 170

9(*) 1905100 10045 102.06 132

10 488533 5116 97.54 95

Table 7. 150 nodes, 80 O-D pairs, 600 arcs, 120 tolled arcs.

Instance MIP III BLOSH

Nodes time (s) % time (s)

1 532884 10080 112.74 108

2 610662 10086 99.65 118

3 361924 10121 121.45 182

4 580082 10091 131.76 126

5 711571 10076 98.53 103

6 626277 10078 104.40 103

7 857079 10068 100.39 84

8 430176 10102 103.76 145

9 342673 10107 103.94 158

10 426247 10094 107.84 138

Table 8. 200 nodes, 100 O-D pairs, 800 arcs, 160 tolled arcs.

Instance MIP III BLOSH

Nodes time (s) % time (s)

1 11591 15998 133.66 4991

2 20794 15181 123.98 4430

3 14927 15753 132.47 5139

4 47401 13597 114.17 2880

5 16987 14649 119.20 3962

6 36033 13690 117.84 2992

7 37476 13823 116.80 3006

8 24560 14778 109.41 4040

9 24274 15144 122.73 4450

10 16280 15195 118.39 4425

Table 9. 500 nodes, 200 O-D pairs, 5000 arcs, 1000 tolled arcs.
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1 Introduction

Bilevel programming is among the frontier areas of modern optimization the-
ory. Apart from its importance in application it is also a theoretically chal-
lenging field. The first such challenge comes when one wants to write Karush-
Kuhn-Tucker type optimality conditions for bilevel programming problems.
The major drawback is that most standard constraint qualifications are never
satisfied for a bilevel programming problem. Thus it is interesting to devise
methods in which one may be able to develop in a natural way constraint
qualifications associated with bilevel problems and thus proceed towards ob-
taining Karush-Kuhn-Tucker type optimality conditions. The recent literature
in optimization has seen quiet a few attempts to obtain optimality conditions
for bilevel programming problems. See for example Ye and Zhu [27],[28],[29],
Ye and Ye [26], Dempe [9],[10], Loridan and Morgan [15], Bard [3], [4],[5] and
the references there in. In 1984 J. F. Bard [3] made an attempt to develop
optimality conditions for bilevel programming problems though it was later
observed to have some error. The recent monograph by Dempe [9] is one help-
ful source to study optimality conditions for bilevel programming problems.

In this article we consider the special type of bilevel programming which
has a convex programming problem as its lower-level problem. Using the re-
cent advances made in the understanding of the solutions sets of variational
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systems (see for example Dontchev and Rockafellar [11],[12] and Levy and
Mordukhovich [14]) we will develop some new necessary conditions for bilevel
programming problems with convex lower-level problems. In section 2 we be-
gin with the basic formulation of a bilevel programming problem and motivate
the type of problems we intend to study in this article. Then we outline the
variational tools that are required to represent the necessary optimality con-
ditions. In section 4 we present the main results, i.e the necessary optimality
conditions for each of the problem formulations that we have described earlier.

2 Motivation

Consider the following bilevel programming problem (P)

min
x
F (x, y) subject to y ∈ S(x), x ∈ X,

where F : R
n×R

m → R, X ⊆ R
n and S(x) is the solution set of the following

problem (LLP)

min
y
f(x, y) subject to y ∈ K(x),

where f : R
n×R

m → R and K(x) ⊆ R
m is a set depending on x. The problem

(LLP) is called the lower-level problem and the problem (P) is called the
upper-level problem. For simplicity we consider only the case where X = R

n

and where for each x the function f(x, ·) is convex and the set K(x) is convex.
Thus in our setting the problem (P) will be as follows

min
x
F (x, y) subject to y ∈ S(x)

where S(x) as before denotes the solution set of the lower-level problem (LLP)

min
y
f(x, y) subject to y ∈ K(x).

From now on we will assume that the problem (LLP) always has a solution.
However the term min in the upper level problem is slightly ambiguous since
one is not sure whether the lower-level problem has an unique solution or not.
If f(x, ·) is strictly convex in y for each x then S(x) is a singleton for each
x or rather S is a single-valued function. If however f(x, ·) is only assumed
to be convex one cannot always guarantee the single-valuedness of S(x). It
is important to observe that the main complication in bilevel programming
arises when the lower-level problem does not have a unique solution, i.e. S(x)
is not a singleton for some x. Thus for that particular case the objective
function of the upper-level problem would look like⋃

y∈S(x)

F (x, y) = F (x, S(x)).
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The bilevel programming problem (P) is then rather a set-valued optimization
problem, see e.g. G.Y. Chen and J. Jahn [7]. To treat this situation within
bilevel programming problems at least two approaches have been reported
in the literature, namely the optimistic solution and the pessimistic solution.
We will consider here the optimistic solution approach for reasons which will
be clear as we progress further. For details on the pessimistic solution ap-
proach see for example Dempe [9]. One of the reasons are the less restrictive
assumptions needed to guarantee the existence of an optimal solution in the
optimistic case. To introduce the optimistic case consider the function

ϕ0(x) = inf
y
{F (x, y) : y ∈ S(x)}.

We remark that ϕ0(x) denotes the infimal function value of the upper level
objective over the solution set of the lower-level problem parameterized by x
and that we do not demand that it is attained. For each x ∈ R

n, this function
gives the lowest bound for possible objective function values of the upper
level objective function on the set of optimal solutions of (LLP). Then, the
optimistic bilevel problem reads as

min
x
ϕ0(x). (1)

Definition 2.1 A point x is called a (global) optimistic solution of the prob-
lem (P) if ϕ0(x) ≥ ϕ0(x) for all x.

An optimal solution of this problem exists whenever the function ϕ0(x) is
lower semicontinuous and some boundedness assumptions are satisfied.

Theorem 2.1 Consider problem (P) with continuous functions F, f and a
continuous point-to-set mapping K : R

n ⇒ R
m. Then, if gph K is bounded,

problem (P) has a solution.

Here gph K = {(x, y) : y ∈ S(x)} denotes the graph of the mapping K. To
guarantee continuity of the point-to-set mapping some regularity condition
(as Slater’s conditions for all x) is needed. The main reason for this result is
that the assumptions imply upper semicontinuity of the point-to-set mapping
S : R

n ⇒ R
m which in turn implies lower semicontinuity of the function ϕ0(·),

see Bank et al. [2].
Let us now consider the problem (P1) given as

min
x,y

F (x, y) subject to (x, y) ∈ gphS.

If local optimal solutions are under consideration it is easy to find examples
showing that local optimal solutions of problem (P1) need not to correspond
to local optimal solutions of (P). But, for each local optimal solution x of (1),
some point (x, y) with y ∈ S(x) is a local optimal solution of (P1).
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Proposition 2.1 Let x̄ be a local optimistic solution to the bilevel program-
ming problem (P) whose solution set mapping S is upper-semicontinuous as
a set-valued map. Then (x̄, ȳ) with y ∈ S(x) and ϕ0(x) = F (x, y) is also a
solution of (P1).

Remark 2.1 We note that we have used the implicit assumption in the
proposition that the lower-level problem (LLP) has an optimal solution for
x = x. Let us recall that we have already made this assumption in the begin-
ning of this section.

Proof. Let x be a local optimistic solution to (P) and assume that there
exists y with the properties as formulated in the statement. Then we first
have ȳ ∈ S(x̄) and

F (x̄, ȳ) ≤ F (x̄, y), ∀y ∈ S(x̄).

By assumption ϕ0(x̄) = F (x̄, ȳ). Further we also have

ϕ0(x̄) ≤ ϕ0(x), ∀x ∈ R
n (2)

sufficiently close to x. By definition of ϕ0(x) one has ϕ0(x) ≤ F (x, y) for all
y ∈ S(x). Using (2) we immediately have

F (x̄, ȳ) =ϕ0(x̄) ≤ ϕ0(x) ≤ F (x, y), ∀y ∈ S(x) and x sufficiently close to x.

Let V be an open neighborhood of S(x̄) , i.e. S(x̄) ⊂ V . Since S is upper-
semicontinuous as a set-valued map we have that there exists an open neigh-
borhood U of x̄ such that for all x ∈ U one has S(x) ⊂ V ( For a definition of
upper-semicontinuous set-valued map see for example Berge [6]). Thus we can
find a δ > 0 such that Bδ(x̄) ⊂ V and for all x ∈ Bδ(x̄) we have ϕ(x) ≥ ϕ(x̄).
Here Bδ(x̄) denotes a ball centered at x̄ and of radius δ. Thus arguing in a
similar manner as before one has

F (x̄, ȳ) ≤ F (x, y) ∀y ∈ S(x) and x ∈ Bδ(x̄).

However for all x ∈ Bδ(x̄) we have S(x) ⊂ V . This shows that

F (x̄, ȳ) ≤ F (x, y) ∀(x, y) ∈ (Bδ(x̄)× V ) ∩ gphS.

Thus (x̄, ȳ) is a local optimal solution for (P1). �

Remark 2.2 It is important to note that assumption of upper-semicontinuity
on the solution set-mapping is not a strong one since it can arise under natural
assumptions. Assume that feasible set K(x) of the lower-level problem (LLP)
is described by convex inequality constraints, i.e.

K(x) = {y ∈ R
m : gi(x, y) ≤ 0, i = 1, . . . , p},
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where for each x the function g(x, ·) is convex in y. Assume now that the
set {(x, y) ∈ R

n × R
m : gi(x, y) ≤ 0, i = 1, . . . , p} is non-empty and compact

and the lower-level problem (LLP) satisfies the Slater’s constraint qualification
then we can conclude that the solution set mapping S is upper-semicontinuous
as a set-valued map, cf. Bank et al. [2].

Let us note that if we now consider a global optimistic solution then there
is no necessity for any additional assumption on the solution set mapping.
Thus we have the following proposition.

Proposition 2.2 Let x̄ be a global optimistic solution to the bilevel program-
ming problem (P). Then (x̄, ȳ) with y ∈ S(x) and ϕ0(x) = F (x, y) is also a
global solution of (P1).

Proof. Let x be a global optimistic solution to (P) and assume that there
exists y with the properties as formulated in the statement. Then we first
have ȳ ∈ S(x̄) and

F (x̄, ȳ) ≤ F (x̄, y), ∀y ∈ S(x̄).

By assumption ϕ0(x̄) = F (x̄, ȳ). Further we also have

ϕ0(x̄) ≤ ϕ0(x), ∀x ∈ R
n. (3)

By definition of ϕ0(x) one has ϕ0(x) ≤ F (x, y) for all y ∈ S(x). Using (3) we
immediately have

F (x̄, ȳ) = ϕ0(x̄) ≤ ϕ0(x) ≤ F (x, y), ∀y ∈ S(x).

Hence the result. �

The opposite implication is also valid for global optima.

Proposition 2.3 Let (x, y) be a global optimal solution of problem (P1).
Then, x is a global optimal solution of problem (P).

Proof. Assume that x is not a global optimal solution of problem (1) then
there is x̃ with ϕ0(x̃) < ϕ0(x) and, by definition of the function ϕ0(·) there is
ỹ ∈ S(x̃) with ϕ0(x̃) ≤ F (x̃, ỹ) < ϕ0(x). Now, y ∈ S(x) and, hence,

F (x, y) = ϕ0(x) > F (x̃, ỹ).

Then F (x̃, ỹ) < F (x, y) which contradicts optimality of (x, y). �

The last two propositions enable us to reformulate the bilevel problem in
its optimistic version to the problem (P1). Note that this excludes the case
when the function ϕ0 is determined as the infimal objective function value of
the lower-level problem (LLP) (which is then not assumed to have an optimal
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solution), implying that the function ϕ0 may have a minimum even in the
case when the problem (P1) has no solution.

We have already stated that we will restrict ourselves to the case where
the lower-level problem is a convex minimization problem. Let for the moment
the set K(x) in (LLP) be expressed in terms of convex inequalities:

K(x) = {y : gi(x, y) ≤ 0, i = 1, . . . , p},

where gi(x, ·) are convex in y for each x and are sufficiently smooth i.e of
class C2. Finding the minimum of a regular convex problem is equivalent to
solving the Karush-Kuhn-Tucker type conditions associated with the problem.
Thus a bilevel programming problem can be posed as single level problem
with the lower-level problem being replaced with its Karush-Kuhn-Tucker
system which now become additional constraints to the problem (P1). Thus
the problem (P1) can be reformulated as

min
x,y,λ

F (x, y)

subject to ∇yf(x, y) +
p∑

i=1

λi∇ygi(x, y) = 0 (4)

λigi(x, y) = 0 i = 1, . . . , p.
gi(x, y) ≤ 0, λi ≥ 0 i = 1, . . . , p.

This is the so-called Karush-Kuhn-Tucker (KKT) formulation of a bilevel
programming problem with a convex lower-level problem. Problem (4) is a
special kind of the so-called Mathematical Program with Equilibrium Con-
straints (MPEC). It is well-known that many standard constraint qualifica-
tions like the Mangasarian-Fromowitz constraint qualification and the Abadie
constraint qualification fail due to the presence of the complementary slack-
ness condition of the lower-level problem which is now posed as an equality
constraint. The reader is referred to the paper Ye [23] where possible regularity
conditions are identified. The challenge therefore is to devise natural qualifica-
tion conditions which can lead to KKT type optimality conditions for a bilevel
programming problem. Here we suggest one new approach through which this
may be possible. Similar investigations have been done in Ye [23] under the
assumptions that the problem functions are either Gâteaux differentiable or
locally Lipschitz continuous using the Michel-Penot subdifferential.

It should be mentioned that the KKT reformulation is equivalent to the
problem (P1) only in the case when the lower-level problem is a convex regular
one and global optimal solutions of the upper level problem are investigated
(cf. Propositions 2.2 and 2.3). Without convexity, problem (4) has a larger
feasible set than (P1) and an optimal solution of (4) need not to correspond
to a feasible solution of problem (P1). Even more, an optimal solution of
problem (P1) need also not be an optimal solution of (4), see Mirrlees [16].
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What concerns optimality conditions the main difficulty in using the re-
formulation (4) of the bilevel programming problem is the addition of new
variables. If these Lagrange multipliers of the lower-level problem are not
uniquely determined, the optimality conditions of the MPEC depend on the
selection of the multiplier but the conditions for the bilevel problem must not.
This can easily been seen e.g. in the case when the lower-level problem is a
convex one for which the Mangasarian-Fromowitz constraint qualification to-
gether with the strong sufficient optimality condition of second order and the
constant rank constraint qualification are satisfied at a point (x, y). Then, the
optimal solution of the lower-level problem is strongly stable in the sense of
Kojima [13], Lipschitz continuous and directionally differentiable, see Ralph
and Dempe [20] and the bilevel programming problem can be reformulated as

min{F (x, y(x)) : x ∈ R
n}.

Necessary optimality conditions for this problem reduce to nonexistence of
directions of descent for the function x �→ F (x, y(x)), cf. Dempe [10]. If this
problem is reformulated as (4) and a Lagrange multiplier is fixed it is possible
that there is no direction of decent in the problem (4). But what we have done
is to compute the directional derivative of the function x �→ F (x, y(x)) only in
directions which correspond to the selected Lagrange multiplier, i.e. directions
for which a certain linear optimization problem has a solution, see Ralph and
Dempe [20]. But there is no need that the directional derivative of the function
F (x, y(x)) into other directions (corresponding to other Lagrange multipliers)
does not give a descent.

With other words, if optimality conditions for an MPEC are investigated,
a feasible solution of this problem is fixed and optimality conditions are de-
rived as in Pang and Fukushima [19], Scheel and Scholtes [22]. Considering
the optimality conditions in primal space (i.e. formulating them as nonexis-
tence of descent directions in the contingent cone) we see some combinatorial
structure since the contingent cone is not convex. This approach has been ap-
plied to the KKT reformulation of a bilevel programming problem in Ye and
Ye [26]. But to obtain a more useful condition for selecting a locally optimal
solution we have to investigate the resulting systems for all Lagrange multi-
pliers of the lower-level problem, or at least for all the vertices of the set of
Lagrange multipliers, if some condition as the constant rank constraint quali-
fication in the differentiable case is satisfied. Hence, this approach needs to be
complemented by e.g. a method for an efficient computation of all Lagrange
multipliers.

Hence we believe that other approaches are more promising. These are
on the one hand approaches using the normal cone (or the contingent cone)
to the graph of the solution set mapping of the lower-level problem and on
the other hand approaches using the reformulation of the bilevel programming
problem using the optimal value function of the lower-level problem. The latter
approach has been used e.g. in the papers Babahadda and Gadhi [1], Ye [23].
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Here we investigate the possibility to derive necessary optimality conditions
using the normal cone.

3 Basic tools

Let (x̄, ȳ) be a local (or global) solution of (P1) and let us assume that F is
smooth. Then one has

0 ∈ ∇F (x̄, ȳ) +NgphS(x̄, ȳ).

In the above expression Ngph S(x̄, ȳ) denotes the Mordukhovich normal cone
or the basic normal cone to the graph of the set-valued map S at (x̄, ȳ).
For more details on Mordukhovich normal cone and the derivation of the
above necessary optimality condition see for example Mordukhovich [17] and
Rockafellar and Wets [21]. It is moreover important that the Mordukhovich
normal cone is in general a closed and non-convex object. The basic normal
cone to a convex set coincides with the usual normal cone of convex analysis.
In order to obtain a KKT type optimality condition our main task is now to
compute the basic normal cone to the graph of the solution set mapping at the
point (x̄, ȳ). Thus the qualification conditions that are required to compute
the normal cone are indeed the natural qualification conditions for the bilevel
programming problem. However let us note that it is in fact a formidable task
to compute the normal cone to the graph of the solution set mapping. This
is mainly due to the fact that even if the lower-level problem is convex the
graph gphS of the solution set mapping S need not be convex. The following
simple example demonstrates this fact.

Example 3.1 Let the lower-level problem be given as

S(x) = argmin
y

{f(x, y) = −xy : 0 ≤ y ≤ 1}.

Observe here that K(x) = [0, 1] for all x ∈ R. Observe that the problem is
a convex problem in y. Also note that the solution set mapping S in this
particular case is given as

S(x) =

⎧⎨⎩
{0} : x < 0
[0, 1] : x = 0
{1} : x > 0.

It is now simple to observe that the gphS is a non-convex set. �

Professor Rockafellar suggested that an interesting approach to bilevel
programming may be obtained by having a minimax problem or rather a
primal-dual problem in the lower-level instead of just a convex minimization
problem. This can in fact be motivated from the KKT representation of a
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bilevel programming problem with convex lower-level problems. Observe that
the KKT problem brings in an additional variable λ ∈ R

p
+ which is actu-

ally the Lagrange multiplier associated with the problem as well as the dual
variable associated with the Lagrangian dual of the convex lower-level prob-
lem. Hence both the primal variable y and the dual variable λ of the convex
lower-level problem are present in the KKT formulation of the bilevel pro-
gramming problem with convex lower-level problems. Thus one may as well
define a lower-level problem which has both the primal and dual variable and
that naturally suggests us to consider the lower-level problem as a minmax
problem. Thus we can have a new formulation of the bilevel programming
problem (P2) with a minimax lower-level problem as follows

min
(x,y,λ)

F (x, y, λ) subject to (y, λ) ∈ S(x),

where F : R
n × R

m × R
p → R and the set-valued map S : R

n ⇒ R
m × R

p is
a solution set of the following problem (LLP2)

minimaximizeL(x, y, λ) subject to (y, λ) ∈ Y ×W,

where Y ⊂ R
m and W ⊂ R

p are non-empty convex sets and L(x, y, λ) is
convex with respect to y for each (x, λ) ∈ R

n ×W and is concave in λ for
each (x, y) ∈ R

m × Y . Thus we can write

S(x) = {(y, λ) : (y, λ) solves (LLP2)}.

By a solution (y, λ) ∈ S(x) we mean

y ∈ argmin
y∈Y

L(x, y, λ) and λ ∈ argmax
λ∈W

L(x, y, λ).

Let us end this section by defining the nonsmooth tools that would be
required for the proofs of the optimality conditions. We first begin with the
definition of the normal cone to a set C at a given point in C. Let C be a
non-empty subset of R

n and let x̄ ∈ C. A vector v is called a regular normal
to C at x̄ if

〈v, x− x̄〉 ≤ o(‖x− x̄‖),

where
o(‖x− x̄‖)
‖x− x̄‖ → 0 as ‖x − x̄‖ → 0. The set of all regular normals form

a convex cone denoted by N̂C(x̄). This is also known as the Fréchet normal
cone in the literature.

A vector v ∈ R
n is said to be a normal or a basic to C at x̄ if there exist

a sequence {vk}, with vk → v and a sequence {xk}, xk ∈ C with xk → x
and vk ∈ N̂C(xk). The set of all normals forms a closed ( but not necessarily
convex) cone denoted as NC(x̄). The basic normal cone has also been referred
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to as the Mordukhovich normal cone in the literature. For more details on
the basic normal cone in the finite dimensional setting see for example Mor-
dukhovich [17] or Rockafellar and Wets [21]. It is important to note that if
the interior of C is nonempty and x̄ ∈ intC then NC(x̄) = {0}.
Let S : R

n ⇒ R
m be a set-valued map and let (x, y) ∈ gphS. Then the

coderivative at (x̄, ȳ) is a set-valued map D∗S(x̄|ȳ) : R
m ⇒ R

n given as

D∗S(x̄|ȳ)(w) = {v ∈ R
n : (v,−w) ∈ Ngph S(x̄, ȳ)}.

For more details on the properties of the coderivative see for example Mor-
dukhovich [17] and Rockafellar and Wets [21]. Further given a function
f : R

n → R ∪ {+∞} and a point x̄ where f is finite the subdifferential or
the basic subdifferential at x̄ is given as

∂f(x̄) = {ξ ∈ R
m : (ξ,−1) ∈ Nepi f (x̄, f(x̄))},

where epi f denotes the epigraph of the function f . The asymptotic subdiffer-
ential of f at x̄ is given as

∂∞f(x̄) = {ξ ∈ R
m : (ξ, 0) ∈ Nepi f (x̄, f(x̄))}.

We will now present Theorem 2.1 in Levy and Mordukhovich [14] in the
form of two lemmas whose application would lead to the necessary optimality
conditions.

Lemma 3.1 Consider the set-valued map S : R
n ⇒ R

m given as follows

S(x) = {y ∈ R
m : 0 ∈ G(x, y) +M(x, y)}, (5)

where G : R
n × R

m → R
d is a smooth vector-valued function and M : R

n ×
R

m ⇒ R
d is a set-valued map with closed graph. Let (x̄, ȳ) ∈ gph S and let

the following qualification condition hold

v ∈ R
d with 0 ∈ ∇G(x̄, ȳ)T v +D∗M((x̄, ȳ)| −G(x̄, ȳ))(v) =⇒ v = 0.

Then one has

D∗S(x̄|ȳ)(y∗) ⊆ {x∗ : ∃v∗ ∈ R
d, (x∗,−y∗) ∈ ∇G(x̄, ȳ)T v∗ +
D∗M((x̄, ȳ)| −G(x̄, ȳ))(v∗)}.

Lemma 3.2 Consider the set-valued map S : R
n ⇒ R

m given in formula
(5) where G : R

n × R
m → R

d is a smooth vector-valued function and M :
R

n × R
m ⇒ R

d is a set-valued map with closed graph. Further assume that
M only depends on y i.e M(x, y) = M(y). Assume that the matrix ∇xG(x̄, ȳ)
has full rank. Then one has

D∗S(x̄|ȳ)(y∗) = {x∗ : ∃v∗ ∈ R
d, x∗ = ∇xG(x̄, ȳ)v∗,

−y∗ = ∇yG(x̄, ȳ)T v∗ +D∗M(ȳ| −G(x̄, ȳ))(v∗)}.
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4 Main Results

In this section we shall present necessary optimality conditions for the two
classes of bilevel programming problems which we have discussed in the pre-
vious sections. First we shall derive necessary optimality conditions for the
problem format defined by (1) in which the lower-level problem is a convex
minimization problem. Then we shall consider the case when K(x) = K for
all x and then move on to the case where the lower-level problem is given in
the form a primal-dual problem. Then we will present a more refined optimal-
ity condition using the second-order subdifferential of the indicator function
which would appear to be a very novel feature. Before we begin let us define
the following set-valued map which can also be called as the normal cone map

NK(x, y) =
{
NK(x)(y) : y ∈ K(x)
∅ : y �∈ K(x)

Theorem 4.1 Consider the problem (P1) given as

min
x,y

F (x, y) subject to (x, y) ∈ gph S,

where F : R
n×R

m → R is a smooth function and S : R
n ⇒ R

m is a set-valued
map denoting the solution set of the problem (LLP) i.e.

S(x) = argmin
y

{f(x, y) : y ∈ K(x)},

where f(x, ·) is a smooth convex function in y for each x and K(x) is a
closed convex set for each x. Let (x̄, ȳ) be a local (or global) solution of (P1).
Further assume that ∇yf : R

n ×R
m → R

m is continuously differentiable. Set
p̄ = ∇yf(x̄, ȳ). Assume also that the following qualification condition holds at
(x̄, ȳ) :

v ∈ R
m with 0 ∈ ∇(∇yf(x̄, ȳ))T v +D∗NK((x̄, ȳ)| − p̄)(v) =⇒ v = 0.

Then there exists v∗ ∈ R
m such that

0 ∈ ∇F (x̄, ȳ) +∇(∇yf(x̄, ȳ))T v∗ +D∗NK((x̄, ȳ)| − p̄)(v∗).

Proof. They key to the proof of this result is Lemma 3.1. To begin with note
that since (LLP) is a convex minimization problem in y for each given x we
can write S(x) equivalently as

S(x) = {y ∈ R
m : 0 ∈ ∇yf(x, y) +NK(x)(y)}.

It is not much difficult to show that the normal cone map has a closed graph.
Since (x̄, ȳ) is a local (or global) solution of the problem (P1) then we have

−∇F (x̄, ȳ) ∈ Ngph S(x̄, ȳ).
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Now by using the definition of the coderivative and then applying Lemma 3.1
we have that there exists v∗ ∈ R

m such that

−∇F (x̄, ȳ) ∈ ∇(∇yf(x̄, ȳ))T v∗ +D∗NK((x̄, ȳ)| − p̄)(v∗).

This proves the result �

We will now apply the above result to bilevel programming

Corollary 4.1 Let us consider the bilevel programming problem (P)

min
x
F (x, y) subject to y ∈ S(x),

where F : R
n × R

n → R is a smooth function and S(x) is the solution set of
the following problem (LLP)

min
y
f(x, y) subject to y ∈ K(x),

where f : R
n × R

m → R is a smooth strictly convex function in y for each x
and K(x) is a compact convex set for each x. Let (x̄, ȳ) be a local solution of
(P). Further assume that ∇yf : R

n×R
m → R

m is continuously differentiable.
Set p̄ = ∇yf(x̄, ȳ). Assume further that the following qualification condition
holds at (x̄, ȳ) :

v ∈ R
m with 0 ∈ ∇(∇yf(x̄, ȳ))T v +D∗NK((x̄, ȳ)| − p̄)(v) =⇒ v = 0.

Then there exists v∗ ∈ R
m such that

0 ∈ ∇F (x̄, ȳ) +∇(∇yf(x̄, ȳ))T v∗ +D∗NK((x̄, ȳ)| − p̄)(v∗).

Proof. By the hypothesis of the theorem for each x the problem (LLP) has
a unique solution. Hence the solution of the problem (P) is also a solution of
(P1). The rest of the proof follows as in Theorem 4.1. �

Corollary 4.2 Let us consider the bilevel programming problem (P)

min
x
F (x, y) subject to y ∈ S(x),

where F : R
n × R

n → R is a smooth function and S(x) is the solution set of
the following problem (LLP)

min
y
f(x, y) subject to y ∈ K(x),

where f : R
n×R

m → R is a smooth convex function in y for each x and K(x)
is a convex set for each x. Further assume that the solution set mapping S is
upper-semicontinuous as a set-valued map. Let x̄ be a local optimistic solution
of (P) and assume that y ∈ S(x) with F (x, y) = ϕ0(x) exists. Further assume
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that ∇yf : R
n × R

m → R
m is continuously differentiable. Set p̄ = ∇yf(x̄, ȳ).

Assume further that the following qualification condition hold at (x̄, ȳ) :

v ∈ R
m with 0 ∈ ∇(∇yf(x̄, ȳ))T v +D∗NK((x̄, ȳ)| − p̄)(v) =⇒ v = 0.

Then there exists v∗ ∈ R
m such that

0 ∈ ∇F (x̄, ȳ) +∇(∇yf(x̄, ȳ))T v∗ +D∗NK((x̄, ȳ)| − p̄)(v∗).

Proof. Our assumptions imply that (x, y) is a local solution of the problem
(P1) due to Proposition 2.1. The rest of the proof follows as in Theorem 4.1.
�

Remark 4.1 An interesting feature in the optimality conditions presented
in the above theorem is the presence of second-order partial derivatives in
the expression of first order optimality conditions. This is essentially due to
presence of the matrix ∇(∇yf(x̄, ȳ)). The presence of second-order partial
derivatives in the first conditions is a hallmark of bilevel programming. Further
note that one can have analogous results for global optimistic solution using
Proposition 2.2 and without any additional assumption on the nature of the
solution set mapping S.

We will now turn to the case when K(x) = K for all x ∈ R
n. In such a case

we have a much simplified qualification condition which amounts to checking
whether a matrix is of full rank.

Theorem 4.2 Consider the problem (P1) given as

min
x,y

F (x, y) subject to (x, y) ∈ gphS,

where F : R
n×R

m → R is a smooth function and S : R
n ⇒ R

m is a set-valued
map denoting the solution set of the problem (LLP) i.e.

S(x) = argmin
y

{f(x, y) : y ∈ K(x)},

where f(x, ·) is a smooth convex function in y for each x and K(x) = K
for all x where K is a fixed closed and convex set. Let us also assume that
the function f is twice continuously differentiable. Let (x̄, ȳ) ∈ gphS be a
solution of problem (P1). Set p̄ = ∇yf(x̄, ȳ). Further assume that the matrix
∇x(∇yf(x̄, ȳ)) = ∇2

xyf(x̄, ȳ) has full rank, i.e.

rank
(
∇2

xyf(x̄, ȳ)
)

= m.

Then there exists v∗ ∈ R
m such that the following conditions hold

i) 0 = ∇xF (x̄, ȳ) +∇2
xyf(x̄, ȳ)v∗

ii) 0 ∈ ∇yF (x̄, ȳ) +∇2
yyf(x̄, ȳ)v∗ +D∗NK(ȳ| − p̄)(v∗).
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Proof. In this particular case when K(x) = K then one can write NK(x, y) =
NK(y). Further the solution set mapping S can also be equivalently written
as

S(x) = {y ∈ R
m : 0 ∈ ∇yf(x, y) +NK(y)}.

Since (x̄, ȳ) solves (P1) we have

−∇F (x̄, ȳ) ∈ Ngph S(x̄, ȳ).

This shows that

−(∇xF (x̄, ȳ),∇yF (x̄, ȳ)) ∈ Ngph S(x̄, ȳ).

Hence by definition of the coderivative we have

−∇xF (x̄, ȳ) ∈ D∗S(x̄|ȳ)(∇yF (x̄, ȳ)).

Now by using Lemma 3.2 we see that there exists v∗ ∈ R
m such that

−∇xF (x̄, ȳ) = ∇2
xyf(x̄, ȳ)v∗

and

−∇yF (x̄, ȳ) ∈ ∇2
yyf(x̄, ȳ)T v∗ +D∗NK(ȳ| − p̄)(v∗).

Hence the result. �

Remark 4.2 The qualification condition that we have used in the above theo-
rem is called the ample parametrization condition in Dontchev and Rockafellar
[11]. However in Dontchev and Rockafellar [11] the proto-derivative of the so-
lution set mapping S is computed. The proto-derivative is the tangent cone
to the graph of S at (x̄, ȳ). Thus the approach due to Dontchev and Rock-
afellar [11] can be used in the dual setting given in terms of the tangent cone.
However as we have noted the approach through coderivatives is essential in
surpassing the computation (a difficult one that too) that is required to com-
pute the normal cone to the graph of S at (x̄, ȳ). Thus the results in Levy and
Mordukhovich [14] will play a very fundamental role in the study of mathe-
matical programming with equilibrium constraints (MPEC) and also bilevel
programming with convex lower-level problems.

It is now easy to observe that the above theorem can be used to deduce
optimality conditions for a bilevel programming problem with a convex lower-
level problem with K(x) = K for all x ∈ R

n if the lower-level problem has a
unique solution or we consider an optimistic solution of the bilevel program-
ming problem. However we are not going to explicitly state the results here
since this can be done as in the corollaries following Theorem 4.1.
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One of the main drawback of the optimality conditions derived above for
problem (P) and (P1) is the presence of the coderivative of the normal cone
mapping. Thus the optimality conditions are more abstract in nature. The
computation of the coderivative of the normal cone map seems to be very
difficult. However by using an approach due to Outrata [18] by using some
different qualification condition we can derive an optimality condition in which
the explicit presence of the coderivative of the normal cone map is not there
though as we will see that it will be implicity present. We now present the
following result.

Theorem 4.3 Consider the problem (P1) given as

min
x,y

F (x, y) subject to (x, y) ∈ gphS,

where F : R
n×R

m → R is a smooth function and S : R
n ⇒ R

m is a set-valued
map denoting the solution set of the problem (LLP) i.e.

S(x) = argmin
y

{f(x, y) : y ∈ K(x)},

where f(x, ·) is a smooth convex function in y for each x and K(x) = K
for all x where K is a fixed closed and convex set. Let us also assume that
the function f is twice continuously differentiable. Let (x̄, ȳ) ∈ gphS be a
local solution of problem (P1). Further assume that the following qualification
condition holds at (x̄, ȳ) :

(w, z) ∈ Ngph Nk
(ȳ,−∇yf(x̄, ȳ)) with

(∇2
xyf(x̄, ȳ))T z = 0, w − (∇2

yyf(x̄, ȳ))T z = 0 =⇒ w = 0, z = 0.

Then there exists a pair (w̄, z̄) ∈ Ngph Nk
(ȳ,−∇yf(x̄, ȳ)) such that

i) ∇xF (x̄, ȳ) = (∇2
xyf(x̄, ȳ))T z̄.

ii) −∇yF (x̄, ȳ) = w̄ − (∇2
yyf(x̄, ȳ))T z̄.

Proof. Observe that according the hypothesis of the theorem the problem
(P1) is equivalent to the following problem (P4)

min
x,y

F (x, y) subject to 0 ∈ ∇yf(x, y) +NK(y).

Now by applying Theorem 3.1 in Outrata [18] we reach our desired conclusion.
�

Observe that the qualification condition in Theorem 4.3 guarantees that
(∇2

xyf(x̄, ȳ))T has full rank which is similar to the qualification condition
appearing in Theorem 4.2. However there is also an extra qualification condi-
tion since we now have two Lagrange multipliers instead of one. Though the
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coderivative does not appear explicitly in the representation of the optimality
condition but the condition (w̄, z̄) ∈ Ngph Nk

(ȳ,−∇yf(x̄, ȳ)) tells us that

w̄ ∈ D∗(ȳ| − ∇yf(x̄, ȳ))(−z̄).

Thus the conditions obtained in Theorem 4.2 are same as that of Theorem
4.3. However the approach due to Outrata [18] seems to have an additional
advantage. This apparent advantage is that we can use Outrata’s approach
even when in the problem x is lying in a proper closed set X of R

m. In such
a situation the problem (P1) gets slightly modified and looks as follows

min
x,y

F (x, y), subject to (x, y) ∈ gphS x ∈ X.

Also note that since NK(y) = ∅, when y �∈ K it is clear that y ∈ K is implied
by 0 ∈ ∇yf(x, y) +NK(y). Thus S(x) can also be written as

S(x) = {y ∈ R
m : 0 ∈ ∇yf(x, y) +NK(y)}

= {y ∈ K : 0 ∈ ∇yf(x, y) +NK(y)}.

Hence S(x) ⊂ K. So when we write the expression for S(x) there is no need
to explicitly write that y ∈ K. Thus when x ∈ X the modified version of the
problem (P1) is equivalent to

min
x,y

F (x, y) subject to 0 ∈ ∇yf(x, y) +NK(y), (x, y) ∈ X × R
m

Hence, if (x̄, ȳ) is a solution of the modified (P1) then it also solves the above
problem. Thus in this scenario the qualification condition in Theorem 3.1 in
Outrata reduces to the following. Consider (w, z) ∈ Ngph Nk

(ȳ,−∇yf(x̄, ȳ)).
Then

((∇2
xyf(x̄, ȳ))T z, w − (∇2

yyf(x̄, ȳ))T z) ∈ NX×Rm(x̄, ȳ) =⇒ w = 0, z = 0.

Then by applying Theorem 3.1 in Outrata [18] we arrive at the conclusion that
there exists a pair (w̄, z̄) ∈ Ngph Nk

(ȳ,−∇yf(x̄, ȳ)) and (γ, 0) ∈ NX×Rm(x̄, ȳ)
such that

i) −∇xF (x̄, ȳ) = −(∇2
xyf(x̄, ȳ))T z̄ + γ .

ii) −∇yF (x̄, ȳ) = w̄ − (∇2
yyf(x̄, ȳ))T z̄.

Note that NX×Rm(x̄, ȳ) = NX(x̄)×NRm(ȳ) (see for example Rockafellar and
Wets [21]). And since NRm(ȳ) = {0}, it is clear that

NX×Rm(x̄, ȳ) = {(γ, 0) : γ ∈ NX(x̄)}.

Further if X = R
n which is the case in Theorem 4.3 one has NRn×Rm(x̄, ȳ) =

{(0, 0)}.
Let us now turn our attention of how to calculate the normal cone to the
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graph of the normal cone mapping associated with a given set K in the lower-
level problem. However if K has some special form then one can have an
explicit expression for Ngph NK

(ȳ, z̄). For example if K = R
m
+ then such an

explicit expression for Ngph NK
(ȳ, z̄) is given by Proposition 3.7 in Ye [24].

The result in Proposition 3.7 in Ye [24] depends on Proposition 2.7 in Ye [25].
In Proposition 2.7 of Ye [25] the normal cone to the graph of the normal cone
mapping NR

m
+

is calculated. Let C ⊂ R
n be a closed set. Then v ∈ R

n is said
to be proximal normal to C at x̄ ∈ C if there exists σ > 0 such that

〈v, x− x̄〉 ≤ σ‖x− x̄‖2

The set of all proximal normals forms a cone called the proximal normal cone
which is denoted by NP

C (x̄). It is also important to note that if C is a closed
set then a normal vector can be realized as a limit of proximal normal vectors.
More precisely if C is closed and v ∈ NC(x̄) then there exist sequences vk → v
and xk → x̄ with vk ∈ NP

C (x̄). It is clear from the definition of the proximal
normal cone that

NP
C (x̄) ⊆ N̂C(x̄) ⊆ NC(x̄).

For more details on the proximal normal cone see for example Clarke, Ledyaev,
Stern and Wolenski [8].
We will now consider the simple case when (x, y) ∈ R

2 and we shall consider
the set K(x) = K = [0, 1] as the feasible set of the lower-level problem. Our
aim is to precisely calculate Ngph NK

(ȳ, z̄). Observe that

NK(y) =

⎧⎨⎩
(−∞, 0] : y = 0
{0} : 0 < y < 1
[0,+∞) : y = 1

It is easy to sketch the graph of the normal cone map NK where K = [0, 1].
The proximal normal cone to gphNK is given as follows.

NP
gph NK

(ȳ, z̄) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−∞, 0]× [0,+∞) : ȳ = 0, z̄ = 0
{0} × R : 0 < ȳ < 1, z̄ = 0
R× {0} : ȳ = 1, z̄ > 0
R× {0} : ȳ = 0, z̄ < 0
[0,+∞)× (−∞, 0] : ȳ = 1, z̄ = 0

Using the fact that the basic normal cone can be obtained as a limit of
the proximal normal cone we obtain the following

Ngph NK
(0, 0) = {(w, v) ∈ R

2 : w < 0, v > 0} ∪ {(w, v) ∈ R
2 : v = 0}

∪{(w, v) ∈ R
2 : w = 0}

and
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Ngph NK
(1, 0) = {(w, v) ∈ R

2 : w > 0, v < 0} ∪ {(w, v) ∈ R
2 : v = 0}

∪{(w, v) ∈ R
2 : w = 0}.

For all other points the basic normal cone coincides with the proximal normal
cone.
We have shown earlier that using the approach of Outrata [18] we are able
to develop optimality conditions for the problem (P1) when x ∈ X and X is
a closed subset of R

n. We would like to remark that by using the conditions
(a), (b) and (c) in Theorem 3.2 of Ye and Ye [26] we can arrive at the same
conditions as we have obtained using Outrata’s approach. However the most
interesting condition in Theorem 3.2 of [26] is (b). In our case this corresponds
to the assumption that for each fixed x ∈ X the function y �→ f(x, y) is
strongly convex. This may actually appear in practical situations.

We will now turn our attention to study the bilevel programming prob-
lem (P2) whose lower-level problem (LLP2) is of a primal-dual nature i.e. a
minimax problem.

Theorem 4.4 Let us consider the problem (P3) given as follows

min
x,y,λ

F (x, y, λ) subject to (x, y, λ) ∈ gph S,

where F : R
n × R

m × R
p → R is a smooth function and the set-valued map

S : R
n ⇒ R

m × R
p is a solution set of the following problem (LLP2)

minimaximizeL(x, y, λ) subject to (y, λ) ∈ Y ×W,

where Y ⊂ R
m and W ∈ R

p are non-empty convex sets and L(x, y, λ) is
convex with respect to y for each (x, λ) ∈ R

n ×W and is concave in λ for
each (x, y) ∈ R

n × Y . Further assume that L(x, y, λ) is a twice continuously
differentiable function. Let (x̄, ȳ, λ̄) be a solution to (P3). Set

p̄ = (∇yL(x̄, ȳ, λ̄),−∇λL(x̄, ȳ, λ̄)).

Further assume that the following qualification condition holds :

rank
[
∇2

xyL(x̄, ȳ, λ̄)|∇2
xλL(x̄, ȳ, λ̄)

]
= m+ p

Then there exists v∗ ∈ R
m+p such that

i) 0 ∈ ∇xF (x, y, λ) +
[
∇2

xyL(x̄, ȳ, λ̄)|∇2
xλL(x̄, ȳ, λ̄)

]
v∗

ii) 0 ∈ ∇(y,λ)F (x̄, ȳ, λ̄) +
[
∇2

yyL(x̄, ȳ, λ̄)|∇2
yλL(x̄, ȳ, λ̄)

]
v∗

+D∗NY ×W ((ȳ, λ̄)| − p̄)(v∗).

Proof. Since (x̄, ȳ, λ̄) is a solution of (P3) then (x̄, ȳ, λ̄) ∈ gphS. Hence from
Proposition 1.4 in Dontchev and Rockafellar [12] we have that

−∇yL(x̄, ȳ, λ̄) ∈ NY (ȳ) and ∇λL(x̄, ȳ, λ̄) ∈ NW (λ̄).
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This is equivalent to the fact that (ȳ, λ̄) is solving the following variational
inequality over Y ×W namely

0 ∈ G(x̄, y, λ) +NY ×W (y, λ),

where

G(x̄, y, λ) = (∇yL(x̄, y, λ),−∇λL(x̄, y, λ)).

The result then follows by direct application of Lemma 3.2. �

It is important to note that all the above optimality conditions are ex-
pressed in terms of the coderivative of the normal cone map. We can however
provide a slightly different reformulation of the optimality conditions by us-
ing the second-order subdifferential of the indicator function. To do this let
us observe that if the lower-level problem (LLP) in (P) is convex then the
solution set mapping S can be equivalently written as follows

S(x) = {y ∈ R
m : 0 ∈ ∇yf(x, y) + ∂yδK(x, y)},

where δK(x, y) = δK(x)(y) denotes the indicator function for the set K(y).
For any function f : R

n → R ∪ {+∞} which is finite at x̄ the second-order
subdifferential of f at (x̄, ȳ) is the coderivative of the subdifferential map i.e.

∂2f(x̄|ȳ)(u) = D∗(∂f)(x̄|ȳ)(u).

Theorem 4.5 Consider the problem (P1) and let (x̄, ȳ) be a local solution of
the problem. Consider that f is a twice continuously differentiable function.
Assume that the following qualification condition holds:

(u, 0) ∈ ∂∞δK(x̄, ȳ) =⇒ u = 0.

Additionally assume that the following qualification condition also holds

0 ∈ ∇2f(x̄, ȳ)T (0, v2) +
⋃

w∈∂δK(x̄,ȳ),proj2 w=−∇yf(x̄,ȳ)

∂2δK((x̄, ȳ)|w)(0, v2)

=⇒ v2 = 0,

where proj2 denotes the projection on R
m. Then there exists v∗2 ∈ R

m and
w̄ ∈ ∂δK(x̄, ȳ) with proj2 w̄ = −∇yf(x̄, ȳ) such that

0 ∈ ∇F (x̄, ȳ) +∇2f(x̄, ȳ)T (0, v∗2) + ∂2δK((x̄, ȳ)|w̄)(0, v∗2).

Proof. The key to the proof of this result is the Corollary 2.2 in Levy and Mor-
dukhovich [14]. As per the Corollary 2.2 in Levy and Mordukhovich [14] the
function δK should satisfy the following properties. First gph∂yδK is closed.
This is true since gph ∂yδK = gphNK and we know that gphNK is closed. Sec-
ond δk should be subdifferentially continuous at (x̄, ȳ) for any v ∈ gphNK .
This is true since the indicator function is subdifferentially continuous (see
Rockafellar and Wets [21] pages 610-612). Now the result follows by a direct
application of Corollary 2.2 in [14] �
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Optimality criteria for bilevel programming
problems using the radial subdifferential

D. Fanghänel

Technical University Bergakademie Freiberg, Akademiestraße 6, 09596 Freiberg,
Germany difang@math.tu-freiberg.de

Summary. The discrete bilevel programming problems considered in this paper
have discrete parametric lower level problems with linear constraints and a strongly
convex objective function. Using both the optimistic and the pessimistic approach
this problem is reduced to the minimization of auxiliary nondifferentiable and gen-
erally discontinuous functions. To develop necessary and sufficient optimality con-
ditions for the bilevel problem the radial-directional derivative and the radial sub-
differential of these auxiliary functions are used.

Key words: Bilevel programming, necessary and sufficient optimality con-
ditions, discrete parametric optimization, minimization of discontinuous func-
tions, radial-directional derivative.

1 Introduction

Bilevel programming problems are hierarchical optimization problems where
the constraints of one problem (the so-called upper level problem) are defined
in part by a second parametric optimization problem (the lower level problem)
[1, 2]. These problems occur in a large variety of practical situations [3]. Many
approaches are known to attack continuous bilevel programming problems.
But, the number of references for bilevel programming problems with discrete
variables is rather limited. Focus in the paper [15] is on existence of optimal
solutions for problems which have discrete variables in the upper resp. the
lower level problems. Solution algorithms have been developed in [5, 8, 9, 16].
The position of constraints in the upper resp. in the lower level problems is
critical. The implications of and gains obtained from shifting a 0-1 variable
from the lower to the upper level problems have been investigated in [4].

Focus in this paper is on optimality conditions for bilevel programming
problems with discrete variables in the lower level problem. Verification of
optimality conditions for continuous linear problems is NP–hard [14] even if

 pp. ,Optimization with Multivalued MappingsS. Dempe and V. Kalashnikov (eds.),
Media, LLC©2006 Springer Science + Business
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the optimal solution of the lower level problem is unique for all upper level
variable values.

If the lower level problems may have nonunique optimal solutions, useful
concepts are the optimistic and the pessimistic approaches. Both concepts
lead to the minimization of a discontinuous auxiliary function ϕ. In the case
of a linear bilevel programming problem, this function is a generalized PC1–
function and the formulation of optimality conditions can be based on the
radial-directional derivative [2, 6].

In this paper a similar approach is investigated for discrete bilevel pro-
gramming problems.

The outline of the paper is as follows. In Section 2 the investigated bilevel
program is formulated and some introductory examples are given. Structural
properties of the solution set mapping of the lower level problem are investi-
gated in Section 3. In Sections 4 and 5 focus is on properties of the auxiliary
function ϕ. Optimality conditions using the radial-directional derivative of the
function ϕ are developed in Section 6, and in Section 7 the same is done by
the help of the radial subdifferential of the function ϕ.

Throughout this paper the gradient of a function is the row vector of the
partial derivatives. Further we will use the abbreviation {zk} for a sequence
{zk}∞k=1 if this will not cause any confusion. The abbreviations clA, intA and
relintA will be used for the closure, the interior an the relative interior of a
set A.

2 A bilevel problem with discrete lower level

In this paper we consider the following bilevel programming problem⎧⎪⎨⎪⎩
min{g(x, y) : y ∈ Y, x ∈ ΨD(y)}

ΨD(y) = argmin
x

{f(x, y) : x ∈ SD}
(1)

with the following requirements:

1. Y ⊆ R
n is convex, closed and intY �= ∅.

2. f(x, y) = F (x)− y�x with F : R
n → R being differentiable and strongly

convex [10] with modulus θ > 0, i.e. for all x, x0 ∈ R
n it holds

F (x) ≥ F (x0) +∇F (x0)(x− x0) + θ‖x− x0‖2.

3. g(x, y) is continuously differentiable with respect to y.
4. The set SD ⊆ R

n is required to be nonempty and discrete, i.e. there exists
some ω > 0 with ‖x− x′‖ ≥ ω for all x, x′ ∈ SD, x �= x′.
SD denotes the set of all feasible solutions of the lower level problem.
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Thus, the problem under consideration is continuous in the upper level
and discrete with some special structure in the lower level.

In general the solution of the lower level is not unique. This causes some
uncertainty in the definition of the upper level objective function [2]. Thus,
instead of g(x, y), we will investigate the following functions

ϕo(y) = min
x∈ΨD(y)

g(x, y), (2)

ϕp(y) = max
x∈ΨD(y)

g(x, y). (3)

The function ϕo(y) is called optimistic solution function and ϕp(y) pessimistic
solution function. While most of the papers on bilevel programming with
possible nonunique lower level solutions investigate (implicitly) the optimistic
approach (see e.g. [1] and the references therein), focus for instance in the
paper [11] is on the pessimistic approach and both approaches have been
compared in [12]. A local optimal solution of the optimististic/pessimistic
solution function is a local optimistic/pessimistic solution of (1).

In this paper we investigate necessary and sufficient conditions under which
some point y0 ∈ Y is a local optimistic/pessimistic solution of (1).

We will use the notation ϕ(y) if the statement holds for both ϕo(y) and
ϕp(y).

For our considerations the so-called regions of stability are very important.
They are defined as follows.

Definition 2.1 Let x0 ∈ SD. Then the set

R(x0) = {y ∈ R
n : f(x0, y) ≤ f(x, y) for all x ∈ SD}

= {y ∈ R
n : x0 ∈ ΨD(y)}

is called region of stability for the point x0.

Thus the set R(x0) denotes the set of all parameters for which the point
x0 is optimal.

To make the subject more clear consider the following example.

Example 2.1

min{sin(xy) : y ∈ [0, 5], x ∈ ΨD(y)}

ΨD(y) = argmin
x

{
1
2
x2 − xy : 0 ≤ x ≤ 5, x ∈ Z

}
Since the upper level objective function is continuous on the regions of

stability the latter ones can be seen in figure 1. Formally the regions of stability
are

R(0) = (−∞, 0.5], R(1) = [0.5, 1.5], R(2) = [1.5, 2.5], R(3) = [2.5, 3.5],
R(4) = [3.5, 4.5] and R(5) = [4.5,∞).
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Using the definitions of the optimistic and pessimistic solution functions
at the intersection points of the regions of stability, we get

ϕo(y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 y ≤ 0.5
sin(y) 0.5 < y < 1.5
sin(2y) 1.5 ≤ y ≤ 2.5
sin(3y) 2.5 < y ≤ 3.5
sin(4y) 3.5 < y ≤ 4.5
sin(5y) y > 4.5

ϕp(y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 y < 0.5
sin(y) 0.5 ≤ y ≤ 1.5
sin(2y) 1.5 < y < 2.5
sin(3y) 2.5 ≤ y < 3.5
sin(4y) 3.5 ≤ y < 4.5
sin(5y) y ≥ 4.5 .

Fig. 1. Solution function ϕ for example 1

As it can be seen in figure 1 the local optimal solutions of ϕo are

y ∈ [0, 0.5], y =
3π
4
, y = 3.5, y =

11π
8
, y =

3π
2

and
y ∈ [0, 0.5), y =

3π
4
, y =

11π
8
, y =

3π
2

are the local optimal solutions of ϕp. �

In Example 2.1 the optimistic and the pessimistic solution functions are
not continuous but rather selections of finitely many continuously differen-
tiable functions.
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3 Some remarks on the sets ΨD(y) and R(x)

In this section we want to derive some properties of the sets ΨD(y) and R(x)
which we will need later.

Lemma 3.1 For each x0 ∈ SD the set R(x0) is a closed convex set with
∇F (x0)� in its interior.

Proof. Let x0 ∈ SD. Then for all y ∈ R(x0) it holds f(x0, y) ≤ f(x, y) for all
x ∈ SD and therefore

(x− x0)�y ≤ F (x)− F (x0) ∀x ∈ SD.

Thus, R(x0) corresponds to the intersection of (maybe infinitely many) half-
spaces. This implies that R(x0) is convex and closed.

Now we want to show that ∇F (x0)� ∈ intR(x0). Since F : R
n → R is

strongly convex there exists some θ > 0 with F (x) ≥ F (x0) + ∇F (x0)(x −
x0) + θ‖x− x0‖2 for all x ∈ R

n.
Consider y = ∇F (x0)� + αh with h ∈ R

n, ‖h‖ = 1 and α ∈ [0, θω].
Then, for all x ∈ SD, x �= x0, the following sequence of inequalities is valid
by ‖x− x0‖ ≥ ω for x �= x0:

F (x) ≥ F (x0) +∇F (x0)(x− x0) + θ‖x− x0‖2

= F (x0) + y�(x− x0)− αh�(x− x0) + θ‖x− x0‖2

≥ F (x0) + y�(x− x0)− α‖x− x0‖+ θ‖x− x0‖2

≥ F (x0) + y�(x− x0) + (θω − α)‖x− x0‖
≥ F (x0) + y�(x− x0).

Thus we obtain (∇F (x0)�+αh) ∈ R(x0) for all α ∈ [0, θω], i.e. the assumption
holds. �

Lemma 3.2 1. For each y ∈ R
n the set ΨD(y) has finite cardinality.

2. If y0 ∈ intR(x0) for some x0 ∈ SD, then ΨD(y0) = {x0}.
3. Let some point y0 ∈ R

n be given. Then there exists a positive real number
ε > 0 such that ΨD(y) ⊆ ΨD(y0) for all y ∈ Uε(y0) = {y : ‖y − y0‖ < ε}.

Proof. 1. If SD = ∅ the assumption holds obviously. Assume that SD �= ∅
and take a point x0 ∈ SD. Let an arbitrary y ∈ R

n be given. Then for all
x ∈ ΨD(y) it holds

F (x)− y�x ≤ F (x0)− y�x0

implying

F (x0) +∇F (x0)(x− x0) + θ‖x− x0‖2 ≤ F (x0) + y�(x− x0)

for some θ > 0 since F is strongly convex. Thus,
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θ‖x− x0‖2 ≤ (y� −∇F (x0))(x− x0) ≤ ‖y −∇F (x0)�‖‖x− x0‖

‖x− x0‖ ≤ 1
θ
‖y −∇F (x0)�‖.

Therefore ΨD(y) has finite cardinality.
2. The inclusion y0 ∈ intR(x0) implies {x0} ⊆ ΨD(y0) by definition. To

prove the opposite direction assume that there exists a point x ∈ ΨD(y0),
x �= x0. Then,

F (x)− y0�x = F (x0)− y0�x0

F (x)− F (x0) = y0�(x− x0) > ∇F (x0)(x− x0)

since F is strongly convex. Due to y0 ∈ intR(x0) there exists some ε > 0
such that
y := y0 + ε(y0 −∇F (x0)�) ∈ R(x0). Now we obtain

f(x0, y) = F (x0)− y�x0 = F (x)− y�x0 − y0�(x− x0)
= f(x, y) + (y − y0)�(x− x0)

= f(x, y) + ε(y0� −∇F (x0))(x− x0) > f(x, y)

which is a contradiction to y ∈ R(x0).
3. Assume that the assertion does not hold. Then there exist sequences

{yk}∞k=1 with yk → y0, k →∞, and {xk}∞k=1 with xk ∈ ΨD(yk)

but xk /∈ ΨD(y0) for all k.
Thus, for fixed x0 ∈ SD, it holds

F (xk)− yk�xk ≤ F (x0)− yk�x0

F (x0) +∇F (x0)(xk − x0) + θ‖xk − x0‖2 ≤ F (x0) + yk�(xk − x0)

‖xk − x0‖ ≤ ‖yk −∇F (x0)�‖
θ

.

This yields

‖xk − x0‖ ≤ ‖yk − y0‖
θ︸ ︷︷ ︸
→0

+
‖y0 −∇F (x0)�‖

θ
,

i.e. {xk} is bounded and has finitely many elements. Therefore we can
assume that all xk are equal, i.e. ∃x ∈ SD with x ∈ ΨD(yk) ∀k but
x /∈ ΨD(y0).
That means yk ∈ R(x) ∀k but y0 /∈ R(x). This is a contradiction to
Lemma 3.1.

�
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4 Basic properties of ϕ(y)

In this section we want to show first that for each y0 ∈ R
n there exists some

ε > 0 such that in the neighborhood Uε(y0) the optimistic/pessimistic solution
function is a selection of finitely many continuously differentiable functions.
Further, for this special ε > 0 we will investigate the support set

Yx(y0) := {y ∈ Uε(y0) ∩R(x) : g(x, y) = ϕ(y)}

and its contingent cone

Tx(y0) := {r : ∃{ys} ⊆ Yx(y0) ∃{ts} ⊆ R+ with

ys → y0, ts ↓ 0, lim
s→∞

ys − y0

ts
= r}.

That means, Yx(y0) is the set of all y ∈ Uε(y0) for which both x ∈ ΨD(y)
and g(x, y) = ϕ(y) hold for a fixed point x ∈ SD. Properties of these sets are
essential for the investigation of generalized PC1–functions (in short: GPC1–
functions) in the paper [6] leading to optimality conditions for linear bilevel
programming problems in [2]. The following two theorems show that the ob-
jective functions in the two auxiliary problems (2) and (3) have many proper-
ties of GPC1–functions, but they are not GPC1–functions as it is shown by
Example 4.1 below.

Theorem 4.1 For the function ϕ and each y0 ∈ R
n it holds:

1. There exists an open neighborhood Uε(y0) of y0 and a finite number of
points x ∈ ΨD(y0) with

ϕ(y) ∈ {g(x, y)}x∈ΨD(y0) ∀y ∈ Uε(y0).

2. intYx(y0) = Uε(y0) ∩ intR(x) and Yx(y0) ⊆ cl intYx(y0) for x, y0 ∈ R
n.

3. Tx(y0) ⊆ cl intTx(y0) for y0 ∈ R(x).

Proof. Let an arbitrary y0 ∈ R
n be given.

1.) Because of Lemma 3.2, ΨD(y0) has finite cardinality and there ex-
ists some ε > 0 with ΨD(y0) ⊇ ΨD(y) for all y ∈ Uε(y0). With ϕ(y) ∈
{g(x, y)}x∈ΨD(y) it follows ϕ(y) ∈ {g(x, y)}x∈ΨD(y0) ∀y ∈ Uε(y0).

2.) Let ȳ ∈ intYx(y0). Then there exists some δ > 0 with Uδ(ȳ) ⊆ Yx(y0).
Thus, ȳ ∈ Uε(y0) and Uδ(ȳ) ⊆ R(x), i.e. ȳ ∈ Uε(y0) ∩ intR(x).

Let ȳ ∈ Uε(y0) ∩ intR(x). Then there exists some δ > 0 with Uδ(ȳ) ⊆
Uε(y0) and Uδ(ȳ) ⊆ intR(x). From Lemma 3.2 it follows ΨD(y) = {x} ∀y ∈
Uδ(ȳ). Thus, ϕ(y) = g(x, y) ∀y ∈ Uδ(ȳ), i.e. y ∈ Yx(y0) ∀y ∈ Uδ(ȳ). Therefore,
ȳ ∈ intYx(y0). This implies the first equation of part 2.

Now let ȳ ∈ Yx(y0). This means ȳ ∈ R(x), ȳ ∈ Uε(y0) and ϕ(ȳ) = g(x, ȳ).
Since R(x) is convex with nonempty interior (cf. Lemma 3.1) there exists
some sequence {yk} ∈ intR(x) with yk → ȳ, k →∞. W.l.o.g. we can further
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assume that yk ∈ Uε(y0) ∀k. Consequently, yk ∈ intYx(y0) ∀k and thus
ȳ ∈ cl intYx(y0).

3.) Let an arbitrary r ∈ Tx(y0) be given. Then there exist sequences {ys} ⊆
Yx(y0) and {ts} ⊆ R+ with ys → y0, ts ↓ 0 and lim

s→∞
ys−y0

ts
= r. We can assume

w.l.o.g. that ts ∈ (0, 1) ∀s.
Take any ỹ ∈ intYx(y0) and let ŷs := tsỹ + (1 − ts)y0 = y0 + ts(ỹ − y0).

Then, lims→∞ ŷs = y0 and ŷs−y0

ts
= ỹ − y0 =: r̃ ∀s. Since R(x) is convex it

follows easily that ŷs ∈ intYx(y0) ∀s and r̃ ∈ intTx(y0).
Now consider zs

λ := λys + (1− λ)ŷs with λ ∈ (0, 1). Since R(x) is convex
and ŷs ∈ intYx(y0) it follows zs

λ ∈ intYx(y0) ∀λ ∀s. Then it holds zs
λ → y0

for s → ∞ and lim
s→∞

zs
λ−y0

ts
= λr + (1 − λ)r̃ =: rλ ∈ Tx(y0) for all λ ∈ (0, 1).

Moreover, rλ → r for λ→ 1.
Now, from zs

λ ∈ intYx(y0) it follows easily that zs
λ − y0 ∈ intTx(y0) and

thus zs
λ−y0

ts
∈ intTx(y0) ∀s ∀λ ∈ (0, 1).

Hence, rλ ∈ cl intTx(y0) ∀λ ∈ (0, 1). This together with rλ → r for λ → 1
implies r ∈ cl cl intTx(y0) = cl intTx(y0). �

Theorem 4.2 intTx1(y0) ∩ intTx2(y0) = ∅ for all x1, x2 ∈ ΨD(y0), x1 �=
x2.

Proof. Let r ∈ Tx1(y0)∩Tx2(y0) be arbitrary. Due to r ∈ Tx1(y0) there exists
sequences {ys} ⊆ Yx1(y0), ys → y0 and {ts}, ts ↓ 0 with rs := ys−y0

ts
→ r.

From ys ∈ Yx1(y0) ∀s it follows ys ∈ R(x1) ∀s, i.e. F (x1) − ys�x1 ≤
F (x2)−ys�x2. Since x1, x2 ∈ ΨD(y0) it holds F (x1)−y0�x1 = F (x2)−y0�x2.
Hence,

ys�(x1 − x2) ≥ F (x1)− F (x2) = y0�(x1 − x2)
(ys − y0)�(x1 − x2) ≥ 0 ∀s

rs�(x1 − x2) ≥ 0 ∀s.
With rs → r this yields r�(x1 − x2) ≥ 0.

From r ∈ Tx2(y0) it follows analogously (x1 − x2)�r ≤ 0. Therefore it holds

(x2 − x1)�r = 0 for all r ∈ Tx1(y0) ∩ Tx2(y0).

Assume that there exists some r ∈ intTx1(y0) ∩ intTx2(y0). Then for all
t ∈ R

n, ‖t‖ = 1 there exists a real number δ > 0 with r+δt ∈ Tx1(y0)∩Tx2(y0),
i.e.

(x2 − x1)�(r + δt) = 0
δ(x2 − x1)�t = 0
(x2 − x1)�t = 0 ∀t

and therefore x1 = x2. �
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Next we show that the function ϕ is not a GPC1-function (cf. [2],[6]). For
GPC1-functions one requires additionally to the results in the Theorems 4.1
and 4.2 that there exists a number δ > 0 such that for all r ∈ Tx1(y0)∩Tx2(y0),
‖r‖ = 1, x1 �= x2 some t0 = t(r) ≥ δ can be found with y0 + tr ∈ Yx1(y0) or
y0 + tr ∈ Yx2(y0) ∀t ∈ (0, t0). We will show that the functions ϕ usually do
not have this property.

Example 4.1 Consider the lower level problem in (1) with the feasible set
SD = {x1 = (0, 0, 0)�, x2 = (1, 0, 0)�, x3 = (0, 1, 0)�} and f(x, y) = 1

2x
�x −

x�y. Then we obtain the following regions of stability:

R(x1) = {y ∈ R
3 : y1 ≤ 1/2, y2 ≤ 1/2}

R(x2) = {y ∈ R
3 : y1 ≥ 1/2, y2 ≤ y1}

R(x3) = {y ∈ R
3 : y2 ≥ 1/2, y2 ≥ y1}.

Let g(x, y) = (1/2,−1, 0)�x be the objective function of the upper level prob-
lem. Then,

ϕo(y) =

⎧⎨⎩
−1 y ∈ R(x3)
0 y ∈ R(x1)\R(x3)
1/2 else

.

Set r = (0, 0, 1)� and y0 = (1/2, 1/2, 0)�.
Further, y1(ε) := (1/2− ε2, 1/2− ε2, ε+ ε2)� ∈ Yx1(y0) ∀ε > 0. Then

lim
ε→0

y1(ε) = (1/2, 1/2, 0)� = y0,

lim
ε→0

y1(ε)− y0

ε
= lim

ε→0
(−ε,−ε, 1 + ε)� = r, i.e. r ∈ Tx1(y0).

Analogously y2(ε) := (1/2 + ε2, 1/2, ε+ ε2)� ∈ Yx2(y0) ∀ε > 0. Then

lim
ε→0

y2(ε) = (1/2, 1/2, 0)� = y0,

lim
ε→0

y2(ε)− y0

ε
= lim

ε→0
(ε, 0, 1 + ε)� = r, i.e. r ∈ Tx2(y0).

Therefore, r ∈ Tx1(y0) ∩ Tx2(y0), ‖r‖ = 1, x1 �= x2 but ϕo(y0 + tr) = −1 <
g(xi, y0 + tr), i = 1, 2, ∀t > 0, i.e. y0 + tr /∈ Yx1(y0) and y0 + tr /∈ Yx2(y0) for
all t > 0. �

Until now the description of the contingent cones has been more theore-
tical. Thus, for calculation we will need some better formula. In [10] many
statements are given concerning contingent cones to closed convex sets. But,
in general the sets Yx(y0) are neither convex nor closed. Using

Tx(y0) ⊆ cl{r ∈ R
n : ∃t0 > 0 with y0 + tr ∈ Yx(y0) ∀t ∈ [0, t0]}

we obtain the following Lemma:
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Lemma 4.1 Let x̄ ∈ ΨD(y0). Then it holds

Tx̄(y0) = {r ∈ R
n : 0 ≤ (x̄− x)�r ∀x ∈ ΨD(y0)}.

Proof. Let r ∈ Tx̄(y0). Then there exists some sequence {rk} with

lim
k→∞

rk = r and y0 + trk ∈ R(x̄) for all k

if t > 0 is sufficiently small. Hence,

F (x̄)− (y0 + trk)�x̄ ≤ F (x)− (y0 + trk)�x ∀x ∈ SD

F (x̄)− y0�x̄− trk�x̄ ≤ F (x)− y0�x− trk�x ∀x ∈ SD.

On the other hand it holds F (x̄)− y0�x̄ = F (x)− y0�x ∀x ∈ ΨD(y0). Thus,
rk�(x̄ − x) ≥ 0 ∀k ∀x ∈ ΨD(y0). Consequently it holds r�(x̄ − x) ≥ 0 ∀x ∈
ΨD(y0).

Let 0 ≤ (x̄− x)�r ∀x ∈ ΨD(y0). Then it holds

F (x̄)− (y0 + tr)�x̄ ≤ F (x)− (y0 + tr)�x ∀x ∈ ΨD(y0) ∀t ≥ 0.

Further there exists some ε > 0 with ΨD(y) ⊆ ΨD(y0) ∀y ∈ Uε(y0). Thus, for
all t ∈ (0, ε/‖r‖) it holds F (x̄) − (y0 + tr)�x̄ ≤ F (x) − (y0 + tr)�x ∀x ∈
ΨD(y0 + tr), i.e. y0 + tr ∈ R(x̄) ∀t ∈ (0, ε/‖r‖). Now we will show that
r ∈ Tx̄(y0). Let ỹ = y0 + t0r for some fixed t0 ∈ (0, ε/‖r‖). Since R(x̄) is
convex with nonempty interior there exists some sequence {ys} ∈ intR(x̄)
with ys → ỹ, s → ∞ and ys ∈ Uε(y0). Then it holds (ys − y0)λ + y0 ∈
intYx̄(y0) ∀λ ∈ (0, 1) ∀s. Consequently, ys− y0 ∈ Tx̄(y0) ∀s. Since Tx̄(y0) is a
closed cone and ỹ − y0 = lim

s→∞
ys − y0 it follows ỹ − y0 = t0r ∈ Tx̄(y0), i.e. it

holds r ∈ Tx̄(y0). �

Consequently, the cones Tx(y0) are polyhedral cones with nonempty inte-
rior for all x ∈ ΨD(y0).

5 The radial-directional derivative

In the following we formulate criteria for local optimality. For this we want
to use the radial-directional derivative which was introduced by Recht [13].
Such kind of considerations have even been done for GPC1-functions [2, 6].
But as shown, although our functions ϕ have some properties in common with
GPC1-functions they are in general not GPC1-functions.

Definition 5.1 Let U ⊆ R
n be an open set, y0 ∈ U and ϕ : U → R. We say

that ϕ is radial-continuous at y0 in direction r ∈ R
n, ‖r‖ = 1, if there exists

a real number ϕ(y0; r) such that
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lim
t↓0

ϕ(y0 + tr) = ϕ(y0; r).

If the radial limit ϕ(y0; r) exists for all r ∈ R
n, ‖r‖ = 1, ϕ is called radial-

continuous at y0.
ϕ is radial-directionally differentiable at y0, if there exists a positively ho-

mogeneous function dϕy0 : R
n → R such that for all r ∈ R

n, ‖r‖ = 1 and all
t > 0 it holds

ϕ(y0 + tr)− ϕ(y0; r) = tdϕy0(r) + o(y0, tr)

with limt↓0 o(y0, tr)/t = 0. Obviously, dϕy0 is uniquely defined and is called
the radial-directional derivative of ϕ at y0.

Theorem 5.1 Both the optimistic solution function ϕo and the pessimistic
solution function ϕp are radial-continuous and radial-directionally differen-
tiable.

Proof. Consider y0 and some direction r ∈ R
n, ‖r‖ = 1. Further let

Ir(y0) := {x ∈ ΨD(y0) : ∀ε > 0 ∃t ∈ (0, ε) with y0 + tr ∈ Yx(y0)}
and G(y0 + tr) := min

x∈Ir(y0)
g(x, y0 + tr).

Since ΨD(y0) has finite cardinality and the sets R(x) are convex it holds
ϕo(y0 + tr) = G(y0 + tr) for all sufficiently small real numbers t > 0. Since
the function G(·) is the minimum function of finitely many continuously dif-
ferentiable functions it is continuous and quasidifferentiable (cf. [7]) and thus
directionally differentiable in t = 0. Therefore the limits

lim
t↓0

G(y0 + tr) = G(y0) and lim
t↓0

G(y0 + tr)−G(y0)
t

= G′(y0; r)

exist. Moreover, since for all x ∈ Ir(y0) it exists some sequence {tk} ↓ 0 :
y0 + tkr ∈ Yx(y0) and

lim
t↓0

G(y0 + tr) = lim
k→∞

G(y0 + tkr) = lim
k→∞

g(x, y0 + tkr) = g(x, y0)

we derive

ϕo(y0; r) = lim
t↓0

G(y0 + tr) = G(y0) = g(x, y0) ∀x ∈ Ir(y0). (4)

Concerning the radial-directional derivative we obtain

dϕoy0(r) = lim
t↓0

ϕo(y0 + tr)− ϕo(y0; r)
t

= lim
t↓0

G(y0 + tr)−G(y0)
t

= ∇yg(x, y0)r ∀x ∈ Ir(y0) (5)

since g is continuously differentiable with respect to y.
For ϕp(y) we can prove the assertions analogously. �
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Example 5.1 Let some feasible set SD = {x1 = (0, 0)�, x2 = (0, 1)�, x3 =
(−1, 0)�} be given with functions f(x, y) = 1

2x
�x− x�y and

g(x, y) = x1 + x2 ·
{
y3
1 sin 1

y1
y1 > 0

0 y1 ≤ 0 .

Then the function g(x, y) is continuously differentiable with respect to y. The
regions of stability are

R(x1) = {y ∈ R
2 : y1 ≥ −0.5, y2 ≤ 0.5}

R(x2) = {y ∈ R
2 : y1 + y2 ≥ 0, y2 ≥ 0.5}

R(x3) = {y ∈ R
2 : y1 ≤ −0.5, y1 + y2 ≤ 0}.

Let y0 = (0, 1
2 )� and r = (1, 0)�. Then Ir(y0) = {x1, x2} for both the opti-

mistic and the pessimistic solution function. Thus it holds

ϕo(y0; r) = ϕp(y0; r) = g(x1, y0) = g(x2, y0) = 0

and
ϕoy0(r) = ϕpy0(r) = ∇yg(xi, y0)r, i = 1, 2.

Further it holds ϕo(y0) = ϕp(y0) = 0. Remarkable in this example is the
fact that for all ε > 0 there exists some t ∈ (0, ε) with either ϕ(y0 + tr) �=
g(x1, y0 + tr) or ϕ(y0 + tr) �= g(x2, y0 + tr).

Now let ȳ = (− 1
2 ,

1
2 )� and r = (−1, 1)�. Then, for the optimistic solution

function it holds

Ir(ȳ) = {x3} and ϕo(ȳ) = ϕo(ȳ; r) = −1

and for the pessimistic solution function it holds

Ir(ȳ) = {x2} and ϕp(ȳ) = ϕp(ȳ; r) = 0.

Considering the direction r = (0, 1) we obtain Ir(ȳ) = {x2} and ϕ(ȳ; r) = 0
for both the optimistic and the pessimistic case, but ϕo(ȳ) = −1 �= 0 = ϕp(ȳ).

�

Lemma 5.1 For all y0 ∈ R
n and for all r ∈ R

n it holds:

1. ϕo(y0) ≤ ϕo(y0; r)
2. ϕp(y0) ≥ ϕp(y0; r)

Proof. Assume there exists some y0 and some r with ϕo(y0) > ϕo(y0; r). Then
from Ir(y0) ⊆ ΨD(y0) and the proof of Theorem 5.1 it follows that there exists
some x ∈ ΨD(y0) with ϕo(y0; r) = g(x, y0). Hence, ϕo(y0) > g(x, y0) for some
x ∈ ΨD(y0). This is a contradiction to the definition of ϕo.

The proof for ϕp is similar. �
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6 Optimality criteria based on the radial-directional
derivative

Let locmin{ϕ(y) : y ∈ Y } denote the set of all local minima of the function
ϕ(·) over the region Y ⊆ R

n.

Theorem 6.1 It holds

locmin{ϕp(y) : y ∈ R
n} ⊆ locmin{ϕo(y) : y ∈ R

n} .

Proof. Arguing by contradiction we assume that there is some y0 with
y0 ∈ locmin{ϕp(y) : y ∈ R

n} but y0 /∈ locmin{ϕo(y) : y ∈ R
n}. Then there

exists some sequence {yk} ⊆ R
n with yk → y0, k →∞ and ϕo(yk) < ϕo(y0).

Since ΨD(y0) has finite cardinality and ΨD(y0) ⊇ ΨD(y) for all y in a neigh-
borhood of y0 we can assume w.l.o.g. that there exists some x ∈ ΨD(y0)
with x ∈ ΨD(yk) and ϕo(yk) = g(x, yk) ∀k, i.e. yk ∈ Yx(y0) ∀k. Since g(x, ·)
is differentiable with respect to y and Yx(y0) ⊆ cl int Yx(y0) we can fur-
ther assume that yk ∈ int Yx(y0) ∀k. Thus it holds ΨD(yk) = {x} ∀k, i.e.
ϕo(yk) = ϕp(yk) = g(x, yk) ∀k. Consequently,

ϕp(yk) = ϕo(yk) < ϕo(y0) ≤ ϕp(y0) ∀k.

This is a contradiction to y0 ∈ locmin{ϕp(y) : y ∈ R
n}. �

Thus, if Y = R
n and we know that some point y0 is a local pessimistic

solution then clearly y0 is a local optimistic solution, too.
Further, for y ∈ intY and y ∈ locmin{ϕp(y) : y ∈ Y } it follows analo-

gously that y ∈ locmin{ϕo(y) : y ∈ Y }. As the next example will show we
indeed need the condition y ∈ intY .

Example 6.1 Let

SD = {(0, 1)�, (0,−1)�},
Y = {y ∈ R

2 : y2 ≥ 0},

f(x, y) =
1
2
x�x− x�y and

g(x, y) = x2y
2
1 + y2.

Then it holds for y ∈ Y

ϕp(y) = y2
1 + y2 and ϕo(y) =

{
y2
1 + y2 if y2 > 0

−y2
1 + y2 if y2 = 0 .

Thus, y0 = (0, 0)� is a local pessimistic but not a local optimistic solution.
Moreover, y0 is a global pessimistic solution. Some local optimistic solution
does not exist. �
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For further considerations we will need the contingent cone of the set Y .
For each given point y0 ∈ Y this cone is defined as follows:

TY (y0) := {r ∈ R
n : ∃{ys} ⊆ Y ∃{ts} ↓ 0 : ys → y0, s→∞,

with lim
s→∞

ys − y0

ts
= r}.

The set TY (y0) is a convex, closed, nonempty cone [10]. Since Y is convex
it holds

TY (y0) = cl TY (y0)

with
TY (y0) = {r ∈ R

n : ∃t0 > 0 with y0 + tr ∈ Y ∀t ∈ [0, t0]}.

Theorem 6.2 Let y0 ∈ R
n and let ϕ : R

n → R denote the optimistic or the
pessimistic solution function. Then y0 /∈ locmin{ϕ(y) : y ∈ Y } if there exists
some r ∈ TY (y0), ‖r‖ = 1, such that one of the following conditions 1,2 is
satisfied:

1. dϕy0(r) < 0 and ϕ(y0; r) = ϕ(y0)
2. ϕ(y0; r) < ϕ(y0)

Proof. Let the vector r0 ∈ TY (y0) with ‖r0‖ = 1 satisfy condition 1. That
means dϕy0(r) = limt↓0 t

−1(ϕ(y0 + tr0) − ϕ(y0; r0)) < 0. Then there exists
some t′ ∈ (0, t0) such that ϕ(y0+tr0) < ϕ(y0; r0) and y0+tr0 ∈ Y ∀t ∈ (0, t′).
Because of ϕ(y0; r0) = ϕ(y0) we have ϕ(y0 + tr0) < ϕ(y0) and y0 + tr0 ∈ Y
for all t ∈ (0, t′). Thus, y0 cannot be a local minimum of ϕ.

Now let the vector r0 ∈ TY (y0) with ‖r0‖ = 1 satisfy condition 2. Then it
holds

ϕ(y0)− ϕ(y0; r0) = ϕ(y0)− lim
t↓0

ϕ(y0 + tr0) > 0.

Hence there exists some t′ ∈ (0, t0) such that y0 + tr0 ∈ Y and ϕ(y0) >
ϕ(y0 + tr0) for all t ∈ (0, t′). Thus, y0 cannot be a local minimum of ϕ. �

Since dϕy0(·) is not continuous it is indeed necessary to consider only the
set TY (y0). The consideration of TY (y0) would not lead to correct results as
we will see in the next example.

Example 6.2 Let

SD = {(−1, 0)�, (1, 0)�},
Y = {y ∈ R

2 : (y1 − 1)2 + y2
2 ≤ 1},

f(x, y) =
1
2
x�x− x�y and

g(x, y) = (x1 + 1)(y2
1 + y2

2) + (x1 − 1)y2.
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Then TY (y0) = {y ∈ R
2 : y1 ≥ 0} and for r0 = (0, 1)� it holds ϕo(y0) =

ϕo(y0; r0) = 0 and dϕoy0(r0) = −2 < 0. Thus, condition 1 is satisfied for ϕo

and r0 but y0 = (0, 0)� is a global optimistic and pessimistic optimal solution.
�

Specifying the conditions of Theorem 6.2 by using Lemma 5.1 we obtain
the following necessary optimality conditions:

Let y0 ∈ locmin{ϕp(y) : y ∈ Y }. Then it holds

ϕp(y0) = ϕp(y0; r) and dϕpy0(r) ≥ 0 ∀r ∈ TY (y0).

Let y0 ∈ locmin{ϕo(y) : y ∈ Y }. Then for all r ∈ TY (y0) it holds

ϕo(y0) < ϕo(y0; r) or dϕoy0(r) ≥ 0.

To prove the next theorem we will need the following lemma.

Lemma 6.1 Assume it holds ϕo(y0) = g(x0, y0) for y0 ∈ R
n and x0 ∈

ΨD(y0). Then r ∈ Tx0(y0) implies

ϕo(y0) = ϕo(y0; r).

Proof. Since ϕo is radial-continuous there exists some x̃ ∈ ΨD(y0) and some
sequence {tk} ↓ 0 with x̃ ∈ ΨD(y0 + tkr), ϕo(y0 + tkr) = g(x̃, y0 + tkr)
and ϕo(y0; r) = limk→∞ ϕo(y0 + tkr) = limk→∞ g(x̃, y0 + tkr) = g(x̃, y0).
Clearly it holds r ∈ Tx̃(y0) ∩ Tx0(y0). Then from the proof of Theorem 4.2
it follows that r�(x0 − x̃) = 0. Further we know that x̃, x0 ∈ ΨD(y0) and
thus F (x0)− x0�y0 = F (x̃)− x̃�y0. Consequently, F (x0)− x0�(y0 + tkr) =
F (x̃)−x̃�(y0+tkr) ∀k, i.e. x0 ∈ ΨD(y0+tkr) ∀k. Thus we obtain ϕo(y0+tkr) ≤
g(x0, y0 + tkr) ∀k, i.e.

ϕo(y0; r) = lim
k→∞

ϕo(y0 + tkr) ≤ lim
k→∞

g(x0, y0 + tkr) = g(x0, y0) = ϕo(y0).

Now from Lemma 5.1 it follows the equality. �

Theorem 6.3 Assume that y0 ∈ Y is a point which satisfies one of the fol-
lowing two conditions:

1. ϕ(y0) < ϕ(y0; r) ∀r ∈ TY (y0)
2. ϕ(y0) ≤ ϕ(y0; r) ∀r ∈ TY (y0) and dϕy0(r) > γ ∀r ∈ TY (y0) : ϕ(y0) =

ϕ(y0; r), ‖r‖ = 1 with γ = 0 in the optimistic case and γ > 0 in the
pessimistic case.

Then, ϕ achieves a local minimum at y0.
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Proof. Suppose y0 ∈ Y satisfies one of the two conditions of the theorem.
Arguing by contradiction we assume that there is a sequence {yk}k≥1 with
yk → y0, k → ∞ and ϕ(yk) < ϕ(y0) ∀k. Since ΨD(y0) ⊇ ΨD(y) for all y
in a neighborhood of y0 and ΨD(y0) has finite cardinality there exists some
x0 ∈ ΨD(y0) such that Yx0(y0) contains infinitely many of the points yk, i.e.
ϕ(yk) = g(x0, yk). In the following we consider the sequence {yk} ∩ Yx0(y0)
and denote it by {yk} again. Because of the continuity of g(x0, ·) it follows

g(x0, y0) = lim
k→∞

g(x0, yk) = lim
k→∞

ϕ(yk) ≤ ϕ(y0). (6)

Let rk := yk−y0

‖yk−y0‖ , k = 1, . . . ,∞. Then it holds rk ∈ TY (y0)∩Tx0(y0). Further,
let r̂ an accumulation point of the sequence {rk}. Clearly, r̂ ∈ TY (y0)∩Tx0(y0).

i) Let ϕ denote the optimistic solution function. Then inequality (6)
yields g(x0, y0) = ϕo(y0) since x0 ∈ ΨD(y0). Now from Lemma 6.1 it fol-
lows ϕo(y0) = ϕo(y0; rk) ∀k and ϕo(y0) = ϕo(y0; r̂). Thus, the first condition
does not hold. Then the second condition must be satisfied. Since r̂ ∈ Tx0(y0)
it holds y0+tr̂ ∈ R(x0) for all t ∈ [0, ε). Therefore, ϕo(y0+tr̂) ≤ g(x0, y0+tr̂)
for all t ∈ [0, ε). Hence,

0 < dϕy0(r̂) = lim
t↓0

ϕo(y0 + tr̂)− ϕo(y0; r̂)
t

= lim
t↓0

ϕo(y0 + tr̂)− ϕo(y0)
t

≤ lim
t↓0

g(x0, y0 + tr̂)− g(x0, y0)
t

= ∇yg(x0, y0)r̂.

On the other hand it holds

ϕo(y0) > ϕo(yk) = g(x0, y0) + ‖yk − y0‖∇yg(x0, y0)rk + o(‖yk − y0‖)

which together with g(x0, y0) = ϕo(y0) and lim
k→∞

o(‖yk−y0‖)
‖yk−y0‖ = 0 leads to

∇yg(x0, y0)r̂ ≤ 0.

But this is a contradiction, i.e. if y0 is no local optimistic solution none of the
two conditions holds.

ii) Let ϕ denote the pessimistic solution function. Then from Lemma 5.1
it follows ϕp(y0) ≥ ϕp(y0; r) for all r ∈ TY (y0), i.e. the first condition is not
satisfied. Then the second condition must be satisfied, i.e. it holds ϕp(y0) =
ϕp(y0; r) and dϕpy0(r) > γ > 0 for all r ∈ TY (y0).

Since ϕp is radial-continuous and radial differentiable for all k there exists
some xk ∈ Irk(y0). Because of Irk(y0) ⊆ ΨD(y0) ∀k and the finite cardinality
of ΨD(y0) we can assume w.l.o.g. that there exists some x̄ ∈ ΨD(y0) with
x̄ ∈ Irk(y0) ∀k. Thus, for all k it holds
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ϕp(y0; rk) = ϕp(y0) = g(x̄, y0) and 0 < γ < dϕpy0(rk) = ∇yg(x̄, y0)rk.

Since r̂ is an accumulation point of {rk} we obtain

0 < γ ≤ ∇yg(x̄, y0)r̂.

Further we have rk ∈ Tx0(y0)∩Tx̄(y0). Thus, y0+trk ∈ R(x0)∩R(x̄) ∀t ∈ [0, ε)
which yields ϕp(yk) ≥ g(x̄, y0) ∀k. Consequently, for all k it holds

ϕp(y0) > ϕp(yk) = g(x̄, yk) = g(x̄, y0)+‖yk−y0‖∇yg(x0, y0)rk +o(‖yk−y0‖)

which together with g(x̄, y0) = ϕp(y0) and lim
k→∞

o(‖yk−y0‖)
‖yk−y0‖ = 0 leads to

∇yg(x̄, y0)r̂ ≤ 0.

But this is a contradiction, i.e. if y0 is no local pessimistic solution none of
the two conditions holds. �

Specifying the conditions of Theorem 6.3 by using Lemma 5.1 we obtain
the following sufficient optimality conditions:

Let

ϕp(y0) = ϕp(y0; r) and dϕpy0(r) > γ > 0 ∀r ∈ TY (y0).

Then y0 ∈ locmin{ϕp(y) : y ∈ Y }.
Let

ϕo(y0) < ϕo(y0; r) or dϕoy0(r) > 0 ∀r ∈ TY (y0).

Then y0 ∈ locmin{ϕo(y) : y ∈ Y }.

Example 6.3 Consider the bilevel programming problem⎧⎪⎨⎪⎩
min{g(x, y) : y ∈ R

2, x ∈ ΨD(y)}

ΨD(y) = argmin
x

{ 1
2‖x‖2 − y�x : x1 ≤ 0, x2 ≥ 0,−x1 + x2 ≤ 1, x ∈ Z

2}

with g(x, y) = x2(y2− (y1 +0.5)2−0.5)+(1−x2)(y1−y2 +1)+x1(3y1 +1.5).
We obtain

SD =
{
x1 =

(
0
1

)
, x2 =

(
0
0

)
, x3 =

(
−1
0

)}
with

R(x1) = {y ∈ R
2 : y2 ≥ 0.5, y1 + y2 ≥ 0},

R(x2) = {y ∈ R
2 : y2 ≤ 0.5, y1 ≥ −0.5} and

R(x3) = {y ∈ R
2 : y1 ≤ −0.5, y1 + y2 ≤ 0}.

Then we have
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ϕp(y) =

⎧⎨⎩
y2 − (y1 + 0.5)2 − 0.5 if y2 > 0.5, y1 + y2 > 0

y1 − y2 + 1 if y2 ≤ 0.5, y1 ≥ −0.5
−2y1 − y2 − 0.5 if y1 + y2 ≤ 0, y1 < −0.5 .

Let y0 = (−1/2, 1/2)�. Then it holds ϕp(y0) = ϕp(y0; r) = 0 ∀r ∈ R
2 and

0 < dϕpy0(r) =

⎧⎨⎩
r2 if r2 > 0, r1 + r2 > 0
r1 − r2 if r2 ≤ 0, r1 ≥ 0
−2r1 − r2 if r1 < 0, r1 + r2 ≤ 0 .

However y0 is no local minimum of ϕp since y(t) = (t−0.5, 0.5(1+ t2))� → y0

for t ↓ 0 but ϕp(y(t)) = − 1
2 t

2 < ϕp(y0) ∀t > 0. This is no contradiction to
Theorem 6.3 since there does not exist any γ > 0 with γ < dϕpy0(r) ∀r. �

7 Optimality criteria using radial subdifferential

Definition 7.1 Let U ⊆ R
n, y0 ∈ U and ϕ : U → R be radial-directionally

differentiable at y0. We say that d ∈ R
n is a radial subgradient of ϕ at y0 if

ϕ(y0) + 〈r, d〉 ≤ ϕ(y0; r) + dϕy0(r)

is satisfied for all r : ϕ(y0) ≥ ϕ(y0; r).
The set of all subgradients is called subdifferential and is denoted by

∂radϕ(y0).

The following necessary criterion for the existence of a radial subgradient
is valid:

Theorem 7.1 ([6]) If there exists some r ∈ R
n with ϕ(y0; r) < ϕ(y0) then

it holds ∂radϕ(y0) = ∅.

With this theorem we get the following equivalent definition of the radial
subgradient:

∂radϕ(y0) = {d ∈ R
n : 〈r, d〉 ≤ dϕy0(r) ∀r satisfying ϕ(y0) = ϕ(y0; r)},

if there is no direction such that the radial limit in this direction is less than
the function value.

Using Lemma 5.1 we obtain that for the pessimistic solution function either
∂radϕp(y0) = ∅ if there exists some r with ϕp(y0) > ϕp(y0; r) or ∂radϕp(y0) =
{d ∈ R

n : 〈d, r〉 ≤ dϕpy0(r) ∀r}.
For the optimistic solution function the condition of Theorem 7.1 is never
valid.

Thus,

∂radϕo(y0) = {d ∈ R
n : 〈r, d〉 ≤ dϕoy0(r) ∀r satisfying ϕo(y0) = ϕo(y0; r)}
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and
∂radϕp(y0) = {d ∈ R

n : 〈r, d〉 ≤ dϕpy0(r) ∀r}

if there is no r such that ϕp(y0; r) < ϕp(y0).
Next we want to give further descriptions for the set ∂radϕ(y0) by using

equation (5). To do this we will need the following notations:

T (y0) := {r ∈ R
n : ϕ(y0) = ϕ(y0; r)}

I(y0) :=
⋃

r∈T (y0)

Ir(y0)

Then the following Lemma holds:

Lemma 7.1 1. I(y0) = {x ∈ ΨD(y0) : g(x, y0) = ϕ(y0)}
2. cl T (y0) =

⋃
x∈I(y0) Tx(y0)

3. ∂radϕ(y0) =
⋂

x∈I(y0){d ∈ R
n : 〈d, r〉 ≤ ∇yg(x, y0)r ∀r ∈ Tx(y0)}

Proof. 1. Let x ∈ I(y0). Then there exists some r ∈ T (y0) with x ∈ Ir(y0).
Because of the definitions of Ir(y0) and T (y0) it holds ϕ(y0) = ϕ(y0; r) =
g(x, y0) and x ∈ ΨD(y0), i.e. x ∈ {x ∈ ΨD(y0) : g(x, y0) = ϕ(y0)}.
Let x0 ∈ ΨD(y0) with g(x0, y0) = ϕ(y0). Let r = ∇F (x0)� − y0. Since
∇F (x0)� ∈ int R(x0) and y0 ∈ R(x0) it holds λ∇F (x0)� + (1 − λ)y0 ∈
int R(x0) ∀λ ∈ (0, 1), i.e. y0 + λr ∈ int R(x0) ∀λ ∈ (0, 1). Consequently,
ϕ(y0 + λr) = g(x0, y0 + λr) ∀λ ∈ (0, 1). But this means x0 ∈ Ir(y0) and
ϕ(y0; r) = g(x0, y0) = ϕ(y0), i.e. r ∈ T (y0) and thus x0 ∈ I(y0).

2. Let r̂ ∈ cl T (y0). Then there exists some sequence {rk}∞k=1 ⊆ T (y0) with
limk→∞ rk = r̂. Since I(y0) ⊆ ΨD(y0) and card ΨD(y0) < ∞ there exists
w.l.o.g. some x ∈ I(y0) with x ∈ Irk(y0) ∀k, i.e. rk ∈ Tx(y0) ∀k. Then from
Tx(y0) being closed it follows that r̂ ∈ Tx(y0), i.e. r̂ ∈

⋃
x∈I(y0) Tx(y0).

Let r̂ ∈
⋃

x∈I(y0) Tx(y0). Then there exists some x ∈ I(y0) with r̂ ∈
Tx(y0). Since Tx(y0) ⊆ cl int Tx(y0) there exists some sequence {rk}∞k=1 ⊆
int Tx(y0) with limk→∞ rk = r̂. Thus, for all k it holds y0 +trk ∈ int R(x)
for all t > 0 being sufficiently small. This means x ∈ Irk(y0) and rk ∈
T (y0) for all k. Consequently, r̂ ∈ cl T (y0).

3. Let d ∈
⋂

x∈I(y0){d ∈ R
n : 〈d, r〉 ≤ ∇yg(x, y0)r ∀r ∈ Tx(y0)}. Then for

all x ∈ I(y0) it holds 〈d, r〉 ≤ ∇yg(x, y0)r = dϕy0(r) ∀r ∈ Tx(y0). Thus,
〈d, r〉 ≤ dϕy0(r) ∀r ∈

⋃
x∈I(y0) Tx(y0) ⊇ T (y0), i.e. d ∈ ∂radϕ(y0).

Let d ∈ ∂radϕ(y0). Now consider some arbitrary x ∈ I(y0) and some
r ∈ Tx(y0). Then there exist some sequence {rk}∞k=1 ⊆ int Tx(y0) and
limk→∞ rk = r. Since intTx(y0) ⊆ T (y0) and d ∈ ∂radϕ(y0) it follows
〈d, rk〉 ≤ dϕy0(rk) = ∇yg(x, y0)rk ∀k and thus 〈d, r〉 ≤ ∇yg(x, y0)r.
Consequently, d ∈

⋂
x∈I(y0){d ∈ R

n : 〈d, r〉 ≤ ∇yg(x, y0)r ∀r ∈ Tx(y0)}.
�
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Lemma 7.2 For all points y0 ∈ R
n and x̄ ∈ ΨD(y0) the set

Nx̄(y0) := cone {(x− x̄) : x ∈ ΨD(y0)}

is the normal cone of the contingent cone Tx̄(y0). Further it holds

∂radϕ(y0) =
⋂

x∈I(y0)

(Nx(y0) +∇yg(x, y0)�).

Proof. We know from Lemma 4.1 that the contingent cone Tx̄(y0) is equal to

Tx̄(y0) = {r ∈ R
n : (x− x̄)�r ≤ 0 ∀x ∈ ΨD(y0)}.

Obviously it is the normal cone of the polyhedral cone Nx̄(y0). Since Nx̄(y0)
is convex and closed the normal cone of Tx̄(y0) is Nx̄(y0) again.

Let d ∈ ∂radϕ(y0). Because of Lemma 7.1 for all x ∈ I(y0) it holds

〈d, r〉 ≤ dϕy0(r) = ∇yg(x, y0)r ∀r ∈ Tx(y0).

Consequently, d − ∇yg(x, y0)� lies in the normal cone of Tx(y0) for all x ∈
I(y0), i.e. d−∇yg(x, y0)� ∈ Nx(y0) for all x ∈ I(y0). But this means

d ∈ Nx(y0) +∇yg(x, y0)� for all x ∈ I(y0).

Thus, ∂radϕ(y0) ⊆
⋂

x∈I(y0)(Nx(y0) + ∇yg(x, y0)�). The reverse inclusion
follows analogously. �

Example 7.1 Let y0 = (0, 0)� and

SD =
{
x1 =

(
1
1

)
, x2 =

(
1
−1

)
, x3 =

(
−1
1

)
, x4 =

(
−1
−1

)}
f(x, y) =

1
2
‖x‖2 − x�y

g(x, y) =
(

3 + x1

2

)
y1 − 2y2 + (x1 − x2)2.

Then it holds

R(x1) = {y : y1 ≥ 0, y2 ≥ 0}, g(x1, y) = 2y1 − 2y2
R(x2) = {y : y1 ≥ 0, y2 ≤ 0}, g(x2, y) = 2y1 − 2y2 + 4
R(x3) = {y : y1 ≤ 0, y2 ≥ 0}, g(x3, y) = y1 − 2y2 + 4
R(x4) = {y : y1 ≤ 0, y2 ≤ 0}, g(x4, y) = y1 − 2y2.

Consequently, for the optimistic solution function it holds ϕo(y0) = 0 and
I(y0) = {x1, x4}. Further, since Nx1(y0) = R(x4), Nx4(y0) = R(x1) and
∇yg(x1, y0) = (2,−2), ∇yg(x4, y0) = (1,−2) it holds

∂radϕ(y0) = (Nx1(y0) +∇yg(x1, y0)�) ∩ (Nx4(y0) +∇yg(x4, y0)�)
= {d ∈ R

2 : d1 ≤ 2, d2 ≤ −2} ∩ {d ∈ R
2 : d1 ≥ 1, d2 ≥ −2}

= [1, 2]× {−2}.

�
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Now we derive optimality criteria in connection with the radial subdiffer-
ential.

Assume some point y0 ∈ locmin{ϕ(y) : y ∈ Y } is given. Then we know
from Theorem 6.2 that for all r ∈ TY (y0), ‖r‖ = 1 it holds ϕ(y0; r) ≥ ϕ(y0)
and dϕy0(r) ≥ 0 if ϕ(y0; r) = ϕ(y0). Consequently,

0 ≤ ∇yg(x, y0)r ∀x ∈ I(y0) ∀r ∈ Tx(y0) ∩ TY (y0)
and thus 0 ≤ ∇yg(x, y0)r ∀x ∈ I(y0) ∀r ∈ Tx(y0) ∩ TY (y0).

This means that −∇yg(x, y0)� lies in the normal cone of Tx(y0)∩ TY (y0) for
all x ∈ I(y0). Let Ī(y0) := {x ∈ I(y0) : relint TY (y0) ∩ relint Tx(y0) �= ∅}.
Since both cones are convex and closed the normal cone of Tx(y0) ∩ TY (y0)
is equal to NY (y0) +Nx(y0) for x ∈ Ī(y0) where NY (y0) denotes the normal
cone of TY (y0). Consequently,

−∇yg(x, y0)� ∈ NY (y0) +Nx(y0) ∀x ∈ Ī(y0)
0 ∈ NY (y0) + (Nx(y0) +∇yg(x, y0)�) ∀x ∈ Ī(y0)

0 ∈
⋂

x∈Ī(y0)

[
NY (y0) + (Nx(y0) +∇yg(x, y0)�)

]
.

If it holds y0 ∈ int Y we have NY (y0) = {0}, TY (y0) = R
n and I(y0) = Ī(y0).

Thus, it holds the following theorem:

Theorem 7.2 Let ϕ denote the optimistic or pessimistic solution function
for the bilevel programming problem (1). If y0 ∈ locmin{ϕ(y) : y ∈ Y } then

0 ∈
⋂

x∈Ī(y0)

[
NY (y0) + (Nx(y0) +∇yg(x, y0)�)

]
.

If additionally y0 ∈ int Y then 0 ∈ ∂radϕ(y0).

Example 7.2 Let SD denote the vertex set of a regular hexagon with radius
2, i.e. let SD be equal to{
x1 =
(

2
0

)
, x2 =

(
1√
3

)
, x3 =

(
−1√

3

)
, x4 =

(
−2
0

)
, x5 =

(
−1
−
√

3

)
, x6 =

(
1√
3

)}
.

Further let

g(x, y) =

⎧⎨⎩
y1 + 4y2 if x = x1

2y1 − y2 if x = x2

1 else .

Consider the optimistic solution function ϕo(y) and the set Y = {y ∈ R
2 :

y2 ≥ 0, y2 ≤ y1, y1 ≤ 1}. Then y0 = (0, 0)� is an optimistic optimal solution.
It holds I(y0) = {x1, x2} = Ī(y0). Further,
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Nx1(y0) = {y : y2 ≤ −
√

3y1, y2 ≥
√

3y1},
Nx2(y0) = {y : y2 ≤ −

√
3y1, y2 ≤ 0}

and NY (y0) = {y : y1 + y2 ≤ 0, y1 ≤ 0}.

Then it holds

0 ∈ NY (y0) +Nx1(y0) +∇yg(x1, y0)�

= {y ∈ R
2 : y1 ≤ 1, y2 ≤ 4− (y1 − 1)

√
3},

0 ∈ NY (y0) +Nx2(y0) +∇yg(x2, y0)�

= {y ∈ R
2 : y1 + y2 ≤ 1, y2 ≤ −1− (y1 − 2)

√
3}.

Thus, the conditions of Theorem 7.2 are satisfied. Further,

∂radϕo(y0) = {d ∈ R
2 : d2 ≤ −1, d2 ≥ 4 + (d1 − 1)

√
3}.

In optimization one has very often necessary optimality criteria of the form 0 ∈
∂ϕ(y0) +NY (y0). Such kind of necessary optimality criterium is usually not
fulfilled for our problem. For instance in this example it holds 0 /∈ ∂radϕo(y0)+
NY (y0). �

Theorem 7.3 Let ϕ denote the optimistic or pessimistic solution function
for the bilevel programming problem (1). If 0 ∈ int (∂radϕ(y0)+NY (y0)) then
ϕ achieves at y0 a local minimum.

Proof. Clearly ∂radϕ(y0) �= ∅. Thus it holds ϕ(y0) ≤ ϕ(y0; r) ∀r ∈ R
n, ‖r‖ = 1

because of Theorem 7.1.
Let 0 ∈ int (∂radϕ(y0) + NY (y0)). Then there exists some γ > 0 such

that for all r ∈ R
n, ‖r‖ = 1 it holds γr ∈ (∂radϕ(y0) + NY (y0)). Now fix

some r̂ ∈ T (y0) ∩ TY (y0), ‖r̂‖ = 1. Then there exists some s ∈ NY (y0) with
(γr̂ − s) ∈ ∂radϕ(y0). Using the definition of ∂radϕ(y0) we obtain

γ〈r̂, r〉 − 〈s, r〉 = 〈γr̂ − s, r〉 ≤ dϕy0(r) ∀r ∈ T (y0).

Because of r̂ ∈ TY (y0) and s ∈ NY (y0) it holds 〈r̂, s〉 ≤ 0 and thus

0 < γ ≤ γ‖r̂‖2 − 〈s, r̂〉 ≤ dϕy0(r̂).

Thus, since r̂ was arbitrary the sufficient optimality criterium is satisfied (The-
orem 6.3), i.e.

0 < γ ≤ dϕy0(r) ∀r ∈ T (y0) ∩ TY (y0).

Hence, y0 ∈ locmin{ϕ(y) : y ∈ Y }. �
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On approximate mixed Nash equilibria and
average marginal functions for two-stage
three-players games
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Summary. In this paper we consider a two-stage three-players game: in the first
stage one of the players chooses an optimal strategy knowing that, at the second
stage, the other two players react by playing a noncooperative game which may
admit more than one Nash equilibrium. We investigate continuity properties of the
set-valued function defined by the Nash equilibria of the (second stage) two play-
ers game and of the marginal functions associated to the first stage optimization
problem. By using suitable approximations of the mixed extension of the Nash equi-
librium problem, we obtain without convexity assumption the lower semicontinuity
of the set-valued function defined by the considered approximate Nash equilibria
and the continuity of the associate approximate average marginal functions when
the second stage corresponds to a particular class of noncooperative games called
antipotential games.

Key Words: mixed strategy, Radon probability measure, ε-approximate
Nash equilibrium, marginal functions, noncooperative games, two-stage three-
players game, antipotential game.

1 Introduction

Let X,Y1, Y2 be compact subsets of metric spaces and f1, f2 be two real valued
functions defined on X×Y1×Y2. Consider the parametric noncooperative two
players game Γ (x) = {Y1, Y2, f1(x, ·, ·), f2(x, ·, ·)} where x ∈ X and f1, f2 are
the payoff functions of players P1 and P2. Any player is assumed to minimize
his own payoff function called cost function. For all x ∈ X, we denote by
N(x) the set of the Nash equilibria ([19]) of the game Γ (x), i.e. the set of the
solutions to the following problem N (x)
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find (ȳ1, ȳ2) ∈ Y1 × Y2 such that
f1(x, ȳ1, ȳ2) = inf

y1∈Y1
f1(x, y1, ȳ2)

f2(x, ȳ1, ȳ2) = inf
y2∈Y2

f2(x, ȳ1, y2).

When the set N(x) has more than one element for at least one x ∈ X, one can
investigate some continuity properties of the set-valued function defined by
the set N(x) for all x ∈ X. These properties could be useful, from theoretical
and numerical point of view, in problems involving the so-called marginal
functions. More precisely, let l be a real valued function defined on X ×
Y1 × Y2. For any x ∈ X, one can consider the following functions associated
to optimization problems in which the constraints describe the set of Nash
equilibria of the game Γ (x):

w(x) = sup
(y1,y2)∈N(x)

l(x, y1, y2)

u(x) = inf
(y1,y2)∈N(x)

l(x, y1, y2)

These marginal functions, called respectively sup-marginal function and
inf-marginal function, are concerned in many applicative situations as illus-
trated in the following.
• The multi-stage problem involving the marginal function w(x)⎧⎪⎨⎪⎩

find x̄ ∈ X such that

inf
x∈X

sup
(y1,y2)∈N(x)

l(x, y1, y2) = sup
(y1,y2)∈N(x̄)

l(x̄, y1, y2) = w(x̄)
(1)

corresponds to a two-stage game with the three players P0, P1, P2 and l cost
function of P0. In the first stage, player P0 (called the leader) chooses an
optimal strategy knowing that, at the second stage, two players P1 and P2

(called the followers) react by playing a non cooperative game. When there
exists more than one Nash equilibrium at the second stage for at least one
strategy of P0, if it is assumed that the leader cannot influence the choice of
the followers, then the followers can react to a leader’s strategy by choosing a
Nash equilibrium which can hurt him as much as possible. Therefore, P0 will
choose a security strategy which minimizes the worst, assuming that he has
no motivation to restrict his worst case design to a particular subset of the
Nash equilibria. The hierarchical problem (1) is called “Weak Hierarchical
Nash Equilibrium Problem”, in line with the terminology used in previous
papers on hierarchical problems (see, for example, [5], [11]). Economic exam-
ples of such games can be found in [21], [22], [14] where the supply side of
an oligopolistic market supplying a homogeneous product non cooperatively is
modelled and in [20], where in a two country imperfect competition model the
firms face three different types of decisions. In the setting of transportation
and telecommunications see, for example, [15] and [1].
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• The multi-stage problem involving the marginal function u(x)⎧⎪⎨⎪⎩
find x̄ ∈ X such that

inf
x∈X

inf
(y1,y2)∈N(x)

l(x, y1, y2) = inf
(y1,y2)∈N(x̄)

l(x̄, y1, y2) = u(x̄)
(2)

corresponds to a two-stage three-players game when there exists again more
than one Nash equilibrium at the second stage for at least one strategy of P0,
and it is assumed now that the leader can force the choice of the followers
to choose the Nash equilibrium that is the best for him. The hierarchical
problem (2) is called “Strong Hierarchical Nash Equilibrium Problem” in
line with the terminology used in previous papers on hierarchical problems
([5], [11]). It is also known as a mathematical programming problem with
equilibrium constraints (MPEC) in line with the terminology used in [12], [6],
[7], where one can find applications and references.

Remember that, if l is a continuous real valued function defined on X ×
Y1 × Y2 and N is a sequentially lower semicontinuous and sequentially closed
graph set-valued function on X, then the marginal functions w and u are
continuous on X ([9]). A set-valued function T is said to be sequentially lower
semicontinuous at x ∈ X if for any sequence (xn)n converging to x in X and
for any y ∈ T (x), there exists a sequence (yn) converging to y in Y such that
yn ∈ T (xn) for n sufficiently large (see, for example, [2], [9]). The set-valued
function T is said to be sequentially closed graph at x ∈ X if for any sequence
(xn)n converging to x in X and for any sequence (yn)n converging to y in Y
such that ynk

∈ T (xnk
) for a selection of integers (nk)k, we have y ∈ T (x) (see,

for example, [2], [9]). For simplicity in the following the word “sequentially”
will be omitted.

Unfortunately, the set-valued function N can be non lower semicontinuous
even when smooth data are present (see, for example, [19], [17]). So, in [17]
a suitable approximate Nash equilibrium concept has been introduced which
guarantees lower semicontinuity results under some convexity assumption on
the cost functions. When these convexity assumptions are not satisfied, as
in the case of zero-sum games previously investigated by the authors ([13]),
one can consider mixed strategies for P1 and P2 and the mixed extension of
the parametric Nash equilibrium problem N (x). More precisely, let M(Y1),
M(Y2) be the sets of Radon probability measures on Y1 and Y2 ([4], [23]) and
assume that the cost functions of P1 and P2, respectively f1(x, ·, ·), f2(x, ·, ·),
are continuous functions on Y1×Y2 for all x∈X. The average cost functions of
players P1 and P2 are defined by (see, for example, [3]):

f̂i(x, μ1, μ2)=
∫

Y1

∫
Y2

fi(x, y1, y2) dμ1(y1) dμ2(y2)

for i = 1, 2. We denote by N̂(x) the set of Nash equilibria of the extended
game defined by Γ̂ (x) = {M(Y1),M(Y2), f̂1(x, ·, ·)f̂2(x, ·, ·)}, i.e. the set of
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mixed Nash equilibria of the game Γ (x). Assuming that l(x, ·, ·) is a continuous
function on Y1×Y2, for all x∈X, one can consider the average cost function
for P0 defined by

l̂(x, μ1, μ2)=
∫

Y1

∫
Y2

l(x, y1, y2) dμ1(y1) dμ2(y2).

The following real functions defined on X by

ŵ(x) = sup
(μ1,μ2)∈N̂(x)

l̂(x, μ1, μ2)

û(x) = inf
(μ1,μ2)∈N̂(x)

l̂(x, μ1, μ2)

will be called respectively sup-average marginal function and inf-average
marginal function. Having in mind to obtain the continuity of the average
marginal functions, now we look for the lower semicontinuity of the set-valued
function defined, for all x ∈ X, by the set N̂(x) of Nash equilibria of the game
Γ̂ (x) (i.e. mixed Nash equilibria of the game Γ (x)).

Unfortunately, the following example deals with a game where the set-
valued function defined by N̂(x) is not lower semicontinuous on X.

Example 1.1 Let X = [0, 1] be the set of parameters and Y1 = {α1, β1},
Y2 = {α2, β2} be the strategy sets of P1, P2 respectively. For any x ∈ X, we
have the following bimatrix game:

α2 β2

α1 −1,x 0,2x

β1 0,−1 0,x

Then:

N(x) =
{
{(α1, α2), (α1, β2)} if x = 0
{(α1, α2)} if x �= 0.

Here M(Yi) is the set of the discrete probability measures on Yi (i = 1, 2).
The extended cost functions are:

f̂1(x, μ1, μ2)=− pq

f̂2(x, μ1, μ2)=xp− xq + x− q + pq

where μ1 = pδ(α1)+(1−p)δ(β1) ∈M(Y1), μ2 = qδ(α2)+(1−q)δ(β2) ∈M(Y2)
and p, q ∈ [0, 1]. δ is the Dirac measure and μ1 means that the strategy α1 is
chosen with probability p and the strategy β1 is chosen with probability 1−p,
for p ∈ [0, 1].
In this case we have:
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N̂(x) =
{
{(1, q), q ∈ [0, 1]} if x = 0
{(1, 1)} if x �= 0

which is not a lower semicontinuous set-valued function at x = 0 .

However, by considering suitable approximations of the mixed extension
of the Nash equilibrium problem, we will prove, without any convexity as-
sumption, that the set-valued function defined by the considered approximate
Nash equilibria is lower semicontinuous and that the corresponding approxi-
mate average marginal functions are continuous functions. More precisely, in
Section 2 we introduce two concepts of approximate Nash equilibria for the
extended game Γ̂ (x) and we investigate the properties of lower semicontinu-
ity and closedness of the set-valued functions defined by these approximate
Nash equilibria. In Section 3 continuity of the associate approximate average
marginal functions is obtained.

2 ε-approximate Nash equilibria

In line with the approximate solution concept introduced in [10] and in [17],
we introduce a concept of approximate mixed Nash equilibrium:

Definition 2.1 Let x ∈ X and ε > 0; a strict ε-approximate mixed Nash
equilibrium is a solution to the problem N̆ (x, ε) :⎧⎪⎨⎪⎩

find (μ̄1, μ̄2) ∈M(Y1)×M(Y2) s.t.
f̂1(x, μ̄1, μ̄2) + f̂2(x, μ̄1, μ̄2)

< inf
μ1∈M(Y1)

f̂1(x, μ1, μ̄2) + inf
μ2∈M(Y2)

f̂2(x, μ̄1, μ2) + ε

The set of solutions to the problem N̆ (x, ε) will be denoted by N̆(x, ε).

Remark 2.1 For all x ∈ X, the set of the strict ε-approximate mixed
Nash equilibria N̆(x, ε) is not empty, differently from the set of the strict
ε-approximate Nash equilibria Ñ(x, ε) ([18]) defined by

Ñ(x, ε) = {(ȳ1, ȳ2) ∈ Y1 × Y2 : f1(x, ȳ1, ȳ2) + f2(x, ȳ1, ȳ2) <

inf
y1∈Y1

f1(x, y1, ȳ2) + inf
y2∈Y2

f2(x, ȳ1, y2) + ε}

which can be empty. In fact, in the matching pennies example Ñ(x, ε) = ∅
but N̆(x, ε) is an open nonempty square. More precisely, let X be the set of
parameters and Y1 = {α1, β1}, Y2 = {α2, β2} be the strategy sets of P1, P2

respectively. For any x ∈ X, we have the following bimatrix game:
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α2 β2

α1 1,−1 −1,1

β1 −1,1 1,−1

Then for any x ∈ X we have that N(x) = ∅ and Ñ(x, ε) = ∅ for any
ε > 0. If mixed strategies are considered M(Yi) (i=1,2), f̂1(x, μ1, μ2)=4pq −
2p − 2q + 1, f̂2= − f̂1 for p, q ∈ [0, 1] and N̂(x) = {(1/2, 1/2)}, N̆(x, ε) =
{(p, q) ∈ [0, 1]2 : p ∈]1/2 − ε/2, 1/2 + ε/2[, q ∈]|p − 1/2| + (1− ε)/2,−|p −
1/2|+ (1 + ε)/2[}.

Obviously, the set-valued function defined by the set of the strict ε-
approximate mixed Nash equilibrium of a game is not always closed graph
on X. The following theorem gives sufficient conditions for its lower semicon-
tinuity on X and will be used later on.

Theorem 2.1 Assume that f1, f2 are continuous functions on X × Y1 × Y2.
Then, for all ε>0, the set-valued function N̆(·,ε) is lower semicontinuous on
X.

Proof. We have to prove that for all x ∈ X, for all (xn) converging to x and
for all (μ1, μ2) ∈ N̆(x, ε), there exists a sequence (μ1,n, μ2,n) converging to
(μ1, μ2) s.t. (μ1,n, μ2,n) ∈ N̆(xn, ε) for n sufficiently large.

Let (xn) be a sequence converging to x and (μ̄1, μ̄2) ∈ N̆(x, ε). Then

f̂1(x, μ̄1, μ̄2)+f̂2(x, μ̄1, μ̄2) < inf
μ1∈M(Y1)

f̂1(x, μ1, μ̄2)+ inf
μ2∈M(Y2)

f̂2(x, μ̄1, μ2)+ε.

(3)
Since f̂1, f̂2 are continuous, for all sequences (μ̄1,n) converging to μ̄1 and (μ̄2,n)
converging to μ̄2 we have that

lim
n→+∞

(
f̂1(xn, μ̄1,n, μ̄2,n) + f̂2(xn, μ̄1,n, μ̄2,n)

)
= f̂1(x, μ̄1, μ̄2) + f̂2(x, μ̄1, μ̄2).

(4)
Since M(Y1), M(Y2) are compact, inf

μ1∈M(Y1)
f̂1(·, μ1,·) and inf

μ2∈M(Y2)
f̂2(·, ·, μ2) are

lower semicontinuous functions (Proposition 4.1.1 in [9]). Therefore, in light
of (3) and (4)

lim
n→+∞

(
f̂1(xn, μ̄1,n, μ̄2,n) + f̂2(xn, μ̄1,n, μ̄2,n)

)
= f̂1(x, μ̄1, μ̄2) + f̂2(x, μ̄1, μ̄2) <

inf
μ1∈M(Y1)

f̂1(x, μ1, μ̄2) + inf
μ2∈M(Y2)

f̂2(x, μ̄1, μ2) + ε ≤
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lim
n→+∞

(
inf

μ1∈M(Y1)
f̂1(xn, μ1, μ̄2,n) + inf

μ2∈M(Y2)
f̂2(xn, μ̄1,n, μ2)

)
+ ε.

For n sufficiently large, we can deduce:

f̂1(xn, μ̄1,n, μ̄2,n)+f̂2(xn, μ̄1,n, μ̄2,n)

< inf
μ1∈M(Y1)

f̂1(xn, μ1, μ̄2,n)+ inf
μ2∈M(Y2)

f̂2(xn, μ̄1,n, μ2)+ε

that is (μ̄1,n, μ̄2,n) ∈ N̆(xn, ε).

Remark 2.2 Let us note that Theorem 2.1 can be applied also in the case
where N(x) = ∅ for some x ∈ X. In fact ∅ �= N̂(x) ⊆ N̆(x, ε) for all x ∈ X
and ε > 0.

Having in mind to obtain closedness and lower semicontinuity simulta-
neously, we introduce now a suitable concept of approximate mixed Nash
equilibrium.

Definition 2.2 Let x ∈ X and ε > 0; an ε-approximate mixed Nash equili-
brium is a solution to the problem N̂ (x, ε) :⎧⎪⎨⎪⎩

find (μ̄1, μ̄2) ∈M(Y1)×M(Y2)
s.t.f̂1(x, μ̄1, μ̄2) + f̂2(x, μ̄1, μ̄2)

≤ inf
μ1∈M(Y1)

f̂1(x, μ1, μ̄2) + inf
μ2∈M(Y2)

f̂2(x, μ̄1, μ2) + ε

The set of solutions to the problem N̂ (x, ε) will be denoted by N̂(x, ε).

Remark 2.3 It is easy to see that if f1, f2 are continuous functions on X ×
Y1×Y2, then the set-valued function N̂(·, ε) is closed graph at x, for all x ∈ X.

Example 2.1 In Example 1.1 we have that inf
μ1∈M(Y1)

f̂1(x, μ1, μ2) =−q and

that inf
μ2∈M(Y2)

f̂2(x, μ1, μ2) = xp−1 + p. The set of the ε-approximate mixed

Nash equilibria is:
for x ≤ ε

N̂(x, ε) = {(p, q) ∈ [0, 1]2 s. t. p ∈ [1− ε+ x− xq, 1], q ∈ [0, 1]},

for x > ε

N̂(x, ε) = {(p, q) ∈ [0, 1]2 s. t. p ∈ [1− ε+ x− xq, 1], q ∈ [1− (ε/x), 1]}.

Note that the set-valued function x ∈ X �→ N̂(x, ε) is closed graph and
lower semicontinuous on X.
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The bimatrix game in Example 1.1 has a special structure connected with
the definition of exact potential games ([16]). Recall that the two players game
{A,B,K,L}, where K,L are real valued functions defined on A×B, is called
an exact potential game if there is a potential function P : A×B �→ R such
that
K(a2, b)−K(a1, b) = P (a2, b)−P (a1, b), for all a1, a2∈A and for each b∈B
L(a, b1)−L(a, b2)= P (a, b1)−P (a, b2), for each a∈A and for all b1, b2∈B.

In exact potential games, information concerning Nash equilibria are incorpo-
rated into a real-valued function that is the potential function.

The following theorem gives a lower semicontinuity result for the set-valued
function defined by the set of the ε-approximate mixed Nash equilibria.

Theorem 2.2 Assume that f1, f2 are continuous functions on X×Y1×Y2 and
that the game Ω(x) = {Y1, Y2, f1(x, ·, ·),−f2(x, ·, ·)} is an exact potential game
for all x ∈ X ( Γ (x) will be said to be an antipotential game for all x ∈ X).
Then, for all ε > 0, the set-valued function N̂(·, ε) is lower semicontinuous
on X.

Proof. Since Ω(x) is an exact potential game, according to [8], there exists a
potential function P defined on X × Y1 × Y2 such that

f1(x, y1, y2) = P (x, y1, y2) + h(x, y2)

−f2(x, y1, y2) = P (x, y1, y2) + k(x, y1)

where h, k are real valued functions defined and continuous on X × Y2, X ×
Y1 respectively. By considering the mixed extensions of Y1, Y2, the function
f̂1 + f̂2 = ĥ − k̂ is convex on M(Y1) ×M(Y2) and one can apply Corollary
3.1 in [18] to get the lower semicontinuity of N̂(·, ε) on X. For the sake of
completeness we give the proof.

Let (μ1, μ2) ∈ N̂(x, ε) such that (μ1, μ2) �∈ N̆(x, ε). Since N̆(x, ε) �= ∅,
there exists (μ̆1, μ̆2) ∈ N̆(x, ε) and consider the sequence μi,n = (1/n)μ̆i +
(1− 1/n)μi (i = 1, 2) for n ∈ N . We have that μi,n �→ μi, i = 1, 2 and

f̂1(x, μ1,n, μ2,n) + f̂2(x, μ1,n, μ2,n) < (1/n)
[
v̂1(x, μ̆2) + v̂2(x, μ̆1) + ε

]
+

(1− 1/n)
[
v̂1(x, μ2) + v̂2(x, μ1) + ε

]
≤ v̂1(x, μ2,n) + v̂2(x, μ1,n) + ε

being v̂1(x, μ2) = inf
μ1∈M(Y1)

f̂1(x, μ1, μ2) and v̂2(x, μ1) = inf
μ2∈M(Y2)

f̂2(x, μ1, μ2).

This means that (μ1,n, μ2,n) ∈ N̆(x, ε) and then N̂(x, ε) ⊆ clN̆(x, ε), where
clN̆(x, ε) is the sequential closure of N̆(x, ε). By Theorem 2.1 for all sequences
(xn)n converging to x we have N̆(x, ε) ⊆ Liminf

n
N̆(xn, ε). Therefore

N̂(x, ε)⊆ clN̆(x, ε)⊆ clLiminf
n

N̆(xn, ε) = Liminf
n

N̆(xn, ε) ⊆ Liminf
n

N̂(xn, ε)

Remark that, since M(Y1) and M(Y2) are first countable topological
spaces, Liminf

n
N̆(xn, ε) is a closed subset in M(Y1)×M(Y2).
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Example 2.2 Note that in Example 1.1,

Ω(x) = {Y1, Y2, f1(x, ·, ·),−f2(x, ·, ·)}

is an exact potential game with potential

α2 β2

α1 −x −2x

β1 1− x −2x

Remark 2.4 Theorem 2.2 extends Theorem 3.1 in [13] where existence of
approximate mixed strategies for zero-sum games is obtained without convexity
assumptions.

3 Continuity properties of the approximate average
marginal functions

By using the concepts of approximate mixed Nash equilibria given in Section 2,
we give the continuity results for the following approximate average marginal
functions.

Definition 3.1 Let x ∈ X and ε > 0; the following real functions defined on
X:

ŵ(x, ε) = sup
(μ1,μ2)∈N̂(x,ε)

l̂(x, μ1, μ2)

û(x, ε) = inf
(μ1,μ2)∈N̂(x,ε)

l̂(x, μ1, μ2)

will be called ε-approximate sup-average marginal function and ε-approximate
inf-average marginal function respectively.

So, we have the following theorem.

Theorem 3.1 Assume that l, f1, f2 are continuous functions on X ×Y1×Y2

and that Γ (x) is an antipotential game for all x ∈ X. Then, for all ε > 0, the
ε-approximate average marginal functions ŵ(·, ε) and û(·, ε) are continuous
on X.

Proof. In light of the assumptions l̂ is continuous on X ×M(Y1) ×M(Y2),
the set-valued function N̂(·, ε) is lower semicontinuous and closed graph on
X. We obtain the proof by using the results given in [9] on the inf-marginal
function in a sequential setting.
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Example 3.1 In Example 1.1, let l be defined as follows:

α2 β2

α1 x− 1 x

β1 0 x

In this case the inf-marginal function u(x) = x− 1 is continuous on [0, 1],
while the sup-marginal function

w(x) =
{

0 if x = 0
x− 1 if x �= 0

is not lower semicontinuous at x = 0. Even if we use mixed Nash equilibria of
the game Γ (x), the sup-average marginal function may be not continuous. In
fact l̂(x, μ1, μ2) = (x− 1)pq + x(1− q) and

ŵ(x) = sup
(μ1,μ2)∈N̂(x)

l̂(x, μ1, μ2) = w(x) =
{

0 if x = 0
x− 1 if x �= 0

so ŵ is not continuous at x = 0.
However, by considering for ε > 0 the set of the ε-approximate mixed Nash

equilibria, the ε-approximate inf-average marginal function

ŵ(x, ε) =
{
x if 0 ≤ x ≤ ε
x− 1 + ε/x if x > ε

is continuous on [0, 1].

References

1. Altman, E., Boulogne, T., El-Azouzi, R. and Jimenez, T. (2004), A survey on
networking games in telecommunications, Computers and Operation Research.

2. Aubin, J. P. and Frankowska, H. (1990) Set-valued Analysis, Birkhauser,
Boston.

3. Basar, T. and Olsder, G.J. (1995) Dynamic Noncooperative Game Theory, Aca-
demic Press. New York.

4. Borel, E. (1953) The theory of play and integral equations with skew symmetric
kernels, Econometrica vol. 21, pp. 97-100.

5. Breton, M., Alj, A. and Haurie, A. (1988), Sequential Stackelberg equilibria in
two-person games, Journal of Optimization Theory and Applications vol. 59,
pp. 71-97.

6. Dempe, S. (2002) Foundations of Bilevel Programming, Kluwer Academic Pub-
lishers, Dordrecht.

7. Dempe, S. (2003) Annotated bibliography on bilevel programming and mathe-
matical programs with equilibrium constraints, Optimization vol. 52, pp. 333-
359.



Approximate mixed Nash equilibria and average marginal functions 107

8. Facchini, G., Van Megen, F., Borm, P. and Tijs, S. (1997), Congestion models
and weighted Bayesian potential games, Theory and Decision vol. 42, pp.
193-206.

9. Lignola, M.B. and Morgan, J. (1992) Semi-continuities of marginal functions
in a sequential setting, Optimization vol. 24, pp. 241-252.

10. Loridan, P. and Morgan, J. (1989) On strict ε-solutions for a two-level op-
timization problem, Proceedings of the international Conference on Operation
Research 90 in Vienna, Ed. By W. Buhler, G. Feichtinger, F. Harti, F.J. Ra-
dermacher, P. Stanley, Springer Verlag, Berlin, pp. 165-172.

11. Loridan, P. and Morgan, J. (1996) Weak via strong Stackelberg problems: new
results, Journal of Global Optimization vol. 8, pp. 263-287.

12. Luo, Z.-Q., Pang, J.-S., Ralph, D. (1996) Mathematical programs with equilib-
rium constraints, Cambridge University Press, Cambridge.

13. Mallozzi, L. and Morgan, J. (2001) Mixed strategies for hierarchical zero-sum
games. In: Advances in dynamic games and applications (Maastricht, 1998),
Annals of the International Society on Dynamic Games, Birkhauser Boston MA
vol. 6, pp. 65-77.

14. Mallozzi, L. and Morgan, J. (2005) On equilibria for oligopolistic markets with
leadership and demand curve having possible gaps and discontinuities, Journal
of Optimization Theory and Applications vol. 125, n.2, pp. 393-407.

15. Marcotte, P. and Blain, M. (1991) A Stackelberg-Nash model for the design
of deregulated transit system, Dynamic Games in Economic Analysis, Ed. by
R.H. Hamalainen and H.K. Ethamo, Lecture Notes in Control and Information
Sciences, Springer Verlag, Berlin, vol. 157.

16. Monderer, D. and Shapley, L.S. (1996) Potential games, Games and Economic
Behavior vol. 14, pp. 124-143.

17. Morgan, J. and Raucci, R. (1999) New convergence results for Nash equilibria,
Journal of Convex Analysis vol. 6, n. 2, pp. 377-385.

18. Morgan, J. and Raucci, R. (2002) Lower semicontinuity for approximate social
Nash equilibria, International Journal of Game Theory vol. 31, pp. 499-509.

19. Nash, J. (1951) Non-cooperative games, Annals of Mathematics vol. 54, pp.
286-295.

20. Petit, M.L. and Sanna-Randaccio, F. (2000) Endogenous R&D and foreign
direct investment in international oligopolies, International Journal of Industrial
Organization vol. 18, pp. 339-367.

21. Sheraly, H.D., Soyster, A.L. and Murphy, F.H. (1983) Stackelberg-Nash-Cournot
Equilibria: characterizations and computations, Operation Research vol. 31, pp.
253-276.

22. Tobin, R.L. (1992) Uniqueness results and algorithm for Stackelberg-Cournot-
Nash equilibria, Annals of Operation Research vol. 34, pp. 21-36.

23. von Neumann, J. and Morgenstern, O. (1944) Theory of Games and Economic
Behavior, New York Wiley.



Part II

Mathematical Programs with Equilibrium
Constraints



A direct proof for M-stationarity under
MPEC-GCQ for mathematical programs with
equilibrium constraints

Michael L. Flegel and Christian Kanzow

University of Würzburg, Institute of Applied Mathematics and Statistics, Am
Hubland, 97074 Würzburg, Germany
{flegel,kanzow}@mathematik.uni-wuerzburg.de

Summary. Mathematical programs with equilibrium constraints are optimization
problems which violate most of the standard constraint qualifications. Hence the
usual Karush-Kuhn-Tucker conditions cannot be viewed as first order optimality
conditions unless relatively strong assumptions are satisfied. This observation has
lead to a number of weaker first order conditions, with M-stationarity being the
strongest among these weaker conditions. Here we show that M-stationarity is a first
order optimality condition under a very weak Guignard-type constraint qualification.
We present a short and direct approach.

Key Words. Mathematical programs with equilibrium constraints, M-sta-
tionarity, Guignard constraint qualification.

1 Introduction

We consider the following program, known across the literature as a mathemat-
ical program with complementarity—or often also equilibrium—constraints,
MPEC for short:

min f(z)
s.t. g(z) ≤ 0, h(z) = 0,

G(z) ≥ 0, H(z) ≥ 0, G(z)TH(z) = 0,
(1)

where f : R
n → R, g : R

n → R
m, h : R

n → R
p, G : R

n → R
l, and

H : R
n → R

l are continuously differentiable.
It is easily verified that the standard Mangasarian-Fromovitz constraint

qualification is violated at every feasible point of the program (1), see, e.g.,
[2]. The weaker Abadie constraint qualification can be shown to only hold in
restrictive circumstances, see [16, 3]. A still weaker CQ, the Guignard CQ, has
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a chance of holding, see [3]. Any of the classic CQs imply that a Karush-Kuhn-
Tucker point (called a strongly stationary point by the MPEC community, see
the discussion in [3]) is a necessary first order condition.

However, because only the weakest constraint qualifications have a chance
of holding, new constraint qualifications tailored to MPECs, and with it new
stationarity concepts, have arisen, see, e.g., [11, 19, 16, 14, 15, 6, 22].

One of the stronger stationarity concepts introduced is M-stationarity [14]
(see (8)). It is second only to strong stationarity. Weaker stationarity concepts
like A- and C-stationarity have also been introduced [4, 19], but it is com-
monly held that these are too weak since such points allow for trivial descent
directions to exist.

M-stationary points also play an important role for some classes of algo-
rithms for the solution of MPECs. For example, Scholtes [20] has introduced
an algorithm which, under certain assumptions to the MPEC (1), converges
to an M-stationary point, but not in general to a strongly stationary point.
Later, Hu and Ralph [9] proved a generalization of this result by showing that
a limit point of a whole class of algorithms is an M-stationary point of the
MPEC (1).

Hence it is of some importance to know when an M-stationary point is
in fact a first order condition. This paper is dedicated to answering that
question. We will show M-stationarity to be a necessary first order condition
under MPEC-GCQ, an MPEC variant of the classic Guignard CQ. This result
has recently been established in [7], using a very general approach involving
disjunctive optimization problems. The aim of this paper is to present a very
direct and short proof, focussing on the MPEC (1).

The organization of this paper is as follows: In Section 2 we introduce
some concepts and results necessary for proving our main result. This is done
in Section 3, referring to Section 2 and introducing additional concepts as
needed.

A word on notation. Given two vectors x and y, we use (x, y) := (xT , yT )T

for ease of notation. Comparisons such as ≤ and ≥ are understood compo-
nentwise. Given a vector a ∈ R

n, ai denotes the i-th component of that
vector. Given a set ν ⊆ {1, . . . , n} we denote by xν ∈ R

|ν| that vector which
consists of those components of x ∈ R

n which correspond to the indices in ν.
Furthermore, we denote the set of all partitions of ν by P(ν) := {(ν1, ν2) |
ν1 ∪ ν2 = ν, ν1 ∩ ν2 = ∅}. By R

l
+ := {x ∈ R

l | x ≥ 0} we mean the
nonnegative orthant of R

l. Finally, the graph of a multifunction (set-valued
function) Φ : R

m ⇒ R
n is defined as gphΦ := {(v, w) ∈ R

m+n | w ∈ Φ(v)}.

2 Preliminaries

We will now introduce some notation and concepts in the context of MPECs
which we will need for the remainder of this paper.
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From the complementarity term in (1) it is clear that for a feasible point
z∗, either Gi(z∗), or Hi(z∗), or both must be zero. To differentiate between
these cases, we divide the indices of G and H into three sets:

α := α(z∗) := {i | Gi(z∗) = 0, Hi(z∗) > 0}, (2a)
β := β(z∗) := {i | Gi(z∗) = 0, Hi(z∗) = 0}, (2b)
γ := γ(z∗) := {i | Gi(z∗) > 0, Hi(z∗) = 0}. (2c)

The set β is called the degenerate set.
The standard Abadie and Guignard CQs are defined using the tangent

cone of the feasible set of a mathematical program. The MPEC variants of
these CQs (see Definition 2.1) also make use of this tangent cone. If we denote
the feasible set of (1) by Z, the tangent cone of (1) in a feasible point z∗ is
defined by

T (z∗) :=
{
d ∈ R

n
∣∣ ∃{zk} ⊂ Z,∃tk ↘ 0 : zk → z∗ and

zk − z∗
tk

→ d
}
. (3)

Note that the tangent cone is closed, but in general not convex.
For the standard Abadie and Guignard CQs, the constraints of the mathe-

matical program are linearized. This makes less sense in the context of MPECs
because information we keep for G and H, we throw away for the complemen-
tarity term (see also [3]). Instead, the authors proposed the MPEC-linearized
tangent cone in [6],

T lin
MPEC(z∗) := {d ∈ R

n | ∇gi(z∗)T d ≤ 0, ∀i ∈ Ig,

∇hi(z∗)T d = 0, ∀i = 1, . . . , p,

∇Gi(z∗)T d = 0, ∀i ∈ α,
∇Hi(z∗)T d = 0, ∀i ∈ γ,
∇Gi(z∗)T d ≥ 0, ∀i ∈ β,
∇Hi(z∗)T d ≥ 0, ∀i ∈ β,
(∇Gi(z∗)T d) · (∇Hi(z∗)T d) = 0, ∀i ∈ β },

(4)

where Ig := {i | gi(z∗) = 0} is the set of active inequality constraints at z∗.
Note that here, the component functions of the complementarity term have
been linearized separately, so that we end up with a quadratic term in (4).

Similar to the classic case, it holds that

T (z∗) ⊆ T lin
MPEC(z∗)

(see [6]).
Guignard CQ is often stated using the so-called duals of the tangent and

linearized tangent cones (see, e.g., [1]). We therefore introduce the concept of
the dual cone. Given an arbitrary cone C ⊆ R

n, its dual cone C∗ is defined as
follows:



114 Michael L. Flegel and Christian Kanzow

C∗ := {v ∈ R
n | vT d ≥ 0 ∀d ∈ C}. (5)

Together with the introduction of the MPEC-linearized tangent cone (4),
this inspires the following variants of the Abadie and Guignard CQs for
MPECs.

Definition 2.1 The MPEC (1) is said to satisfy MPEC-Abadie CQ, or
MPEC-ACQ, at a feasible vector z∗ if

T (z∗) = T lin
MPEC(z∗) (6)

holds. It is said to satisfy MPEC-Guignard CQ, or MPEC-GCQ, at a feasible
vector z∗ if

T (z∗)∗ = T lin
MPEC(z∗)∗ (7)

holds.

We refer the reader to [6] for a rigorous discussion of MPEC-ACQ.
Note that obviously MPEC-ACQ in z∗ implies MPEC-GCQ in z∗. The

converse is not true, in general, as can be seen from the following example.

Example 2.1 Consider the MPEC

min z2
1 + z2

2 s.t. z2
1 ≥ 0, z2

2 ≥ 0, z2
1z

2
2 = 0.

Then z∗ := 0 is the unique minimizer of this program, and a simple cal-
culation shows that T (z∗) = {z ∈ R

2 | z1z2 = 0}, T lin
MPEC(z∗) = R

2, hence
MPEC-ACQ does not hold. On the other hand, this implies T (z∗)∗ = {0}
and T lin

MPEC(z∗)∗ = {0}, i.e., MPEC-GCQ is satisfied. �

We will therefore present our main result using MPEC-GCQ (see Theorem
3.1). Naturally, it holds under MPEC-ACQ as well.

As mentioned in the introduction, various stationarity concepts have arisen
for MPECs. Though we only need M-stationarity, we also state A-, C- and
strong stationarity for completeness’ sake, see [19, 16, 4] for more detail.

Let z∗ ∈ Z be feasible for the MPEC (1). We call z∗ M-stationary if there
exists λg, λh, λG, and λH such that

0 = ∇f(z∗) +
m∑

i=1

λg
i∇gi(z∗) +

p∑
i=1

λh
i∇hi(z∗)−

−
l∑

i=1

[
λG

i ∇Gi(z∗) + λH
i ∇Hi(z∗)

]
,

λG
α free,

λH
γ free,

(λG
i > 0 ∧ λH

i > 0) ∨ λG
i λ

H
i = 0 ∀i ∈ β

λG
γ = 0,

λH
α = 0,

g(z∗) ≤ 0, λg ≥ 0, g(z∗)Tλg = 0.

(8)
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The other stationarity concepts differ from M-stationarity only in the re-
striction imposed upon λG

i and λH
i for i ∈ β, as detailed in the following

list:

• strong stationarity [19, 16]: λG
i ≥ 0 ∧ λH

i ≥ 0 ∀i ∈ β;
• M-stationarity [14]: (λG

i > 0 ∧ λH
i > 0) ∨ λG

i λ
H
i = 0 ∀i ∈ β;

• C-stationarity [19]: λG
i λ

H
i ≥ 0 ∀i ∈ β;

• A-stationarity [4]: λG
i ≥ 0 ∨ λH

i ≥ 0 ∀i ∈ β.

Note that the intersection of A- and C-stationarity yields M-stationarity and
that strong stationarity implies M- and hence A- and C-stationarity. Also
note that Pang and Fukushima [16] call a strongly stationary point a primal-
dual stationary point. The “C” and “M” stand for Clarke and Mordukhovich,
respectively, since they occur when applying the Clarke or Mordukhovich
calculus to the MPEC (1). The “A” might stand for “alternative” because
that describes the properties of the Lagrange multipliers, or “Abadie” because
it first occured when MPEC-ACQ was applied to the MPEC (1), see [6].

We will now introduce some normal cones, which will become important
in our subsequent analysis. For more detail on the normal cones we use here,
see [12, 10, 18].

Definition 2.2 Let Ω ⊆ R
l be nonempty and closed, and v ∈ Ω be given. We

call

N̂(v,Ω) := {w ∈ R
l | lim sup

vk→v
{vk}⊂Ω\{v}

wT (vk − v)/‖vk − v‖ ≤ 0} (9)

the Fréchet normal cone or regular normal cone [18] to Ω at v, and

N(v,Ω) := { lim
k→∞

wk | ∃{vk} ⊂ Ω : lim
k→∞

vk = v, wk ∈ N̂(vk, Ω)} (10)

the limiting normal cone to Ω at v.
By convention, we set N̂(v,Ω) = N(v,Ω) := ∅ if v /∈ Ω. By N×

Ω : R
l ⇒ R

l

we denote the multifunction that maps v �→ N×(v,Ω), where × is a place-
holder for one of the normal cones defined above.

Note that if v is in the interior of Ω, both normal cones reduce to {0}, as is
well known.

Since the limiting normal cone is the most important one in our subsequent
analysis, we did not furnish it with an index to simplify notation.

To cope with the complementarity term in the constraints of the MPEC
(1), we recall the following result which investigates the limiting normal cone
to a complementarity set. This result was originally stated in a slightly dif-
ferent format by Outrata in [14, Lemma 2.2], see also [21, Proposition 3.7]. A
proof for this particular formulation may be found in [5, Proposition 2.5].
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Proposition 2.1 Let the set

C := {(a, b) ∈ R
2l | a ≥ 0, b ≥ 0 aT b = 0 } (11)

be given. Then, for an arbitrary but fixed (a, b) ∈ C, define

Ia = {i | ai = 0, bi > 0}, Ib = {i | ai > 0, bi = 0}, Iab = {i | ai = 0, bi = 0}.

Then the limiting normal cone to C in (a, b) is given by

N((a, b), C) = {(x, y) ∈ R
2l | xIb

= 0, yIa
= 0,

(xi < 0 ∧ yi < 0) ∨ xiyi = 0 ∀i ∈ Iab}. (12)

Another important set is a polyhedral convex set, whose limiting normal
cone at the origin will be needed in our subsequent analysis and is therefore
given in the following lemma.

Lemma 2.1 Let vectors ai ∈ R
n, i = 1, . . . , k and bi ∈ R

n, i = 1, . . . , l be
given and define the convex set

D := {d ∈ R
n | aT

i d ≤ 0, ∀i = 1, . . . , k,

bTj d = 0, ∀j = 1, . . . , l}.
(13)

Then the limiting normal cone of D at 0 is given by

N(0,D) = {v ∈ R
n | v =

k∑
i=1

αiai +
l∑

j=1

βjbj

αi ≥ 0, ∀i = 1, . . . , k},

(14)

Proof. Since D is convex, [18, Theorem 6.9] may be invoked and the statement
of this lemma is given by Theorem 3.2.2 and its proof in [1]. �

3 M-Stationarity

We start off this section by stating our main result. The remainder of the
paper is dedicated to proving this result. Note that a similar result has been
stated and proved in [22], though under the stronger MPEC-ACQ.

Theorem 3.1 Let z∗ be a local minimizer of the MPEC (1) at which MPEC-
GCQ holds. Then there exists a Lagrange multiplier λ∗ such that (z∗, λ∗)
satisfies the conditions for M-stationarity (8).

The fundamental idea of the proof is due to Ye, see [22, Theorem 3.1]. It is
based on the fact that, under MPEC-GCQ, the tangent cone is described by
some linear equations and inequalities, and a linear complementarity problem.
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Using the tangent cone as the feasible set of a mathematical program yields
an MPEC. We are then able to glean the conditions for M-stationarity for the
original MPEC (1) from this “affine” MPEC. In the following, we make this
idea more precise.

Since z∗ is a local minimum of (1), we get

∇f(z∗)T d ≥ 0 ∀d ∈ T (z∗)

from standard optimization theory, cf. [13]. Using the definition of the dual
cone, this may be expressed as

∇f(z∗) ∈ T (z∗)∗,

and since MPEC-GCQ holds, i.e. T (z∗)∗ = T lin
MPEC(z∗)∗, this is equivalent to

∇f(z∗) ∈ T lin
MPEC(z∗)∗.

Resolving the definition of the dual cone, we obtain

∇f(z∗)T d ≥ 0 ∀d ∈ T lin
MPEC(z∗). (15)

This, in turn, is equivalent to d∗ = 0 being a minimizer of

min
d
∇f(z∗)T d

s.t. d ∈ T lin
MPEC(z∗).

(16)

This is a mathematical program with affine equilibrium constraints, or
MPAEC.

It is easily verified that d∗ = 0 being a minimizer of (16) is equivalent to
(d∗, ξ∗, η∗) = (0, 0, 0) being a minimizer of

min
(d,ξ,η)

∇f(z∗)T d

s.t. (d, ξ, η) ∈ D := D1 ∩ D2

(17)

with
D1 := {(d, ξ, η) | ∇gi(z∗)T d ≤ 0, ∀i ∈ Ig,

∇hi(z∗)T d = 0, ∀i = 1, . . . , p,

∇Gi(z∗)T d = 0, ∀i ∈ α,
∇Hi(z∗)T d = 0, ∀i ∈ γ,
∇Gi(z∗)T d− ξi = 0, ∀i ∈ β,
∇Hi(z∗)T d− ηi = 0, ∀i ∈ β }

(18)

and
D2 := {(d, ξ, η) | ξ ≥ 0, η ≥ 0, ξT η = 0}. (19)

Once more, since (0, 0, 0) is a minimizer of (17), B-stationarity holds, which
in this case means that
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(∇f(z∗), 0, 0)Tw ≥ 0 ∀w ∈ T ((0, 0, 0),D),

where T ((0, 0, 0),D) denotes the tangent cone to the set D in the point
(0, 0, 0). By virtue of [18, Proposition 6.5], this is equivalent to

(−∇f(z∗), 0, 0) ∈ N̂((0, 0, 0),D) ⊆ N((0, 0, 0),D). (20)

Note, once again, that the limiting normal cone N(·, ·) is equal to the limit of
the Fréchet normal cone N̂(·, ·).

In order to calculate N((0, 0, 0),D) in a fashion conducive to our goal,
we need to consider the normal cones D1 and D2 separately. To be able to
do this, we need some auxiliary results. We start off with the definition of a
polyhedral multifunction (see [17]).

Definition 3.1 We say that a multifunction Φ : R
n ⇒ R

m is a polyhedral
multifunction if its graph is the union of finitely many polyhedral convex sets.

We now show that a certain multifunction, which is defined using D1 and
D2, is a polyhedral multifunction. We will need this to apply a result by
Henrion, Jourani and Outrata [8].

Lemma 3.1 Let the multifunction Φ : R
n+2|β| ⇒ R

n+2|β| be given by

Φ(v) := {w ∈ D1 | v + w ∈ D2}. (21)

Then Φ is a polyhedral multifunction.

Proof. Since the graph of Φ may be expressed as

gphΦ = {(dv, ξv, ηv, dw, ξw, ηw) ∈ R
2(n+2|β|) |

∇gi(z∗)T dw ≤ 0, ∀i ∈ Ig,

∇hi(z∗)T dw = 0, ∀i = 1, . . . , p,

∇Gi(z∗)T dw = 0, ∀i ∈ α,
∇Hi(z∗)T dw = 0, ∀i ∈ γ,
∇Gi(z∗)T dw − ξw

i = 0, ∀i ∈ β,
∇Hi(z∗)T dw − ηw

i = 0, ∀i ∈ β,
ξv + ξw ≥ 0, ηv + ηw ≥ 0, (ξv + ξw)T (ηv + ηw) = 0 }
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=
⋃
{(dv, ξv, ηv, dw, ξw, ηw) ∈ R

2(n+2|β|) |
(ν1,ν2)∈P({1,...,|β|})

∇gi(z∗)T dw ≤ 0, ∀i ∈ Ig,

∇hi(z∗)T dw = 0, ∀i = 1, . . . , p,

∇Gi(z∗)T dw = 0, ∀i ∈ α,
∇Hi(z∗)T dw = 0, ∀i ∈ γ,
∇Gi(z∗)T dw − ξw

i = 0, ∀i ∈ β,
∇Hi(z∗)T dw − ηw

i = 0, ∀i ∈ β,
ξv
ν1

+ ξw
ν1

= 0, ξv
ν2

+ ξw
ν2
≥ 0,

ηv
ν1

+ ηw
ν1
≥ 0, ηv

ν2
+ ηw

ν2
= 0 },

it is obviously the union of finitely many polyhedral convex sets. By Definition
3.1, Φ is therefore a polyhedral multifunction. �

Since Φ defined in (21) is a polyhedral multifunction, [17, Proposition 1]
may be invoked to show that Φ is locally upper Lipschitz continuous at every
point v ∈ R

n+2|β|. It is therefore in particular calm at every (v, w) ∈ gphΦ in
the sense of [8]. By invoking [8, Corollary 4.2] we see that (20) implies

(−∇f(z∗), 0, 0) ∈ N((0, 0, 0),D1) +N((0, 0, 0),D2). (22)

Now, the limiting normal cone of D1 is given by Lemma 2.1. This yields
that there exist λg, λh, λG and λH with λg

Ig
≥ 0 such that⎛⎝−∇f(z∗)

0
0

⎞⎠ ∈∑
i∈Ig

λg
i

⎛⎝∇gi(z∗)
0
0

⎞⎠+
p∑

i=1

λh
i

⎛⎝∇hi(z∗)
0
0

⎞⎠
−
∑
i∈α

λG
i

⎛⎝∇Gi(z∗)
0
0

⎞⎠−∑
i∈γ

λH
i

⎛⎝∇Hi(z∗)
0
0

⎞⎠
−
∑
i∈β

[
λG

i

⎛⎝∇Gi(z∗)
−ei

0

⎞⎠+ λH
i

⎛⎝∇Hi(z∗)
0
−ei

⎞⎠]
+N((0, 0, 0),D2),

(23)

where ei denotes that unit vector in R
|β| which corresponds to the position

of i in β. Note that since the signs in the second and third lines of (23) are
arbitrary, they were chosen to facilitate the notation of the proof.

First, we take a look at the second and third components in (23). To this
end, we rewrite the normal cone to D2 in the following fashion:

N((0, 0, 0),D2) = N(0,Rn)×N((0, 0), {(ξ, η) | ξ ≥ 0, η ≥ 0, ξT η = 0})
= {0} ×N((0, 0), {(ξ, η) | ξ ≥ 0, η ≥ 0, ξT η = 0}).

(24)
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Here the first equality is due to the Cartesian product rule (see, e.g., [12] or
[18, Proposition 6.41]). The second equality uses that 0 is in the interior of
R

n, and hence any normal cone reduces to {0}.
Substituting (24) into (23) yields

(−λG
β ,−λH

β ) ∈ N((0, 0), {(ξ, η) | ξ ≥ 0, η ≥ 0, ξT η = 0}).

Applying Proposition 2.1, we obtain that

(λG
i > 0 ∧ λH

i > 0) ∨ λG
i λ

H
i = 0

for all i ∈ β. Note that since we need to determine the limiting normal cone
in the point (0, 0), it holds that Ia = Ib = ∅ in Proposition 2.1.

Finally, we set λG
γ := 0, λH

α := 0, and λg
i := 0 for all i /∈ Ig and have thus

acquired the conditions for M-stationarity (8) with λ∗ := (λg, λh, λG, λH),
completing the proof of Theorem 3.1. Note that even though we derived our
conditions using the MPAEC (16), we have in fact acquired the conditions for
M-stationarity of our original MPEC (1).

Remark 3.1 We wish to draw attention to two fundamental ideas used in
the proof of Theorem 3.1. The first is due to Ye and entails introducing an
MPAEC (see (16) and the discussion preceeding it).

The second idea is that we can separate the benign constraints from the
complementarity constraints (divided here into D1 and D2) and consider the
two types of constraints separately. We are able to do this because

N((0, 0, 0),D) ⊆ N((0, 0, 0),D1) +N((0, 0, 0),D2)

(see (20) and (22)) holds due to a result by Henrion, Jourani and Outrata
(see [8, Corollary 4.2]). Note that this does not hold in general, but is a direct
consequence of our MPAEC (16) having constraints characterized by affine
functions.

Note that the MPEC-Guignard constraint qualification is satisfied not only
under MPEC-ACQ, but also under many other conditions like the MPEC-
MFCQ assumption or an MPEC-variant of a Slater-condition, see [6], as well
as a number of other constraint qualifications, see [22]. Hence all these stronger
constraint qualifications imply that M-stationarity is a necessary first order
optimality condition. In particular, a local minimizer is an M-stationary point
under the MPEC-MFCQ assumption used in [19]. However, the authors of [19]
were only able to prove C-stationarity to be a necessary first order condition
under MPEC-MFCQ.

We also note that the MPEC-Guignard constraint qualification does not
guarantee that a local minimizer is a strongly stationary point. This follows
from the observation that even the stronger MPEC-MFCQ condition does not
imply strong stationarity, see [19] for a counterexample.
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4 Conclusion

We proved that a very weak assumption, the MPEC-Guignard constraint
qualification, implies that a local minimum satisfies the relatively strong first
order optimality condition, M-stationarity, in the framework of mathemati-
cal programs with equilibrium constraints. The proof was obtained using a
relatively direct approach, whereas the same result was obtained in [7] as a
special case of a much more general approach. We also note that Theorem 3.1
improves on several existing results such as those found in [22, 5].
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Summary. In this paper, a bilevel formulation of a structural optimization problem
with discrete variables is investigated. The bilevel programming problem is trans-
formed into a Mathematical Program with Equilibrium (or Complementarity) Con-
straints (MPEC) by exploiting the Karush-Kuhn-Tucker conditions of the follower’s
problem.

A complementarity active-set algorithm for finding a stationary point of the
corresponding MPEC and a sequential complementarity algorithm for computing a
global minimum for the MPEC are analyzed. Numerical results with a number of
structural problems indicate that the active-set method provides in general a struc-
ture that is quite close to the optimal one in a small amount of effort. Furthermore
the sequential complementarity method is able to find optimal structures in all the
instances and compares favorably with a commercial integer program code for the
same purpose.

Key Words: Structural optimization, mixed integer programming, global
optimization, complementarity.

1 Introduction

In the last few decades, Structural Optimization has become an area of in-
creasing interest and intense research [1, 3, 5, 10, 9, 12, 20, 22, 23, 25]. These
models are formulated as challenging optimization problems representing the
elastoplastic laws of mechanics and searching for a structure with the least

 pp. ,
Media, LLC©2006 Springer Science + Business

S. Dempe and V. Kalashnikov (eds.), 123-142Optimization with Multivalued Mappings



124 Joaquim J. Júdice et al.

volume. A quite general structural optimization model has been introduced
in [8] whose formulation leads into a bilinear program with linear and bilinear
constraints. The variables of this optimization problem are associated to the
coordinates at each node of the structure and the cross sectional areas. The
latter should belong to a fixed set of admissible values. Furthermore each fea-
sible solution is characterized by a vector x, whose components are 1 or 0,
depending on the corresponding bar to be or not to be included in the optimal
structure.

As discussed in [8], this bilinear program with discrete variables can be
reduced into a mixed integer zero-one linear program. Computational experi-
ence reported in [8] shows that the model is quite appropriate for finding a
structure that requires small amount of material. A commercial code, such as
Osl [18], can in general find an optimal solution for the optimization problem
when the number of nodes and pre-fixed values for the cross-sectional areas
are small. However, the algorithm faces difficulties in finding such a solution
when the dimension of the problem increases.

A mixed integer zero-one linear program can be shown to be equivalent to
a Linear Bilevel Programming Problem [2]. By exploiting the Karush-Kuhn-
Tucker conditions of the follower’s problem it is possible to reduce this bilevel
program into a Mathematical Programming Problem with Equilibrium (or
Complementarity) Constraints of the following form

MPEC: Minimize cT z + dT y
subject to Ew = q +Mz +Ny

z ≥ 0, w ≥ 0
y ∈ Ky

zTw = 0

(1)

where q ∈ R
p, c, z ∈ R

n, d, y ∈ R
m, M , E ∈ R

p×n, N ∈ R
p×m and

Ky = {y ∈ R
m : Cy = b, y ≥ 0}

with C ∈ R
l×m and b ∈ R

l.
Due to its structure, an active-set methodology seems to be quite appropri-

ate to process this MPEC. A complementarity active-set (Caset) algorithm
has been introduced in [16] to find a stationary point for the MPEC. The
procedure maintains complementarity during the entire process and has been
shown to converge to a stationary point under reasonable hypotheses. Com-
putational experience reported in [16] has shown that the proposed algorithm
is in general quite efficient to process moderate and even large MPECs.

A Sequential Linear Complementarity (Slcp) algorithm has been intro-
duced in [14] to find a global minimum for a linear MPEC. The algorithm finds
a sequence of stationary points of the MPEC with strictly decreasing value.
The last stationary point of this sequence is shown to be a global minimum of
the MPEC. Computational experience reported in [13, 14, 15] indicates that



Bilevel Programming for Solving a Structural Optimization Problem 125

the algorithm is quite efficient to find a stationary point that is a global min-
imum of the MPEC, but faces difficulties in establishing that such a global
minimum has been achieved.

In practice, engineers search for a structure that serves their purposes, that
is, a feasible solution of the mixed integer program with a small objective func-
tion value is requested. As each stationary point of the MPEC corresponds
to a feasible solution of its equivalent zero-one integer program, then both
the Caset and Slcp algorithms seem to be valid approaches to find a good
structure for the structural model. In this paper we investigate how these two
algorithms perform for a number of structures presented in [8]. The exper-
iments indicate that the Caset algorithm is able to find in general a good
structure in a small amount of effort. On the other hand, the Slcp algorithm
has always found a global optimal structure for the model. Furthermore the
computational effort required by the Slcp algorithm tends to become much
smaller than the one needed by an integer program code as the dimension of
this problem increases.

The organization of the paper is as follows. In Section 2 the structural
model and its formulation are introduced. Section 3 is devoted to the equiv-
alence between a zero-one mixed integer program and an MPEC. The algo-
rithms Caset and Slcp are briefly described in sections 4 and 5. Finally
computational experience with these algorithms on a set of structural prob-
lems and some conclusions are included in the last two sections.

2 A topological optimization model

The admissible structural domain is referenced by a bidimensional cartesian
system Oxy, in which the various alternative solutions for the problem under
consideration can be developed. A discretisation [26] of this domain is then
considered in which the mesh is composed by bar elements joined at the nodal
points.

The structural domain is submitted to the various actions defined in the
safety code [6] such as the structural self-weight, wind, earthquake and so on.
These actions lead to different l loading conditions, each of them is represented
by nodal point loads

f l =
[
f l

x

f l
y

]
.

Some of these loads are reactions rl, when the associated nodes are connected
to the exterior. The nodal displacements

ul =
[
ul

x

ul
y

]
are associated to these nodal forces. The stress field within each bar element
i for loading condition l can be determined from its axial load el

i, while the
strain field is given by the axial deformation dl

i.
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The fundamental conditions to be satisfied in the serviceability limit states
are equilibrium, compatibility, boundary conditions and elastic constitutive
relations of the structural material.

Equilibrium has to be verified at a nodal level and relates the elastic axial
bar forces el

e with support reactions rl
e and applied nodal loads f l by

CT el
e −Brl

e − f l = 0, (2)

where C and B are matrices depending on the structural topology.
The compatibility conditions imply equal displacement for all the bar ends

joining at the same node and can be expressed as

dl
e = Cul, (3)

where dl
e is the bar deformation vector, ul is the nodal displacement vector

and C is the connectivity matrix already used in (2).
The forces el

e in the structural bars are related to the bar deformations dl
e

by linear elastic constitutive relations given by the so-called Hooke’s Law

el
e = KDAd

l
e, (4)

where DA = diag{Ai}, with Ai a discrete variable associated to the cross-
sectional area of bar i and K = diag{Eih

−1
i }, with Ei > 0 the Young’s

modulus of bar i and hi its length . It follows from (2), (3) and (4) that

CTKDACu
l −Brl

e − f l = 0. (5)

The structural boundary conditions are given by

ul
m = 0 (6)

for the nodes m connected to supports with zero displacement.
The nodal displacements should comply with the upper and lower bounds

defined in the safety codes

umin ≤ ul ≤ umax. (7)

The ultimate limit states can be considered on the basis of the Plasticity
Theory. According to the Static Theorem, the fundamental conditions to be
fulfilled are equilibrium, plasticity conditions and boundary conditions.

The equilibrium conditions are given in a similar form to (2) by

CT el
p −Brl

p − λf l = 0, (8)

where el
p is the plastic force vector, rl

p the plastic reaction vector and λ is
a partial safety majoration factor for the nodal forces corresponding to the
applied actions, prescribed in structural safety codes [6, 7].

The plasticity conditions can be expressed as
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emin ≤ el
p ≤ emax, (9)

where emin and emax are the minimum and maximum admissible values for
the element forces defined in the code [7].

The conditions (5), (6), (7), (8) and (9) considered so far are satisfied
by many solutions in which some bars have zero force. A vector x is further
introduced in the model such that each variable xi is associated with bar i
and takes value 1 or 0, depending on the bar i to be or not to be included in
the solution.

The force in a generic bar i can then be replaced by the product xie
l
pi

yielding a null force in non-existing bars. So the axial bar force must verify
the following conditions

Dxemin ≤ el
p ≤ Dxemax, (10)

where

Dx = diag(xi). (11)

Furthermore the diagonal matrix DA takes the form DADx. The model
seeks an optimal solution corresponding to the minimum use of structural
material V . If Ai is the cross-sectional area of bar i and hi is its length, then
the objective function takes the form

V =
∑

i

xiAihi. (12)

The optimization problem described by the equations (2-11) consists of
minimizing a bilinear function in variables xi and Aj on a set of linear and
bilinear constraints. Furthermore xi are zero-one variables and the variables
Ai can only assume values in a discrete set of positive fixed numbers Aik,
k = 1, . . . , Ni. These variables can be transformed into a set of zero-one vari-
ables yik by using traditional manipulations, as described in [8]. On the other
hand, bilinear terms such as xiyik can be transformed into variables by exploit-
ing the so-called Reformulation-Linearization Technique Rlt [8, 24]. These
transformations lead into a zero-one mixed-integer program, as shown below.

Unfortunately optimal structures associated to the optimization problem
may be not kinematically stable. In order to avoid such type of structures the
so-called Grubler’s Criterion [11] is exploited. As discussed in [8], this criterion
can be analytically presented by some further linear constraints.

All these considerations lead into the following formulation of the struc-
tural model [8] under study in this paper.
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OPT: Minimize V =
nb∑
i=1

(
Ni∑

k=1

Aikyik

)
hi

subject to
nb∑
i=1

Mji

(
Ni∑

k=1

Aikq
l
ik

)
−

na∑
m=1

Bjmr
l
em
− f l

j = 0 (13)

dl = Cul (14)
umin ≤ ul ≤ umax (15)
dminiyik ≤ ql

ik ≤ dmaxiyik (16)

dmini

(
1−

Ni∑
k=1

yik

)
≤ dl

i −
Ni∑

k=1

ql
ik (17)

dl
i −

Ni∑
k=1

ql
ik ≤ dmaxi

(
1−

Ni∑
k=1

yik

)
(18)

ul
jm

= 0 (19)

−CT el
p +Brl

p + λf l = 0 (20)

tmini

Ni∑
k=1

Aikyik ≤ el
pi
≤ tmaxi

Ni∑
k=1

Aikyik (21)

zn ≤
∑

i∈I(n)

Ni∑
k=1

yik ≤ |I(n)| zn (22)

2 ∗
nn∑

n=1

zn −
nb∑
i=1

Ni∑
k=1

yik −
nn∑

n=1

snzn ≤ 0 (23)

−CT ea +Bra + faZ = 0 (24)

tmini

Ni∑
k=1

Aikyik ≤ eai
≤ tmaxi

Ni∑
k=1

Aikyik (25)

yik ∈ {0, 1} (26)
Ni∑

k=1

yik ≤ 1, (27)

where l = 1, . . . , nc, j = 1, . . . , 2nn, jm = 1, . . . , na, k = 1, . . . , Ni, n =
1, . . . , nn and i = 1, . . . , nb.

The meanings of the parameters in this program are presented below:
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nb number of bars;
na number of simple supports;
nn number of nodes;
nc number of loading conditions;
Ni number of discrete sizes available for cross-sectional area

of bar i;
Aik k-th discrete size for bar i;
C nb× 2nn matrix of direction cosines relating bar forces

with nodal directions;
B 2nn × na matrix of direction cosines relating nodal di-

rections with nodal supports directions;

M matrix
[
CT diag

(
Ei

hi

)]
;

Ei Young’s modulus of bar i;
hi length of bar i;
f l

j applied nodal loads in direction j for loading condition
l;

I(n) set of bars indices which occur in node n;
λ safety factor;
|I(n)| cardinal of set I(n);
sn number of simple supports associated with node n;
Z 2nn× 2nn diagonal matrix, with zjj equal to zn of the

node n associated to the direction j;
fa perturbed nodal load applied in all directions;

tmini
, tmaxi

minimum and maximum stress in compression and ten-
sion, respectively, of bar i;

dmini
, dmaxi

minimum and maximum elongation of bar i;
uminj , umaxj minimum and maximum nodal displacement in direction

j.
The variables have the following meanings:

yiki
0− 1 variable stating whether the k-th discrete size for
bar i is or not the cross-sectional area of bar i;

el
pi

bar force of bar i for loading condition l;
rl
pm

plastic reaction in supports m for loading condition l;
rl
em

elastic reaction in supports m for loading condition l;
dl

i deformation of bar i for loading condition l;
ul

j nodal displacement in the direction j for loading condi-
tion l;

ql
iki

elongation of bar i corresponding to each discrete size k
for bar i in loading condition l;

zn 0− 1 variable stating whether the node n exists or not;
eai

bar force of bar i for the perturbed nodal load;
ram

plastic reaction in supports m for the perturbed nodal
load.
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Thus the mixed–integer linear program (OPT) has

nc×
(
4nn+5nb+ 2

nb∑
i=1

Ni

)
+3nb+4nn+ 1

constraints and

nc×
(
2nb+2nn+2na+

nb∑
i=1

Ni

)
+

nb∑
i=1

Ni+nn+nb+na

variables.

3 Reduction to a Mathematical Program with
Complementarity Constraints

In the previous section, the topological optimization model has been formu-
lated as a mixed-integer linear program, which can be stated as

PLI: Minimize cTx+ dTu
subject to Ax+Bu = g

Fu = h
u ≥ 0, xi ∈ {0, 1} , i = 1, . . . , n.

(28)

As discussed in [2], this mixed integer program can be shown to be equivalent
to the following Bilevel Program

BL: Minimize cTx+ dTu
subject to Ax+Bu = g

0 ≤ x ≤ e
u ≥ 0
Fu = h
eT v = 0, v ≥ 0
Minimize − eT v
subject to v ≤ x

v ≤ e− x,

(29)

where e ∈ R
n is a vector of ones.

By exploiting the Karush-Kuhn-Tucker conditions of the follower’s prob-
lem (29), it is possible to reduce the BL problem into the following Mathe-
matical Programming Problem with Equilibrium (or Complementarity) Con-
straints
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MPEC: Minimize cTx+ dTu
subject to Ax+Bu = g

0 ≤ x ≤ e
u ≥ 0
Fu = h
α+ β = 1
v + τ − x = 0
v + s+ x = e
eT v = 0
α, β, v, τ, s ≥ 0
αT τ = βT s = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

GLCP.

The constraints of this MPEC constitute a Generalized Complementarity
Problem (GLCP), which can be written in the form

Ew = q +Mz +Ny
w ≥ 0, z ≥ 0
y ∈ Ky

zTw = 0,

(30)

where

Ky = {y : y ≥ 0, Cy = b} . (31)

GLCP can be processed by a direct or an iterative method provided the
matrices E and M satisfy some nice properties. In particular [17], if E is the
identity matrix and M is a Positive Semi-Definite (PSD) matrix, then the
GLCP can be solved by finding a stationary point of the following quadratic
program

QP: Minimize zTw
subject to Ew = q +Mz +Ny

z ≥ 0, w ≥ 0
y ∈ Ky.

(32)

Unfortunately, the GLCP under consideration does not satisfy this prop-
erty, as the matrices E and M are not even square. An enumerative method
[15, 21] is then required to process the GLCP. The algorithm searches for a
solution of the GLCP by exploiting a binary tree that is constructed based on
the dichotomy presented in the complementarity conditions ziwi = 0. At each
node k, the algorithm computes a stationary point of a quadratic program
QP(k) that is obtained from QP by adding the constraints

zi = 0, i ∈ Lk

wj = 0, j ∈Wk,

where Lk and Wk are the set of the fixed variables at this node. The incorpo-
ration of such QP solver enables the enumerative algorithm to find a solution



132 Joaquim J. Júdice et al.

of the GLCP in a reasonable effort, even for large problems. In fact, a solution
of the GLCP is exactly a stationary point of QP(k) such that zTw = 0.

The enumerative algorithm faces difficulties when the GLCP is feasible
(the linear constraints are consistent) but has no solution. In this case the
last property does not hold and the method requires an exhaustive search in
the tree to terminate.

As a final remark, it is important to add that the enumerative method can
be implemented by using an active-set code such as Minos [18]. A compari-
son of such an active-set implementation of the enumerative method with a
reduced-gradient based version [15], shows that the former is in general more
efficient to find a solution to the GLCP [21].

4 A Complementarity Active-Set Algorithm

The Complementarity Active-Set Algorithm [16] uses an active-set strategy
[19] to find a stationary point of MPEC, that is, a solution satisfying the
necessary first-order KKT conditions of the nonlinear program (NLP), that
is obtained from MPEC (1) by considering the complementarity conditions
ziwi = 0, i = 1, . . . , n as constraints. Thus this NLP has the following form

NLP: Minimize cT z + dT y

subject to Ew = q +Mz +Ny
C y = b
z ≥ 0, w ≥ 0, y ≥ 0
ziwi = 0, i = 1, . . . , n.

⎤⎥⎥⎦GLCP (33)

where q ∈ R
p, c, w, z ∈ R

n, d, y ∈ R
m, E,M ∈ R

p×n, N ∈ R
p×m, C ∈ R

l×m

and b ∈ R
l.

The algorithm consists essentially of using an active-set technique on the
set of solutions of the GLCP given by the constraints of the MPEC. Thus at
each iteration k, the iterates (w, z, y) satisfy the constraints of (1), and the
set of the active constraints is given by

Ew - Mz - Ny = q
Cy = b

wi = 0, i ∈ Lw ⊆ {1, . . . , n}
zi = 0, i ∈ Lz ⊆ {1, . . . , n}

yi = 0, i ∈ Ly ⊆ {1, . . . ,m}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (34)

where Lz , Ly, and Lw are the sets of the currently active constraints corre-
sponding to the nonnegative constraints on the variables z, y, and w, respec-
tively and Lz ∪ Lw = {1, . . . , n}.

The active constraints (34) constitute a linear system of the form

Dkx = gk,
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where x = (wT , zT , yT )T and Dk ∈ R
t×(2n+m), with t = l+p+ | Lw | + | Lz |

+ | Ly | and | H | is the cardinality of the set H, where that p and l are the
number of rows of the matrices A and [E −M −N ] respectively.

The first-order optimality conditions for the problem

Minimize
{
f(x) : Dkx = gk

}
can be written in the form

∇f(x) = DT
k μ

Dkx = gk.

In order to facilitate a unique set of Lagrange multipliers μ, the following
condition is assumed to hold throughout the proposed procedure:

Nondegeneracy Assumption: t ≤ 2n+m and rank(Dk) = t.

This hypothesis is not restrictive under the usual full row rank of the
matrices C and [E,−M,−N ]. Consequently, the active-set is always linearly
independent. Furthermore, let us partition the Lagrange multipliers vector μ
into three subvectors denoted by

β → subvector associated the first set of equality constraints in (34)
ϑ → subvector associated the second set of equality constraints in (34)
λx

i → subvector associated with xi = 0 in the last three sets of equality
constraints in (34).

The main steps of the complementary active-set algorithm are described
below.

Complementarity Active-Set Algorithm - Caset

Step 0
Set k = 1 and find a solution xk of the GLCP associated with MPEC. Let
Dkx = gk be the set of active constraints at xk and let Ly, Lz, and Lw be
the index sets associated with the nonnegative active constraints yi = 0,
zi = 0, and wi = 0, respectively.

Step 1 Optimality Conditions

If xk is not a stationary (KKT) point (see [4]) for the Equality Problem

EP: Minimize f(x)
subject to Dkx = gk,

then go to Step 2. Otherwise, there exists a unique μ such that

DT
k μ = ∇f(xk),

and two cases can occur:
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1. If λy
i ≥ 0 for all i ∈ Ly

λz
i ≥ 0 for all i ∈ Lz ∩ Lw

λw
i ≥ 0 for all i ∈ Lz ∩ Lw,

stop: xk is a stationary point for MPEC.
2. If there exists at least one i such that

λy
i < 0 for i ∈ Ly

or λz
i < 0 for i ∈ Lz ∩ Lw

or λw
i < 0 for i ∈ Lz ∩ Lw,

remove an active constraint yi = 0, or zi = 0, or wi = 0, associated
with the most negative Lagrange multiplier. Let Dki

x = gk
i be the

row removed from Dkx = gk, and rearrange the rows of Dkx = gk in
the following way

Dk =
[
D̄k

Dki

]
, gk =

[
ḡk

gk
i

]
.

Find a direction d such that ∇f(xk)T d < 0, D̄kd = 0, and Dkid > 0.
Replace Dk by D̄k and go to Step 3.

Step 2 Determination of Search Direction

Find a descent direction for f in the set of active constraints, i.e, find d
such that

∇f(xk)T d < 0
Dkd = 0.

Step 3 Determination of Stepsize
1. Find the largest value αmax of α such that

xk + αd ≥ 0,

from

αmax = min

{
xk

i

−di
: di < 0, i /∈ (Lz ∪ Lw ∪ Ly)

}
.

2. Compute 0 < αk ≤ αmax such that

xk + αkd

provides a sufficient decrease for f using any line search technique [4].
If αk = +∞, stop; MPEC is unbounded.

Step 4 Update of iterate

Compute xk+1 = xk + αkd.

If αk = αmax, add to the active set the constraints xi ≥ 0 for which
αmax was attained such that the nondegeneracy assumption remains true.
Return to Step 1 with k := k + 1.
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As it is shown in [16], this algorithm possesses global convergence to a Sta-
tionary Point of the MPEC under a nondegenerate condition. The algorithm
can also be extended to deal with degenerate cases and can be implemented by
using an active-set code, such as Minos. Computational experience reported
in [16] on the solution of MPECs, taken from different sources, indicates that
the algorithm Caset is quite efficient to find stationary points for MPECs of
moderate and even large dimensions.

5 A Sequential Linear Complementarity Algorithm -
Slcp

In this section, we briefly describe a Sequential Linear Complementarity
(Slcp) algorithm [14] that finds a global minimum of the MPEC, by comput-
ing a set of stationary points with strictly reducing objective function values.
To do this, in each iteration k of the algorithm the objective function is re-
placed by the cut

cT z + dT y ≤ λk,

where λk is a constant to be defined later. So in each iteration a GLCP(λk)
of the form below is solved first:

Ew = q +Mz +Ny
w ≥ 0, z ≥ 0
y ∈ Ky

cT z + dT y ≤ λk

zTw = 0.

(35)

Let (w̄, z̄, ȳ) be such a solution. Then algorithm Caset with this initial
point is applied to find a stationary point of the MPEC. To guarantee that
the algorithm moves toward a global minimum of the MPEC, the sequence of
step lengths {λk} must be strictly decreasing. An obvious definition for λk is
as below

λk = cT zk−1 − dT yk−1 − γ | cT zk−1 + dT yk−1 |

where γ is a small positive number and (wk−1, zk−1, yk−1) is the stationary
point found in the previous iteration.

Now consider the GLCP(λk) given by (35). Then there are two possible
cases as stated below.

(i) GLCP(λk) has a solution that has been found by the enumerative method
discussed before.

(ii) GLCP(λk) has no solution.
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In the first case the algorithm uses this solution to find the stationary
point of the MPEC associated to this iteration. In the last case, the stationary
point (z̄k−1, ȳk−1) computed in iteration (k − 1) is an ε-global minimum for
the MPEC, where

ε = γ | cT z̄k−1 + dT ȳk−1 | (36)

and γ is a small positive tolerance.
The steps of the Slcp algorithm are presented below.

Sequential Linear Complementary Algorithm - Slcp

Step 0 Set k = 0. Let γ > 0 a positive tolerance and λ0 = +∞.
Step 1 Solve GLCP(λk). If GLCP(λk) has no solution, go to Step 2.

Otherwise, let (wk, zk, yk) be a solution of GLCP(λk). Apply Caset al-
gorithm with this starting point to find a stationary point of MPEC. Let
(w̄k, z̄k, ȳk) be such a point. Let

λk+1 = cT z̄k + dT ȳk − γ | cT z̄k + dT ȳk | .

Set k = k + 1 and repeat the step.
Step 2 If k = 0, MPEC has no solution. Otherwise, (z̄k−1, ȳk−1) is an ε-global

optimal solution for the MPEC, where ε is given by (36) (it is usually a
global minimum of the MPEC).

As discussed in Section 3, the enumerative method faces great difficulties to
show that the last GLCP has no solution. So the Slcp algorithm is able to
find a global minimum, but it has difficulties to establish that such a solution
has been found. Computational experience presented in [13, 14, 15] confirms
this type of behavior in practice. It is also important to add that the Slcp
algorithm can be implemented by using an active-set code such as Minos. In
fact the Slcp algorithm only uses the enumerative and the Caset methods,
which are both implemented by using this type of methodology.

6 Computational experience

In this section some computational experience is reported on the solution of
some structural models introduced in [8] by exploiting the MPEC formulation
and using the algorithms Caset and Slcp. All the computations have been
performed on a Pentium IV 2.4GHz machine having 256 MB of RAM.

(I) Test Problems

In each test problem the corresponding initial structure consists of nodal
points and bars and takes a similar form to the type mesh displayed in Figure
1.
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Fig. 1. Initial mesh

The main goal of this model is to find the set of included bars in the so–
called optimal shape of the structure, which is given by the values of the 0−1
variables xi in the optimal solution of the problem.

Different types of sizes of initial meshes, as well as of applied nodal forces
have been taken in consideration in the constitution of the test problems.
Four sizes of initial meshes, Mi, i = 0, . . . , 3, have been considered whose
topologies are presented in Table 1 and that lead to five test problems Pt0
to Pt4, according to the following definitions:

• Pt0 - mesh M0 and only one nodal load is applied (f1
x4

= 65, f1
y4

= 0).
• Pt1, Pt2 - mesh M1 and two types of applied nodal loads are applied. In

Pt1 is applied only one nodal load (f1
x8

= 0, f1
y8

= −65), while two nodal
loads (f1

x8
= 0, f1

y8
= −65, f2

x9
− 40, f2

y9
= −40) are applied in Pt2.

• Pt3 - mesh M2 and two nodal loads are simultaneously applied
(f1

x3
45.9619, f1

y3
= −45.9619, f1

x12
= 45.9619, f1

y12
= 45.9619).

• Pt4 - mesh M3 and only one nodal load is applied (f1
x23

= 0, f1
y23

= −65).

In these definitions the following parameters are used:
f l

xn
nodal load in (kN) applied in node n in direction Ox for loads combina-
tion l;

f l
yn

nodal load in (kN) applied in node n in direction Oy for loads combina-
tion l.

In Table 1 are included the following notations:
nal dimension of the mesh in terms of number of nodal in Ox and Oy axes,

respectively (in Figure 1, nal = 5× 4)
hx total length (in m) to the Ox axis
hy total length (in m) to the Oy axis
nb number of bars
nn number of nodes
na number of simple supports
Si set of discrete sizes available for cross-sectional area of bar i (in cm2)
Ni number of discrete sizes available for cross-sectional area of bar i
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Mesh hx hy nal nb nn na Ni Si

M0 4 3 2 × 2 6 4 3 1 3
Group M1 8 6 3 × 3 20 9 3 1 3

I M2 6 9 3 × 4 29 12 8 1 3
M3 16 12 5 × 5 72 25 3 1 3

Sm1 8 6 3 × 3 20 9 3 2 0.5;3
Group Sm2 8 6 3 × 3 20 9 3 3 0.5;1;2

II Sm3 6 9 3 × 4 29 12 8 2 0.5;3
Sm4 6 9 3 × 4 29 12 8 3 0.5;2;3

Table 1. Test Problems Meshes

In the first group of test problems, structures have been considered for
which a unique discrete value is available for cross-sectional area of each bar.
In the second group it is allowed that each bar of the structure assumes one
of the values in a finite set Si of discrete sizes available for its cross-sectional
area. This last group leads to four additional test problems, assigned for St1,
St2, St3 and St4, and whose associated initial meshes are Sm1, Sm2, Sm3
and Sm4, respectively. The meshes Sm1 and Sm2 have the same dimensions
of the M1 mesh, while Sm3 and Sm4 have the same dimensions of the ones in
M2. The nodal loads applied in St1 and St2 are the same as in Pt1, while
in St3 and St4 are the same as in Pt3. The number of constraints (nr)
and the number of variables (nv) of formulation OPT associated to these test
problems are presented in Table 2.

OPT
Prob nr nv

Pt0 93 51
Group Pt1 273 136

I Pt2 449 220
Pt3 387 205
Pt4 921 444

St1 313 176
Group St2 353 216

II St3 445 263
St4 503 321

Table 2. Dimensions of test problems

In all test problems the displacements and bars stress limits considered
are umax = −umin = 50cm, tmax = −tmin = 355MPa, respectively and the
partial safety factor λ is equal to 1.5.



Bilevel Programming for Solving a Structural Optimization Problem 139

(II) Solution of MPECs

This section reports the computational experience performed with the algo-
rithms Caset and Slcp for the solution of MPECs associated with the integer
linear program (OPT).

The dimensions of the resultant MPEC problems are included in Table 3,
where nr, nv and nvc denote the number of constraints, number of variables
and pairs of complementary variables, respectively.

MPEC
Prob nr nv nvc

Pt0 124 111 30
Group Pt1 361 310 87

I Pt2 537 394 87
Pt3 511 451 123
Pt4 1213 1026 291

St1 461 470 147
Group St2 561 630 207

II St3 656 683 210
St4 801 915 297

Table 3. Dimensions of MPEC test problems

Table 4 includes the performance of the integer program code Osl for
finding a global minimum to the test problems [8]. In this table, as well as in
the sequel, Nd and Ni are, respectively, the number of searched nodes and
the number of iterations (pivot steps) performed by the process, T is the total
CPU time in seconds for solving the optimization problem and Obj. is the
objective function value obtained by the algorithm. Note that for problem
Pt4, Osl code has not been able to terminate after 25000000 pivots steps.

The first computational experience has been performed with the Caset
algorithm for finding a stationary point for the MPECs associated with the
structural optimization problems and analyzing if this solution is near to the
global optimal solution. Table 5 includes the performance of this algorithm
on the solution of these test problems.

The numerical results clearly indicate that Caset algorithm has been
able to find a structure with a volume close to the global optimal one. This is
particularly evident for the problems with exactly one possible cross area for
each bar. Furthermore this solution has been found in a quite small amount
of effort as compared to that of the Osl code.

Table 6 includes the computational results achieved by the Sequential
Complementary Algorithm on the solution of the test problems. In this ta-
ble, besides the previously used parameters, it represents the number of
GLCP(λk) solved by algorithm Slcp, while Nis, Ts and Nds are the number
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Osl

Prob Ni T Nd Obj (dm3)

Pt0 53 0.04 7 3.60
Pt1 3033 0.69 311 10.80
Pt2 5579 1.77 497 12.90
Pt3 891143 325.64 82075 11.92
Pt4 >25000000 15018.78 347541 27.30

St1 64943 22.80 8132 7.05
St2 57473 30.01 10052 4.90
St3 4788682 3996.54 411084 6.29
St4 20606789 61486.08 1496081 5.46

Table 4. Computation of Global Minimum of Integer Program OPT by using the
Osl code

Caset

Prob Ni T Obj

Pt0 116 0.03 3.60
Pt1 522 0.24 11.10
Pt2 961 0.44 14.10
Pt3 922 0.44 12.66
Pt4 9859 9.00 27.90

St1 726 0.36 7.10
St2 820 0.56 8.75
St3 1819 1.03 9.40
St4 1731 1.44 9.80

Table 5. Computation of a stationary point of MPEC by using the Caset algorithm

Slcp

Prob It Ni T Nd Nis Ts Nds Obj.

Pt0 2 249 0.05 46 128 0.04 9 3.60
Pt1 2 5572 2.30 907 494 0.17 27 10.80
Pt2 3 28281 14.73 3828 1015 0.44 44 12.90
Pt3 6 63210 30.78 8278 23843 12.16 3417 11.92

Pt4(*) 4 140015 124.00 3884 39968 35.25 1073 27.30

St1 2 11370 5.09 1177 691 0.28 27 7.05
St2 16 35871 23.90 4723 12698 9.28 1779 4.90
St3 15 498688 279.89 34578 160949 86.52 9719 6.29
St4 16 1602271 1171.91 99962 421851 318.40 31144 5.46

Table 6. Application of Slcp algorithm to the structural problems

of pivot steps, the CPU time in seconds and the number of nodes searched
until the optimal solution is obtained, respectively. Moreover, the notation (*)
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is used in problem Pt4 to indicate that the solution of the last GLCP was
interrupted because the maximum limit of 100000 pivot steps was exceeded.

A comparison between the Slcp algorithm and the code Osl shows that
the latter procedure performs better for problems of smaller dimensions. How-
ever, as the dimension increases the Slcp algorithm becomes more efficient
to obtain a global minimum. It is important to add that the Slcp algorithm
computes stationary points of the MPEC with strictly decreasing objective
function value. Since each one of these stationary points corresponds to a fea-
sible solution of the zero-one integer programming formulation of the struc-
tural model, then the engineer is able to receive a number of structures (equal
to the number of iterations of the algorithm Slcp) in a reasonable amount of
time. For instance for problem St4 the algorithm Slcp requires only 421851
pivot steps to give the engineer 16 structures including the one given by the
Caset method and the global optimal structure.

7 Conclusions

In this paper we have investigated the solution of a zero-one integer pro-
gram associated with a structural model by using two MPEC techniques. A
Complementarity Active-Set (Caset) algorithm for finding a stationary point
of a MPEC and a Sequential Linear Complementarity (Slcp) algorithm for
computing a global minimum have been considered in this study. Numerical
results of some experiments with these techniques show that both procedures
are in general efficient for their purposes. We believe that the results shown
in this paper may influence the use of MPEC algorithms to process integer
programming problems. This is a subject of future research.

Acknowledgement: Support for the first author was provided by Instituto
de Telecomunicações and by FCT under grant POCTI/35059/MAT/2000.

References

1. I. Arora and M. Haung: Methods for optimization of nonlinear problems with
discrete variables: a review. Structural Optimization 8(1994), 69-85.

2. C. Audet, P. Hansen, B. Jaumard and G. Savard: Links between the Linear
Bilevel and Mixed 0-1 Programming Problems, Journal of Optimization Theory
and Applications 93(1997), 273-300.

3. J. Bauer: A survey of methods for discrete optimum structural design, Computer
Assisted Mechanics and Engineering Sciences 1(1994), 27-38.

4. M. Bazaraa, H. Sherali and C.Shetty: Nonlinear Programming: Theory and Al-
gorithms, John Wiley & Sons, New York, 1993.

5. S. Bollapragada, O. Ghattas and J. Hoocker: Optimal Design of Truss Structures
by Logic-Based Branch and Cut, Operations Research 49(2001), 42-51.



142 Joaquim J. Júdice et al.
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Summary. Optimal control of magnetization in a ferromagnet is formulated as a
mathematical program with evolutionary equilibrium constraints. To this purpose,
we construct an evolutionary infinite-dimensional model which is discretized both in
the space as well as in time variables. The evolutionary nature of this equilibrium is
due to the hysteresis behavior of the respective magnetization process. To solve the
problem numerically, we adapted the implicit programming technique. The adjoint
equations, needed to compute subgradients of the composite objective, are derived
using the generalized differential calculus of B. Mordukhovich. We solve two test
examples and discuss numerical results.
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1 Introduction

In connection with the study of rate-independent processes ([20, 21]), an evo-
lutionary equilibrium model has been introduced which takes into account
irreversibility of changes occurring during the process. In this model, after a
suitable discretization, one gets a sequence of optimization problems, where
the solution of the ith problem enters the (i+1)th problem as a parameter. We
would like to point out that this sequence of coupled optimization problems
does not amount to a discrete-time optimal control problem. Indeed, in that
problem one optimizes over the whole time interval, whereas in the evolution-
ary equilibrium single optimization problems are associated with each (dis-
crete) time instant. Evolutionary equilibria were studied in connection with
hysteresis ([21]), with elastoplasticity ([19]), and with delamination ([9]). In
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[10], two of the authors studied an optimization problem, in which such an
evolutionary equilibrium arises among the constraints. As to our knowledge,
this was the first attempt to study programs with such constraints. Using the
generalized differential calculus of B. Mordukhovich, first order optimality
conditions were derived there. Unfortunately, due to multiplicity of equilibria,
it is very difficult to propose a reasonable procedure to the numerical solution
of the problem from [10]. It seems, however, that evolutionary equilibrium
models can arise in other application areas, where the uniqueness of equilib-
ria can be ensured. This is, for instance, the case of the model from [14, 36]
describing the magnetization of a piece of material in an external magnetic
field. This model, based on a detailed study of magnetic microstructures of
the considered material, leads to a sequence of coupled optimization problems
which are convex, nonsmooth and the uniqueness of their solutions can be en-
forced. One can consider the external magnetic field as a control variable and
think about an “optimal” magnetization of the sample at the given terminal
time. This problem is similar to the control of delamination studied in [10] so
that the respective optimality conditions can be derived exactly in the same
way. Moreover, due to the uniqueness of equilibria, an effective method to the
numerical solution of this problem can be proposed.

The aim of our paper is

• to adopt the so-called implicit programming approach (ImP), analyzed
thoroughly in [17, 26, 3, 11] to optimization problems with (locally)
uniquely solvable evolutionary equilibria among the constraints, and

• to apply the proposed technique to a particular problem, in which we
control magnetization of a specimen.

The structure of the paper is as follows. In Section 2 we develop a variant
of ImP for evolutionary equilibria. One such equilibrium is thoroughly stud-
ied in Section 3. We start with the original infinite-dimensional formulation,
construct a suitable discretization and investigate the relevant properties. Sec-
tion 4 then deals with an application of the results obtained in Section 2 to
the discretized equilibrium derived in Section 3. This section also contains
results of numerical experiments.

We have not found any work dealing with this type of problems. We refer
to Reimers and Della Torre [29] for an inverse hysteresis model based on a
Preisach hysteresis operator. The authors consider there a hysteresis model
calculating for a given external magnetic field the magnetization response.
Mathematically, it amounts to the solution of a system of nonlinear first or-
der ordinary differential equations. The inverse model is then obtained by
formal inversion of system equations. Any analysis validating this approach
is, however, missing.

Having a given evolution of the magnetization, the external magnetic field
is calculated in [29] using the inverse model. Afterwards, the authors use
the calculated external field as an input for the Preisach-based hysteresis
model and compare the original and calculated magnetization. This goal can
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be, however, rigorously achieved by a slight generalization of the approach
proposed in the sequel.

Our notation is standard. The unit matrix is denoted by I and lin a is the
linear hull of a vector a. If f is a differentiable function of three variables, then
∇if means its gradient (Jacobian) with respect to the ith variable, i = 1, 2, 3.
For a multifunction Φ : IRp � IRq, Gph Φ = {(x, y) ∈ IRp × IRq| y ∈ Φ(x)}
and for a function f : IRp → ĪR, epi f = {(x, r) ∈ IRp × IR| r ≥ f(x)}. If
A is an m × n matrix and J ⊂ {1, 2, . . . , n}, then AJ is the submatrix of
A, whose columns are specified by J . Similarly, for a vector d ∈ IRn, dJ is a
subvector composed from the components specified by J . In Sections 3 and 4
we work with vectors having the structure d = (d1, . . . , ds), where di ∈ IRl,
i = 1, . . . , s. Then (d)j is the jth component of the whole vector d, whereas
dij means the jth component of the subvector di. Finally, o : IR+ → IR is a
function such that limλ→0 o(λ)/λ = 0.

For reader’s convenience, we recall definitions of basic notions from the
generalized differential calculus of B. Mordukhovich that will be extensively
used in the sequel.

Consider a closed set Π ⊂ IRp.

Definition 1.1 Let a ∈ Π.
(i) The Fréchet normal cone to Π at a, denoted N̂Π(a), is given by

N̂Π(a) = {v ∈ IRp | 〈v, a− a〉 ≤ o(‖a− a‖) for a ∈ Π} .

(ii) The limiting normal cone to Π at a, denoted NΠ(a), is given by

NΠ(a) := lim sup
a

Π−→a

N̂Π(a) ,

where “lim sup” stands for the upper limit of multifunctions in the sense of
Kuratowski-Painlevé ([1]) and a Π−→ a means a→ a with a ∈ Π.

If NΠ(ā) = N̂Π(ā), we say that Π is normally regular at ā. Each convex
set is normally regular at all its points and NΠ amounts then to the classic
normal cone from convex analysis. In general, however, NΠ(a) is nonconvex,
but the multifunction NΠ( · ) is upper semicontinuous at each point of Π
(with respect to Π). The local behavior of (extended) real-valued functions
and multifunctions is described by subdifferentials and coderivatives defined
next.

Definition 1.2 Let ϕ : R
p → R be an arbitrary extended real-valued function

and a ∈ domϕ. The set

∂ϕ(a) := {α ∈ R
p|(α,−1) ∈ Nepiϕ(a, ϕ(a))}

is called the limiting subdifferential of ϕ at a.
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Definition 1.3 Let Φ : R
p � R

q be an arbitrary multifunction with a closed
graph and (a, b) ∈ GphΦ.
(i) The multifunction D̂∗Φ(a, b) : R

q � R
p defined by

D̂∗Φ(a, b) (v) := {u ∈ R
p|(u,−v) ∈ N̂Gph Φ(a, b)}, v ∈ R

q

is called the regular coderivative of Φ at (a, b).
(ii) The multifunction D∗Φ(a, b) : R

q � R
p defined by

D∗Φ(a, b) (v) := {u ∈ R
p|(u,−v) ∈ NGph Φ(a, b)}, v ∈ R

q

is called the coderivative of Φ at (a, b).
If Φ is single-valued, we write simply D̂∗Φ(a) (v) and D∗Φ(a) (v).

The interested reader is referred, e.g., to [22] and [33] where the properties
of the above objects are studied in detail.

2 Problem formulation and implicit programming

In accordance with the literature, under mathematical program with equilib-
rium constraints (MPEC) we understand the optimization problem

minimize ϕ(x, y) (1)
subject to

y ∈ S(x)
(x, y) ∈ κ ,

where x ∈ R
n is the control or design variable, y ∈ R

m is the state variable,
the multifunction S : R

n � R
m assigns x a (possibly empty) set of solutions

to an equilibrium problem and κ ⊂ R
n × R

m comprises all “nonequilibrial”
constraints. S is usually defined by a generalized equation (GE) which may
attain, e.g., the form

0 ∈ F (x, y) +Q(y) . (2)

In (2), F : R
n × R

m → R
m is a continuously differentiable operator, whereas

Q : R
m � R

m is a multifunction with a closed graph. In the formulation of an
evolutionary equilibrium one usually has a finite process time interval. After
the time discretization, we will thus be dealing with T ∈ IN time instants
uniformly distributed over this interval. Put m = kT with a positive integer
k and y = (y1, y2, . . . , yT ) ∈ (Rk)T . The “state map” S is now given by the
sequence of GEs

0 ∈ Fi(x, yi−1, yi) +Qi(yi−1, yi), i = 1, 2, . . . , T (3)

with a given initial state y0. In (3) the maps Fi : R
n × R

k × R
k → R

k are
continuously differentiable and Qi : R

k × R
k � R

k are closed-graph multi-
functions. We will call (1) with S defined by (3) mathematical program with
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evolutionary equilibrium constraints and use the acronym MPEEC. Similarly
as in [10], we confine ourselves to the case, where ϕ depends only on yT , the
terminal component of y. In contrast to [10], however, we now concentrate on
the numerical solution of MPEEC. To this purpose, we impose the following
simplifying assumptions:

A1: ϕ is continuously differentiable.
A2: κ = ω × R

m, where ω ⊂ R
n is a nonempty closed set of admissible

controls.
A3: The state map S (defined via GEs (3)) is single-valued and locally Lip-

schitz on an open set containing ω.

While assumption (A1) is not too restrictive for many applications, assump-
tion (A2) complicates the treatment of possible state or mixed state-control
constraints which have to be handled via a smooth penalty. The most restric-
tive is, however, assumption (A3). In fact, this assumption can be replaced
by the requirement that S possesses a Lipschitz single-valued localization at
each pair (x, y), x ∈ ω, y ∈ S(x); see [33]. Such a weakened variant can be
verified by using the concept of strong regularity due to Robinson [31]. We
return to the question of the verification of (A3) later.

The key idea of implicit programming (ImP) consists in the reformulation
of (1) to the form

minimize Θ(x) (4)
subject to

x ∈ ω ,

where Θ(x) := ϕ(x, ST (x)), and ST assigns x the respective terminal state
yT . Due to (A1),(A3), Θ is locally Lipschitz on an open set containing ω and
so various methods can be used to the numerical solution of (4); see [17],[26].
In this paper, we apply a bundle method of nonsmooth optimization; in par-
ticular, the BT algorithm described in [38]. This means that we must be able
to compute for each admissible control x at least one arbitrary subgradient ξ
from ∂̄Θ(x), the Clarke subdifferential of Θ at x. If S happens to be a PC1

map (see [37]), one can apply the classic implicit function theorem to an essen-
tially active component of S and arrives in this way at a desired subgradient ξ.
This technique has been used in [26]. In [11], a different approach is suggested
based on the generalized differential calculus of Mordukhovich. This approach
is not restricted to PC1 state maps and we will apply it also in the case of our
evolutionary equilibrium. To simplify the notation, let Q̃1(y1) := Q1(y0, y1).

Theorem 2.1 Let assumptions (A1)–(A3) hold true,

x̄ ∈ ω, ȳ = (ȳ1, ȳ2, . . . , ȳT ) = S(x̄), and

c̄i := −Fi(x̄, ȳi−1, ȳi), i = 1, 2, . . . , T, with ȳ0 := y0.
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Assume that the three sequences of adjoint vectors

q2, q3, . . . , qT , v1, v2, . . . , vT , w1, w2, . . . , wT

fulfill the relations

v1 ∈ D̂∗Q̃1(ȳ1, c̄1)(w1) (5)

(qi, vi) ∈ D̂∗Qi(ȳi−1, ȳi, c̄i)(wi), i = 2, 3, . . . , T ,

and satisfy the adjoint system

0 = ∇2ϕ(x̄, ȳT ) + (∇3FT (x̄, ȳT−1, ȳT ))TwT + vT (6)

0 = (∇3FT−1(x̄, ȳT−2, ȳT−1))TwT−1 + vT−1

+ (∇2FT (x̄, ȳT−1, ȳT ))TwT + qT

. . . . . .

0 = (∇3F1(x̄, ȳ0, ȳ1))Tw1 + v1 + (∇2F2(x̄, ȳ1, ȳ2))Tw2 + q2 .

Then one has

ξ := ∇1ϕ(x̄, ȳT ) +
T∑

i=1

(∇1Fi(x̄, ȳi−1, ȳi))Twi ∈ ∂̄Θ(x̄). (7)

Proof. Let b denote the vector

(0, 0, . . . ,∇2ϕ(x̄, ȳT )) ∈ (Rk)T .

From [33, Thm.10.49] it follows that

∂̄Θ(x̄) ⊃ ∂Θ(x̄) ⊃ ∇1ϕ(x̄, ȳT ) + D̂∗ST (x̄, ȳT )(∇2ϕ(x̄, ȳT ))

= ∇1ϕ(x̄, ȳT ) + D̂∗S(x̄, ȳ)(b). (8)

Further, one observes that

S(x) = {y ∈ R
kT |Φ(x, y) ∈ Λ} ,

where

Φ(x, y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
−F1(x, y0, y1)

y1
y2

−F2(x, y1, y2)
. . . . . .
yT−1

yT

−FT (x, yT−1, yT )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Λ = Gph Q̃1 ×

T

X
i=2

Gph Qi.
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By virtue of [33, Thm.6.14],

N̂Gph S(x̄, ȳ) ⊃ (∇Φ(x̄, ȳ))T N̂Λ(Φ(x̄, ȳ)),

and thus, by definition,

D̂∗S(x̄, ȳ)(b) ⊃ {(∇1Φ(x̄, ȳ))T p| − b = (∇2Φ(x̄, ȳ))T p, p ∈ N̂Λ(Φ(x̄, ȳ))}. (9)

Putting p = (v1,−w1, q2, v2,−w2, . . . , qT , vT ,−wT ), we can now make use of
the decomposition

N̂Λ(Φ(x̄, ȳ)) = N̂Gph Q̃1
(x̄, ȳ1, c̄1)×

T

X
i=2

N̂Gph Qi
(x̄, ȳi−1, ȳi, c̄i).

In this way, relation p ∈ N̂Gph Λ(Φ(x̄, ȳ)) implies (5), the adjoint system (6)
amounts exactly to

(∇2Φ(x̄, ȳ))T p+ b = 0

and formula (7) follows from (8) and (9). �

Unfortunately, even in case of very simple equilibria, it can be rather dif-
ficult to fulfill relations (5). These relations become, however, substantially
easier if we replace the regular coderivatives by (standard) coderivatives. This
possibility is examined in the following statement.

Theorem 2.2 Let all assumptions of Theorem 2.1 be fulfilled with relations
(5) replaced by

v1 ∈ D∗Q̃1(ȳ1, c̄1)(w1) (10)
(qi, vi) ∈ D∗Qi(ȳi−1, ȳi, c̄i)(wi), i = 2, 3, . . . , T .

Further suppose that the map Ξ : R
3kT−1 � R

n × R
kT , defined by

Ξ(z) = {(x, y) ∈ R
n × R

kT |Φ(x, y)− z ∈ Λ},

is either polyhedral (see [32]) or possesses the Aubin property around (0, x̄, ȳ)
(see [33, Def. 9.36]). Then one has

∂Θ(h̄) ⊂ ∇1ϕ(x̄, ȳT ) +

{
T∑

i=1

(∇1Fi(x̄, ȳi−1, ȳi))Twi|(w1, w2, . . . , wT )

fulfills relations (6),(10) with suitable vectors (v1, v2, . . . , vT )
and (q2, q3, . . . , qT )} . (11)

Inclusion (11) becomes equality provided N̂Gph Q̃1
(ȳ1, c̄1) = NGph Q̃1

(ȳ1, c̄1)
and
N̂Gph Qi(ȳi−1, ȳi, c̄i) = NGph Qi(ȳi−1, ȳi, c̄i), i = 2, 3, . . . , T (i.e. the graphs of
Q̃1 and Qi, i = 2, 3, . . . , T , are normally regular at the respective points).
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Proof. From [33, Thm. 10.49] it follows that under our assumptions

∂Θ(x̄) ⊂ ∇1ϕ(x̄, ȳT ) +D∗S(x̄, ȳ)(b).

Under the assumption imposed on Ξ, one has the inclusion

NGph S(x̄, ȳ) ⊂ (∇Φ(x̄, ȳ))TNΛ(Φ(x̄, ȳ)) ;

see [6, Thm. 4.1],[22, Cor. 5.5]. Thus we can decompose Λ in the same way as
in the proof of Theorem 2.1 and arrive directly at formula (11). Concerning
the second assertion, it suffices to compare (7) and (11) under the imposed
regularity of Gph Q̃1 and Gph Qi, i = 2, 3. . . . , T . �

On the basis of the above analysis, we can now return to the assump-
tion (A3). The single-valuedness of S can be ensured in different ways and in
many cases does not represent a serious problem. To enforce the local Lips-
chitz continuity of S, one can require that all functions Fi are affine and all
multifunctions Qi are polyhedral. The result then follows from [32]. Alterna-
tively, by virtue of Theorem 2.3, we can impose the assumption (A4) below
at all pairs (x̄, ȳ), where x̄ ∈ ω and ȳ = S(x̄).

Let us call the adjoint system (6) homogeneous, provided ∇2ϕ(x̄, ȳ) is
replaced by the zero vector.

A4: The only vectors q2, q3, . . . , qT , v2, v3, . . . , vT and w2, w3, . . . , wT satisfy-
ing (10) and the homogeneous adjoint system are the zero vectors.

The role of (A4) is explained in the following statement.

Theorem 2.3 Let x̄ ∈ ω, S be single-valued around x̄ and ȳ = S(x̄). Assume
that (A4) is fulfilled. Then Ξ possesses the Aubin property around (0, x̄, ȳ)
and S is Lipschitz around x̄.

Proof. Following [23, Cor. 4.4], we easily infer that the Aubin property of Ξ
around (0, x̄, ȳ) is implied by the requirement

(∇Φ(x̄, ȳ))T p = 0
p ∈ NΛ(Φ(x̄, ȳ))

}
⇒ p = 0.

To ensure the Aubin property of S around x̄, we can apply the same result
and arrive at the stronger condition

(∇2Φ(x̄, ȳ))T p = 0
p ∈ NΛ(Φ(x̄, ȳ))

}
⇒ p = 0. (12)

It thus suffices to decompose Λ as in the previous statements and observe that
(12) amounts exactly to (A4). Since S is single-valued on a neighborhood of
x̄ and possesses the Aubin property around (x̄, ȳ), it is in fact Lipschitz near
x̄ and we are done. �
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Inclusion (11) provides us with a desired element ξ ∈ ∂̄Θ(x̄) only if it
becomes equality. This happens in the regular case, mentioned in Theorem 2.2,
and also under another additional conditions which will not be discussed here.
Fortunately, the used bundle methods converge mostly to a Clarke stationary
point even if we replace a vector from ∂̄Θ(x̄) by a vector from the right-hand
side of (11). Moreover, if some difficulties occur, one can attempt to modify
suitably the rules for the selection of vectors q2, q3, . . . , qT , v1, v2, . . . , vT and
w1, w2, . . . , wT in (10). This remedy will be explained in detail in the last
section. To summarize, for reasons of computational complexity, we will supply
our bundle methods by vectors coming from the right-hand side of (11). It
turns out that this way is sufficient for a successful numerical solution of
various difficult MPEECs.

Remark 2.1 In [3] one finds a theory investigating the behavior of a general
bundle method, if ∂̄Θ is replaced by a larger set, satisfying a few reasonable
assumptions.

The construction of relations (10) and the adjoint system (6) will be illus-
trated in Section 4 by means of an equilibrium model (22) derived in the next
section.

3 State problem – hysteresis in micromagnetics

In this section we describe a hysteresis model in micromagnetics which will
be further used for the formulation of an MPEEC. This model was developed
in [13, 14, 15, 35, 36] and is based on Brown’s theory [2] for static ferromag-
netism tailored to large specimens by DeSimone [4]. In order to get hysteresis
behavior, we enrich the static model by a suitable rate-independent dissipative
mechanism. The main difficulty is that the formulation leads to a minimiza-
tion problem with a nonconvex feasible set. As, in general, the minimum is
not attained, one must seek a generalization of the notion “solution”. This
is done here by means of Young measures [34, 40]. A formulation of the con-
tinuum model is the content of Subsection 3.1. Subsection 3.2 is devoted to
a discretization of the problem. We show that the problem leads to a finite
sequence of problems having the structure (3).

Readers not interested in the physical model and/or in its mathematical
treatment may skip this section up to formula (25). The main message of this
section is that the equilibrium constraint, after a suitable spatial discretiza-
tion, has the structure (3). Also the respective maps Fi, Qi are computed.

3.1 Model

The theory of rigid ferromagnetic bodies [2, 16, 18] assumes that a magne-
tization M : Ω → R

N , describing the state of a body Ω ⊂ R
N , N = 2, 3,
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is subjected to the Heisenberg-Weiss constraint, i.e., has a given (in general,
temperature dependent) magnitude

|M(z ) | = ms for almost all z ∈ Ω ,

where ms > 0 is the saturation magnetization, considered here constant.
In the no-exchange formulation, which is valid for large bodies [4], the

Helmholtz free energy of a rigid ferromagnetic body Ω ⊂ R
N consists of two

parts. The first part is the anisotropy energy
∫

Ω
ϕ(M(z )) dz related to crys-

tallographic properties of the ferromagnet. Denoting SN−1 := {s ∈ R
N | |s| =

ms}, a typical ϕ : SN−1 → R is a nonnegative function vanishing only at a
few isolated points on SN−1 determining directions of easy magnetization. We
are especially interested in uniaxial materials (e.g. cobalt), where ϕ vanishes
exactly at two points. From now on we will assume that the easy axis of the
material coincides with the Nth coordinate axis.

The second part of the Helmholtz energy, 1
2

∫
RN |∇uM (z )|2 dz , is the energy

of the demagnetizing field ∇uM self-induced by the magnetization M ; its
potential uM is governed by

div
(
− μ0∇uM +MχΩ

)
= 0 in R

N , (13)

where χΩ : R
N → {0, 1} is the characteristic function of Ω and μ0 is the

vacuum permeability. The demagnetizing-field energy thus penalizes non-
divergence-free magnetization vectors. Standardly, we will understand (13)
in the weak sense, i.e. uM ∈ W 1,2(RN ) will be called a weak solution to (13)
if the integral identity

∫
RN

(
MχΩ − ∇um(z )

)
· ∇v(z ) dz = 0 holds for all

v ∈ W 1,2(RN ), where W 1,2(RN ) denotes the Sobolev space of functions in
L2(RN ) with all first derivatives (in the distributional sense) also in L2(RN ).
Altogether, the Helmholtz energy E(M), has the form

E(M) =
∫

Ω

ϕ(M(z )) dz +
1
2

∫
RN

|∇uM (z )|2 dz . (14)

If the ferromagnetic specimen is exposed to some external magnetic field
h = h(z ), the so-called Zeeman’s energy of interactions between this field
and magnetization vectors equals to H(M) :=

∫
Ω
h(z ) ·M(z ) dz . Finally, the

following variational principle governs equilibrium configurations:

minimize G(M) := E(M)−H(M) (15)

=
∫

Ω

(ϕ(M(z ))− h(z ) ·M(z )) dz +
1
2

∫
RN

|∇uM (z )|2 dz

subject to

(13), (M,uM ) ∈ A×W 1,2(RN ) ,

where the introduced notation G stands for Gibbs’ energy and A is the set of
admissible magnetizations
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A := {M ∈ L∞(Ω; RN )| |M(z ) | = ms for almost all z ∈ Ω} .

As A is not convex, we cannot rely on direct methods in proving the existence
of a solution. In fact, the solution to (15) need not exist in A ×W 1,2(RN );
see [8] for the uniaxial case. There is a competition of the anisotropy energy in
G preferring the magnetization of the constant length and the demagnetizing
field energy preferring it to be zero, which is just what explains quite generic
occurrence of the domain microstructure. Mathematically, this is expressed
by nonexistence of an exact minimizer of G and by finer and finer self-similar
spatial oscillations necessarily developed in any minimizing sequence of G.

To pursue evolution in an efficient manner, it is important to collect some
information about the fine structure “around” a current point x ∈ Ω in the
form of a probability measure, denoted by νx, supported on the sphere SN−1.
Hence, one has νx ∈ M(SN−1), the set of all probability measures on SN−1.
Let us furthermore denote by B the ball {M ∈ R

N | |M | ≤ ms} of the radius
ms. The collection ν = {νx}x∈Ω is often called a Young measure [40, 34] and
can be considered a certain “mesoscopic” description of the magnetization.
The average, let us call it macroscopic magnetization,M = M(x) at a material
point x ∈ Ω still remains a worthwhile quantity; it is just the first momentum
of the Young measure ν = {νx}x∈Ω , i.e.

M(x) =
∫

SN−1
s νx(ds) . (16)

Note that the macroscopic magnetization M : Ω → B “forgets” detailed
information about the microstructure in contrast with the mesoscopic mag-
netization ν : Ω → M(SN−1) which can capture volume fractions related
to particular directions of the magnetization. It should be emphasized that,
though we speak about (collections of) probability measures, our approach is
fully deterministic.

On the mesoscopic level we write the Gibbs’ energy as [28, 34]:

Ḡ(ν) =
∫

Ω

(
ϕ • ν − h(z ) ·M(z )

)
dz +

1
2

∫
RN

|∇uM (z )|2 dz , (17)

where [v • ν](z ) :=
∫

RN v(s)νz (ds), id : R
N → R

N is the identity, and

M(z ) =
∫

SN−1
sνz (dz ) . (18)

An important property is that Ḡ is convex with respect to the natural ge-
ometry of probability measures ν = {νz}z∈Ω . Let us denote by Y(Ω;SN−1)
the convex set of families of probability measures in M(SN−1) parameterized
by x ∈ Ω. It is well-known that the minimum of Ḡ over Y(Ω;SN−1) is truly
attained. We refer to [4, 27, 28] for a mathematically rigorous reasoning.

We can now model the behavior of low-hysteresis materials with reasonable
accuracy by minimizing of Ḡ. Varying the external magnetic field h in time
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produces, however, only a functional graph in an h/M diagram, but no hys-
teresis loop. On the other hand, magnetically hard materials, as e.g. CoZrDy,
display significant hysteresis and cannot be modeled by mere minimization
of Ḡ. Therefore, we must enrich our model and focus thereby on hysteresis
losses which are independent of the time frequency of h. We refer to [7] for an
exposition of various kinds of energy losses in ferromagnets.

Inspired by [39], we describe energetic losses during the magnetization by
a phenomenological dissipation potential � depending on the time derivative
Ṁ of the form

�(Ṁ) =
∫

Ω

Hc

∣∣∣∣dMN

dt

∣∣∣∣ dz ,

where the constant Hc > 0 is the so-called coercive force describing the width
of the hysteresis loop and MN is the Nth component of the magnetization M .

Following [19], we define a dissipation distance D by

D(M,M̃) :=
∫

Ω

Hc|MN − M̃N | dz . (19)

Equivalently, this quantity can be written in terms of Young measures as

D(ν, ν̃) :=
∫

Ω

Hc

∣∣∣∣∫
SN−1

sNνz (ds)−
∫

SN−1
sN ν̃z (ds)

∣∣∣∣ dz , (20)

where s = (s1, . . . , sN ) ∈ SN−1. Obviously, the equivalence of (19) and (20)
holds if M = id • ν and M̃ = id • ν̃. Both the formulas evaluate how much
energy is dissipated if we change the magnetization of the specimen from M
to M̃ . Analogously to [20, 21, 36] we assume that, having a sequence of discrete
time instants, an optimal mesoscopic magnetization at the instant 1 ≤ i ≤ T
minimizes Ḡ(ν) + D(M,Mi−1) over Y(Ω;SN−1) and subject to (18), where
Mi−1 is the solution at the (i− 1)th time step.

To be more precise, we first define the Gibbs energy at the time 1 ≤ i ≤ T ,
by

Ḡ(i, ν) =
∫

Ω

(
ϕ • ν − h(i, z ) ·M(z )

)
dz +

1
2

∫
RN

|∇uM (z )|2 dz , (21)

where h(i, ·) is an external field at this time. Then, starting with an initial
condition ν0 ∈ Y(Ω;SN−1), we find consecutively for i = 1, . . . , T a solution
νi ∈ Y(Ω;SN−1) of the minimization problem:

minimize I(ν) := Ḡ(i, ν) +D(ν, νi−1) (22)
subject to

ν ∈ Y(Ω;SN−1) .

Next we are going to show that the solution to (22) is unique. The key
observation is that the history dependence enters (22) only through the first
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momentum of the Young measure, i.e., through Mi−1 and that we can rule out
the Young measure ν from the definition of Ḡ by replacing the term

∫
Ω
ϕ • ν dz

by
∫

Ω
ϕ∗∗(M(z ) dz , with ϕ∗∗ being the convex envelope of ϕ̂, where

ϕ̂(m) =

{
ϕ(M) if |M | = ms

+∞ otherwise.

Put

G∗∗(i,M) =
∫

Ω

(ϕ∗∗(M(z )) − h(i, z ) ·M(z )) dz +
1
2

∫
RN

|∇uM (z )|2 dz .

Let M0 ∈ L2(Ω; RN ) with M0(z) ∈ B for a.a. z ∈ Ω be given. We look for a
solution Mi, 1 ≤ i ≤ T of the problem

minimize I∗∗(M) := G∗∗(i,M) +D(M,Mi−1) (23)
subject to

M ∈ L2(Ω; RN ) and M(z) ∈ B for a.a. z ∈ Ω .

The problems (22) and (23) are equivalent in the following sense. If M0 =
id • ν0 and if ν = (ν1, . . . , νT ) solves (22), then

∫
SN−1 sνz (ds) solves (23).

Conversely, ifM = (M0, . . . ,MT ) solves (23) and νi ∈ Y(Ω;SN−1), 1 ≤ i ≤ T ,
is such that Mi(z ) =

∫
SN−1 s(νi)z (ds) and ϕ∗∗(Mi(z )) =

∫
SN−1 ϕ(s)(νi)z (ds)

for almost all x ∈ Ω and 1 ≤ i ≤ T , then ν = (ν1, . . . νT ) solves (22).
We have the following uniqueness result.

Proposition 3.1 Let ϕ(s) = γ
∑N−1

i=1 s2i , γ > 0, |s| = ms. Then the problem
(23) has a unique solution.

Proof. Under the assumptions, ϕ∗∗(s) = γ
∑N−1

i=1 s2i for all s ∈ R
N , |s| ≤ ms;

see [4]. We will proceed by induction.
Suppose that Mi−1 ∈ L2(Ω; RN ), Mi−1(z ) ∈ B for a.a. z ∈ Ω, is given

uniquely. Let M̂ and M̃ be two different minimizers to I∗∗. Then∇uM̂ = ∇uM̃

a.e. in R
N . Indeed, if they were different, the convexity I∗∗, the strict convexity

of the demagnetizing field energy, i.e. of ‖ · ‖2L2(RN ;RN ), and the linearity of

the map M �→ ∇uM would give us that 0.5M̂ + 0.5M̃ has a strictly lower
energy than I∗∗(M̃) = I∗∗(M̂). Similarly, as ϕ∗∗ is strictly convex in the first
(N − 1) variables, we get that M̃i = M̂i a.e. in Ω for i = 1, . . . , N − 1. Put
β := M̃χΩ − M̂χΩ . Then div β = 0 because uβ = 0 a.e. in Ω, where uβ

is calculated from (13). Moreover, the only nonzero component of β is the
Nth one. Therefore β = (0, . . . , βN ) with βN = βN (z1, . . . , zN−1). As β has a
compact support we get β = 0 identically. The proposition is proved. �

Remark 3.1 If there is a unique representation of ϕ∗∗ in terms of a proba-
bility measure μs on SN−1, i.e., if ϕ∗∗(s) =

∫
SN−1 σ μs(dσ) for all s ∈ B, then
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also (22) has a unique solution. This in indeed the case under the assumption
of Proposition 3.1. The basic advantage of (22) over (23) is that in (22) we do
not work with the convex envelope ϕ∗∗. Consequently, the formulation (22)
can be used even if we do not know an explicit formula for ϕ∗∗.

3.2 Spatial discretization of (22)

The aim of this subsection is to develop a suitable numerical approximation
of the problem (22). Besides a discretization of the domain Ω we will also
discretize the support of the Young measure, the sphere SN−1. The, simplest
but for our purposes sufficient, discretization is to divide Ω̄ into finite volumes
{�}s

j=1, s ∈ IN, such that Ω̄ = ∪s
j=1�j , where �i and �j have disjoint inte-

riors if i �= j. Moreover, we assume that all �j have the same N -dimensional
Lebesgue measure denoted by |�|. Then we will assume that ν ∈ Y(Ω;SN−1)
is constant within each finite volume and consists of a finite sum of Dirac
masses. Saying differently, we suppose that that for any x ∈ �j

νx =
l∑

i=1

λjiδri ,

with fixed points ri ∈ SN−1 and coefficients λji satisfying the conditions
0 ≤ λji ≤ 1,

∑l
i=1 λ

ji = 1 for all 1 ≤ j ≤ s and 1 ≤ i ≤ l. Thus, ν
is fully characterized by coefficients {λji}. We refer to [34] for convergence
properties of this approximation. As the macroscopic magnetization M is the
first moment of ν, we have that M is constant over each �j . We denote its
value on �j by M j = (M j1, . . . ,M jN ). Therefore,

M j =
l∑

i=1

λjiri , 1 ≤ j ≤ s .

The demagnetization field energy 1
2

∫
RN |∇uM (z )|2 dz is quadratic in M

and therefore it is quadratic in λ = {λji}. We denote the matrix of the
quadratic form assigning λ the energy

∫
RN |∇uM (z )|2 dz by C. As M is con-

stant over finite volumes, we can work only with spatial averages of the ex-
ternal field h. Hence, we put for 1 ≤ i ≤ T and 1 ≤ j ≤ s

hj
i =

1
|�|

∫
�j

h(i, z ) dz .

As a result of this, the discrete anisotropy and external field energies at the
time i equal to

s∑
j=1

|�|
l∑

t=1

λjt
i (ϕ(rk)− rk · hk

i )

and
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D(ν, νi−1) =
s∑

j=1

Hc|�|
∣∣∣∣∣

l∑
k=1

(λjk − λjk
i−1)r

kN

∣∣∣∣∣ .
If we denote

λi = (λ11
i , . . . , λ

1l
i , λ

21
i , . . . , λ

2l
i , . . . , λ

s1
i . . . λsl

i ) ,

a = Hc|�|(r1N , . . . , rlN ) ,

and

x = |�|(ϕ(r1)− r1 · h1
i , . . . , ϕ(rl)− rl · h1

i , ϕ(r1)− r1 · h2
i , . . . ,

ϕ(rl)− rl · h2
i , . . . , ϕ(r1)− r1 · hs

i , ϕ(rl)− rl · hs
i ) , (24)

we see that the discretized version of (22) reads: starting with λ0, find con-
secutively for i = 1, . . . , T a solution λi of the optimization problem

minimize
1
2
〈Cλ, λ〉+ 〈x, λ〉+

s∑
j=1

∣∣∣〈a, λj − λj
i−1

〉∣∣∣ (25)

subject to
Bλ = b ,

λ ≥ 0 ,

where the constraint Bλ = b expresses the condition
∑l

i=1 λ
ji = 1 for all j.

Although the spatially continuous problem (22) has a unique solution for
the anisotropy energy considered in Remark 3.1, this is not necessarily the case
in (25). We can, however, consider the so-called constrained theory proposed
in [5], where ϕ is considered finite only at two points in SN−1 which define the
easy-axis of the material. Physically this means that ϕ steeply grows from its
zero value at magnetic poles. A direct simple remedy consists in a modification
of C in (25): one adds to C an arbitrarily small multiple of the identity matrix
(Prop. 4.1). This way has been used in our numerical tests.

Each optimization problem (25) can be equivalently written down as a GE
of the type (3) which is given by the respective KKT conditions. The state
variable yi amounts to the triple (λi, τi, μi), where τi and μi are the multipliers
associated with the equality and inequality constraints in (25). Hence, one has
(λi, τi, μi) ∈ R

n ×R
s ×R

n (so that k = 2n+ s), λi = (λ1
i , λ

2
i , . . . , λ

s
i ) ∈ (Rl)s

(so that n = ls),

Fi(x, yi−1, yi) = F (x, λi, τi, μi) =

⎡⎣Cλi + x+BT τi − μi

Bλi − b
λi

⎤⎦ (26)

and
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Qi(yi−1, yi) = Q(λi−1, λi, μi) =

⎡⎢⎢⎣∂λi

s∑
j=1

|〈a, λj
i − λ

j
i−1〉|

0
NR

n
+
(μi)

⎤⎥⎥⎦ , i = 1, 2, . . . , T.

(27)
In fact, we do not control our equilibrium model directly via x. From (24)

it follows that x = x̃− x̂, where

x̃ = |�|(ϕ(r1), . . . , ϕ(rl), ϕ(r1), . . . , ϕ(rl), . . . , ϕ(r1), . . . , ϕ(rl)) ∈ (Rl)s

is a constant vector and

x̂ = |�|(r1 · h1
i , . . . , r

l · h1
i , r

1 · h2
i , . . . , r

l · h2
i , . . . , r

1 · hs
i , . . . , r

l · hs
i ) . (28)

Considering an external field h ∈ R
N spatially constant and depending on

time through two smooth functions α1, α2 : R → R, we infer that x̂ depends
only on α1, α2 and consequently x = G(α1, α2), where G : R

2 → R
n is a

continuously differentiable function.
Our goal is now to minimize a cost function ϕ depending on α and λT . As

an example we may suppose that ϕ penalizes a deviation of volume frac-
tions of the resulting magnetization at the time T from a desired value
λ = (λ

1
, . . . , λ

s
). More specifically,

ϕ(G(α1, α2), λT ) = ϕ̃(λT ) :=
s∑

j=1

βj‖λj
T − λ

j‖2 , (29)

where βj ≥ 0, 1 ≤ j ≤ s, represent weight coefficients.
In this way we obtain the MPEEC

minimize
s∑

j=1

βj‖λj
T − λ

j‖2 (30)

subject to
0 ∈ F (G(α1, α2), λi, τi, μi) +Q(λi−1, λi) with λ0 given,

i = 1, . . . , T
α1, α2 ∈ ω ,

where F,Q are given in (26), (27), and ω ⊂ R
2 is the set of admissible controls

α1, α2. The next section is devoted to its numerical solution by the implicit
programming approach (ImP) developed in Section 2.

4 Numerical solution

We start with the verification of assumption (A3).
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Proposition 4.1 Let C be positive definite and ω′ be an open convex set
containing ω. Then the state map ŜT : (α1, α2) �→ (λT , τT , μT ) defined via the
GEs in (30) is single-valued and locally Lipschitz for all (α1, α2) ∈ ω′.

Proof. The uniqueness of the solution λi to (22) has been already mentioned.
The uniqueness of the multipliers τi, μi follows from the fact that, due to the
special structure of B, the constraint system Bλ = b and λ ≥ 0 satisfies the
linear independence constraint qualification (cf. [26]) at each feasible point.

Let S̃ be the mapping which assigns x to the unique solution
(λ1, τ1, μ1,λ2, τ2, μ2, . . . ,λT , τT , μT ) of the system of GEs

0 ∈ F (x, λi, τi, μi) +Q(λi−1, λi) with λ0 given, i = 1, . . . , T .

We observe that S̃ is polyhedral and hence locally Lipschitz over R
n by virtue

of [32], [26, Cor. 2.5]. For the investigated map ŜT one has

ŜT = D ◦ S̃ ◦G ,

where the matrix D realizes the appropriate canonical projection. The Lips-
chitz continuity of ŜT on ω′ thus follows from the Lipschitz continuity of G.

�

We conclude that all assumptions, needed for the application of ImP to
(30), are fulfilled and concentrate on the computation of subgradients of the
composite objective.

4.1 Adjoint equation

The next step consists in the evaluation of D∗Q which maps R
n × R

s × R
n

in subsets of R
n × R

n × R
n. By elementary coderivative calculus, at a fixed

point (ᾱ, λ̄i−1, λ̄i, τ̄i, μ̄i) and for c̄i = (1c̄i, 0,3 c̄i) = −F (ᾱ, λ̄i, τ̄i, μ̄i), one has

D∗Q(λ̄i−1, λ̄i, μ̄i,
1 c̄i, 0,3 c̄i)(1w,2 w,3 w) =

⎡⎣D∗P (λ̄i−1, λ̄i,
1 c̄i)(1w)

0
D∗NR

n
+
(μ̄i,

3 c̄i)(3w)

⎤⎦ (31)

for any (1w,2 w,3 w) ∈ R
n × R

s × R
n. In (31), P denotes the partial subdif-

ferential mapping in the first line of (27). The coderivative of NR
n
+

can easily
be computed, e.g., on the basis of [25, Lemma 2.2]. The computation of D∗P
is, however, substantially more demanding. First we observe that, due to a
separation of variables,

D∗P (λ̄i−1, λ̄i,
1 ci)(1w) =

⎡⎢⎣D
∗P1(λ̄1

i−1, λ̄
1
i ,

1 c̄1i )(
1w1)

...
D∗Ps(λ̄s

i−1, λ̄
s
i ,

1 c̄si )(
1ws)

⎤⎥⎦ , (32)
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where 1c̄i = (1c̄1i ,
1c̄2i , . . . ,

1c̄si ) ∈ (Rl)s, 1w = (1w1,1 w2, . . . ,1 ws) ∈ (Rl)s and

Pj(λ
j
i−1, λ

j
i ) = ∂λi

|〈a, λj
i − λ

j
i−1〉|, j = 1, 2, . . . , s.

Let Mi(λ̄i−1, λ̄i) denote the subset of the index set {1, 2, . . . , s} such that for
j ∈Mi(λ̄i−1, λ̄i)

〈a, λ̄j
i − λ̄

j
i−1〉 = 0.

From Definition 1.3 it easily follows that D∗Pj(λ̄
j
i−1, λ̄

j
i ,

1 c̄ji )(
1wj) ≡ 0 when-

ever j �∈ Mi(λ̄i−1, λ̄i). If j ∈ Mi(λ̄i−1, λ̄i), then we can make use of [33,
Cor.10.11] and perform a slight modification of [24, Thm. 3.4]. In this way we
arrive at the formula

D∗Pj(λ̄
j
i−1, λ̄

j
i ,

1 c̄ji )(
1wj) =

[
−a
a

]
D∗Z(0, η)(〈a,1 wj〉), (33)

where Z(·) = ∂| · |, and η ∈ ∂Z(0) = [−1, 1] is uniquely determined by the
equation c̄ji = aη. One easily verifies that

D∗Z(0, η)(0) = R.

From this it follows that for j ∈Mi(λ̄i−1, λ̄i)

(qj
i ,

1vj
i ) ∈ D∗Pj(λ̄

j
i−1, λ̄

j
i ,

1c̄ji )(
1wj

i ), (34)

whenever
qj
i ∈ lin a, 1vj

i = −qj
i and 〈a, 1wj

i 〉 = 0. (35)

These relations can be used together with

qj
i = 1vj

i = 0 for j �∈ Mi(λ̄i−1, λ̄i) , (36)

3vi ∈ D∗NR
n
+
(μ̄i,

3 c̄i)(3wi) (37)

in the adjoint system

0 = ∇ϕ̃(ȳT ) +

⎡⎣C BT −I

B 0 0
E 0 0

⎤⎦⎡⎣1wT
2wT
3wT

⎤⎦+

⎡⎣1vT

0
3vT

⎤⎦
0 =

⎡⎣qT0
0

⎤⎦+

⎡⎣C BT −I

B 0 0
E 0 0

⎤⎦⎡⎣1wT−1
2wT−1
3wT−1

⎤⎦+

⎡⎣1vT−1

0
3vT−1

⎤⎦ (38)

. . . . . . . . .

0 =

⎡⎣q20
0

⎤⎦+

⎡⎣C BT −I

B 0 0
E 0 0

⎤⎦⎡⎣1w1
2w1
3w1

⎤⎦+

⎡⎣1v1
0

3v1

⎤⎦ .
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As a subgradient of the respective function Θ one can now provide the used
bundle method with the vector

ξ =
T∑

i=1

(∇G(ᾱ))Tw1
i . (39)

To connect relations (34), (35), (36), (37) and the adjoint system (38), we
proceed according to [25, Lemma 2.2] and introduce for each i = 1, 2 . . . , T
the index sets

I+
i (λ̄i, μ̄i) :=

{
j ∈ {1, 2 . . . , n} | (λ̄i)j = 0, (μ̄i)j > 0

}
I0
i (λ̄i, μ̄i) :=

{
j ∈ {1, 2 . . . , n} | (λ̄i)j = 0, (μ̄i)j = 0

}
If
i (λ̄i, μ̄i) :=

{
j ∈ {1, 2 . . . , n} | (λ̄i)j > 0, (μ̄i)j = 0

}
related to the inequality constraints (λi)j ≥ 0, j = 1, 2, . . . , n. We take any
partitioning of I0

i (λ̄i, μ̄i):

I0
i (λ̄i, μ̄i) = 1βi ∪ 2βi (40)

and define

Ĩ+
i := I+

i (λ̄i, μ̄i) ∪ 1βi Ĩf
i := If

i (λ̄i, μ̄i) ∪ 2βi .

Consider now the equation system⎡⎢⎢⎣
C BT −IĨ+

i
AMi

B 0 0 0
(IĨ+

i
)T 0 0 0

(AMi
)T 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

1wi
2wi
3w̃i

ṽi

⎤⎥⎥⎦ =

⎡⎢⎢⎣
q̃i
0
0
0

⎤⎥⎥⎦ , (41)

where A is the (n× s) matrix, defined by

A :=

⎡⎢⎢⎢⎣
a 0l×1 · · · 0l×1

0l×1 a · · · 0l×1

. . .
0l×1 0l×1 · · · a

⎤⎥⎥⎥⎦ ,

and 3w̃i is a subvector of 3wi, whose components belong to Ĩ+
i (λ̄i, μ̄i). For

notational simplicity, we occasionally omit the arguments of Mi, I+
i , I0

i and
If
i .

This system has to be solved backwards for i = T, T − 1, . . . , 1 with the
terminal condition q̃T = −∇ϕ̃(λ̄T ) by using the updates

(q̃i)Mi
= ṽi

(q̃i)j = 0 for j �∈ Mi(λ̄i−1, λ̄i) ,
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i = T − 1, T − 2, . . . , 1. One can easily verify that the component 1wi to
each solution of (41) is feasible also with respect to (34), (35), (36), (37) and
the adjoint system (38). It may thus be used in formula (39). Note that the
sizes of ṽi and 3w̃i vary, depending on the cardinality of Mi(λ̄i−1, λ̄) and Ĩ+

i ,
respectively.

Remark 4.1 The choice of the partitioning (40) has an essential influence on
which subgradient we actually compute. As already mentioned, we may even
compute a vector that does not belong to ∂Θ. This was indeed the case in
one of our numerical examples. We considered a problem with only one design
variable. The data were set so that the composite objective was constant in a
neighborhood of α′ and that I0

i �= ∅ at α′. Still, when choosing 1βi = ∅, i.e.,
Ĩ+
i = I+

i , we have obtained a nonzero subgradient at α′. A simple remedy
to this unpleasant situation is to change the partitioning (40); we know that
there is a partitioning that leads to a true subgradient. In our particular case,
we have taken 2βi = ∅, i.e., Ĩ+

i = I+
i ∪I0

i . For this choice, we got a subgradient
equal to zero, a correct one.

4.2 Computational procedures

Numerical solution of the MPEEC (30) requires solution of several subprob-
lems. First, for a given control variable, we have to solve the state problem:
a series of nonsmooth convex optimization problems (25). We transform each
of them by a simple trick to a convex quadratic program. By introducing an
auxiliary variable z ∈ R

s we can write (25) equivalently as

min
λ,z

1
2
〈Cλ, λ〉+ 〈x, λ〉+

s∑
j=1

zj (42)

subject to λ ≥ 0
Bλ = b

zj ≥
〈
a, λj − λj

i−1

〉
, j = 1, . . . , s

zj ≥ −
〈
a, λj − λj

i−1

〉
, j = 1, . . . , s .

This problem can be solved by any QP solver; we have opted for the code
PENNON that proved to be very efficient for general nonlinear programming
problems [12].

Second, we must solve the adjoint systems (41). These are medium-size
systems of linear equations with nonsymmetric matrices. The matrices, how-
ever, may be singular in case Mi �= ∅. When we know that the matrix is
nonsingular (i.e., when Mi = ∅), we use the lapack subroutine dgesv based
on LU decomposition with partial pivoting; in the general case, we use the
least-square subroutine dgelsd. Note that even for a singular matrix, the
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first component of the solution 1wi is always unique—and this is the only
component we need.

Finally, we have to minimize the respective composite objective Θ over ω.
It was already mentioned that this is a nonsmooth, nonconvex and locally Lip-
schitz function. We have used one of the few suitable codes for minimization
of such functions, the code BT [38].

4.3 Examples

The examples presented in this section are purely academic. Their purpose
is to verify that the proposed technique can be successfully used for solving
MPEECs. On the other hand, it is not difficult to modify these problems to
real-world applications, by changing the sample geometry, level of discretiza-
tion and, in particular, the cost function and the design variables.

We consider N = 2, ϕ(r1, r2) = 30r21, a sample of dimensions 2×1, spatial
discretization by 8× 8 finite volumes and 10 time-steps. We further set l = 4
(the discretization of the sphere SN−1; see Section 3.2).

The control variables are the amplitude and frequency of the second com-
ponent of the external magnetic field hi (independent of spatial variable). We
consider hi = (0, fi) with

fi = α1 sin(
2π
α2

i

T
), i = 1, 2, . . . , T .

This, by (28), defines the function G.
The admissible control set ω is [0.1, 105]× [0.1, 105].

Example 1 In the first example we try to magnetize fully the specimen in
R

2 in the second direction, so that the desired magnetization M is (0, 1). This
can be done by setting λ

j1
= 1.1, j = 1, . . . , s (note that the maximal possible

value of λ is equal to one). The initial value of α is set to (50, 4). The problem
appears to be “easy” and BT finds the optimum in just a few steps. Below we
show the output of the code:

BT-Algorithm
============
niter ncomp f gp alpha

1 1 0.43362311E+00 0.67345917E-01 0.00000000E+00
2 2 0.43362311E+00 0.53359109E-01 0.10000000E-01
3 3 0.38786221E+00 0.56068671E-01 0.12958132E-01
4 4 0.32000000E+00 0.17855778E-15 0.00000000E+00

convergence

We can see that the exact minimum λj1
T = 1, j = 1, . . . , s/2, (giving the

optimal objective value f∗ = 32 · (1.0 − 1.1)2) was found in just four steps.
The reason for that is simple: from a certain value of the amplitude α′

1 up (for
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a given frequency), the cost function is constant (and optimal) — the specimen
is fully magnetized and any increase of the amplitude cannot change it. The
BT code then quickly hits an arbitrary α1 > α′

1 and finishes.

Fig. 1. Example 1—the specimen, its magnetization, and the demagnetizing field
∇uM around the specimen in each iteration of BT. The darker is the color in a point
of the specimen the closer is the magnetization to (0, 1) (in the Euclidean norm).

Due to the simplicity of the example, it is not surprising that we obtain
the same result when we change the time discretization, even to just one time
step. Only the BT iterates will be slightly different. It is, however, interesting
to note that, in each iteration (and for any time discretization), only one
time step contributed to the second term of the subgradient (39); that means,
w1

i �= 0 for only one i ∈ {1, . . . , T}, whereas this i was different at every BT
iterate.

Example 2 In the second example, we set λ
j1

= 0.9, j = 1, . . . , s, and try to
identify this value. This time, the objective function is not constant around the
optimum and the behavior of the BT code reminds more a standard behavior
of a minimization method:

BT-Algorithm
============
niter ncomp f gp alpha

1 1 0.25601552E+00 0.24693051E-01 0.00000000E+00
2 2 0.25601552E+00 0.24693051E-01 0.00000000E+00
3 3 0.23502032E+00 0.24693051E-01 0.10000000E-01
4 4 0.17673858E+00 0.20989044E-01 0.00000000E+00
5 5 0.17673858E+00 0.17128780E-01 0.69166119E-02
6 6 0.17673858E+00 0.11764406E-01 0.91444459E-02
7 7 0.16785966E+00 0.58038202E-02 0.00000000E+00
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8 8 0.16652221E+00 0.35283823E-02 0.23490041E-03
9 10 0.16652221E+00 0.16319657E-02 0.12254303E-03
10 11 0.16643681E+00 0.58649082E-03 0.00000000E+00
11 12 0.16643681E+00 0.29875680E-03 0.31325080E-05
12 13 0.16643417E+00 0.10889954E-03 0.00000000E+00
13 14 0.16643417E+00 0.54258298E-04 0.10805660E-06
14 15 0.16643408E+00 0.20402428E-04 0.00000000E+00
15 16 0.16643408E+00 0.10207925E-04 0.37928982E-08
16 17 0.16643408E+00 0.38203558E-05 0.00000000E+00
17 18 0.16643408E+00 0.19099423E-05 0.13298890E-09
18 19 0.16643408E+00 0.71546057E-06 0.00000000E+00
19 20 0.16643408E+00 0.35774567E-06 0.46642216E-11
20 21 0.16643408E+00 0.13400225E-06 0.00000000E+00
21 22 0.16643408E+00 0.67024577E-07 0.16361832E-12
convergence

However, the minimal point (45.17065468, 4.264825646) is not unique,
again. When we fix the value of α1 to 50.0 and keep only α2 free, BT finds a
point (50.0, 5.619174535) with the same value of the objective function.

Fig. 2. Example 2—the specimen, its magnetization, and the demagnetizing field
∇uM around the specimen in each 5th iteration of BT. The darker is the color in
a point of the specimen the closer is the magnetization to (0, 1) (in the Euclidean
norm).

5 Conclusion

We formulated a problem of optimal control of a ferromagnet in a form of an
MPEEC and developed a solution approach based on an implicit program-
ming technique. The adjoint equations, needed to compute the subgradients
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of the composite objective, are derived using the generalized differential cal-
culus of B. Mordukhovich. Up to our knowledge, this is the first attempt to
solve mathematical programs with evolutionary equilibria numerically. Com-
putational tests demonstrate the applicability of this approach.

The implicit programming technique requires local uniqueness of the equi-
librium problem. To enforce uniqueness, we modified slightly the matrix C
in (25). If, however, the cost functions ϕ depends only on the spatial average
of the magnetization over the specimen, i.e., on |Ω|−1

∫
Ω
M(z ) dz or on the

self-induced magnetic field ∇uM then, as these quantities are uniquely defined
even in the discrete unconstrained case (25) [4], assumption (A3) holds auto-
matically. Hence, the control problems may be to find an external field h such
that the average magnetization is as “close” as possible to a given vector and
similarly for the self-induced field. This demonstrates a wider applicability of
our results than the examples solved in this contribution.
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7. A. Hubert and R. Schäffer: Magnetic Domains, Springer, Berlin, 1998.
8. R. D. James and D. Kinderlehrer: Frustration in ferromagnetic materials, Con-

tinuum Mech. Thermodyn. 2(1990), 215–239.
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Summary. Recently, it has been shown that mathematical programs with comple-
mentarity constraints (MPCCs) can be solved efficiently and reliably as nonlinear
programs. This paper examines various nonlinear formulations of the complemen-
tarity constraints. Several nonlinear complementarity functions are considered for
use in MPCC. Unlike standard smoothing techniques, however, the reformulations
do not require the control of a smoothing parameter. Thus they have the advan-
tage that the smoothing is exact in the sense that Karush-Kuhn-Tucker points of
the reformulation correspond to strongly stationary points of the MPCC. A new
exact smoothing of the well-known min function is also introduced and shown to
possess desirable theoretical properties. It is shown how the new formulations can
be integrated into a sequential quadratic programming solver, and their practical
performance is compared on a range of test problems.
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straints, NCP functions.
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1 Introduction

Equilibrium constraints in the form of complementarity conditions often ap-
pear as constraints in optimization problems, giving rise to mathematical
programs with complementarity constraints (MPCCs). Problems of this type
arise in many engineering and economic applications; see the survey by Ferris
and Pang [FP97] and the monographs by Luo et al. [LPR96] and Outrata et
al. [OKZ98]. The growing collections of test problems by Dirkse [Dir01], and
our MacMPEC [Ley00] indicate that this an important area. MPCCs can be
expressed in general as
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minimize f(x) (1a)
subject to cE(x) = 0 (1b)

cI(x) ≥ 0 (1c)
0 ≤ x1 ⊥ x2 ≥ 0, (1d)

where x = (x0, x1, x2) is a decomposition of the problem variables into controls
x0 ∈ R

n and states x1, x2 ∈ R
p. The equality constraints ci(x) = 0, i ∈ E are

abbreviated as cE(x) = 0, and similarly cI(x) ≥ 0 represents the inequality
constraints. The notation⊥ represents complementarity and means that either
a component x1i = 0 or the corresponding component x2i = 0.

Clearly, more general complementarity constraints can be included in (1)
by adding slack variables. Adding slacks does not destroy any properties of
the MPCC such as constraint qualification or second-order condition. One
convenient way of solving (1) is to replace the complementarity conditions
(1d) by

x1, x2 ≥ 0, and X1x2 ≤ 0, (2)

where X1 is a diagonal matrix with x1 along its diagonal. This transforms the
MPCC into an equivalent nonlinear program (NLP) and is appealing because
it appears to allow standard large-scale NLP solvers to be used to solve (1).

Unfortunately, Chen and Florian [CF95] have shown that (2) violates
the Mangasarian-Fromovitz constraint qualification (MFCQ) at any feasible
point. This failure of MFCQ has a number of unpleasant consequences: The
multiplier set is unbounded, the central path fails to exist, the active con-
straint normals are linearly dependent, and linearizations of the NLP can be
inconsistent arbitrarily close to a solution. In addition, early numerical expe-
rience with (2) has been disappointing; see Bard [Bar88]. As a consequence,
solving MPCCs as NLPs has been commonly regarded as numerically unsafe.

Recently, exciting new developments have demonstrated that the gloomy
prognosis about the use of (2) may have been premature. We have used stan-
dard sequential quadratic programming (SQP) solvers to solve a large class
of MPCCs, written as NLPs, reliably and efficiently [FL04]. This numerical
success has motivated a closer investigation of the (local) convergence proper-
ties of SQP methods for MPCCs. Fletcher et al. [FLRS02] show that an SQP
method converges locally to strongly stationary points. Anitescu [Ani05] es-
tablishes that an SQP method with elastic mode converges locally for MPCCs
with (2). The key idea is to penalize X1x2 ≤ 0 and consider the resulting NLP,
which satisfies MFCQ. Near a strongly stationary point, a sufficiently large
penalty parameter can be found, and standard SQP methods converge.

The convergence properties of interior point methods (IPMs) have also re-
ceived renewed attention. Numerical experiments by Benson et al. [BSSV03]
and by Raghunathan and Biegler [RB02b] have shown that IPMs with minor
modifications can be applied successfully to solve MPCCs. This practical suc-
cess has encouraged theoretical studies of the convergence properties of IPMs
for MPCCs. Raghunathan and Biegler [RB02a] relax xT

1 x2 ≤ 0 by a quan-
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tity proportional to the barrier parameter, which is driven to zero. Liu and
Sun [LS04] propose a primal-dual IPM that also relaxes the complementarity
constraint.

In this paper, we extend our results of [FLRS02] by considering NLP for-
mulations of (1) in which the complementarity constraint (1d) is replaced by
a nonlinear complementarity problem (NCP) function. This gives rise to the
following NLP:

minimize f(x) (3a)
subject to cE(x) = 0 (3b)

cI(x) ≥ 0 (3c)
x1, x2 ≥ 0, Φ(x1i, x2i) ≤ 0, (3d)

where Φ(x1, x2) is the vector of NCP functions, Φ(x1, x2) = (ϕ(x11, x21), . . . ,
ϕ(x1p, x2p))

T , and ϕ is any NCP function introduced in the next section.
Problem (3) is in general nonsmooth because the NCP functions used in (3d)
are nonsmooth at the origin. We will show that this nonsmoothness does not
affect the local convergence properties of the SQP method.

The use of NCP functions for the solution of MPCCs has been considered
by Dirkse et al. [DFM02] and by Facchinei et al. [FJQ99], where a sequence of
smoothed NCP reformulations is solved. Our contribution is to show that this
smoothing is not required. Thus we avoid the need to control the smoothing
parameter that may be problematic in practice. Moreover, the direct use of
NCP functions makes our approach exact, in the sense that first-order points
of the resulting NLP coincide with strongly stationary points of the MPCC.
As a consequence we can prove superlinear convergence under reasonable as-
sumptions.

The paper is organized as follows. The next section reviews the NCP func-
tions that will be used in (3d) and their pertinent properties. We also introduce
new NCP functions shown to possess certain desirable properties. Section 3
shows the equivalence of first-order points of (1) and (3). Section 4 formally
introduces the SQP algorithm for solving MPCCs. The equivalence of the
first-order conditions forms the basis of the convergence proof of the SQP
method, presented in Section 5. In Section 6, we examine the practical per-
formance of the different NCP functions on the MacMPEC test set [Ley00].
In Section 7 we summarize our work and briefly discuss open questions.

2 NCP functions for MPCCs

An NCP function is a function ϕ : R
2 → R such that ϕ(a, b) = 0 if and only if

a, b ≥ 0, and ab ≤ 0. Several NCP functions can be used in the reformulation
(3). Here, we review some existing NCP functions and introduce new ones
that have certain desirable properties.
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1. The Fischer-Burmeister function [Fis95] is given by

ϕFB(a, b) = a+ b−
√
a2 + b2. (4)

It is nondifferentiable at the origin, and its Hessian is unbounded at the
origin.

2. The min-function due to Chen and Harker [CH97] is the nonsmooth func-
tion

ϕmin(a, b) = min(a, b). (5)

It can be written equivalently in terms of the natural residual function
[CH97]:

ϕNR(a, b) =
1
2

(
a+ b−

√
(a− b)2

)
. (6)

This function is again nondifferentiable at the origin and along the line
a = b.

3. The Chen-Chen-Kanzow function [CCK00] is a convex combination of
the Fischer-Burmeister function and the bilinear function. For a fixed
parameter λ ∈ (0, 1), it is defined as

ϕCCK(a, b) = λϕFB(a, b) + (1− λ)a+b+,

where a+ = max(0, a). Note that for a ≥ 0, a+ = a; hence, for any method
that remains feasible with respect to the simple bounds,

ϕCCK(a, b) = λϕFB(a, b) + (1− λ)ϕBL(a, b) (7)

holds.

In addition, we consider the bilinear form

ϕBL(a, b) = ab, (8)

which is analytic and has the appealing property that its gradient vanishes at
the origin (this makes it consistent with strong stationarity, as will be shown
later). We observe, however, that it is not an NCP function, since ϕBL(a, b) = 0
does not imply nonnegativity of a, b.

We note that all functions (except for (8)) are nondifferentiable at the ori-
gin. In addition, the Hessian of the Fischer-Burmeister function is unbounded
at the origin. This has to be taken into account in the design of robust SQP
methods for MPCCs.

The min-function has the appealing property that linearizations of the
resulting NLP (3) are consistent sufficiently close to a strongly stationary
point (see Proposition 3.6). This property motivates the derivation of smooth
approximations of the min-function. The first approximation is obtained by
smoothing the equivalent natural residual function (6) by adding a term to
the square root (which causes the discontinuity along a = b). For a fixed
parameter σNR > 1/2, let
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ϕNRs(a, b) =
1
2

(
a+ b−

√
(a− b)2 +

ab

σNR

)
. (9)

This smoothing is similar to [CH97, FJQ99], where a positive parameter 4μ2 >
0 is added to the discriminant. This has the effect that complementarity is
satisfied only up to μ2 at the solution. In contrast, adding the term ab/σNR,
implies that the NCP function remains exact in the sense that ϕNRs(a, b) = 0 if
and only if a, b ≥ 0 and ab = 0 for any σNR > 1/2. Figure 2 shows the contours
of ϕNRs(a, b) for σNR = 32 and for the min-function (σNR = ∞). An interesting
observation is that as σNR → 1

2 , the smoothed min-function ϕNRs(a, b) becomes
the Fischer-Burmeister function (up to a scaling factor).

Fig. 1. Piecewise regions for smoothing the min-function

An alternative way to smooth the natural residual function is to work
directly on smoothing the contours of the min-function, which are parallel to
either the x1, or the x2 axis. The contours can be smoothed by dividing the
positive orthant into (for example) three regions as shown in Figure 1. The
dashed lines separate the three regions (i) to (iii), and their slope is σ > 1
and σ−1, respectively. In regions (i) and (iii), the contours are identical to the
min-function. This feature ensures consistency of the linearization. In region
(ii), different degrees of smoothing can be applied.

The first smoothed min-function is based on a piecewise linear approxi-
mation, given by

ϕlin(a, b) =

⎧⎨⎩
b b ≤ a/σl

(a+ b)/(1 + σl) a/σl < b < σla
a b ≥ σla,

(10)

where σ = σl > 1 is the parameter that defines the three regions in Figure 1.
The idea is that close to the axis, the min-function is used, while for values of
a, b that are in the center, the decision as to which should be zero is delayed.
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Fig. 2. Contours of the min-function, the smoothed natural residual function, the
piecewise linear min-function, and the piecewise quadratic with σl = σq = 3

The second smoothed min-function is based on the idea of joining the
linear parts in sectors (i) and (iii) with circle segments. This gives rise to the
following function,

ϕqua(a, b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b b ≤ a/σq√

(a− θ)2 + (b− θ)2
(σq − 1)2

a/σq < b < σqa

a b ≥ σqa,

(11)

where θ is the center of the circle, depending on a, b, and σq and is given by

θ =
a+ b

2− (σq−1)2

σ2
q

+

√√√√√
⎛⎝ a+ b

2− (σq−1)2

σ2
q

⎞⎠2

− a2 + b2

2− (σq−1)2

σ2
q

.
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The contours of both smoothing functions are given in Figure 2. Note that
the contours are parallel to the axis in regions (i) and (iii). This fact will be
exploited to show that linearizations of the min-function and its two variants
remain consistent arbitrarily close to a strongly stationary point. This obser-
vation, in effect, establishes a constraint qualification for the equivalent NLP
(3).

The smoothing also avoids another undesirable property of the min-
function: It projects iterates that are far from complementary onto the nearest
axis. Close to the axis a = b, this projection results in an arbitrary step. Con-
sider, for example, a point a = 99, b = 101. Linearizing the min-function
about this point results in a first-order approximation in which a = 0, b ≥ 0.
In contrast, other NCP functions “delay” this decision and can be viewed as
smoothing methods.

3 Equivalence of first-order conditions

This section shows that there exists a one-to-one correspondence between
strongly stationary points of the MPCC (1) and the first-order stationary
points of the equivalent NLP (3). We start by reviewing MPCC stationarity
concepts. Next, we derive some properties of the linearizations of (3d) that
play a crucial role in the equivalence of first-order conditions.

3.1 Strong stationarity for MPCCs

The pertinent condition for stationarity for analyzing NLP solvers applied to
(3) is strong stationarity. The reason is that there exists a relationship between
strong stationarity defined by Scheel and Scholtes [SS00] and the Karush-
Kuhn-Tucker (KKT) points of (3). This relationship has been exploited in
[FLRS02] to establish convergence of SQP methods for MPCCs formulated as
NLPs. Strong stationarity is defined as follows.

Definition 3.1 A point x is called strongly stationary if and only if there
exist multipliers λ, ν̂1, and ν̂2 such that

∇f(x)−∇cT (x)λ−

⎛⎝ 0
ν̂1
ν̂2

⎞⎠ = 0

cE(x) = 0
cI(x) ≥ 0
x1, x2 ≥ 0

x1j = 0 or x2j = 0
λI ≥ 0

ciλi = x1j ν̂1j = x2j ν̂2j = 0
if x1j = x2j = 0 then ν̂1j ≥ 0 and ν̂2j ≥ 0.

(12)
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Strong stationarity can be interpreted as the KKT conditions of the relaxed
NLP (13) at a feasible point x. Given two index sets X1, X2 ⊂ {1, . . . , p} with

X1 ∪ X2 = {1, . . . , p} ,

denote their respective complements in {1, . . . , p} by X⊥
1 and X⊥

2 . For any
such pair of index sets, define the relaxed NLP corresponding to the MPCC
(1) as

minimize
x

f(x)

subject to cE(x) = 0
cI(x) ≥ 0
x1j = 0 ∀j ∈ X⊥

2 and x1j ≥ 0 ∀j ∈ X2

x2j = 0 ∀j ∈ X⊥
1 and x2j ≥ 0 ∀j ∈ X1.

(13)

Concepts such as MPCC constraint qualifications (CQs) and second-order
conditions are defined in terms of this relaxed NLP (see, e.g., [FLRS02]).
Formally, the linear independence constraint qualification (LICQ) is extended
to MPCCs as follows:

Definition 3.2 The MPCC (1) is said to satisfy an MPCC-LICQ at x if the
corresponding relaxed NLP (13) satisfies an LICQ.

Next, a second-order sufficient condition (SOSC) for MPCCs is given. Like
strong stationarity, it is related to the relaxed NLP (13). Let A∗ denote the
set of active constraints of (13) and A∗

+ ⊂ A∗ the set of active constraints
with nonzero multipliers (some could be negative). Let A denote the matrix
of active constraint normals, that is,

A =

⎡⎣A∗
E : A∗

I∩A∗ :
0
I∗1
0

:
0
0
I∗2

⎤⎦ =: [a∗i ]i∈A∗ ,

where A∗
I∩A∗ are the active inequality constraint normals and

I∗1 := [ei]i∈X∗
1

and I∗2 := [ei]i∈X∗
2

are parts of the p×p identity matrices corresponding to active bounds. Define
the set of feasible directions of zero slope of the relaxed NLP (13) as

S∗ =
{
s | s �= 0 , g∗

T

s = 0 , a∗
T

i s = 0 , i ∈ A∗
+ , a∗

T

i s ≥ 0 , i ∈ A∗\A∗
+

}
.

The MPCC-SOSC is defined as follows.

Definition 3.3 A strongly stationary point z∗ with multipliers (λ∗, ν̂∗1 , ν̂
∗
2 )

satisfies the MPCC-SOSC if for every direction s ∈ S∗ it follows that
sT∇2L∗s > 0, where ∇2L∗ is the Hessian of the Lagrangian of (13) eval-
uated at (z∗, λ∗, ν̂∗1 , ν̂

∗
2 ).
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3.2 Linearizations of the NCP functions

All NCP functions with the exception of the bilinear form are nonsmooth at
the origin. In addition, the min-function is also nonsmooth along a = b, and
the linearized min-function is nonsmooth along a = σ−1b and a = σb. Luckily,
SQP methods converge for a simple choice of subgradient.

We start by summarizing some well-known properties of the gradients of
the Fischer-Burmeister function (4) for (a, b) �= (0, 0):

∇ϕFB(a, b) =

⎛⎜⎝ 1− a√
a2 + b2

1− b√
a2 + b2

⎞⎟⎠ .
It can be shown that 0 < 1− a√

a2+b2
< 2 for all (a, b) �= (0, 0). In addition, if

a > 0 and b > 0, it can be shown that

∇ϕFB(a, 0) =
(

0
1

)
and ∇ϕFB(0, b) =

(
1
0

)
.

Similarly, the gradient of the smoothed natural residual function is

∇ϕNRs(a, b) =
1
2

⎛⎜⎜⎜⎜⎜⎝
1−

a− b+ b
2σ√

(a− b)2 + ab
σ

1−
b− a+ a

2σ√
(a− b)2 + ab

σ

⎞⎟⎟⎟⎟⎟⎠ .

For a > 0 and b > 0, it follows that

∇ϕNRs(a, 0) =
(

0
1− 1

4σ

)
and ∇ϕNRs(0, b) =

(
1− 1

4σ
0

)
.

Despite the fact that the NCP functions are not differentiable everywhere, it
turns out that a particular choice of subgradient gives fast convergence for
SQP methods. To show equivalence of the first-order conditions in [FLRS02],
we exploit the fact that ∇ϕBL(0, 0) = 0. Fortunately, 0 is a generalized gradi-
ent of the other NCP functions, that is, 0 ∈ ∂ϕ(0, 0). Similarly, we will choose
a suitable subgradient for the min-function along a = b. With a slight abuse
of notation, we summarize the subgradient convention:

Convention 3.4 The following convention is used for subgradients of the
nonsmooth NCP functions:

1. ∇ϕ(0, 0) = 0 for any NCP function.
2. ∇ϕmin(a, a) = (1

2 ,
1
2 )T for the min-function for a > 0.

3. ∇ϕlin(a, σa) = (0, 1) and ∇ϕlin(a, σ−1a) = (1, 0) for the linearized min-
function, for a > 0.
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This convention is consistent with the subgradients of the NCP functions
and is readily implemented. The most important convention is to ensure that
∇ϕ(0, 0) = 0 because, otherwise, we would not be able to establish equiva-
lence of first-order conditions. The other conventions could be relaxed to allow
other subgradients. The convention on the subgradients also has an impor-
tant practical implication. We have observed convergence to M-stationary, or
even C-stationary points that are not strongly stationary for other choices
of 0 �= v ∈ ∂ϕ(0, 0). Setting v = 0 ∈ ∂ϕ(0, 0) prevents convergence to such
spurious stationary points.

It turns out that a straightforward application of SQP to (3) is not very
efficient in practice. The reason is that the linearization of the complemen-
tarity constraint (2) together with the lower bounds has no strict interior.
Therefore, we relax the linearization of (2). Let 0 < δ < 1, and 0 < κ ≤ 1 be
constants, and consider

a ≥ 0, b ≥ 0, ϕ(â, b̂) +∇ϕ(â, b̂)T

(
a− â
b− b̂

)
≤ δ
(
min(1, ϕ(â, b̂))

)1+κ

. (14)

Clearly, this is a relaxation of the linearization of (2). The following propo-
sition summarizes some useful properties of the linearizations of the NCP
functions.

Proposition 3.5 Let ϕ(a, b) be one of the functions (8)–(11). Then it follows
that

1. a, b ≥ 0 and ϕ(a, b) ≤ 0 is equivalent to 0 ≤ a ⊥ b ≥ 0.
2. If â, b̂ ≥ 0 and â + b̂ > 0, then it follows that the perturbed system of

inequalities (14) is consistent for any 0 ≤ δ < 1, and 0 < κ ≤ 1. In
addition, if δ > 0 and â, b̂ > 0, then (14) has a nonempty interior for
the Fischer-Burmeister function, the bilinear function, and the smoothed
natural residual function.

Proof. Part 1 is obvious. For Part 2, consider each NCP function in turn.
For the bilinear function (8), it readily follows that (a, b) = (0, 0) is feasible
in (14) because for â, b̂ ≥ 0, we get

âb̂+∇ϕT
BL

(
−â
−b̂

)
= −âb̂ ≤ 0,

and clearly, if δ > 0, there exists a nonempty interior.
Next consider the Fischer-Burmeister function (4), for which (14) with

δ = 0 becomes (
1− â√

â2 + b̂2

)
a+

(
1− b̂√

â2 + b̂2

)
b ≤ 0.

Since the terms in the parentheses are positive, it follows that (a, b) = 0 is
the only point satisfying a, b ≥ 0 and (14). On the other hand, if δ > 0, then
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the right-hand side of (14) is positive, and there exists a nonempty interior of
a, b ≥ 0 and (14).

For (5) and (6), it follows for â < b̂ that (14) becomes a = 0, b ≥ 0. The
conclusion for â > b̂ follows similarly. If â = b̂, then (14) becomes 1

2a+ 1
2b ≤

δ
(
min(1, ϕ(â, b̂))

)1+κ

, and the results follow.
The result for (7) follows from the fact that (7) is a linear combination of

the Fischer-Burmeister function and (8).
To show the result for the smoothed min functions, we observe that for

b ≤ a/σ and b ≥ σa the functions are identical to the min-function and the
result follows. For a/σ < b < σa, we consider (10) and (11) in turn. The
linearization of (10) is equivalent to a + b ≤ 0, which implies feasibility. It
can also be shown that linearization of (11) about any point is feasible at the
origin (a, b) = (0, 0).

The smoothed natural residual function also has feasible linearizations.
For (9), (14) is equivalent to (using σ = σNR to simplify the notation)

ϕNRs(â, b̂)+

⎛⎝1−
â− b̂+ b̂

2σ√
(â− b̂)2 + âb̂

σ

⎞⎠ (a−â)+

⎛⎝1−
b̂− â+ â

2σ√
(â− b̂)2 + âb̂

σ

⎞⎠ (b−b̂) ≤ 0.

Rearranging, we have

−ϕNRs(â, b̂) +

⎛⎝1−
â− b̂+ b̂

2σ√
(â− b̂)2 + âb̂

σ

⎞⎠ a+

⎛⎝1−
b̂− â+ â

2σ√
(â− b̂)2 + âb̂

σ

⎞⎠ b ≤ 0.

The first term is clearly nonpositive, and it can be shown that the terms mul-
tiplying a and b are nonnegative, thus implying consistency and a nonempty
interior, even when δ = 0. �

A disadvantage of the functions (8), (7), and (9) is that arbitrarily close to
a strongly stationary point, the linearizations may be inconsistent [FLRS02].
The next proposition shows that the min-function and its smoothed versions
(10) and (11) do not have this disadvantage.

Proposition 3.6 Consider (3) using any of the min-functions, (5), (10), or
(11), and assume that the MPCC-MFCQ holds at a strongly stationary point.
Then it follows that the linearization of (3) is consistent for all x1, x2 ≥ 0
sufficiently close to this strongly stationary point.

Proof. Under MPCC-MFCQ, it follows that the linearization of the relaxed
NLP (13) is consistent in a neighborhood of a strongly stationary point. Now
consider the linearization of the min-function near a strongly stationary point,
x∗ say. For components i, such that x∗1i = 0 < x∗2i, it follows for any point
xk sufficiently close to x∗ that 0 ≤ xk

1i < xk
2i. Thus, the linearization of the

corresponding min-function gives d1i ≤ −xk
1i. Together with the lower bound
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d1i ≥ −xk
1i, this is equivalent to d1i = −xk

1i, the linearization of the same
component in the relaxed NLP. A similar conclusion holds for components
with x∗1i > 0 = x∗2i.

Finally, for components i, such that x∗1i = 0 = x∗2i, it follows that the origin
xk+1

1i = xk+1
2i = 0 is feasible (Proposition 3.5). This point is also feasible for

the relaxed NLP.
A similar argument can be made for the smoothed min-functions (10) and

(11) by observing that for x∗1i = 0 < x∗2i, there exists a neighborhood where
these functions agree with the min-function and for x∗1i = 0 = x∗2i, feasibility
follows from Proposition 3.5. �

An important consequence of this proposition is that the quadratic conver-
gence proof for MPCCs in [FLRS02] can now be applied without the assump-
tion that all QP subproblems are consistent. In this sense, Proposition 3.6
implies that the equivalent NLP (3) using the min-functions satisfies a con-
straint qualification.

3.3 NCP functions and strong stationarity

A consequence of the gradient convention is that the gradients of all NCP
functions have the same structure. In particular, it follows that for a, b > 0

∇ϕ(a, 0) =
(

0
τa

)
,∇ϕ(0, b) =

(
τb
0

)
,∇ϕ(a, b) =

(
τb
τa

)
,∇ϕ(0, 0) =

(
0
0

)
for some parameters τa, τb > 0 that depend on a, b and the NCP function.
As a consequence, we can generalize the proof of equivalence of first-order
conditions from [FLRS02] to all NCP functions from Section 2. Let Φ(x1, x2)
denote the vector of functions ϕ(x1i, x2i). The KKT conditions of (3) are that
there exist multipliers μ := (λ, ν1, ν2, ξ) such that

∇f(x)−∇c(x)Tλ−

⎛⎝ 0
ν1
ν2

⎞⎠+

⎛⎝ 0
∇x1Φ(x1, x2)ξ
∇x2Φ(x1, x2)ξ

⎞⎠ = 0

cE(x) = 0
cI(x) ≥ 0
x1, x2 ≥ 0

Φ(x1, x2) ≤ 0
λI ≥ 0

ν1, ν2 ≥ 0
ξ ≥ 0

ci(x)λi = x1jν1j = x2jν2j = 0 .

(15)

There is also a complementarity condition ξTΦ(x1, x2) = 0, which is implied
by feasibility of x1, x2 and has been omitted. Note that the choice∇ϕ(0, 0) = 0
makes (15) consistent with strong stationarity, as will be shown next.
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Theorem 3.7 (x∗, λ∗, ν̂1, ν̂2) is a strongly stationary point satisfying (12)
if and only if there exist multipliers (x∗, λ∗, ν∗1 , ν

∗
2 , ξ

∗) satisfying the KKT
conditions (15) of the equivalent NLP (3). If ϕ is any of the NCP functions
of Section 2, then

ν̂1 = ν∗1 − τ 1ξ
∗ (16a)

ν̂2 =ν∗2 − τ 2ξ
∗, (16b)

where τ 1 and τ 2 are diagonal matrices with τj , j = 1, 2 along their diagonals.
Moreover, τji = 0, if x1i = x2i = 0 and otherwise satisfies the relationship

τ1i =

⎧⎪⎪⎨⎪⎪⎩
1 if x2i > 0 for (4), (5), (6), (10), (11)
1− 1

4σ if x2i > 0 for (9)
x2i for (8)
λ+ (1− λ)x2i if x2i > 0 for (7)

(17)

and

τ2i =

⎧⎪⎪⎨⎪⎪⎩
1 if x1i > 0 for (4), (5), (6), (10), (11)
1− 1

4σ if x1i > 0 for (9)
x1i for (8)
λ+ (1− λ)x1i if x1i > 0 for (7).

(18)

Proof. Note that gradients ∇Φ have the same structure for all NCP functions
used. Then (16) follows by comparing (15) and (12) and taking the gradients
of the NCP functions into account. �

The failure of MFCQ for (3) implies that the multiplier set is unbounded.
However, this unboundedness occurs in a special way. The multipliers of (3)
form a ray, similar to [FLRS02], and there exists a multiplier of minimum
norm, given by

ν∗1i = max(ν̂1i, 0), (19a)
ν∗2i = max(ν̂2i, 0), (19b)

ξ∗i =−min
(
ν̂1i

τ1i
,
ν̂2i

τ2i
, 0
)
. (19c)

This implies the following complementarity conditions for the multipliers

0 ≤ ν∗1i ⊥ ξ∗i ≥ 0 and 0 ≤ ν∗2i ⊥ ξ∗i ≥ 0. (20)

This multiplier will be referred to as the minimal, or basic, multiplier . This
term is justified by the observation (to be proved below) that the constraint
normals corresponding to nonzero components of the basic multiplier are lin-
early independent, provided the MPCC satisfies an LICQ.



182 Sven Leyffer

4 An SQP algorithm for NCP functions

This section describes an SQP algorithm for solving (3). The algorithm is an
iterative procedure that solves a quadratic programming (QP) approximation
of (3) around the iterate xk for a step d at each iteration:

(QP k)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize
d

gkT

d+ 1
2d

TW kd

subject to ckE +AkT

E d = 0
ckI +AkT

I d ≥ 0
xk

1 + d1 ≥ 0
xk

2 + d2 ≥ 0
Φk +∇x1Φ

kT

d1 +∇x2Φ
kT

d2 ≤ δ
(
min(1, Φk)

)1+κ
,

where μk = (λk, νk
1 , ν

k
2 , ξ

k) and W k = ∇2L(xk, μk) is the Hessian of the
Lagrangian of (1):

W k = ∇2L(xk, μk) = ∇2f(xk)−
∑

i∈I∪E
λi∇2ci(xk).

Note that the Hessian W k does not include entries corresponding to ∇2Φ.
This omission is deliberate as it avoids numerical difficulties near the origin,
where ∇2ϕFB becomes unbounded. It will be shown that this does not affect
the convergence properties of SQP methods.

The last constraint of (QP k) is the relaxation of the linearization of the
complementarity condition (14). We will show that the perturbation does
not impede fast local convergence. Formally, the SQP algorithm is defined in
Algorithm 1.

Let k = 0, x0 given
while not optimal do

Solve (QP k) for a step d
Set xk+1 = xk + d, and k = k + 1

Algorithm 1: Local SQP Algorithm for MPCCs

In practice, we also include a globalization scheme to stabilize SQP. In
our case, we use a filter [FL02] and a trust region to ensure convergence to
stationary points [FLT02]. The convergence theory of filter methods allows
for three possible outcomes [FLT02, Theorem 1]:

(A) The algorithm terminates at a point that is locally infeasible.
(B) The algorithm converges to a Kuhn-Tucker point.
(C) The algorithm converges to a feasible point at which MFCQ fails.
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Clearly, (B) cannot happen because (3) violates MFCQ at any feasible point.
Outcome (A) is typically associated with convergence to a local minimum
of the norm of the constraint violation and cannot be avoided unless global
optimization techniques are used. Therefore, we deal mainly with outcome
(C) if we apply a filter algorithm to MPCC formulated as NLPs (3). The next
section presents a local convergence analysis of the SQP algorithm applied to
(3).

5 Local convergence of SQP for MPCCs

This section establishes superlinear convergence of SQP methods a strongly
stationary point under mild conditions. The notation τ 1, τ 2 introduced in
Theorem 3.7 allows the convergence analysis of all NCP functions to be uni-
fied. We note that the presence of the perturbation term δ

(
min(1, Φk)

)1+κ,
with κ < 1, implies that we cannot obtain quadratic convergence in general.

The convergence analysis is concerned with strongly stationary points. Let
x∗ be a strongly stationary point, and denote byA(x∗) the set of active general
constraints:

A(x∗) := {i|ci(x∗) = 0} .
We also denote the set of active bounds by

Xj(x∗) := {i|xji = 0} for j = 1, 2

and let D(x∗) := X1(x∗) ∩ X2(x∗) be the set of degenerate indices associated
with the complementarity constraint.

Assumptions 5.1 We make the following assumptions:

[A0] The subgradients of the NCP functions are computed according to Con-
vention 3.4.

[A1] The functions f and c are twice Lipschitz continuously differentiable.
[A2] (1) satisfies an MPCC-LICQ.
[A3] x∗ is a strongly stationary point that satisfies an MPCC-SOSC.
[A4] λi �= 0, ∀i ∈ E∗, λ∗i > 0, ∀i ∈ A∗ ∩ I, and either ν∗1j > 0 and ν∗2j >

0, ∀j ∈ D∗.
[A5] The QP solver always chooses a linearly independent basis.

We note that [A0] is readily implemented and that assumption [A5] holds
for the QP solvers used within snopt due to Gill et al. [GMS02] and filter
[FL02]. The most restrictive assumptions are [A2] and [A3] because they
exclude B-stationary points that are not strongly stationary. This fact is not
surprising because it is well known that SQP methods typically converge lin-
early to such B-stationary points.

It is useful to divide the convergence proof into two parts. First, we consider
the case where complementarity holds for some iterate k, i.e. Φ(xk

1 , x
k
2) = 0.
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In this case, the SQP method applied to (3) is shown to be equivalent to
SQP applied to the relaxed NLP (13). In the second part, we assume that
Φ(xk

1 , x
k
2) > 0 for all k. Under the additional assumption that all QP approxi-

mations remain consistent, superlinear convergence can again be established.

5.1 Local convergence for exact complementarity

In this section we make the additional assumption that

[A6] Φ(xk
1 , x

k
2) = 0 and (xk, μk) is sufficiently close to a strongly stationary

point.

Assumption [A6] implies that for given index sets Xj := Xj(xk) :={
i|xk

ji = 0
}
, j = 1, 2, the following holds:

xk
1j = 0 ∀j ∈ X⊥

2

xk
2j = 0 ∀j ∈ X⊥

1

xk
1j = 0 or xk

2j = 0 ∀j ∈ D = X1 ∩ X2.

In particular, it is not necessary to assume that both xk
1i = 0 and xk

2i = 0
for i ∈ D∗. Thus it may be possible that X1 �= X ∗

1 (and similarly for X2). An
important consequence of [A6] is that X1, X2 satisfy

X ∗⊥
1 ⊂ X⊥

1 ⊂ X ∗⊥
1 ∪ D∗

X ∗⊥
2 ⊂ X⊥

2 ⊂ X ∗⊥
2 ∪ D∗

D ⊂ D∗,

(21)

that is, the indices X ∗⊥
1 and X ∗⊥

2 of the nondegenerate complementarity con-
straints have been identified correctly.

Next, it is shown that SQP applied to (3) is equivalent to SQP applied
to the relaxed NLP (13). For a given partition (X⊥

1 ,X⊥
2 ,D), an SQP step for

the relaxed NLP (13) is obtained by solving the QP

(QPR(xk))

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

minimize
d

gkT

d+ 1
2d

TW kd

subject to ckE +AkT

E d = 0
ckI +AkT

I d ≥ 0
d1j = 0 ∀j ∈ X⊥

2 and xk
1j + d1j ≥ 0 ∀j ∈ X2

d2j = 0 ∀j ∈ X⊥
1 and xk

2j + d2j ≥ 0 ∀j ∈ X1.

The following proposition shows that SQP applied to the relaxed NLP con-
verges quadratically and identifies the correct index sets X ∗

1 and X ∗
2 in one

step. Its proof can be found in [FLRS02, Proposition 5.2].

Proposition 5.2 Let [A1]–[A6] hold, and let xk be sufficiently close to x∗.
Consider the relaxed NLP for any index sets X1, X2 (satisfying (21) by virtue
of [A6]). Then it follows that
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1. there exists a neighborhood U of (z∗, λ∗, ν∗1 , ν
∗
2 ) and a sequence of iterates

generated by SQP applied to the relaxed NLP (13), {(xl, λl, νl
1, ν

l
2)}l>k,

that lies in U and converges Q-quadratically to (x∗, λ∗, ν∗1 , ν
∗
2 );

2. the sequence {xl}l>k converges Q-superlinearly to x∗; and
3. X l

1 = X ∗
1 and X l

2 = X ∗
2 for l > k.

Next, it is shown that the QP approximation to the relaxed NLP
(QPR(xk)) and the QP approximation to the NCP formulation (QP k) gener-
ate the same sequence of steps. The next lemma shows that the solution of
(QPR(xk)) is feasible in (QP k).

Lemma 5.3 Let Assumptions [A1]–[A6] hold. Then it follows that a step d
is feasible in (QPR(xk)) if and only if it is feasible in (QP k).

Proof. (QPR(xk)) and (QP k) differ only in the way the complementarity
constraint is treated. Hence we need only to prove the equivalence of those
constraints. Let j ∈ X⊥

2 . Then it follows that x1j = 0, and ∂Φk

∂x1j
= τ1j > 0,

and ∂Φk

∂x1j
= 0. Hence, (QP k) contains the constraints

τ1jd1j ≤ 0 and d1j ≥ 0 ⇔ d1j = 0.

Similarly, we can show that the constraints are equivalent for j ∈ X⊥
1 . Let

j ∈ D. Then it follows that (QP k) contains the constraints d2j ≥ 0 and
d1j ≥ 0, which are equivalent to the constraints of (QPR(xk)). The equivalence
of the feasible sets follows because (X⊥

1 ,X⊥
2 ,D) is a partition of {1, . . . , p}. �

The next lemma shows that the solution of the two QPs are identical and
that the multipliers are related.

Lemma 5.4 Let Assumptions [A1]–[A6] hold. Let (λ, ν̂1, ν̂2) be the La-
grange multipliers of (QPR(xk,X )) (corresponding to a step d). Then it fol-
lows that the multipliers of (QP k), corresponding to the same step d are
μ = (λ, ν1, ν2, ξ), where

ν1i = ν̂1i > 0, ∀i ∈ D (22a)
ν2i = ν̂2i > 0, ∀i ∈ D (22b)

ξi = −min(
ν̂1i

τ1i
,
ν̂2i

τ2i
, 0) (22c)

ν1i = ν̂1i − ξiτ1i, ∀i ∈ X⊥
2 (22d)

ν2i =ν̂2i − ξiτ2i, ∀i ∈ X⊥
1 , (22e)

where τji is given in (17–18). Conversely, given a solution d and multipliers μ
of (QP k), (22) shows how to construct multipliers so that (d, λ, ν̂1, ν̂2) solves
(QPR(xk,X )).
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Proof. We equate the first-order conditions of (QPR(xk)) and (QP k) and
obtain

gk +W kd−Akλ =

⎛⎝ 0
ν̂1
ν̂2

⎞⎠ =

⎛⎝ 0
ν1 −∇x1Φξ
ν2 −∇x2Φξ

⎞⎠ .
We distinguish three cases:
Case 1 (j ∈ D): It follows from (21) that j ∈ D∗, which implies that ν̂1j , ν̂2j >
0 for xk sufficiently close to x∗ by assumption [A4]. Moreover, ∂Φ

∂x1j
= ∂Φ

∂x2j
=

0, and hence, ν1j = ν̂1j > 0, ν2j = ν̂2j > 0, and ξj = 0 are valid multipliers
for (QP k).
Case 2 (j ∈ X⊥

1 ): We distinguish two further cases. If j ∈ D∗, then a similar
argument to Case 1 shows that ν1j = ν̂1j > 0, ν2j = ν̂2j > 0, and ξj = 0. On
the other hand, if j ∈ X ∗⊥

1 , then it follows that ∂Φ
∂x1j

= 0, and ∂Φ
∂x2j

= τ2j > 0
is bounded away from zero. Thus, ν1j = ν̂1j = 0, and ν2j = ν̂2j − τ2jξj , and
we can always choose ν2j , ξj ≥ 0. We will show later that the QP solver in
fact chooses either ν2j > 0, or ξj > 0.
Case 3 (j ∈ X⊥

2 ) is similar to Case 2. �

Next, it is shown that both QPs have the same solution in a neighborhood
of d = 0; its proof can be found in [FLRS02, Lemma 5.6].

Lemma 5.5 The solution d of (QPR(xk)) is the only strict local minimizer
in a neighborhood of d = 0 and its corresponding multipliers (λ, ν̂1, ν̂2) are
unique. Moreover, d is also the only strict local minimizer in a neighborhood
of d = 0 of (QP k).

The next theorem summarizes the results of this section.

Theorem 5.6 If Assumptions [A1]–[A6] hold, then SQP applied to (3)
generates a sequence {(xl, λl, νl

1, ν
l
2, ξ

l)}l>k that converges Q-quadratically to
{(x∗, λ∗, ν∗1 , ν∗2 , ξ∗)} of (15), satisfying strong stationarity. Moreover, the se-
quence {xl}l>k converges Q-superlinearly to x∗ and Φ(xl

1, x
l
2) = 0 for all l ≥ k.

Proof. Under Assumptions [A1]–[A4], SQP converges quadratically when
applied to the relaxed NLP (13). Lemmas 5.3–5.5 show that the sequence of
iterates generated by this SQP method is equivalent to the sequence of steps
generated by SQP applied to (3). This implies Q-superlinear convergence of
{xl}l>k. Convergence of the multipliers follows by considering (22). Clearly,
the multipliers in (22a) and (22b) converge, as they are just the multipliers of
the relaxed NLP, which converge by virtue of Proposition 5.2. Now observe
that (22c) becomes

ξk+1
i = −min

(
ν̂k+1
1i

τk+1
1i

,
ν̂k+1
2i

τk+1
2i

, 0

)
.
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The right-hand side of this expression converges because ν̂k+1
1i , ν̂k+1

2i converge
and the denominators τk+1

i are bounded away from zero for i ∈ X ∗⊥
1 ,X ∗⊥

2 .
Finally, (22d) and (22e) converge by a similar argument.

Φ(xl
1, x

l
2) = 0 , ∀l ≥ k, follows from the convergence of SQP for the

relaxed NLP (13) and the fact that SQP retains feasibility with respect to
linear constraints. Assumption [A4] ensures that dk

1j = dk
2j = 0,∀j ∈ D∗,

since νk
1j , ν

k
2j > 0 for biactive complementarity constraints. Thus SQP will

not move out of the corner and stay on the same face. �

5.2 Local convergence for nonzero complementarity

This section shows that SQP converges superlinearly even if complementarity
does not hold at the starting point, that is, if Φ(xk

1 , x
k
2) > 0. It is shown in

[FLRS02] that the QP approximation to (3) with x1ix2i ≤ 0 can be inconsis-
tent arbitrarily close to a strongly stationary point. Similar examples can be
constructed for the NCP functions in Section 2. Only the min-function and
its piecewise smooth variations guarantee feasibility of the QP approximation
near a strongly stationary point (see Proposition 3.6).

Note that by virtue of the preceding section, any component for which
ϕ(xk

1i, x
k
2i) = 0 can be removed from the complementarity constraints and

instead be treated as part of the general constraints, as ϕ(xl
1i, x

l
2i) = 0 for all

l ≥ k. Hence, it can be assumed without loss of generality that Φ(xk
1 , x

k
2) > 0

for all k.
In the remainder of the proof, it is assumed without loss of generality that

X ∗⊥
1 = ∅, that is, the solution can be partitioned as

x∗2 =
(
x∗21
x∗22

)
=
(

0
x∗22

)
, (23)

where x∗22 > 0, and x∗1 = 0 is partitioned in the same way. This simplifies the
notation in the proof.

SQP methods can take arbitrary steps when encountering infeasible QP
approximations. In order to avoid the issue of infeasibility, the following as-
sumption is made that often holds in practice.

[A7] All QP approximations (QP k) are consistent for xk sufficiently close to
x∗.

This is clearly an undesirable assumption because it is an assumption on the
progress of the method. However, Proposition 3.6 shows that [A7] holds for
the NCP reformulations involving the min-function. In addition, it is shown
in [FLRS02] that [A7] is satisfied for MPCCs with vertical complementarity
constraints that satisfy a mixed-P property. Moreover, the use of the pertur-
bation makes it less likely that the SQP method will encounter infeasible QP
subproblems.
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The key idea behind our convergence result is to show convergence for any
“basic” active set. To this end, we introduce the set of active complementarity
constraints

C(x) := {i : ϕ(x1i, x2i) = 0} .

Let I(x) := I ∩ A(x), and let the basic constraints be

B(x) := E ∪ I(x) ∪ X1(x) ∪ X2(x) ∪ C(x).

The set of strictly active constraints (defined in terms of the basic multiplier,
μ, see (19)) is given by

B+(x) := {i ∈ B(x) | μi �= 0} .

Moreover, let Bk
+ denote the matrix of strictly active constraint normals at

x = xk, namely,
Bk

+ :=
[
ak

i

]
i∈B+(xk)

,

where ak
i is the constraint normal of constraint i ∈ B+(xk).

The failure of any constraint qualification at a solution x∗ of the equiv-
alent NLP (3) implies that the active constraint normals at x∗ are linearly
dependent. However, the constraint normals corresponding to strictly active
constraints are linearly independent, as shown in the following lemma.

Lemma 5.7 Let Assumptions [A1]–[A4] hold, and let x∗ be a solution of the
MPCC (1). Let I∗ denote the set of active inequalities cI(x), and consider
the matrix of active constraint normals at x∗,

B∗ =

⎡⎢⎢⎢⎢⎣
0 0 0

A∗
E A

∗
I∗ I 0

(
0

−∇x12Φ2

)
0
[
I
0

] (
0
0

)
⎤⎥⎥⎥⎥⎦ , (24)

where we have assumed without loss of generality that X⊥∗
1 = ∅. The last

column is the gradient of the complementarity constraint. Then it follows that
B is linearly dependent and that

span〈
[

0
I2

]
〉 = span〈

[
0

−∇x12Φ2

]
〉. (25)

Moreover, any submatrix of columns of B has full rank provided that it con-
tains [A∗

E A
∗
I ] and a linearly independent set from the columns in (25).

Proof. The structure of the gradient of the NCP functions and (23) show
that (25) holds. Thus B∗ is linearly dependent. MPCC-LICQ shows that B∗

without the columns corresponding to the NCP functions has full rank. By
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choosing a linearly independent subset from the columns in (25), we get a
basis. �

Lemma 5.7 shows that the normals corresponding to the basic multiplier
are linearly independent despite the fact that the active normals are linearly
dependent. The proof shows that in order to obtain a linearly independent
basis, any column of x12 = 0 can be exchanged with the corresponding normal
of the complementarity constraint. This matches the observation that the
basic multipliers of the simple bounds and the corresponding complementarity
constraint are complementary (see (20)).

Next, it is shown that for xk sufficiently close to x∗, if both the normals
corresponding to x1i ≥ 0 and ϕ(x1i, x2i) ≤ 0 are active, then at the next
iteration exact complementarity holds for that component and ϕ(xl

1i, x
l
2i) = 0

and for all subsequent iterations by virtue of Lemma 5.3. Thus, the QP solver
cannot continue to choose a basis that is increasingly ill-conditioned.

Lemma 5.8 Let Assumptions [A1]–[A5] hold, and let xk be sufficiently close
to x∗. Partition the NCP function Φ = (Φ1, Φ2)

T in the same way as x1, x2

in (23). Consider the matrix of active constraint normals at xk,

B =

⎡⎢⎢⎢⎢⎣
0 0 0 0

Ak
E A

k
I

[
I 0
0 I

] [
−∇x11Φ1

0

] [
0

−∇x12Φ2

]
[
I
0

] [
−∇x21Φ1

0

] [
0

−∇x22Φ2

]
⎤⎥⎥⎥⎥⎦ .

Then it follows that the columns corresponding to the matrix ∇xΦ2 have the
structure (0, 0,−τ, 0,−ε)T , where τ = O(1) and ε > 0 is small. If the optimal
basis of (QP k) contains both a column i of x1i ≥ 0 and ϕ(x1i, x2i) ≤ 0, then
it follows that

xk
1i > 0 and xk+1

1i xk+1
2i = 0.

Moreover, there exists c > 0 such that

‖
(
xk+1, μk+1

)
− (x∗, μ∗) ‖ ≤ c ‖

(
xk, μk

)
− (x∗, μ∗) ‖. (26)

Proof. The first part follows by observing that for xk close to x∗, x12 ≥ 0
is small and x22 = O(1), which implies the form of the columns. Exchang-
ing them with the corresponding columns of x12 ≥ 0 results in a nonsingular
matrix by Lemma 5.7. The second part follows from the nonsingularity as-
sumption [A5] (if xk

1i = 0, then the basis would be singular) and the fact that
if the column corresponding to x1i ≥ 0 is basic, then xk+1

1i = xk
1i + d1i = 0

holds.
The third part follows by observing that Assumptions [A2] and [A3] imply
that the relaxed NLP satisfies an LICQ and a SOSC. Hence, the basis B
without the final column gives a feasible point close to xk. Denote this solution



190 Sven Leyffer

by (x̂, μ̂), and let the corresponding step be denoted by d̂. Clearly, if this step
also satisfies the linearization of the complementarity constraint, that is, if

Φk +∇x1Φ
kT

d̂1 +∇x2Φ
kT

d̂2 ≤ 0,

then (26) follows by second-order convergence of SQP for the relaxed NLP.
If, on the other hand,

Φk +∇x1Φ
kT

d̂1 +∇x2Φ
kT

d̂2 > 0,

then the SQP step of the relaxed NLP is not feasible in (QP k). In this case
consider the following decomposition of the SQP step. Let

d̂n =

⎛⎜⎜⎝
0
d̂1(
d̂21

0

)
⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
−xk

1(
−xk

21

0

)
⎞⎟⎟⎠

be the normal component, and let d̂t := d̂− d̂n be the tangential component.
Then it follows that the step of (QP k) satisfies dk = d̂n + σd̂t for some
σ ∈ [0, 1], and the desired bound on the distance follows from the convergence
of d̂. �

Thus, if both the normals corresponding to ϕ(x1i, x2i) ≤ 0 and x1i ≥ 0
are basic, then xk+1

1i xk+1
2i = 0 for a point close to x∗. This component can

then be removed from the complementarity constraint, as Lemma 5.3 shows
that xk+l

1i xk+l
2i = 0 for all l ≥ 1. In the remainder we can therefore concentrate

on the case that xk
1ix

k
2i > 0 for all iterates k. Next, it is shown that for xk

sufficiently close to x∗, the basis at xk contains the equality constraints E and
the active inequality constraints I∗.

Lemma 5.9 Let xk be sufficiently close to x∗, and let Assumptions [A1]–
[A5] and [A7] hold. Then it follows that the optimal basis B of (QP k) con-
tains the normals Ak

E and Ak
I∗ .

Proof. This follows by considering the gradient of (QP k),

0 = ∇fk +W kdk −∇ckT

λk+1 −

⎛⎝ 0
νk+1
1 − ξk+1∇x1Φ

k

νk+1
2 − ξk+1∇x2Φ

k

⎞⎠ ,
where W k is the Hessian of the Lagrangian. For xk sufficiently close to x∗, it
follows from [A4] that λk+1

i �= 0 for all i ∈ E ∪ I∗. �

Thus, as long as the QP approximations remain consistent, the optimal
basis of (QP k) will be a subset of B satisfying the conditions in Lemma 5.8.
The key idea is to show that for any such basis, there exists an equality
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constraint problem for which SQP converges quadratically. Since there is only
a finite number of basis, this implies convergence for SQP.

We now introduce the reduced NLP , which is an equality constraint NLP
corresponding to a basis with properties as in Lemma 5.8. Assume that x∗

can be partitioned as in (23), and define the reduced NLP as

minimize
x

f(x)

subject to cE(x) = 0
cI∗(x) = 0
x11 = 0
x21 = 0
x1i = 0 or Φ(x1i, x2i) = 0 ∀i ∈ X⊥

2 ,

where the last constraint means that either x1i = 0 or Φ(x1i, x2i) = 0 but not
both are present in the reduced NLP. Note that according to (23), X⊥

1 = ∅.
The key idea will be to relate the reduced NLP to a basis satisfying the
conditions of Lemma 5.8. Next, it is shown that any reduced NLP satisfies an
LICQ and an SOCS.

Lemma 5.10 Let Assumptions [A1]–[A4] and [A7] hold. Then it follows
that any reduced NLP satisfies LICQ and SOSC.

Proof. Lemma 5.8 and the fact that either x1i = 0 or Φ(x1i, x2i) = 0 are
active shows that the normals of the equality constraints of each reduced
NLP are linearly independent. The SOSC follows from the MPCC-SOSC and
the observation that the MPCC and the reduced NLP have the same null-
space. �

Thus, applying SQP to the reduced NLP results in second-order conver-
gence. Next, we observe that any nonsingular basis B corresponds to a re-
duced NLP. Unfortunately, relaxing the complementarity constraints in (QP k)
means that second-order convergence does not follow directly. However, the
particular form of perturbation allows a superlinear convergence result to be
established.

Proposition 5.11 Let Assumptions [A1]–[A4] and [A7] hold. Then it fol-
lows that an SQP method that relaxes the complementarity as in (QP k) con-
verges superlinearly to x∗ for any reduced NLP.

Proof. Assume that δ = 0, so that no perturbation is used. Lemma 5.10
shows that the reduced NLP satisfy LICQ and SOSC and, therefore, conver-
gence of SQP follows. In particular, it follows that for a given reduced NLP
corresponding to a basis B, there exists a constant cB > 0 such that

‖
(
xk+1, μk+1

)
− (x∗, μ∗) ‖ ≤ cB ‖

(
xk, μk

)
− (x∗, μ∗) ‖2. (27)
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If the right-hand side of the complementarity constraint is perturbed (i.e.,
δ > 0), then consider the Newton step corresponding to the QP approxima-
tion of the relaxed NLP about xk. In particular, this step satisfies dk

N = −xk
1 ,

and it follows that the perturbation is o(‖dN‖), where dN is the Newton step.
Hence, superlinear convergence follows using the Dennis-Moré characteriza-
tion theorem (e.g., Fletcher, [Fle87, Theorem 6.2.3]). �

We note that the SQP method based on (QP k) ignores the curvature
corresponding to ϕ(x12, x22) = 0. However, it is easy to extend the proof of
Proposition 5.11 to allow ∇2Φ to be included. The key idea is to show that
the limit of the projected Hessian of ∇Φ∗ is zero. Letting Zk be a basis of
the nullspace of (QP k), we need to show that limk→∞ Zk∇2Φ∗ = 0, which
implies superlinear convergence (see, e.g., [Fle87, Chapter 12.4]). It can be
shown that the Hessian of the NCP functions is unbounded in the nullspace
of the active constraints of (QP k).

Summarizing the results of this section, we obtain the following theorem.

Theorem 5.12 Let Assumptions [A1]–[A5] and [A7] hold. Then it follows
that SQP applied to the NLP formulation (3) of the MPCC (1) converges
superlinearly near a solution (x∗, μ∗).

Proof. Proposition 5.11 shows that SQP converges superlinearly for any pos-
sible choice of basis B, and Assumption [A7] shows that (QP k) is consistent
and remains consistent. Therefore, there exists a basis for which superlinear
convergence follows. Thus for each basis,

lim
k→∞

‖(xk+1, μk+1)− (x∗, μ∗)‖
‖(xk, μk)− (x∗, μ∗)‖ = 0

follows. Since there are a finite number of bases, this condition holds indepen-
dent of the basis and SQP converges superlinearly. �

5.3 Discussion of proofs

Several interesting observations arise from the convergence proofs of the
preceding two sections. The curvature of the complementarity constraint
Φ(x1, x2) can be ignored without losing fast local convergence. This fact is
not surprising because the complementarity constraint

0 ≤ x1 ⊥ x2 ≥ 0

has zero curvature at any feasible point with x1i + x2i > 0. At the origin, on
the other hand, the curvature is infinite. However, in this case the curvature
does not affect convergence, as the reduced Hessian is zero.
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If the min-function (5) or its piecewise smooth variants (10) or (11) are
used, then the proof simplifies, as near a strongly stationary point, ∇Φx2 = 0.
In addition, the linearizations are consistent even without the perturbation
(14) and convergence follows from the convergence of the relaxed NLP. This
fact can be interpreted as a constraint qualification for the NCP formulations
using (5) or (10) or (11) at strongly stationary points.

The conclusions and proofs presented in this section also carry through
for linear complementarity constraints but not for general nonlinear comple-
mentarity constraints. The reason is that the implication

xk
1ix

k
2i = 0 ⇒ xk+1

1i xk+1
2i = 0 (28)

holds for linear complementarity problems but not for nonlinear complemen-
tarity problems because in general, an SQP method would move off a nonlinear
constraint. This is one reason for the introduction of slacks to deal with more
general complementarity constraints. In addition, (28) can be made to hold
in inexact arithmetic by taking care of handling simple bounds appropriately.
The same is not true if one expression is a linear equation.

6 Numerical results

This section describes our experience with an implementation of the different
NCP formulation of the MPCC (1) in our sequential quadratic programming
solver. Our SQP method promotes global convergence through the use of
a filter. The filter accepts a trial point whenever the objective or the con-
straint violation is improved compared with all previous iterates, Fletcher et
al. [FGL+02, FL02, FLT02].

6.1 Preliminaries

The solver is interfaced to the modeling language AMPL, due to Fourer et
al. [FGK03]. Our interface introduces slacks to formulate general complemen-
tarity constraints in the form (1) and handles the reformulation to the NLP
(3) automatically. The interface also computes the derivatives of the NCP
functions and relaxes the linearizations according to (14). A user can choose
between the various formulations and set parameters such as δ, κ by passing
options to the solver.

The test problems come from MacMPEC [Ley00], a collection of some 150
MPCC test problems [FL04] from a variety of backgrounds and sizes. The
numerical tests are performed on a PC with an Intel Pentium 4 processor with
2.5 GHz and 512 KB RAM running Red Hat Linux version 7.3. The AMPL
solver interface is compiled with the Intel C++ compiler version 6.0, and the
SQP/MPCC solver is compiled with the Intel Fortran Compiler version 6.0.

Not all 150 problems in MacMPEC are included in this experiment. We
have deliberately left out a number of 32× 32 discretizations of the incidence
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set identification and packaging problems. These problems are similar to one
another (a small number of them are included) but take a long time to run.
This is especially true for the formulations that do not lump the complemen-
tarity constraint. In this sense, the results would have been even better for
the formulation using the scalar product form.

To determine reasonable values for the various parameters introduced in
the definition of the NCP functions, we run a small representative selection of
MPCC problems. The overall performance is not very sensitive to a particular
parameter choice. No attempt was made to “optimize” the parameter values;
rather, we were interested in determining default values that would work well.
Table 1 displays the default parameter values.

Table 1. Default parameter values for numerical experiments.

Parameter Description Default

δ relaxation of linearization in (14) 0.1
κ relaxation of linearization in (14) 1.0

σNR smoothing of natural residual (9) 32.0
λ Chen-Chen-Kanzow parameter (7) 0.7
σl slope of linearized min-function (10) 4.0
σq slope of quadratic min-function (11) 2.0

While the number of parameters may appear unreasonably large, each
formulation requires only three parameters to be set. The choice of λ = 0.7 also
agrees with [MFF+01], where λ = 0.8 is suggested. Note that since δ = 0.1,
the Chen-Chen-Kanzow function is relaxed further.

Care has to be taken when computing the smoothed natural residual func-
tion (9); it can be affected by cancellation error, as the following example il-
lustrates. Suppose a = 104 and b = 10−4 and that single-precision arithmetic
is used. Then it follows that

2ϕNRs(a, b) = (104 + 10−4)−
√

(104 − 10−4)2 +
1
σNR

float% 104 −
√

108 = 0,

that is cancellation errors causes (9) to declare an infeasible point comple-
mentary. This situation can be avoided by employing the same trick used
by Munson et al. [MFF+01] in reformulating the Fischer-Burmeister function
giving rise to

ϕNRs(a, b) =
1
2

(
4σNR−1

σNR

)
a+ b+

√
(a− b)2 + ab

σNR

. (29)

Derivative values can be computed in a similarly stable fashion.
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Fig. 3. Performance (iterations) plots for different NCP formulations

6.2 Performance plots and results

Results are provided in two forms. The performance plots of Dolan and Moré
[DM00] in Figures 3 and 4 show the relative performance of each formulation
in terms of iteration count and CPU time. These plots can be interpreted as
follows. For every solver s and every problem p, the ratio of the number of
iterations (or CPU time) of solver p on problem s over the fastest solve for
problem s is computed and the base 2 logarithm is taken,

log2

(
# iter(s, p)
best iter(p)

)
.

By sorting these ratios in ascending order for every solver, the resulting plots
can be interpreted as the probability that a given solver solves a problem
within a certain multiple of the fastest solver.

Failures (see next section) are handled by setting the iteration count and
the CPU time to a large number. This strategy ensures that the robustness
can also be obtained from the performance plots. The percentage of MPCC
problems solved is equivalent to the right asymptote of the performance line
for each solver.

6.3 Failures of the NCP formulations

Solving MPCCs as NLPs is surprisingly robust. We observe very few failures,
even though many problems are known to violate the assumptions made in
this paper. Even the worst NCP formulation failed only on eight problems.
Below, we list the problems that failed together with the reason for the failure.

The NLP solver can fail in three ways. The first failure mode occurs when
the trust-region radius becomes smaller than the solver tolerance (1E-6) and
no further progress can be made. This is referred to in the table below as “TR
too small.” Such a failure often happens at a solution where the KKT error
cannot be reduced to sufficient accuracy. The second failure mode occurs if
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Fig. 4. Performance (CPU time) plots for different NCP formulations

the QP solver detects inconsistent linearizations near a feasible point. This
is referred to as “infeasible QP.” Note that the fact that MPCCs violate
MFCQ implies that linearizations can become inconsistent arbitrarily close
to a feasible point. Third, “iter. limit” refers to failures in which the solver
reached its iteration limit (1000) without confirming optimality. The following
failures were reported:

1. Scalar product form xT
1 x2 ≤ 0 2 failures

TR too small : tollmpec1
infeasible QP : design-cent-3

2. Bilinear form x1ix2i ≤ 0 5 failures
infeasible QP : design-cent-3, incid-set1c-32, pack-rig2c-32, pack-rig2p-16
iter. limit : bem-milanc30-s

3. min-function min(x1i, x2i) ≤ 0 6 failures
TR too small : ex9.2.2
infeasible QP : pack-comp1p-8, pack-comp1p-16
iter. limit : pack-comp2p-8, pack-comp2p-16, qpec-200-2

4. Linearized min-function (10) 4 failures
TR too small : jr2, qpec-200-3
infeasible QP : bem-milanc30-s
iter. limit : qpec-200-2

5. Quadratically smoothed min-function (11) 8 failures
TR too small : jr2
infeasible QP : incid-set2c-32
iter. limit : ex9.2.2, gauvin, incid-set1c-32, qpec-100-4, qpec-200-1,

: qpec-200-3
6. Fischer-Burmeister function (4) 7 failures

infeasible QP : design-cent-3, ralphmod
iter. limit : pack-comp1c-8, pack-rig1-16, pack-rig1c-16, pack-rig2-16,

: pack-rig2c-16
7. Smoothed natural residual function (9) 1 failures
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TR too small : bem-milanc30-s
8. Chen-Chen-Kanzow function (7) 5 failures

infeasible QP : pack-comp1p-8, qpec-200-3, pack-comp1c-8, pack-rig2p-16
iter. limit : bem-milanc30-s

This list contains some problems known not to have strongly stationary limit
points. For instance, ex9.2.2, ralph1, and scholtes4 have B-stationary solu-
tions that are not strongly stationary. Problem gauvin has a global minimum
at a point where the lower-level problem fails a constraint violation, so the
formulation as an MPCC is not appropriate.

In the tests, two problems also gave rise to IEEE errors in the
AMPL function evaluations, specifically the Chen-Chen-Kanzow function on
pack-rig1-16 and pack-rig1c-32. Since this type of error is caused not by
the method but by the model, they are not counted in the errors.

6.4 Interpretation of the results

The results confirm that solving MPCCs as NLPs is very robust. In particular,
the scalar product and the smoothed natural residual function are very robust,
solving all but two problems and one problem, respectively.

The results for the min-function, on the other hand, are disappointing.
Recall that these functions are theoretically attractive because they do not
require an additional assumption to be made on the feasibility of QP ap-
proximations. This property makes the number of failures (6/4/8) for the
min-function and its smoothed variants disappointing.

The best results in terms of performance and robustness were obtained for
the scalar product formulation and the smoothed natural residual function.
The performance plots in Figures 3 and 4 clearly show that these formulations
are superior. In particular, the scalar product function is significantly faster
than any other approach.

The formulation using xT
1 x2 has two main advantages that may explain

its superiority. First, it introduces only a single additional constraint, which
reduces the size of the NLP to be solved. Moreover, this formulation requires
less storage for the QP basis factors. Second, by lumping the complementar-
ity conditions, the formulation allows a certain degree of nonmonotonicity in
the complementarity error of each individual x1ix2i and reduces the overall
complementarity error, xT

1 x2, only.
The worst results in terms of both robustness and efficiency are obtained

for the Fischer-Burmeister function and the quadratically smoothed min-
function. These formulations fail on seven and eight problems, respectively and
are significantly slower than the other formulations. The Chen-Chen-Kanzow
function improves on the Fischer-Burmeister function. This observation is not
surprising because ϕCCK is a convex combination of the Fischer-Burmeister
function and the more successful bilinear formulation. The worse behavior of
ϕFB might be due to the fact that its linearized feasible region is smaller than
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for the bilinear form. This is also supported by the type of failures that can
be observed for the Fischer-Burmeister function, which has many infeasible
QP terminations.

Analyzing the solution characteristics of the scalar product form, we ob-
serve that only four problems have a large value of ξ. This fact shows that
the SQP method converges to strongly stationary points for the remaining
problems, as a bounded complementarity multiplier is equivalent to strong-
stationarity (Theorem 3.7). The four problems for which ξ is unbounded are
ex9.2.2, ralph1, ralphmod, and scholtes4. The last problem is known to violate
an MPCC-MFCQ at its only stationary point, and the limit is B-stationary
but not strongly stationary, and SQP converges linearly for this problem
[FLRS02].

In addition, it can be observed that the complementarity error is exactly
zero at most solutions. The reasons for this behavior are as follows:

1. Complementarity occurs only between variables. Thus, if a lower bound is
in the active set, then the corresponding residual can be set to zero even
in inexact arithmetic.

2. Many problems in the test set have a solution where ξ = 0. This indi-
cates that the complementarity constraint xT

1 x2 ≤ 0 is locally redundant.
Hence, exact complementarity is achieved as soon as the SQP method
identifies the correct active set.

3. Our QP solver resolves degeneracy by making nearly degenerate con-
straints exactly degenerate and then employing a recursive procedure to
remove degeneracy. This process of making nearly degenerate constraints
exactly degenerate forces exact complementarity. Consider any nondegen-
erate index for which x∗2i > 0 = x∗1i, and assume that xk

1i > 0 is small.
The QP solver resolves the “near” degeneracy between the lower bound
x1i ≥ 0 and the complementarity constraint by perturbing x1i to zero.
Thus exact complementarity is achieved.

This behavior is reassuring and makes the NLP approach to MPCCs attractive
from a numerical standpoint.

7 Conclusions

Mathematical programs with complementarity constraints (MPCCs) are an
emerging area of nonlinear optimization. Until recently researchers had as-
sumed that the inherent degeneracy of MPCCs makes the application of stan-
dard NLP solvers unsafe. In this paper we show how MPCCs can be formu-
lated as NLPs using a range of so-called NCP functions. Two new smoothed
min-functions are introduced that exhibit desirable theoretical properties com-
parable to a constraint qualification.

In contrast to other smoothing approaches, the present formulations are
exact in the sense that KKT points of the reformulated NLP correspond to
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strongly stationary points of the MPCC. Thus there is no need to control a
smoothing parameter, which may be problematic.

It is shown that SQP methods exhibit fast local convergence near strongly
stationary points under reasonable assumptions. This behavior is observed in
practice on a large range of MPCC problems. The numerical results favor a
lumped formulation in which all complementarity constraints are lumped into
a single constraint. A new smoothed version of the min-function is also shown
to be very robust and efficient. On the other hand, results for other standard
NCP functions such as the Fischer-Burmeister function are disappointing.

The use of the simple bounds in the reformulation of complementarity (2)
allows an alternative NLP formulation of the MPCC (1). This formulation
lumps the nonlinear NCP functions into a single constraint, similar to xT

1 x2 ≤
0. Thus, an alternative NLP is given by

minimize f(x)
subject to cE(x) = 0

cI(x) ≥ 0
x1, x2 ≥ 0,
eTΦ(x1, x2) ≤ 0.

(30)

It is straightforward to see, that (30) is equivalent to (1). The convergence
proof is readily extended to this formulation. We note that (30) has several
advantages over (3). It reduces the number of constraints in the NLP. More-
over, our experience indicates that the lumped version of the bilinear form,
xT

1 x2 ≤ 0, often performs better than the separate version using x1ix2i ≤ 0.
One reason may be that the lumped version allows nonmonotone changes in
the complementarity residual in individual variable pairs as long as the overall
complementarity is reduced.

Some open questions remain. One question concerns the global conver-
gence of SQP methods from arbitrary starting points. Any approach to this
question must take into account the globalization scheme and, in addition,
provide powerful feasibility restoration. A related question is whether SQP
methods can avoid convergence to spurious stationary points. Such points
are sometimes referred to as C-stationary points even though they allow the
existence of trivial first-order descent direction. At present, we believe that
current SQP methods cannot avoid convergence to C-stationary points. Any
attempt to avoid C-stationarity is likely to require algorithmic modifications.
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A Problem characteristics

This appendix lists the problem characteristics obtained with the scalar prod-
uct formulation. The headings of each column are explained next. n,m, and
p are the number of variables, constraints (excluding complementarity), and
complementarity constraints, respectively. nNLP is the number of variables
after slacks were added, and k is the dimension of the nullspace at the solu-
tion. The definition of the degree of degeneracy d1, d2, dm is taken from Jiang
and Ralph [JR99] and refer to first-level degeneracy, d1, second-level degen-
eracy, d2, and mixed-degeneracy, dm. The complementarity error (xT

1 x2) is in
the column headed by compl, and ξ is the multiplier of the complementarity
constraint xT

1 x2 ≤ 0.
name n m p nNLP k d1 d2 dm compl ξ

bard1 5 4 3 8 0 3 0 0 0.00 0.762
bard1m 6 4 3 9 0 4 0 0 0.00 0.762
bard2 12 9 3 15 0 2 1 0 0.00 0.00
bard2m 12 9 3 15 0 2 1 0 0.00 0.00
bard3 6 5 1 7 0 2 0 0 0.00 0.00
bard3m 6 5 3 9 0 2 0 0 0.00 1.09
bar-truss-3 35 34 6 35 0 13 0 0 0.00 1.45
bem-milanc30-s 3436 3433 1464 3436 1 1745 1 0 0.00 954.
bilevel1 10 9 6 12 0 6 0 0 0.00 0.150
bilevel2 16 13 8 20 1 5 0 0 0.294E-10 0.00
bilevel3 11 10 3 11 0 5 0 0 0.00 1.09
bilin 8 7 6 14 0 4 0 0 0.00 22.0
dempe 3 2 1 4 0 0 0 0 0.00 0.571E-05
design-cent-1 12 11 3 15 0 6 0 0 0.00 2.17
design-cent-2 13 15 3 16 0 11 0 0 0.00 0.00
design-cent-3 15 11 3 18 0 1 0 1 0.00 0.313E-01
design-cent-4 22 20 8 30 1 12 0 0 0.00 0.845
desilva 6 4 2 8 0 2 0 2 0.00 0.00
df1 2 3 1 3 1 1 0 1 0.00 0.00
ex9.1.1 13 12 5 13 0 4 0 0 0.00 0.00
ex9.1.10 11 9 3 11 0 5 0 2 0.00 0.00
ex9.1.2 8 7 2 8 0 4 0 0 0.00 0.00
ex9.1.3 23 21 6 23 0 14 0 1 0.00 3.20
ex9.1.4 8 7 2 8 0 3 0 1 0.00 0.00
ex9.1.5 13 12 5 13 0 8 0 2 0.00 10.0
ex9.1.6 14 13 6 14 0 6 0 1 0.00 1.56
ex9.1.7 17 15 6 17 0 8 0 1 0.00 5.00
ex9.1.8 11 9 3 11 0 5 0 2 0.00 0.00
ex9.1.9 12 11 5 12 0 5 0 1 0.00 0.444
ex9.2.1 10 9 4 10 0 6 0 1 0.00 0.762
ex9.2.2 9 8 3 9 0 3 0 1 0.183E-12 0.386E+07
ex9.2.3 14 13 4 14 0 5 1 0 0.00 0.00
ex9.2.4 8 7 2 8 0 3 0 0 0.00 1.00
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name n m p nNLP k d1 d2 dm compl ξ

ex9.2.5 8 7 3 8 0 3 0 0 0.00 6.00
ex9.2.6 16 12 6 16 2 4 0 2 0.168E-10 0.500
ex9.2.7 10 9 4 10 0 6 0 1 0.00 0.762
ex9.2.8 6 5 2 6 0 3 0 1 0.00 0.500
ex9.2.9 9 8 3 9 0 7 0 0 0.100E-06 0.00
flp2 4 2 2 6 1 2 0 1 0.00 0.987
flp4-1 80 60 30 110 0 30 0 0 0.00 0.00
flp4-2 110 110 60 170 0 60 0 0 0.00 0.00
flp4-3 140 170 70 210 0 70 0 0 0.00 0.00
flp4-4 200 250 100 300 0 100 0 0 0.00 0.00
gauvin 3 2 2 5 0 1 0 0 0.00 0.250
gnash10 13 12 8 13 1 0 0 0 0.00 0.142
gnash11 13 12 8 13 1 0 0 0 0.00 0.918E-01
gnash12 13 12 8 13 1 0 0 0 0.00 0.397E-01
gnash13 13 12 8 13 1 0 0 0 0.00 0.149E-01
gnash14 13 12 8 13 1 0 0 0 0.00 0.199E-02
gnash15 13 12 8 13 0 3 0 0 0.00 7.65
gnash16 13 12 8 13 0 3 0 0 0.00 1.95
gnash17 13 12 8 13 1 4 0 0 0.00 1.67
gnash18 13 12 8 13 1 4 0 0 0.00 12.7
gnash19 13 12 8 13 0 2 0 0 0.00 2.80
hakonsen 9 8 4 9 0 2 0 0 0.00 0.390
hs044-i 20 14 10 26 0 7 0 1 0.00 5.69
incid-set1-16 485 491 225 485 0 232 0 5 0.00 0.00
incid-set1-8 117 119 49 117 0 54 0 4 0.00 0.00
incid-set1c-16 485 506 225 485 1 233 1 5 0.00 0.00
incid-set1c-32 1989 2034 961 1989 4 165 20 0 0.00 0.00
incid-set1c-8 117 126 49 117 0 59 0 4 0.00 0.00
incid-set2-16 485 491 225 710 3 212 13 0 0.00 0.00
incid-set2-8 117 119 49 166 5 42 7 0 0.00 0.00
incid-set2c-16 485 506 225 710 0 218 12 0 0.00 0.00
incid-set2c-32 1989 2034 961 2950 2 937 24 0 0.00 0.00
incid-set2c-8 117 126 49 166 2 46 6 0 0.00 0.00
jr1 2 1 1 3 1 0 0 0 0.00 0.00
jr2 2 1 1 3 0 0 0 0 0.00 2.00
kth1 2 1 1 2 0 0 1 0 0.00 0.00
kth2 2 1 1 2 1 0 0 0 0.00 0.00
kth3 2 1 1 2 0 0 0 0 0.00 1.00
liswet1-050 152 103 50 202 1 52 0 0 0.00 0.00
liswet1-100 302 203 100 402 1 102 0 0 0.00 0.00
liswet1-200 602 403 200 802 1 202 0 0 0.00 0.00
nash1 6 4 2 8 0 4 0 0 0.00 0.00
outrata31 5 4 4 9 0 0 1 0 0.00 0.164
outrata32 5 4 4 9 1 0 0 0 0.00 0.168
outrata33 5 4 4 9 1 1 0 0 0.00 0.714
outrata34 5 4 4 9 1 1 0 0 0.00 2.07
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name n m p nNLP k d1 d2 dm compl ξ

pack-comp1-16 467 511 225 692 3 268 0 2 0.00 0.00
pack-comp1-8 107 121 49 156 0 113 0 0 0.414E-06 0.00
pack-comp1c-16 467 526 225 692 1 269 0 1 0.00 0.00
pack-comp1c-32 1955 2138 961 2916 3 1108 0 2 0.00 0.00
pack-comp1c-8 107 128 49 156 0 120 0 0 0.414E-06 0.00
pack-comp1p-16 467 466 225 692 5 223 2 0 0.00 0.00
pack-comp1p-8 107 106 49 156 0 83 0 0 0.00 0.00
pack-comp2-16 467 511 225 692 5 268 0 2 0.00 0.00
pack-comp2-8 107 121 49 156 5 62 0 2 0.00 0.00
pack-comp2c-16 467 526 225 692 4 268 0 2 0.00 0.00
pack-comp2c-32 1955 2138 961 2916 16 1058 0 2 0.00 0.00
pack-comp2c-8 107 128 49 156 1 62 0 2 0.00 0.00
pack-comp2p-16 467 466 225 692 13 223 2 0 0.00 0.00
pack-comp2p-8 107 106 49 156 1 47 2 0 0.00 0.00
pack-rig1-16 380 379 158 485 7 208 0 0 0.00 0.00
pack-rig1-8 87 86 32 108 6 47 0 0 0.00 0.00
pack-rig1c-16 380 394 158 485 4 206 0 0 0.00 0.00
pack-rig1c-32 1622 1652 708 2087 2 928 0 0 0.763E-06 0.00
pack-rig1c-8 87 93 32 108 5 47 0 0 0.00 0.00
pack-rig1p-16 445 444 203 550 3 229 2 0 0.00 0.00
pack-rig1p-8 105 104 47 126 5 50 2 0 0.00 0.00
pack-rig2-16 375 374 149 480 1 203 0 0 0.622E-06 0.00
pack-rig2-8 85 84 30 106 5 43 0 0 0.00 0.00
pack-rig2c-16 375 389 149 480 1 219 0 0 0.484E-06 0.00
pack-rig2c-32 1580 1610 661 2045 0 912 0 0 0.240E-06 0.00
pack-rig2c-8 85 91 30 106 2 45 0 0 0.00 0.00
pack-rig2p-16 436 435 194 541 0 215 1 0 0.00 0.00
pack-rig2p-8 103 102 45 124 6 49 2 0 0.00 0.00
portfl1 87 25 12 87 6 6 0 0 0.00 0.897
portfl2 87 25 12 87 0 7 0 0 0.00 0.682
portfl3 87 25 12 87 13 6 0 0 0.00 31.1
portfl4 87 25 12 87 16 5 0 0 0.00 114.
portfl6 87 25 12 87 13 5 0 0 0.00 55.0
qpec1 30 20 20 40 0 10 10 0 0.00 0.00
qpec-100-1 105 102 100 205 0 74 3 0 0.00 10.1
qpec-100-2 110 102 100 210 0 58 4 0 0.00 191.
qpec-100-3 110 104 100 210 0 35 2 0 0.00 4.45
qpec-100-4 120 104 100 220 0 61 4 0 0.00 15.3
qpec2 30 20 20 40 0 0 10 0 0.00 0.667
qpec-200-1 210 204 200 410 0 153 2 0 0.00 158.
qpec-200-2 220 204 200 420 0 118 2 0 0.00 3.42
qpec-200-3 220 208 200 420 0 48 6 0 0.00 35.5
qpec-200-4 240 208 200 440 0 133 7 0 0.00 7.95
ralph1 2 1 1 3 0 0 0 0 0.471E-12 0.486E+06
ralph2 2 1 1 2 1 0 0 0 0.313E-06 2.00
ralphmod 104 100 100 204 0 79 2 0 0.00 0.357E+08
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name n m p nNLP k d1 d2 dm compl ξ

scholtes1 3 1 1 4 0 1 0 0 0.00 0.00
scholtes2 3 1 1 4 0 0 1 0 0.00 0.00
scholtes3 2 1 1 2 0 0 0 0 0.00 1.00
scholtes4 3 3 1 3 0 0 0 0 0.161E-13 0.525E+07
scholtes5 3 2 2 3 2 0 0 0 0.00 0.00
sl1 8 5 3 11 0 5 0 1 0.00 0.00
stackelberg1 3 2 1 3 1 0 0 0 0.00 0.00
tap-09 86 68 32 118 8 29 0 2 0.00 0.687E-07
tap-15 194 167 83 277 0 169 0 27 0.00 57.1
tollmpec 2403 2376 1748 4151 1 1489 1 88 0.00 2.35
tollmpec1 2403 2376 1748 4151 0 2402 0 86 0.00 0.00
water-FL 213 160 44 213 3 46 0 0 0.00 0.163E+04
water-net 66 50 14 66 2 15 0 0 0.00 0.00

B Detailed results: Iteration counts

Name xT
1 x2 (8) (5) (10) (11) (4) (9) (7)

bard1 3 4 9 13 2 25 3 8
bard1m 3 4 9 13 2 4 3 7
bard2 1 1 1 1 1 1 1 1
bard2m 1 1 1 1 1 1 1 1
bard3 4 4 4 4 4 4 4 4
bard3m 4 4 4 4 4 4 4 4
bar-truss-3 10 9 9 9 9 9 9 9
bem-milanc30-s 62 1000 655 111 245 144 410 1000
bilevel1 2 3 2 3 3 4 3 4
bilevel2 7 2 1 2 5 3 1 2
bilevel3 7 6 6 6 6 6 6 6
bilin 2 6 1 3 3 3 5 3
dempe 58 58 58 58 58 94 58 58
design-cent-1 4 4 4 4 4 4 4 4
design-cent-2 31 21 37 37 29 32 32 60
design-cent-3 191 164 173 173 173 217 185 163
design-cent-4 3 4 3 3 3 4 3 4
desilva 2 2 2 2 2 2 2 2
df1 2 2 2 2 2 2 2 2
ex9.1.1 1 2 1 1 1 3 2 3
ex9.1.10 1 1 1 1 1 1 1 1
ex9.1.2 2 3 1 3 3 3 3 3
ex9.1.3 3 3 1 3 4 3 3 3
ex9.1.4 2 2 2 2 2 2 2 2
ex9.1.5 3 3 1 3 3 3 3 3
ex9.1.6 3 5 2 2 2 4 4 6
ex9.1.7 3 3 1 3 3 3 3 3
ex9.1.8 1 1 1 1 1 1 1 1
ex9.1.9 3 3 2 3 8 3 3 3
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Name xT
1 x2 (8) (5) (10) (11) (4) (9) (7)

ex9.2.1 3 4 6 13 6 8 3 8
ex9.2.2 22 22 76 71 1000 238 3 180
ex9.2.3 1 1 1 1 1 1 1 1
ex9.2.4 3 2 2 2 2 2 2 2
ex9.2.5 7 7 1 17 32 35 4 7
ex9.2.6 3 2 1 1 2 2 1 2
ex9.2.7 3 4 6 13 6 8 3 8
ex9.2.8 3 3 1 1 1 4 3 3
ex9.2.9 3 3 1 3 3 3 3 3
flp2 3 3 1 1 1 3 3 1
flp4-1 3 2 2 2 2 2 2 2
flp4-2 3 2 2 2 2 2 2 2
flp4-3 3 2 2 2 2 2 2 2
flp4-4 3 2 2 2 2 2 2 2
gauvin 3 9 71 71 1000 54 7 6
gnash10 8 8 7 7 7 8 7 8
gnash11 8 8 7 7 7 8 7 8
gnash12 9 8 8 8 8 8 8 8
gnash13 13 9 10 10 9 10 10 11
gnash14 10 10 9 9 9 13 10 11
gnash15 18 18 41 11 11 9 10 27
gnash16 16 14 26 12 10 45 11 14
gnash17 17 17 10 10 9 11 10 15
gnash18 15 19 55 73 10 184 11 128
gnash19 10 19 10 8 8 18 14 25
hakonsen 10 10 12 12 10 10 10 10
hs044-i 6 4 2 2 4 4 2 4
incid-set1-16 33 139 78 120 493 85 175 66
incid-set1-8 34 35 56 56 51 42 73 65
incid-set1c-16 34 89 89 93 168 69 109 86
incid-set1c-32 37 309 102 155 1000 127 304 161
incid-set1c-8 39 32 43 38 48 35 67 43
incid-set2-16 19 37 35 35 35 33 24 33
incid-set2-8 48 19 18 18 18 18 18 18
incid-set2c-16 37 36 40 35 305 27 71 32
incid-set2c-32 31 87 71 122 489 71 308 88
incid-set2c-8 24 20 27 23 52 29 25 27
jr1 1 1 1 1 1 1 1 1
jr2 7 7 61 66 114 22 3 18
kth1 1 1 1 1 1 1 1 1
kth2 2 2 2 2 2 2 2 2
kth3 4 5 67 67 67 3 2 4
liswet1-050 1 1 1 1 1 1 1 1
liswet1-100 1 1 1 1 1 1 1 1
liswet1-200 1 1 1 1 1 1 1 1
nash1 3 2 1 1 1 2 1 2
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Name xT
1 x2 (8) (5) (10) (11) (4) (9) (7)

outrata31 8 8 7 7 7 8 7 7
outrata32 8 9 8 8 8 9 8 8
outrata33 7 8 7 7 7 8 7 8
outrata34 6 7 6 6 6 7 6 7
pack-comp1-16 20 39 751 64 37 12 68 12
pack-comp1-8 8 30 152 66 24 36 16 36
pack-comp1c-16 5 38 358 76 40 15 50 15
pack-comp1c-32 13 2 787 238 217 50 344 50
pack-comp1c-8 8 19 68 40 14 40 18 41
pack-comp1p-16 45 72 895 344 81 52 197 31
pack-comp1p-8 53 64 274 219 87 36 200 172
pack-comp2-16 43 49 442 42 38 44 81 35
pack-comp2-8 8 26 10 18 11 8 10 8
pack-comp2c-16 15 23 336 76 30 15 17 15
pack-comp2c-32 7 34 901 193 178 45 175 42
pack-comp2c-8 6 11 18 15 14 6 13 6
pack-comp2p-16 32 64 1000 190 142 36 232 48
pack-comp2p-8 60 57 1000 104 77 34 171 58
pack-rig1-16 64 56 81 120 178 1000 90 206
pack-rig1-8 7 10 25 13 17 145 13 148
pack-rig1c-16 11 43 15 57 53 458 19 548
pack-rig1c-32 18 238 42 302 369 99 181 107
pack-rig1c-8 6 8 13 13 10 139 9 142
pack-rig1p-16 28 48 56 164 490 97 118 59
pack-rig1p-8 14 16 22 25 60 144 29 147
pack-rig2-16 7 11 21 42 119 1000 30 421
pack-rig2-8 10 16 10 36 38 254 62 253
pack-rig2c-16 6 11 13 67 96 1000 34 421
pack-rig2c-32 11 71 31 187 222 57 551 55
pack-rig2c-8 6 12 6 15 33 254 23 253
pack-rig2p-16 10 38 79 367 436 301 86 309
pack-rig2p-8 20 16 18 46 89 197 20 196
portfl1 5 7 4 21 6 76 6 84
portfl2 4 6 3 43 8 108 5 162
portfl3 4 6 3 8 5 6 10 6
portfl4 4 4 5 7 5 50 8 48
portfl6 4 6 3 4 5 68 8 66
qpec1 3 2 2 2 2 2 2 2
qpec-100-1 7 34 114 112 251 253 43 300
qpec-100-2 7 24 47 137 427 219 44 43
qpec-100-3 6 20 121 137 713 256 27 105
qpec-100-4 5 9 103 497 1000 176 42 78
qpec2 2 2 1 1 1 2 1 2
qpec-200-1 10 24 87 25 1000 363 38 343
qpec-200-2 10 33 1000 1000 888 182 114 79
qpec-200-3 11 20 160 267 1000 377 62 357
qpec-200-4 5 13 78 95 862 92 34 89
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Name xT
1 x2 (8) (5) (10) (11) (4) (9) (7)

ralph1 27 27 70 70 70 368 5 181
ralph2 11 21 1 1 1 168 3 179
ralphmod 7 37 25 46 114 178 48 21
scholtes1 4 3 3 3 3 3 3 3
scholtes2 2 2 2 2 2 2 2 2
scholtes3 4 6 67 67 67 1 1 1
scholtes4 26 28 71 74 74 239 6 181
scholtes5 1 1 1 1 1 1 1 1
sl1 1 1 1 1 1 1 1 1
stackelberg1 4 4 4 4 4 4 4 4
tap-09 21 23 17 18 18 12 11 23
tap-15 28 19 18 12 18 20 19 20
tollmpec 10 36 22 24 20 79 135 128
tollmpec1 10 50 20 28 24 379 139 108
water-FL 272 237 235 279 333 256 263 356
water-net 131 114 109 125 137 126 190 114
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A semi-infinite approach to design centering

Oliver Stein
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Summary. We consider design centering problems in their reformulation as general
semi-infinite optimization problems. The main goal of the article is to show that the
Reduction Ansatz of semi-infinite programming generically holds at each solution of
the reformulated design centering problem. This is of fundamental importance for
theory and numerical methods which base on the intrinsic bilevel structure of the
problem.

For the genericity considerations we prove a new first order necessary optimality
condition in design centering. Since in the course of our analysis also a certain stan-
dard semi-infinite programming problem turns out to be related to design centering,
the connections to this problem are studied, too.

Key words: Optimality conditions, Reduction Ansatz, Jet transversality,
Genericity.

1 Introduction

Design Centering. A design centering problem considers a container set
C ⊂ IRm and a parametrized body B(x) ⊂ IRm with parameter vector x ∈
IRn. The task is to inscribe B(x) into C such that some functional f , e.g. the
volume of B(x), is maximized:

DC : max
x∈IRn

f(x) subject to B(x) ⊂ C .

In Figure 1 B(x) is a disk in IR2, parametrized by its midpoint and its
radius. The parameter vector x ∈ IR3 is chosen such that B(x) has maximal
area in the nonconvex container set C.

A straightforward extension of the model is to inscribe finitely many
nonoverlapping bodies into C such that some total measure is maximized.
Figure 2 shows the numerical solution of such a multi-body design centering
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Fig. 1. A disk with maximal area in a nonconvex container

Fig. 2. Twelve disks with maximal total area in a nonconvex container

problem with the same container set as in Figure 1 and twelve nonoverlapping
disks.

Single-body design centering problems with special sets B(x) and C have
been studied extensively, see e.g. [5] for the complexity of inscribing a convex
body into a convex container, [12] for maximization of a production yield
under uncertain quality parameters, and [18] for the problem of cutting a
diamond with prescribed form and maximal volume from a raw diamond.
The cutting stock problem ([2]) is an example of multi-body design centering.

To give an example of a design centering problem with a rather intricate
container set, consider the so-called maneuverability problem of a robot from
[4]:

Example 1. A robot may be viewed as a structure of connected links, where
some geometrical parameters θ1, ..., θR, such as lengths of the links or angles
in the joints, can be controlled by drive motors (cf. Figure 3 which is taken
from [8]).

The equations of motion for a robot have the form

F = A(θ) · θ̈ + H(θ, θ̇) ,
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Fig. 3. A robot with connected links and a tool center point

where F ∈ IRR denotes the vector of forces (torques), A(θ) is the inertia
matrix, and H(θ, θ̇) is the vector of friction, gravity, centrifugal and Coriolis
forces. Given vectors F−, F+ ∈ IRR of lower and upper bounds of F as well
as an operating region Ω ⊂ IRR × IRR, the set

C = { θ̈ ∈ IRR| F− ≤ A(θ)θ̈ +H(θ, θ̇) ≤ F+ for all (θ, θ̇) ∈ Ω }

describes the accelerations which can be realized in every point (θ, θ̇) ∈ Ω.
Since the size of C is a measure for the usefulness of a given robot for certain
tasks, an approximation for the volume of C is sought in [4]: Find a simple
body B which is parametrized by a vector x such that B(x) is as large as
possible and contained in C. In this way we arrive at a design centering
problem DC.

The aim of this article is to use techniques from general semi-infinite pro-
gramming to treat a broad class of design centering problems theoretically as
well as numerically. In fact, Example 1 gave rise to one of the first formulations
of a general semi-infinite optimization problem in [8].

Semi-infinite Programming. The connection of design centering to
semi-infinite programming is straightforward: let C be described by the in-
equality constraint c(y) ≤ 0. Then the inclusion

B(x) ⊂ C = { y ∈ IRm| c(y) ≤ 0 }

is trivially equivalent to the semi-infinite constraint

c(y) ≤ 0 ∀ y ∈ B(x) .

Thus the design centering problem DC is equivalent to the general semi-
infinite problem

GSIPDC : max
x

f(x) subject to c(y) ≤ 0 ∀ y ∈ B(x) .

Problems of this type are called semi-infinite as they involve a finite-
dimensional decision variable x and possibly infinitely many inequality con-
straints
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g(x, y) ≤ 0 ∀ y ∈ B(x) ,

where in design centering the function g(x, y) := c(y) does not depend on x.
On the other hand, in a so-called standard semi-infinite optimization prob-

lem there is no x−dependence in the set B(x), i.e. the semi-infinite index set
B(x) ≡ B is fixed. Standard semi-infinite optimization problems have been
studied systematically since the early 1960s. For an extensive survey on stan-
dard semi-infinite programming see [7].

As it turned out more recently in [16], general semi-infinite programming
is intrinsically more complicated than standard semi-infinite programming,
so that some basic theoretical and numerical strategies cannot be transferred
from the standard to the general case. In particular, the feasible set M of
GSIP may be nonclosed and exhibit a disjunctive structure even for defining
functions in general position. An introduction to general semi-infinite pro-
gramming is given in [21].

Bilevel Programming. The key to the theoretical treatment of general
semi-infinite programming and to the conceptually new solution method from
[23] lies in the bilevel structure of semi-infinite programming. In the following
we briefly sketch the main ideas of this approach.

Consider the general semi-infinite program

GSIP : max
x

f(x) subject to g(x, y) ≤ 0 ∀ y ∈ B(x) ,

where for all x ∈ IRn we have

B(x) = { y ∈ IRm| w(x, y) ≤ 0 } .

Let the defining functions f : IRn → IR and g, w : IRn × IRm → IR be at
least once continuously differentiable, and let ∇xg denote the column vector
of partial derivatives of g with respect to x, etc. Then the set-valued mapping
B : IRn→→ IRm is closed. Let B also be locally bounded, i.e. for all x̄ ∈ IRn there
exists a neighborhood U of x̄ and a bounded set Y ⊂ IRm with B(x) ⊂ Y for
all x ∈ U . Note that then B(x) is compact for each x ∈ IRn. We also assume
that B(x) is nonempty for all x ∈ IRn.

Under these assumptions it is easy to see that the semi-infinite constraint
in GSIP is equivalent to

ϕ(x) := max
y∈B(x)

g(x, y) ≤ 0 ,

which means that the feasible set M of GSIP is the lower level set of some
optimal value function. In fact, ϕ is the optimal value function of the so-called
lower level problem

Q(x) : max
y∈IRm

g(x, y) subject to w(x, y) ≤ 0 .

In contrast to the upper level problem which consists in maximizing f over M ,
in the lower level problem x plays the role of an n−dimensional parameter,
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and y is the decision variable. The main computational problem in semi-
infinite programming is that the lower level problem has to be solved to global
optimality, even if only a stationary point of the upper level problem is sought.

Since under the assumptions of closedness and local boundedness of the
set-valued mapping B and the continuity of g the optimal value function ϕ is
at least upper semi-continuous, points x ∈ IRn with ϕ(x) < 0 belong to the
topological interior of M . For investigations of the local structure of M or of
local optimality conditions we are only interested in points from the boundary
∂M of M , so that it suffices to consider the zeros of ϕ, i.e. points x ∈ IRn

for which Q(x) has vanishing maximal value. We denote the corresponding
globally maximal points of Q(x) by

B0(x) = { y ∈ B(x)| g(x, y) = 0 } .

The Reduction Ansatz. When studying semi-infinite problems, it is
of crucial importance to control the elements of B0(x) for varying x. This
can be achieved, for example, by means of the implicit function theorem.
For x̄ ∈ M a local maximizer ȳ of Q(x̄) is called nondegenerate in the
sense of Jongen/Jonker/Twilt ([14]), if the linear independence constraint
qualification (LICQ), strict complementary slackness (SCS) and the sec-
ond order sufficiency condition D2

yΛ(x̄, ȳ, γ̄)|TȳB(x̄) ≺ 0 are satisfied. Here
Λ(x, y, γ) = g(x, y)− γ w(x, y) denotes the lower level Lagrangian, TȳB(x̄) is
the tangent space to B(x̄) at ȳ, and A ≺ 0 stands for the negative definiteness
of a matrix A. The Reduction Ansatz is said to hold at x̄ ∈ M if all global
maximizers of Q(x̄) are nondegenerate. Since nondegenerate maximizers are
isolated, and B(x̄) is a compact set, the set B0(x̄) can only contain finitely
many points. By a result from [3] the local variation of these points with x
can be described by the implicit function theorem.

The Reduction Ansatz was originally formulated for standard semi-infinite
problems in [6] and [24] under weaker regularity assumptions. It was trans-
ferred to general semi-infinite problems in [9]. For standard semi-infinite prob-
lems the Reduction Ansatz is a natural assumption in the sense that for prob-
lems with defining functions in general position it holds at each local maxi-
mizer ([19, 25]). For GSIP this result can be transferred to local maximizers
x̄ with |B0(x̄)| ≥ n ([20]). Moreover, in [22] it is shown that it holds in the
“completely linear” case, i.e. when the defining functions f , g and w of GSIP
are affine linear on their respective domains. For GSIP without these special
structures, until now it is not known whether the Reduction Ansatz generi-
cally holds at all local maximizers. Note that even if this general result was
true, it would not necessarily mean that the Reduction Ansatz holds generi-
cally at local maximizers of GSIPDC . In fact, only such specially structured
perturbations of the defining functions of GSIPDC are allowed which leave
the function c independent of x.

Under the Reduction Ansatz it was not only shown that M can locally
be described by finitely many smooth inequality constraints ([9]), but it also
serves as a regularity condition for the convergence proof of the numerical
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solution method from [23]. For completeness, we briefly sketch the main idea
of this bilevel method.

A numerical method for GSIP. To make the global solution of the
lower level problem computationally tractable, we assume that Q(x) is a reg-
ular convex problem for all x ∈ IRn, i.e. the functions −g(x, ·) and w(x, ·) are
convex in y, and B(x) possesses a Slater point. It is well-known that then
the global solutions of the problem Q(x) are exactly its Karush-Kuhn-Tucker
points: y solves Q(x) if and only if there exists some γ ∈ IR such that

∇yΛ(x, y, γ) = 0
γ · w(x, y) = 0

γ, −w(x, y) ≥ 0 .

For this reason it makes sense to replace the problem GSIP, in which only
optimal values of the lower problem enter, by a problem which also uses lower
level optimal points. In fact, we first consider the Stackelberg game

SG : max
x,y

f(x) subject to g(x, y) ≤ 0, y solves Q(x) .

Note that the decision variable of SG resides in the higher-dimensional space
IRn × IRm, i.e. GSIP is lifted. In [22] it is shown that under our assumptions
the orthogonal projection of the feasible set of SG to IRn coincides with the
feasible set of GSIP, so that the x−component of any solution of SG is a
solution of GSIP.

In a second step we replace the restriction that y solves Q(x) in SG equiv-
alently by the corresponding Karush-Kuhn-Tucker condition:

MPCC : max
x,y,γ

f(x) subject to g(x, y) ≤ 0

∇yΛ(x, y, γ) = 0
γ · w(x, y) = 0

γ, −w(x, y) ≥ 0 .

The resulting mathematical program with complementarity constraints lifts
the problem again to a higher-dimensional space, but now MPCC solution
techniques may be applied. One possibility is to reformulate the complemen-
tarity conditions in MPCC by means of an NCP function Φ like the Fischer-
Burmeister function Φ(a, b) = a + b − ||(a, b)||2 , and then to regularize the
necessarily nonsmooth or degenerate NCP function by a one-dimensional pa-
rameter τ > 0, e.g. to Φτ (a, b) = a + b − ||(a, b, τ)||2 . An obvious idea for a
numerical method is to solve the finite and regular optimization problems

Pτ : max
x,y,γ

f(x) subject to g(x, y) ≤ 0

∇yΛ(x, y, γ) = 0
Φτ ( γ,−w(x, y) ) = 0
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for τ ↘ 0. For details and for a convergence proof of this method see [21].
As mentioned before, this convergence proof relies on the Reduction

Ansatz in the solution point. Although for general semi-infinite problems it
is not clear yet whether the Reduction Ansatz holds generically in each local
solution, in numerical tests convergence can usually be observed. The numer-
ical examples in Figures 1 and 2 were actually generated by this algorithm,
applied to the general semi-infinite reformulation GSIPDC of DC.

The present article will show that for the specially structured problems
GSIPDC which stem from a reformulation of DC, the Reduction Ansatz in
each local maximizer is generic. In Section 2 we derive a first order necessary
optimality condition for DC which will be the basis of the genericity con-
siderations in Section 3. Section 4 presents some connections to a standard
semi-infinite problem that can be associated with DC, before Section 5 closes
the article with some final remarks.

2 First order optimality conditions

Let us consider the slightly more general design centering problem

DC : max
x∈IRn

f(x) subject to B(x) ⊂ C

with
C = { y ∈ IRm| cj(y) ≤ 0, j ∈ J }

and
B(x) = { y ∈ IRm| v�(y) ≤ 0, � ∈ L, w(x, y) ≤ 0 }

with finite index sets J and L, and with at least once continuously differen-
tiable defining functions f , cj , j ∈ J , v� , � ∈ L, and w. We assume that C
and

Y = { y ∈ IRm| v�(y) ≤ 0, � ∈ L }

are nonempty and compact sets. In applications the set Y can often be chosen
to contain C so that the compactness of C follows from the compactness of
Y . Moreover, the local boundedness of the set-valued mapping B is a trivial
consequence of the boundedness of Y .

The general semi-infinite reformulation of DC now becomes a problem
with finitely many semi-infinite constraints,

GSIPDC : max
x

f(x) subject to cj(y) ≤ 0 ∀ y ∈ B(x) , j ∈ J ,

and finitely many lower level problems Qj(x) with optimal value functions
ϕj(x) and optimal points Bj

0(x), j ∈ J . For x̄ ∈M we denote by

J0(x̄) = { j ∈ J | ϕj(x̄) = 0 }
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the set of active semi-infinite constraints. From the upper semi-continuity
of the functions ϕj , j ∈ J, it is clear that at each feasible boundary point
x̄ ∈ M ∩ ∂M the set

⋃
j∈J0(x̄)B

j
0(x̄) is nonempty. For the problem GSIPDC

we can show that an even smaller set is nonempty. In fact, with

Bj
00(x̄) = { y ∈ Bj

0(x̄)| w(x̄, y) = 0 }

the following result holds.

Lemma 1. The set
⋃

j∈J0(x̄)B
j
00(x̄) is nonempty for each feasible boundary

point x̄ ∈M ∩ ∂M .

Proof. For x̄ ∈ ∂M there exists a sequence xν → x̄ with xν �∈ M for all
ν ∈ IN. By definition of M , for all ν ∈ IN there exists some yν ∈ B(xν) and
some jν ∈ J with cjν

(yν) > 0 .
As J is a finite set, the sequence (jν)ν∈IN contains some index j0 ∈ J

infinitely many times. Taking the corresponding subsequence if necessary, we
may assume jν ≡ j0 without loss of generality.

Moreover, as B is locally bounded at x̄, the sequence (yν)ν∈IN is bounded
and, thus, without loss of generality convergent to some ȳ ∈ IRm. From the
closedness of the set-valued mapping B and xν → x̄ we also obtain ȳ ∈ B(x̄).
The feasibility of x̄means that for all j ∈ J and all y ∈ B(x̄) we have cj(y) ≤ 0,
so that we arrive at

0 ≤ lim
ν→∞

cj0(y
ν) = cj0(ȳ) ≤ 0 .

This implies ȳ ∈ Bj0
0 (x̄) as well as j0 ∈ J0(x̄).

Next, assume that for some ν ∈ IN it is w(x̄, yν) ≤ 0. Since we have
yν ∈ Y , it follows yν ∈ B(x̄). From x̄ ∈ M we conclude that cj0(y

ν) ≤ 0, in
contradiction to the construction of yν . Consequently we have

for all ν ∈ IN : 0 < w(x̄, yν) . (1)

Together with yν ∈ B(xν) for all ν ∈ IN it follows

0 ≤ lim
ν→∞

w(x̄, yν) = w(x̄, ȳ) = lim
ν→∞

w(xν , yν) ≤ 0

and thus ȳ ∈ Bj0
00(x̄). �

A usual starting point for genericity considerations is a first order opti-
mality condition which holds without any regularity assumptions. For general
semi-infinite problems

GSIP : max
x

f(x) subject to gj(x, y) ≤ 0 ∀ y ∈ B(x) , j ∈ J ,

such a condition is given in [16]. To formulate this condition, we denote by
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Λj(x, y, α, β, γ) = α gj(x, y)− β�v(y)− γ w(x, y) , j ∈ J,

the Fritz-John type lower level Lagrangians, and for x̄ ∈ M , j ∈ J0(x̄) and
ȳ ∈ Bj

0(x̄) by

FJj(x̄, ȳ) = {(α, β, γ) ∈ IR× IR|L| × IR| (α, β, γ) ≥ 0, ||(α, β, γ)||1 = 1,
∇yΛj(x̄, ȳ, α, β, γ) = 0, Λj(x̄, ȳ, α, β, γ) = 0 }

the corresponding sets of Fritz-John multipliers.

Theorem 1 ([16]). Let x̄ ∈M∩∂M be a local maximizer of GSIP. Then there
exist pj ∈ IN, ȳj,k ∈ Bj

0(x̄), (αj,k, βj,k, γj,k) ∈ FJj(x̄, ȳj,k), and nontrivial
multipliers κ ≥ 0, λj,k ≥ 0, 1 ≤ k ≤ pj, j ∈ J0(x̄), such that

∑
j∈J0(x̄) pj ≤

n+ 1 and

κ∇f(x̄) −
∑

j∈J0(x̄)

pj∑
k=1

λj,k∇xΛj(x̄, ȳj,k, αj,k, βj,k, γj,k) = 0 .

This condition simplifies significantly for the problem GSIPDC . In fact,
in the lower level Lagrangians

Λj(x, y, α, β, γ) = α cj(y)− β�v(y)− γ w(x, y) , j ∈ J ,

only the function w depends on x, so that we obtain

∇xΛj(x, y, α, β, γ) = −γ∇xw(x, y) .

The following result is thus immediate.

Corollary 1. Let x̄ ∈ M ∩ ∂M be a local maximizer of DC. Then there
exist pj ∈ IN, ȳj,k ∈ Bj

0(x̄), (αj,k, βj,k, γj,k) ∈ FJj(x̄, ȳj,k), and nontrivial
multipliers κ ≥ 0, λj,k ≥ 0, 1 ≤ k ≤ pj, j ∈ J0(x̄), such that

∑
j∈J0(x̄) pj ≤

n+ 1 and

κ∇f(x̄) +
∑

j∈J0(x̄)

pj∑
k=1

λj,k γj,k∇xw(x̄, ȳj,k) = 0 . (2)

A major disadvantage of condition (2) is that it does not guarantee the linear
dependence of the vectors∇f(x̄), ∇xw(x̄, ȳj,k), 1 ≤ k ≤ pj , j ∈ J0(x̄). In fact,
it is easy to construct situations in which κ = 0 and γj,k = 0, 1 ≤ k ≤ pj ,
j ∈ J0(x̄). Since the linear dependence of these vectors is crucial for genericity
investigations, next we will give a stronger optimality condition.

It is not surprising that this strengthening is possible if one compares
the situation to that of standard semi-infinite programming: also there only
one of the lower level defining functions depends on x, namely gj(x, y). The
corresponding first order optimality condition deduced from Theorem 1 in-
volves multiplier products λj,k αj,k as coefficients of the vectors ∇xgj(x̄, ȳj,k),
whereas from John’s original condition for standard semi-infinite programs
([13]) it is clear that a single coefficient μj,k would suffice.
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Theorem 2. Let x̄ ∈M ∩ ∂M be a local maximizer of DC. Then there exist
pj ∈ IN, ȳj,k ∈ Bj

00(x̄), and nontrivial multipliers κ ≥ 0, μj,k ≥ 0, 1 ≤ k ≤ pj,
j ∈ J0(x̄), such that

∑
j∈J0(x̄) pj ≤ n+ 1 and

κ∇f(x̄) +
∑

j∈J0(x̄)

pj∑
k=1

μj,k∇xw(x̄, ȳj,k) = 0 . (3)

The proof of Theorem 2 needs some preparation. Recall that the outer
tangent cone (contingent cone) Γ �(x̄,M) to a set M ⊂ IRn at x̄ ∈ IRn is
defined by d̄ ∈ Γ �(x̄,M) if and only if there exist sequences (tν)ν∈IN and
(dν)ν∈IN such that

tν ↘ 0, dν → d̄ and x̄+ tνdν ∈M for all ν ∈ IN .

Moreover, we define the inner tangent cone Γ (x̄,M) to M at x̄ ∈ IRn as:
d̄ ∈ Γ (x̄,M) if and only if there exist some t̄ > 0 and a neighborhood D of d̄
such that

x̄+ t d ∈M for all t ∈ (0, t̄), d ∈ D .

It is well-known ([17]) that Γ (x̄,M) ⊂ Γ �(x̄,M) and that Γ (x̄,M)c =
Γ �(x̄,Mc), where Ac denotes the set complement of a set A ⊂ IRn. Further-
more, the following primal first order necessary optimality condition holds.

Lemma 2 ([17]). Let x̄ be a local maximizer of f over M . Then there exists
no contingent direction of first order ascent in x̄:

{ d ∈ IRn| 〈∇f(x̄), d 〉 > 0 } ∩ Γ �(x̄,M) = ∅ .

Lemma 3. For x̄ ∈M each solution d0 ∈ IRn of the system

〈∇xw(x̄, y), d 〉 > 0 for all y ∈ Bj
00(x̄), j ∈ J0(x̄) (4)

is an element of Γ (x̄,M).

Proof. Let d0 be a solution of (4) and assume that d0 ∈ Γ (x̄,M)c. Then we
have d0 ∈ Γ �(x̄,Mc), so that there exist sequences (tν)ν∈IN and (dν)ν∈IN
such that tν ↘ 0, dν → d0 and xν := x̄+ tνdν ∈M c for all ν ∈ IN.

Exactly like in the proof of Lemma 1 we can now construct some j0 ∈ J0(x̄)
and a sequence yν ∈ B(xν) with yν → ȳ ∈ Bj0

00(x̄). For all ν ∈ IN the mean
value theorem guarantees the existence of some θν ∈ [0, 1] with

0 ≥ w(x̄+ tνdν , yν) = w(x̄, yν) + tν〈∇xw(x̄+ θνtνdν , yν), dν 〉 .

From (1) and tν > 0 we conclude 0 > 〈∇xw(x̄ + θνtνdν , yν), dν 〉 for all
ν ∈ IN which implies 0 ≥ 〈∇xw(x̄, ȳ), d0 〉. Hence we have constructed some
j0 ∈ J0(x̄) and ȳ ∈ Bj0

00(x̄) with 〈∇xw(x̄, ȳ), d0 〉 ≤ 0, in contradiction to the
assumption. �
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A combination of Lemma 2, the inclusion Γ (x̄,M) ⊂ Γ �(x̄,M), and
Lemma 3 yields that at a local maximizer x̄ of DC the system

〈∇f(x̄), d 〉 > 0, 〈∇xw(x̄, y), d 〉 > 0 for all y ∈ Bj
00(x̄), j ∈ J0(x̄)

is not soluble in d. By a theorem of the alternative this result is equivalent to
the assertion of Theorem 2. In the following conv(S) denotes the convex hull
of a set S ⊂ IRn, i.e. the set of all finite convex combinations of elements from
S.

Lemma 4 (Lemma of Gordan, [1, 10]). Let S ⊂ IRn be nonempty and
compact. Then the inequality system

s�d > 0 for all s ∈ S

is inconsistent for d ∈ IRn if and only if 0 ∈ conv(S).

Recall that in the case 0 ∈ conv(S) it is possible to express the origin as the
convex combination of at most n+ 1 elements from S, due to Carathéodory’s
theorem.

Since the set
⋃

j∈J0(x̄)B
j
00(x̄) is compact as the finite union of closed sub-

sets of the compact set B(x̄), Lemma 4 implies Theorem 2. Note that if
the latter union of sets was empty, we would simply obtain the condition
∇f(x̄) = 0 from unconstrained optimization. However, in view of Lemma 1
under the assumption x̄ ∈M ∩ ∂M of Theorem 2 this is not possible.

3 Genericity of the Reduction Ansatz

Multi-jet transversality. In the following we give a short introduction to
transversality theory, as far as we need it for our analysis. For details, see
[11, 15]. Two smooth manifolds V,W in IRN are said to intersect transversally
(notation: V �∩W ) if at each intersection point u ∈ V ∩W the tangent spaces
TuV, TuW together span the embedding space:

TuV + TuW = IRN . (5)

The number N − dimV is called the codimension of V in IRN , shortly
codimV , and we have

codimV ≤ dimW (6)

whenever V �∩W and V ∩W �= ∅. For our purpose, the manifold W is induced
by the 1-jet extension of a function F ∈ C∞(IRN , IRM ), i.e. by the mapping

j1F : IRN −→ J(N,M, 1), z �−→ (z, F (z), Fz(z))

where J(N,M, 1) = IRN+M+N ·M and the partial derivatives are listed ac-
cording to some order convention ([15]). Choosing W as the graph of j1F
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(notation: W = j1F (IRN )) it is easily shown that W is a smooth manifold of
dimension N in J(N,M, 1). Given another smooth manifold V in J(N,M, 1),
we define the set

�∩1V = {F ∈ C∞(IRN , IRM )| j1F (IRN ) �∩ V } .

Our analysis bases on the following theorem which is originally due to
R. Thom. For proofs see [11, 15].

Theorem 3 (Jet transversality). With respect to the C∞
s -topology, the set

�∩1V is generic in C∞(IRN , IRM ).

Here, C∞
s denotes the Whitney topology ([11, 15]). In particular, �∩1V is C∞

s -
dense in C∞(IRN , IRM ) and hence, Cd

s -dense in Cd(IRN , IRM ) for any d ∈
IN0 = IN ∪ {0} ([11]).

Since jet transversality gives information about certain properties of the
functions under investigation only at every single point we apply the con-
cept of multi-jet transversality instead ([15]). Thereby we are able to study
properties that have to be satisfied at all global maximizers of the lower level
problem at the same time. Let D be a positive integer and define

IRN
D =

{
(z1, . . . , zD) ∈

∏D
k=1IR

N | zi �= zj for 1 ≤ i < j ≤ D
}

as well as the multi-jet space

JD(N,M, 1) ={
(z1, u1, . . . , zD, uD) ∈

∏D
k=1J(N,M, 1)| (z1, . . . , zD) ∈ IRN

D

}
.

The multi-jet extension j1DF : IRN
D −→ JD(N,M, 1) is the mapping

j1DF : (z1, . . . , zD) �−→
(
j1F (z1), . . . , j1F (zD)

)
,

and for a smooth manifold V in JD(N,M, 1) we define the set

�∩1
DV = {F ∈ C∞(IRN , IRM )| j1DF (IRN

D) �∩ V } .

Theorem 4 (Multi-jet transversality). With respect to the C∞
s -topology,

the set �∩1
DV is generic in C∞(IRN , IRM ).

Rank conditions. For M,N ∈ IN and R ≤ min(M,N) let us define the
set of matrices of rank R,

IRM×N
R =

{
A ∈ IRM×N

∣∣∣ rank(A) = R
}
.

Moreover, for M,N ∈ IN, R ≤ min(M,N), I ⊂ {1, ...,M} and

max(R+ |I| −M, 0) ≤ S ≤ min(R, |I|)
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we let
IRM×N

R,I,S =
{
A ∈ IRM×N

R

∣∣∣ A(I) ∈ IR(M−|I|)×N
R−S

}
,

where the matrix A(I) results from A by deletion of the rows with indices in
I. Observe that the above restrictions on S follow from the trivial relations
0 ≤ R− S ≤M − |I| and R− |I| ≤ R− S ≤ R .

These definitions are intimately related to the Reduction Ansatz in the
lower level problem. In fact, for x̄ ∈M and some j ∈ J0(x̄) let ȳ be a maximizer
of Qj(x̄). From the first order necessary optimality condition of Fritz John we
know that then the gradient ∇cj(ȳ) and the gradients of the active inequality
constraints are linearly dependent. To identify these constraints conveniently
we put L = {1, ..., s} with s ∈ IN, vs+1(x, y) := w(x, y), Λ = L ∪ {s + 1},
Λ0(x̄, ȳ) = {� ∈ Λ| v�(x̄, ȳ) = 0}, and s0 = |Λ0(x̄, ȳ)|. Let DyvΛ0(x̄, ȳ) denote
the matrix with rows Dyv�(x̄, ȳ) := ∇�

y v�(x̄, ȳ), � ∈ Λ0(x̄, ȳ). We obtain(
Dycj(x̄, ȳ)
DyvΛ0(x̄, ȳ)

)
∈ IR(1+s0)×m

ρj

with ρj ≤ s0. With this notation, LICQ is equivalent to(
Dycj(x̄, ȳ)
DyvΛ0(x̄, ȳ)

)
∈ IR(1+s0)×m

s0 , {0},0 ,

if we identify the first row of the matrix with the index � = 0. Moreover, SCS
implies (

Dycj(x̄, ȳ)
DyvΛ0(x̄, ȳ)

)
∈ IR(1+s0)×m

s0 , {�},0 ,

for all � ∈ Λ0(x̄, ȳ) .
For a matrix A ∈ IRM×N with rows A1, ..., AM we define the function

vec : IRM×N −→ IRM ·N , A �−→ (A1, ..., AM ) .

Lemma 5 ([15, 20]).

(i) The set vec
(
IRM×N

R

)
is a smooth manifold of codimension

(M −R) · (N −R) in IRM ·N .
(ii)The set vec

(
IRM×N

R,I,S

)
is a smooth manifold of codimension

(M −R) · (N −R) + S · (M −R+ S − |I|) in IRM ·N .

A codimension formula. Let J = {1, ..., p} as well as p0 = |J0(x̄)|. By
Lemma 1, for x̄ ∈M ∩ ∂M the set

⋃
j∈J0(x̄)B

j
00(x̄) is nonempty. We consider

the case in which it contains at least r different elements, say ȳj,k ∈ Bj
00(x̄),

1 ≤ k ≤ pj , j ∈ J0(x̄), with
∑p0

j=1 pj = r.
As ȳj,k is a maximizer of Qj(x̄) we find a unique number ρj,k ≤ sj,k

0 :=
|Λ0(x̄, ȳj,k)| such that
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Dycj(x̄, ȳj,k)
DyvΛ0(x̄, ȳ

j,k)

)
∈ IR(1+sj,k

0 )×m
ρj,k

,

and we define the rank defect dj,k = sj,k
0 − ρj,k . Moreover, we have(

Dycj(x̄, ȳj,k)
DyvΛ0(x̄, ȳ

j,k)

)
∈ IR(1+sj,k

0 )×m
ρj,k , Dj,k , σj,k

for several choices of Dj,k and σj,k, where we can always choose Dj,k = ∅ and
σj,k = 0.

Furthermore, if x̄ is a local maximizer of DC, Theorem 2 guarantees that
for some choice ȳj,k ∈ Bj

00(x̄), 1 ≤ k ≤ pj , j ∈ J0(x̄) with
∑p0

j=1 pj = r ≤ n+1
we also have (

Df(x̄)
Dxw(x̄, ȳj,k)1≤k≤pj , 1≤j≤p0

)
∈ IR(1+r)×n

ρ0 , D0 , σ0

with ρ0 ≤ r. We denote the corresponding rank defect by d0 = r − ρ0 . Our
subsequent analysis bases on the following relation:

0 ≥ d0 + d0(n− r + d0) + σ0(1 + d0 + σ0 − |D0|) (7)

+
p0∑

j=1

pj∑
k=1

[
dj,k + dj,k(m− sj,k

0 + dj,k) + σj,k(1 + dj,k + σj,k − |Dj,k|)
]
.

Put lQd = Cd(IRn, IR) × lCd(c) × lCd(v) × Cd(IRn × IRm, IR), where lCd(c)
and lCd(v) are defined to be the set of vector functions c ∈ Cd(IRm, IRp) and
v ∈ Cd(IRm, IRs) such that C and Y are nonempty and compact, respectively.
Define

Fd = { (f, c, v, w) ∈ lQd| any choice of r elements
from

⋃
j∈J0(x̄)B

j
00(x̄) corresponding to a point

x̄ ∈M ∩ ∂M satisfies relation (7) } .

Theorem 5. F∞ is C∞
s -dense in lQ∞.

Proof. For r ∈ IN and K := {1, ..., r} consider the reduced multi-jet

j1r (f, c, v, w)(x1, y1, ..., xr, yr) = (xk, yk, Dfk, ck1 , ..., c
k
p, Dc

k
1 , ..., Dc

k
p,

vk
1 , ..., v

k
s , Dv

k
1 , ..., Dv

k
s , w

k, Dxw
k, Dyw

k, k ∈ K )

with (x1, y1, ..., xr, yr) ∈ IRn+m
r and Dfk = Df(xk), etc. In the following we

call Kj , j ∈ J̃0, a partition of K if
⋃

j∈J̃0
Kj = K and if the sets Kj , j ∈ J̃0,

are pairwise distinct. For
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r ∈ IN

J̃0 ⊂ J

Kj , j ∈ J̃0, a partition of K = {1, ..., r}

0 ≤ ρ0 ≤ min(1 + r, n)

D0 ⊂ {0, ..., r}

max(ρ0 + |D0| − 1− r, 0) ≤ σ0 ≤ min(ρ0, |D0|)

Λ̃j,k
0 ⊂ Λ

0 ≤ ρj,k ≤ min(1 + sj,k
0 ,m)

Dj,k ⊂ {0, ..., sj,k
0 }

max(ρj,k + |Dj,k| − 1− sj,k
0 , 0) ≤ σj,k ≤ min(ρj,k, |Dj,k|)

k ∈ Kj , j ∈ J̃0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

we define the C∞-manifold Nr,(Kj ,j∈J̃0),ρ0,D0,σ0, (Λ̃j,k
0 ,ρj,k,Dj,k,σj,k, k∈Kj ,j∈J̃0)

to be the set of points

(x̃k, ỹk, F̃ k, c̃k1 , ..., c̃
k
p, C̃

k
1 , ..., C̃

k
p , ṽ

k
1 , ..., ṽ

k
s , Ṽ

k
1 , ..., Ṽ

k
s , w̃

k, X̃k, Ỹ k, k ∈ K )

with the following properties:

• dimensions:

(x̃1, ỹ1, ..., x̃r, ỹr) ∈ IRn+m
r ,

c̃kj , j ∈ J, ṽk
� , � ∈ L, w̃k ∈ IR, k ∈ K

F̃ k, X̃k ∈ IRn, k ∈ K
C̃k

j , j ∈ J, Ṽ k
� , � ∈ L, Ỹ k ∈ IRm, k ∈ K

• conditions on the independent variables:

x̃1 = ... = x̃r

• conditions on the functional values:

c̃kj = 0, k ∈ Kj , j ∈ J̃0 , ṽk
� = 0, � ∈ Λ̃j,k

0 , k ∈ Kj , j ∈ J̃0

• conditions on the gradients:⎛⎝ F̃ 1

(X̃k)k∈Kj , j∈J̃0

⎞⎠ ∈ IR(1+r)×n
ρ0 , D0 , σ0

,

⎛⎝ C̃k
j

Ṽ k
Λ̃j,k

0

⎞⎠ ∈ IR(1+sj,k
0 )×m

ρj,k , Dj,k , σj,k
, k ∈ Kj , j ∈ J̃0 .
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With the help of Lemma 5(ii) we can calculate the codimension of this mani-
fold:

codimNr,(Kj ,j∈J̃0),ρ0,D0,σ0, (Λ̃j,k
0 ,ρj,k,Dj,k,σj,k, k∈Kj ,j∈J̃0)

=

= (r − 1)n+ r +
∑
j∈J̃0

∑
k∈Kj

sj,k
0

+(1 + r − ρ0)(n− ρ0) + σ0(1 + r − ρ0 + σ0 − |D0|)

+
∑
j∈J̃0

∑
k∈Kj

[
(1 + sj,k

0 − ρj,k)(m− ρj,k)

+σj,k(1 + sj,k
0 − ρj,k + σj,k − |Dj,k|)

]
. (9)

Define the set

F� =
∞⋂

r=1

⋂
(Kj ··· J̃0)

�∩1
r Nr,(Kj ,j∈J̃0),ρ0,D0,σ0, (Λ̃j,k

0 ,ρj,k,Dj,k,σj,k, k∈Kj ,j∈J̃0)

where the inner intersection ranges over all possible choices of K1, etc., ac-
cording to (8). F� is C∞

s -dense in lQ∞ by Theorem 4. It remains to be shown
that F� ⊂ F∞. Choose a function vector (f, c, v, w) ∈ F� as well as a lo-
cal maximizer x̄ of DC. By Lemma 1 the set

⋃
j∈J0(x̄)B

j
00(x̄) is non-empty.

From each nonempty Bj
00(x̄) choose some (pairwise distinct) ȳj,k, k ∈ Kj ,

and put Kj = ∅ if Bj
00(x̄) = ∅. Denote the total number of chosen ele-

ments by r and put K = {1, ..., r}. Then Kj , j ∈ J0(x̄), forms a partition of
K, (x̄, ȳ1, ..., x̄, ȳr) ∈ IRn+m

r , and j1r (f, c, v, w)(x̄, ȳ1, ..., x̄, ȳr) is contained in
some set Nr,( ··· J̃0)

. As the intersection of j1r (f, c, v, w)(IRn+m
r ) with Nr,( ··· J̃0)

is transverse, (6) yields r (n+m) ≥ codimNr,( ··· J̃0)
. Inserting (9) now yields

(7) after a short calculation. �

Note that the statement of Theorem 5 is equivalent to saying that F∞ is
Cd

s -dense in lQ∞ for each d ∈ IN0. Since the set C∞(IRN , IR) is also Cd
s -dense in

Cd(IRN , IR) ([11]), it is no restriction to consider the space of smooth defining
functions lQ∞ instead of the space lQd, d ≥ 2.

Corollary 2. For (f, c, v, w) ∈ F� let x̄ ∈ M ∩ ∂M be a local maximizer of
DC. Then the set

⋃
j∈J0(x̄)B

j
00(x̄) contains at most n elements ȳ1, ..., ȳr, and

for each 1 ≤ k ≤ r LICQ and SCS hold at ȳk in the corresponding lower level
problem.

Proof. One can easily conclude from the relations in (8) that each factor in
the right hand side of (7) is nonnegative. Consequently, all summands have
to vanish. In particular we find d0 = dj,k = 0 for all 1 ≤ k ≤ pj , j ∈ J0(x̄).
This implies 0 ≤ n − ρ0 = n − r + d0 = n − r which is the first part of the
assertion.
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A second consequence is σj,k(1 + σj,k − |Dj,k|) = 0 for all 1 ≤ k ≤ pj ,
j ∈ J0(x̄). Hence, |Dj,k| = 1 implies σj,k = 0. This means that LICQ and SCS
hold at each ȳj,k in Qj(x̄). �

With a tedious evaluation of the tangent space condition (5) it is also
possible to show that for (f, c, v, w) ∈ F� and a local maximizer x̄ ∈M ∩ ∂M
of DC at each ȳ ∈

⋃
j∈J0(x̄)B

j
00(x̄) the second order sufficiency condition

holds. Altogether this means that for (f, c, v, w) ∈ F� the Reduction Ansatz
is valid at each local maximizer of DC.

4 An associated standard semi-infinite problem

The first order necessary optimality condition in Theorem 2 has the typical
structure of an optimality condition for some standard semi-infinite program.
In fact, we can construct a certain standard semi-infinite problem which is
strongly related to DC.

For the following arguments we put C≤
j = {y ∈ IRm| cj(y) ≤ 0}, C<

j =
{y ∈ IRm| cj(y) < 0}, etc. for j ∈ J as well asW≤(x) = {y ∈ IRm| w(x, y) ≤ 0}
etc. The main idea is to rewrite the inclusion constraint B(x) ⊂ C of DC in
an equivalent form like Cc ⊂ B(x)c.

Slightly modified this idea proceeds as follows. By definition we have
B(x) ⊂ C if and only Y ∩ W≤(x) ⊂

⋂
j∈J C

≤
j . The latter is equivalent to

Y ∩W≤(x) ∩
⋃

j∈J C
>
j = ∅ and, thus, to

⋃
j∈J

(
Y ∩ C>

j

)
⊂W>(x).

This means that an equivalent formulation of the constraint B(x) ⊂ C is
given by

w(x, y) > 0 for all y ∈ Y ∩ C>
j , j ∈ J .

Due to the strict inequalities these are not semi-infinite constraints in the
usual sense. We can, however, formulate an associated standard semi-infinite
problem for DC:

SIPDC : max
x

f(x) subject to w(x, y) ≥ 0 ∀ y ∈ Y ∩ C≥
j , j ∈ J .

Note that the index sets Y ∩ C≥
j , j ∈ J , of the finitely many semi-infinite

constraints are compact, and certainly nonempty if C ⊂ Y . Recall that we
defined the optimal value functions

ϕj(x) = max
y∈Y ∩W≤(x)

cj(y) , j ∈ J ,

and the active index set J0(x) = {j ∈ J | ϕj(x) = 0} for the problem GSIPDC .
For the problem SIPDC we put analogously

ψj(x) = min
y∈Y ∩C

≥
j

w(x, y) , j ∈ J ,
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JSIP
0 (x) = {j ∈ J | ψj(x) = 0}, and Qj

SIP (x), j ∈ J , for the corresponding
lower level problems. For j ∈ JSIP

0 (x) the optimal points of Qj
SIP (x) form

the set {y ∈ Y ∩ C≥
j | w(x, y) = 0} = Y ∩ C≥

j ∩W=(x) . Fritz John’s first
order optimality condition for standard semi-infinite problems thus yields the
following result.

Proposition 4.1 Let x̄ ∈ ∂MSIP be a local maximizer of SIPDC . Then there
exist pj ∈ IN, ȳj,k ∈ Y ∩ C≥

j ∩ W=(x), and nontrivial multipliers κ ≥ 0,
μj,k ≥ 0, 1 ≤ k ≤ pj, j ∈ JSIP

0 (x̄), such that
∑

j∈JSIP
0 (x̄) pj ≤ n+ 1 and

κ∇f(x̄) +
∑

j∈JSIP
0 (x̄)

pj∑
k=1

μj,k∇xw(x̄, ȳj,k) = 0 .

The resemblance of this result with Theorem 2 is obvious. We emphasize that
we relaxed strict to nonstrict inequalities while deriving the problem SIPDC

from DC, so that an identical result for both problems cannot be expected.
More precisely, the feasible sets

M = { x ∈ IRn| ϕj(x) ≤ 0 , j ∈ J } =
⋂
j∈J

Φ≤
j

and
MSIP = { x ∈ IRn| ψj(x) ≥ 0 , j ∈ J } =

⋂
j∈J

Ψ≥
j

do not necessarily coincide. Their relation is clarified by the next results.

Lemma 6.
(i) For all j ∈ J we have Φ<

j = Ψ>
j .

(ii)For all j ∈ J and x ∈ Φ=
j we have x ∈ Ψ=

j if and only if w(x, ·) is active
in all global solutions of Qj(x).

(iii) For all j ∈ J and x ∈ Ψ=
j we have x ∈ Φ=

j if and only if cj is active in
all global solutions of Qj

SIP (x).

Proof. For all j ∈ J we have x ∈ Φ<
j if and only if Y ∩W≤(x) ⊂ C<

j , and we
have x ∈ Ψ>

j if and only if Y ∩ C≥
j ⊂ W>(x). Since both characterizations

are equivalent to Y ∩ C≥
j ∩W≤(x) = ∅, the assertion of part (i) follows.

From part (i) it is clear that for each j ∈ J the set Φ=
j is necessarily

contained in Ψ≤
j . We have x ∈ Ψ<

j if and only if Y ∩ C≥
j ∩ W<(x) �= ∅.

On the other hand, for x ∈ Φ=
j the set Y ∩ C≥

j ∩W≤(x) is the set of global
solutions of Qj(x). This shows the assertion of part (ii). The proof of part (iii)
is analogous. �

Theorem 6.
(i) Let x ∈M and for each j ∈ J0(x) let w(x, ·) be active in all global solutions

of Qj(x). Then we have x ∈MSIP .
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(ii)Let x ∈ MSIP and for each j ∈ JSIP
0 (x) let cj be active in all global

solutions of Qj
SIP (x). Then we have x ∈M .

Proof. Lemma 6. �

Note that under the assumption of Theorem 6(ii) the global solution set
Y ∩C≥

j ∩W=(x) can be replaced by Y ∩C=
j ∩W=(x) = Bj

00(x), so that the
difference between Theorem 2 and Proposition 4.1 disappears.

5 Final remarks

A main technical assumption for the genericity proof in Section 3 is that only
one of the smooth constraints in the description of B(x) actually depends
on x. There are, of course, design centering problems which cannot be for-
mulated this way. These problems appear to be as difficult as the general
semi-infinite optimization problem without any additional structure, so that
genericity results for this case can be expected as soon as the generic validity
of the Reduction Ansatz at all solutions of GSIP has been shown.

Under the Reduction Ansatz, locally around a local solution x̄ the problem
GSIPDC can be rewritten as a smooth problem with finitely many constraints.
We point out that our genericity proof from Section 3 also shows that for
(f, c, v, w) ∈ F� a local maximizer x̄ ∈ M ∩ ∂M of DC is nondegenerate for
this locally reduced problem.

The results of the present article for single-body design centering problems
can be transferred to the multi-body case with some additional technical effort.
This and efficient numerical methods for multi-body design centering will be
subject of future research.
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Summary. We show how to choose regularization parameters such that the solution
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1 Introduction

The contraction and nonexpansive fixed point–methods for solving variational
inequalities have been developed by several authors (see e.g. [1, 2, 6, 8, 15, 16]
and the references therein). In our recent paper [1] we have used the auxiliary
problem-method and the Banach contraction mapping fixed point principle to
solve mixed variational inequalities involving single valued strongly monotone
and cocoercive operators. Then in [2] we extended our method and combined
it with the proximal point algorithm to solve mixed monotone variational
inequalities.

In this paper we further extend the idea in [1, 2 ] to mixed multivalued vari-
ational inequalities involving strongly monotone and cocoercive cost operators
with respect to the Hausdorff distance. Namely, we show that a necessary and
sufficient condition for a point to be the solution of a multivalued strongly
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monotone mixed variational inequality is that it is the fixed point of a certain
multivalued mapping having a contractive selection. For mixed variational in-
equalities involving multivalued cocoercive cost operators we show that their
solutions can be computed by finding fixed points of corresponding multival-
ued mappings having a nonexpansive selection. These results allow that the
Banach contraction mapping principle and its modifications can be applied
to solve strongly monotone and cocoercive multivalued mixed variational in-
equalities. By the Banach contraction fixed point principle it is straightforward
to obtain the convergence rate of the proposed algorithms.

2 Fixed Point Formulations

Let C be a nonempty, closed, convex subset of IRn, let F : IRn → 2IRn

be a
multivalued mapping. Throughout this paper we suppose that domF contains
C and that F (x) is closed, convex for every x ∈ C. We suppose further that
we are given a convex, subdifferentiable function ϕ : C → IR. We consider
the following multivalued mixed variational inequality problem that we shall
denote by (VIP) :

Find x∗ ∈ C and w∗ ∈ F (x∗) such that

〈w∗, x− x∗〉+ ϕ(x)− ϕ(x∗) ≥ 0 ∀x ∈ C. (2.1)

This problem has been considered by some authors (see e.g., [4, 9, 12, 13, 14]
and the references quoted therein). As usual in what follows we shall refer to
F as cost operator and to C as constraint set.

As an example we consider an oligopolistic Cournot market model where
there are n-firms producing a common homogeneous commodity. We assume
that the price pi of firm i depends on the total quantity of the commodity.
Let hi denote the cost of firm i when its production level is xi. Suppose that
the profit of firm i is given by

fi(x1, ..., xn) = xipi(
n∑

i=1

xi)− hi(xi) (i = 1, ..., n).

Let Ui denote the strategy set of firm i and U := U1 × ... × Un be the
strategy set of the model. In the classical Cournot model the price and the
cost functions for each firm are assumed to be affine of the forms

pi(σ) = αi − βiσ, αi ≥ 0, βi > 0, σ =
n∑

i=1

xi,

hi(xi) = μixi + ξi, μi > 0, ξi ≥ 0 (i = 1, ..., n).

The problem is to find a point x∗ = (x∗1, ..., x
∗
n) ∈ U such that

fi(x∗1, ..., x
∗
i−1, yi, x

∗
i+1, ..., x

∗
n) ≤ fi(x∗) ∀yi ∈ Ui,∀i.
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A vector x∗ ∈ U satisfying this inequality is called a Nash-equilibrium point
of the model.

It is not hard to show (see also [10], and [9] for the case βi ≡ β for all
i) that the problem of finding a Nash-equilibrium point can be formulated in
the form (2.1) where

C = U := U1×, ...,×Un, ϕ(x) :=
n∑

i=1

βix
2
i +

n∑
i=1

hi(xi), F (x) := Bx− α

with

B :=

⎛⎜⎜⎝
0 β1 β1 ... β1

β2 0 β2 ... β2

... ... ... ... ...
βn βn βn ... 0

⎞⎟⎟⎠
and α := (α1, ..., αn)T . Some practical problems that can be formulated in a
problem of form (2.1) can be found, for example, in [6, 9, 11].

For each fixed x ∈ C and w ∈ F (x), we denote by h(x,w) the unique
solution of the strongly convex program

min{1
2
〈y − x,G(y − x)〉+ 〈w, y − x〉+ ϕ(y) |y ∈ C}, (2.2)

where G is a symmetric, positive definite matrix. It is well known (see e.g.,
[5, 9, 11]) that h(x,w) is the solution of (2.2) if and only if h(x,w) is the
solution of the variational inequality

〈w +G(h(x,w)− x) + z, y − h(x,w)〉 ≥ 0 ∀y ∈ C, (2.3)

for some z ∈ ∂ϕ(h(x,w)).
Now for each x ∈ C, we define the multivalued mapping

H(x) := {h(x,w)|w ∈ F (x)}.

Clearly, H is a mapping from IRn to C and, since C ⊆ domH, we have
C ⊆ dom H ⊆ domF .

The next lemma shows that a point x∗ is a solution to (VIP) if and only
if it is a fixed point of H.

Lemma 2.1 x∗ is a solution to (VIP) if and only if x∗ ∈ H(x∗).

Proof. Let x∗ solve (VIP). It means that there exists w∗ ∈ F (x∗) such that
(x∗, w∗) satisfies inequality (2.1). Let h(x∗, w∗) be the unique solution of Prob-
lem (2.2) corresponding to x∗, w∗ and some positive definite matrix G. We
replace x by h(x∗, w∗) in (2.1) to obtain

〈w∗, h(x∗, w∗)− x∗〉+ ϕ(h(x∗, w∗))− ϕ(x∗) ≥ 0. (2.4)
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From (2.3) it follows that there exists z∗ in ∂ϕ(h(x∗, w∗)) such that

〈w∗ +G(h(x∗, w∗)− x∗) + z∗, y − h(x∗, w∗)〉 ≥ 0 ∀y ∈ C. (2.5)

Replacing y by x∗ ∈ C in (2.5) we have

〈w∗ +G(h(x∗, w∗)− x∗) + z∗, x∗ − h(x∗, w∗)〉 ≥ 0. (2.6)

From inequalities (2.4) and (2.6) we obtain

〈G(h(x∗, w∗)− x∗), x∗ − h(x∗, w∗)〉+ 〈z∗, x∗ − h(x∗, w∗)〉

+ϕ(h(x∗, w∗))− ϕ(x∗) ≥ 0, (2.7)

for some z ∈ ∂ϕ(h(x,w)). Since ϕ is convex on C, by the definition of sub-
differential of a convex function, we have

〈z∗, x∗ − h(x∗, w∗)〉 ≤ ϕ(x∗)− ϕ(h(x∗, w∗)) ∀z∗ ∈ ∂ϕ(h(x∗, w∗)).

Hence

〈z∗, x∗ − h(x∗, w∗)〉 − ϕ(x∗) + ϕ(h(x∗, w∗)) ≤ 0 ∀z∗ ∈ ∂ϕ(h(x∗, w∗)). (2.8)

From inequalities (2.7) and (2.8), it follows that

〈G(h(x∗, w∗)− x∗), x∗ − h(x∗, w∗)〉 ≥ 0.

Since G is symmetric, positive definite, the latter inequality implies that
h(x∗, w∗) = x∗.
Now suppose x∗ ∈ H(x∗). Then there is w∗ in F (x∗) such that x∗ = h(x∗, w∗).
But for every x ∈ C,w ∈ F (x), we always have

〈w +G(h(x,w)− x) + z, y − h(x,w)〉 ≥ 0 ∀y ∈ C, (2.9)

for some z ∈ ∂ϕ(h(x,w)). Replacing x,w, z by x∗ = h(x∗, w∗), w∗, z∗, respec-
tively, in inequality (2.9) we obtain

〈w∗ + z∗, y − x∗〉 ≥ 0 ∀y ∈ C, (2.10)

for some z∗ ∈ ∂ϕ(x∗). Using the definition of subdifferential of a convex
function, we can write

ϕ(y)− ϕ(x∗) ≥ 〈z∗, y − x∗〉 ∀y ∈ C. (2.11)

From inequalities (2.10) and (2.11) we have

〈w∗, y − x∗〉+ ϕ(y)− ϕ(x∗) ≥ 0 ∀y ∈ C,

which means that x∗ is a solution of Problem (VIP). �
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Now we recall some well known definitions (see [3, 5]) about multivalued
mappings that we need in the sequel.
• Let A,B be two nonempty subsets in IRn. Let ρ(A,B) denote the Hausdorff
distance of A and B that is defined as

ρ(A,B) := max{d(A,B), d(B,A)},

where

d(A,B) := sup
a∈A

inf
b∈B

||a− b||, d(B,A) := sup
b∈B

inf
a∈A

||a− b||.

Let ∅ �= M ⊆ IRn and K : IRn → IRn be a multivalued mapping such that
M ⊆ domK.
• K is said to be closed at x if xk → x, yk ∈ K(xk), yk → y as k → +∞, then
y ∈ F (x). We say that K is closed on M if it is closed at every point of M .
• K is said to be upper semicontinuous at x if for every open set G containing
K(x) there exists an open neighborhood U of x such that K(U) ⊂ G. We say
that K is upper semicontinuous on M if it is upper semicontinuous at every
point of M .
• K is said to be Lipschitz with a constant L (briefly L-Lipschitz) on M if

ρ(K(x),K(y)) ≤ L||x− y|| ∀x, y ∈M.

K is called a contractive mapping if L < 1 and K is said to be nonexpansive
if L = 1.
• We say that K has a L-Lipschitz selection on M if for every x, y ∈M there
exist w(x) ∈ K(x) and w(y) ∈ K(y) such that

||w(x)− w(y)|| ≤ L||x− y||.

If 0 < L < 1 (resp. L = 1) we say that K has a contractive (resp. non-
expansive) selection on M . It is easy to check that a multivalued Lipschitz
mapping with compact, convex values has a Lipschitz selection. This is why
in the sequel, for short, we shall call a mapping having a Lipschitz selection
a quasi-Lipschitz mapping. Likewise, a mapping having a contractive (resp.
nonexpansive) selection is called quasicontractive (resp. quasinonexpansive).
• K is said to be monotone on M if

〈w − w′, x− x′〉 ≥ 0 ∀x, x′ ∈M, ∀w ∈ K(x), ∀w′ ∈ K(x′).

• K is said to be strongly monotone with modulus β > 0 (briefly β-strongly
monotone) on M if

〈w − w′, x− x′〉 ≥ β||x− x′||2 ∀x, x′ ∈M, ∀w ∈ K(x), ∀w′ ∈ K(x′).

• K is said to be cocoercive with modulus δ > 0 (briefly δ-cocoercive) on M
if
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〈w − w′, x− x′〉 ≥ δρ2(K(x),K(x′)) ∀x, x′ ∈M, ∀w ∈ K(x), ∀w′ ∈ K(x′),

where ρ stands for the Hausdorff distance.
Note that in an important case when G = αI with α > 0 and I being the

identity matrix, problem (2.2) becomes

min{α
2
||y − x||2 + 〈w, y − x〉+ ϕ(y) |y ∈ C}.

In the sequel we shall restrict our attention to this case. The following theorem
shows that with a suitable value of regularization parameter α, the mapping
H defined above is quasicontractive on C .

In what follows we need the following lemma:

Lemma 2.2 Suppose that C ⊆ IRn is nonempty, closed, convex and F :
IRn → 2IRn

is L-Lipschitz on C such that F (x) is closed, convex for every
x ∈ C. Then for every x, x′ ∈ C and w ∈ F (x), there exists w′ ∈ F (x′), in
particular w′ = PF (x′)(w), such that ||w − w′|| ≤ L||x− x′||.

Here, PF (x′)(w) denotes the projection of the point w on the set F (x′).

Proof. Since w ∈ F (x), by the definition of the projection and the Hausdorff
distance, we have

||w − w′|| = inf
v′∈F (x′)

||w − v′|| ≤ sup
v∈F (x)

inf
v′∈F (x′)

||v − v′||

≤ ρ
(
F (x), F (x′)

)
≤ L||x− x′||.

�

Theorem 2.1 Suppose that F is β- strongly monotone and L- Lipschitz on
C, and that F (x) is closed, convex for every x ∈ C. Then the mapping H is

quasicontractive on C with constant δ :=
√

1− 2β
α + L2

α2 whenever α > L2

2β .
Namely,

||h(x,w(x))− h(x′, w(x′)) ≤ δ||x− x′|| ∀x, x′ ∈ C ∀w(x) ∈ F (x)

where w(x′) is the Euclidean projection of w(x) onto F (x′).

Proof. Problem (2.2) with G = αI can be equivalently rewritten as

min
y
{1
2
〈α||y − x||2〉+ 〈w, y − x〉+ ϕ(y) + δC(y)},

where δC is the indicator function of C. Let h(x,w) be the unique solution of
this unconstrained problem. Then we have

0 ∈ α(h(x,w)− x) + w +NC(h(x,w)) + ∂ϕ(h(x,w)),
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where NC(h(x,w)) is the normal cone to C at the point h(x,w). Thus there
are z1 ∈ NC(h(x,w)) and z2 ∈ ∂ϕ(h(x,w)) such that

α(h(x,w)− x) + w + z1 + z2 = 0.

Therefore
h(x,w) = x− 1

α
w − 1

α
z1 −

1
α
z2. (2.12)

Similarly for x′ ∈ C,w′ ∈ F (x′), we have

h(x′, w′) = x′ − 1
α
w′ − 1

α
z′1 −

1
α
z′2, (2.13)

where z′1 ∈ NC(h(x′, w′)) and z′2 ∈ ∂ϕ(h(x′, w′)).
Since NC is monotone, we have

〈z1 − z′1, h(x,w)− h(x′, w′)〉 ≥ 0. (2.14)

Substituting z1 from (2.12) and z′1 from (2.13) into (2.14) we obtain

〈x−x′− 1
α

(w−w′)− 1
α

(z2−z′2)−(h(x,w)−h(x′, w′)), h(x,w)−h(x′, w′)〉 ≥ 0,

which implies

||h(x,w)−h(x′, w′)||2 ≤ 〈x−x′− 1
α

(w−w′)− 1
α

(z2− z′2), h(x,w)−h(x′, w′)〉

= 〈x− x′ − 1
α

(w − w′), h(x,w)− h(x′, w′)〉 − 1
α
〈z2 − z′2, h(x,w)− h(x′, w′)〉.

(2.15)
Since ∂ϕ is monotone on C, we have

〈h(x,w)−h(x′, w′), z2−z′2〉 ≥ 0 ∀z2 ∈ ∂ϕ(h(x,w)), z′2 ∈ ∂ϕ(h(x′, w′)). (2.16)

From (2.15), (2.16) it follows that

||h(x,w)− h(x′, w′)||2 ≤ 〈x− x′ − 1
α

(w − w′), h(x,w)− h(x′, w′)〉

≤ ||x− x′ − 1
α

(w − w′)|| ||h(x,w)− h(x′, w′)||.

Thus
||h(x,w)− h(x′, w′)||2 ≤ ||x− x′ − 1

α
(w − w′)||2 (2.17)

= ||x− x′||2 − 2
α
〈x− x′, w − w′〉+

1
α2
||w − w′||2.

Since F is L-Lipschitz on C and F (x′) is closed, for every w(x) ∈ F (x), by
Lemma 2.2, there exists w(x′) ∈ F (x′) such that
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||w(x)− w(x′)|| ≤ L||x− x′||

which together with strong monotonicity of F implies

||x− x′ − 1
α

(h(x,w(x))− h(x′, w(x′))||2 ≤ (1− 2β
α

+
L2

α2
)||x− x′||2. (2.18)

Finally, from (2.17) and (2.18) we have

||h(x,w(x))− h(x′, w(x′))|| ≤
√

1− 2β
α

+
L2

α2
||x− x′||. (2.19)

Let δ :=
√

1− 2β
α + L2

α2 , then

||h(x,w(x))− h(x′, w(x′))|| ≤ δ||x− x′|| ∀x, x′ ∈ C.

Note that if α > L2

2β then δ ∈ (0, 1). Thus the multivalued mapping H has a
contractive selection on C with constant δ. �

Remark 2.1 From the definition of H and Theorem 2.1 it follows that when
F is single-valued, the mapping H is contractive on C.

Note that if ϕ is η-strongly convex and subdifferentiable on C, then its
subdifferential is η- strongly monotone on C (see e.g., [5]). This means that

〈z − z′, x− x′〉 ≥ η||x− x′||2 ∀x, x′ ∈ C, z ∈ ∂ϕ(x), x′ ∈ ∂ϕ(x′).

In the following theorem the strong monotonicity of F is replaced by the
strong convexity of ϕ.

Theorem 2.2 Suppose that F is monotone and L- Lipschitz on C, that F (x)
is closed, convex for every x ∈ C and that ϕ is η-strongly convex and subdif-
ferentiable on C. Then the mapping H is quasicontractive on C with constant

δ :=
√
L2 + α2

α+ η
,

whenever α > L2−η2

2η .

Proof. By the same way as in the proof of Theorem 2.1 we obtain

||h(x,w)−h(x′, w′)||2 ≤ 〈x−x′− 1
α

(w−w′)− 1
α

(z2− z′2), h(x,w)−h(x′, w′)〉

= 〈x− x′ − 1
α

(w − w′), h(x,w)− h(x′, w′)〉 − 1
α
〈z2 − z′2, h(x,w)− h(x′, w′)〉

from which it follows that
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||h(x,w)− h(x′, w′)||2 ≤ 〈x− x′ − 1
α

(w − w′), h(x,w)− h(x′, w′)〉

− 1
α
〈z2 − z′2, h(x,w)− h(x′, w′)〉, (2.20)

for all x, x′ ∈ C,w ∈ F (x), w′ ∈ F (x′), for some z2 ∈ ∂ϕ(h(x,w)), z′2 ∈
∂ϕ(h(x′, w′)).
Since ∂ϕ is strongly monotone with modulus η on C, we have

〈z2 − z′2, h(x,w)− h(x′, w′)〉 ≥ η||h(x,w)− h(x′, w′)||2

∀z2 ∈ ∂ϕ(h(x,w)), z′2 ∈ ∂ϕ(h(x′, w′))

⇔ − 1
α
〈z2 − z′2, h(x,w)− h(x′, w′)〉 ≤ − η

α
||h(x,w)− h(x′, w′)||2. (2.21)

Combining (2.20) and (2.21) yields

(1 +
η

α
)2||h(x,w)− h(x′, w′)||2 ≤ ||x− x′ − 1

α
(w − w′)||2

= ||x− x′||2 − 2
α
〈x− x′, w − w′〉+

1
α2
||w − w′||2. (2.22)

Since F is Lipschitz with constant L on C and F (x) is closed, convex, it follows
that for every x, x′ ∈ C, w(x) ∈ F (x), there exists w(x′) ∈ F (x′) satisfying

||w(x)− w(x′)|| ≤ L||x− x′||.

Since F is monotone, we have

〈w(x)− w(x′), x− x′〉 ≥ 0,

which together with (2.22) implies

(1 +
η

α
)2||h(x,w(x))− h(x′, w(x′))||2 ≤ (1 +

L2

α2
)||x− x′||2

⇔ ||h(x,w(x))− h(x′, w(x′))|| ≤ δ||x− x′|| ∀x, x′ ∈ C,

where δ :=
√

L2+α2

α+η . It is easy to verify that δ ∈ (0, 1) when α > L2−η2

2η . �

In the next theorem we weaken strong monotonicity of F by cocoercivity.

Theorem 2.3 Suppose that F is γ-cocoercive on C, and that F (x) is closed,
convex for every x ∈ C. Then the mapping H is quasinonexpansive on C.



240 Pham Ngoc Anh and Le Dung Muu

Proof. By the same way as in the proof of Theorem 2.1, for every x, x′ ∈ C,
we have

||h(x,w)− h(x′, w′)||2 ≤ ||x− x′ − 1
α

(w − w′)||2 ∀w ∈ F (x), ∀w′ ∈ F (x′).

(2.23)
From the cocoercivity of F on C with modulus γ, it follows that

γρ2(F (x), F (x′)) ≤ 〈x− x′, w − w′〉 ∀x, x′ ∈ C,w ∈ F (x), w′ ∈ F (x′).

Hence, for every x, x′ ∈ C and w ∈ F (x), w′ ∈ F (x′) we have

||x− x′ − 1
α

(w − w′)||2 = ||x− x′||2 − 2
α
〈x− x′, w − w′〉+

1
α2
||w − w′||2

≤ ||x− x′||2 − 2γ
α
ρ2(F (x), F (x′)) +

1
α2
||w − w′||2.

Let w(x) ∈ F (x), w(x′) ∈ F (x′), such that ρ(F (x), F (x′)) = ||w(x)− w(x′)||.
Substituting w(x) and w(x′) into the last inequality we obtain

||x− x′ − 1
α

(w(x)− w(x′))||2 ≤ ||x− x′||2 − (
2γ
α
− 1
α2

)||w(x)− w(x′)||2.

Since α ≥ 1
2γ , we have

||x− x′ − 1
α

(w(x)− w(x′)||2 ≤ ||x− x′||2 ∀x, x′ ∈ C. (2.24)

From (2.23) and (2.24) it follows that

||h(x,w(x))− h(x′, w(x′))|| ≤ ||x− x′|| ∀x, x′ ∈ C.

�

Remark 2.2 From the proof we can see that the theorem remains true if we
weaken the cocoercivity of F by the following one

∀x, x′ ∈ C,∀w ∈ F (x),∃π′(w) ∈ F (x′) : γρ2
(
F (x), F (x′)

)
≤ 〈w−π′(w), x−x′〉

Below is given a simple example for a multivalued mapping which is both
monotone and Lipschitz.

Example 2.1 Let C = {(x, 0)|x ≥ 0} ⊆ IR2, and F : C → 2IR2
be given as

F (x, 0) = {(x, y)|0 ≤ y ≤ x}.

It is easy to see that F is monotone and Lipschitz on C with constant L =
√

2.
The mapping G := I + F with I identity on IR2 is strongly monotone with
modulus β = 1 and Lipschitz on C with constant L =

√
2 + 1.

Indeed, by definition of F , it is clear that F is monotone on C. Using the
definition of the Hausdorff distance we have

ρ(F (x, y), F (x′, y′)) =
√

2||(x, y)− (x′, y′)|| ∀(x, y), (x′, y′) ∈ C.

Thus F is Lipschitz on C with constant L =
√

2. �
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3 Algorithms

The results in the preceding section lead to algorithms for solving multivalued
mixed variational inequalities by the Banach contraction mapping principle or
its modifications. By Theorem 2.1 and 2.2, when either F is strongly monotone
or ϕ is strongly convex, one can choose a suitable regularization parameter
α such that the solution mapping H is quasi-contractive. In this case, by the
Banach contraction principle the unique fixed point of H, thereby the unique
solution of Problem (2.1) can be approximated by iterative procedures

xk+1 ∈ H(xk), k = 0, 1...

where x0 can be any point in C.
According to the definition of H, computing xk+1 amounts to solving a
strongly convex mathematical program. In what follows by ε-solution of (VIP)
we mean a point x ∈ C such that ||x− x∗|| ≤ ε where x∗ is an exact solution
of (VIP).

The algorithm then can be described in detail as follows:
Algorithm 3.1. Choose a tolerance ε ≥ 0.
Choose α > L2

2β , when F is β-strongly monotone (and choose α > L2−η2

2η ,
when ϕ is η-strongly convex), where L is the Lipschitz constant of F .
Seek x0 ∈ C,w0 ∈ F (x0).
Iteration k (k = 0, 1, 2...)
Solve the strongly convex program

P (xk) : min{1
2
α||x− xk||2 + 〈wk, x− xk〉+ ϕ(x)|x ∈ C},

to obtain its unique solution xk+1. Find wk+1 ∈ F (xk+1) such that ||wk+1 −
wk|| ≤ L||xk+1 − xk||, for example wk+1 := PF (xk+1)(wk) (the projection of
wk onto F (xk+1)) .
If ||xk+1−xk|| ≤ ε (1−δ)

δk , then terminate: xk is an ε-solution to Problem (2.1).
Otherwise, if ||xk+1 − xk|| > ε (1−δ)

δk , then increase k by 1 and go to iteration
k.

By Theorems 2.1 and 2.2 and the Banach contraction principle it is easy
to prove the following estimation:

||xk+1 − x∗|| ≤ δk+1

1− δ ||x
0 − x1|| ∀k,

where 0 < δ < 1 is the quasicontractive constant of h. According to Theorem

2.1 δ =
√

1− 2β
α + L2

α2 , when F is β-strongly monotone, and according to

Theorem 2.2 δ =
√

L2+α2

α+η when ϕ is η-strongly convex.

Theorem 3.1 Under the assumptions of Theorem 2.1 (or Theorem 2.2), the
sequence {xk} generated by Algorithm 3.1 satisfies
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||xk − x∗|| ≤ δk+1

1− δ ||x
0 − x1|| ∀k, (3.1)

where x∗ is the solution of (VIP). If, in addition F is closed on C, then the
sequence {wk} converges to w∗ ∈ F (x∗) with the rate

||wk − w∗|| ≤ Lδk

1− δ ||x
0 − x1|| ∀k.

Proof. First we suppose that the assumptions of Theorem 2.1 are satisfied.
Let x∗ be the solution of (2.1). By Lemma 2.1,

x∗ ∈ H(x∗) := {h(x∗, w)|w ∈ F (x∗)}.

Let w∗ ∈ F (x∗) such that x∗ = h(x∗, w∗) ∈ H(x∗). By the choice of wk+1 in
the algorithm

||wk+1 − wk|| ≤ L||xk+1 − xk|| ∀k.

Then as shown in Theorem 2.1 we have

||h(xk+1, wk+1)− h(xk, wk)|| ≤ δ||xk+1 − xk|| ∀k,

Since h(xk+1, wk+1) = xk+2, we have

||xk+2 − xk+1|| ≤ δ||xk+1 − xk|| ∀k,

from which, by the Banach contraction mapping fixed point principle, it fol-
lows that

||xk − x∗|| ≤ δk+1

1− δ ||x
0 − x1|| ∀k.

Thus xk → x∗ as k → +∞. Moreover using again the contraction property
we have

||xp+k − xk|| ≤ δk (1− δp)
1− δ ||xk+1 − xk|| ∀k, p.

Letting p→ +∞ we obtain

||xk − x∗|| ≤ δk

1− δ ||x
k+1 − xk|| ∀k.

Thus if ||xk+1 − xk|| ≤ ε (1−δ)
δk , then it follows that ||xk − x∗|| ≤ ε which

means that xk is an ε-solution to (VIP).
On the other hand, since

||wk+1 − wk|| ≤ L||xk+1 − xk||

we have
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||wk+p − wk|| ≤ ||wk+1 − wk||+ ||wk+2 − wk+1||+ ...+ ||wk+p − wk+p−1||

≤ L(||xk+1 − xk||+ ||xk+2 − xk+1||+ ...+ ||xk+p − xk+p−1||)
≤ L(δk + δk+1 + ...+ δk+p−1)||x1 − x0||.

Thus
||wk+p − wk|| < Lδk δ

p − 1
δ − 1

||x1 − x0||, (3.2)

which means that {wk} is a Cauchy sequence. Hence the sequence {wk} con-
verges to some w∗ ∈ C. Since F is closed, w∗ ∈ F (x∗). From (3.2) and letting
p→ +∞ we have

||wk − w∗|| ≤ Lδk

1− δ ||x
1 − x0|| ∀j.

The proof can be done similarly under the assumptions of Theorem 2.3. �

Remark 3.1 From δ :=
√

1− 2β
α + L2

α2 (resp. δ =
√

L2+α2

α+η ) we see that the
contraction coefficient δ is a function of the regularization parameter α. An
elementary computation shows that δ takes its minimum when α = L2

β (resp.

α = L2−η2

η ). Therefore for the convergence, in Algorithm 3.1 the best way is

to choose α = L2

β (resp. α = L2−η2

η ).

Remark 3.2 In Algorithm 3.1, at each iteration k, it requires finding wk+1 ∈
F (xk+1) such that |wk+1−wk|| ≤ L||xk+1−xk||, which can be done when F (x)
has a special structure, for example, box, ball , simplex or a convex set given
explicitly. One may ask whether the algorithm remains convergent if it takes
any point from F (xk+1). To our opinion, there is less hope for a positive
answer to this question except cases when the set F (xk+1) can be represented
by any of its elements.

Now we consider a special case that often occurs in practice.
Let μ = sup{diam F (x)|x ∈ C}, τ = diam C. It is well known that if C is

compact and F is upper semicontinuous on C, then μ and τ are finite.
Algorithm 3.2. Choose a tolerance ε > 0, α >

L2
0

2β when F is β-strongly

monotone (and choose α > L2
0−η2

2η when ϕ is η-strongly convex), where L0 ≥
Lτ+μ
ε(1−δ) and δ :=

√
1− 2β

α + L2
0

α2 when F is β-strongly monotone (δ =
√

L2
0+α2

α+η

when ϕ is η-strongly convex).
Seek x0 ∈ C,w0 ∈ F (x0).
Iteration k (k = 0, 1, 2...)
Solve the strongly convex program

P (xk) : min{1
2
α||x− xk||2 + 〈wk, x− xk〉+ ϕ(x)|x ∈ C},
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to obtain its unique solution xk+1. Choose wk+1 ∈ F (xk+1).
If ||xk+1−xk|| ≤ ε (1−δ)

δk , then terminate: xk is an ε-solution to Problem (2.1).
Otherwise, if ||xk+1−xk|| > ε (1−δ)

δk , then increase k by 1 and go to iteration
k.

Theorem 3.2 Suppose that C is compact and F is upper semicontinuous on
C. Then under the assumptions of Theorem 2.1 or Theorem 2.2, the sequence
{xk} generated by Algorithm 3.2 satisfies

||xk − x∗|| ≤ δk+1

1− δ ||x
0 − x1|| ∀k,

where x∗ is the solution of (2.1). Moreover

||wk − w∗|| ≤ L0δ
k

1− δ ||x
0 − x1|| ∀k.

Proof. By the same argument as in the proof of Theorem 3.1 we see that if
||xk+1 − xk|| ≤ ε (1−δ)

δk , then indeed, xk is an ε-solution.
Now suppose ||xk+1 − xk|| > ε (1−δ)

δk . For every wk+1 ∈ F (xk+1), since
L0 ≥ Lτ+μ

ε(1−δ) , we have

||wk+1 − wk|| ≤ d(wk, F (xk+1)) + diamF (xk+1) ≤ L||xk+1 − xk||+ μ

≤ Lτ + μ ≤ L0ε(1− δ) < L0||xk+1 − xk||.
where the last inequality follows from L0 ≥ Lτ+μ

ε(1−δ) and δk ≤ 1 for all k. Since

||xk+1 − xk|| > ε (1−δ)
δk , we have

||wk+1 − wk|| ≤ L0||xk+1 − xk|| ∀k.

Using this inequality we can prove the theorem by the same way as in the
proof of Theorem 2.1 (or Theorem 2.2 when ϕ is strongly convex). �

Now we return to the case when F is cocoercive. Note that in this case
Problem (VIP) is not necessarily uniquely solvable. By Theorem 2.3, a solution
of (VIP) can be obtained by computing a fixed point of mapping H. Since
H has a nonexpansive selection, its fixed point may be computed using the
following theorem.

Theorem 3.3 Let C ⊆ IRn be a nonempty, closed, convex set and S : C →
2C . Suppose that S(x) is compact and that S has a nonexpansive selection on
C. For 0 < λ < 1 define

Sλ := (1− λ)I + λS.

Then the sequences {xk} , {yk} defined by xk+1 ∈ Sλ(xk), i.e.,
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xk+1 := (1− λ)xk + λyk,

with yk ∈ S(xk) satisfy

||yk+1 − yk|| ≤ ||xk+1 − xk|| ∀k = 0, 1, 2, ...

||xk − yk|| → 0 as k → +∞,

Moreover any cluster point of the sequence {xk} is a fixed point of S.

To prove this theorem we need the following lemma:

Lemma 3.1 Under the assumptions of Theorem 3.3, for all i,m = 0, 1, ...,
we have

||yi+m−xi|| ≥ (1−λ)−m[||yi+m−xi+m||−||yi−xi||]+(1+λm)||yi−xi||. (3.3)

Proof. We proceed by induction on m, assuming that (3.3) holds for a given
m and for all i. Clearly, (3.3) is trivial if m = 0. Replacing i with i+1 in (3.3)
yields

||yi+m+1 − xi+1|| ≥ (1− λ)−m[||yi+m+1 − xi+m+1|| − ||yi+1 − xi+1||]

+(1 + λm)||yi+1 − xi+1||. (3.4)

Since xk+1 := (1− λ)xk + λyk with yk ∈ S(xk) that

||yi+m+1 − xi+1|| = ||yi+m+1 − [(1− λ)xi + λyi]||

≤ λ||yi+m+1 − yi||+ (1− λ)||yi+m+1 − xi||

≤ (1− λ)||yi+m+1 − xi||+ λ

m∑
k=0

||xi+k+1 − xi+k||. (3.5)

Combining (3.4) and (3.5) we obtain

||yi+m+1 − xi|| ≥ (1− λ)−(m+1)[||yi+m+1 − xi+m+1|| − ||yi+1 − xi+1||]

+(1− λ)−1(1 + λm)||yi+1 − xi+1|| − λ(1− λ)−1
n∑

k=0

||xi+k+1 − xi+k||.

Since ||xi+k+1−xi+k|| = λ||yk+i−xk+i|| and since the sequence {||ym−xm||}
is decreasing, from

λ||ym− xm|| = ||xm+1− xm|| = ||(1− λ)xm + λym− [(1− λ)xm−1− λym−1]||

≤ (1− λ)||xm− xm−1||+ λ||ym− ym−1|| ≤ ||xm− xm−1|| = λ||ym−1− xm−1||

and 1 +mλ ≤ (1− λ)−m, we have
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||yi+m+1 − xi|| ≥ (1− λ)−(m+1)[||yi+m+1 − xi+m+1|| − ||yi+1 − xi+1||]

+ (1− λ)−1(1 + λm)||yi+1 − xi+1|| − λ2(1− λ)−1(m+ 1)||yi − xi||

= (1− λ)−(m+1)[||yi+m+1 − xi+m+1|| − ||yi − xi||]

+ [(1− λ)−1(1 + λm)− (1− λ)−(m+1)]||yi+1 − xi+1||

+ [(1− λ)−(m+1) − λ2(1− λ)−1(m+ 1)]||yi − xi||

≥ (1− λ)−(m+1)[||yi+m+1 − xi+m+1|| − ||yi − xi||]

+ [(1− λ)−1(1 + λm)− (1− λ)−(m+1)]||yi − xi||

+ [(1− λ)−(m+1) − λ2(1− λ)−1(m+ 1)]||yi − xi||

= (1− λ)−(m+1)[||yi+m+1 − xi+m+1||− ||yi − xi||]+ [1 + λ(m+ 1)]||yi − xi||.

Thus (3.5) holds for m+ 1. �

Proof of Theorem 3.3. Let d := sup{diam S(x)|x ∈ C}, and suppose that
lim

m→∞
||ym − xm|| = r > 0. Select m ≥ d

rλ and ε is a sufficiently small positive

number such that ε(1 − λ)−m < r. Since {||ym − xm||} is decreasing, there
exists an integer i such that

0 ≤ ||yi − xi|| − ||ym+i − xm+i|| ≤ ε.

Therefore, using (3.3) we arrive at the contradiction

d+ r ≤ (1 +mλ)r ≤ (1 +mλ)||yi − xi||

≤ ||ym+i − xi||+ (1− λ)−m[||yi − xi|| − ||ym+i − xm+i||]
≤ ||ym+i − xi||+ (1− λ)−mε < d+ r.

Consequently r = 0, thus lim
m→∞

||xm − ym|| = 0. Since S is a bounded-valued
mapping on C and S is closed, we have that any cluster point of convergent
sequences {xm} is a fixed point of S. �

Now applying Theorem 3.3 to H we can solve Problem (2.1) with F being
cocoercive on C by finding a fixed point of H.
Algorithm 3.3. Step 0. Choose a tolerance ε ≥ 0 and λ ∈ (0, 1), α ≥ 1

2γ and
seek x0 ∈ C,w0 ∈ F (x0). Let k = 0.

Step 1. Solve the strongly convex program



Contraction Mapping Fixed Point Algorithms 247

P (xk) : min{1
2
α||y − xk||2 + 〈wk, y − xk〉+ ϕ(y)|y ∈ C}

to obtain its unique solution yk.
If ||yk − xk|| ≤ ε, then the algorithm terminates.
Otherwise go to Step 2.

Step 2. Take
xk+1 := (1− λ)xk + λyk.

Find wk+1 := PF (xk+1)(wk).
Let k ← k + 1 and return to Step 1.

Theorem 3.4 In addition to the assumptions of Theorem 2.3, suppose that
C is compact, and F is upper semicontinous on C. Then, if Algorithm 3.3
does not terminate, the sequence {xk} is bounded and any cluster point is a
solution of Problem (VIP). In addition, it holds d(xk, H(xk)) → 0 as k →∞.

Proof. In Algorithm 3.3, we have wk+1 := PF (xk+1)(wk) with wk ∈ F (xk).
From Lemma 2.2 and the definition of ρ(F (xk), F (xk+1)) it follows that

||wk+1 − wk|| ≤ ρ(F (xk), F (xk+1)).

From the cocoercivity of F on C with modulus γ, we have

γρ2(F (xk), F (xk+1)) ≤ 〈xk − xk+1, wk − wk+1〉.

Thus
||xk − xk+1 − 1

α
(wk − wk+1)||2

= ||xk − xk+1||2 − 2
α
〈xk − xk+1, wk − wk+1〉+

1
α2
||wk − wk+1||2

≤ ||xk − xk+1||2 − 2γ
α
||wk − wk+1||2 +

1
α2
||wk − wk+1||2

= ||xk − xk+1||2 − (
2γ
α
− 1
α2

)||wk − wk+1||2.

Since α > 1
2γ , we have

||xk − xk+1 − 1
α

(wk − wk+1)||2 ≤ ||xk − xk+1||2

which together with quasinonexpansiveness of H implies

||yk+1 − yk|| ≤ ||xk+1 − xk||,

where

yk = h(xk, wk) ∈ H(xk), yk+1 = h(xk+1, wk+1) ∈ H(xk+1).
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By Theorem 3.3, every cluster point of the sequence {xk} is the fixed point
x∗ of H which is also a solution to Problem (2.1).

Furthermore, since C is compact and F is upper semicontinous on C, it
follows from wk ∈ F (xk) that the sequence {wk} is bounded. Thus, without
loss of generality, we may assume that the sequence {wk} converges to some
w∗. Since F is closed at x∗, we have w∗ ∈ F (x∗) and x∗ ∈ C.

To prove d(xk, H(xk)) → 0 we observe that yk ∈ H(xk), and therefore

d(xk, H(xk)) ≤ ||xk − yk|| ∀k.

By Theorem 3.3, we have d(xk, H(xk)) → 0 as k → +∞. �
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Dhar-Mahraz, B.P. 1796 Atlas, Fès, Morocco ngadhi@Math.net

Summary. Set-valued optimization is known as a useful mathematical model for
investigating some real world problems with conflicting objectives, arising from eco-
nomics, engineering and human decision-making. Using an extremal principle in-
troduced by Mordukhovich, we establish optimality conditions for D.C. ( difference
of convex ) set-valued optimization problems. An application to vector fractional
mathematical programming is also given.
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mization.
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1 Introduction

In very recent years, the analysis and applications of D.C. mappings ( differ-
ence of convex mappings ) have been of considerable interest [4, 7, 8, 10, 12,
11, 13, 14, 23, 28]. Generally, nonconvex mappings that arise in nonsmooth
optimization are often of this type. Recently, extensive work on the analysis
and optimization of D.C. mappings has been carried out [5, 6, 22]. However,
much work remains to be done. For instance, if the data of the objective func-
tion of a standard problem are not exactly known, we are entitled to replace
the objective by a set-valued objective representing fuzzy outcomes.

In this paper, we are concerned with the set-valued optimization problem

(P ) :
{

minF (x)−G(x)
subject to x ∈ C,

where C is a nonempty subset of R
n, F : R

n ⇒ R
p and G : R

n ⇒ R
p are

R
p
+-convex set-valued mappings.

 pp. ,
Media, LLC©2006 Springer Science + Business

S. Dempe and V. Kalashnikov (eds.),Optimization with Multivalued Mappings 251-264



252 N. Gadhi

It is well known that the convex separation principle plays a fundamental
role in many aspects of nonlinear analysis and optimization. The whole convex
analysis revolves around the use of separation theorems; see Rockafellar [26]. In
fact, many crucial results with their proofs are based on separation arguments
which are applied to convex sets (see [25]). There is another approach initiated
by Mordukhovich [15, 16], which does not involve any convex approximations
and convex separation arguments. It is based on a different principle to study
the extremality of set systems, which is called the extremal principle [18, 20].

The essence of the extremal principle is to provide necessary conditions for
set extremality in terms of suitable normal cones in dual spaces that are not
generated by tangent approximations in primal spaces and that may be non-
convex. In the early work summarized in the books of Mordukhovich [17, 20],
versions of the extremal principle were employed to derive necessary optimal-
ity conditions in various problems of optimization and optimal control and
to obtain calculus rules for the nonconvex normal cones and subdifferentials
generated in this approach.

Our approach consists of using a support function together with the ex-
tremal principle for the study of necessary and sufficient optimality condi-
tions in set-valued optimization. This technique extends the results obtained
in scalar case by Hiriart-Urruty [7] and in vector case by Taa [27]. In [3], Dien
gave a characterization of a set-valued mapping by its support function. The
advantage of this characterization is that it allows the theory of generalized
derivative of single valued mappings to be used for set-valued mappings.

The rest of the paper is organized in this way: Section 2 contains ba-
sic definitions and preliminary material from nonsmooth variational analysis.
Section 3 and Section 4 address main results ( optimality conditions ). Section
5 discusses an application to vector fractional mathematical programming.

Throughout this work, we use standard notations. The symbol ‖ · ‖ is used
for denoting the Euclidean norm on the respective space, BRn stand for the
closed unit balls in the space.

2 Preliminaries

Given an extended real-valued function ϕ : R
n → R := (∞,∞] finite at x̄ and

a nonempty set Ω ⊂ R
n, let us recall some definitions.

When ϕ is taken lower semicontinuous around x̄, the Fréchet subdifferential
of ϕ at x̄ is

∂̂ϕ(x̄) :=
{
x∗ ∈ R

n : lim inf
x→x̄

ϕ(x)− ϕ(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖ ≥ 0

}
.

Let Ω ⊂ R
n be locally closed around x̄ ∈ Ω. The Fréchet normal cone N̂(x̄;Ω)

to Ω at x̄ is defined by
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N̂(x̄;Ω) :=

{
x∗ ∈ R

n : lim sup
x

Ω→x̄

〈x∗, x− x̄〉
‖x− x̄‖ ≤ 0

}
, (1)

where x Ω→ x̄ stands for x→ x̄ with x ∈ Ω. For more details, see [15] and [21].
Note that ∂̂ϕ(x̄) reduces to the classical Fréchet derivative of ϕ at x̄ if ϕ is
Fréchet differentiable at this point. One clearly has

N̂(x̄;Ω) = ∂̂δ(x̄;Ω),

where δ(·;Ω) is the indicator function of Ω.

Definition 2.1 Let Ω1 and Ω2 be nonempty closed subsets of R
n. We say that

{Ω1, Ω2} is an extremal system in R
n if these sets have at least one (locally)

extremal point x̄ ∈ Ω1 ∩ Ω2; that is, there exists a neighborhood U of x̄ such
that for every ε > 0 there is a vector a ∈ εBRn with

(Ω1 + a) ∩Ω2 ∩ U = ∅;

in this case, for any ε > 0 there are x1 ∈ Ω1 ∩ (x+ εBRn) , x2 ∈ Ω2 ∩
(x+ εBRn) and x∗ ∈ R

n such that ‖x∗‖ = 1

x∗ ∈
(
N̂(x1;Ω1) + εB∗

Rn

)
∩
(
−N̂(x2;Ω2) + εB∗

Rn

)
.

See [19, 20] for extremal systems of finitely many sets and more discussions.

Remark 2.1 A common point of sets is locally extremal if these sets can be
locally pushed apart by a ( linear ) small translation in such a way that the
resulting sets have empty intersection.

Since convexity plays an important role in the following investigations, we
give the definition of cone-convex set-valued mappings.

Definition 2.2 [2] Let A ⊂ R
n be a convex set. The set-valued mapping F

from A into R
p is said to be R

p
+-convex on A, if ∀x1, x2 ∈ A, ∀λ ∈ [0, 1]

λF (x1) + (1− λ)F (x2) ⊂ F (λx1 + (1− λ)x2) + R
p
+,

where R
p
+ = {x ∈ R

p : x ≥ 0}. Moreover, the polar cone of R
p
+ is defined as(

R
p
+

)◦ =
{
y∗ ∈ R

p : 〈y∗, y〉 ≤ 0 for all y ∈ R
p
+

}
= R

p
−.

Proposition 2.1 Let A ⊂ R
n be a convex set. Considering γ∗ ∈

(
−R

p
+

)◦
, if

F is R
p
+-convex on A then ϕ (γ∗, x) := inf

y∈F (x)
〈γ∗, y〉 is a convex function on

A.
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Proof. Let x1, x2 ∈ A, y1 ∈ F (x1) , y2 ∈ F (x2) , γ∗ ∈
(
−R

p
+

)◦
and λ ∈ [0, 1] . From the R

p
+-convexity assumption of F, there exist yλ ∈

F (λx1 + (1− λ)x2) and p ∈ R
p
+ such that

λy1 + (1− λ) y2 = yλ + p.

Consequently,

λ 〈γ∗, y1〉+ (1− λ) 〈γ∗, y2〉 = 〈γ∗, yλ〉+ 〈γ∗, p〉 .

Since p ∈ R
p
+ and γ∗ ∈

(
−R

p
+

)◦
, one has 〈γ∗, p〉 ≥ 0. It follows that

λ 〈γ∗, y1〉+ (1− λ) 〈γ∗, y2〉 ≥ 〈γ∗, yλ〉 , for all y1 ∈ F (x1) and y2 ∈ F (x2) .

Then

λϕ (γ∗, x1) + (1− λ)ϕ (γ∗, x2) ≥ 〈γ∗, yλ〉 ≥ ϕ (γ∗, λx1 + (1− λ)x2) ,

which means that ϕ (γ∗, ·) is convex on A. �

3 Approximate/fuzzy necessary optimality conditions

This section is completely devoted to applications of the extremal principle
to problems of set-valued optimization.
Let F : R

n ⇒ R
p and G : R

n ⇒ R
p be two closed-graph set-valued mappings

between spaces R
n and R

p. For all the sequel, the set-valued mappings F and
G are assumed to be R

p
+-convex on a locally closed set C. The domain and

the graph of F are denoted respectively by

dom (F ) := {x ∈ R
n : F (x) �= ∅} ,

gph (F ) := {(x, y) ∈ R
n × R

p : y ∈ F (x)} .

If V is a nonempty subset of R
n, then

F (V ) =
⋃

x∈V

F (x) .

We remind the reader that a point (x, y − z) ∈ gph (F −G) with x ∈ C is said
to be a weak local Pareto minimal point with respect to R

p
+ of the problem

(P ) if there exists a neighborhood V of x such that

(F −G) (V ∩ C) ⊂ y − z + R
p \
(
− int R

p
+

)
. (2)

Here, int denotes the topological interior. When V = R
n, we say that (x, y − z)

is a weak Pareto minimal point with respect to R
p
+ of the problem (P ).
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Lemma 3.1 Assume that (x, y, z) is a weak local Pareto minimal point of
(P ) . Then, (x, y, z) is a weak local Pareto minimal point of

(P �) :
{

minF (x)− z
subject to (x, z) ∈ (C × R

p) ∩ gph (G) .

Theorem 3.1 Assume that (x, y − z) is a weak local Pareto minimal point
of (P ) . Then, for any ε > 0 there are x1, x2 ∈ x+ εBRn , y2 ∈ y+ εBRp , z2 ∈
z+εBRp , x1 ∈ C, y2 ∈ F (x2) , z2 ∈ G (x2) and γ∗ ∈

(
−R

p
+

)◦ \ {0} , such that{
∂̂ψ (γ∗, ·) (x2) ⊂ ∂ϕ (γ∗, ·) (x2) + N̂ (x1, C) ,
ϕ (γ∗, x2) = 〈γ∗, y2〉 and ψ (γ∗, x2) = 〈γ∗, z2〉,

(3)

where ψ (γ∗, ·) (x) := sup
y∈F (x)

〈γ∗, y〉 . Here, ∂f (x) stands for the subdifferential

( of convex analysis ) of f at x.

Proof. Since (x, y − z) is a weak local Pareto minimal point of (P ) , there
exists a neighborhood V of x such that for all x ∈ V ∩ C

F (x)−G (x) ⊂ y − z + R
p \
(
− int R

p
+

)
.

The proof of this theorem consists of several steps.

• It is easy to see that (x, y, z) is a weak local Pareto minimal point of

(P �) :
{

minF (x)− z
subject to (x, z) ∈ (C × R

p) ∩ gph (G) .

• Setting H (x, z) = F (x)− z for all (x, z) ∈ gph (G) and h = y − z, let us
start by relating

(
x, z, h

)
to an extremal point in the sense of Definition

2.1. Put

Ω1 := (C × R
p)×
(
h− R

p
+

)
and Ω2 := gph (H) .

Then
(
x, z, h

)
is an extremal point of the system (Ω1, Ω2) . Indeed, sup-

pose that it is not the case, i.e., for any neighborhood U of
(
x, z, h

)
there

is (x, z, h) ∈ gph (H) ∩ U close to
(
x, z, h

)
with (x, z, h) ∈ (C × R

p) ×(
h− int R

p
+

)
. Hence h ∈ h − int R

p
+, which contradicts the fact that(

x, z, h
)

is a weak local Pareto minimal point of (P �) . Finally, (x, y − z)
is not a weak local Pareto minimal point of (P ) .

Given 1/4 ≥ ε > 0, we employ the extremal principle from Definition 2.1. This
gives x1, x2 ∈ x + εBRn , z1, z2 ∈ z + εBRp , h1, h2 ∈ h + εBRp , x1 ∈ C, z1 ∈
R

p, h1 ∈ h−R
p
+, h2 ∈ F (x2)−z2, z2 ∈ G (x2) and (x∗, z∗, h∗) ∈ R

n×R
p×R

p

such that

‖(x∗, z∗, h∗)‖ = 1, (x∗, z∗, h∗) ∈ −N̂ ((x2, z2, h2) ;Ω2) + εBRn×Rp×Rp , (4)
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and
(x∗, z∗, h∗) ∈ N̂ ((x1, z1, h1) ;Ω1) + εBRn×Rp×Rp . (5)

There exist (a∗2, b
∗
2, c

∗
2) ∈ BRn+2p and (u∗, v∗, w∗) ∈ N̂ ((x2, z2, h2) ;Ω2) satis-

fying
(u∗, v∗, w∗) = − (x∗, z∗, h∗) + ε (a∗2, b

∗
2, c

∗
2) .

Using (5), there exist
(a∗1, b

∗
1, c

∗
1) ∈ BRn+2p

and
(α∗

1, β
∗
1 , γ

∗
1) ∈ N̂ ((x1, z1, h1) ;Ω1)

such that

(u∗, v∗, w∗) = − (α∗
1, β

∗
1 , γ

∗
1 ) + ε (a∗2, b

∗
2, c

∗
2)− ε (a∗1, b

∗
1, c

∗
1) . (6)

• By the definition of Fréchet normals (1), (4) implies that

0 ≥ 〈u∗, x− x2〉+ 〈v∗, z − z2〉+ 〈w∗, h− h2〉 − ε‖(x− x2, z − z2, h− h2)‖

for (x, z, h) ∈ gph (H) sufficiently close to (x2, z2, h2) and (x, z) ∈ gph (G) .
Consequently, there exists y2 ∈ F (x2) such that h2 = y2 − z2 and

0 ≥ 〈−α∗
1, x− x2〉+ 〈−β∗

1 , z − z2〉+ 〈−γ∗1 , y − z − y2 + z2〉
+ε 〈a∗2 − a∗1, x− x2〉+ ε 〈b∗2 − b∗1, z − z2〉+ ε 〈c∗2 − c∗1, y − z − y2 + z2〉
−ε‖(x− x2, z − z2, y − z − y2 + z2)‖

for (x, z) ∈ gph (G) sufficiently close to (x2, z2) and (x, y) ∈ gph (F ) suffi-
ciently close to (x2, y2).

• By the definition of Fréchet normals (1), (5) implies that

0 ≥ 〈α∗
1, x−x1〉+〈β∗

1 , z−z1〉+〈γ∗1 , h−h1〉−ε‖(x−x1, z−z1, h−h1)‖ (7)

for (x, z, h) sufficiently close to (x1, z1, h1) such that x ∈ C and h ∈ h−R
p
+.

Taking x = x1 and h = h1, one gets

0 ≥ 〈β∗
1 , z − z1〉 − ε‖z − z1‖ for all z ∈ R

p.

Thus, β∗
1 = 0.

Then,

〈α∗
1, x− x2〉+ 〈γ∗1 , y − z − y2 + z2〉 ≥

ε 〈(a∗2 − a∗1, b∗2 − b∗1, c∗2 − c∗1) , (x− x2, z − z2, y − z − y2 + z2)〉 −
−ε‖(x− x2, z − z2, y − z − y2 + z2)‖,

for (x, z) ∈ gph (G) sufficiently close to (x2, z2) and (x, y) ∈ gph (F ) suffi-
ciently close to (x2, y2). Consequently,
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〈α∗
1, x− x2〉+ 〈γ∗1 , y − z − y2 + z2〉 ≥ −3ε‖(x− x2, z − z2, y − z − y2 + z2)‖,

for all (x, z) ∈ gph (G) sufficiently close to (x2, z2) and (x, y) ∈ gph (F ) suffi-
ciently close to (x2, y2).
Then,

〈α∗
1, x− x2〉+ 〈γ∗1 , y〉+ 〈γ∗1 , z2〉

≥ 〈γ∗1 , z〉+ 〈γ∗1 , y2〉 − 3ε‖(x− x2, z − z2, y − z − y2 + z2)‖,

for all (x, y) ∈ gph (F ) and (x, z) ∈ gph (G) sufficiently close to (x2, y2) and
(x2, z2) respectively.
As a special case, for x = x2, y = u and z = w, one has

〈γ∗1 , u〉 − 〈γ∗1 , w〉 ≥ 〈γ∗1 , y2〉 − 〈γ∗1 , z2〉 − 3ε‖(w − z2, u− w − y2 + z2)‖, (8)

for all (x, u) ∈ gph (F ) and (x,w) ∈ gph (G) sufficiently close to (x2, y2) and
(x2, z2) respectively.
Setting F (x) := F (x) and G (x) := G (x) over x+ εBRn ,

〈α∗
1, x− x2〉+ 〈γ∗1 , y〉+ 〈γ∗1 , z2〉

≥ 〈γ∗1 , z〉+ 〈γ∗1 , y2〉 − 3ε‖(x− x2, z − z2, y − z − y2 + z2)‖,

for all (x, y) ∈ gph (F ) and (x, z) ∈ gph (G) sufficiently close to (x2, y2) and
(x2, z2) respectively. Then,

〈α∗
1, x− x2〉+ inf

y∈F (x)
〈γ∗1 , y〉+ sup

z2∈G(x2)

〈γ∗1 , z2〉

≥ sup
z∈G(x)

〈γ∗1 , z〉+ inf
y2∈F (x2)

〈γ∗1 , y2〉 − 3ε‖(x− x2, z − z2, y − z − y2 + z2)‖.

Remark that ‖(x−x2, z−z2, y−z−y2+z2)‖ ≤ ‖x−x2‖‖z−z2‖‖y−z−y2+z2‖ ≤
‖x − x2‖, since (x, y) ∈ gph (F ) and (x, z) ∈ gph (G) sufficiently close to
(x2, y2) and (x2, z2).
Now, we have

〈α∗
1, x−x2〉+ϕ (γ∗1 , x) +ψ (γ∗1 , x2) ≥ ψ (γ∗1 , x) +ϕ (γ∗1 , x2)− 3ε‖x−x2‖. (9)

In addition, by (8) , {
ϕ (γ∗1 , x2) ≥ 〈γ∗1 , y2〉,
ψ (γ∗1 , x2) ≤ 〈γ∗1 , z2〉.

Here, ϕ (γ∗1 , x) := inf
y∈F (x)

〈γ∗1 , y〉 and ψ (γ∗1 , x) := sup
z∈G(x)

〈γ∗1 , z〉 for all x suffi-

ciently close to x2. Then,⎧⎨⎩
〈α∗

1, x− x2〉+ ϕ (γ∗1 , x) + ψ (γ∗1 , x2) ≥ ψ (γ∗1 , x) + ϕ (γ∗1 , x2)− 3ε‖x− x2‖,
ϕ (γ∗1 , x2) = 〈γ∗1 , y2〉,
ψ (γ∗1 , x2) = 〈γ∗1 , z2〉.
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• ‖γ∗1‖ > 0. By contrast, suppose that ‖γ∗1‖ = 0.
On the one hand, since ‖(α∗

1, β
∗
1 , γ

∗
1 ) + ε (a∗1, b

∗
1, c

∗
1)‖ = 1 and β∗

1 = 0, γ∗1 =
0 one has 1 ≤ ‖α∗

1‖+ ε ‖(a∗1, b∗1, c∗1)‖ . Due to (a∗1, b
∗
1, c

∗
1) ∈ BRn+2p , one gets

‖α∗
1‖ ≥ 1− ε.

On the other hand, from (7) ,

0 ≥ 〈α∗
1, x− x1〉 − ε‖x− x1‖

for x �= x1 ∈ C sufficiently close to x1. Thus,

ε ≥ 〈α∗
1,

x− x1

‖x− x1‖
〉

and then ‖α∗
1‖ ≤ ε; which contradicts the fact that ε ≤ 1/4.

• γ∗1 ∈
(
−R

p
+

)◦
. Indeed, since R

p
+ is convex and γ∗1 ∈ N̂

(
h1, h− R

p
+

)
, one

has
γ∗1 ∈ N̂

(
h1, h− R

p
+

)
.

It follows that, ( due to the convexity of h− R
p
+ )

〈γ∗1 , h− h1〉 ≤ 0 for all h ∈ h− R
p
+; (10)

thus,
0 ≤
〈
γ∗1 , h1 − h

〉
. (11)

Since h1−h ∈ −R
p
+, one has 2

(
h1 − h

)
∈ −R

p
+; and from (10) , we deduce

0 ≥
〈
γ∗1 , h1 − h

〉
. (12)

Combining (11) and (12) ,

0 =
〈
γ∗1 , h1 − h

〉
. (13)

Let r ∈ −R
p
+. We have h+ r ∈ h− R

p
+ and then,〈

γ∗1 , h+ r − h1

〉
≤ 0.

Consequently,
〈γ∗1 , r〉 ≤ 0.

Because r is arbitrarily chosen, we have γ∗1 ∈
(
−R

p
+

)◦ \ {0} .
Let T ∗ ∈ ∂̂ψ (γ∗1 , ·) (x2) and let ν > 0. Then, by definition,

ψ (γ∗1 , x)− ψ (γ∗1 , x2) + ν ‖x− x2‖ ≥ 〈T ∗, x− x2〉 ,

for x sufficiently close to x2. Consequently,
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ψ (γ∗1 , x)− ψ (γ∗1 , x2) + ν ‖x− x2‖ ≥ 〈T ∗, x− x2〉 ,

for x sufficiently close to x2. From (9) , we have

ϕ (γ∗1 , x)− ϕ (γ∗1 , x2) + 〈α∗
1, x− x2〉 ≥ 〈T ∗, x− x2〉 − (ν + ε) ‖x− x2‖ ,

for x sufficiently close to x2. Then,

ϕ (γ∗1 , x)− ϕ (γ∗1 , x2) + 〈α∗
1, x− x2〉 ≥ 〈T ∗, x− x2〉 − (ν + ε) ‖x− x2‖ ,

for x sufficiently close to x2. Thus,

T ∗ − α∗
1 ∈ ∂̂ϕ(γ∗1 , x2). (14)

Finally,
∂̂ψ (γ∗1 , ·) (x2) ⊂ ∂̂ϕ (γ∗1 , ·) (x2) + N̂ (x1, C) .

Observing that ϕ (γ∗1 , ·) is a convex function ( due to Proposition 2.1 ), we get

∂̂ψ (γ∗1 , ·) (x2) ⊂ ∂ϕ (γ∗1 , ·) (x2) + N̂ (x1, C)

and the proof is finished. �

With the following example, we illustrate the usefulness of the necessary
conditions in Theorem 3.1.

Example 3.1 Let f and g : R
n → R

+ be given functionals. Then, we consider
the set valued mappings F : R

n ⇒ R and G : R
n ⇒ R with

F (x) := {y ∈ R : f (x) ≤ y} and G (x) := {z ∈ R : g (x) ≤ z} .

Under these assumptions, we investigate the optimization problem

(P �) :
{

minF (x)−G(x)
subject to x ∈ C,

where C is a nonempty closed subset of R
n.

This is a special of the general type (P ) . In this example, the values of the
objective may vary between the values of two known functions.
Next, assume that (x, f (x)− g (x)) is a weak local Pareto minimal point of
(P �) , and that f and g are continuous at x and convex. Consequently, F and
G are R

+-convex with closed graphs and

ϕ (γ∗, x) = γ∗f (x) and ψ (γ∗, x) = γ∗g (x) .

Then,
∂g (x) ⊂ ∂f (x) + N̂ (x,C) .

�
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Consider the following set-valued optimization problem

(P1) :
{

R
p
+ −Minimize f (x)− g (x)

subject to x ∈ C,

where f := (f1, . . . , fp) and g := (g1, . . . , gp) and the functions fi and gi are
convex and lower semicontinuous for i = 1, . . . , p.

Corollary 3.1 [27]Let x be a weak local Pareto minimal point of (P1) ,
where C is a locally closed set. Then for any ε > 0 there are x1, x2 ∈
x + εBRn , f (x2) ∈ f (x) + εBRp , g (x2) ∈ g (x) + εBRp , x1 ∈ C and(
γ∗1 , . . . , γ

∗
p

)
∈
(
−R

p
+

)◦ \ {0} such that

∂

(
p∑

i=1

γ∗i gi

)
(x2) ⊂ N̂ (x1, C) + ∂

(
p∑

i=1

γ∗i fi

)
(x2) .

Remark 3.1 When p = 1, we get the well known necessary optimality con-
ditions established in scalar case by Hiriart-Urruty [7]. Sufficient optimality
conditions are also obtained (see Corollary 4.1 ).

4 Sufficient optimality conditions

Let ε > 0 and let g be a function from R
n into R. Recall that the ε-

subdifferential of g is defined by

∂εg(x) = {x∗ ∈ R
n : g (x)− g (x̄) ≥ 〈x∗, x− x〉 − ε for all x ∈ R

n} .

The following lemma will be needed to prove Theorem 4.1. For the rest of
this section, we assume that F and G are R

p
+-convex on a nonempty closed

convex subset C of R
n.

Lemma 4.1 Let ε > 0 and γ∗ ∈
(
−R

p
+

)◦ \ {0} such that ψ (γ∗, x) = 〈γ∗, z〉 .
Then,

∂εψ (γ∗, ·) (x)
= {t∗ ∈ R

p : 〈y∗, z〉 − 〈y∗, z〉 ≥ 〈t∗, x− x̄〉 − ε for all x ∈ R
n and z ∈ G (x)} .

Proof. The proof is evident. �

The proof of the following theorem uses some ideas of [4].

Theorem 4.1 Let x̄ ∈ C. Assume that there exists γ∗ ∈
(
−R

p
+

)◦ \ {0} such
that

ψ (γ∗, x) = 〈γ∗, z〉 , ϕ (γ∗, x) = 〈γ∗, y〉 ,
and

∂εψ (γ∗, ·) (x) ⊂ ∂ε (ϕ (γ∗, ·) + δC) (x) , for all ε ∈ R
∗
+. (15)

Then x̄ is a weak Pareto minimal point of (P ) .
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Proof. Suppose that x is not a weak Pareto minimal solution of (P ) ; there
exist x0, y0 ∈ F (x0) and z0 ∈ G (x0) such that

x0 ∈ C, y0 − z0 − y + z ∈ − int R
p
+.

By the fact that γ∗ ∈
(
−R

p
+

)◦ \ {0} , it follows that

〈γ∗, y0 − z0 − y + z〉 < 0. (16)

Now, let ε > 0 and t∗ ∈ R
p. Consider the following inequalities.

〈γ∗, z〉 − 〈γ∗, z〉 ≥ 〈t∗, x− x̄〉 − ε for all x ∈ R
n and z ∈ G (x) . (17)

〈γ∗, y〉+δC (x)−〈γ∗, y〉−δC (x) ≥ 〈t∗, x− x̄〉−ε for all x ∈ R
n and y ∈ F (x) .

(18)
Using Lemma 4.1, (15) is equivalent to

(17) =⇒ (18) , for all ε > 0.

Then,
〈γ∗, y〉+ δC (x)− 〈γ∗, y〉 − δC (x) ≥ 〈γ∗, z〉 − 〈γ∗, z〉

for all y ∈ F (x) and z ∈ G (x) . Particularly, for x = x0, y = y0 and z = z0,
we have

〈γ∗, y0〉 − 〈γ∗, y〉 ≥ 〈γ∗, z0〉 − 〈γ∗, z〉 ;

which is contradiction with (16) . �

Considering the optimization problem (P1) and applying Theorem 4.1, we
get one of the results of [6].

Corollary 4.1 [6] Let x̄ ∈ C. Assume that there exists γ∗ ∈
(
−R

p
+

)◦ \ {0}
such that

∂ε (γ∗ ◦ g) (x̄) ⊂ ∂ε (γ∗ ◦ f + δC) (x) , for all ε ∈ R
∗
+.

Then x̄ is a weak Pareto minimal point of (P1) .

5 Application

In this section, we give an application to vector fractional mathematical pro-
gramming. Let f1, . . . , fp, g1, . . . , gp : R

n → R be convex and lower semi-
continuous functions such that

fi (x) ≥ 0 and gi (x) > 0 for all i = 1, . . . , p.

We denote by ϕ the mapping defined as follows
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ϕ (x) :=
f (x)
g (x)

=
(
f1 (x)
g1 (x)

, ...,
fp (x)
gp (x)

)
.

We consider the set valued mapping H : R
n ⇒ R

p with

H (x) :=
{
y ∈ R

p : y ∈ ϕ (x) + R
p
+

}
.

Under these assumptions, we investigate the optimization problem

(P ∗) :
{

R
p
+ −Minimize H (x)
subject to : x ∈ C

Where C is a nonempty locally closed subset of R
n.

We will need the following lemma.

Lemma 5.1 Let x̄ be a feasible point of problem (P ∗) . x̄ is a local weak Pareto
minimal point of (P ∗) if and only if x̄ is a local weak Pareto minimal point of
the following problem(

P
′′)

:
{

R
p
+ −Minimize H1 (x)−H2 (x)

subject to : x ∈ C

where

ϕi (x̄) =
fi (x̄)
gi (x̄)

, H1 (x) := (f1 (x) , ..., fp (x)) ,

H2 (x) := (ϕ1 (x̄) g1 (x) , ..., ϕp (x̄) gp (x))

Proof. Let x̄ be a local weak Pareto minimal point of (P ∗) . If there exists
x1 ∈ x̄+ BRn such that x1 ∈ C and

(fi (x1)− ϕi (x̄) gi (x1))− (fi (x̄)− ϕi (x̄) gi (x̄)) ∈ − int
(
R

p
+

)
.

Since fi (x̄)− ϕi (x̄) gi (x̄) = 0, one has

fi (x1)
gi (x1)

− fi (x̄)
gi (x̄)

∈ − int
(
R

p
+

)
,

which contradicts the fact that x̄ is a local weak Pareto minimal point of (P ∗) .
So x̄ is a local weak Pareto minimal point of

(
P

′′
)
. The converse implication

can be proved in the similar way. The proof is thus completed. �

Applying Corollary 3.1 and Corollary 4.1 to
(
P

′′
)
, we deduce necessary

and sufficient optimality conditions for the vector fractional mathematical
programming problem (P ∗) .
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Theorem 5.1 Necessary optimality conditions. If x̄ is a local weak
Pareto minimal point of (P ∗) then for any ε > 0 there are x1, x2 ∈
x + εBRn , f (x2) ∈ f (x) + εBRp , g (x2) ∈ g (x) + εBRp , x1 ∈ C and(
γ∗1 , . . . , γ

∗
p

)
∈
(
−R

p
+

)◦ \ {0} such that

p∑
i=1

γ∗i ϕi (x) ∂gi (x2) ⊂ N̂ (x1, C) + ∂

(
p∑

i=1

γ∗i fi

)
(x2) .

Theorem 5.2 Sufficient optimality conditions. Let x̄ ∈ C. Assume that
C is convex and that there exists α = (α1, . . . , αp) ∈

(
−R

p
+

)◦ \ {0} such that

∂ε

(
p∑

i=1

αiϕi (x) gi

)
(x) ⊂ ∂ε

(
p∑

i=1

αifi + δC

)
(x) , for all ε ∈ R

∗
+.

Then x̄ is a weak Pareto minimal point of (P ∗) .
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1 Introduction

In this paper we are concerned with the optimization problems of the following
type:

(∗) minimizeC Φ(x) subject to x ∈ Ω.

Here X and Y are real normed spaces (unless stated otherwise all the spaces
here will be real), Ω ⊂ X , C ⊂ Y is a proper pointed convex cone, the map
Φ : X ↪→ Y is set-valued and the minimum may be taken in the sense that we
seek (x̄, ȳ) ∈ X × Y such that ȳ ∈ Φ(x̄) and (∪x∈ΩΦ(x)) ∩ ({ȳ} − C) = {ȳ}.
Other possibilities are of finding weak minimizers or proper minimizers (see
[13]). We recall that given a pointed convex cone C ⊂ Y, the set of minimal
points of some A ⊂ Y, henceforth denoted by Min(A, C), is defined as

Min(A, C) := {x ∈ A| A ∩ ({x} − C) = {x}}.

 pp. ,
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Being equipped with this terminology, a minimizer to (∗) is a point (x̄, ȳ) ∈
X × Y such that ȳ ∈ Φ(x̄) ∩Min(Φ(Ω), C) where Φ(Ω) := ∪x∈ΩΦ(x).

Notice that if the map Φ is single-valued then (∗) collapses to the known
vector optimization problem. Additionally, if Y = R and C = R+ := {t ∈
R| t ≥ 0} then we recover the framework of classical optimization problems.

The problems of the above type belong to the realm of set optimization,
a subject that has attracted a great deal of attention in recent years. In
general, set optimization represents the optimization problems with set-valued
objective and/or set-valued constraints. Besides the intrinsic interests that
these problems bring forth an important generalization and unification of the
scalar and the vector optimization problems, there are many research domains
which lead directly to the problems of the above kind. Two useful examples
for depicting the appearance of set optimization problems are the duality
principles in vector optimization and the gap functions for vector variational
inequalities (cf. [9]).

In recent years a great deal of attention has been given to the set opti-
mization problems. Starting point for this interesting research domain was the
influential paper by Corley [7] where the contingent derivatives and the cir-
catangent derivative were employed to give general optimality conditions. His
results were substantially improved by Luc-Malivert [18]. In these works the
derivative notion revolves around the graphs of the involved set-valued maps.
Another useful approach based on employing the epigraphs of the involved set-
valued maps was initiated by Jahn-Rauh [17] which was further pursued in
[10, 14, 15, 20], among others. Another interesting approach for set optimiza-
tion problems that is based on the notion of Mordukhovich’s coderivatives,
is given in [8]. Although there are now a great variety of results available for
first-order optimality conditions, the issue of second order optimality condi-
tions in set optimization as well as in nonsmooth vector optimization is still in
need to be exploited (cf. [21]). In [16], using the second-order tangent sets two
epiderivatives were introduced and employed to give second-order necessary
and sufficient optimality conditions. Although, in some respect the approach
of defining the second order epiderivatives is similar to that earlier used for
the first order epiderivatives, one sharp contrast is that the epigraph of the
second-order epiderivatives is only a closed set whereas the epigraph of the
first order epiderivatives is always a cone. On the other hand, while following
the recent developments one notices an important concept of second order
asymptotic tangent cone due to Penot [23] and Cambini et.al. [4].

In this short paper, we intend to employ the asymptotic cone to introduce
two new notions of epiderivative and give new optimality conditions in set-
optimization.

This paper is divided into three sections. In Section 2, after recalling some
basic definitions, we give two epiderivatives and prove the existence of one
of them. Section 3 is devoted to the optimality condition for the local weak
minimizers. This section contains two main results, the first one (Theorem 3.1)
modifies slightly results of [16] and the second one (Theorem 3.2), gives a
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different kind of second order optimality condition. Several particular cases
are given.

2 Preliminaries

We begin with recalling the notion of the second order contingent set and
second-order asymptotic tangent cone (see [1, 22] for details).

Definition 2.1 Let Ξ be a real normed space, let S ⊂ Ξ be nonempty and
let w ∈ Ξ.

1. The second order contingent set T 2(S, z̄, w) of S at z̄ ∈ cl(S) ( closure of
S ) in the direction w ∈ Ξ is the set of all z ∈ Ξ such that there are a
sequence (zn) ⊂ Ξ with zn → z and a sequence (λn) ⊂ P := {t ∈ R | t > 0}
with λn ↘ 0 so that z̄ + λnw + 1

2λ
2
nzn ∈ S.

2. The second order asymptotic tangent cone T̃ 2(S, z̄, w) of S at z̄ ∈ cl(S)
in the direction w ∈ Ξ is the set of all z ∈ Ξ such that there are a
sequence (zn) ⊂ Ξ with zn → z and a sequence (λn, δn) ⊂ P × P with
(λn, δn) ↘ (0, 0) so that z̄ + λnw + 1

2λnδnzn ∈ S.
3. The contingent cone T (S, z̄) of S at z̄ ∈ cl(S) is the set of all z ∈ Ξ such

that there are a sequence (zn) ⊂ S with zn → z̄ and a sequence (λn) ⊂ P
with λn →∞ so that λn(zn − z̄) → z.

Remark 2.1 It is known that the contingent cone T (S, z̄) is a nonempty
closed cone (cf. [1]). However, T 2(S, z̄, w) is only a closed set (possibly empty),
non-connected in general, and it may be nonempty only if w ∈ T (S, z̄). On
the other hand, T̃ 2(S, z̄, w) is a closed cone (possibly empty) which may be
nonempty only if w ∈ T (S, z̄). Moreover, if S is convex and T̃ 2(S, z̄, w) �= ∅
then T 2(S, z̄, w) ⊂ T̃ 2(S, z̄, w). Some details and examples of these cone are
given in [1, 4, 19, 22, 23, 24].

Let X and Y be real normed spaces and let Φ : X ↪→ Y be a set-valued
map. The effective domain and the graph of Φ are given by dom(Φ) := {x ∈
X | Φ(x) �= ∅} and graph(Φ) := {(x, y) ∈ X × Y| y ∈ Φ(x)}, respectively.
Given a proper convex cone C ⊂ Y, the so-called profile map Φ+ : X ↪→ Y is
defined by: Φ+(x) := Φ(x) + C, for every x ∈ dom(Φ). Moreover the epigraph
of Φ is the graph of Φ+, that is, epi(Φ) = graph(Φ+).

Definition 2.2 Let Φ : X ↪→ Y be a set-valued map, let (x̄, ȳ) ∈ graph(Φ),
and let (ū, v̄) ∈ X × Y.

(i) A set-valued map D̃2
aΦ(x̄, ȳ, ū, v̄) : X ↪→ Y defined by

D̃2
aΦ(x̄, ȳ, ū, v̄)(x) :=

{
y ∈ Y | (x, y) ∈ T̃ 2(graph(Φ), (x̄, ȳ), (ū, v̄))

}
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is called second order asymptotic derivative of Φ at (x̄, ȳ) in the direction
(ū, v̄).

(ii)A set-valued map D2
cΦ(x̄, ȳ, ū, v̄) : X ↪→ Y defined by

D2
cΦ(x̄, ȳ, ū, v̄)(x) :=

{
y ∈ Y | (x, y) ∈ T 2(graph(Φ), (x̄, ȳ), (ū, v̄))

}
is called second order contingent derivative of Φ at (x̄, ȳ) in the direction
(ū, v̄).

Details of the second order contingent derivative are available in [1] and
the second order asymptotic derivative is based on the ideas in [22].

It is clear that if (ū, v̄) = (0X , 0Y) in the above definition, where 0X and
0Y are the zero elements in X and Y, we recover the contingent derivative
DcΦ(x̄, ȳ) of Φ at (x̄, ȳ) (cf. [1]). In particular, if Φ : X → Y is a single valued
map which is twice continuously Fréchet differentiable around x̄ ∈ Ω ⊂ X ,
then the second order contingent derivative of the restriction ΦΩ of Φ to Ω at
x̄ in a direction ū is given by the formula (see [1, p. 215]):

D2
cΦΩ(x̄, Φ(x̄), ū, Φ′(x̄)(ū))(x) = Φ′(x̄)(x) + Φ′′(x̄)(ū, ū) for x ∈ T 2(Ω, x̄, ū).

(1)
It is empty when x /∈ T 2(Ω, x̄, ū).

Now we are in a position to introduce two new second order epiderivatives.

Definition 2.3 Let X and Y be real normed spaces and let C ⊂ Y be a pointed
convex cone. Let Φ : X ↪→ Y be a set-valued map, let (x̄, ȳ) ∈ graph(Φ) and
let (ū, v̄) ∈ X × Y.

(a) A single-valued map D̃2Φ(x̄, ȳ, ū, v̄) : X → Y defined by

epi(D̃2Φ(x̄, ȳ, ū, v̄)) = T̃ 2(epi(Φ), (x̄, ȳ), (ū, v̄)) (2)

is called second order asymptotic epiderivative of Φ at (x̄, ȳ) in direction
(ū, v̄).

(b) A set-valued map D̃2
gΦ(x̄, ȳ, ū, v̄) : X ↪→ Y defined by

D̃2
gΦ(x̄, ȳ, ū, v̄)(x) = Min(D̃2

aΦ+(x̄, ȳ, ū, v̄)(x), C),

x ∈ dom(D̃2
aΦ+(x̄, ȳ, ū, v̄))

is called generalized second order asymptotic epiderivative of Φ at (x̄, ȳ) in
direction (ū, v̄).

If the cone T̃ 2 in (a) is replaced by the set T 2, then we get the second order
contingent epiderivative (see [16]) which we will denote by D2Φ(x̄, ȳ, ū, v̄). If in
(b) we replace D̃2

aΦ+(x̄, ȳ, ū, v̄)(x) by D2
cΦ+(x̄, ȳ, ū, v̄)(x), then the generalized

second-order epiderivative is obtained, which we will denote by D2
gΦ(x̄, ȳ, ū, v̄)

(see [16]). In this case, if D2
cΦ+(x̄, ȳ, ū, v̄)(x) = ∅, we set D2

gΦ(x̄, ȳ, ū, v̄)(x) = ∅.
Moreover, if in the above (ū, v̄) = (0X , 0Y), then we recover the contingent
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epiderivative DΦ(x̄, ȳ) (cf. [17]) and the generalized contingent epiderivative
DgΦ(x̄, ȳ) (cf. [6]) of Φ at (x̄, ȳ), respectively.

Since, in general, the epigraph of Φ has nicer properties than the graph
of Φ, it is advantageous to employ the epiderivatives in set optimization. For
example, it is a less stringent requirement that the epi(Φ) is convex than that
the graph(Φ) is convex.

Now we give some auxiliary results for the second order derivative and the
epiderivatives.

Proposition 2.1 For every x ∈ dom(D̃2
aΦ(x̄, ȳ, ū, v̄)), the following relation

holds:
D̃2

aΦ(x̄, ȳ, ū, v̄)(x) + C ⊆ D̃2
aΦ+(x̄, ȳ, ū, v̄)(x).

Proof. Let y ∈ D̃2
aΦ(x̄, ȳ, ū, v̄)(x) and let c ∈ C be arbitrarily chosen. Because

(x, y) ∈ graph(D̃2
aΦ(x̄, ȳ, ū, v̄)) we have (x, y) ∈ T̃ 2(graph(Φ), (x̄, ȳ), (ū, v̄)).

Therefore there exist sequences (λn, δn) ⊂ P × P, ((xn, yn)) ⊂ X × Y such
that (λn, δn) ↘ (0, 0), (xn, yn) → (x, y) and ȳ+λnv̄+ 1

2λnδnyn ∈ Φ(x̄+λnū+
1
2λnδnxn). By setting ȳn := yn + c, we notice that

ȳ + λnv̄ +
1
2
λnδnȳn = ȳ + λnv̄ +

1
2
λnδnyn +

1
2
λnδnc

∈ Φ(x̄+ λnū+
1
2
λnδnxn) + C,

and this implies that (x̄, ȳ) + λn(ū, v̄) + 1
2λnδn(xn, ȳn) ∈ epi(Φ). Since ȳn

converges to y + c, we deduce that y + c ∈ D2
aΦ+(x̄, ȳ, ū, v̄)(x). The proof is

complete. �

Notice that, in view of the fact that Φ+(·) + C = Φ+(·) the above result
implies that for every x ∈ dom(D2

aΦ+(x̄, ȳ, ū, v̄)), the following relation holds:

D̃2
aΦ+(x̄, ȳ, ū, v̄)(x) + C = D̃2

aΦ+(x̄, ȳ, ū, v̄)(x).

Recall that a convex cone C is called regular (cf. [11]), if each C-decreasing
and C-lower bounded (see [9, 11] for details) sequence converges to an element
of C. We also need to recall the following

Lemma 2.1 [11] Let Y be a real normed space and let C ⊂ Y be a convex
regular cone. Let D ⊂ Y be closed and C-lower bounded. Then Min(D, C) �= ∅
and D ⊆ Min(D, C) + C.

The following is an existence theorem.

Theorem 2.1 Let X and Y be real normed spaces and let C ⊂ Y be a regular
convex cone. Let Φ : X ↪→ Y be a set-valued map, let (x̄, ȳ) ∈ graph(Φ) and
let (ū, v̄) ∈ X × Y. Let for every x ∈ A := dom(D̃2

aΦ+(x̄, ȳ, ū, v̄)), the set
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D̃aΦ+(x̄, ȳ, ū, v̄)(x) have a C-lower bound. Then D̃2
gΦ(x̄, ȳ, ū, v̄)(x) �= ∅ for

every x ∈ A. Moreover the following relations hold:

D̃2
aΦ+(x̄, ȳ, ū, v̄)(x) ⊆ D̃2

gΦ(x̄, ȳ, ū, v̄)(x) + C for every x ∈ A. (3)

epi(D̃2
gΦ(x̄, ȳ, ū, v̄)) = T̃ 2(epi(F ), (x̄, ȳ), (ū, v̄)). (4)

Proof. The proof is very similar to that of Theorem 2.1 in [16] where the
existence of the generalized second order contingent epiderivative was given.
�

We conclude this section with a remark that several auxiliary results given
in [16] for the generalized second order contingent epiderivative can be ex-
tended to the present setting.

3 Main results

Consider the following set optimization problem:

(P) minimizeC Φ(x) subject to x ∈ Ω.

Here for a nonempty set Ω ⊂ X , the map Φ : Ω ↪→ Y is set-valued (if
Ω ⊂ dom(Φ) then one can work with the restriction of Φ on Ω), X and Y
are real normed spaces, where the space Y is partially ordered by a nontrivial
pointed closed convex cone C ⊂ Y with nonempty topological interior and ∂C
as its boundary. We are interested in local weak minimizers of (P ). Recall
that a pair (x̄, ȳ) ∈ graph(Φ) is called local weak minimizer of (P ) if there
exists a neighborhood U of x̄ such that

Φ(Ω ∩ U) ∩ ({ȳ} − int(C)) = ∅, where Φ(Ω ∩ U) :=
⋃

x∈Ω∩U

Φ(x).

If this property holds for U = X , then (x̄, ȳ) is called a weak minimizer of
(P ).

Throughout the rest of the paper we assume that the cones and sets in-
volved either in defining the derivatives and epiderivatives or used otherwise
are nonempty.

3.1 Optimality via second order asymptotic derivative

The following second order necessary optimality condition is the main result
of this section.

Theorem 3.1 Let (x̄, ȳ) ∈ graph(Φ) be a local weak minimizer of (P ) and let
ū ∈ D0 := dom(DΦ+(x̄, ȳ)) be arbitrary. Then:
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(i) For every v̄ ∈ DcΦ+(x̄, ȳ)(ū) ∩ (−∂C) and

x ∈ D1 := dom(D2
cΦ+(x̄, ȳ, ū, v̄)),

we have
D2

cΦ+(x̄, ȳ, ū, v̄)(x) ∩ (−int(C)− {v̄}) = ∅. (5)

(ii)For every v̄ ∈ DcΦ+(x̄, ȳ)(ū) ∩ (−∂C) and

x ∈ D̃1 := dom(D̃2
aΦ+(x̄, ȳ, ū, v̄)),

we have
D̃2

aΦ+(x̄, ȳ, ū, v̄)(x) ∩ (−int(C)− {v̄}) = ∅. (6)

Proof. We will only prove (6) as the proof of (5) is quite similar and is available
in [16] with an equivalent definition of the second order contingent set. Since
(x̄, ȳ) ∈ graph(Φ) is a local weak minimizer of (P ), there is a neighborhood U
of x̄ such that

Φ(Ω ∩ U) ∩ ({ȳ} − int(C)) = ∅. (7)

Assume that for some x ∈ D̃1 there exists

y ∈ D̃2
aΦ+(x̄, ȳ, ū, v̄)(x) ∩ (−int(C)− {v̄}).

Since the above containment implies that

(x, y) ∈ graph(D̃2
aΦ+(x̄, ȳ, ū, v̄)) = T̃ 2(epi(Φ), (x̄, ȳ), (ū, v̄)),

there are sequences (λn, δn) ⊂ P × P, and ((xn, yn)) ⊂ epi(Φ) such that

(λn, δn) ↘ (0, 0) (8)
(xn, yn) → (x, y) (9)

(x̄, ȳ) + λn(ū, v̄) +
1
2
λn δn(xn, yn) ∈ epi(Φ). (10)

From y ∈ −int(C)− {v̄}, yn → y and δn ↘ 0, there exists n1 ∈ N such that

v̄ +
1
2
δnyn ∈ −int(C) for every n ≥ n1.

Since λn ∈ P, we get

λnv̄ +
1
2
λnδnyn ∈ −int(C) for every n ≥ n1.

The above inequality further implies that for every n ≥ n1 we have

ȳ + λnv̄ +
1
2
λnδnyn ∈ ȳ − int(C). (11)

However, we also have
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ȳ + λnv̄ +
1
2
λnδnyn ∈ Φ(x̄+ λnū+

1
2
λnδnxn) + C.

Set

an := x̄+ λnū+
1
2
λnδnxn

bn := ȳ + λnv̄ +
1
2
λnδnyn.

In view of the inclusion bn ∈ Φ(an) + C there exists some wn ∈ Φ(an) with
bn ∈ wn+C. From this we deduce that wn ∈ bn−C. In view of the containments
int(C) + C ⊆ int(C) and bn ∈ ȳ − int(C), we conclude that

wn ∈ ȳ − int(C) for every n ≥ n1.

Since an ∈ Ω and an → x̄, we can find n2 ∈ N such that an ∈ Ω∩U for every
n ≥ n2.

Therefore, we have shown that for sufficiently large n ∈ N there exists
an ∈ Ω∩U such that Φ(an)∩(ȳ−int(C)) �= ∅. This, however, is a contradiction
to the assumption that (x̄, ȳ) is a local weak minimizer. The proof is complete.

�

Remark 3.1 Notice that by setting (ū, v̄) = (0X , 0Y) in (6), we obtain the
following first order optimality condition: For every x ∈ dom(DcΦ+(x̄, ȳ)) we
have

DcΦ+(x̄, ȳ)(x) ∩ (−int(C)) = ∅. (12)

Remark 3.2 It is evident that (12) and (6) hold as first and second or-
der necessary optimality conditions if DcΦ+(x̄, ȳ) is replaced by DgΦ(x̄, ȳ) or
DΦ(x̄, ȳ) and D̃2

cΦ+(x̄, ȳ, ū, v̄) is replaced by D̃2
gΦ(x̄, ȳ, ū, v̄) or D̃2Φ(x̄, ȳ, ū, v̄),

respectively.

3.2 Optimality via second order lower Dini derivative

Notice that Theorem 3.1 shows that the local weak minimality can be char-
acterized as a disjunction in the image space of Φ. Before we extract some
useful particular cases from Theorem 3.1, we would prefer to give another
form of optimality conditions. For brevity we will employ a notion of second-
order lower Dini derivative which is inspired by the lower Dini derivative of
Penot [22].

Definition 3.1 Let Φ : X ↪→ Y be a set-valued map and (x̄, ȳ) ∈ graph(Φ).
The second order lower Dini derivative of Φ at (x̄, ȳ) in the direction (ū, v̄) ∈
X × Y is the set-valued map such that (x, y) ∈ graph(D2

l Φ(x̄, ȳ, ū, v̄)) if and
only if for every (λn) ⊂ P and for every (xn) ⊂ X with λn ↓ 0 and xn → x
there are a sequence (yn) ⊂ Y with yn → y and an integer m ∈ N such that
ȳ + λnv̄ + 1

2λ
2
nyn ∈ Φ(x̄+ λnū+ 1

2λ
2
nxn) for every n ≥ m.
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We also need to recall the following notion of the second-order interiorly
adjacent set.

Definition 3.2 ([25]) The second-order interiorly adjacent set IT 2(S, x̄, ū)
of S at x̄ in the direction ū is the set of all x ∈ X such that for all sequences
{tn} ⊂ P with tn ↘ 0, and for all sequences (xn) ⊂ X with xn → x, we have
x̄+ tnū+ 1

2 t
2
nxn ∈ S, for n large enough.

Given a set-valued map Φ : X ↪→ Y, the weak-inverse image Φ[S]− of Φ
with respect to a set S ⊂ Y is

Φ[S]− := {x ∈ X | Φ(x) ∩ S �= ∅}.

The following is the main result of this subsection.

Theorem 3.2 Let (x̄, ȳ) ∈ graph(Φ) be a local weak minimizer of (P ) and let
ū ∈ D0 := dom(DΦ+(x̄, ȳ)) be arbitrary. Then for every v̄ ∈ DcΦ+(x̄, ȳ)(ū) ∩
(−∂C) we have

T 2(Ω, x̄, ū) ∩ D2
l Φ(x̄, ȳ, ū, v̄)[−int(C)− v̄]− = ∅. (13)

Proof. To prove (13), we begin by claiming that

T 2(Ω, x̄, ū) ∩ IT 2(Φ[ȳ − int(C)]−, x̄, ū) = ∅. (14)

Assume that the acclaimed disjunction does not hold. Let x ∈ X be such that

x ∈ T 2(Ω, x̄, ū) ∩ IT 2(Φ[ȳ − int(C)]−, x̄, ū).

Then, in view of the containment x ∈ T 2(Ω, x̄, ū) there are sequences (λn) ⊂
P and (xn) ⊂ X such that xn → x, λn ↘ 0 and sn := x̄+ λnū+ 1

2λ
2
nxn ∈ Ω.

Moreover, since λn ↘ 0 and xn → x, it follows from x ∈ IT 2(Φ[ȳ −
int(C)]−, x̄, ū) that there is an integer n1 ∈ N such that sn = x̄ + λnū +
1
2λ

2
nxn ∈ Φ[ȳ − int(C)]−. This, however, implies that

Φ(sn) ∩ {ȳ − int(C)} �= ∅ for all n ≥ n1.

This, however, is a contradiction the local weak minimality.
For (13) it suffices to show that

D2
l Φ(x̄, ȳ, ū, v̄)[−int(C)− v̄]− ⊆ IT 2(Φ[ȳ − int(C)]−, x̄, ū). (15)

Let x ∈ D2
l Φ(x̄, ȳ, ū, v̄)[−int(C)− v̄]−. Therefore there exists

y ∈ D2
l Φ(x̄, ȳ, ū, v̄)(x) ∩ {−int(C)− v̄}.

Let (xn) ⊂ X and (λn) ⊂ P be arbitrary sequences such that xn → x and
λn ↘ 0. It suffices to show that there exists m ∈ N such that
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x̄+ λnū+
1
2
λ2

nxn ∈ Φ[ȳ − int(C)]−

for every n ≥ m.
By the definition of D2

l Φ(x̄, ȳ, ū, v̄), there are a sequence (yn) ⊂ Y with
yn → y and n1 ∈ N such that

ȳ + λnv̄ +
1
2
λnyn ∈ Φ(x̄+ λnū+

1
2
λ2

nxn)

for every n ≥ n1. Since y ∈ (−int(C) − v̄) and yn → y, there exists n2 ∈ N
such that v̄ + 1

2λnyn ∈ −int(C) for every n ≥ n2. This implies that

ȳ + λnv̄ +
1
2
λ2

nyn ∈ Φ(x̄+ λnū+
1
2
λ2

nxn) ∩ (ȳ − int(C))

for n ≥ m := max{n1, n2}. Hence for the sequences (xn) and (λn) we have

x̄+ λnū+
1
2
λ2

nxn ∈ Φ[ȳ − int(Ω)]−

for n ≥ m. This, however, implies that x ∈ IT 2(Φ[ȳ − int(C)]−, x̄, ū). The
proof is complete. �

3.3 Special cases

Theorem 3.1 and Theorem 3.2 extend the second order theory known from
nonlinear programming to a general set optimization (and nonsmooth vector
optimization) problem. For instance, the following result which generalizes [5,
Theorem 5.3], is a direct consequence in Theorem 3.1 and Remark 3.1.

Corollary 3.1 Let Y = R and let C = R+ := {t ∈ R| t ≥ 0} in Theorem 3.1.
Then:

DcΦ+(x̄, ȳ)(x) ⊆ R+ for every x ∈ D0 := dom(DcΦ+(x̄, ȳ)).

Furthermore, for ū ∈ D0 with 0 ∈ DcΦ+(x̄, ȳ)(ū), we have

D2
cΦ+(x̄, ȳ, ū, 0)(x) ⊆ R+ for every x ∈ dom(D2

cΦ+(x̄, ȳ, ū, 0)).

In the above results we have assumed that the effective domain of Φ is Ω.
In fact if the effective domain of Φ contains the set Ω, then the above results
hold for the restriction ΦΩ of Φ to Ω. In view of this remark, equation (1) and
Theorem 3.1, we obtain the following

Corollary 3.2 Let Φ : X → Y be a single-valued map being twice continu-
ously Fréchet differentiable around a point x̄ ∈ Ω being assumed to be a local
weak minimizer of (P).Then:
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Φ′
Ω(x̄)(x) /∈ −int(C) for every x ∈ T (Ω, x̄).

Furthermore, for every ū ∈ T (Ω, x̄) such that v̄ := Φ′
Ω(x̄)(ū) ∈ (−∂C) we

have

Φ′
Ω(x̄)(x) + Φ′′

Ω(x̄)(ū, ū) /∈ −int(C)− {v̄} for every x ∈ T 2(Ω, x̄, ū).

As a further specialization of Corollary 3.2 we obtain the following nec-
essary optimality condition in finite dimensional mathematical programming.
This result is well comparable to the similar results obtained in [2].

Corollary 3.3 Assume that in Corollary 3.2, we have Y = Rn and C =
Rn

+ := {x ∈ Rn| xi ≥ 0, for every i ∈ I := {1, 2, . . . , n}}. For simplicity set
ΦΩ = Φ and define I(x) := {i ∈ I| xi = 0}. Then:

Φ′(x̄)(x) /∈ −int(Rn
+) for every x ∈ T (Ω, x̄). (16)

Furthermore, for every ū ∈ T (Ω, x̄) such that v̄ := Φ′(x̄)(ū) ∈ (−∂Rn
+), we

have

Φ′(x̄)(x) + Φ′′(x̄)(ū, ū) /∈ −int(Rn
+)− {v̄} for every x ∈ T 2(Ω, x̄, ū). (17)

Remark 3.3 Notice that (16) implies that there is no x ∈ T (Ω, x̄) with
Φ′

i(x̄)(x) < 0 for every i ∈ I. Moreover, if for every ū ∈ T (Ω, x̄) such that
Φi(x̄)(ū) ≤ 0 for all i ∈ I and I(v̄) �= ∅, we have the incompatibility of the
system
(i) x ∈ T 2(Ω, x̄, ū)
(ii) Φ′

i(x̄)(x) + Φ′′
i (x̄)(ū, ū) < 0 whenever i ∈ I(v̄),

then this implies the condition (17).

The following corollary also extends results given in [3], [4] and in [25] for
special cases.

Corollary 3.4 Let Φ : X → R be a single-valued map being twice continu-
ously Fréchet differentiable around a point x̄ ∈ Ω which is assumed to be a
local weak minimizer of (P).Then:

Φ′
Ω(x̄)(x) ≥ 0 for every x ∈ T (Ω, x̄).

Furthermore, for every ū ∈ T (Ω, x̄) such that Φ′
Ω(x̄)(ū) = 0 we have

Φ′
Ω(x̄)(x) + Φ′′

Ω(x̄)(ū, ū) ≥ 0 for every x ∈ T 2(Ω, x̄, ū).
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